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Abstract 

Livestock metabolomics is an emerging field of metabolomics that is growing at a fast rate. The 

ability to rapidly detect and quantify hundreds or even thousands of metabolites within a single 

sample is helping livestock scientists paint a far more complete picture of animal metabolism and 

physiology. It is also helping livestock researchers identify robust biomarkers of health and 

disease. In this thesis, I applied livestock metabolomics techniques to study domestic sheep with 

the overarching objective of identifying blood biomarkers for important economic traits in sheep 

farming. In particular, I focused on several key traits including feed efficiency (the major pillar of 

cost of production), carcass merit and pregnancy (traits with substantial contribution to farm 

income). To lay the groundwork for these studies, I first conducted a systematic review of livestock 

metabolomics (chapter two of this thesis). The intent was to assess the status of livestock 

metabolomics in general, and to identify important gaps and trends relative to other fields of 

metabolomics research. As part of this review, I compiled all the known livestock metabolome 

data published until 2017 and made it publicly available in the Livestock Metabolome Database 

(LMDB; available at www.lmdb.ca). Using the knowledge gained from this review, I then 

conducted a study that looked at how metabolomics could assess residual feed intake (RFI; a 

measure of feed efficiency) and carcass merit in sheep (chapter three of this thesis). Direct 

measurement of these traits is labor-intensive and expensive. Therefore, finding or developing 

easily measured metabolite markers for these traits would be expected to reduce operator costs and 

encourage their widespread measurement. Using a combination of quantitative metabolomic 

methods, I assessed the serum metabolome and identified 161 unique metabolites. I also identified 

a panel of candidate serum biomarkers consisting of three metabolites for predicting sheep RFI 

(with an area-under-the-receiver-operating-characteristic-curve [AU-ROC]=0.80), and two panels 
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of candidate serum biomarkers for predicting sheep carcass merit, including seven metabolites for 

carcass yield grade (AU-ROC=0.77) and one metabolite for carcass muscle-to-bone ratio (AU-

ROC=0.74). In chapter four, I used quantitative metabolomic techniques to identify and validate 

blood biomarkers of sheep pregnancy and litter size (PLS). Early detection of pregnant ewes and 

the number of lambs expected allows producers to adjust their management practices and feed 

rations based on ewe pregnancy requirements. I employed a longitudinal experimental design with 

separate discovery and validation phases aimed at identifying candidate blood biomarkers of sheep 

PLS. In doing so, I identified and quantified 107 metabolites associated with ewe pregnancy, and 

validated three panels of biomarkers (AU-ROC of 0.81-0.93) that can identify ewe PLS as early 

as 50 days post-breeding. These biomarkers are currently being translated into a handheld device 

that could be used as a low-cost, pen-side test for ewe PLS. It is hoped that the methods presented 

in this thesis would encourage more widespread application of metabolomics in livestock research, 

and the results presented here would provide added value for the sheep industry. 
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General Introduction 

Feeding the world’s population in the years to come is one of the great unmet challenges of the 

21st century. According to FAO statistics (FAO, 2015), even today, one in every nine people is 

undernourished for at least one year of their lives. Lack of nourishment can arise from either the 

lack of sufficient amounts of food or the lack of sufficient amounts of nutrient-dense food. Red 

meat derived from livestock is, and will likely be, one of the main sources of nutrient-dense food 

needed to feed the world’s growing population in the 21st century. Because of its high nutrient 

density, global demand for meat is expected to double by 2050 (Robinson et al., 2014), with the 

demand for red meat from ruminants expected to increase at a rate of 1.5% per year (FAO, 2017). 

Given these projections, it will be crucial for livestock farmers to provide a sufficient amount of 

animal protein not only for existing markets, but also for parts of the world where meat is lacking 

from the diet or its consumption is limited due to meat quality, or the requirement for certain 

processing procedures, such as halal and kosher rules (Rajaei Sharifabadi et al., 2012). Currently, 

meat production through livestock farming is a source of livelihood for more than a billion people 

worldwide. To meet the expected demand over the next three decades, livestock farmers will have 

to operate more efficiently, increasing their production by 70% while having to substantially 

reduce their land use and natural resource requirements to accommodate urban expansion and to 

limit the adverse environmental impacts of livestock farming (Cockrum et al., 2013). In addition 

to these large-scale, global challenges facing agriculture and food production, there are also 

significant domestic challenges facing the Canadian agricultural and livestock system. 

One of the challenges facing the Canadian agricultural system, according to the Royal Bank 

of Canada (RBC, 2019), is the decreasing trend of Canadian agriculture exports relative to the total 

value of exported Canadian goods. Indeed, over the past 20 years the proportion has gone from 
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6.3% in 2000 to just 3.9% in 2019. Three factors have been identified to be impeding the growth 

of Canadian agriculture and livestock exports: (1) a declining workforce, (2) the need for highly 

qualified personnel, and (3) insufficient use of relevant technology and high-tech machinery on 

Canadian farms. The workforce in agriculture-related fields has shrunk by nearly 30% within the 

past two decades. The Canadian Agricultural Human Resources Council projects that more than 

120,000 agricultural jobs will remain vacant in the upcoming decade (RBC, 2019). Canada’s 

agricultural workforce will further decline due to the fact that nearly 40% of the existing farmers 

will retire within the next decade. Another 25% of Canadian farmers will be turning 65 years or 

older by 2025. On the contrary, the workforce educated in agricultural programs at Canadian 

academic institutions has expanded by almost 30% over the past decade. The RBC (2019) also 

reports that Canadian farmers are highly dependent on government support for the purchase of 

new technologies and integrated management systems. While Canada ranks among the top five 

global investors in agtech – with a share of 3.4% – there is still a huge gap between Canada and 

competitors from the USA, India and Brazil. One area of agtech investment that is gaining 

increasing attention is precision or “smart” agriculture.  This is because smart agriculture 

technologies would increase the efficiency and accuracy of farming practices and could potentially 

stem the tide of the ever-shrinking agriculture workforce in Canada. At the time of writing this 

thesis, the COVID-19 pandemic has also shifted demand and attention to modify conventional 

agricultural practices towards remote and automated practices.  

 Smart agriculture or precision farming is driven by new technologies that modify both 

work culture and production efficiency. At the core of precision farming is the use of 

computational management and big datasets collected from smart, automated machinery that tailor 

farming practices to precise handling of individual agricultural units, i.e., an animal, a plant, or an 



4 

 

acre of land. Some of the emerging technologies include automated farming equipment, such as 

the autonomous DOT (named after the inventor’s mother, Dorothy) system, pioneered in 

Saskatchewan, Canada. The DOT system allows heavy equipment to be self-driving, collects real-

time data from the soil, and reports on the performance of the field. The use of GPS (Global 

Positioning System) and GIS (Geographic Information System) is also becoming more relevant 

than ever before, guiding precise applications of pesticides, movement and tracking of equipment, 

accurate irrigation of the land, livestock monitoring and activity assessment on pasture. Other 

examples of game-changing technologies include robotic milking machines, ultrasound diagnosis 

of pregnant animals, artificial insemination and embryo transfer, and automated feeding systems 

that measure individual feed consumption and feeding behavior of animals.  

Among the most important smart agricultural practices to emerge over the past two decades 

are “omics” technologies. Omics technologies provide a holistic and comprehensive understanding 

of plants, animals or soils at all molecular levels, i.e., the genome, transcriptome, proteome, and 

metabolome. Omics platforms are also evolving, becoming smaller and more portable as hand-

held and benchtop devices, improving their depth and breadth of detection, and becoming more 

user-friendly for widespread research application in the lab and on-farm use for farmers. One 

omics field in particular, metabolomics, has gained a lot of attention in recent years as it has been 

shown to have many useful applications in biomedical, veterinary, agriculture, and environmental 

research. The utility of metabolomics lies in the fact that it enables the measurement of subtle 

changes in the metabolome of plants and animals. In addition, metabolomics provides the 

opportunity to reveal biomarkers that represent alterations in the chemical phenotype of an 

organism. This chemical phenotype is often referred to as the “metabotype” (Fontanesi, 2016). 

While the application of metabolomics to plant breeding, crop science, food analysis and soil 
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science is thriving, the application of metabolomics in livestock farming and livestock research 

has just recently been gaining some attention. The metabotype can provide phenotypic data to 

inform on the outcome livestock genetic selection, and also to inform on the alterations in the 

underlying omics layers, i.e., proteomics. We discuss different aspects of livestock metabolomics 

further in this chapter (section 1.5.) and in chapter two of this thesis. 

The Livestock Industry 

Cattle, sheep, goats and pigs are the primary livestock species farmed for red meat production 

around the globe (FAO, 2018). Red meat is a rich source of essential nutrients, especially essential 

amino acids, which are biologically more compatible for absorption by our body than most other 

sources of nutrients (Wyness, 2016). For example, lean red meat is abundant in fatty acids such as 

palmitic acid (C16:0) and stearic acid (C18:0; Daley et al., 2010). Red meat also provides the 

necessary amount of protein required for human growth in adolescence. In addition to 

macronutrients, such as fatty acids and amino acids, micronutrients such as iron are also 

concentrated in red meat and provide up to 30% of this micronutrient in its haem form (Wyness, 

2016). This type of iron is critical for blood’s capacity to transport oxygen. The main source of red 

meat production worldwide is from cattle and pigs, supplying 24% and 40% of the market demand, 

respectively (FAO, 2018). Additionally, sheep rearing is reported to be the second-largest live 

animal operation for red meat production (FAO, 2015). Sheep carcass weight has increased by 2% 

over the past decade, contributing to the steadily increasing global sheep meat production, reaching 

9.7 million tons of meat produced from more than 573 million head in 2018 (FAO, 2018). A similar 

trend exists for goat meat production with more than 5.9 million tons of meat produced from 479 

million head in 2018 (FAO, 2018). The most recent Canadian Agriculture Census (2016) indicates 

beef farming is still the main driver of red meat production in Canada, mainly in Alberta. However, 
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market demand for small ruminant meat, specifically sheep, is gaining momentum because of the 

large immigrant population across Canada and the reduced supply of imported meat. Canada’s 

sheep industry has had a fairly consistent production of live sheep from 2016 to 2020 (Statistics 

Canada), and the amount of sheep meat produced has increased from an average of 9,000 tons in 

1990 to more than 15,000 tons in 2016 (FAO, 2018). 

Sheep Farming 

Domestication of Sheep 

Sheep were among the first animals to be domesticated by humans. Early signs of sheep 

domestication date to earlier than 8000 BC, as evidenced by Iranian statuary (Figure 1) portraying 

sheep farming (Zeder, 2008). Today, more than 1400 breeds of sheep exist across the globe 

(Scherf, 2000). The majority of the world’s sheep production (Figure 2.a) is in Asia (>40%), led 

by China, India, Turkey and Iran, followed by Africa (>20%), Europe and Oceania (>10%; 

Zygoyiannis, 2006). North American producers own 0.7% of the world sheep population 

(Zygoyiannis, 2006). According to FAOSTAT (statistical data generated by FAO, available online 

for public access), the top five sheep producing countries are China (~150M head), Australia 

(~85M head), India (~65M head), Sudan (~50M head) and Iran (~50M head; Figure 2.b). Global 

sheep production in the 21st century has generally increased from 1.06 billion head in 2000 up to 

1.20 billion head in 2018. Canada stands in 84th position worldwide in sheep production, with 

0.82M head reported in 2018. Canadian sheep production surged in 2000 from 0.79M head to 

0.97M in 2005. However, after the outbreak of mad cow disease in Canada, the livestock industry 

in general steadily declined including sheep production, which dropped to 0.82M head by 2018. 

Sheep have been traditionally produced for three main purposes: meat, milk and wool. 

While some breeds, such as Suffolk, Canadian Arcott and Rideau Arcott, are generally destined 
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for meat production, others such as Lacaune and East Friesian are recognized for their milk 

production, and a few, such as Merino, are farmed for wool. Increasing demand for sheep meat 

has elevated the popularity of farming sheep for meat production (FAO, 2018). In North America, 

sheep farmers contribute slightly more than one percent of the worldwide sheep meat production 

compared to 50% in Asia, nearly 15% in Europe and Oceania, and more than 10% in Africa 

(Zygoyiannis, 2006). In Canada, the majority of sheep production is for meat, while a minority of 

producers (mainly in the Eastern provinces) rear sheep for milk production. Up to half of the sheep 

meat consumption in Canada is supplied by domestic producers and the remaining amount is 

imported mainly from Australia (AUS) and New Zealand (NZ). The per capita consumption of 

sheep meat is growing among Canadian consumers, and imports from AUS and NZ are declining 

because of the decreasing flock sizes in those countries. Therefore, there is more opportunity for 

Canadian producers to increase their market share of sheep meat. 

Sheep Breeds Used in This Thesis 

The breeds used in this thesis work include the Suffolk, Canadian Arcott and Rideau Arcott. 

Suffolk is a sheep breed that is predominantly used as a terminal sire (male Suffolk breeding with 

female of any breed to produce lambs for meat production) in North America due to its higher 

growth rate, higher meat yield, higher number of premium meat cuts, uniformity for easier 

slaughter, and higher market desirability (Leymaster, 1991; Pérez et al., 2002; Maierle, 2018). 

Canadian Arcott and Rideau Arcott are comparatively newer breeds that have been developed in 

Canada for meat production and prolificacy, respectively. Canadian Arcott rams and lambs have 

higher weights with greater lean meat and loin eye areas, while the Rideau have a moderate muscle 

content and are highly prolific (Shrestha and Heaney, 2003). Sheep producers in Canada 

traditionally use Rideau genetics to develop their maternal flock and Arcott rams as a terminal sire. 
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Sheep Meat Production in Canada 

Sheep meat production is associated with relatively small profit margins for most Canadian 

producers. Implementing more efficient methods for sheep production is one way that producers 

can improve profitability and reduce their environmental footprint. In fact, livestock have the 

largest impact on agricultural land by overgrazing natural vegetation, and polluting soil, water and 

the air through manure production, urination and methane production (FAO, 2015). One approach 

to improving production efficiency is selecting for sheep that efficiently process feed to meat. 

Feed-efficient sheep consume less feed for a similar level of growth therefore, decreasing grazing 

pressure on pastures, and producing less manure, methane and urine. Having feed-efficient sheep 

on pasture also opens the opportunity to increase the stocking rate. This allows farmers to increase 

meat production using the same amount of resources. Another benefit of this approach is 

transmitting a positive message throughout the food chain, informing meat consumers of the lower 

environmental impact of sheep production. Improving production efficiency also favors producers 

by improving their profit margins. There are three traits that generally contribute to the profitability 

of livestock production: feed efficiency, carcass merit, and pregnancy (Norton, 2005; Morris, 

2009; Spring, 2013; Farrell et al., 2020; Lockwood et al., 2020). These traits are investigated in 

this thesis and are explained in detail in the following sections and following chapters of this thesis.  

Feed management is the major cost of production in sheep farming. A strategy to mitigate 

this cost is the selection of more feed-efficient sheep. While improving feed efficiency reduces 

farm costs, farm income is elevated by selecting lambs that have higher carcass merit. Farmers are 

paid a higher premium if they deliver carcasses with higher proportions of lean meat. Income and 

profitability also have a direct positive correlation with the number of lambs delivered per ewe. 

Early knowledge of the pregnancy status of an ewe and the adjustment of management practices 
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based on pregnancy requirements can reduce the chances of abortion and increase delivery of 

viable lambs (Heasman et al., 1998; Kenyon and Blair, 2014). Moreover, early identification of 

ewes that failed to breed during the breeding season would allow them to re-enter the breeding 

cycle, increasing the pregnancy rate of the flock. Another opportunity presented to sheep producers 

through early pregnancy detection is preventing the overfeeding of open ewes with rations 

balanced to meet pregnancy requirements, thus further saving on feed costs. A detailed description 

of these traits appears below. Currently, feed efficiency, carcass merit, and pregnancy status are 

measured in different ways on the farm. One of the relatively informative measures of feed 

efficiency is residual feed intake (RFI). As described below, the current practice of measuring RFI 

requires special equipment that collects feed data over a lengthy experimental trial. Carcass merit 

is also measured by different means, some of which require ultrasound measurements of live 

animals or post-mortem measurements after slaughtering the animal. Pregnancy and litter size in 

ewes can also be measured with ultrasound.   

Residual Feed Intake 

In livestock operations, where the cost of production is accurately quantified, animal feed is 

recognized as the single highest component of the costs. In sheep production, the cost of feeding 

animals accounts for 40-80% of the operational costs (Paisley and Cammack, 2010). The cost of 

feeding animals is affected by multiple factors such as the availability of feed resources, the 

duration of winter-feeding and grazing season, the geographical region and climate, labor costs 

and infrastructure (Kaliel, 2004). Another contributing factor to this cost is feeding all of the flock 

the same ration. Even though feeding all the flock with the same ration may seem to be a 

convenient option, assuming all animals have the same nutritional needs results in feeding some 

of the flock below/above their physiological requirement, thus increasing the cost of feeding. 
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Inherent features of certain animals also contribute to the cost of feeding depending on how 

efficiently they convert feed to meat. That is why a prevalent strategy to manage this cost is the 

selection of feed-efficient animals (Li et al., 2020a). In a world where producers pay a similar price 

for animal feed and sell their commodity (i.e., live animal or meat) for a similar price as most other 

producers, efficient animals will substantially contribute to the profitability of the farm, and give 

it a competitive advantage. Each individual animal has a different rate of feed conversion 

efficiency despite all animals receiving the same ration (Rajaei Sharifabadi et al., 2012). Feed-

efficient sheep are expected to eat less while producing the same quality and quantity of products 

relative to the rest of the flock (Paula et al., 2013). Feed-efficient ruminants also have a lower 

environmental impact due to reduced feed intake, reduced stocking rate on pasture, and lower 

excretion of manure, urine and emission of methane (Basarab et al., 2003).  

Measuring feed efficiency has evolved throughout the years with some examples including 

feed conversion ratio (FCR), average daily gain (ADG), and RFI. A discussion covering all 

measures of feed efficiency and the advantages and disadvantages of each is beyond the scope of 

this chapter.  Here we will focus mostly on RFI with a brief discussion on FCR. The FCR is a trait 

that compares weight gain against feed intake of an animal. Animals with low FCR are favored 

because for each kilogram of weight gain, they consume less feed. The FCR trait is easily measured 

and often calculated for a group of animals in the pen rather than a single animal. Despite its 

advantages, FCR is correlated with multiple traits, such as feed intake, growth rate and mature 

body size, which makes genetic selection for FCR yield unfavorable responses in the correlated 

traits (Herd and Bishop, 2000; Crews, 2005; Kelly et al., 2010). Furthermore, FCR does not 

distinguish between maintenance and growth requirements of an animal because it measures gross 

feed intake. Moreover, the genetic correlation of FCR between different stages of maturity in the 
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same animal is very low (Arthur and Herd, 2005) suggesting that FCR is a constantly evolving 

measurement. Unlike the popularity of using FCR for measuring feed efficiency, RFI in sheep has 

not been widely explored and, to the best of our knowledge, no record of measuring RFI on 

Canadian sheep breeds exists. This is, in part, due to the lack of knowledge around RFI in the 

sheep industry and the cost of directly measuring this trait. Therefore, many of the inferences 

around sheep RFI are based on research conducted on other livestock species, specifically cattle. 

In this chapter, I have tried to reference sheep RFI research and in the case of it not being available, 

I have referred to RFI research on other ruminants.  

Among the different feed efficiency measurements, RFI is defined as the difference 

between predicted and actual feed intake corrected for body weight and animal performance (Koch 

et al., 1963). Measurement of feed efficiency via RFI has become much more recognized in the 

study of ruminants because of its phenotypic independence from production level, age and weight 

(Karisa et al., 2014). The RFI value of an animal is the residual amount of feed it consumes above 

or below the level that has been predicted (from like-type animals and published standards; Figure 

3). Therefore, sheep with lower RFI are desired because they consume less feed than expected and 

produce less waste, while not sacrificing body weight, size and productivity (Moore et al., 2009; 

Paula et al., 2013). Calculating RFI involves measuring and statistical processing of dry matter 

intake (DMI) and its energy content, ADG, metabolic body weight and ultrasound backfat for 

individual animals over a period of 40-100 days (Wang et al., 2006). It has been found that low-

RFI Ghezel ram-lambs exhibited 12% lower FCR, further reflecting less consumption of DMI 

compared to high-RFI lambs (Rajaei Sharifabadi et al., 2012). Given the phenotypic independence 

of RFI, some have suggested that selection for this trait could improve the genetic performance of 

feed efficiency without affecting other carcass traits (Rajaei Sharifabadi et al., 2012). This 
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independence is also expected to reflect inherent differences in the metabolic pathways influencing 

RFI. Therefore, RFI is a desirable trait to study and select for feed efficiency, without negative or 

indirect effects on other production traits. Even though the physiological basis and molecular 

mechanisms underpinning RFI have not been fully described, various factors have been reported 

to affect this trait including feed intake, nutrient digestion and metabolism, body composition, 

physical activity and body temperature (Herd and Arthur, 2009).  

Feed intake for an animal is, in part, driven by the maintenance requirements and energy 

expenditures of the digestive organs for nutrient metabolism. The more an animal eats, the larger 

its digestive organs will be, thus increasing the energy requirements of the organs (Herd and 

Arthur, 2009). Zhang et al. (2017) reported that organ weight and intestinal length have a positive 

correlation with lamb RFI. Low-RFI wethers (male castrated sheep) also have a tendency for 

greater weight of their spleen and pancreas (Meyer et al., 2015). This is important since the 

gastrointestinal tract and liver consume up to 50% of the ruminant’s energy while accounting for 

only 6-13% of the body weight (Meyer et al., 2015). Nutrient digestion and metabolism are other 

sources of variation in RFI and are measured by the total disappearance of nutrients in the 

gastrointestinal tract. In relation to maintenance requirements, feed digestion and feed intake are 

negatively correlated, which means that as intake increases, digestion tends to decrease (Herd and 

Arthur, 2009). Sheep digestion varies up to 30% in DMI between the most and least feed-efficient 

animals (Muro-Reyes et al., 2011; Redden et al, 2014). This variability is in part due to the 

difference of metabolizable energy obtained by the feed, feeding duration (Nkrumah et al., 2005), 

feed particle size, processing and availability (Redden et al., 2013; Redden et al., 2014), and feed 

digestibility which varies at different stages of growth (Redden et al., 2011). Given the high 
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negative correlation of feed digestion with RFI (r =-0.44), nutrient digestibility is calculated to 

account for nearly 19% of the variation in RFI in ruminants (Richardson and Herd, 2004).  

Carcass Merit 

Carcass quality is one of the key factors contributing to farm income. The quantity of lean meat 

and fat content, in addition to the carcass conformation and meat cuts, are important factors that 

dictate the monetary value of each sheep sold (Scholz et al., 2015). Carcass evaluation is significant 

for breeding schemes and for the evaluation of the high-ranking seedstock to improve the 

proportion of carcass muscle mass (Silva, 2017; Ibrahim, 2019). Currently in Alberta, sheep 

producers are paid based on the carcass weight bracket (unpublished data from Alberta Lamb 

Producers). Conventional methods and current practices of determining the dressing percentage 

(i.e., the amount of lean meat in the carcass) and fat deposition are limited to pre-mortem 

ultrasonography and post-mortem carcass measurements (Scholz et al., 2015; Silva, 2017). Other 

emerging technologies, such as post-mortem X-ray computed tomography scans, have also been 

suggested for sheep carcass evaluation (Jones et al., 2002; Macfarlane et al., 2006); however, given 

the cost and limited availability of these technologies, their application on Canadian farms is very 

rare (Garza Hernandez et al., 2018). Indeed, the application of these emerging technologies are 

mostly limited to research purposes. Once these state-of-the-art technologies become more 

accessible/affordable and are coupled with smart technologies, they will no doubt serve the 

industry in the future for farm applications. On the other hand, carcass ultrasonography is a useful 

tool that offers real-time, on-farm, pre-mortem assessment of the carcass. However, application of 

this method is very limited mainly because most Albertan farmers are paid based on carcass weight 

and very few, if any, abattoirs offer premiums on the quality of meat cuts in sheep. When 

ultrasound is used to assess a sheep carcass, the thoracic and lumbar regions are scanned to 
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measure the longissimus thoracis and lumborum muscles, which are represented by the 3rd and 4th 

lumbar vertebra of the backbone and the 12th and 13th rib, respectively (Silva, 2017; Garza 

Hernandez et al., 2018). Post-hoc evaluation of the sheep carcass (Figure 4) generally includes 

measuring the carcass weight (hot and cold weights) and qualitative measurements of the meat 

content (Jones et al., 1996; Silva, 2017).  

It has been speculated that carcass quality and RFI have some correlation, however the 

literature reports inconsistent results. The RFI trait is thought to be affected by, and in turn affects, 

body composition. Some of the evidence in the literature points out that feed-efficient animals 

expend most of their energy intake to muscle development. In fact, progeny of low-RFI cattle have 

lower total body fat and higher total body protein (Herd and Arthur, 2009). The underpinning 

biology that correlates carcass merit and RFI is not fully understood. However, a few molecular 

components, such as creatinine, urea and leptin, have been reported to be involved in both traits. 

The concentration of serum creatinine is negatively correlated with RFI and backfat (BF) and 

positively correlated with muscle mass (Paula et al., 2013). In addition, elevated concentrations of 

blood urea are correlated with higher fat deposition, lower muscle mass growth, and higher RFI 

scores in sheep and steers (Richardson et al., 2004; Herd et al., 2004). Moreover, leptin, which has 

historically been used as an indicator of fat deposition, is also positively correlated with RFI (Herd 

and Arthur, 2009). In particular, less feed-efficient cattle (higher RFI scores) have a higher blood 

content of leptin. Other reports (Richardson et al., 2001; Basarab et al., 2003; Schenkel et al., 2004) 

suggest a weak positive correlation between RFI and body fat, and a negative correlation between 

carcass lean and RFI (Herd and Bishop, 2000). Given the evidence correlating RFI and carcass 

quality, some suggest that RFI could be used not only as a measure to increase feed efficiency, but 

also an indirect means to increase muscle mass, thus increasing the sale value of the sheep carcass 
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(Paula et al., 2013). On the other hand, when measuring sheep DMI and feed efficiency, factoring 

in fat and muscle depth delivers a 10% improvement in the correlation coefficient for the prediction 

model (Knott et al., 2008; Redden et al., 2014). Zhang et al. (2017) reported a positive correlation 

between RFI and BF, with low-RFI lambs having less BF. A positive correlation between RFI and 

eye muscle area is also reported (Zhang et al., 2017).  

While the evidence linking RFI to carcass merit is growing, some investigators reject the 

idea that any correlation exists between RFI and sheep carcass merit. For instance, a study 

conducted on fat-tailed Ghezel ram-lambs reports no difference in carcass traits, average daily gain 

and slaughter weight despite significant differences in the feed intake of low- and high-RFI groups 

(Rajaei Sharifabadi et al., 2012). The lack of solid evidence and biological knowledge of how RFI 

and carcass merit are associated may be due to the age and maturity level of the experimental 

animals, such that ruminants in growing stages have a higher rate of protein synthesis and turnover, 

while mature animals have greater fat deposition (Herd et al., 2004). Other factors differing 

between the experimental designs are breed, age, gender, feed type and access of the experimental 

units. 

Pregnancy and Litter Size 

Another contributing factor to farm profitability and production efficiency is the rate of pregnancy 

and the number of lambs born per ewe. Sheep are seasonal breeders and usually deliver more than 

one litter during the lambing season. The sheep breeding season in Alberta is during the Fall 

(September to November). The breeding season is affected by daylight, as the amount of light 

regulates brain function and hormone production in ewes. In a conventional breeding management 

program, sheep are bred once a year. The breeding cycle (or estrus/heat cycle) in ewes varies 

depending on the breed and environmental conditions but usually follows a 14 to 18-day cycle. 
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Each estrus cycle is composed of four phases, including proestrus, estrus, metestrus, and diestrus. 

Successful breeding requires ewes to be in the second phase of the cycle. This is often referred to 

as being in estrus or in heat, when they are receptive to the rams and will stand to be bred. The 

duration in which ewes are in heat lasts approximately 24-36 hours. It is during this time when 

estrogen (a reproductive hormone) surges, causing release of the egg from the ovary (ovulation). 

Once ovulation happens, the corpus luteum (CL) forms in the ovary. The CL is a major source of 

progesterone production (P4; a reproductive hormone). Once the ewe is successfully bred, the CL 

is maintained to continue producing P4 throughout gestation. Otherwise, the CL regresses and P4 

production drops, allowing estrogen to increase and the estrus cycle to restart. Once pregnant, the 

gestation period lasts approximately 140-160 days.   

Detecting pregnancy and the number of fetuses a ewe is carrying at the earliest timepoint 

of gestation has a profound impact on farm management options. This is because it affects the 

health and performance of the dam and the progeny. For example, the nutrition of pregnant ewes 

significantly affects biological programming of amino acid concentrations needed for protein 

synthesis, skeletal muscle growth, and metabolism of their developing fetus (Torres and Fernanda, 

2019). Nutrition of the dam during gestation also yields epigenetic alterations of the fetus, which 

is yet another determining factor that influences the phenotype of the progeny. Epigenetics is a 

branch of genomics research which explores heritable mechanisms, such as DNA/RNA 

methylation, that naturally alter gene expression within the cell or as a result of environmental 

factors (Barrera-Redondo et al., 2020). The mechanisms that alter gene expression involve 

chemical compounds and proteins that directly connect to the DNA and which switch the genes 

on/off. Maternal nutrition affects the nutrient profile of the body, providing substances that trigger 
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epigenetic changes in the fetus by altering placental efficiency of nutrient transport and directly 

impacting the weight of the lambs (Song et al., 2020).  

Efficient pregnancy management boils down to two major areas: 1) managing pregnant 

ewes based on their litter size, and 2) identifying ewes that failed to get pregnant, i.e., open ewes. 

Identifying the latter group as early as possible will allow for separation of open ewes to prevent 

over-feeding with richer rations formulated for pregnant animals. Early detection of open ewes 

will also enable the animal to be re-entered into the breeding program, therefore increasing the 

chances of in-season breeding (during the fall season in the northern hemisphere) due to having 

higher fertility rates during the season. In addition, pregnant ewes have different dietary 

requirements based on the number of fetuses they carry (NRC, 2007). Offering feed that meets the 

nutrient requirements of a pregnancy enables maintenance of maternal health and a reduction of 

adverse epigenetic alterations on the fetus. This can directly impact maternal pregnancy 

performance, lamb viability and productivity of the lambs after birth (Wallace, 2011; Benítez et 

al., 2017). 

The gold standard for pregnancy detection in sheep is ultrasonography (Jones and Reed, 

2017). Ultrasound detection can also identify the number of fetuses each pregnant ewe carries, but 

this depends on the experience of the operator and the timepoint in the gestation cycle when the 

scan is conducted. The optimal time-range for scanning pregnant ewes is after 45 days and before 

90 days into gestation (Ishwar, 1995). However, later timepoints are better for litter size detection. 

Despite its application for pregnancy detection, ultrasonography has limitations, which prevent its 

widespread use. For example, the number of licensed and skilled ultrasound professionals in the 

province of Alberta is well below demand, creating a burden on service providers during the 

breeding season and ultimately limiting the quality and quantity of service they can provide. The 
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cost of the service ($5-8/ewe in Alberta) is another limiting factor; it would only be a reasonable 

expense for a larger flock rather than for medium or smaller sized operations. The geographical 

proximity of the flock and the feasibility of accessing it are also factors limiting the application of 

pregnancy ultrasound.  

Indirect Measures of RFI, Carcass Merit and Pregnancy Status 

As described above, the direct measurement of RFI, carcass merit and pregnancy status all require 

expensive equipment, lengthy trials, scientific knowledge or technical experience to collect and 

process the data. These issues limit direct measurements of these traits on most sheep farms.  

However, indirect measurement of these traits is an alternative option that is relatively more 

feasible and less expensive. One method for indirect measurement involves measuring metabolic 

or metabolomic biomarkers via metabolomics. Biomarkers are cellular or molecular (gene, protein 

or metabolite) proxies of a trait that can be objectively and accurately measured. Metabolite 

biomarker detection in readily accessible biofluids, such as blood, offers a simple and potentially 

inexpensive route for the early measurement of these performance traits. Furthermore, studies with 

other livestock species have shown that metabolite markers do exist that ascertain RFI, carcass 

quality and pregnancy status (Wang and Kadarmideen, 2019; Connolly et al., 2019; Guo and Tao, 

2018; Gómez et al., 2020). Unfortunately, in the field of sheep biology, there appears to be no 

published research using metabolomics to predict or characterize RFI in sheep. Likewise, there 

appears to be no published research using metabolite markers to predict or quantify sheep carcass 

quality. On the other hand, there are a few molecular biomarker options for pregnancy detection 

in sheep. Test kits are commercially available to identify blood hormones (i.e. metabolites) or 

macromolecules (i.e. proteins) associated with sheep pregnancy (Steckeler et al., 2019). Most of 

these require samples to be sent to a centralized lab which can lead to days or weeks of delays. 
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Some of the blood-associated biomarkers that are tested include a pregnancy-associated 

glycoprotein that can be measured in the blood by day 30 of pregnancy (Khan et al., 2020). The 

pregnancy specific protein B is another breed-specific blood molecule that is indicative of 

pregnancy and litter size (Pickworth et al., 2020). A range of small molecule hormones, such as 

P4 and estradiol, have also been used to make inferences about sheep pregnancy after day 50 of 

gestation (Sumaryadi and Manalu, 1999; Roberts et al., 2017). Outside of these steroid hormones, 

other small molecule metabolites have never been identified as proxies of sheep pregnancy. Given 

the paucity of metabolomic studies on sheep to measure feed efficiency, carcass merit, and 

pregnancy status, we decided that this would be a potentially fruitful area of research. Another 

reason why we sought to evaluate these traits was because of valuable feedback from our network 

of sheep farmers. These include the Alberta Lamb Producers, the Alberta Sheep Breeders’ 

Association, the Ontario Sheep Farmers, and the Canadian Sheep Breeders’ Association–all of 

whom guided us towards the needs and priorities for the industry. A detailed description of 

metabolomics and its applications follows in section 1.4. and in chapter 2 of this thesis.  

Metabolomics  

Application of Metabolomics in Other Fields 

Metabolomics is an emerging field of systems biology which focuses on characterizing small 

molecule metabolites (with a molecular weight of <1500 Da) in biological samples or organisms 

(Wishart et al., 2007). These small molecules, or metabolites, include a wide range of compounds 

such as amino acids, fatty acids, minerals and vitamins. The collection of all metabolites in a 

biological sample or a given organism is referred to as “the metabolome” such as the blood 

metabolome (Psychogios et al., 2011). Metabolites are sometimes referred to as the “canaries” of 

the genome; just as canaries would alarm the coalminers of environmental dangers in the mine, 
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metabolites offer early warning signals or serve to amplify the signals arising from alterations in 

the genome, by the environment (Wishart, 2012).  

Over the past two decades metabolomics has gained a significant amount of attention 

through its applications to biomedical research and clinical testing (Watkins and German, 2002; 

Vinayavekhin et al., 2010; Jalali et al., 2016). Newborn screening (which involves the detection 

by mass spectrometry of up to 30 different biomarker metabolites in the blood of newborn babies) 

is perhaps the best example of how metabolomics technologies have been adopted into routine 

clinical testing (López-Hernández et al., 2020). The glucose test kit, which uses a few drops of 

blood to target glucose for diabetes detection, or the pregnancy dip-stick test, which uses urine to 

detect pregnancy are other well-known examples of clinical application of metabolomics (Trivedi 

et al., 2017). Human reproductive performance has also benefited from metabolomics through the 

identification of potential male infertility biomarkers for clinical diagnosis (Minai-Tehrani et al., 

2015) and by improving assisted reproductive therapy in women of different ages (Dogan et al., 

2020; Zhang et al., 2020). Comprehensive characterizations of maternal biofluids to correlate with 

pregnancy outcome and postpartum health of infants is another active realm of metabolomics 

research (McKeating et al., 2019; Yang et al., 2020). 

Extensive metabolomics research is also developing around nutrition and food science 

(Rådjursöga et al., 2018; Hosking et al., 2019; Kirchberg et al., 2019). Metabolite biomarkers of 

food or food metabolism are becoming more relevant to evaluate the consumption of different 

grains, sugars, animal proteins and alcoholic beverages (Bertram and Jakobsen, 2018; Mung and 

Li, 2019; Clarke et al., 2020). Other areas of agricultural sciences are also adopting metabolomics, 

particularly in environmental monitoring and crop plant assessments (Wishart, 2008; Kim et al., 

2016). Multiple metabolomics technologies have been used to assess the diverse environmental 
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conditions for optimizing the growth and quality of plant products (Abreu et al., 2018; Saia et al., 

2019; Deng et al., 2020). Plant breeders have used metabolomics technologies to screen for crop 

yield and measure metabolic alterations in response to environmental stress (Razzaq et al. 2019). 

For example, different cultivars of maize were exposed to various abiotic stressors, such as drought 

and heat, to identify significant metabolites and biological pathways that were altered due to these 

stresses (Obata et al., 2015). Metabolomics has also been used to understand plant pathology and 

how plant pathogens initiate plant resistance and alter various secondary metabolic pathways and 

secondary metabolites (Warth et al., 2015). For instance, different tomato cultivars were evaluated 

using mass spectrometry to investigate how the fruit and different parts of the plant are susceptible 

to infections by Salmonella enterica (Han and Micallef, 2016). In recent years, the metabolomes 

of a number of different grains have been investigated to identify predictive biomarkers of plant 

production and plant/seed quality (Abbiss et al., 2020). Metabolomics has also been extended to 

environmental screening for the identification and quantification of pollutants such as lead (Luo 

et al., 2020) and other heavy metals, especially in aquatic environments (Yanagihara et al., 2018).  

The metabolomes of many different human and other mammalian biofluids and tissues 

have been analyzed by a number of groups. Some interesting samples explored to date include tear 

or lachrymal fluid (Yazdani et al., 2019), sweat (Harshman et al., 2019), cerebropsinal fluid 

(Wishart et al., 2008), breath (Maniscalco et al., 2018) and various body tissues (Foroutan et al. 

2020). Biofluids such as blood, urine, and saliva seem to be among the best explored sample types 

(Zhang et al., 2012; Goldansaz et al., 2017; Giskeødegård et al., 2018). The blood metabolome is 

a superb indicator of most physiological changes in the body because it permeates all organs and 

therefore collects informative compounds from all tissues (Psychogios et al., 2011). Blood and its 

derivatives, i.e., serum and plasma, are among the most commonly measured samples in 
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metabolomics as these biofluids are particularly rich in metabolites. The mammalian serum/plasma 

metabolome contains more than 4200 metabolites (Psychogios et al., 2011; Goldansaz et al., 2017). 

The serum/plasma metabolome is often investigated in many mammalian species to detect various 

diseases and to identify metabolites that can serve as predictive biomarkers (Wikoff et al., 2009; 

Reinehr et al., 2014). Another important feature of blood is that it can be relatively easily drawn 

in adequate quantities, especially from livestock species. 

Metabolomics Technologies 

The two most common chemical analysis methods used in metabolomics are mass spectrometry 

(MS) and nuclear magnetic resonance (NMR) spectroscopy. In the following sections I will briefly 

describe the general principles behind NMR spectroscopy, MS, inductively coupled plasma-MS 

and how they are used in metabolomic studies. For each of these platforms I will also describe 

their particular strengths and weaknesses. 

NMR for Metabolomics 

Historically, NMR was the first chemical analysis technique used in metabolomics/metabonomics, 

however, MS (especially LC-MS) has become the predominant technique over the past 10 years. 

An NMR spectrometer consists of a large magnet (usually a superconducting magnet) with a radio-

frequency generator/receiver on the outside of the magnet connected to a radio-frequency 

transceiver (called a probe) mounted inside the magnet. Samples are placed in thin glass tubes that 

are dropped (carefully) inside the magnet and onto the probe. When an organic substance is placed 

in a strong magnetic field, it becomes susceptible to the absorption of radio frequency radiation. 

In modern NMR spectrometers computers control the transmission and collection of the radio 

frequency radiation and the conversion of those signals into readable NMR spectra. Simply stated, 

NMR measures the response of atomic nuclei to radio-frequency perturbations under strong 
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magnetic fields. These lead to detectable absorptions (resonances) that occur in certain NMR-

susceptible nuclei such as hydrogen (1H), carbon (13C), nitrogen (15N) and phosphorus (31P).  These 

absorption bands appear as peaks in an NMR spectrum and their position is called a chemical shift. 

The peak positions (chemical shifts), intensity (number of nuclei) and peak splitting patterns 

(coupling constants) are often sufficient to fully determine the structure of a molecule (Figure 6). 

In NMR-based metabolomics, the separation of peaks due to chemical shift differences among 

different molecules means that the analysis of chemical mixtures by NMR does not require 

chromatographic or electrophoretic separation or chemical derivatization. This makes NMR-based 

metabolomics somewhat faster and easier than MS-based metabolomics. Once acquired, an NMR 

spectrum needs to be calibrated (chemical shift referencing, phasing and baseline correction) 

relative to an internal chemical shift standard. These internal chemical shift standards are also 

added to the sample as concentration references for quantification purposes (Foroutan et al., 2019). 

In NMR-based metabolomics, the identity and concentration of each metabolite in a biofluid or 

extract is determined by matching the chemical shifts (X-axis position) and the intensity (Y-axis 

position) of the observed spectral peaks against those of pure reference chemical standards (found 

in a computer library). This NMR spectral deconvolution process can be done automatically or 

semi-automatically through a number of commercial or open source programs (Wishart, 2008b; 

Emwas et al., 2019).  

Identification of metabolites with NMR has both advantages and disadvantages relative to 

other analytical platforms. A disadvantage of NMR is its low sensitivity compared to MS-based 

platforms. NMR can typically detect metabolites in the micromolar range with the lower limit of 

detection being 1-5 µM (Pinu et al., 2019). This low sensitivity means that an NMR spectrometer 

is only able to detect and quantify between 40 to 70 metabolites, depending on the type of sample 



24 

 

analyzed and the method of spectrum collection used (Foroutan et al., 2019). Another drawback 

of NMR is the higher sample volume requirement. Typically, a sample of 100-500 µl is required 

for analysis (Wishart, 2009; Foroutan et al., 2019). On the other hand, NMR is very reliable and 

yields consistent and reproducible results when running the same sample multiple times (Pinu et 

al., 2019). With NMR, it is much easier to quantify metabolites than other analytical platforms, 

and sample preparation and analysis requires no chemical derivatization (Wishart, 2009). Among 

other features, NMR is suitable for the identification of organic acids, alcohols, amines, and sugars 

that are not easily detected or ionized by MS-based instruments (Foroutan et al., 2019). 

MS for Metabolomics 

Mass spectrometry is a chemical analysis method that has been used for more than a century to 

measure the mass-to-charge ratio (or m/z) of molecules or atoms. In MS, the molecules or atoms 

of interest must be ionized and these ions may exist in positive and/or negative states (this is done 

by switching the solvent type or ions in the sample between acid and base). In many cases the 

molecules of interest will acquire extra protons (H+), or metal ions (Na+ or K+) or will lose protons 

(H-) as part of the ionization process. The main molecular ionization methods used in 

metabolomics are electron ionization (EI), electrospray ionization (ESI), atmospheric pressure 

ionization (API), matrix-assisted laser desorption ionization (MALDI), although many other 

ionization methods are now emerging. Hard ionization techniques (such as EI) lead to extensive 

fragmentation of the molecules. Soft ionization techniques (such as ESI, API and MALDI) lead to 

the ionization of intact molecular ions. These molecular ions may be further fragmented by 

coupling another mass spectrometer to the first MS instrument to produce a tandem mass (MS/MS) 

spectrometer system. Detailed information about a molecule (such as molecular formula and 

molecular structure) can be acquired both from the (accurate) measured mass of molecular ion as 
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well as the m/z of the fragment ions. Indeed, it is through the detailed analysis of EI-MS or MS/MS 

spectra that compounds in complex mixtures can be identified. While it is possible to collect and 

analyze MS spectra of complex biological samples via direct injection mass spectrometry (called 

DI-MS), most MS methods used in metabolomics incorporate at least one or several chemical 

separation steps prior to injecting the sample into the mass spectrometer. This is done to reduce 

the complexity of the mixture while at the same time increasing the sensitivity and enhancing the 

ability of the MS instrument to detect individual metabolites. The most common chemical 

separation methods are gas chromatography (GC), liquid chromatography (LC), and capillary 

electrophoresis (CE). Each of these methods separates molecules over time and space on the basis 

of their physiochemical properties. Separation of molecules by GC is based on their boiling point, 

mass, polarizability and molecular shape. Separation of molecules by LC is based on 

hydrophobicity, charge and size while CE separates molecules primarily on the basis of charge. 

The basic principle of chromatography (and electrophoresis) is that different chemicals move at 

different speeds through a column or tube under specific conditions. As a result, different 

molecules have distinct and uniquely characteristic retention times (the time it takes for a molecule 

to reach the detector from the chromatographic system entrance; Figure 7).  

The sensitivity of metabolite detection is greatly improved when using MS-based analytical 

platforms such as LC-MS (Figure 4), relative to other techniques such as NMR (Pinu et al., 2019). 

Using LC-MS/MS platforms, one can expect up to a thousand-fold increase in the sensitivity of 

metabolite detection over NMR. On the other hand, due to the wide variety of separation, columns 

used LC-MS, metabolite identification using specific retention times/indices for each metabolite 

is practically impossible (Dunn, 2008). Moreover, LC-MS does a relatively poor job of detecting 

many polar compounds present in biofluid samples (Halket et al., 2005). Despite their increased 
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sensitivity, MS-based instruments have lower reproducibility of results and rely heavily on the 

precision of a locally maintained (lab-specific) MS library to accurately identify the metabolites 

(Kind et al., 2018).  

ICP-MS for Metabolomics 

Inductively Coupled Plasma (ICP)-MS is a specialized mass spectrometry instrument designed for 

the detection and quantification of non-organic molecules, specifically metals, trace elements and 

their corresponding isotopes (Godfrey and Glass, 2011). Similar to an LC-MS, the ICP-MS 

instrument has two main components: an ICP component, which ionizes the compounds in the 

sample, and an MS component which detects the masses, as previously described. The ICP system 

consists of an electromagnetic coil and a source of gas (helium and argon) which is used to heat 

the sample to a very high temperature. The samples used for ICP-MS must initially be in a liquid 

form, which is then vaporized and converted to a plasma by heating the sample up to 10,000 oC. 

This leads to the formation of positively charged ions (Singh, 2016). These ions are then passed 

into a vacuum tube (via standard MS electrodes) and detected in the MS component of the 

instrument based on their m/z ratio. The resulting spectrum is relatively straightforward to interpret 

as there are relatively few ion types (typically less than 30) that are produced and detected, and 

most have very distinct, non-overlapping m/z ratios. For quantification of each metal ion detected, 

a calibration curve must be generated for each element being measured. The calibration curve is 

constructed based on standard solutions of pure metal ion salts that cover the concentration range 

expected for each given element. Internal standards are another core component of the sample 

preparation, which assist in the calculation of a more accurate concentration by correcting for 

possible matrix effects and instrument drift. 
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Even though ICP-MS is relatively new to metabolomics, it provides great opportunities to 

detect and quantify many important metal ions, as well trace elements and their associated isotopes 

(Beauchemin, 2010) in different biological samples. Similar to other MS-based analytical 

platforms (Figure 5), ICP-MS offers very high sensitivity and can detect concentrations of metals 

in the femtogram level. These characteristics have made ICP-MS the go-to instrument for the 

identification and quantification of metal elements and their isotopes. Spectral analysis and 

quantification in ICP-MS is also easier than most other MS instruments. On the other hand, sample 

analysis with ICP-MS can be skewed due to matrix effects, meaning that diluted samples are 

preferred. Low concentration samples also assist with some of the hardware imperfections in ICP-

MS by preventing clogging of its different components, such as the nebulizer and the cones. 

Metabolomic Studies of Sheep 

The application of metabolomics to sheep research has been relatively absent until the past five 

years. Published sheep metabolomics studies during this timeframe have investigated 12 different 

sheep breeds and the influence of metabolism on sheep products like meat quality (Wang et al., 

2020; Li et al., 2020c) and milk composition (Caboni et al., 2017; Caboni et al., 2019), nutritional 

requirements and feed management (Palma et al., 2016; Zhang et al., 2019; Li et al., 2020b), 

metabolism during pregnancy (Guo et al., 2020; Sun et al., 2017), and animal disease (De Moraes 

Pontes et al., 2017). A handful of metabolomics studies used sheep as an animal model to study 

human diseases such as Huntington’s disease (Skene et al., 2017) and myelomeningocele 

(Ceccarelli et al., 2015). The samples evaluated in these studies include urine (Guo et al., 2020), 

serum/plasma (Sun et al., 2017; De Moraes Pontes et al., 2017; Zhang et al., 2019), ruminal fluid 

(Li et al., 2020b), milk (Caboni et al., 2017; Caboni et al., 2019), and different tissues such as liver 

and muscle (Palma et al., 2016; Wang et al., 2020). The majority of sheep metabolomic studies 
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have been done on MS-based platforms and a few have used NMR instruments. Metabolomics 

studies on sheep meat have identified hundreds of metabolites that can differentiate meat quality 

based on animal management (Li et al., 2020c) and the origin of feed provided to the animals 

(Wang et al., 2020). Metabolomics coupled with other omics platforms have also been used to 

identify how the rumen microbiome impacts essential amino acids required for microbial 

metabolism. This study identified the most stable class of metabolites in the rumen (short chain 

fatty acids) and determined how animal age affects the rumen metabolome (Li et al., 2020b). 

Metabolomics of ewe pregnancy is another field that has gained some recent attention. One study 

reported that feed restriction (leading to malnutrition during the third trimester of gestation) can 

alter more than a dozen urine metabolites in pregnant ewes (Guo et al., 2020). Another study 

researched the kinetics of the serum metabolome in the first half of gestation and identified 13 

metabolites associated with amino acid and lipid metabolism significantly involved in meeting the 

nutritional requirements of pregnant ewes (Sun et al., 2017). Sheep feed has been another focus of 

metabolomics research. In one recent study, researchers identified 15 significant metabolites 

involved in fatty acid oxidation, bile acid biosynthesis, purine and protein metabolism that were 

associated with reduced metabolism and immunity in overgrazing sheep (Zhang et al., 2019). In 

undernourished sheep however, metabolomics revealed that malnutrition tolerance of different 

breeds involves significant alterations in their amino acid and energy metabolism pathways (Palma 

et al., 2016). 

Metabolomics offers a plethora of opportunities to complement methods used in sheep 

research. In human health research, a similar approach has been used to implement metabolomics 

to unravel complex clinical phenotypes associated with critical diseases such as prostate 

(Sreekumar et al., 2009) and ovarian cancer (Denkert et al., 2006). Similarly, in sheep research, 
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metabolomics can assist by measuring the metabotype of animals that possess genetic superiority 

for important economic traits. In concept, expression of any trait is a result of complex 

intersections between genetics and the environment; metabolomics can be used to quantify the 

resulting outcome of this intersection in the progeny. For example, low RFI dairy cows have 

reduced somatic cell count (SCC) and lower concentration of β-hydroxybutyrate (BHB) compared 

to high RFI animals (Hailemariam et al., 2020). Conventional practices for measuring the 

inheritance of RFI requires data collection and genotyping of the daughters (VandeHaar et al., 

2016). Phenotypic recording of the progeny requires a relatively extensive timeframe and data 

collection, and the accuracy of information provided improves as the number of daughters 

increases (Manafiazar et al., 2016). Progeny genotyping also provides valuable information on the 

transfer of single nucleotide polymorphisms associated with RFI (Salleh et al., 2018). 

Concurrently, supplementing the genomics and phenotype data from the daughters with 

metabolomics data relevant to SCC and BHB would likely improve the accuracy of measuring 

heritability of RFI, performance of the daughters for RFI, and identify underpinning biological 

pathways associated with SCC and BHB.  

Unfortunately, in the field of sheep biology, there appears to be no published research using 

metabolomics to predict or characterize economic traits that are the backbone to sheep production, 

such as RFI (as a measure of feed efficiency), carcass quality or pregnancy status. A number of 

small molecule hormones such as P4 and estradiol have been used to assess sheep pregnancy 

(Sumaryadi and Manalu, 1999; Roberts et al., 2017). Outside of these steroid hormones, other 

small molecule metabolites have never been identified as proxies of sheep pregnancy or litter size. 

Given the paucity of sheep metabolomic studies measuring feed efficiency, carcass merit, and 

pregnancy status, and given the need to find cheaper, faster and less time-consuming “indirect” 
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methods for detecting these traits in sheep, I decided to explore the possibility of using 

metabolomics to enable these measurements. Specifically, I decided to use metabolomics to 

identify and validate candidate blood biomarkers of sheep feed efficiency, carcass merit, and 

reproductive performance. 

Thesis Hypotheses 

My central hypothesis in this thesis was that the sheep serum metabolome can be used to identify 

candidate biomarkers of key economic traits in sheep. The specific hypotheses for each research 

chapter presented in this thesis are: 

1) Serum metabolite biomarkers can be identified to categorize growing ram-lambs based on 

their residual feed intake (high versus low RFI) and carcass merit. 

2) Serum metabolite biomarkers can be identified to determine ewe pregnancy and litter size 

at early stages of gestation. 

Thesis Outline 

The research presented in this thesis work is composed of five chapters. The first chapter (the 

current chapter) provides some historical context and additional background regarding sheep 

livestock research, backbone traits that are essential to sheep production and farming profitability. 

This chapter also provides a general background on metabolomics by covering different analytical 

platforms used in my thesis research. I have bridged these two fields by discussing the previous 

literature on sheep metabolomics. 

The second chapter covers the application of metabolomics to bovine, ovine, caprine, 

equine and porcine settings. In this chapter, I discuss how livestock metabolomics has evolved and 

also identify a number of trends and gaps, as well as some new opportunities for implementing 

metabolomics in livestock research. The relevant data were compiled in a publicly accessible 
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database, the Livestock Metabolome Database (LMDB; www.lmdb.ca), which was designed to 

serve as a hub to facilitate livestock metabolomic studies. This chapter was published in PloS One 

and has gained nearly 100 citations since its publication (Goldansaz, S. A., A. C. Guo, T. Sajed, 

M. A. Steele, G. S. Plastow, and D. S. Wishart. 2017. Livestock metabolomics and the livestock 

metabolome: A systematic review. PLoS ONE. 12:e0177675. 

https://doi.org/10.1371/journal.pone.0177675). To the best of our knowledge, this is the first 

publication to systematically summarize the state of livestock metabolomics and assemble the 

relevant metabolomics data into a comprehensive database.  

The third chapter describes the use of metabolomics to detect biomarkers of sheep RFI. 

This project used a comparative design study where direct RFI measurements were performed in 

parallel with serum metabolomic measurements to identify relevant candidate biomarkers for 

determining RFI. In this project, we collected blood from 165 ram-lambs at a single timepoint and 

used three analytical platforms (NMR, DI/LC-MS/MS and ICP-MS) to measure 161 unique serum 

metabolites. One hundred of these metabolites were never previously reported in the sheep 

metabolome. We also identified three candidate biomarkers associated with variation in RFI in 

sheep (isopropyl alcohol, aminoadipic acid and acetone). The other component of this chapter 

explores the use of serum biomarkers to assess sheep carcass quality. There are no reports on 

marker-assisted pre-mortem evaluation of sheep carcass traits using metabolomics, therefore we 

sought to see if this was possible. We also followed a comparative design in this component where 

post-hoc measurements of carcass yield gain and muscle to bone ratio were performed to compare 

with the serum metabolome to identify candidate biomarkers of carcass merit. Indeed, we revealed 

seven candidate biomarkers of carcass yield grade (total dimethylarginine, citric acid, 

hypoxanthine, hippuric acid, asymmetric dimethylarginine, L-phenylalanine, and SM C16:1), and 
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one candidate biomarker for muscle to bone ratio (lysoPC a C26:1) in sheep. This chapter has been 

published in the Journal of Animal Science (Goldansaz, S. A., S. Markus, M. Berjanskii, M. Rout, 

A. C. Guo, Z. Wang, G. Plastow, and D. S. Wishart. 2020. Candidate serum metabolite biomarkers 

of residual feed intake and carcass merit in sheep. J. Anim. Sci. 98:skaa298. 

https://doi.org/10.1093/jas/skaa298). 

The fourth chapter describes the identification of serum biomarkers of sheep pregnancy 

and litter size. This chapter used a longitudinal experimental design in two phases (discovery and 

validation) with samples collected from sheep farms in Alberta and Ontario (total of 486 ewes 

throughout the project). In the discovery phase, blood was drawn at five timepoints during the 

pregnancy period from non-pregnant ewes, ewes that delivered a single lamb and those that 

delivered multiplets (twins, triplets, quadreplets). The discovery phase of this project revealed 

metabolite trends in the serum metabolome of pregnant ewes in the first 70 days of gestation. 

Through this process we profiled (identified and quantified) a total of 132 serum metabolites using 

two analytical platforms (NMR and DI/LC-MS/MS). We also identified four panels of serum 

candidate biomarkers that could detect sheep pregnancy and litter size as early as 50 days into 

gestation. The second phase of this project involved validating the candidate biomarkers using the 

discovery data as the reference (for both the metabolites and the optimal detection timepoint). We 

were able to replicate initial results and confirm the biomarkers and confirm that the day 50 

timepoint is the best date to reveal if an ewe is pregnant and to determine the number of lambs 

carried. This research will be submitted to a scientific journal in the near future. 

The fifth chapter concludes the thesis by summarizing its achievements and suggesting a 

roadmap for future research in this field. I have also shared my thoughts on how to design a robust 

experiment for the successful execution of livestock metabolomics research. Moreover, based on 
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my observations and experience with the Canadian and Albertan sheep industry, I have identified 

some of the gaps in the production system that could potentially be addressed with metabolomics 

research. 
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Figures  

  
Figure 1. Iranian statuary showing early sheep domestication. This limestone wall from the 

Persepolis Palace in Iran shows what appears to be a lamb (left) and sheep gifted to the Persian 

king by the Assyrians (right). Pictures taken by Osama Shukir Muhammed Amin (left; 

https://www.ancient.eu/image/7108/gift-bearer-holding-a-lamb-from-persepolis/) and Andrew 

Selkirk (right; http://www.travellingthepast.com/iran/persepolis/persepolis-the-sculptures/). 
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Figure 2. World sheep production. Data from FAOSTAT shows that the majority of global sheep 

production (a) in the 21st century is in Asia, followed by Africa, Europe and Oceania. The top five 

sheep producing countries since 2000 are China, Australia, India, Sudan and Iran (b). Graphs 

obtained from FAOSTAT.  
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Figure 3. GrowSafe Systems measuring sheep feed consumption. The GrowSafe Systems was 

used in our experiment (refer to chapter three) to measure individual sheep feed intake to calculate 

its RFI. Picture by courtesy of Dr. Susan Markus. 
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Figure 4. Post-hoc measurement of sheep carcass. Carcass measurements of muscle to bone 

ratio were conducted in my first experimental chapter on sheep RFI and carcass merit (please refer 

to chapter three for more details). Picture provided by Dr. Susan Markus. 
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Figure 5. Detection limits of different metabolomics platforms. This scheme shows the 

sensitivity of each analytical platform used in metabolomics and the extent of its detection. 

Figure adapted from Pinu et al., 2019. 
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Figure 6. Typical NMR Spectrum. This 700 MHz 1H NMR spectrum shows the peaks at different 

locations (i.e., chemical shifts) of approximately 50 different metabolites as seen in a typical serum 

sample as analyzed and deconvoluted using the Bayesil web server. 
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Figure 7. Schematic of LC-MS. This is a general overview of a LC-MS instrument consisting of 

an LC component, an MS component and the metabolite identification that is done through the 

computer. 
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Abstract 

Metabolomics uses advanced analytical chemistry techniques to comprehensively measure large 

numbers of small molecule metabolites in cells, tissues and biofluids. The ability to rapidly detect 

and quantify hundreds or even thousands of metabolites within a single sample is helping scientists 

paint a far more complete picture of system-wide metabolism and biology. Metabolomics is also 

allowing researchers to focus on measuring the end-products of complex, hard-to-decipher genetic, 

epigenetic and environmental interactions. As a result, metabolomics has become an increasingly 

popular “omics” approach to assist with the robust phenotypic characterization of humans, crop 

plants and model organisms. Indeed, metabolomics is now routinely used in biomedical, nutritional 

and crop research. It is also being increasingly used in livestock research and livestock monitoring. 

The purpose of this systematic review is to quantitatively and objectively summarize the current 

status of livestock metabolomics and to identify emerging trends, preferred technologies and 

important gaps in the field. In conducting this review we also critically assessed the applications 

of livestock metabolomics in key areas such as animal health assessment, disease diagnosis, 

bioproduct characterization and biomarker discovery for highly desirable economic traits (i.e., feed 

efficiency, growth potential and milk production). A secondary goal of this critical review was to 

compile data on the known composition of the livestock metabolome (for 5 of the most common 

livestock species namely cattle, sheep, goats, horses and pigs). These data have been made 

available through an open access, comprehensive livestock metabolome database (LMDB, 

available at www.lmdb.ca). The LMDB should enable livestock researchers and producers to 

conduct more targeted metabolomic studies and to identify where further metabolome coverage is 

needed.   
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Introduction 

Metabolites are sometimes referred to as the “canaries” of the genome (Pearson, 2007). Just as 

canaries for coalminers served as sensitive indicators of problems in coal mines, metabolites can 

be exquisitely sensitive indicators of problems in the genome (as well as the transcriptome or 

proteome). Metabolites are effectively the end products of complex interactions occurring inside 

the cell (the genome) and events, exposures or phenomena occurring outside the cell or organism 

(the environment). As a result, the comprehensive measurement of metabolites (via metabolomics) 

allows one to determine interactions between genes and the environment. In other words, 

metabolomics allows researchers to obtain a highly sensitive and more complete description of the 

phenotype (Bouatra et al., 2013; Monteiro et al., 2013). This metabolic readout of the phenotype 

is often called the “metabotype” (Fontanesi, 2016). Recent advances in both analytical chemistry 

and metabolite data analysis techniques are now making metabolomics far more accessible to a 

wider range of research disciplines. Indeed, metabolomics is now routinely used in biomedical 

research (for biomarker discovery and disease mechanism research), food and nutritional analysis, 

crop characterization and environmental monitoring (Moore et al., 2007; Wishart, 2008; Kim et 

al., 2016; Jalali et al., 2016). As a result, the field of metabolomics has experienced very rapid 

growth with just two papers published on the subject in 1999 to more than 2400 in 2015. 

However, unlike in other areas of agriculture research where metabolomics is widely used 

in crop trait selection, pesticide monitoring, crop breeding or crop evaluation (Simo et al., 2014; 

Summer et al., 2015; Mahdavi et al., 2015; Mahdavi et al., 2016), the application of metabolomics 

to livestock research is somewhat less widely used or appreciated. This is surprising given the 

potential of metabolomics to address many important questions in livestock and animal science. 

In particular, the power of metabolomics to non-invasively detect subtle phenotypic changes, 
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innate phenotypic propensities and dietary responses makes it an ideal tool for livestock research, 

breeding and assessment (Fiehn, 2002; Houle et al., 2010; Duggan et al., 2011; Jones et al., 2012; 

May et al., 2013; Gilany et al., 2014; Minai-Tehrani et al., 2015). Recently, there have been a 

number of papers in livestock metabolomics that have generated compelling results showing how 

metabolomics and metabolite-based phenotyping (metabotyping) can help farmers, veterinarians, 

livestock researchers and the livestock industry. These include papers demonstrating how 

metabolomics can be used to predict feed efficiency and residual feed intake (RFI; Karisa et al., 

2014), ascertain disease propensity (Hailemariam et al., 2014; LeBlanc et al., 2005; Sundekilde et 

al., 2013), evaluate dietary responses to different feeds (Saleem et al., 2012; Abarghuei et al., 

2014), assess carcass merit (Weikard et al., 2010; Karisa et al., 2013a; Kuhn et al., 2014), fertility 

(Chapinal et al., 2012), milk quality (Melzer et al., 2012; Melzer et al., 2013), determine bioproduct 

content (Castejón et al., 2015) and ascertain other important economic or breeding traits associated 

with livestock.  

Fast, effective, and quantitative phenotyping is critical for farm trials dealing with animal 

selection and breeding. Many traditional phenotypic measurements such as those related to animal 

feed consumption and RFI are expensive, time consuming and require specific recording 

equipment (Karisa et al., 2014). Others, such as carcass trait evaluation, may require animal 

slaughter, which obviously eliminates the potential breeding value of the animal. Similarly for 

reproductive traits, animals have to reach a stage of maturity and sexual activity to allow 

measurement of related traits. Metabolomics allows many of these trait measurements to be 

conducted earlier, more routinely, non-invasively and often at a lower cost than current techniques 

(Zhang et al., 2012; Fontanesi, 2016). However, metabolomics is not without its challenges. 

Metabolomic experiments must be carefully designed as diet and other variables such as sex, 
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diurnal variations and sampling time can profoundly affect results. Likewise, metabolomic 

technologies, such as gas chromatography (GC), mass spectrometry (MS) and nuclear magnetic 

resonance (NMR) spectroscopy are not yet widely available in many livestock research facilities. 

Furthermore, there continues to be a significant shortage of data resources that could facilitate the 

interpretation of livestock metabolomic data. 

Given the many applications of metabolomics in both the livestock industry and livestock 

research as well as the diversity of journals in which livestock metabolomics is often published, 

we felt it was important to conduct a thorough, systematic review of the field. By consolidating 

the results from diverse journals and different studies into a single review paper, we believed this 

content would provide a more complete picture of both the strengths and the weaknesses of 

livestock metabolomics. In conducting this review we sought answers to 4 key questions: 1) What 

are the most common applications of metabolomics in animal science and where are they 

trending?, 2) What are the preferred metabolomics technologies in livestock metabolomics and 

how are they evolving?, 3) What are the most obvious gaps or weaknesses in livestock 

metabolomics relative to other fields of metabolomics research? and 4) What are the known or 

measured metabolites for the 5 major livestock species (i.e., bovine, ovine, caprine, equine, and 

porcine) in different tissues and biofluids? This metabolite compilation, which we have called the 

livestock metabolome database or LMDB (available at www.lmdb.ca), is intended to help lay a 

more solid foundation in terms of data resources that would make livestock metabolomic studies 

much easier to perform, analyze and compare. The LMDB catalogues all metabolite compounds 

that have ever been identified and reported in the 5 livestock species (for multiple biofluids and 

tissues), along with concentration ranges, compound descriptions, chemical structures, reference 
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NMR and MS spectra and other information associated with each metabolite for both healthy and 

a variety of abnormal physiological conditions. 

Materials and Methods 

In compiling this review and assembling the livestock metabolome database, we used a 

combination of web-accessible data mining tools along with manual curation to survey 2313 peer 

reviewed journal articles covering the period from 1930 to 2015. From this initial set of articles, 

we reduced the number further to cover published livestock papers reporting the measurement or 

characterization of ≥8 metabolites for any of the 5 major livestock species (i.e., bovine, ovine, 

caprine, equine, and porcine). This reduced the target number of peer-reviewed manuscripts to a 

total of 149. The livestock species selected for this review were based on their global population, 

economic impact and use in agricultural systems (Robinson et al., 2014; Thornton, 2010). Details 

regarding the keyword selection, search engines and databases, journals and search strategy are 

given below and summarized in the preferred reporting items for systematic reviews and meta-

analysis (PRISMA) checklist and flow chart (Figure 1). 

Keyword Selection 

As noted above, this review is focused on 5 main livestock species including cattle, sheep, goats, 

horses and pigs. Therefore, a combination of keywords was selected to target those specific 

animals and to identify the associated metabolomics studies. Keywords were divided into 3 main 

groups: 1) animal species, 2) sample types, and 3) metabolomic methods. Selected keywords for 

animal species included the name of the species and its various derivatives or synonyms, i.e., 

bovine, cattle, cow, calf, Bos taurus, etc. To target metabolomics papers in animal science, a broad 

range of metabolomics keywords were identified and used. These included different variations of 

the term “metabolomics” (such as metabolomics, metabonomics, metabolite profiling, metabolite 
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fingerprint, chemical profile, chemical analysis, chemical composition, etc.) to target publications 

prior to and after 1999, as well as the names of various analytical platforms (i.e., NMR, mass 

spectrometry, liquid chromatography, gas chromatography-MS, etc.). Moreover, a wide variety of 

sample types such as different body fluids (i.e., serum, blood, plasma, urine etc.) and different 

organs or tissues were selected to further enrich the keyword search. 

Search Engines and Databases 

An initial comparison among many open access search engines showed that most search results 

are similar regardless of the search engine used. Therefore, Google Scholar 

(https://scholar.google.ca/) was selected as the primary literature search engine. In addition, a 

number of agriculture-specific databases such as Agricola and AGRICULTUREnetBASE were 

also used. Other databases included Scopus, the Web of Science, ScienceDirect 

(http://www.sciencedirect.com/) and PubMed (www.ncbi.nlm.nih.gov/pubmed). Settings for all 

search engines and databases were adjusted to increase search efficiency and filter irrelevant 

results.  

Search Methods and Selection Criteria 

Different keywords were combined to target metabolomics papers in the field of animal science. 

For example, “cattle”, “cattle serum” or “cattle milk” was accompanied with “metabolomics”, 

“chemical composition” or “metabolite profiling”. Consequently, each combination of the 

keywords in the search engines generated a long list of results. These included various types of 

publications (full papers or abstracts) that contained any or all of the used keywords. A manual 

review was performed on all retrieved publications. Typically, the first 3-5 pages of the search 

results from the aforementioned search engines were manually reviewed to select for articles of 

interest. Among the papers identified as worth pursuing, research papers, abstracts or textbooks 
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that showed relevance in their title or abstract were selected. In addition to papers reporting 

experimental results, review articles that included specific metabolite data sets were also selected. 

Among the selected manuscripts, only those papers that reported ≥8 metabolites were chosen for 

this review. The threshold of 8 or more as the minimum number of metabolites was based on a 

post hoc analysis of the retrieved papers and the need to optimize both metabolite coverage and 

the time devoted to manual analysis. We also determined that this selection cut-off allowed us to 

cover most, if not all, of metabolites reported in papers with <8 metabolites. Based on these criteria, 

a total number of 149 manuscripts covering all 5 animal categories were selected for this review. 

Selected publications were carefully read to extract and annotate a set of 10 pieces of information 

including: 1) metabolite names; 2) tissue or biofluid origin; 3) quantified values (concentration) if 

any; 4) experimental conditions; 5) animal breed; 6) sample size; 7) analytical platform; 8) field 

of research, 9) physiological condition (disease or state of health), and 10) Pubmed/DOI 

references.  

Compilation of the Livestock Metabolome Database 

In compiling the data for this livestock metabolome database or LMDB (www.lmdb.ca), all 

reported concentrations were transformed into a standardized concentration unit (micromolar; µM) 

and each entry was associated with an abbreviated description of the experimental context, the 

sample type, and the methodologies used for the metabolomic analyses. In identifying a metabolite 

for inclusion in this study the compound had to: 1) have a molecular weight <1500 daltons; 2) it 

could not be a peptide, protein or oligonucleotide; 3) it had to correspond to a reasonably unique 

chemical entity (triglycerides and amino acids are not unique chemical entities, but LysoPC-16:2 

is sufficiently unique) and 4) it had to be identified with a structurally interpretable name. This 

literature-based effort generated 1070 metabolites from 149 peer-reviewed papers, abstracts or 
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textbooks. Metabolites extracted from these manuscripts were systematically categorized into the 

LMDB. Nearly all metabolites extracted were linked to a standard Human Metabolome Database 

(HMDB) identifier (Wishart et al., 2007; Wishart et al., 2009; Wishart et al., 2013) which provides 

a freely-accessible comprehensive description of each metabolite. A brief description of 

experimental data for each metabolite was also extracted from the articles and included in the 

database including information on the analytical platform, experimental conditions and field of 

research. A PubMed and/or DOI id was also associated with each metabolite to provide a link to 

the article reporting that metabolite. Additional data on each metabolite, including structure, 

synonyms, chemical classifications, physicochemical data, reference NMR, GC-MS or LC-MS 

spectra and links to other databases were obtained through an in-house annotation tool called 

DataWrangler. All of this information was used to construct the on-line version of the LMDB 

(http://www.lmbd.ca). The LMDB was prepared using a Ruby-on-Rails (Viswanathan, 2008) 

framework, modeled after other on-line species-specific metabolomic databases prepared in our 

laboratory. Details regarding their construction, required operating systems, browser compatibility 

and hardware requirements can be found elsewhere (Wishart et al., 2007; Jewison et al., 2012; 

Sajed et al., 2016). 

Results and Discussion 

Growth and Trends in Livestock Metabolomics Research 

Based on the data collected from our literature survey, it is clear that the majority of metabolomics 

studies among all livestock categories have been conducted in cattle (Figure 2) with a total of 76 

articles (50% of the selected articles) focusing on various fields of bovine research and assessment. 

Metabolomics studies on pigs and sheep came second and third with 28% and 12% of the selected 

articles, respectively. The least studied group were horses with only 5 (3%) reported equine 
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metabolomic studies. As might be expected, most livestock metabolomic studies focused on issues 

related to animal health, nutrition and production (65%). These studies are obviously useful for 

characterizing bioproduct quality, identifying biomarkers or understanding animal responses to 

different stressors. However, we were surprised to see relatively few efforts focused on 

metabolomic characterization of healthy animals with the aim of identifying baseline values for 

different metabolites in different biofluids or tissues. In fact, only 16 studies (10%) of this kind 

were reported. These “referential surveys” are foundational and are often needed before biomarker 

studies could/should be undertaken or fully understood.  

As noted earlier, most metabolomic studies of cows, sheep, goats and pigs appear to be 

directed towards disease detection, production and bioproduct assessment, feed efficiency 

determination and reproduction. In contrast, the primary focus for equine metabolomics has been 

on drug discovery and doping detection, specifically for thoroughbred horses (Peters et al., 2010). 

Given the large sums of money directed to horse racing, this is not unexpected. However, 

compared to the widespread applications of metabolomics in other livestock species for other 

purposes, it is clear that equine metabolomics is being under-utilized. Certainly, equine 

metabolomics could be used to select more desirable traits and higher value or higher performing 

animals, similar to what is being done for bovine metabolomics. Likewise, metabolomics could 

serve as a diagnostic or prognostic tool for improving equine health and disease resilience (as it 

has for essentially all other livestock species).  

Temporal categorization of all 149 published studies showed that the majority of livestock 

metabolomics papers were published after 1999. Less than 9% (13 articles) of the selected papers 

were published prior to 1999 while, ~91% (136 articles) of the papers were published thereafter. 

The earliest paper in our collection dates from 1930. It is noteworthy that the term “metabolomics” 
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was not coined until 1998 (Tweeddale et al., 1998; Oliver et al., 1998) therefore, metabolomics 

studies prior to this date had to be identified using other keywords such as “chemical composition”, 

“biochemical profiling”, etc. Based on our observations, it is clear that interest in livestock 

metabolomics is growing rapidly, especially over the last couple of years. Our data indicates that 

from 2000-2010 just 29 articles (19%) were published in this field, while from 2011-2015 a total 

of 107 (72%) articles were published. In terms of percentage growth, the most rapidly expanding 

subfield appears to be caprine and equine metabolomics with a growth rate of 100% over the past 

5 years. In terms of overall growth, the most significant changes were in bovine metabolomics 

with the number of papers growing from just 10 prior to 1999 to 49 in 2011-2015. The most recent 

additions to the field of livestock metabolomics are studies focused on goats (starting in 2014) and 

horses (starting in 2007). 

Trends and gaps in livestock metabolomics applications 

We found that livestock metabolomics studies can be categorized in 7 main areas (Table 1). These 

include animal health, animal nutrition, animal production, animal reproduction, animal 

physiology (mainly analysis of different biofluids), animal products (products originating from 

livestock such as milk, meat, yogurt, etc.), and human health (livestock models used for human 

health studies). This general categorization was based on a post hoc analysis of the types of articles 

where we manually assessed article keywords, subject headings, journal titles and the general focus 

of each article. Most of these categorizations (such as animal reproduction, human health and 

animal health) were relatively simple to make. For instance, the category “animal reproduction” 

obviously refers to articles using metabolomics to study reproduction in livestock. Likewise, the 

category “animal health” refers to articles using metabolomics to study livestock health or disease 

while “human health” refers to application of metabolomics to study human disease using various 
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livestock models. Other categories proved to be somewhat more ambiguous. For instance, the field 

of “animal products” typically contains metabolomics investigations related to food, nutrition and 

human consumption of animal products, such as meat and cheese. On the other hand, “animal 

production” is focused on investigating the associated biochemical profile with each animal 

product. In some cases, we had to be fairly strict with our definitions. For instance, we limited 

“animal physiology” to include only those articles focused on analyzing various biofluids or 

characterizing the metabolite composition of specific biofluids, organs and tissues.  

Among the seven different categories, animal health (52) and animal production (40) had 

the most metabolomics articles published for the largest number of animal groups (Table 1). 

However, this varied depending on the livestock species being studied. In human health research, 

porcine metabolomic studies covered the majority of articles (14 articles) compared to all other 

livestock categories. This is not unexpected, given the comparable physiology of pigs to that of 

humans (Nielsen et al., 2014). In the category of animal products, bovine-based studies had the 

most articles published (16 articles) relative to all other groups. Some of the more interesting 

applications of metabolomics found in our survey include the use of metabolomics for quality 

control of animal products (Cevallos-Cevallos et al., 2011; Regal et al., 2011), evaluating 

nutritional value and impact of various feed sources on animal health and products (Abarghuei et 

al., 2014), investigating disease biology by using animal models of human disease (Merrifield et 

al., 2011; Mickiewicz et al., 2015), investigation of potential metabolite biomarkers of animal 

disease (LeBlanc et al., 2005; Sundekilde et al., 2013), assessment of production traits (Lu et al., 

2013; Sun et al., 2015), reproductive performance (Chapinal et al., 2012), and general metabolome 

characterization (Saleem et al., 2013; Escalona et al., 2015). 
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In terms of gaps in the existing literature, it is perhaps most useful to use bovine 

metabolomic studies as the “gold standard” by which to compare other livestock species. While 

metabolomics is routinely being used to understand the biology or diagnose a few common bovine 

production diseases (including acidosis, mastitis, milk fever) we found no metabolomic studies 

looking at common diseases in sheep or goats (such as brucellosis, campylobacteriosis, 

pneumonia, Q fever), in horses (equine flu, equine herpes, equine sleeping sickness, anemia, 

laminitis, azoturia), or in pigs (respiratory diseases, swine dysentery, parvovirus). Indeed, we 

found only 22 metabolomic studies focused on the health of sheep, goats, pigs and horses, 

compared to 30 metabolomic studies for cattle alone. Of these 22 non-bovine studies, most were 

focused on metabolic, growth and neurodegenerative disorders.  

Livestock metabolomics studies also appear to be missing a number of opportunities 

currently being pursued in human biomedical research. One of particular note is the use of 

metabolomics to predict (as opposed to diagnose) or detect subclinical forms of disease. While 

disease diagnosis is useful, often it is too late or too costly to perform useful veterinary 

interventions. Detecting diseases before they manifest or predicting them before they occur allows 

inexpensive prophylactic or preventative measures to be taken. In human metabolomic studies, the 

identification of disease prediction biomarkers is becoming increasingly common (Wang-Sattler 

et al., 2012; Reinehr et al., 2014; Kordalewska et al., 2015; Mirsaeidi et al., 2015; Shajahan-Haq 

et al., 2015). This is because metabolic changes appear to precede significant physiological 

changes, possibly because metabolites play an important signaling role to activate later stage (i.e. 

symptomatic) physiological responses (Mathew et al., 2014; Johnson et al., 2016). However, we 

could only find 2 papers (limited to cattle) that focused on disease diagnosis/prognosis or 

(sub)clinical detection of diseases (Hailemariam et al., 2014; Klein et al., 2012). A similar 
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approach could also be used towards the prediction of later-life production traits on the basis of 

early-life metabolic fingerprints. This, too, is an area of interest in the field of human 

metabolomics, where later-life health is being predicted on the basis of early-life metabolic 

fingerprints (Moco et al., 2013; Morrow et al., 2013; Mohamad et al., 2015). Obviously the reliable 

prediction of economically important traits is an important tool for livestock management and 

strategic planning. 

Metabolomics is already being used in the evaluation and/or prediction of production traits 

such as residual feed intake (RFI), carcass merit, reproductive performance and metabolic 

disorders for cattle. However, there is a surprising dearth of similar studies regarding evaluation 

or prediction of production traits for sheep, goats and pigs. Metabolomics potentially offers a 

unique opportunity for indirect, inexpensive marker-assisted measurement of these economical 

traits. This can be achieved through non-invasive sample collection of readily accessible biofluids 

such as blood, urine, milk and saliva. In most cases, the standard measurement or prediction of 

some traits such as RFI and carcass merit requires labour intensive, invasive, costly and time 

consuming measurements (Moore et al., 2009). Metabolomic studies regarding the prediction of 

RFI in beef cattle have already been very promising with a reported initial prediction accuracy of 

95% (Karisa et al., 2014; Widmann et al., 2015). Metabolomic data, when coupled with genomic 

data, appear to increase the accuracy of trait prediction (Karisa et al., 2013b). This combination 

potentially allows one to screen for individual animals with superior traits that could be used for 

breeding stock. Given the positive results already seen for cattle, the application of these 

metabolomic concepts to other livestock species is certainly worth investigating. Overall it appears 

that there is still a considerable body of useful metabolomic work that could be pursued with most 
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other livestock species by simply applying or extending what has already been done in bovine 

metabolomics. 

Trends and Gaps in Sample Size 

Nearly 50% of the selected articles for all animal species used ≤30 animals or samples (from an 

even smaller number of animals) to conduct their metabolomics analysis. Other sample size 

categories shown in Table 2 account for ~10% of the peer-reviewed livestock metabolomics 

literature. The maximum number of samples reported from the selected papers were: 1587 

(bovine), 163 (ovine), 80 (caprine), 36 (equine), and 506 (porcine). It is noteworthy that sample 

size does not always reflect the total number of animals used in the study. For instance, longitudinal 

studies typically collect multiple samples from a relatively small number of animals over an 

extended period of time. Relative to many reported human metabolomic studies (Reinehr et al., 

2014) or rodent model studies (Chen et al., 2015) the number of samples and the number of 

subjects (i.e. animals) used in most livestock metabolomics studies is generally quite small. Indeed, 

many human and rodent model studies routinely measure 100s to 1000s of samples. This difference 

in sample size likely reflects the relatively high cost of performing large animal studies as well as 

the somewhat limited funding available to agriculture research relative to medical research.  

However, it is important to note that the smaller sample sizes in livestock metabolomics 

also mean that statistical significance and “power” of the published results is also somewhat less 

than many human-subject or model organism studies. This represents a significant gap for 

livestock metabolomics and requires either study sizes to be increased or more effort being directed 

to conducting validation studies on similar-to-largely sized cohorts for confirmation of previously 

reported results. Indeed, we found only one bovine metabolomic study reporting either 

independent cross validation (using a different animal cohort) or independent follow-up validation 
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of any newly identified biomarkers or interesting metabolite findings (Karisa et al., 2014). On the 

other hand, follow-up validation studies are becoming routine in human metabolomic studies 

(Alves et al., 2015; Bussche et al., 2015; Ganna et al., 2016). Clearly, this is a gap in livestock 

metabolomics that must be filled if metabolomic findings are going to be translated to practical 

pen-side or on-farm applications. 

Another consistent problem detected in the published livestock metabolomics literature is 

incomplete reporting. We found that 13% of all published livestock metabolomics papers did not 

report the number of samples used in their research. Providing information on sample size is an 

essential scientific measurement and reflects on the quality and reliability of published papers. 

Failure to report sample sizes along with failure to provide information on the numbers of animals 

or animal replicates indicates a major flaw in manuscript preparation and scientific work.  

Trends and Gaps in Biological Sample Types 

As can be seen in Figure 3 and Table 3, a total of 30 different sample types have been used for 

livestock metabolomics analyses. The most commonly used sample types include milk, plasma, 

serum, urine and ruminal fluid. These biofluids account for 78% of the total sample types reported. 

Milk and plasma are the most commonly used samples in bovine metabolomics manuscripts. 

Among all other animal groups, plasma was the most widely examined sample type (Table 3), 

reflecting perhaps the ease of collection but also its potential utility as a proxy reporter for all of 

the organs in the body (Psychogios et al., 2011). Some of the least frequently used samples include 

cerebrospinal fluid, colostrum, semen, adipose tissue, kidney and kidney perfusate, feces, amniotic 

fluid, bile and liver (Table 3). The relatively low number of papers reporting data on tissue 

metabolomics likely reflects the challenges and costs of animal culling especially for larger 

livestock, sample collection, and the need to rapidly perform metabolic quenching via liquid 
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nitrogen (immediately after surgery or necropsy) to obtain useful tissue samples for metabolite 

analysis (Kosmides et al., 2013; Verma et al., 2013).   

 While studies on bovine milk are quite prevalent, there are essentially very few studies on 

sheep or goat milk (Table 3). Given the importance of goat and sheep milk in the global agrifood 

economy, it is surprising that only a total of 6 papers have been published on goat/sheep milk 

metabolites. One notable study, however, is that of Park and colleagues (Park et al., 2007) who 

used LC-MS to identify/quantify 82 metabolites in sheep and goat milk. This paper reports a 

number of other macronutrient milk constituents including fat, protein, minerals and vitamins. In 

another more recent study, the effect of a specific grazing patterns and their associated dietary 

effect on goat milk was evaluated (Steinshamn et al., 2014). These authors used GC-MS techniques 

to identify and quantify 25 milk metabolites.  

Similar trends are also seen in other biofluid or sample types, with bovine samples or 

bovine-related papers dominating. For instance, there are a number of metabolomic studies on 

bovine ruminal fluid, plasma and urine, but very few studies on these biofluids for sheep, goat, 

horses or pigs (43 for all 4 species and 3 sample types). Likewise, metabolomics studies on 

colostrum and semen are limited to cattle only with one study each. Interestingly, some of the less-

frequently used sample types such as cerebrospinal fluid, synovial fluid, amniotic fluid, bile and 

vitreous humor are limited to the less frequently studied livestock species (sheep, goat and pig). 

What is also quite striking is the dearth of fecal metabolomic studies among all livestock species 

(Table 3). With the growing interest in the microbiome and the clear role that gut (and rumen) 

microflora play in animal health, we were surprised by the complete absence of metabolomic 

papers on bovine fecal samples.  
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Given the importance of beef, sheep and goat meat, it is also surprising to see how little 

metabolomic data has been collected on meat samples. Indeed, only a total of 9 papers provided 

data on relatively small number (140) of meat metabolites. The most comprehensive meat 

metabolomics study was reported by Castejón et al. (2015). These authors profiled meat exudate 

using NMR to explore the effect of storage time on metabolite composition. They reported a total 

of 60 different metabolites. Overall, these data suggest that the livestock metabolomic literature is 

characterized by a significant under-representation of some important sample types, including 

milk, meat, fecal/rumen, semen samples and cerebrospinal fluid. These “gaps” in our knowledge 

and “gaps” in the published literature represent clear opportunities for livestock researchers to 

pursue. 

With regards to the number of metabolites detected, quantified and/or reported among the 

different sample types, we found that the broadest level of coverage was for milk, plasma and 

serum (Table 4). Ruminal fluid, urine, feces and meat samples had slightly lower levels of coverage 

while the rest of the sample types reported in Figure 3 typically report <60 metabolites each. It is 

instructive to compare these livestock metabolite numbers to data reported for human metabolites 

identified in similar kinds of sample types. For instance, the most comprehensive human milk 

metabolomics paper reports just 129 identified metabolites (Andreas et al., 2015), which is >3X 

lower than what has been reported in the livestock milk. The total number of metabolites reported 

for plasma/serum in humans is 4229 (Psychogios et al., 2011), which is significantly more than 

what is reported for livestock plasma/serum (with 759).  Likewise, the total number of human urine 

metabolites has been reported to be 445 (Bouatra et al., 2013), which is more than twice that found 

in the urine of livestock species. Given their genomic similarity, our expectation is that the number 

of metabolites measurable in livestock for each of the biofluids should be comparable to the 
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number of metabolites measured in humans. Currently, the Human Metabolome database 

recognized as the most comprehensive metabolomics database contains >40,000 metabolites 

derived from various human biosamples (Wishart et al., 2016). As a result, this suggests there is 

still a significant gap to be filled with regard to the depth and breadth of metabolome 

characterization in livestock.  

Trends and Gaps in Analytical Instrumentation and Methodologies 

Metabolomics uses a wide variety of analytical instruments that vary in terms of their sensitivity 

and breadth of coverage. Nuclear magnetic resonance (NMR) continues to be among the most 

commonly used analytical platforms in metabolomics (Wishart, 2009). It is often chosen for its 

reliability and utility in absolute quantitation however, NMR is relatively insensitive and is limited 

to measuring substances in micromolar to millimolar (µM-mM) concentrations (Figure 4). Mass 

spectrometry (MS) platforms (especially LC-ESI-MS) can detect metabolites at nanomolar (nM) 

to picomolar (pM) concentrations, allowing a much higher number of metabolites to be detected. 

However, MS instruments are prone to frequent breakdowns and, relative to NMR, it is often 

difficult to quantify chemical concentrations via MS techniques. Gas chromatography-MS (GC-

MS) is less sensitive than liquid chromatography (LC)-MS, but is generally more robust and more 

reproducible. As a result, GC-MS can sometimes be used to identify and quantify the metabolome 

with higher precision and reproducibility than either NMR or LC-MS. 

Each of the 149 livestock metabolomics papers was carefully analyzed to identify which 

analytical platforms (NMR, LC-MS, GC-MS) were used more frequently to conduct metabolomic 

analyses. In certain studies, more than one platform was used so, we simply counted the frequency 

that each technique or technology was used in each study. Interestingly, the most commonly used 

metabolomics platform for all animal categories is NMR spectroscopy, accounting for 28% of all 
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livestock metabolomics studies. Following closely behind NMR, in terms of frequency, is LC-MS 

with 25% of all studies using this analytical platform. It is noteworthy that the LC-MS category 

includes ultra performance liquid chromatography (UPLC)-MS, high-performance liquid 

chromatography (HPLC)-MS, and direct flow injection (DFI)-MS. Gas chromatography-MS is the 

third most prevalent (15%) analytical platform used in livestock metabolomics studies. The more 

limited use of GC-MS is typical of other metabolomic disciplines as well.   

Other, less conventional or more targeted, methodologies account for the remaining 27% 

of the technologies used in livestock metabolomics studies. These methods include, but are not 

limited to, infrared spectroscopy (FTIR), silicic acid column chromatography, immunoassays, the 

Kjeldahl method (for organic nitrogen measurement), ELISAs, and miscellaneous, lab-specific 

methods. Relative to other fields of metabolomics, livestock metabolomics appears to use NMR 

spectroscopy somewhat more and LC-MS somewhat less. This may simply reflect the availability 

of instrumentation or the preferences of major research groups in livestock metabolomics. 

Certainly, sample abundance and supply is not a significant issue in livestock metabolomics so, 

the use of tools that require higher-volumes, but offer more quantitative results (such as NMR) is 

not unexpected. However, NMR is not the most sensitive technique and certainly if livestock 

metabolomics researchers wish to extend their coverage of the livestock metabolome, they will 

certainly need to make use of more LC-MS methods.  

Another gap that was noted in livestock metabolomics research is the near complete 

absence of ICP (inductively coupled plasma)-MS studies to measure metal ion levels in tissues 

and biofluids. Indeed, only 2 studies used ICP-MS, with the most complete characterization being 

conducted by Saleem et al. (2013) who reported the identification and quantification of 20 metals 

in bovine ruminal fluid. The importance of metal ions as micronutrients for animal health and 
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animal productivity cannot be underestimated (McLaughlin et al., 1999; Singh et al., 2011). 

Therefore, it is surprising that so little metal ion data has been collected or analyzed in livestock 

metabolomic studies. It was also noted that the use of fluxomics (Winter and Krömer, 2013) or the 

measurement of metabolite flux using stable isotopes is completely absent in livestock 

metabolomics studies. Fluxomics is particularly useful in understanding metabolic sinks and 

sources. It is also useful for assessing nutrition and metabolic efficiency – topics, which are 

obviously important in livestock research. However, to conduct metabolic flux analysis, 

isotopically labeled (13C or 2H) feed needs to be used. Given the size of most livestock animals 

(relative to rats and mice) and the need for significant quantities of expensive, isotopically labeled 

feed, fluxomic studies are likely too difficult and costly to perform (Srivastava et al., 2013). 

Likewise, the use of imaging mass spectrometry or IMS (which is becoming very popular in human 

metabolomics studies) was completely absent in livestock studies. Imaging mass spectrometry is 

particularly useful for analyzing tissues and for understanding the metabolic changes that take 

place during tissue development or tissue transformation (Norris and Caprioli, 2013; Römpp et al., 

2015).  

A good metabolomics study should use more than one analytical platform, and ideally as 

many different (orthogonal) platforms as possible to broaden the metabolite coverage. In our 

analysis we found that 69% of the published studies used just 1 platform (either NMR, HPLC-UV, 

LC-MS, GC-MS or ICP-MS), 15% used 2 platforms and only 3% used 3 or more analytical 

platforms. The remaining 13% of studies used relatively non-conventional platforms or assays 

(immunoassays, FT-IR, etc.). The most comprehensive metabolomic analysis was a study that used 

5 different platforms (NMR, HPLC-UV, LC-MS, GC-MS and ICP-MS) to characterize the bovine 

ruminal fluid metabolome (Saleem et al., 2013). Looking through the more recent studies, there is 
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a general trend towards using more than one platform and a growing trend towards using LC-MS 

techniques over NMR methods. However, the surprisingly high number of livestock metabolomic 

studies that still use only a single platform also represents a significant issue that the field must 

remedy. Certainly the trend in human metabolomic studies is to use at least 2 and often 3 or more 

different analytical platforms (Bouatra et al., 2013). 

Another gap that was identified from this literature analysis was the general lack of 

integration of other omics techniques (proteomics, transcriptomics or SNP measurements) with 

reported livestock metabolomic studies. Indeed, only 5 papers (3 bovine and 2 swine metabolomics 

studies) used metabolomics in conjunction with genomics or proteomics. One paper of note was 

an investigation that used genomics and metabolomics to evaluate RFI (residual feed intake) from 

cross breeds of dairy and beef cattle (Widmann et al., 2015). This group of researchers used 

metabolomics and phenotypic data to support their genomics investigations and identified two 

genes (TP53 and TGFB1) that were strongly associated with cellular functions driving feed 

efficiency. In another study by Lu and colleagues (2013), the effect of genetic polymorphisms on 

dairy milk characteristics was evaluated using a combination of metabolomics and proteomics. 

This paper identified alterations in triglyceride composition and reported changes in the milk 

metabolome and proteome of dairy cows with the K232A (lysine to alanine substitution) 

polymorphism in the well-studied DGAT1 gene. Given the growing trend towards systems biology 

research and the more “holistic” interpretations of multi-omics data in other fields of life science, 

the near absence of multi-omics studies represents an important gap in livestock metabolomics 

(and omics) research.  

Trends and Gaps in Metabolite Quantification 
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The majority of livestock metabolomics publications are non-quantitative or semi-quantitative 

(yielding relative quantification) while 28.18% of published studies provide fully (absolute) 

quantitative data. The metabolites tracked in this review were categorized in two main groups: 1) 

quantified and 2) non-quantified metabolites. Any metabolite that was associated with an 

absolutely quantified value (millimolar, micromolar, nanomolar, mg/mL, ug/mL, etc.) in a given 

sample type was placed in the quantified category. The non-quantified group consists of either 

metabolites with no quantified value or ones that have only relative quantification (i.e. reported as 

a fraction or a percentage). Over all livestock species and all sample types, we found a total of 404 

quantified metabolites and 666 non-quantified. The majority of both quantified and non-quantified 

metabolites are lipids and lipid-like molecules. Temporal trends in metabolite quantification show 

that proportionally fewer livestock metabolomics papers are providing quantitative data. For 

instance, 69% of papers published prior to 1999 had quantitative data, while 34% of papers from 

1999-2010 and just 21% from 2011-2015 generated quantitative metabolite data. 

Overall, livestock metabolomics still has an impressive proportion (~28%) of publications 

that report absolute concentration values. In contrast, most other fields of metabolomics quantify 

metabolites far less frequently (Psychogios et al., 2011). Nevertheless, the steady decline in the 

proportion of livestock papers providing quantitative metabolomic data is not a good sign. The 

importance of absolute quantification in metabolomics cannot be over-emphasized. As a branch 

of analytical chemistry focusing on small molecule characterization, there is more than 100 years 

of history and a plethora of tools, standards and protocols designed specifically for absolute 

metabolite quantification (Wishart, 2009). Absolute quantification allows facile comparisons of 

readings between animals, research staff, platforms, laboratories and countries. Acquiring 

quantified values also allows one to determine normal and abnormal ranges for disease diagnosis, 
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prediction as well as other relevant production measures. Obtaining quantified data and 

recognizing normal physiological concentrations is also a requirement in biomarker discovery 

(Torii et al., 2016; Johnson et al., 2016). Indeed, absolute quantification and the existence of 

normal and abnormal ranges is the foundation to the entire field of clinical chemistry. In livestock 

metabolomics, having a “normal” quantified range specific for each animal species or breed is 

critical for defining referential “healthy” conditions. Likewise, being able to quantify specific 

changes in an animal’s metabolome allows one to identify “abnormal” conditions such as overt 

disease, malnutrition, pregnancy difficulties, and most importantly subclinical conditions for 

which no obvious clinical indicators are visible (Sun et al., 2015; Ghazi et al., 2016).  

Trends and Gaps in Metabolite Coverage 

Based on our analysis of the literature and the definition of a metabolite given earlier, the majority 

of livestock metabolomics studies report ≤50 metabolites (79% of the total selected metabolomics 

publications) while the other 21% report >50 metabolites. The largest number of metabolites (or 

features) reported in a single paper was 647 (Sun et al., 2015) covering multiple biofluids for 

bovine samples while, the fewest reported was 8 (in a variety of papers from all different livestock 

species). As with metabolite quantification, there is a trend for more recent livestock metabolomics 

papers to report a greater number of metabolites. For instance, papers published prior to 1999 

averaged 29 metabolites per study, those from 1999-2010 averaged 44 metabolites per study while, 

papers from 2011-2015 averaged 63. Among the later publications, the recent bovine study 

conducted by Sun et al. (2015) who investigated potential biomarkers of milk production and 

quality using GC-time-of-flight/MS analyses of rumen fluid, milk, serum and urine claimed to 

detect the highest number of metabolites (i.e., 647). However, careful reading of the manuscript 

shows that they only formally identified 123. The remaining “metabolites” were unidentified MS 
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peaks or features. In ovine metabolomic studies, Parveen and colleagues (2007) reported 168 out 

of 205 detected metabolites using GC-MS to investigate sheep plasma and feces. Clark et al. (2014) 

reported 97 metabolites out of the 571 detected features in caprine serum using a combination of 

both GC-MS and LC-MS. In equine metabolomics, the highest number of metabolites identified 

was from a study conducted by Escalona and colleagues (2015) with 102 metabolites identified 

via NMR analysis of plasma, urine and fecal water. A porcine metabolomics study by Metzler-

Zebeli et al. (2015) reported 104 out of 132 detected serum metabolites using LC-MS. 

Overall, our analysis shows a total of 1070 non-redundant or unique metabolites have been 

detected and/or quantified in the livestock metabolomics literature. Bovine studies covered the 

majority of detected metabolites (i.e., 768 different compounds) over multiple sample types. 

Porcine and ovine studies have the next highest number of detected metabolites with 412 and 285 

different metabolites, respectively. Caprine and equine studies reported 167 and 109 different 

metabolites, respectively. The most frequently detected metabolites with >100 separate entries for 

different animals, biofluids or conditions include: alanine (124 times), valine (112 times), 

isoleucine (105 times), glycine (101 times), and lactate (101 times). In addition, 26 other 

metabolites were reported 50-100 times. Metabolites reported more than once and <50 times add 

to 560 while, 479 metabolites are reported only once. 

It is important to provide some context to these numbers, especially with regard to 

metabolome studies reported for other animal or model species. The estimated size of the 

mammalian metabolome is >100,000 molecules (Wishart et al., 2007; Bouatra et al., 2013) and 

the total number of metabolites so far reported and/or theoretically expected to be in the human 

metabolome or HMDB is just over 42,000 (Wishart et al., 2016). While the number of expected 

or theoretical metabolites is large, the actual number of experimentally identified (and/or 
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quantified) metabolites is actually quite small. For instance, based on the HMDB, the number of 

experimentally identified metabolites in the human metabolome is 3821 (Wishart et al., 2016), in 

the E. coli metabolome it is 891 (Sajed et al., 2016) and in the yeast metabolome it is 625 (Jewison 

et al., 2012). Among the different livestock species, it is clear that the coverage of the bovine 

metabolome is quite extensive and is approaching or even exceeding that of other model 

organisms. However, there is an obvious gap in terms of the coverage of other livestock species 

with caprine and equine metabolomes being very poorly characterized. Much more work is needed 

on goat and horse metabolomes to bring them up to the level seen in the bovine metabolome. 

Trends and Gaps in Animal Breeds 

While we have largely focused on examining metabolomics data for different livestock species, 

we also noticed some interesting trends with regard to the choice of specific breeds in each 

livestock species. Similar to other fields of bovine research, the majority (45%) of bovine 

metabolomic studies use either pure- or cross-bred Holsteins. A smaller amount (11%) of other 

studies used cross breeds to investigate various aspects of the bovine metabolome. Other common 

bovine breeds used in metabolomic studies include Charolais (7%) and Jersey (3%). In ovine 

metabolomic studies, the main breed reported is Suffolk (19%) while other breeds (i.e., Sarda) are 

reported only once or twice. For caprine metabolomics studies, the preferred breeds have been 

Norwegian (22%) with other breeds such as Saanen and Alpine being reported only once. 

Likewise, among equine and porcine metabolomic studies, Standardbred horses (33%) and 

Landrace sows (22%) were most frequently used. Interestingly, no breed information was provided 

in 18%, 33%, 22%, 17%, and 9% of the bovine, ovine, caprine, equine, and porcine metabolomics 

manuscripts, respectively. It is surprising that this essential information is not provided in the 
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manuscripts. This suggests the reporting standards found in livestock metabolomics manuscripts 

still needs improvement. 

Based on the above statistics, one of the more obvious gaps in current livestock 

metabolomics research is the limited variety of breeds being used in most metabolomic studies. 

The vast majority of the published research appears to be focused on just one or two main breeds 

i.e., Holstein in cattle, Suffolk in sheep, Standardbred in horses. Evidently, assessing breed 

differences and their potential impacts on the metabolome has not been a priority for most livestock 

researchers. However, it is important to remember that the existence of dozens of livestock breeds 

is a consequence of centuries of selection for very unique phenotypic qualities – some of which 

are likely determined by their metabolism or metabolome. Different breeds will be characterized 

by specific production or metabolic parameters and these may be fundamentally different between 

breeds. While the composition of mammalian (and livestock) metabolomes is likely to be highly 

similar, metabolite concentrations are expected to differ substantially between different breeds. 

Identifying the unique aspects affiliated with each breed’s metabolome is therefore, an important 

component of livestock metabolomics that should be considered in future studies. This is 

particularly true for purebred and breeding stock herds that are limited to very few animals/herds 

worldwide. Breeding stock animals provide most of the genetic background found in most 

commercial herds, which means they have a significant influence on the metabolome associated 

with their progeny. We were also surprised by the very limited research on the neonatal livestock 

metabolome. Indeed, we found only 16 neonate metabolomic studies, with 1 study focused on 

calves, 4 on lambs, 1 on kids, 10 on piglets and no studies on colts or foals.  

Trends and Gaps in Biomarker Discovery 
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One of the strengths of metabolomics lies in its utility for biomarker discovery (Xia et al., 2013). 

Because metabolites can be more easily, cheaply and routinely quantified than most other 

biological molecules, they are ideal for use in biomarker panels. Indeed, metabolite biomarkers 

continue to be developed and used in clinical applications at a much greater rate than genes or 

proteins (Wishart et al., 2016). In surveying the papers compiled for this review, we found a total 

of 11 livestock metabolomics papers that proposed candidate biomarkers. This included 5 papers 

in animal health, 1 in animal nutrition, 2 in animal production, 1 in animal reproduction and 2 for 

animal models of human health. These studies were limited to cattle, sheep and pigs with no 

metabolomic biomarker studies being reported for goats or horses. Of these papers, we observed 

that most reported fewer than 30 candidate biomarkers, with the lowest number being 2 (Klein et 

al., 2012). A few reports used higher number of metabolites, i.e., 64, as part of a statistical model 

to increase the accuracy of prediction (Osorio et al., 2013; Imhasly et al., 2014). The majority 

(55%) of metabolomic biomarker papers did not provide any quantitative data, but rather reported 

only relative metabolite trends (up or down relative to some indeterminate standard). This means 

that only 5 papers, all from the bovine group, effectively provided useful or verifiable biomarker 

data. Furthermore, only a single paper (Karisa et al., 2014) reported follow-up validation studies 

where the initially discovered biomarkers were subsequently validated on a separate cohort of 

samples.  

Based on our data, most biomarker studies were conducted with relatively small sample 

sizes with the majority of studies being done on fewer than 100 animals. The largest biomarker 

study was one conducted on 321 animals (1587 samples), which investigated prognostic 

biomarkers of ketosis in dairy cows using NMR spectroscopy (Klein et al., 2012). Overall, the 
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quality of biomarker studies done for livestock metabolomics is not particularly good, especially 

given the standards expected of human biomarker studies (Xia et al., 2013). 

Nevertheless, among the reported biomarker studies, we did find some very interesting and 

compelling results. One example is a biomarker study of RFI and other feed efficiency traits in 

beef steers (Karisa et al., 2014). In this study, NMR spectroscopy was used to identify and quantify 

plasma metabolites associated with RFI, initially in a discovery population and subsequently in 

the validation cohort. Karisa et al. (2014) reported 3 candidate biomarkers of RFI that significantly 

(P<0.05) account for >30% of the phenotypic variation for this trait. Other metabolites were 

proposed to be associated with average body weight, average feed intake, dry matter intake and 

average daily gain. In another interesting study, predictive biomarkers of transition diseases in 

dairy cows were investigated (Hailemariam et al., 2014). This study monitored only 12 dairy cows 

over four time points during the transition (pre- and post-calving) period. Blood samples were 

drawn to quantify the metabolome changes associated with various periparturient diseases post-

calving. Using direct flow injection (DFI)-MS, Hailemariam and colleagues (2014) profiled 120 

blood metabolites of which 3 were suggested as candidate biomarkers for transition diseases, with 

a sensitivity and specificity of ≥85%. Another study reported by Gray et al. (2015) looked into 

biomarkers associated with vaccine efficacy. Using UPLC-MS metabolomic measurement of 

plasma derived from Holstein male calves, Gray and colleagues (2015) found 12 metabolites that 

were altered post-vaccination. These biomarkers are being proposed as a newer, more efficient 

route to optimize vaccination and to make vaccine formulation and benchmarking much more 

efficient and targeted. This paper emphasizes on the importance of disease prevention and 

vaccination procedures in livestock, especially in using new technologies such as metabolomics to 

enhance evaluation of vaccine efficacy. 
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Identification of biomarkers will not only improve disease diagnosis but also allow the 

opportunity for disease prediction prior to manifestation of clinical signs. For example, if a 

metabolic disorder can be predicted well before (sub)clinical manifestation, farmers can make 

informative decisions with regards to their management, feeding, housing, etc., to change the 

cascade of biological events leading to that disease. Predictive attempts of such can make a 

significant financial and sustainability difference by maintaining production quantity and quality, 

saving on costs associated with treatment, veterinary visits, preventing animal culling and thus, 

maintaining longevity. 

The Livestock Metabolome Database 

In assembling the material for this review, we identified a total of 1070 metabolites that have been 

detected and/or quantified in livestock metabolomic studies of cattle, sheep, goats, horses and pigs. 

This information has been systematically categorized into LMDB with all of the metabolites being 

fully described including information about the degree or quality of quantification (i.e., quantified, 

non-quantified) and the source sample types for each livestock species. All of the metabolites with 

quantitative data had their concentrations converted into a standardized concentration unit (i.e., 

µM) to improve consistency. In addition to the chemical data and source information, an 

abbreviated description of the experimental context for each metabolite was extracted from the 

articles and included in the online database (www.lmdb.ca). This information includes data on the 

analytical platform(s), experimental conditions, field of research, and animal breed used in 

acquiring the metabolomic data. All metabolites are linked to a standard HMDB 

(http://www.hmdb.ca/) identification number, which provides a freely-accessible and detailed 

description of the metabolite. A PubMed and/or DOI identifier is also associated with each 
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metabolite entry, which provides a literature reference or a direct link to the article reporting that 

metabolite for readers who are interested in further details.  

 Only those metabolites that had reasonably complete descriptions (i.e., unique chemical 

names, sample types, source information, etc.) were included in the online database. A number of 

metabolites or “features” were identified during the review process but not included in the LMDB. 

These include those compounds that have either not been characterized at all (no chemical name, 

no data on sample types), or not fully characterized (unknown or undefined chemical structure). 

This collection of 415 “unknown” metabolites will be added to the LMDB once we can obtain 

sufficient structural and sample source information on them. Among the metabolites entered into 

the LMDB, 404 compounds were quantified and 666 were not. On a species level there were 768 

bovine metabolites, 285 ovine metabolites, 167 caprine metabolites, 109 equine metabolites, and 

412 porcine metabolites. Detailed descriptions of each compound are provided in the LMDB 

“metabocard” pages. Likewise, structural images, molecular formulas, names and synonyms, 

chemical classification/taxonomy information, physicochemical data (molecular weights, pI’s, 

pKa’s, boiling/melting points), referential spectral data (both experimental and theoretical NMR, 

MS/MS and EI-MS spectra), links to other online databases and full reference (authors, journals, 

volumes, etc.) information is also provided. The LMDB has been designed so that it can be easily 

browsed and it supports searches through standard text queries as well as via structure, mass, and 

spectral queries. Most of the information in the LMDB is hyperlinked to other resources within 

the LMDB, allowing for a more convenient and compact route to access the data. The LMDB is 

available at www.lmdb.ca. This database will be constantly updated with more metabolites and 

more detailed metabolite descriptions as more research in livestock metabolomics is published. 
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By assembling the LMDB and making this information freely available through both the 

web and this manuscript, we hoped to create a referential resource that other livestock researchers 

could readily use. Our past experience in assembling and maintaining the Human Metabolome 

Database (HMDB) clearly showed how useful a centralized, on-line resource could be in the field 

of human metabolomics (Wishart et al., 2013). Therefore, our expectation with the LMDB is that 

it will have a comparable impact on the field of livestock metabolomics. Indeed, we believe that 

establishing a comprehensive repository that stores and categorizes livestock metabolome 

information into a standardized format will be critical for future livestock research. It will also be 

important for identifying potential livestock disease biomarkers, improving animal selection (via 

metabolomic assays), enhancing animal nutrition and understanding novel biochemical 

mechanisms arising from various physiological perturbations. With more and more livestock 

metabolomics papers appearing each year and the continued growth in metabolite coverage, it will 

be challenging to maintain the LMDB. However, without even attempting to create the LMDB we 

suspect that livestock metabolomics would continue to lag behind the metabolomics activities seen 

in other areas (i.e. human, plant crops, microbes, food/beverage studies) and would face significant 

hurdles in the coming years trying to catch up.  

Conclusion 

Metabolomics is less than 15 years old, yet it has already delivered some remarkable achievements. 

This includes significant improvements in the ability to identify many environmental contaminants 

and toxins (Skelton et al., 2014), significant advances in food and nutrient characterization (Kim 

et al., 2016; Wishart, 2008), the identification of many novel biomarkers for disease risk including 

risk markers for diabetes (Wang-Sattler et al., 2012), heart disease (Shah et al., 2012) and cancer 

(Shajahan-Haq et al., 2015) as well as promising leads for a variety of drugs and therapies (Corona 
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et al., 2012). Metabolomics is also well-positioned to provide some important advances in both 

livestock research and the livestock industry, especially as it relates to livestock health, breeding 

and production. A number of examples were highlighted in this review including metabolome 

discovery for normal metabolite composition and concentrations (Saleem et al., 2013; Escalona et 

al., 2015), identification of biomarkers of transition diseases (Hailemariam et al., 2014) as well as 

production traits in dairy (Sun et al., 2015) and beef cattle (Karisa et al., 2014) with the goal of 

introducing prognostic strategies in animal health as well as increasing prediction accuracies. Our 

observations also showed that a wide variety of biofuids have received attention for metabolomics 

research such as metabolic profiling of milk, plasma, serum, and urine, minimizing animal welfare 

concerns.  

However, in order for livestock metabolomics to deliver on the promise and the excitement 

seen in other areas of metabolomics research, it is important to carefully assess what has been 

accomplished, what is known and what still needs to be done. The intent of this review was to 

provide a critical overview of the trends and gaps in livestock metabolomics research. Specifically, 

we sought answers to 4 key questions: 1) What are the most common applications of metabolomics 

in animal science and where are they trending?, 2) What are the preferred metabolomics 

technologies livestock metabolomics and how are they evolving?, 3) What are the most obvious 

gaps or weaknesses in livestock metabolomics relative to other fields of metabolomics research? 

and 4) What are the known or measured metabolites for the 5 major livestock species (i.e., bovine, 

ovine, caprine, equine, and porcine) in different tissues and biofluids? In addressing the first 3 

questions we focused on areas relating to: 1) Animal Choices; 2) Research Applications; 3) Sample 

Size; 4) Sample Type; 5) Instrumentation and Methodologies, 6) Quantification; 6) Metabolite 

Coverage; 7) Animal Breeds, and 8) Biomarker Identification. In many cases we were able to 
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identify some clear trends while at the same time identifying important shortcoming or areas where 

further improvements could be made. It was apparent that livestock metabolomics appears to be 

ahead with regard to metabolite quantification, the diversity of research applications and its efforts 

in biomarker identification. On the other hand, it was also clear that livestock metabolomics 

(especially with regard to sample size, instrumentation and metabolite coverage) was lagging 

somewhat further behind than human, microbial or plant crop metabolomics.  

Based on our assessment of the shortcomings with current livestock metabolomics studies, 

it is clear that future metabolomics research should focus on expanding or extending metabolome 

discovery using healthy control animals, increase sample numbers, direct more effort towards 

metabolite quantification, perform more integrated multi-omics experiments, use a greater variety 

of analytical platforms or techniques (including ICP-MS, MSI and fluxomics), increase the breadth 

of metabolite coverage (by using more sensitive platforms, such as ESI-MS), investigate a greater 

and new varieties of biosamples such as semen, amniotic fluid, saliva and urine, extend the number 

and types of animal breeds used in metabolomic studies and be more conscientious in the design 

and implementation of biomarker studies. 

Another important outcome of this study was the collection and consolidation of livestock 

metabolite information into a single, centralized resource (the LMDB). It became readily apparent 

in conducting this review that the livestock metabolomics literature is highly diffuse and that 

valuable information is being “lost” or is not readily available. By compiling the LMDB and 

making an on-line version of the database freely available, we hope it could serve as a hub for 

livestock researchers and the livestock industry to further advance the field of livestock 

metabolomics.   
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Tables  

Table 1. Categorical comparison. Selected livestock metabolomics articles of 5 major livestock 

species were categorized based on the area of research, i.e., animal health, animal nutrition, animal 

production, animal reproduction, human health, animal physiology and animal products. It is 

noteworthy that articles in the area of human health mainly reflected animal models being used to 

study human related health issues.  

 Bovine Ovine Caprine Equine Porcine 

Animal Health 30 6 2 4 10 

Animal Nutrition 10 6 5 0 14 

Animal Production 22 3 2 2 11 

Animal Reproduction 2 1 0 0 3 

Human Health 6 4 2 0 14 

Animal Products 16 1 0 0 2 

Animal Physiology 13 2 0 1 0 
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Table 2. Sample size. Sample size reported in livestock metabolomics papers were divided into 5 

categories with papers using ≤30 samples, 31-50, 51-100, or those that have not mentioned the 

number of samples used in the analysis. 

 Bovine Ovine Caprine Equine Porcine 

≤30 25 6 4 5 30 

31-50 12 2 0 0 7 

51-100 9 4 3 0 1 

>100 16 2 0 0 2 

Undetermined 13 3 0 0 3 
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Table 3. Sample types. Different varieties of samples have been used in livestock metabolomics 

analyses as identified by the number of published articles per sample per livestock specie. 

 Bovine Ovine Caprine Equine Porcine 

Adipose 1 0 0 0 0 

Amniotic Fluid 0 2 0 0 0 

Bile 0 0 0 0 2 

Brain 0 1 0 0 1 

Cerebral-Spinal Fluid 0 1 0 0 0 

Cheese 0 1 0 0 0 

Colostrum 1 0 0 0 0 

Cream 1 0 0 0 0 

Feces 0 1 0 1 0 

Follicular Fluid/Media 3 0 0 0 2 

Jejunal Tissue 0 0 0 0 2 

Kidney 0 0 0 0 1 

Kidney Perfusate 0 0 0 0 1 

Liver 0 0 0 0 3 

Lung 0 0 0 0 1 

Meat 7 0 0 0 2 

Milk  27 3 3 0 0 

Muscle 1 0 0 0 1 

Plasma  21 6 0 3 18 

Proximal Colon 0 0 0 0 1 

Rumen Fluid  7 1 1 0 0 

Semen 1 0 0 0 0 

Serum  14 3 1 1 15 

Synovial Fluid 0 1 0 0 0 

Urine  12 2 1 3 8 

Vitreous Humor 0 0 1 0 0 
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Yogurt 0 1 0 0 0 
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Table 4. Metabolite coverage. The number of metabolites detected, quantified and/or reported 

among the commonly used sample types in the livestock metabolomics publications up to 2016 

(counting publications that reported >8 metabolites). 

 Milk Plasma Serum Ruminal Fluid Urine Feces Meat 

Number of 

Metabolites 

422 408 351 248 177 158 75 
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Figures  

 

Figure 1. PRISMA diagram. The preferred reporting items for systematic reviews and meta-

analysis (PRISMA) flow diagram identifies the total number of articles initially surveyed, the 

number of articles included and excluded for this systematic review.  
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Figure 2. Literature mining. Total number of livestock metabolomics articles considering only 

articles that reported ≥8 metabolites resulted in selection of 149 manuscripts for this review.  
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Figure 3. Sample types. Different varieties of samples and animal products have been analyzed 

in livestock metabolomics studies. 
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Figure 4. Relative sensitivity of metabolomics platforms. Nuclear magnetic resonance (NMR), 

gas chromatography-mass spectrometry (GC-MS), and liquid chromatography (LC)-MS are the 

commonly used metabolomics platforms with varying detection limits.  
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Abstract 

Mutton and lamb sales continue to grow globally at a rate of 5% per year. However, sheep farming 

struggles with low profit margins due to high feed costs and modest carcass yields. Selecting those 

sheep expected to convert feed efficiently and have high carcass merit, as early as possible in their 

life cycle, could significantly improve the profitability of sheep farming. Unfortunately, direct 

measurement of feed conversion efficiency (via residual feed intake (RFI)) and carcass merit is a 

labor-intensive and expensive procedure. Thus, indirect, marker-assisted evaluation of these traits 

has been explored as a means of reducing the cost of its direct measurement. One promising and 

potentially inexpensive route to discover biomarkers of RFI and/or carcass merit is metabolomics. 

Using quantitative metabolomics, we profiled the blood serum metabolome (i.e., the sum of all 

measurable metabolites) associated with sheep RFI and carcass merit, and identified candidate 

biomarkers of these traits. The study included 165 crossbred ram-lambs that underwent direct 

measurement of feed consumption to determine their RFI classification (i.e., low versus high) 

using the GrowSafe System over a period 40 days. Carcass merit was evaluated after slaughter 

using standardized methods. Prior to being sent to slaughter one blood sample was drawn from 

each animal, and serum prepared and frozen at -80 oC to limit metabolite degradation. A subset of 

the serum samples was selected based on divergent RFI and carcass quality for further 

metabolomic analyses. The analyses were conducted using three analytical methods (nuclear 

magnetic resonance spectroscopy, liquid chromatography mass spectrometry and inductively 

coupled mass spectrometry), which permitted the identification and quantification of 161 unique 

metabolites. Biomarker analyses identified three significant (P-value < 0.05) candidate biomarkers 

of sheep RFI (AUC=0.80), seven candidate biomarkers of carcass yield grade (AUC=0.77) and 

one candidate biomarker of carcass muscle to bone ratio (AUC=0.74). The identified biomarkers 
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appear to have roles in regulating energy metabolism and protein synthesis. These results suggest 

that serum metabolites could be used to categorize and predict sheep for their RFI and carcass 

merit. Further validation using a larger (3X) and more diverse cohort of sheep is required to 

confirm these findings.  

Key words: Metabolomics, residual feed intake, carcass merit, sheep, biomarker, blood   
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Introduction  

Animal feed contributes up to 85% of the cost of production in livestock farming (Norton 2005; 

Spring, 2013; Holmgren and Feuz 2015). One approach to mitigate feed costs and increase farm 

profitability is to select for livestock with higher feed efficiency (Jackson et al., 2014; Muir et al., 

2018). Feed-efficient livestock are expected to grow at a rate similar to the rest of the herd while 

at the same time consuming less feed and producing less manure and methane (Basarab et al., 

2003). Residual feed intake (RFI) is an effective method for evaluating feed efficiency, particularly 

in beef and dairy cattle. The RFI score of each animal is the residual amount of feed the animal 

consumes compared to the predicted value obtained from similar animals and literature standards 

(Koch et al., 1963). These calculations are based on animal maintenance and production 

requirements that are corrected for body weight, fat and animal performance. Therefore, animals 

with lower RFI will consume less feed than expected and produce less waste while not sacrificing 

productivity, body weight or size. Because of its utility in identifying high performing animals, 

along with its moderate heritability (0.11-0.46), RFI is a relevant feed-efficiency trait considered 

for genetic selection (Muir et al., 2018; Marie-Etancelin et al., 2019). 

The concept of RFI has also been used in evaluating feed efficiency of other livestock, 

including sheep and lambs (Paula et al., 2013). One recent study showed that low-RFI lambs had 

12% less dry matter intake (DMI) compared to high-RFI lambs while having similar growth 

performance as high-RFI lambs (Rajaei Sharifabadi et al., 2012). Other sheep-based RFI studies 

have shown that DMI can vary up to 30% between the most efficient and least efficient sheep 

(Muro-Reyes et al., 2011; Redden et al, 2014). Despite its value, direct measurement of RFI has 

been limited in sheep. Based on standards established for cattle, RFI measurement requires costly 

equipment and intensive data collection (Rincon-Delgado et al., 2011) for a period of 40 to 90 days 
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(Wang et al., 2006; Cockrum et al., 2013; Meyer et al., 2015; Manafiazar et al., 2017). Ideally, a 

set of biomarkers predictive of RFI performance could greatly reduce the cost of direct RFI 

measurement while making the detection process cheaper and more feasible. 

There have been a number of attempts to indirectly measure RFI in sheep using biological 

markers (Rajaei Sharifabadi et al., 2012) in readily accessible biofluids such as blood (Table 1). 

Some of the proposed approaches include hormone measurement (Zhang et al., 2017; Knott et al., 

2008) as well as hematological and other biochemical measurements (Paula et al., 2013; Rincon-

Delgado et al., 2011). These results suggest that multiple biochemical measures of blood serum, if 

combined together, might yield a useful, indirect measure of RFI. Serum and plasma 

measurements are widely used in livestock biomarker analyses (Goldansaz et al., 2017). Indeed, 

serum metabolites (characterized via metabolomic methods) have already been shown to yield 

useful biomarkers of RFI in cattle (Karisa et al., 2014).  

In addition to feed efficiency, carcass yield is another contributing factor to the profitability 

of livestock farming – especially for sheep. The common practice to evaluate sheep carcass merit 

on a live animal is via ultrasound measurement of back fat at different locations along the spine 

(Grill et al., 2015; Morales-Martinez et al., 2020). Most other evaluation methods are limited to 

post-mortem assessment of the carcass. Unfortunately, this approach to measurement means losing 

the genetic potential of that animal. Therefore, developing methods to measure carcass merit on 

live animals would be beneficial. To date, marker-assisted measurement of sheep carcass merit 

using metabolomics has yet to be explored. However, a few studies have investigated this approach 

in other livestock species (Connolly et al., 2019).  

Here we describe the application of high throughput metabolomics to comprehensively 

characterize the serum metabolome of sheep and to use this information to identify candidate 
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serum biomarkers of sheep RFI and carcass merit. In particular, we used a combination of 

quantitative mass spectrometry (MS) and nuclear magnetic resonance (NMR)-based metabolomics 

methods to characterize the serum metabolome of 165 ram-lambs. These animals had their feed 

intake monitored in order to calculate their RFI and measure their carcass quality (muscle-to-bone 

ratio [MBR] and yield grade [YG]) to determine carcass merit. This work allowed us to identify 

several promising serum metabolite markers of sheep RFI and carcass merit.  

Materials and Methods 

Animal Use and Experimental trials 

All animal procedures were approved by the respective College Animal Care Committees (2015-

RES1 for Lakeland College and Policy No. A20 for Olds College) and the University of Alberta 

Animal Care Committee (2016.006Wang). Animal trials were conducted at two locations in 

Alberta at Lakeland College, in the town of Vermilion, and at Olds College, in the town of Olds, 

in 2015. A total of 165 intact ram-lambs (83 Suffolk x Dorset crossbreds from Lakeland College 

and 82 Rideau Arcott from Olds College) were used in this study. Lambs at Lakeland College were 

born, raised and fed at the location and began the feeding trials at an average age of 104 days. 

Lambs at Olds College were sourced from a private flock and transported to the College, after a 

minimum period of 6 weeks from date of weaning, and began the trial with an average age of 96±8 

days. At each location, the ram-lambs were divided into 2 feeding pens and group-housed with 

approximately 40 lambs per pen with a similar distribution of animals between pens. Lambs were 

housed in outdoor pens approximately 20 x 15 meters with protection from wind, shelter from sun, 

and wood shavings for bedding. 
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Feed Intake and Feed Efficiency Measurements 

Individual daily feed consumption for the lambs was collected using the GrowSafe automated 

feeding system (GrowSafe Systems Ltd., Airdrie, Canada) following standard feed intake 

procedures for sheep as outlined in Cammack et al. (2005). This information was used to determine 

individual RFI values. The GrowSafe system was adapted to be used for sheep by elevating the 

bottom of the feeding bunks, and the lambs were provided with a platform to raise them 48 cm 

from the ground level. Each lamb was fitted with an electronic identification device (EID) in one 

of its ears. Each time a lamb inserted his head into the bunk, the GrowSafe system scanned his 

EID to record the amount of feed consumed (as measured by feed weight loss from the feeder) and 

the time spent for each feeding event. Lambs at both farm locations had equal access to four 

GrowSafe nodes in each pen. Animal feed consisted of either wheat and barley-based total mixed 

ration (TMR) in a pellet form (PEL) or home mixed whole barley with protein supplement (BAR) 

ration. In either case, the nutrient content of the rations was exactly the same. All ram-lambs were 

given ad libitum access to their trial diets (Table 4) and water.  

Lambs were adapted to their trial diets incrementally during a 14-day period prior to 

commencement of the experiment. During the adaptation period, the lambs received 75% as fed 

basis of their creep ration (barley and oat-based feed) with 25% as fed basis of their trial ration 

(TMR in PEL or home mixed BAR ration). Every three days, 25% would be added to the trial 

ration and 25% would be reduced from the creep ration. By day 10 of the adaptation period, 100% 

of the feed consisted of the trial ration.   

Residual Feed Intake Calculation 

The duration of the experiment and feed intake measurements were 77 to 101 days at the Lakeland 

and Olds College sites, respectively. However, a 40-day data collection period was used to make 
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RFI calculations (Wang et al., 2006; Manafiazar et al., 2017). Lambs were weighed on days one 

and two at the beginning of the trial and the weights were then averaged to obtain the initial start-

of-test weights. In addition, in the morning and prior to new feed being added to the bunks, weekly 

measurements of live animal weights were taken throughout the trial. Initially, the observed feed 

intake of each animal was converted to DMI based on the moisture percentage of the feed. Then 

the energy content of the DMI was converted into MJ/kg of DMI for each animal. Furthermore, 

the RFI for each animal was estimated by regressing the standardized energy content (SMJ/kg) to 

the average daily gain (ADG), as well as the ADG adjusted for backfat content, the metabolic body 

weight and the ultrasound BF. The residual of the above regression line was deemed as the 

estimated RFI of each animal. 

Carcass Measurements 

Ultrasound BF and loin area measurements measured via an A6V portable ultrasound system 

equipped with a L761V linear transducer set at 507 MHz (SonoScape Medical Corp., China). 

Measurements were taken from live animals at the start of the trial on day 1 and again at the end 

of the trial after the lambs were transported to the slaughter location. Measurements of BF were 

required for RFI calculations to account for any differences in initial BF values. The BF 

measurements were taken as fat depth at three locations: 1) above maximum muscle depth, 2) 10 

mm further away from spine, and 3) 20 mm further away from spine. 

When lambs reached a suitable market weight (typically 52 kg) they were grouped and 

transported to a federally inspected commercial plant (SunGold Specialty Meats, Innisfail, 

Alberta) for processing following standard slaughtering procedures. Carcass measurements, 

including YG and MBR, were determined for each lamb upon slaughter at the slaughterhouse. The 

YG measurement includes the total tissue depth (both fat and lean tissue) measured 11 cm from 
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the centerline over the 12th and 13th ribs. In addition, leg muscle circumference (taken at the cod 

level from the right leg) and bone circumference (taken 2 cm below the hock joint on the right leg) 

were measured on chilled carcasses 24 hours after slaughter to calculate a leg MBR. 

Blood Collection and Serum Processing 

Blood samples were drawn from the jugular vein at the end of each trial before the lambs were 

sent to the slaughterhouse and approximately three hours prior to feeding. Blood (n=165) was 

collected using 21-gauge needles (PrecisionGlide®, USA) and vacutainers coated with no anti-

coagulant (BD Vacutainer, USA) for a maximum volume of 10 ml. Blood samples were kept on 

ice upon collection. Samples were spun with a centrifuge (Beckman Coulter, USA) for 30 minutes 

at 16,000 x g at 4 °C. The serum was then transferred to Eppendorf tubes (Axygen, USA) and snap 

frozen on dry ice. Frozen serum samples were stored at -80 °C until used for metabolomic analyses. 

Metabolomics Experiments 

Nuclear Magnetic Resonance (NMR) Spectroscopy. Serum samples contain a large proportion of 

macromolecules (i.e., proteins and lipoproteins), which affects the identification of metabolites 

with low molecular weight via NMR. Therefore, samples were deproteinized by ultra-filtration as 

described by Psychogios et al. (2011) and further processed with buffer, phasing and chemical 

shift reference standards as described by Foroutan et al. (2019). The NMR sample (total volume 

of 250 µL including serum and buffer solution) was then transferred to a 3 mm SampleJet NMR 

tube for spectral analysis. All 1H-NMR spectra were collected on a 700 MHz Avance III (Bruker, 

USA) spectrometer equipped with a 5 mm HCN Z-gradient pulsed-field gradient (PFG) cryoprobe. 

All spectra were acquired at 25 °C using the first transient of the NOESY pre-saturation pulse 

sequence (noesy1dpr), chosen for its high degree of quantitative accuracy (Saude et al., 2006). All 

FID’s (free induction decays) were zero-filled to 250 K data points. The singlet produced by the 
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sodium trimethylsilylpropanesulfonate (DSS) methyl groups was used as an internal standard for 

chemical shift referencing (set to 0.00 ppm). For quantification, all 1H-NMR spectra were 

processed and analyzed using a modified version of the Bayesil automated analysis software 

package with a custom metabolite library (Ravanbakhsh et al., 2015). The modified version of 

Bayesil allows for qualitative and quantitative analysis of an NMR spectrum by automatically 

fitting spectral signatures from an internal database to the spectrum. Based on the library, most 

visible peaks were assigned and annotated with a compound name. It has been previously shown 

that this fitting procedure provides absolute concentration accuracy of 90% or better (Ravanbakhsh 

et al., 2015). This method allows the identification and quantification of more than 50 metabolites 

including amino acids, biogenic amines, carboxylic acids, organo-nitrogens and keto acids (please 

refer to Table 5 for further details). 

Direct Injection Liquid Chromatography Mass Spectrometry/Mass Spectrometry (DI/LC-MS/MS). 

A targeted, fully quantitative metabolite profiling approach was employed that combined DI-

MS/MS with reverse-phase liquid chromatography to determine the concentrations of a wide range 

of metabolites. These analyses were performed using an in-house quantitative metabolomics kit 

(called The Metabolomics Innovation Center [TMIC] Prime). This kit, when used with an Agilent 

1260 series UHPLC system (Agilent Technologies, Palo Alto, CA) coupled with an AB SCIEX 

QTRAP® 4000 mass spectrometer (Sciex Canada, Concord, Canada), can identify and quantify 

up to 119 compounds (including amino acids, biogenic amines, glucose, organic acids, 

acylcarnitines, phosphatidylcholines (PCs), lysophosphatidylcholines (LysoPCs), sphingomyelins 

(SMs), and hydroxysphingomyelins (SM(OHs)). The absolute quantification of water-soluble 

compounds including amino acids, organic acids, and biogenic amines was ensured by using two 

separate UHPLC injections with C18 column separations. On the other hand, glucose and the 
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various lipid classes (acylcarnitines, PCs, LysoPCs, SMs, etc.) are measured by two column-free, 

DI-MS methods. While initially designed and calibrated for human metabolomic studies, the 

measurable ranges of metabolite concentrations available through the TMIC Prime kit match very 

closely with the known or expected metabolite concentrations in sheep biofluids (as determined 

via orthogonal NMR experiments and high levels of agreement with published literature data). 

The detection of each metabolite in the TMIC Prime kit relies on multiple reaction 

monitoring (MRM). The kit incorporates both isotope-labeled internal standards and other quality 

control (QC) standards into its 96-well filter plate to ensure accurate compound quantification. 

The 96 deep-well plate contained a filter plate attached with sealing tape, and reagents and solvents 

used to prepare the plate assay. The first 14 wells were used for one blank, seven standards and 

three quality control samples. These initial wells are used for building calibration curves and QCs, 

while the other 82 wells are used for sample analysis. For all biofluids analyzed with this assay, 

both the original sample (without dilution) and diluted samples (10×) were analyzed to ensure 

correct calibration and quantification. For all metabolites except organic acid, samples were 

thawed on ice and were vortexed and centrifuged at 13,000x g. Ten µL of each sample was loaded 

onto the center of the filter on the upper 96-well plate and dried in a stream of nitrogen. 

Subsequently, phenyl-isothiocyanate was added for derivatization. After incubation, the filter 

spots were dried again using an evaporator. Extraction of the metabolites was then achieved by 

adding 300 µL of extraction solvent. The extracts were obtained by centrifugation into the lower 

96-deep well plate, followed by a dilution step with MS running solvent.  

For organic acid analysis, 150 µL of ice-cold methanol and 10 µL of isotope-labeled 

internal standard mixture was added to 50 µL of serum sample for overnight protein precipitation.  

Then it was centrifuged at 13000x g for 20 min. Fifty µL of supernatant was loaded into the center 
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of wells of a 96-deep well plate, followed by the addition of 3-nitrophenylhydrazine reagent. After 

incubation for 2h, BHT stabilizer and water were added before LC-MS injection. 

All LC-MS/MS and DI-MS/MS assays were performed on a Qtrap® 4000 tandem mass 

spectrometry instrument (Sciex Canada, Concord, Canada) equipped with an Agilent 1260 series 

HPLC system (Agilent Technologies, Palo Alto, CA). The Analyst software 1.6.2 (Concord, 

Canada) was used to control the entire assay’s workflow. 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS). All trace elemental analysis was 

performed on a Perkin-Elmer NexION 350x ICP-MS (Perkin-Elmer, Woodbridge, Canada), 

operating in a kinetic energy discrimination (KED) mode. Argon (ICP/MS grade, 99.999 %) was 

used as a nebulizer (0.9 mL min-1), an auxiliary (1 mL min-1) and a plasma gas (15 mL min-1). 

Helium (He) was used as non-reactive collision gas (Cell gas A: 4.3) to eliminate/minimize 

chemical interference. Prior to ICP-MS analysis, a total of 200 µL of each serum sample was 

collected in a metal free tube and was centrifuged at 14,000 x g for 2 minutes in order to obtain a 

homogeneous dispersion. The sample was then diluted to 2 mL (10x dilution) using 5% hydrogen 

peroxide and 1% nitric acid solution. Internal standard (indium, 10 ppb) was also added to the 

solution. Blank subtraction was applied after internal standard correction. Typically, a 3 point-

calibration curve was used to quantify all compounds. The accuracy of the ICP-MS analytical 

protocol was periodically evaluated via the analysis of certified reference materials (serum 

toxicology controls; UTAK Laboratories Inc.). 

Statistical Analyses 

Metabolomics datasets from all three platforms were pre-processed and normalized using standard 

methods available via MetaboAnalyst 4.0 (Chong et al., 2019). MetaboAnalyst is a widely used, 

open-access web server for processing and analyzing metabolomic data. As recommended by 
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MetaboAnalyst, metabolites with >20% missing values were removed from the dataset prior to 

statistical analyses. Univariate and multivariate statistical analyses, including fold change, 

Student’s t-test, volcano plot analysis, and partial least squares-discriminant analysis (PLS-DA) 

were conducted with statistical significance set to a P-value < 0.05 and a Benjamini-Hochberg 

false discovery rate set to q ≤ 0.05. The volcano plot displays data based on their P-value 

(determined by Student’s t-test) versus their fold change. Volcano plots are widely used to rapidly 

detect and visually display highly significant differences in metabolite, gene or protein expression. 

Data visualization was also conducted via PLS-DA to observe the separation between the animal 

groups based on their corresponding serum metabolomic data. The significance of the PLS-DA 

separation was verified using permutation testing (n=1000). Datasets were then evaluated for 

candidate biomarkers using receiver operating characteristic (ROC) analysis conducted by logistic 

regression and measuring the area under the curve (AUC) values. Individual or multiple 

metabolites with an AUC ≥ 0.70 and a significant permutation test (n=1000; P-value < 0.05) were 

considered as candidate biomarkers for each trait. 

Results 

Measurements of RFI and Carcass Merit. All 165 sheep had their RFI and carcass merit 

quantitatively determined. The RFI values ranged from -0.11 to +0.16 kg DM, while YG 

measurements ranged from 5 to 23 mm and MBR ranged from 2.57 to 3.69 mm. Based on the 

distribution and precision of the RFI measurements, we determined that an RFI cut-off of ±0.02 

kg DM was appropriate to distinguish high-RFI animals from low-RFI animals. Therefore, we 

selected 69 animals as being low-RFI (RFI≤-0.02) and 33 animals as being high-RFI (RFI≥+0.02). 

The remaining 63 animals, with RFI values ranging from -0.02 to +0.02, were excluded from both 

RFI groups, as their RFI measurements were insufficiently distinct (given the RFI measurement 



133 

 

error of ~15%). Based on the distribution and precision of the YG measurements, we excluded 

animals with a YG score of 11-15 mm and identified 37 animals as having low YG (categorized 

as YG1 with measurement ≤11 mm) and 41 animals as having high YG (categorized as YG2 with 

measurement ≥15 mm). The other 87 animals were excluded, as their YG measurements were 

insufficiently distinct (given the YG measurement error of ~5%) to suggest they were statistically 

different from one another. Similarly, we excluded animals with an MBR ratio of between 2.80 

and 3.00 which led to 27 animals being identified as having low MBR (categorized as MBR1 with 

a ratio ≤2.80) and 28 animals as having high MBR (categorized as MBR2 with a ratio ≥3.00). By 

categorizing animals into two groups (high/low-RFI, YG1/YG2 and MBR1/MBR2), biomarker 

discovery for these traits could be simplified into a standard categorical analysis. 

The Serum Metabolome of Sheep. The first objective of this study was to comprehensively and 

quantitatively characterize the serum metabolome of sheep. As noted in our previous work on the 

Livestock Metabolome Database (LMDB; Goldansaz et al., 2017), sheep metabolomic studies are 

relatively scarce. To date, only 52 metabolites had previously been quantified in sheep serum. By 

performing a comprehensive, quantitative metabolomic analyses of sheep serum over three 

analytical platforms (NMR, ICP-MS, DI/LC-MS/MS) we were able to identify 161 serum 

metabolites with unique chemical structures. These metabolites could be classified into 16 broad 

chemical classes using the ClassyFire ontology (Djoumbou Feunang et al., 2016), and included 42 

carboxylic acids and derivatives, 39 fatty acyl derivatives (acylcarnitines), 24 

glycerophospholipids, 18 metals, 10 sphingolipids, 9 organo-oxygen compounds, 7 organo-

nitrogen compounds, 5 keto acids and derivatives, and 8 “other” groups consisting of chemical 

classes having less than 5 metabolites. The NMR, ICP-MS and DI/LC-MS/MS platforms measured 

60 metabolites, 18 metals and 83 metabolites, respectively. The most frequently measured 
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metabolites reported by NMR were carboxylic acids and derivatives (33 metabolites), 

organonitrogen compounds (12 metabolites) and keto acids and derivatives (5 metabolites). The 

main metabolite classes measured by DI/LC-MS/MS comprised of fatty acyl derivatives (36 

metabolites), glycerophospholipids (24 metabolites), sphingolipids (10 metabolites), as well as 

carboxylic acids and derivatives (9 metabolites). Twenty-seven metabolites (identified by * in 

Table 5) were new to the LMDB while 100 were new to the sheep serum/plasma metabolome 

(identified by + in Table 5). In this regard, our study represents the most complete and 

comprehensive metabolomic study yet reported for sheep serum. 

 Metabolomic platforms exhibit different levels of sensitivity and coverage. Therefore, 

metabolite identification and quantification will vary between different analytical platforms. 

Sample analysis with NMR is able to robustly identify and quantify compounds from the 

millimolar (mM) to micromolar (µM) range whereas, MS-based methods are more sensitive and 

can identify and quantify metabolites at lower concentrations, i.e., nanomolar (nM), concentrations 

(Pinu et al., 2019). Based on our data, the range of metabolite concentrations detected in sheep 

serum varied from 0.3 µM (dimethylglycine) to 7923 µM (L-Lactic acid) for NMR, from 0.002 

µM (spermidine) to 354 µM (citrulline) for LC-MS/MS, and from 0.002 µM (cesium) to 223667.3 

µM (sodium) for ICP-MS.  

Significant Metabolites Associated with Sheep RFI. The second major objective for this study was 

to identify those serum metabolites that could distinguish lambs based on their RFI category (high 

vs. low-RFI). Feature selection was performed using a combination of univariate and multivariate 

statistics to identify significant (P-value < 0.05, Q-value < 0.05) metabolites that could 

discriminate the two RFI groups. The features obtained from the uni/multivariate analyses were 
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then used to inform the ROC curve analysis which led to a high-performing logistic regression 

model to categorize high/low-RFI animals from serum metabolite measurements. 

Univariate analyses. A total of 24 significant metabolites (across all three platforms) were 

identified by the Student’s t-test that distinguished low-RFI from high-RFI sheep (Table 2). These 

metabolites include four from NMR, three from ICP-MS, and 16 from DI/LC-MS/MS. 

Multivariate Analyses. Multivariate statistical analyses produced a variable importance plot (VIP) 

with 15 metabolites (Figure 1) that contributed significantly to the PLS-DA categorization of the 

RFI groups. These 15 metabolites consist of nine acylcarnitines [C6, C0, C5, L-acetylcarnitine, 

C5-OH], two biogenic amines (acetyl-ornithine, spermidine), one amino acid (aminoadipic acid), 

two fatty acids (butyrate, 2-hydroxyisovalerate), two ketones (ketoleucine, acetone), one alcohol 

(isopropyl alcohol), one benzenoid (hippuric acid) and one metal (Cs). Seven of these metabolites 

were detected by DI/LC-MS/MS (C6, C0, C5, C5-OH, acetyl-ornithine, spermidine, aminoadipic 

acid) and seven were detected by NMR (isopropyl alcohol, L-acetylcarnitine, butyrate, 2-

hydroxyisovalerate, ketoleucine, acetone, hippuric acid) while only one was detected by ICP-MS 

(Cs). All, except four metabolites (L-acetylcarnitine, butyrate, 2-hydroxyisovalerate, acetyl-

ornithine), identified via this multivariate method overlap with the significant metabolites 

identified by univariate methods. 

Biomarker detection for sheep RFI. From the significant metabolites identified via univariate and 

multivariate analysis, we selected a panel of three metabolites (isopropyl alcohol, aminoadipic acid 

and acetone), based on their VIP values and individual Q-values, to serve as candidate biomarkers 

of sheep RFI. A logistic regression equation for these three candidate biomarkers was used to 

generate a model with a final AUC of 0.80 (Figure 2) and permutation testing (n=1000) confirmed 
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its significance (P-value = 0.01). The logistic regression model developed for this panel of 

metabolites is given as follows: 

logit(P) = log(P / (1-P)) = 1.174 + 0.645 isopropyl alcohol - 0.465 aminoadipate - 0.037 acetone 

where P is the probability of y=1/x with a cut-off of 0.66. Because the concentrations of the 

metabolites used in this study were sum normalized, log transformed and scaled via mean 

centering, the value for isopropyl alcohol in the above equation corresponds to (Log2([isopropyl 

alcohol]/2442.34) – 9.80)/2.29 (where [isopropyl alcohol] is the measured concentration of this 

compound by NMR). Likewise, the value for aminoadipic acid corresponds to 

(Log2([aminoadipate]/508.18) – 7.12)/1.19 (where [aminoadipate] is the measured concentration 

of this compound by DI/LC-MS/MS). Similarly, the value for acetone corresponds to 

(Log2([acetone]/835.73) – 7.03)/0.99 (where [acetone] is the measured concentration of this 

compound by NMR).  

Significant metabolites of sheep carcass merit. We also sought to identify those serum metabolites 

that could distinguish high from low carcass merit lambs. Feature selection was performed as 

previously described to discriminate the YG1 and YG2 groups as well as the MBR1 and MBR2 

groups. The features obtained from the analyses were then used to inform the ROC curve analysis 

and to develop a robust, high-performing logistic regression model to categorize carcass merit 

traits.  

Univariate analyses of MBR. Parametric and non-parametric t-tests did not identify any of the 

metabolites to be significantly different between the two groups while a volcano plot identified 

three significant metabolites (lysoPC a C26:1, lysoPC a C28:0, lysoPC a C17:0), all of which were 

phospholipids detected by DI/LC-MS/MS (Table 6). 
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Multivariate analyses of MBR. Multivariate statistical analyses using PLS-DA identified the top 

15 metabolites that contribute most to the PLS-DA categorization of the MBR groups via VIP 

analysis (Figure 3). Of these 15 metabolites, two consist of alcohols and polyols (ethanol and 

isopropyl alcohol), two fatty acids (2-hydroxyisovalerate and butyrate), two biogenic amines 

(acetyl-ornithine and spermine), three phospholipids (lysoPC a C26:1, lysoPC a C28:0, lysoPC a 

C17:0), two organic acids (citric acid and acetic acid), two acylcarnitines [C12 

(dodecanoylcarnitine) and C3 (propionylcarnitine)], one keto acid (3-methyl-2-oxovaleric acid) 

and one amino acid (L-aspartic acid). Eight of these metabolites were detected by NMR (ethanol, 

2-hydroxyisovalerate, butyrate, isopropyl alcohol, 3-methyl-2-oxovaleric acid, L-aspartate, citric 

acid, acetic acid) and seven were detected by DI/LC-MS/MS (acetyl-ornithine, lysoPC a C26:1, 

lysoPC a C28:0, lysoPC a C17:0, C12, C3, spermine). Only three metabolites identified via 

multivariate analysis overlap with the metabolites detected by univariate analysis (lysoPC a C26:1, 

lysoPC a C28:0, lysoPC a C17:0). 

Biomarker detection for sheep MBR. Among the list of identified metabolites, a combination of 

three phospholipids overlapping between the volcano plot and VIP (lysoPC a C26:1, lysoPC a 

C28:0, lysoPC a C17:0) for ROC curve analysis yielded the highest ROC AUC value of 0.68 which 

had only a tendency towards significance (P-value = 0.06). This is while the individual AUC value 

of lysoPC a C26:1 was 0.74 (Figure 4). Therefore, we selected this single metabolite as the 

candidate biomarker of sheep MBR. 

Univariate analyses of YG. Parametric and non-parametric t-tests did not identify any of the 

metabolites to be significantly different between the two YG groups while a volcano plot identified 

two significant metabolites (hippuric acid and citric acid), both of which were detected by NMR 

(Table 3). 
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Multivariate analyses of YG. Multivariate statistical analyses identified 15 metabolites that 

contribute most to the PLS-DA categorization of the YG groups via VIP analysis (Figure 5). Of 

these metabolites, 10 were detected by NMR (butyrate, propylene glycol, hippuric acid, 2-

hydroxyisovalerate, citric acid, dimethylglycine, L-threonine, dimethylamine, L-ornithine, L-

acetylcarnitine) and five were detected by DI/LC-MS/MS [trimethylamine N-oxide, C7-DC, 

spermidine, total dimethylarginine, C5 (valerylcarnitine)]. Only two metabolites identified via 

multivariate statistics (with a VIP score of more than 2) overlap with those metabolites detected 

by univariate analysis (hippuric acid and citric acid). 

Biomarker detection for sheep YG. From the metabolites identified via univariate and multivariate 

analysis, we selected a panel of seven metabolites to serve as candidate biomarkers of sheep 

carcass merit based on their YG measurements. These metabolites include total dimethylarginine, 

citric acid, hypoxanthine, hippuric acid, asymmetric dimethylarginine, L-phenylalanine, and SM 

C16:1. A logistic regression model using these seven metabolites yielded a final AUC of 0.77 

(Figure 6) and permutation testing (n=1000) confirmed its significance (P-value = 0.01). The 

logistic regression model developed is given as follows: 

logit(P) = log(P / (1-P)) = 0.148 + 1.789 SM C16:1 + 1.754 L-phenylalanine – 0.345 asymmetric 

dimethylarginine + 0.551 hippuric acid + 1.501 hypoxanthine + 1.181 citric acid – 1.953 total 

dimethylarginine 

where P is the probability of y=1/x. The concentrations of the metabolites used in this study had 

been sum normalized, log transformed and scaled via mean centering. Therefore, the value for 

candidate biomarkers in the above equation correspond to the following equations: (Log2([SM 

C16:1]/1.48) – 6.37)/0.51 for SM C16:1 (where [SM C16:1] is the measured concentration of this 

compound by DI/LC-MS/MS); (Log2([phenylalanine]/3116.92) – 6.35)/0.46 for L- phenylalanine 
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(where [phenylalanine] is the measured concentration of this compound by NMR); 

(Log2([asymmetric dimethylarginine]/346.63) – 6.42)/0.64 for asymmetric dimethylarginine 

(where [asymmetric dimethylarginine] is the measured concentration of this compound by DI/LC-

MS/MS); (Log2([hippuric acid]/431.62) – 6.68)/1.28 for hippuric acid (where [hippuric acid] is the 

measured concentration of this compound by NMR); (Log2([hypoxanthine]/1411.25) – 6.35)/0.47 

for hypoxanthine (where [hypoxanthine] is the measured concentration of this compound by 

NMR); (Log2([citric acid]/10600.48) – 6.43)/0.73 for citric acid (where [citric acid] is the 

measured concentration of this compound by NMR); and (Log2([total dimethylarginine]/594.74) 

– 6.42)/0.66 for total dimethylarginine (where [total dimethylarginine] is the measured 

concentration of this compound by DI/LC-MS/MS). This model was assessed for its significance 

using a permutation test (n=1000) and was found to be significant (P-value = 0.01). 

Discussion 

The Serum Metabolome of Sheep. In recent years, the application of metabolomics to livestock 

research has gained momentum. However, the application of metabolomics to sheep research is 

still lagging (Goldansaz et al., 2017). In an effort to expand application of metabolomics to sheep 

research, we used three different high throughput metabolomics platforms (NMR, DI/LC-MS/MS, 

ICP-MS) to comprehensively and quantitatively analyze the sheep serum metabolome. In total, we 

identified and quantified 161 serum metabolites. These data along with the known literature values 

of the sheep metabolome have been deposited into the freely accessible LMDB (www.lmdb.ca; 

Goldansaz et al., 2017). Prior to this work, the sheep metabolome (as contained in LMDB), listed 

only 288 sheep-associated metabolites of which just 18% were quantified. From the total sheep 

metabolome revealed in LMDB, only 200 were identified in serum or plasma. Reference values 

obtained from healthy sheep in LMDB make up 29% of the reported metabolites while the 
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remainder were gathered from treated sheep. With the addition of these 161 compounds, the 

serum/plasma metabolome in sheep has grown from 200 to 300 compounds, the total sheep 

metabolome has increased from 288 to 375 compounds and the percentage of quantified 

metabolites reported in sheep has nearly tripled from 18% to 49%. Data from this experimental 

work also adds to the reference values obtained from healthy sheep in LMDB. Moreover, our data 

present 100 unique metabolites that had not been previously reported in the sheep serum/plasma 

metabolome.  

Literature-Reported Biomarkers of Sheep RFI. There have been limited studies in the literature 

that investigate markers associated with sheep RFI. One study measured lamb plasma 

concentrations of five different hormones, two of which (thyroxine and adrenocorticotropic 

hormone) were identified to have a positive correlation with RFI (Zhang et al., 2017). Another 

report by Paula et al. (2013) also evaluated serum concentrations of 10 metabolites and enzymes 

and seven hematological parameters in plasma of ram-lambs. They reported RFI to be associated 

with protein metabolism as measured by serum albumin and creatinine. Creatinine is also 

positively correlated with muscle mass and negatively correlated with back fat in sheep (Caldeira 

et al., 2007; Paula et al., 2013). In another study conducted by Rincon-Delgado and colleagues 

(2011), evaluation of blood capacity for gas transportation and exchange, as well as immunological 

characteristics of ewes and rams revealed a positive correlation between RFI and red and white 

blood cells. This study also reported a significant positive correlation between RFI and serum 

glucose of ewes and rams, and a tendency for a positive correlation between RFI and triglycerides 

(only in ewes). Among these studies, none used metabolomics to evaluate the blood profile. More 

importantly, previously published RFI studies only described correlations while none conducted 
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quantitative ROC analysis to evaluate the biomarker potential of each significant blood 

component. 

In addition to blood, the rumen microbiome has also been associated with RFI (Patil et al., 

2018). A recent study (Ellison et al., 2019) reported six microbial species to have significant 

correspondence with RFI measurement in sheep. These authors point out that diet dictates the 

rumen microbiome to a large extent. As a consequence, the results of a rumen analysis may change 

depending on the ration provided to the animals. Moreover, the Ellison et al. (2019) study used a 

small cohort of animals (12 ewes) and it did not evaluate the candidate microbial species using 

standard ROC analysis. It is noteworthy that collecting rumen fluid samples is an expensive and 

invasive procedure and would not likely be practical or applicable for predicting RFI in large 

commercial flocks.  

Categorizing Sheep RFI via Metabolomics. In this project we used standard methods to determine 

the RFI in 165 sheep at two different farms and then used serum metabolic profiling to identify 

metabolites that could be used to distinguish high-RFI from low-RFI animals. To the best of our 

knowledge, this is the first attempt to evaluate serum biomarkers of sheep RFI using metabolomics. 

A small number of studies have investigated a small number of blood components associated with 

sheep RFI however, none of them conducted formal or rigorous biomarker analyses to verify if the 

compounds could serve as proxies of RFI. On the other hand, a number of studies have used 

metabolomics to explore biomarkers for RFI in other livestock species such as beef (Karisa et al., 

2014; Clemmons et al., 2017; Novais et al., 2019; Jorge-Smeding et al., 2019) and dairy cattle 

(Wang and Kadarmideen, 2019). 

 Karisa and colleagues (2014) identified and validated three significant metabolites 

(creatine, carnitine and hippurate) associated with beef RFI which explained more than 30% of the 
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phenotypic variation in this trait. Their prediction model, which included these three metabolites, 

yielded a prediction accuracy of 95%. In another untargeted attempt (Clemmons et al., 2017), four 

serum metabolites (pantothenate, homocysteine, glutamine, carnitine) were found to be associated 

with different classes of RFI in steers. Using an MS-based platform, Novais and colleagues (2019) 

suggested a single unidentified metabolic feature could be associated with the RFI of bulls, and 

the vitamin A metabolism pathway was critical to RFI differentiation. Another non-targeted 

evaluation of heifer serum samples (Jorge-Smeding et al., 2019) suggested that the urea cycle and 

some of its associated metabolites (ornithine, carbamoyl-P, citrulline, aspartate, lysine, valine) 

were correlated with RFI. Similarly, in dairy cattle, Wang and Kadarmideen (2019) reported three 

metabolic pathways to be strongly associated with RFI. In addition, individual plasma metabolites 

were associated with dairy cattle RFI however, these metabolites varied between different breeds 

of dairy cattle.  

Candidate Serum Biomarkers of Sheep RFI. Three metabolites were identified in our project as 

candidate biomarkers to classify sheep into high and low-RFI groups: acetone, isopropyl alcohol 

and aminoadipic acid. Acetone was elevated in the serum of low-RFI lambs and reduced in the 

serum of high-RFI lambs (Figure 1). In addition, low-RFI animals which are more feed efficient 

have a lower DMI, make less frequent visits to the feed bunk, and spend less time eating (Rajaei 

Sharifabadi et al., 2012; Redden et al, 2014). Moreover, high levels of ketone bodies, including 

acetone, are associated with lower insulin levels in ewes (Henze et al., 1998; Senchuk, 2019). 

When there is an insufficient supply of glucose (from metabolism of feed or due to low insulin 

levels) to support normal energy demands, the body catabolizes its internal energy sources to 

produce ketone bodies, such as acetone, to compensate for the energy requirement (Hanuš et al., 
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2011; Jones et al., 2018). Considering these facts, we speculate that acetone may have an essential 

role in energy compensation due to lower feed intake of low-RFI animals. 

Similar to acetone, concentrations of isopropyl alcohol were higher in the low-RFI lambs 

(Figure 1). Isopropyl alcohol is a precursor of acetone (Davis et al., 1984) and its intravenous 

injection in healthy sheep leads to increasing levels of acetone in the body (Araújo et al., 2013). 

Ketone bodies, including acetone, possess a glucose-sparing role in ruminants (Heitmann et al., 

1987). Furthermore, ketone bodies are often used as a source of energy in the small intestine and 

peripheral tissues of ruminants (Penner et al., 2011) and are involved in regulation of feed intake 

(Laeger et al., 2010). Therefore, we speculate that in low-RFI lambs, due to lower DMI and the 

need for alternative energy substrates such as acetone, higher levels of blood isopropyl alcohol 

would be used to convert to acetone. This may lead to the high concentration of acetone in the 

serum of our low-RFI lambs. 

The third candidate biomarker of sheep RFI identified in this project was aminoadipic acid 

which is a product of lysine catabolism (Guidetti and Schwarcz, 2003). Lysine is an essential 

amino acid which plays a key role in stimulating energy metabolism and protein synthesis. It has 

been previously associated with RFI in heifers (Jorge-Smeding et al., 2019). In our project, lower 

levels of aminoadipic acid in low-RFI lambs also corresponded to higher levels of lysine in these 

lambs. It has been previously shown that in vitro administration of aminoadipic acid in cell culture 

(i.e., increasing levels of aminoadipic acid) decreases protein synthesis (Nishimura et al., 2000). 

Therefore, low levels of aminoadipic acid (and correspondingly high levels of lysine) would be 

expected to lead to increased protein synthesis and thereby increase muscle tissue or muscle mass. 

Low-RFI animals are, in some cases, characterized by greater muscle mass (Herd and Arthur, 

2009), a higher proportion of lean meat and lower levels of adipose tissue while high-RFI animals 
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have the opposite phenotype (Paula et al., 2013; Zhang et al., 2017). While it is interesting to 

speculate on the possible biological roles of these candidate biomarkers, confirming their roles is 

beyond the scope of this study and will require further verification in a separate experiment. 

Literature-Reported Biomarkers of Sheep Carcass Merit. As far as we are aware, there has been 

no report on the application of metabolomics for pre-mortem, marker-assisted evaluation of sheep 

carcass quality. However, a small number of studies have reported a handful of metabolites 

associated with carcass traits in sheep. Creatinine and creatine have been reported to correspond 

with carcass lean and fat content (Caldeira et al., 2007; Paula et al., 2013). Sheep having a body 

condition score of 3 are considered to have an optimal ratio of muscle to fat content. These sheep 

tend to have lower levels of blood creatinine due to a low rate of protein turnover (Caldeira et al., 

2007). Paula and associates (2013) reported serum creatinine having a negative correlation with 

back fat and a positive correlation with muscle mass. Others have also confirmed an increased 

amount of blood urea and a decreased concentration of creatinine correlate with higher fat 

deposition and lower lean growth in sheep and steers (Richardson et al., 2004; Herd et al., 2004). 

In other livestock species, metabolomics has been more frequently used to evaluate carcass quality. 

In steers, for example, NMR was used to identify a panel of blood metabolites (3-hydroxybutyrate, 

propionate, acetate, creatine, histidine, valine, isoleucine, glucose, leucine, anserine, arabinose, 

aspartate, and arginine) that were associated with carcass marbling, rump fat thickness, carcass 

weight and growth rate (Connolly et al., 2019). The correlation of these metabolites with different 

carcass features were used to investigate the underpinning biology of carcass fat and muscle 

development and to recommend early identification of high value carcasses. To date, the 

metabolites reported in the literature and associated with carcass merit are too few and do not 

portray a clear trend. Some of this may be due to the differences in age and maturity of the 
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experimental animals. For example, growing livestock have a higher rate of protein synthesis and 

turnover while mature animals, have greater fat deposition (Herd et al., 2004) hence, their 

metabolite concentrations will vary. 

Candidate Serum Biomarkers of Sheep Carcass Merit. Seven metabolites were identified as 

candidate biomarkers of YG and one metabolite as the candidate biomarker of MBR. The 

candidate biomarker of MBR, lysoPC a C26:1 is a glycerophospholipid, and has only been 

associated with increased mobilization of blood fatty acids in dairy cows (Ehret et al., 2015; Klein 

et al., 2012). There is not enough evidence in the literature to draw a direct relationship between 

this metabolite and carcass merit in sheep.  

As with MBR, we did not identify any previously reported metabolite markers for sheep 

YG. However, six of the seven candidate biomarkers (except for SM C16:1) for sheep YG 

identified in this study have been correlated with physiology of muscle development and reduction 

of carcass fat. For example, phenylalanine, an essential amino acid, hippuric acid and 

hypoxanthine are three candidate biomarkers that have previously been linked to muscle 

development, protein synthesis and meat quality in sheep and beef (Liang et al., 2019). 

Measurement of phenylalanine in meat is quite often used as an index of muscle development 

(Wester et al., 2000). Hippurate is also recognized as a candidate urine biomarker for beef meat 

authentication (Osorio et al., 2012). Likewise, hypoxanthine is associated with beef aging and meat 

quality evaluation (Yano et al., 1995; Escudero et al., 2011). The other group of candidate 

biomarkers include the methylated-arginine metabolites such as ADMA and total 

dimethylarginine. These metabolites are known to enhance vasodilatation and endothelial function 

to improve nutrient delivery to organs via regulating nitric oxide production (Kadkhodaei 

Elyaderani et al., 2013; Tsikas et al., 2000). Interestingly, ewes consuming a lower amount of feed 
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have increasing concentrations of circulating ADMA (Berlinguer et al., 2020). In addition to 

muscle development, the other two candidate biomarkers of sheep YG, hippuric acid and citric 

acid, are reported to associate with carcass fat content. Hippurate is reported to have a positive 

linear relationship with visceral fat content (Pallister et al., 2017) while citric acid leads to 

significant reduction in abdominal fat when introduced in the diet of broilers (Ul-Haq et al., 2014). 

Considering the physiological role of these metabolites, at least six of the seven compounds we 

identified appear to have biological relevance to carcass merit and may qualify as confirmed 

biomarkers upon validation. 

Financial Benefits of Sheep RFI Biomarkers. Profit margins in the Canadian sheep industry are 

very tight. However, producers do have room to improve this margin by reducing the costs of 

production. When over 40% of the cost of production in a sheep flock is feed-related, 

improvements in feed efficiency can bring increased profitability to the industry (Norton 2005; 

Spring, 2013; Holmgren and Feuz 2015). Here we present a brief, high-level financial evaluation 

of how selecting for sheep with improved feed efficiency (i.e., low-RFI) could improve sheep 

farming economics.  

Early marker-assisted selection for feed-efficient lambs has shown a 12-30% reduction in 

dry matter consumption while reaching the same market weight (Paula et al., 2013). If farmers 

target sheep based on animal feed efficiency for their replacement breeding stock or when 

designing mating groups, we anticipate a 5-10% increase in feed efficiency can be attained in the 

progeny. We believe that screening for feed efficiency can be much more easily, quickly and far 

more cheaply attained through rapid screening of the serum metabolites we have identified here 

(once validated) compared to conventional methods. By doing so, the genetic gain of the progeny 

towards RFI would save on feed costs, which in Alberta, Canada, over a 5 year period would 
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average $2.44/feedlot lamb per year or about $351,000.00 per year in total savings (assuming 

Alberta ewe flock is 100,000 head with a lambing rate of 1.8 lambs/ewe per year, a weaning rate 

of 80%; 0.29 kg/day/lamb feed savings for 56 days at $0.15/kg). In addition, feed savings from the 

selection of efficient breeding stock for replacement would also be realized. Over a five-year 

period, using a ewe replacement rate of 20%, breeding ewes with improved feed efficiency would 

equate to saving $10.68/ewe per year just on animal feed. In the Albertan sheep industry, this 

would result in savings of over $1.3 million per year in lamb and ewe feed costs.  

As noted earlier, the standard measurement of RFI is expensive (estimated to be $200-300 

per animal over a duration of 70-90 days for cattle; Basarab et al., 2013). However, if indirect, 

marker-assisted RFI measurements could be conducted via metabolomic analysis, the costs for 

selection or selective breeding could be greatly reduced. A defined panel of 3-4 serum metabolites 

can typically be detected and quantified by tandem mass spectrometers and NMR in as little as 1-

2 minutes and 10-13 minutes per sample, respectively, (Wishart, 2016; Pinu et al., 2019) and cost 

as low as $5 per sample (or $5 per animal). Centralized animal testing facilities are starting to 

emerge which would make these kinds of measurements (at even lower costs) quite feasible. 

Furthermore, if the panel of metabolites identified here could be converted to a pen-side test or a 

portable handheld device (Koczula and Gallotta, 2016), then measurement costs could be further 

reduced.  

In addition to the direct financial gains, the indirect benefit of marker-assisted selection for 

low-RFI sheep leads to a lower environmental footprint and a more sustainable farm production. 

Selecting for multiple generations of feed-efficient ewes (for the maternal flock) and rams (for the 

breeding stock) will have a positive additive effect on lowering methane production in the long-

run (Paganoni et al., 2017). Feed efficient sheep have 12-19% lower methane emissions, while in 



148 

 

ewes this could reach up to 29%, without negatively impacting other production traits (Muro-

Reyes et al., 2011). Moreover, selection for low-RFI animals (i.e., higher efficiency) will further 

improve environmental costs by decreasing grazing area, stocking rate, waste production (>15% 

decrease in manure N, P, and K), and lead to >25% reduction in methane production (Basarab et 

al., 2003; Cockrum et al., 2013). 

Future prospects. The focus of this discovery-based study was to evaluate the effectiveness of 

using metabolomics to identify candidate biomarkers of sheep RFI and carcass merit. We 

successfully identified three significant candidate biomarkers of sheep RFI (AUC=0.80), seven 

candidate biomarkers of carcass yield grade (AUC=0.77) and one candidate biomarker of carcass 

muscle to bone ratio (AUC=0.74). While these initial results are promising, further validation 

using a larger cohort of sheep (approximately 3X larger, based on power analysis) with more 

diverse genetic backgrounds and from different management settings will be required to confirm 

the robustness and the potential of these biomarkers. By increasing the size and diversity of the 

cohort, it may also be possible to extend the work to not only categorize (high vs. low) animals 

but to predict numerical values of RFI and carcass traits using the biomarkers we have identified.  
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Tables  

Table 1. Literature-reported blood components associated with sheep RFI. A limited number 

of research have investigated significant blood components associated with sheep RFI. None of 

these studies implemented metabolomics and no rigorous biomarker analyses was conducted to 

verify if these compounds could serve as proxies of RFI. 

Biomarker Biomarker 

Classification  

Sample 

Type 

Correlation Reference 

Thyroxine, 

adrenocorticotropic 

hormone, cortisol 

Hormone Serum Positive Zhang et al., 

2017; 

Richardson and 

Herd, 2004; 

Knott et al., 

2010 

Albumin, creatinine, 

total plasma protein, 

glucose 

Metabolites  Serum Positive  Paula et al., 

2013; Rincon-

Delgado et al., 

2011 

Red blood cells, white 

blood cells  

Hematological and 

biochemical 

parameters 

Serum Positive Rincon-Delgado 

et al., 2011 

Mean corpuscular 

volume, mean 

corpuscular 

hemoglobin, 

eosinophils, monocyte 

Hematological and 

biochemical 

parameters 

Serum Negative Paula et al., 

2013; Rincon-

Delgado et al., 

2011 
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Table 2. Univariate analyses of metabolites associated with sheep RFI. These metabolites 

differentiated between high-RFI and low-RFI sheep. 

 Metabolite Fold 

Change 

P-value Metabolite 

Category 

Platform 

1 Alpha-aminoadipic acid 1.88 <0.001 Biogenic amines DI/LC-MS/MS 

2 Ketoleucine 1.72 <0.05 Ketones NMR 

3 Acetone 1.78 <0.005 Ketones NMR 

4 Isopropyl alcohol 20.83 <0.001 Alcohol or polyol NMR 

5 Cesium (Cs) <1.5 <0.001 Metal ICP-MS 

6 C5 (Valerylcarnitine) <1.5 <0.001 Acylcarnitines DI/LC-MS/MS 

7 C5-OH (C3-DC-M) 

(Hydroxyvalerylcarnitine) 

<1.5 <0.001 Acylcarnitines DI/LC-MS/MS 

8 PC aa C40:2 <1.5 <0.001 Phospholipids DI/LC-MS/MS 

9 C6 (C4:1-DC) 

(Hexanoylcarnitine) 

<1.5 <0.001 Acylcarnitines DI/LC-MS/MS 

10 C0 (Carnitine) <1.5 <0.001 Acylcarnitines DI/LC-MS/MS 

11 Asymmetric 

dimethylarginine 

(ADMA) 

<1.5 <0.001 Biogenic amines DI/LC-MS/MS 

12 Spermidine <1.5 <0.005 Biogenic amines DI/LC-MS/MS 

13 PC ae C36:0 <1.5 <0.005 Phospholipids DI/LC-MS/MS 

14 PC aa C40:1 <1.5 <0.005 Phospholipids DI/LC-MS/MS 

15 C14:1-OH 

(Hydroxytetradecenoyl 

carnitine) 

<1.5 <0.005 Acylcarnitines DI/LC-MS/MS 

16 Glycerol <1.5 <0.005 Sugar alcohols NMR 

17 C16 

(Hexadecanoylcarnitine) 

<1.5 <0.005 Acylcarnitines DI/LC-MS/MS 

18 LysoPC a C16:1 <1.5 <0.005 Phospholipid DI/LC-MS/MS 

19 PC aa C32:2 <1.5 <0.005 Phospholipid DI/LC-MS/MS 

20 Copper (Cu) <1.5 <0.005 Metal ICP-MS 

21 Potassium (K) <1.5 <0.005 Metal ICP-MS 

22 LysoPC a C18:1 <1.5 <0.005 Phospholipid DI/LC-MS/MS 

23 PC ae C40:6 <1.5 <0.005 Phospholipid DI/LC-MS/MS 

24 Hippuric acid <1.5 <0.005 Benzenoid NMR 

25 Taurine <1.5 <0.005 Biogenic amine DI/LC-MS/MS 
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Table 3. Univariate analyses of metabolites associated with sheep carcass merit (YG). These 

metabolites differentiated between the two groups of YG1 and YG2. 

 Metabolite Fold Change P-value Metabolite Class Platform 

1 Citric acid 0.80 <0.01 Carboxylic acid NMR 

2 Hippuric acid 0.74 <0.05 Benzenoid NMR 
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Table 4. Ingredient and chemical composition of the ration. 

              Whole Barley (BAR)      Pelleted TMR  (PEL)     

Ingredient, % As Fed basis 

   Whole barley     79                                                                     - 

   Grower/Finisher Protein Supplementa  20                                                                     - 

   Grower-Finisher Pelletb                     -     100 

   Limestone       1                                                                      - 

Chemical Composition     SEM P Value    SEM 

   DM, % (as fed)     89.1 0.15    88.1 0.19 

   ADF %      7.04        0.15    11.4 0.19 

   CP, % of DM     14.7 0.15    18.4       0.19 

   TDN, % of DM                                            81.7        0.26                                                78.5        0.33 

a Contained 3% Calcium; 1% Phosphorus; 0.3% Magnesium; 1% Sodium; 1.5% Potassium; 125 mg kg-1 Fluorine; 4 mg kg-1 

Cobalt; 4 mg kg-1 Iodine; 600 mg kg-1 Manganese; 440 mg kg-1 Zinc; 450 mg kg-1 Iron;  85 000 IU kg-1 Vit A; 14 500 IU kg-1 Vit 

D; 155 IU kg-1 Vit E; 1.5 mg kg-1 Selenium. 

b Contained 0.9% Calcium; 0.4% Phosphorus; 0.25% Sodium; 8800 IU kg-1 Vit A; 2000 IU kg-1 Vit D3; 10 IU kg-1 Vit E; 0.25 

mg kg-1 Selenium.  
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Table 5. Sheep metabolome associated with RFI and carcass merit. Metabolites include those 

identified and quantified by NMR, ICP-MS and DI/LC-MS/MS from serum of healthy sheep 

assessed for RFI and carcass merit. Metabolites identified by * or + are reported for the first in the 

LMDB (www.lmdb.ca) and the sheep metabolome, respectively. Metabolite IDs identified by ^ 

refer to an isomer of that lipid. Note that total dimethylarginine does not have a LMDB ID since 

it consists of the sum of two metabolites (symmetrical and asymmetric dimethylarginine). 

Platform Metabolite LMDB ID ClassyFire Chemical 

Classification 

N
M

R
 

2-Hydroxybutyric acid+ LMDB00003 Hydroxy acids and derivatives 

2-Hydroxyisovalerate*+ LMDB01096 Fatty Acyl derivatives 

3-Hydroxybutyric acid LMDB00144 Hydroxy acids and derivatives 

3-Hydroxyisovaleric acid+  LMDB00238 Fatty Acyl derivatives 

3-Methyl-2-oxovaleric acid*+ LMDB01097 Keto acids and derivatives 

Acetic acid LMDB00014 Carboxylic acids and derivatives 

Acetoacetate  LMDB00026 Keto acids and derivatives 

Acetone LMDB00352 Organooxygen compounds 

L-Arginine LMDB00171 Carboxylic acids and derivatives 

L-Asparagine LMDB00075 Carboxylic acids and derivatives 

Betaine LMDB00015 Carboxylic acids and derivatives 

Choline+  LMDB00041 Organonitrogen compounds 

Citric acid LMDB00040 Carboxylic acids and derivatives 

Creatine LMDB00029 Carboxylic acids and derivatives 

Creatinine LMDB00180 Carboxylic acids and derivatives 

Dimethylamine LMDB00037 Organonitrogen compounds 

Dimethyl sulfone+  LMDB00459 Sulfonyl compounds 

Dimethylglycine+  LMDB00039 Carboxylic acids and derivatives 

D-Mannose+  LMDB00076 Organooxygen compounds 

Ethanol+  LMDB00044 Organooxygen compounds 

Formate LMDB00060 Carboxylic acid and derivatives 

Fumaric acid LMDB00057 Carboxylic acid and derivative 

Glucose LMDB00048 Organooxygen compounds 

Glycerol LMDB00055 Organooxygen compounds 

Glycine LMDB00049 Carboxylic acid and derivatives 

Hippuric acid LMDB00227 Benzene and substituted benzene 

derivatives 

Hypoxanthine+  LMDB00067 Imidazopyrimidines 

Isobutyric acid+  LMDB00357 Carboxylic acid and derivatives 

Isoleucine LMDB00077 Carboxylic acid and derivatives 

Isopropyl alcohol+ LMDB00266 Organooxygen compound 
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Ketoleucine+  LMDB00220 Keto acid and derivatives 

L-Acetylcarnitine LMDB00091 Fatty Acyl derivatives 

L-Alanine LMDB00070 Carboxylic acids and derivatives 

L-Alpha-aminobutyric acid LMDB00157 Carboxylic acids and derivatives 

L-Aspartic acid LMDB00085 Carboxylic acids and derivatives 

L-Carnitine LMDB00027 Organonitrogen compounds 

L-Glutamic acid LMDB00063 Carboxylic acids and derivatives 

L-Glutamine LMDB00202 Carboxylic acids and derivatives 

L-Histidine LMDB00080 Carboxylic acids and derivatives 

L-Lactic acid LMDB00084 Hydroxy acids and derivatives 

L-Leucine LMDB00215 Carboxylic acids and derivatives 

L-Ornithine LMDB00099 Carboxylic acids and derivatives 

L-Phenylalanine LMDB00069 Carboxylic acids and derivatives 

L-Proline  LMDB00071 Carboxylic acids and derivatives 

L-Serine  LMDB00083 Carboxylic acids and derivatives 

L-Threonine LMDB00074 Carboxylic acids and derivatives 

L-Lysine LMDB00081 Carboxylic acids and derivatives 

Malonic acid LMDB00217 Carboxylic acids and derivatives 

 

 

 

 

 

 

 

  

Methanol LMDB00358 Organooxygen compounds 

Methionine LMDB00221 Carboxylic acids and derivatives 

1-Methylhistidine+  LMDB00001 Carboxylic acids and derivatives 

Oxoglutaric acid LMDB00094 Keto acids and derivatives 

Propylene glycol LMDB00360 Organooxygen compounds 

Pyruvic acid LMDB00112 Keto acids and derivatives 

Sarcosine+  LMDB00124 Carboxylic acids and derivatives 

Succinic acid LMDB00118 Carboxylic acids and derivatives 

Trimethylamine N-oxide LMDB00278 Organonitrogen compounds 

Tyrosine LMDB00068 Carboxylic acids and derivative 

Urea LMDB00131 Organic carbonic acids and 

derivatives 

Valine LMDB00271 Carboxylic acids and derivatives 

D
I/

L
C

-M
S

/M
S

 

SM (OH) C14:1 LMDB00624 Sphingolipids 

SM C16:0 LMDB00524 Sphingolipids 

SM C16:1+ LMDB00656 Sphingolipids 

SM (OH) C16:1 LMDB00780 Sphingolipids 

SM C18:0 LMDB00569 Sphingolipids 

SM C18:1*+ LMDB01208 Sphingolipids 

SM C20:2+ LMDB00626 Sphingolipids 

SM (OH) C22:1 LMDB00627 Sphingolipids 

SM (OH) C22:2 LMDB00628 Sphingolipids 

SM (OH) C24:1 LMDB00630 Sphingolipids 

Acetylornithine+ LMDB00430 Carboxylic acids and derivatives 

Alpha-aminoadipic acid LMDB00168 Carboxylic acids and derivatives 

Asymmetric dimethylarginine 

(ADMA) 

LMDB00344 Carboxylic acids and derivatives 
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C0 (Carnitine) LMDB00027 Organonitrogen compounds 

C10 (Decanoylcarnitine)* + LMDB01099  Fatty Acyl derivatives 

C10:1 (Decenoylcarnitine)+ LMDB00993 Fatty Acyl derivatives 

C10:2 (decadienylcarnitine)* + LMDB01102 Fatty Acyl derivatives 

C12 (dodecanoylcarnitine)* + LMDB01101 Fatty Acyl derivatives 

C12:1 (Dodecenoylcarnitine)+ LMDB01008 Fatty Acyl derivatives 

C12-DC (dodecanedioylcarnitine)* + LMDB01104 Carboxylic acids and derivatives 

C14 (tetradecanoylcarnitine)+ LMDB00462 Fatty Acyl derivatives 

C14:1 (tetradecenoylcarnitine)+ LMDB01011 Fatty Acyl derivatives 

C14:1-OH (Hydroxytetradecenoyl 

carnitine)* + 

LMDB01105 Fatty Acyl derivatives 

C14:2 (Tetradecadienylcarnitine)* + LMDB01227 Fatty Acyl derivatives 

C14:2-OH 

(hydroxytetradecadienylcarnitine) 

LMDB01010 Fatty Acyl derivatives 

C16 (Hexadecanoylcarnitine) LMDB00102 Fatty Acyl derivatives 

C16:1 (Hexadecenoylcarnitine)* + LMDB01224 Fatty Acyl derivatives 

C16:1-OH 

(Hydroxyhexadecenoylcarnitine)+ 

LMDB01012 Hydroxy acid and derivative 

C16:2 (Hexadecadienylcarnitine)+ LMDB00757 Fatty Acyl derivatives 

C16:2-OH 

(hydroxyhexadecadienylcarnitine)* + 

LMDB01225 Fatty Acyl derivatives 

C16-OH 

(hydroxyhexadecanoylcarnitine)+ 

LMDB00941 Fatty Acyl derivatives 

C18 (Octadecanoylcarnitine) LMDB00260 Fatty Acyl derivatives 

C18:1 (Octadecenoylcarnitine)* + LMDB01107 Fatty Acyl derivatives 

C18:1-OH 

(Hydroxyoctadecenoylcarnitine)* + 

LMDB01106 Fatty Acyl derivatives 

C18:2 (Octadecadienylcarnitine)+ LMDB00475 Fatty Acyl derivatives 

C2 (Acetylcarnitine) LMDB00091 Fatty Acyl derivatives 

C3 (Propionylcarnitine)+ LMDB00253 Fatty Acyl derivatives 

C3:1 (Propenoylcarnitine)+ LMDB00762 Fatty Acyl derivatives 

C3-OH (hydroxyPropionylcarnitine)+ LMDB00578 Fatty Acyl derivatives 

C4 (butyrylcarnitine) LMDB00374 Fatty Acyl derivatives 

C4:1 (Butenylcarnitine)+ LMDB00579 Fatty Acyl derivatives 

C4-OH (C3-DC) 

(Hydroxybutyrylcarnitine)+ 

LMDB00580 Fatty Acyl derivatives 

C5 (Valerylcarnitine)+ LMDB00581 Fatty Acyl derivatives 

C5:1 (Tiglylcarnitine)+ LMDB00397 Fatty Acyl derivatives 

C5:1-DC (Glutaconylcarnitine)+ LMDB00582 Fatty Acyl derivatives 

C5-DC (C6-OH) (Glutarylcarnitine)+ LMDB00766 Fatty Acyl derivatives 

C5-M-DC (methylglutarylcarnitine)+ LMDB00927 Fatty Acyl derivatives 

C5-OH (C3-DC-M) 

(hydroxyvalerylcarnitine)+ 

LMDB01080 Fatty Acyl derivatives 

C6 (C4:1-DC) (Hexanoylcarnitine)+ LMDB00769 Fatty Acyl derivatives 

C6:1 (Hexenoylcarnitine)+ LMDB00940 Fatty Acyl derivatives 
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C7-DC (pimelylcarnitine)+ LMDB00584 Carboxylic acids and derivatives 

C8 (Octanoylcarnitine)* + LMDB01100 Fatty Acyl derivatives 

C9 (Nonaylcarnitine)* + LMDB01103 Fatty Acyl derivatives 

Carnosine+ LMDB00010 Peptides 

Citrulline LMDB00274 Carboxylic acid and derivatives 

Kynurenine LMDB00214 Organooxygen compounds 

lysoPC a C14:0+ LMDB00525 Glycerophospholipids 

lysoPC a C16:0+ LMDB00526 Glycerophospholipids 

lysoPC a C16:1+ LMDB00527 Glycerophospholipids 

lysoPC a C17:0+ LMDB00571 Glycerophospholipids 

lysoPC a C18:0+ LMDB00528 Glycerophospholipids 

lysoPC a C18:1+ LMDB00409 Glycerophospholipids 

lysoPC a C18:2+ LMDB00530 Glycerophospholipids 

lysoPC a C20:3+ LMDB00533 Glycerophospholipids 

lysoPC a C20:4+ LMDB00534 Glycerophospholipids 

lysoPC a C24:0*+ LMDB01207 Glycerophospholipids 

lysoPC a C26:0+ LMDB00653 Glycerophospholipids 

lysoPC a C26:1*+ LMDB01226 Glycerophospholipids 

lysoPC a C28:0+ LMDB00654 Glycerophospholipids 

lysoPC a C28:1+ LMDB00657 Glycerophospholipids 

Methionine sulfoxide+ LMDB00373 Carboxylic acids and derivatives 

PC aa C32:2*+ LMDB01211^ Glycerophospholipids 

PC aa C36:0*+ LMDB01212 ^ Glycerophospholipids 

PC ae C36:0*+ LMDB01210 ^ Glycerophospholipids 

PC aa C36:6*+ LMDB01110 ^ Glycerophospholipids 

PC aa C38:0*+ LMDB01111 ^ Glycerophospholipids 

PC aa C38:6*+ LMDB01122 ^ Glycerophospholipids 

PC aa C40:1*+ LMDB01119 ^ Glycerophospholipids 

PC aa C40:2*+ LMDB01125 ^ Glycerophospholipids 

PC aa C40:6*+ LMDB01140 ^ Glycerophospholipids 

PC ae C40:6+ LMDB00599 Glycerophospholipids 

Serotonin+ LMDB00120 Indole and derivatives 

Spermidine LMDB00311 Organonitrogen compounds 

Spermine+ LMDB00310 Organonitrogen compounds 

Taurine+ LMDB00115 Organic sulfonic acids and 

derivatives 

Total dimethylarginine N/A Carboxylic acids and derivatives 

trans-Hydroxyproline (t4-OH-Pro) LMDB00230 Carboxylic acids and derivatives 

Tryptophan LMDB00279 Indoles and derivatives 

IC
P

-M
S

 

Barium (Ba)+ LMDB00450 Homogeneous alkaline earth metal 

compounds 

Calcium (Ca)+ LMDB00159 Homogeneous alkaline earth metal 

compounds 

Cobalt (Co)* + LMDB01098 Homogeneous transition metal 

compounds 
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Cesium (Cs)+ LMDB00634 Homogeneous alkali metal 

compounds 

Copper (Cu)+ LMDB00204 Homogeneous transition metal 

compounds 

Iron (Fe)+ LMDB00651 Homogeneous transition metal 

compounds 

Potassium (K)+ LMDB00185 Homogeneous alkali metal 

compounds 

Lithium (Li)+ LMDB00466 Homogeneous alkali metal 

compounds 

Magnesium (Mg)+ LMDB00178 Homogeneous alkaline earth metal 

compounds 

Molybdenum (Mo)+ LMDB00316 Homogeneous transition metal 

compounds 

Sodium (Na)+ LMDB00186 Homogeneous alkali metal 

compounds 

Phosphorus (P)+ LMDB00317 Homogeneous other non-metal 

compounds 

Rubidium (Rb)+ LMDB00320 Homogeneous alkali metal 

compounds 

Selenium (Se)+ LMDB00323 Homogeneous other non-metal 

compounds 

Strontium (Sr)+ LMDB00439 Homogeneous alkaline earth metal 

compounds 

Titanium (Ti)+ LMDB00368 Homogeneous transition metal 

compounds 

Vanadium (V)+ LMDB00403 Homogeneous transition metal 

compounds 

Zinc (Zn)+ LMDB00652 Homogeneous transition metal 

compounds 
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Table 6. Univariate analyses of metabolites associated with sheep carcass merit (MBR). These 

metabolites differentiated between the two groups of MBR1 and MBR2. 

 Metabolite Fold Change P-value Metabolite Class Platform 

1 LysoPC a C26:1 1.24 0.004 Phospholipids DI/LC-MS/MS 

2 LysoPC a C17:0 1.32 0.02 Phospholipids DI/LC-MS/MS 

3 LysoPC a C28:0 1.26 0.03 Phospholipids DI/LC-MS/MS 

  



170 

 

Figures  

 

Figure 1. The VIP metabolites of sheep RFI. PLS-DA multivariate analysis identified the top 

15 serum metabolites by VIP scores to have the highest influence in grouping of the low (LRFI) 

and high (HRFI) RFI groups. 

  



171 

 

 

Figure 2. Logistic regression ROC curve for sheep RFI. Biomarker analysis identifying a panel 

of three candidate biomarkers (isopropyl alcohol, alpha-aminoadipic acid, acetone) from sheep 

serum samples yields an AUC of 0.80 (P-value < 0.05). 

  



172 

 

 

Figure 3. The VIP metabolites of sheep carcass merit (MBR). PLS-DA multivariate analysis 

identified the top 15 serum metabolites by VIP scores to have the highest influence in 

differentiating the MBR carcass groups. 
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Figure 4. Biomarker analysis of sheep carcass merit (MBR). ROC curve analysis of a candidate 

biomarker (lysoPC a C26:1) from sheep serum samples yields an AUC of 0.74. 
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Figure 5. The VIP metabolites of sheep carcass merit (YG). PLS-DA multivariate analysis 

identified the top 15 serum metabolites by VIP scores to have the highest influence in 

differentiating the YG carcass groups. 
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Figure 6. Logistic regression ROC curve for sheep carcass merit (YG). Biomarker analysis 

identified a panel of seven candidate biomarkers (total dimethylarginine, citric acid, hypoxanthine, 

hippuric acid, asymmetric dimethylarginine, L-phenylalanine, SM C16:1) from sheep serum 

samples yields an AUC of 0.77 (P-value < 0.05).  
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Abstract 

Early detection of sheep pregnancy and the prediction of how many lambs a pregnant ewe delivers 

affects sheep farmers in a number of ways, most notably with regard to feed management, lambing 

rate, and sheep/lamb health. The standard practice for direct detection of sheep pregnancy and 

litter size (PLS) is ultrasonography. However, this approach has a number of limitations. Indirect 

measurement of PLS using blood biomarkers could offer a simpler, faster and earlier route to PLS 

detection. Therefore, we undertook a large-scale study to identify and validate predictive 

biomarkers of sheep PLS using metabolomics of sheep serum. We conducted a longitudinal 

experiment that analyzed 131 blood samples over five timepoints (from seven days pre-conception 

to 70 days post-conception) from six commercial flocks in Alberta and Ontario, Canada. Using 

LC-MS/MS and NMR, we identified and quantified 107 metabolites in each sample. We also 

identified three panels of serum metabolite biomarkers that can predict ewe PLS as early as 50 

days after breeding. These biomarkers were then validated in separate flocks consisting of 243 

animals yielding areas-under-the-receiver-operating-characteristic-curve (AU-ROC) of 0.81-0.93. 

The development of a simple, low-cost blood test to measure PLS at an early stage of pregnancy 

could help optimize reproductive management on sheep farms. 

 

Key words: Sheep, pregnancy, litter size, metabolomics, livestock metabolomics, blood 

biomarker.  
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Introduction 

Sheep are relatively prolific small ruminants and an important source of animal protein 

contributing to human diets worldwide. Sheep gestation is relatively short (about 150 days) and 

litter sizes consisting of two or more offspring are preferred. As a result, sheep farm profitability 

is highly correlated to reproductive efficiency. Formally, reproductive efficiency for sheep farmers 

is expressed as the number of lambs born annually per ewe exposed to a ram at breeding. Breed 

type and prolificacy, nutrition, environment, age at first mating, conception rate, embryo and fetus 

viability, and flock age structure are some of the determining factors contributing to reproductive 

efficiency. However, outcomes of ewe fertility management can vary considerably among flocks. 

Identifying pregnant ewes and determining the number of fetuses they carry are key components 

of breeding management in sheep production (Haibel, 1990). Pregnancy testing during the critical 

early period of the mating season allows for re-breeding or the culling of non-pregnant ewes, 

resulting in increasing flock pregnancy rates (Zaher et al., 2020). If producers miss this 

opportunity, they can adjust their management practices by separating the open ewes from the 

pregnant mob to feed each group based on their physiological needs. Another benefit to early 

determination of pregnancy and litter size (PLS) is the acquisition of valuable data for selection 

and breeding purposes.  

In addition to detecting pregnancy, predicting or determining litter size is instrumental to 

successful reproductive management. Maternal nutrition during gestation directly impacts ewe 

prolificacy (Rosales-Nieto et al., 2021) as well as lamb survivability and performance. These lamb 

performance traits include growth (Ghafouri-Kesbi and Eskandarinasab, 2008; Du et al., 2010), 

reproductive capacity (Bielli et al., 2002) and hormonal development (Bloomfield et al., 2004). 

Thus, early detection of ewe PLS elevates income for producers by increasing the number of 
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pregnant ewes and the number of healthy lambs born. Costs of production are reduced by 

preventing over-feeding of open ewes, and optimizing rations based on nutritional needs of the 

pregnant animals in an attempt to reduce the number of overweight singles, small sized multiples 

and the incidence of pregnancy toxemia. 

Ultrasonography is the gold standard and the most commonly performed method for PLS 

detection in sheep (Jones et al., 2016). This method requires producers to either invest in an 

ultrasound machine and develop the appropriate skills for scanning or producers must contract the 

services from a veterinarian. Ultrasound pregnancy detection is commonly practiced between 45-

90 days into gestation (Ishwar, 1995). However, detecting the number of fetuses is not 

straightforward and depends on the time of scanning as well as operator experience (Jones and 

Reed, 2017). The breeding season is also a busy time for ultrasound professionals, limiting the 

number of farms they can serve. The cost of ultrasonography, currently CAD$5-8/ewe in Alberta, 

also varies depending on flock size and geographical location of the farm. This makes 

ultrasonography more expensive for medium-to-small size flocks and those that are not 

conveniently accessible. In some jurisdictions, including the province of Alberta in Canada, 

delivering ultrasound services is restricted to veterinarian professionals, which limits its 

widespread use. 

 Molecular biomarkers, such as proteins or metabolites found in blood, urine or milk, are a 

promising alternative for the indirect measurement or prediction of different traits in many 

livestock species (Fontanesi, 2016; Goldansaz et al., 2017). Biomarkers are most suited for traits 

that have higher economic value. Likewise, biomarkers are particularly useful if the trait 

measurement needs to be performed within a short timeframe, or if the direct measurement of the 

trait involves lengthy trials, is labour-intensive, leads to loss of the animal or is expensive. While 
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plasma progesterone (P4) levels can be used to detect sheep pregnancy as early as 18 days, P4 does 

not accurately detect open, non-pregnant ewes (Susmel and Piasentier, 1992; Karen et al., 2003) 

and there is no commercial kit that provides the service to farmers in any part of the world 

(including Alberta, Canada). Recent literature indicates promising results when applying 

metabolomics to detect pregnancy in other livestock species (Fontanesi, 2016; de Nicola et al., 

2020; Gómez et al., 2020). However, there are no publications using high throughput 

metabolomics platforms to characterize non-hormonal metabolite biomarkers that can be used for 

sheep PLS detection in readily accessible biofluids at early stages of gestation. Therefore, a 

metabolomic study on early-stage sheep PLS detection is warranted.  

Livestock metabolomics is an emerging field that has led to the discovery of useful 

biomarkers in many livestock species (Goldansaz et al., 2017). However, only one study has used 

metabolomics to investigate non-hormonal metabolic changes during ewe pregnancy (Sun et al., 

2017). Most other metabolomic studies have measured hormones or individual metabolites 

associated with ewe pregnancy (See et al., 2007; Huang et al., 2012; Washburn et al., 2015; 

Kandiel et al., 2016; Cihan et al., 2016). Previously, we have shown that metabolomics can be 

used to identify candidate blood biomarkers for detecting several economically important traits in 

sheep, such as residual feed intake and carcass merit (Goldansaz et al., 2020). Based on that 

success, we decided to investigate if blood biomarkers of sheep PLS could be identified and 

validated.  

Given the metabolic changes that occur due to pregnancy, we hypothesized that ewe 

pregnancy and the number of lambs delivered per pregnant ewe can be predicted at early stages of 

pregnancy using blood biomarkers. Therefore, the objectives of this study were to: (1) profile the 

blood metabolome associated with ewe PLS, and (2) identify and validate blood biomarkers of 
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ewe PLS prior to 60 days of gestation. These findings could provide an alternative route for ewe 

pregnancy detection and enhance the reproductive management of sheep flocks. Indirect 

measurement of sheep PLS through blood biomarkers is also expected to increase the profitability 

of sheep production by reducing the proportion of open ewes during the breeding season. It will 

also improve the health and welfare of pregnant ewes through better nutritional management based 

on their pregnancy requirements. 

Material and Methods 

All animal procedures were approved by the University of Alberta Animal Care Committee 

(AUP00002510).  

Experimental Design 

The experiments were designed in two phases: 1) a discovery phase to identify candidate serum 

biomarkers of ewe pregnancy and litter size at the earliest timepoint in gestation, and 2) a 

validation phase to validate the candidate biomarkers using a sample size three times larger than 

that used in the discovery phase. 

Discovery Phase Sampling 

In the discovery phase, ewes were selected from two farms (Olds College and a private farm) in 

Alberta, Canada, consisting of Suffolk x Dorset crosses (n=91) and Rideau Arcott (n=152) ewes, 

respectively. Blood was drawn from all animals over five timepoints throughout this phase, 

including seven days prior to exposing the ewes to rams (day -7), day 0 (day of ram turnout for 

breeding), days 35, 50 and 70 of gestation. These animals were synchronized for estrus and the 

number of lambs delivered was recorded.  

Based on the pregnancy outcome of all the animals included in this phase, two broad groups 

were formed for statistical analyses: controls (CNT; n=32) composed of non-pregnant, open ewes, 
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and pregnant ewes (PRG) that delivered one or more lambs (n=99). The CNT animals were 

comprised of ewes that were bred and did not deliver any lambs (n=9) as well as the negative 

controls (n=23) which were not exposed to rams. We divided the PRG animals to form three 

subgroups including ewes that delivered a single lamb (SNG; n=30), ewes that delivered a twin 

(TWN; n=36) and those that delivered a triplet or more (TRP; n=33). The remaining ewes (n=113) 

were not included in the analyses due to poor sample collection, missing data, and/or the 

producer’s decision to cull the animal.  

Animal Feed 

During the discovery phase, the Olds College ewes were group-housed outdoors and fed a ration 

of grass mix alfalfa hay with whole barley grain and a mineral supplement. Ewes at the private 

farm were group housed indoors in a climate-controlled barn and fed corn silage with supplemental 

mineral and vitamin. Initially, it was assumed all animals were pregnant with twins, and the feed 

rations were formulated using the SheepBytes program (https://www.sheepbytes.ca/) in 

compliance with National Research Council recommendations (1985). Each ewe received 

nutrients based on live weight of 70-75 kg (equivalent to 1.51 Mcal net energy maintenance) in 

early gestation.  

Estrus Synchronization and Breeding Management 

All ewes were synchronized with progesterone-bearing controlled internal drug release (CIDRs; 

Zoetis Canada Inc.) 14 days prior to ram turn out for breeding. To install the CIDRs, ewes were 

first lined in the chute and then the CIDR was inserted into the applicator by folding its wings and 

the tip of the applicator was gently lubricated to facilitate insertion of the device into the ewe.  If 

the vulva appeared to be dirty, it was cleaned prior to implanting the CIDR. The applicator was 
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then gently inserted into the vagina to release the CIDR. The applicators were disinfected between 

each use by dipping in a warm water and iodine solution. 

Upon CIDR removal, ewes received pregnant mare serum gonadotropin (NOVORMON™, 

Syntex S.A., Buenos Aires, Argentina) by intramuscular injection in the rump (1 ml/ewe for the 

prolific Rideau Arcott breed and 2 ml/ewe for the Suffolk x Dorset crosses).  

All ewes, except for the CNT group, were then grouped with the breeding rams at a ratio 

of no more than 10 ewes per ram. Ram turnout at the Alberta private farm location occurred on 

November 4th, 2017, with ewes lambing between March 29th and April 5th, 2018. Ram turnout at 

the Olds College location occurred on October 4th and 11th, 2017 (groups A and B, respectively), 

with ewes lambing between February 26th and March 28th, 2018. Lambing at each location was 

observed and recorded by farm staff. 

Laparoscopic Reproductive Examination 

A subset of the negative controls was examined at day 50 of gestation using laparoscopy to visually 

observe and approve ovarian health. Animals were restrained using a cradle and anesthetized by 

intravenous injection of a combined sedative of 0.6 mg/mL xylazine (Vetoquinol Canada Inc., ON, 

Canada) and 2 mg/mL Ketamine (Vetoquinol Canada Inc., ON, Canada). Once on the cradle, the 

anesthetized ewe was lifted from its rear, bringing the back two legs up while the head and front 

two legs are down. Approximately six inches from each teat was clipped and cleaned with a 4% 

chlorhexidine scrub (Ceva Animal Health Inc., ON, Canada) and 99% isopropyl alcohol. The 

clipped areas provided a point of entry for the scope on one side and a cannula on the other. A 

moderate amount of CO2 was introduced into the abdominal cavity through a trocar going into one 

of the clipped points. The laparoscope was introduced into the cannula to see the ovaries. The 

ovaries of all open ewes were observed and approved by a veterinarian as reproductively sound 
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and not showing any apparent abnormalities. The cannulas were then removed and the skin was 

stapled to close the two holes. The animals were gently rolled off the cradle and within five minutes 

they were relieved from the anesthesia. All utensils were maintained and cleaned in a dilute iodine 

solution (West Penetone Inc., QC, Canada) between each animal examination. 

Ultrasound Diagnosis 

All bred ewes were trans-abdominally scanned (Sonosite M-Turbo ultrasound machine, 

FUJIFILM Sonosite Inc., ON, Canada) for pregnancy and litter detection while standing in a chute 

at day 50 of gestation by an experienced technician for each province. Certified technicians 

reported pregnancy as open (no detectable fetus present), single (detection of only one fetus), or 

pregnant with more than one fetus. All ultrasound assessments were reconciled with the actual 

lambing records from each flock. 

Validation Phase Sampling 

During the validation phase, ewes were selected from two farms in Alberta (Suffolk and Canadian 

Arcott crosses at Lakeland College, and Suffolk crosses at a private farm) and two farms in Ontario 

(Rideau Arcotts and Suffolk crossed with Rideau Arcott at private farm one, and Dorset and Rideau 

Arcott crosses at private farm two). The combined flock consisted of a total of 243 animals. Based 

on the discovery phase results, blood was only drawn from all animals at a single timepoint (day 

50 of gestation). All ewes were naturally mated to the rams at a ratio of 10:1, none of which were 

synchronized for estrus. All ewes had their lambing outcome recorded and categorized similar to 

the discovery phase (i.e., CNT, PRG, SNG, TWN and TRP). 

Blood Collection and Processing 

Blood samples from all ewes of both phases (discovery and validation) were drawn from the 

jugular vein. Samples were collected using 21-gauge needles (PrecisionGlide®, USA) and 
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vacutainers coated with no anticoagulant (BD Vacutainer, USA) for a maximum volume of 10 mL. 

Blood samples were kept on ice upon collection for a maximum of 30 minutes. Samples were then 

centrifuged (Beckman Coulter, USA) for 30 minutes at 17,700 rpm at 4 °C. The supernatant serum 

was then transferred to Eppendorf tubes (Axygen, USA) and snap frozen using liquid nitrogen. 

Frozen serum samples were labelled and stored at -80 °C until used for metabolomic analyses. 

Metabolomics Experiments 

All ewe serum samples were analyzed using nuclear magnetic resonance (NMR) spectroscopy and 

liquid chromatography tandem mass spectrometry (LC-MS/MS). A thorough description of 

sample preparation and analysis methods for each platform is provided in Goldansaz et al. (2020). 

In brief, for the NMR analysis, all serum samples were filtered using a 3 kDa ultrafiltration device 

to remove the macromolecules (i.e., proteins and lipoproteins). A total sample volume of 250 µL 

(including the serum and buffer solution) was introduced to a 700 MHz Avance III (Bruker, USA) 

spectrometer equipped with a 5 mm HCN Z-gradient pulsed-field gradient cryoprobe. The 1D 1H-

NMR spectra were then collected, processed and analyzed using methods previously described 

and a modified version of the Bayesil automated NMR analysis software package (Ravanbakhsh 

et al., 2015). For the LC-MS/MS metabolomic analysis, serum samples were analyzed using an 

in-house quantitative metabolomics kit (called TMIC Prime) run on an Agilent 1260 series 

UHPLC system (Agilent Technologies, Palo Alto, CA) coupled with an AB SCIEX QTRAP® 

4000 mass spectrometer (Sciex Canada, Concord, Canada). A detailed description of the methods, 

kit design, workflow and data analysis is given in Goldansaz et al. (2020). 

Statistical Analyses 

To conduct a standard categorical analysis and identify the relevant serum PLS biomarkers, we 

categorized the animals into six different groups based on their pregnancy outcome (i.e., CNT, 
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PRG, SNG, TWN, TRP, MLP). Metabolomic datasets from the two platforms were pre-processed 

and normalized using standard methods available via MetaboAnalyst 4.0 (Chong et al., 2019). 

Metabolites that had >20% missing values were removed from the dataset prior to statistical 

analyses. Univariate and multivariate statistical analyses, including fold change, student’s t-test, 

volcano plot analysis, and partial least squares discriminant analysis (PLS-DA) were conducted. 

The PLS-DA plot helped visualize the separation of each animal group based on their 

corresponding serum metabolome, and its significance was verified using permutation testing 

(n=1000). The PLS-DA analyses that were significant were also evaluated for the top 15 VIP 

features, revealing those metabolites that had the most significant contribution to separating the 

comparison groups. Biomarker evaluation was performed using receiver operating characteristic 

(ROC) analysis conducted by logistic regression and measuring AU-ROC values. Individual or 

multiple metabolite profiles with an AU-ROC≥0.70 and which were statistically significant via 

permutation analysis (n=1000; p-value<0.05) were considered as candidate biomarkers for each 

trait. The threshold for statistical significance reported in this manuscript is a p-value<0.05 and a 

Benjamini-Hochberg false discovery rate (or Q-value)<0.05, unless otherwise mentioned. Also, a 

0.05<p-value<0.10 is referred to as a tendency while, differences with a p-value>0.10 are referred 

to as not significant. 

Results 

The results from our metabolomic studies on sheep PLS are divided into three sections. The first 

describes the changes detected in serum metabolite levels of ewes during different phases of 

pregnancy. The second (discovery phase) describes the identification of serum-based PLS 

biomarkers at different stages of pregnancy through pairwise comparisons of pregnant and non-

pregnant ewes, as well as via pairwise comparisons of pregnant ewes with different litter sizes 
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(based on pregnancy outcome). The third describes validation or replication of the PLS biomarkers 

identified at day 50 of gestation in the discovery phase on an independent (hold-out) larger cohort 

of ewes. 

Changes in the serum metabolome of ewes during pregnancy. The first objective of this study was 

to comprehensively and quantitatively characterize the serum metabolome of ewes from seven 

days pre-breeding to 70 days post-breeding. The Livestock Metabolome Database (LMDB; 

Goldansaz et al., 2017) currently includes 375 compounds assigned to the sheep metabolome, 300 

of which were previously reported and quantified in the serum/plasma metabolome of non-

pregnant sheep. Unfortunately, there are no published reports regarding the serum metabolome of 

sheep during gestation. Given that sheep metabolomic studies are quite scarce, we undertook a 

targeted, quantitative metabolomic analysis of sheep serum using two analytical platforms, NMR 

spectroscopy and LC-MS/MS. Using the combination of these two platforms, we were able to 

identify and quantify 107 metabolites with unique chemical structures in the serum of pregnant 

ewes over 5 different timepoints for a total of 99 pregnant ewes and 32 non-pregnant ewes (the 

classification of these metabolites based on each platform is provided in Table 6). Details regarding 

the most significant longitudinal changes and most differentiating metabolites are described below. 

Identifying PLS biomarkers via pairwise comparisons. For the discovery phase of the study, we 

divided the flocks into six different groups (as defined in the methods). Each of the six groups of 

ewes were compared (pairwise) at each of the five different timepoints (7 days pre-breeding [-7 

day], day 0, 35, 50 and 70 post-breeding). In total 15 different pairwise comparisons were done 

over five timepoints (75 total comparisons). To simplify the results, we present the outcomes from 

univariate and multivariate analyses of only those comparison groups that yielded significant 

candidate biomarkers. These include: 1) CNT versus PRG, 2) CNT versus MLP, 3) SNG versus 
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TRP, and 4) TWN versus TRP. A detailed summary of the t-test, volcano plot and PLS-DA results 

are presented in Tables 1, 2 and 3, respectively. 

The data presented in these tables clearly show that as ewes progress through gestation, the 

serum metabolome of pregnant ewes compared to open ewes, as well as pregnant ewes with 

different litter sizes, significantly diverges. Moreover, within each group, the blood metabolome 

significantly (p-value<0.05) differed between each timepoint as determined by two-way ANOVA. 

Over the five timepoints tested, it was clear that day 50 and day 70 yielded the most promising 

results. In particular, the volcano plot and PLS-DA plot were successful in detecting statistically 

significant metabolites that differentiated each group within each comparison. T-test results were 

most significant and abundant for the last two timepoints (days 50 and 70) between the most 

divergent comparison groups (CNT vs PRG and CNT vs MLP). Based on these data, we decided 

to focus on identifying serum candidate biomarkers at day 50 and day 70 of gestation. 

Longitudinal assessment of significant metabolites during pregnancy. Longitudinal assessment of 

the t-test results (Table 1) revealed three significant metabolites (acetic acid, urea, and L-arginine) 

differentiating between pregnant and open ewes at day 50 and day 70 into gestation. All the 

metabolites that were significantly different by day 50 (according to the t-test) for the CNT vs 

MLP groups were also significant in the CNT vs PRG comparison, except L-carnitine. Similarly, 

differentiating metabolites from day 70 (according to the t-test) of the CNT vs MLP groups were 

all similar to the CNT vs PRG group, except isoleucine. The similarities between these two 

comparisons were expected since the PRG group is composed of both MLP and SNG ewes.  

Longitudinal assessment of the volcano plots (Table 2) among all pairwise comparison 

groups revealed that acetic acid was significantly different between the CNT vs MLP groups from 

day 35 of gestation. However, acetic acid only appeared to be significantly different from day 50 
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for the CNT vs PRG groups. At day 70 post-breeding, choline was significantly different in all 

comparison groups except the TWN vs TRP groups. We also observed that comparison of CNT 

against PRG and MLP at later timepoints of gestation shared the largest number of metabolite 

similarities among other data collections and comparisons. 

Longitudinal assessment using PLS-DA and variable importance of projection (VIP; Table 

3) showed that L-lysine and acetic acid were two of the 15 most differentiating metabolites 

throughout all timepoints of gestation (days 0, 35, 50 and 70) in the CNT vs MLP comparison. 

Three other metabolites (urea, 3-hydroxybutyric acid, and methanol) were also commonly 

observed in three of the four post-breeding timepoints (days 35, 50 and 70). Moreover, acetic acid 

and urea were the two highest scoring VIP metabolites on day 50 and day 70 in both CNT vs PRG 

and CNT vs MLP comparisons. This further confirms the trend we observed in our univariate 

analyses and underlines how the CNT group, when compared against the PRG and MLP groups, 

typically shared more metabolic similarities in later pregnancy timepoints. 

We further determined temporal trends by performing our statistical analyses within each 

comparison group at different timepoints. For the CNT vs PRG comparison, one group of 

significantly altered metabolites at day 50 was identified (acetic acid, L-arginine, SM (OH) C24:1, 

lysoPC a C26:0, lysoPC a C26:1, tryptophan, C3 [propionylcarnitine], putrescine, trimethylamine 

N-oxide,), and another group at day 70 was identified (acetic acid, L-arginine, urea, glycine, 

dimethylamine, dimethyl sulfone, 3-hydroxybutyric acid, sarcosine, L-lysine). These metabolites 

were consistently identified throughout all statistical analyses.  

Temporal comparison of the CNT group against the MLP group at days 0 and 35 identified 

L-ornithine as a significantly altered metabolite. L-ornithine was found to be significant in all 

analyses for both timepoints. Acetic acid was another significantly altered metabolite at day 35. 
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At day 50 of gestation, the metabolites that exhibited the greatest difference included acetic acid, 

L-arginine, tryptophan and carnosine. At day 70, nine other significantly altered metabolites were 

identified, including urea, L-arginine, choline, glycine, acetic acid, dimethylamine, formate, 3-

hydroxybutyric acid, dimethyl sulfone and acetoacetate. In contrast, we did not identify any 

temporal pattern using univariate or multivariate statistical analyses of the SNG vs TRP groups or 

the TWN vs TRP groups. 

Candidate biomarkers of ewe pregnancy. To identify candidate biomarkers of ewe pregnancy, we 

compared the CNT ewes against all other pregnant ewes regardless of their litter size (PRG). To 

seek further confirmation and examine the extremes in terms of litter size, we removed the SNG 

ewes from the PRG dataset and also compared the CNT and MLP ewes. The advantage of the 

latter comparison is that the outcome biomarkers could help inform producers not only if the 

animal is pregnant but also that the ewe is expected to deliver more than one lamb. A detailed 

summary of the results is presented in Table 4. We identified no statistically useful serum 

biomarkers until day 35 of gestation when comparing the CNT group with the PRG group. 

However, at day 50 of the CNT vs PRG comparison, we identified a panel of five metabolites 

(methanol, L-carnitine, D-glucose, L-arginine, and urea; AU-ROC=0.76) with a tendency to serve 

as candidate biomarkers for detecting pregnant ewes. At day 70, we identified a panel of two 

metabolites for ewe pregnancy that had an AU-ROC of close to 1.0 with very high statistical 

significance (p-value<0.001). Comparing the CNT and MLP groups, we identified no useful 

biomarkers at day -7, while the other four timepoints revealed potentially useful biomarkers. The 

AU-ROC value and statistical significance of the biomarkers improved substantially later in the 

gestation, i.e., at day 70. Among the different timepoints that we assessed, day 50 had the largest 

panel of biomarkers, and these biomarkers were identical to the candidate biomarkers found at day 
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50 of the CNT vs PRG comparison. Given the value of detecting PLS at the earliest timepoint in 

gestation, we developed a logistic regression equation for the candidate biomarkers found at day 

50 using the CNT vs PRG comparison. This equation is given below: 

 

logit(P) = log(P / (1-P)) = 1.599 + 1.217 L-arginine + 2.095 urea + 1.222 L-carnitine + 0.137 

methanol – 0.505 D-glucose   (Equation [Eq.] 1) 

 

where P is the probability of y=1/x with a cut-off of 0.81. Because the concentrations of the 

metabolites used in the CNT vs PRG comparison were sum normalized, log transformed and 

Pareto scaled, the metabolite values used in the equation must be adjusted. These adjustments are 

provided in Table 7. This same logistic regression equation was later used to predict the pregnancy 

status of ewes in the validation phase. 

Candidate biomarkers of ewe litter size. The comparisons that led to the identification of candidate 

biomarkers of ewe litter size involved looking at the CNT vs MLP groups (revealing pregnant 

ewes that deliver more than one lamb; explained above), the SNG vs TRP groups (revealing 

pregnant ewes that deliver a single or more than two lambs) and the TWN vs TRP groups 

(revealing pregnant ewes that deliver a twin or more than two lambs). A detailed summary of 

results for this section is presented in Table 4. We identified candidate biomarkers at all five 

timepoints for the SNG vs TRP comparison. This comparison revealed three to four candidate 

biomarkers at each timepoint with AU-ROC values varying from a low of 0.74 on day 0 to a high 

of 0.81 on day 70. All biomarkers were statistically significant except for the markers identified 

for day 35, which only had a statistical tendency. L-carnitine was the most frequently observed 

candidate biomarker, appearing at days -7, 35 and 50. Based on the results presented above, since 
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day 50 of gestation was the earliest timepoint to detect pregnancy, we used the same day-50 

timepoint to develop a logistic regression equation for the panel of candidate biomarkers 

(methionine and L-carnitine) of the SNG vs TRP comparison. This equation is given below: 

 

logit(P) = log(P / (1-P)) = 0.211 – 4.464 methionine + 4.393 L-carnitine  (Eq. 2) 

 

where P is the probability of y=1/x with a cut-off of 0.70. Because the concentrations of the 

metabolites used in this study were median normalized, cube root transformed and Pareto scaled, 

the metabolite values must be adjusted. These adjustments are provided in Table 7.  

With regard to the TWN vs TRP group comparison, L-carnitine was also identified as the 

most frequently recurrent metabolite at all timepoints. For this comparison group, biomarkers at 

day -7 and day 50 only had a statistical tendency, while other timepoints had statistically significant 

biomarkers. All AU-ROC values were below 0.80 and most panels consisted of a relatively larger 

number of metabolites. Following the previous pattern, we used the candidate biomarkers 

(isobutyric acid, L-lactic acid, L-carnitine, valine, tyrosine, and methanol) identified for the TWN 

vs TRP comparison groups at day 50 of gestation to develop a logistic regression model as follows: 

 

logit(P) = log(P / (1-P)) = -0.124 + 0.406 isobutyric acid– 0.388 L-lactic acid – 0.771 L-carnitine 

+ 0.593 valine + 0.144 tyrosine + 0.683 methanol   (Eq. 3) 

 

where P is the probability of y=1/x with a cut-off of 0.57. Because the concentrations of the 

metabolites used in this study were sum normalized, cube root transformed and auto scaled, the 

metabolite values used in the equation must be adjusted. These adjustments are provided in the 
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supplementary material (Table 2). The above two equations were later used to predict litter size 

status of pregnant ewes in the validation phase. 

Validation phase. Given that we determined the ideal time to assess PLS in ewes via serum 

metabolomics was at day 50 post-breeding, the sample collection for the validation phase was 

conducted only at day 50 of gestation. This section describes the validation of the same panel of 

day 50 candidate biomarkers, and the prediction of the validation dataset using the logistic 

regression equations developed in the discovery phase. In conducting this validation phase, we 

looked at three times as many samples as analyzed in the discovery phase, from commercial flocks 

located in different regions and under different management practices (in two of the top sheep 

producing provinces in Canada, Alberta and Ontario).  

Validated biomarkers of ewe pregnancy. Statistical analyses of the validation dataset for the five 

candidate biomarkers of pregnancy (presented previously) actually improved the AU-ROC to 

≥0.90 and the p-value to <0.05 (Table 4). Therefore, we confirmed that methanol, L-carnitine, D-

glucose, L-arginine, and urea can be robustly used as biomarkers to detect ewe pregnancy at day 

50 of gestation. Note that we used the same logistic regression model (Eq. 1) presented for the 

candidate biomarkers in the discovery phase to predict the pregnancy status of the validation 

dataset. This regression model was successful in making predictions with a sensitivity of 69% and 

a specificity of 85%. 

Validated biomarkers of ewe litter size. We also validated the panels of candidate biomarkers for 

litter size in pregnant ewes. The AU-ROC value for candidate biomarkers (methionine and L-

carnitine) of SNG vs TRP improved from 0.78 in the discovery phase to 0.84 in the validation set 

(Figure 2). This was accompanied by improved significance from a p-value<0.05 to a p-

value<0.001 (Table 4). Therefore, we confirmed that methionine and L-carnitine can be robustly 
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used as biomarkers of ewe litter size. We also used the same logistic regression model (Eq. 2) 

developed in the discovery phase for the panel of candidate biomarkers to distinguish SNG vs TRP 

in the validation dataset. The regression model was successful in predicting litter size (SNG vs. 

TRP) with a sensitivity of 56% and a specificity of 91%.  

Moreover, the candidate biomarkers (isobutyric acid, L-lactic acid, L-carnitine, valine, 

tyrosine, and methanol) identified for the TWN vs TRP comparison also reached statistical 

significance with an improved AU-ROC of 0.81 (Figure 3). These compounds were confirmed as 

robust biomarkers of ewe litter size. In addition, we used the same logistic regression model (Eq. 

3) for the panel of candidate biomarkers of TWN vs TRP comparison groups developed in the 

discovery phase to predict the validation dataset. This regression model was successful in 

predicting litter size (TWN vs. TRP) with a sensitivity of 66% and specificity of 85%.  

It is noteworthy that the overlap of biomarkers of pregnancy with those of the CNT versus 

MLP comparison groups indicates that if a ewe tests positive for the above-mentioned panel, not 

only is she pregnant but she is also expected to carry multiple fetuses. On the other hand, if the 

animal tests negative, she is not pregnant. To get a more precise measure of the litter size, further 

evaluation of the pregnant ewe’s blood using the other panels of litter size biomarkers will likely 

be required. Therefore, if a pregnant ewe tests positive for the triplet biomarker panel (methionine, 

L-carnitine), the ewe is expected to deliver more than two lambs while a negative test does not 

necessarily indicate that the ewe will deliver a single lamb. On the other hand, pregnant ewes that 

test negative for biomarkers of twin vs triplet biomarker panel (isobutyric acid, L-lactic acid, L-

carnitine, valine, tyrosine, and methanol) are expected to deliver twins. 
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Discussion 

Over the past decade, livestock metabolomics research has gained considerable momentum with 

the number of papers being published on the subject almost doubling every two years. However, 

sheep metabolomics is still lagging far behind the research activities for other livestock species 

such as cattle and pigs. For this reason, we focused on further characterizing the sheep metabolome 

and identifying candidate biomarkers associated with production traits of high economic value 

such as residual feed intake, carcass merit (Goldansaz et al., 2020) and reproductive performance. 

In this study, we examined sheep serum using NMR and LC-MS/MS-based metabolomics to 

identify robust and useful metabolite biomarkers of PLS. The initial step involved profiling the 

sheep serum metabolome during the first half of pregnancy. In doing so, we identified and 

quantified a total of 107 serum metabolites. Although no new sheep serum metabolites were 

identified (after comparison to the data in the LMDB [Goldansaz et al., 2017]), this study did 

increase the proportion of quantified sheep serum metabolites in the LMDB from 55% to 93%. 

Furthermore in LMDB, the total quantified values in the ovine metabolome increased by 44%, 

while adding 15% more quantified data to LMDB. Data from this experimental work also adds to 

the reference values obtained from healthy pregnant and non-pregnant sheep in the LMDB. 

Moreover, our study provides quantitative information about the metabolic dynamics of the ewe 

serum metabolome from seven days prior to breeding to day 70 of gestation. These data are now 

publicly accessible in the LMDB (www.lmdb.ca). 

The central objective of this study was to identify serum metabolite biomarkers for sheep 

PLS using high throughput metabolomic platforms. As far as we are aware, this is the first study 

to identify non-hormonal metabolite biomarkers of both pregnancy and litter size, and the only 

study to provide logistic regression models to predict pregnancy status in domestic sheep up to 
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date. It is important to note, however, that there are other compounds or biomarkers that have 

shown promise for assessing ewe PLS. These include genes, proteins and metabolites, some of 

which are described below.  

Efforts to identify specific gene transcript levels and genetic markers for sheep PLS have 

been previously described in the literature. For example, changes in the expression levels of the 

interferon-tau-stimulated gene found in the thymus (Zhang et al., 2018) and endometrium (Kiyma 

et al., 2016) have been found to signal pregnancy at early gestation. There are also a number of 

studies on genes responsible for sheep litter size (Abdoli et al., 2016). The Booroola gene, located 

on ovine chromosome 6, is among the better-recognized genes that has a major impact on ovulation 

rate and is a major determining factor for the litter size in sheep (Davis et al., 2006). This gene has 

at least 23 different variants and is located on ovine chromosome six. Certain Booroola variants 

increase follicle sensitivity to the follicle-stimulating hormone, thereby inducing a faster follicle 

maturation (Fogarty, 2009). Moradband and colleagues (2011) revealed how heterozygosity in this 

gene appears to increase the litter size in the Iranian Baluchi sheep breed. Ewes that are 

homozygous for this gene variant almost double their ovulation rate. However, their lambs have a 

low survival rate with a lower growth rate and weaning rate (Fogarty, 2009). It is noteworthy that 

the Booroola gene has not been reported in all sheep breeds. Therefore, this limits its use as a 

global biomarker or genetic selection tool for increasing sheep litter size. While there is a 

considerable body of genetic data pertaining to sheep PLS which are used as a selection tool, none 

of these genes and transcripts have been properly evaluated via ROC curve analysis or 

sensitivity/specificity analysis to confirm their true utility as biomarkers of PLS.  

The Booroola gene is associated with the bone morphogenetic protein receptor 1B (BMPR-

1B; Abdoli et al., 2016). Increased blood concentrations of the BMPR-1B protein has been 
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reported to benefit follicular development, yielding better ovulation and increased litter size 

(Zhang et al., 2020). A separate study that evaluated proteins in the follicular fluid (FF) of ewes 

found that the FF of larger follicles compared to smaller follicles had increased glucose and 

cholesterol concentrations, but lower concentration of triglycerides, lactate, alkaline phosphatase 

and lactate dehydrogenase (Nandi et al., 2007). These metabolites and proteins appear to be 

correlated with ovulation rate, suggesting their relevance to prolific ewes and the litter they carry. 

In another study, Koch and colleagues (2010) used MS-based proteomics to identify 15 signature 

proteins from the uterine luminal fluid of ewes as indicators of pregnancy and involved with 

embryonic growth, immune regulation and nutritional needs. As yet, none of these protein markers 

have been rigorously validated by ROC curve analysis and none are commercially used in sheep 

PLS testing.  

Another example of a protein biomarker in pregnant ewes is the pregnancy-associated 

glycoprotein (PAG). The PAG is a placental-secreted factor that is detected in maternal serum 

upon implantation of the fetus onto the endometrium. This protein can be measured as early as 30 

days in the gestation (Khan et al., 2020), with increasing concentrations as the ewe pregnancy 

progresses (Roberts et al., 2017). The pregnancy specific protein B (PSPB) is a form of the PAG 

that is released by the fetus to maintain the corpus luteum (CL; Ruder et al., 1988). Also, PSPB 

along with other PAGs increases with increasing number of fetuses carried by the ewe (Pickworth 

et al., 2020). However, PSPB is a breed-specific compound (Redden and Passavant, 2013) which 

limits its universal application for all sheep breeds. Generally, PAGs are also positively correlated 

with maternal serum P4 levels (Roberts et al., 2017). In one study by Karen et al. (2003), measuring 

blood PAG had 93.5% sensitivity for detecting pregnancy at day 22 of gestation, however, their 

results were skewed by the abnormally low (17%) pregnancy rate of the flock. 
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In addition to genetic and protein biomarkers of sheep PLS, a number of metabolite 

biomarkers have also been explored. Progesterone is a promising example of a hormonal 

metabolite biomarker that could be used for assessing sheep PLS. Progesterone is predominantly 

produced by the CL at the beginning of gestation and later (day 50 onwards) is produced by the 

placenta to maintain the pregnancy (Lonergan et al., 2016; Roberts et al., 2017). The concentration 

of P4 in ewe blood increases over the course of gestation and has been used by certain research 

labs as an indicator of pregnancy, as well as placental and fetal wellbeing (Roberts et al., 2017). 

However, identifying ewe PLS through measurements of P4 concentrations at around days 50-80 

of gestation has a sensitivity varying between 65-85% and a specificity between 65-93% (Karen 

et al., 2006; See et al., 2007). While potentially promising, blood P4 concentrations are not 

considered sufficiently accurate indicators of non-pregnant ewes (Karen et al., 2003) and are not 

useful for differentiating ewes based on litter size (See et al., 2007). Another steroid hormone, 

estradiol, has also been used by researchers for detecting litter size after 50 days into gestation 

(Sumaryadi and Manalu, 1999). Despite P4 and estradiol being significant reproductive hormones 

and associated with ewe PLS, the literature lacks sufficient evidence and validation based on ROC 

analysis or regression modeling to make these hormones truly useful for assessing sheep PLS 

status (Xia et al., 2013).  

Other (non-hormonal) metabolites have also been identified as potentially useful 

pregnancy markers in other livestock species. A recent publication on pregnant buffaloes identified 

five milk metabolites detected by LC-MS on day 18 after artificial insemination as candidate 

biomarkers of pregnancy (de Nicola et al., 2020). Likewise, in beef cattle, four plasma metabolites 

were detected by NMR at day 40 of gestation (Gómez et al., 2020). These reports suggest that 
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measurement of non-hormonal metabolites may serve as an indirect means of pregnancy and/or 

litter size detection in ruminants.   

To date, few studies have reported non-hormonal metabolites associated with sheep PLS. 

Sun and colleagues (2017) used NMR to investigate pregnant ewe metabolism in relation to in 

utero fetal growth at four timepoints from day 50 of gestation onwards. They reported 13 serum 

metabolites that are associated with protein and lipid metabolism of twin-bearing pregnant ewes. 

In another study using MS-based analysis of FF and ovarian vein serum in the Han sheep breed 

(Guo et al., 2018), a total of eight metabolites (glucose 6-phosphate, glucose 1-phosphate, 

aspartate, asparagine, glutathione oxidized, cysteine-glutathione disulfide, γ-glutamylglutamine, 

and 2-hydroxyisobutyrate) were significantly associated with ewe litter size. Another recent 

metabolomic study using LC-MS/MS revealed that sphingolipid and amino acid metabolism is 

important for maintaining the uterine environment to increase embryo survival rate (La et al., 

2020). In addition to these studies, there are a few other reports that measured individual 

metabolites in pregnant sheep (Huang et al., 2012; Washburn et al., 2015; Kandiel et al., 2016; 

Cihan et al., 2016). Unfortunately, none of these studies identified or rigorously assessed the 

reported metabolites as robust PLS biomarkers. Overall, existing data suggests that certain 

individual genes, proteins and metabolites may be useful for assessing sheep PLS. However, as 

yet, there has been no metabolomics studies that have attempted to rigorously identify and validate 

a panel of readily accessible non-hormonal metabolite blood biomarkers for assessing sheep PLS. 

A common feature of the serum biomarkers presented in this study is that all are detectable 

by NMR spectroscopy. While the identification and validation of a set of useful sheep PLS 

biomarker panels was our primary interest in this study (see Table 4), we also believe it is important 

to provide some biological context and to suggest how some of these metabolites may play a role 
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in sheep pregnancy. Indeed, the biological role of some of these metabolites appears to tie in with 

the reproductive physiology of sheep. However, some metabolites have not previously been 

identified as having a role in pregnancy, litter size or gestation and so it is difficult to understand 

their biological context. The following section further discusses the known biological relevance of 

each metabolite biomarker identified in this study. It also elaborates on the potential impact that 

these biomarkers may have for the sheep industry. 

L-arginine is an essential amino acid that is known to be very relevant to successful 

pregnancy. We found that at day 50 of gestation, the average L-arginine was significantly (p-

value<0.05; Table 1) elevated in pregnant ewes (214±85 µM) relative to non-pregnant controls 

(174±78 µM). Arginine appears to play a role in a number of physiological pathways related to 

pregnancy. Luther and colleagues (2009) provided pregnant ewes with L-arginine supplementation 

and observed enhanced ovarian function along with elevated numbers of viable fetuses. The same 

study identified a direct positive correlation between L-arginine and P4, leading to improved 

pregnancy maintenance and early embryonic growth. Our results appear to be consistent with these 

reports and show that pregnant ewes as well as ewes that delivered more lambs had a higher serum 

concentration of L-arginine. Furthermore, maternal administration of this amino acid in the later 

portion of gestation has been shown to increase lamb birth weight, enhance blood flow and increase 

nutrient transport to the fetus through synthesis of nitric oxide (Thureen et al., 2002; De Boo et al., 

2005). L-arginine also improves pancreatic and brown adipose tissue growth during fetal 

development (Satterfield et al., 2013), and increases post-partum brown fat storage and the 

survivability of female lambs (McCoard et al., 2013). Serum L-arginine is associated with 

improved post-partum weaning weight and the weaning rate of lambs (Crane et al., 2016). 

Administering this amino acid to prolific ewes further improves the lambing rate by nearly 60%, 
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increases lamb birth weight by over 20% without negatively impacting maternal body weight, and 

decreases lamb mortality rate at birth by more than 20% (Lassala et al., 2011).  

Another metabolite that was identified as a strong biomarker of litter size was urea. We 

found that at day 50 of gestation, the average urea concentration was significantly (p-value<0.001) 

lower in pregnant ewes (1823±667 µM) compared to the open ewes (2518±871 µM). Urea is a 

source of nitrogen for rumen microbes and is produced through the degradation of amino acids. 

Interestingly, elevated blood concentrations of urea in ewes seems to reduce the conception and 

pregnancy rate (Raboisson et al., 2017). Likewise, high concentrations of circulating urea have 

adverse impacts on embryonic development (Bishonga et al., 1996). Our results are in agreement 

with the literature as we identified that pregnant ewes as well as ewes with a greater litter size have 

a lower concentration of blood urea compared to non-pregnant ewes.  

One of the more interesting biomarkers we identified for litter size was methionine. We 

found that the average methionine serum concentration was significantly lower (p-value<0.001) 

with methionine concentrations of (28±9 µM) in pregnant ewes that delivered more than two lambs 

compared to ewes that delivered just one lamb (33±9 µM). Methionine is an essential amino acid 

that plays an important role in general animal performance (El-Tahawy and Ismaeil, 2013), as well 

as the growth and development of lambs in early life (Wang et al., 2018). Methionine is also a 

methyl group supplier for epigenetic alteration of the DNA, especially in late gestation 

(Wooldridge et al., 2018). Indeed, Sinclair and associates (2007) reported widespread epigenetic 

alterations in the progeny, mostly male lambs, resulting from restricted supply of dietary 

methionine to the pregnant dam. Alterations to the genome induced by metabolites such as 

methionine are responsible for modification of health-related phenotypes, cell growth, host 
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immunity, and protein production (Strahl and Allis, 2000; Sinclair et al., 2007; Canani et al., 2011; 

Moore et al., 2013). 

L-lactic acid is another biomarker of litter size that is traditionally associated with muscle 

metabolism. However, during pregnancy its concentration increases with the progression of 

gestation (Freetly and Ferrell, 1998). Indeed, we found that the average L-lactic acid concentration 

was significantly (p-value=0.01) higher (3293±1948 µM) in pregnant ewes that delivered more 

than two lambs compared to ewes that delivered only two lambs (2432±989 µM). Lactate can be 

used as an alternative source of energy by the fetal brain (Bissonnette et al., 1991). Therefore, a 

ewe with a higher number of fetuses is expected to have a higher concentration of serum L-lactic 

acid.  

Valine is another biomarker we found to be associated with ewe litter size, and it decreased 

with increasing number of lambs. In particular, we found that the average valine serum 

concentration was significantly (p-value=0.007) higher (219±74 µM) in TWN versus TRP 

(191±64 µM) pregnant ewes. This metabolite is a branched-chain amino acid that stimulates 

protein synthesis in the fetal muscle (Kimball and Jefferson, 2004; Regnault et al., 2005). 

Therefore, ewes that deliver three or more lambs and have an overall higher fetal protein synthesis 

compared to those that deliver twins are expected to have a higher utilization of this amino acid 

and lower concentration in the serum. Branched-chain amino acids are also integral to the immune 

system by supporting the growth of lymphocytes and natural killer cells to remove viral infections 

(Calder, 2006). Pregnant ewes are more prone to immune challenges and an increased number of 

fetuses increases immune vulnerability of the ewe (Jamieson et al., 2006; Downs et al., 2018). 

Therefore, ewes that have the largest litter size, i.e., triplets vs twins, are expected to draw more 

valine from the maternal serum, which aligns with our results. 
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Comparison to Ultrasonography 

The current gold standard for sheep PLS assessment is ultrasonography. Ultrasound is mostly used 

to determine pregnancy status (open vs pregnant). However, certain experienced ultrasound 

operators can detect the number of fetuses in pregnant ewes as early as approximately 40-45 days 

of pregnancy and onwards (based on industry observations in Canada). In fact, our field 

observations indicate that most Canadian ultrasound technicians identify litter size as one fetus or 

more than one. Ultrasound scanning is relatively rapid (2-5 min/ewe) and costs CAD$5-8/ewe 

(depending on the location of the farm, travel required for the operator to reach the farm, and the 

number of ewes being scanned). All sheep used in this study were characterized via ultrasound 

analysis by trained technicians at day 50 of pregnancy.  

Using records from 166 ewes with complete data from ultrasound scanning and 

corresponding pregnancy outcome, we determined that the sensitivity of ultrasound was 55%, the 

specificity was 70% and the AU-ROC of using ultrasonography for pregnancy detection was 0.65. 

With regard to ultrasonography results for litter size, we found that for distinguishing SNG vs 

TRP, the sensitivity was 51% while the specificity was 18%. With regard to distinguishing TWN 

vs TRP, the sensitivity of ultrasonography was 43% while the specificity was 18%. It is noteworthy 

that the consistency of ultrasound prediction varied between farms mainly due to the expertise and 

experience of the technician who tended to underestimate singles and triplets while overestimating 

twins. Comparing our metabolomics results to these ultrasound measurements, as seen from Table 

5, the serum metabolite markers we developed were better than ultrasonography by 24% in terms 

of AU-ROC, 20% better in terms of sensitivity, and 18% better in terms of specificity for detecting 

ewe pregnancy. Likewise, if we compare our predictive biomarker panels for detecting litter size 

against ultrasonography, we find that our metabolite panels performed 9-35% better in terms of 
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sensitivity and nearly 80% better in terms of specificity for predicting litter size. These results 

indicate serum metabolite measurements are significantly more accurate than ultrasound in 

detecting and assessing sheep PLS in this study. 

Clearly, in order for any alternative tool, such as blood marker tests identified here to 

compete with ultrasound for sheep PLS assessment, it would have to be either cheaper, more 

accurate, more convenient or able to detect PLS at earlier gestational timepoints. Based on our 

current data, the metabolite panels we have identified are clearly more accurate in this study.  

However, could they compete with the cost of ultrasound? Recall that ultrasound tests cost between 

CAD$5-8 per ewe, for those producers who can access ultrasound technicians. Currently 

metabolite tests consisting of three or four metabolites conducted on MS instruments can be done 

for as little as CAD$5 per sample (excluding shipping costs). These costs can be reduced further 

if testing were to be optimized or more widespread. If the metabolite tests could be converted to a 

handheld device (such as a lateral flow assay or a simple colorimetric test) for pen side testing, 

then both the lower cost (perhaps as little as $3 a test) and improved convenience would make 

these sorts of blood tests very appealing to the producers. It is also clear that these biomarkers have 

a better performance when it comes to predicting larger litter sizes in pregnant ewes. Even if we 

assume that these metabolite biomarkers perform comparably to the ultrasound, the cost of the 

blood test would not vary (as it does for ultrasound scanning) based on the flock size and 

geographical location of the farm. This would permit farms with smaller flocks and farms located 

in remote areas to benefit from blood-based PLS detection. Certainly, if serum markers could be 

found effective much earlier in gestation (say at day 25 or 35) with a sensitivity or specificity that 

is comparable to ultrasound, then the potential of a blood test for sheep PLS would be that much 

greater.  
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Industry Impact 

Ewe reproductive efficiency, lamb performance and overall economic productivity of a lamb 

production enterprise are all key factors in determining flock profitability. Single born lambs tend 

to have large birth weights with more dystocia issues while triplets tend to have low birthweights 

with low survivability (Juengel et al., 2018). Ewes giving birth to triplets, or even more lambs, 

have increased risks of pregnancy toxemia and hypocalcaemia, which results in high mortality 

rates in ewes. Such PLS management and health issues come with increased costs of production.  

Ewe nutrition in the last 8 weeks of gestation is critical as it impacts lamb survivability. Typically, 

95% of singles, 79% of twins and only 67% of triplet born lambs survive the first week of life.  

Using this information, we can calculate the potential economic impact of improved PLS 

management on sheep farms across Canada. In doing so, we assumed some variation in breed type, 

seasonal effects and a 15% cull rate (Statistics Canada, 2020), knowing that 437,000 Canadian 

ewes are exposed to breeding in a year with 20% of these expected to bear three or more lambs in 

one litter. If we further assume that a handheld blood test with our biomarkers would have a 

detection accuracy of 80% and would cost approximately CAD$3/ewe, then the following 

calculation can be done. We estimate that ~87,000 ewes will potentially yield 9% more lambs at 

weaning (with the litter size increasing from an average 1.9 lambs per ewe to 2.07 lambs per ewe) 

at an extra cost of CAD$961,400 for nutrition expenses (equivalent to CAD$11/ewe/year). These 

lambs are expected to be ~21 kg at weaning and worth CAD$5.50/kg (conservatively totaling to 

CAD$115/lamb; reflecting current Alberta prices with expected variation in breed type, condition, 

age, season, sale date, etc.). Hence, Canadian lamb sales could increase by up to CAD$2 million/yr 

if we could reliably identify those prolific ewes at 50 days gestation and sort them into management 

groups for more targeted feeding. By detecting and culling open ewes, or rebreeding them, and 
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improving the nutrition of ewes that deliver more viable and healthier lambs, we anticipate flock 

profitability could be increased by CAD$2 for every CAD$1 invested in ewe nutrition – 

particularly if accurate, low-cost sheep PLS management could be fully implemented. In addition, 

ewe health and feed related costs would be reduced by adjusting feed based on pregnancy 

requirements and preventing blind feeding of all animals with the same ration. Moreover, 

epigenetics and nutrigenomics studies (Sinclair et al., 2007; Wooldridge et al., 2018) have proven 

that adjusting maternal feed based on pregnancy requirements programs the progeny to be healthier 

and physiologically more sound than the average lamb. 

Future Prospects 

We have shown that targeted, quantitative metabolomics technologies can be used to discover and 

validate serum metabolite biomarkers of sheep pregnancy and litter size. Using a large cohort of 

samples collected from multiple commercial flocks across Canada, we successfully identified four 

panels of biomarkers that can determine ewe PLS with good accuracy and precision. The 

performance of these markers appears to exceed that seen with ultrasound measurements within 

the context of this experiment. Therefore, we believe that if these biomarkers could be further 

optimized (for high throughput off-site assays) or translated to hand-held or pen-side tests (similar 

to the urine-based pregnancy detection kit for women), they could be used to routinely assess PLS 

in Canadian sheep flocks. Currently we are working on developing a pen-side kit, using the panel 

of five biomarkers identified and validated in this study, to detect ewe pregnancy 50 days into 

gestation. If producers require the exact number of the litter size, a second test incorporating the 

two panels of biomarkers reported here could also be developed. In conclusion, translating these 

results for on-farm, pen-side use could significantly improve reproduction management and 

profitability of sheep breeding enterprises. 
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Tables  

Table 1. Student’s t-test of four comparison groups from the discovery dataset. Statistical 

analysis using t-test revealed significant (p-value<0.05) serum metabolites of each comparison at 

five timepoints during the discovery phase. NS = Not Significant; CNT = control open ewes; PRG 

= pregnant ewes; SNG = pregnant ewes that delivered one lamb; TWN = pregnant ewes that 

delivered two lambs; TRP = pregnant ewes that delivered more than two lambs. Day -7 refers to 

seven days prior to initiation of gestation and day 0 is the start of pregnancy. 

T-test 

 Day -7 Day 0 Day 35 Day 50 Day 70 

CNT 

vs 

PRG 

NS NS NS acetic acid, urea, SM (OH) C24:1, 

lysoPC a C26:0, lysoPC a C26:1, 

tryptophan, C3 (propionylcarnitine), 

carnosine, alpha-aminoadipic acid, 

putrescine, trimethylamine N-oxide, 

lysoPC a C18:2, hippuric acid, lysoPC a 

C14:0, L-arginine, lysoPC a C16:1 

urea, glycine, L-arginine, 

dimethylamine, formate, dimethyl 

sulfone, choline, acetic acid, 3-

hydroxybutyric acid, acetoacetate, L-

alanine, sarcosine, isobutyric acid, L-

lysine, creatinine, pyruvic acid, D-

mannose, L-serine 

CNT 

vs 

MLP 

NS kynurenine, 

L-ornithine 

NS urea, acetic acid, SM (OH) C24:1, 

lysoPC a C26:0, L-arginine, C3 

(propionylcarnitine), L-carnitine, 

tryptophan, lysoPC a C26:1, carnosine, 

putrescine 

urea, L-arginine, choline, glycine, acetic 

acid, dimethylamine, formate, 3-

hydroxybutyric acid, dimethyl sulfone, 

acetoacetate, isobutyric acid, L-alanine, 

sarcosine, pyruvic acid, L-lysine, 

isoleucine 

SNG 

vs 

TRP 

NS NS L-

acetylcarn

itine 

methionine NS 

TWN 

vs 

TRP 

NS NS NS valine, L-lactic acid, Isobutyric acid NS 
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Table 2. Volcano plot univariate analysis of four comparison groups from the discovery 

dataset. Statistical analysis using volcano plot revealed significant (p-value<0.05) serum 

metabolites of each comparison at five timepoints during the discovery phase. Metabolite noted 

with ^ has a tendency (p-value<0.10). NS = Not Significant; CNT = control open ewes; PRG = 

pregnant ewes; SNG = pregnant ewes that delivered one lamb; TWN = pregnant ewes that 

delivered two lambs; TRP = pregnant ewes that delivered more than two lambs. Day -7 refers to 

seven days prior to initiation of gestation and day 0 is the start of pregnancy. 

Volcano Plot 

 Day -7 Day 0 Day 35 Day 50 Day 70 

CNT vs 

PRG 

citric acid SM C20:2, trans-

hydroxyProline, 

kynurenine, total 

dimethylarginine 

acetone, total 

dimethylarginine, 

sarcosine, isobutyric 

acid, taurine, C3 

(propionylcarnitine), 

methanol, putrescine 

acetic acid, SM (OH) 

C24:1, lysoPC a 

C26:0, lysoPC a 

C26:1, tryptophan, C3 

(propionylcarnitine), 

putrescine, 

trimethylamine N-

oxide, L-arginine, 

lysoPC a C16:1 

urea, glycine, L-

arginine, 

dimethylamine, 

formate, dimethyl 

sulfone, choline, acetic 

acid, 3-hydroxybutyric 

acid, acetoacetate, 

sarcosine, L-lysine, 

acetone, 

dimethylglycine 

CNT vs 

MLP 

citric 

acid^ 

L-ornithine, 

kynurenine, trans-

hydroxyProline, SM 

C20:2, total 

dimethylarginine 

acetone, L-ornithine, 

total dimethylarginine, 

isobutyric acid, taurine, 

trans-hydroxyProline, 

methanol, aspartic acid, 

C3 (propionylcarnitine), 

acetic acid, sarcosine, 3-

hydroxyisovaleric acid 

acetic acid, SM (OH) 

C24:1, lysoPC a 

C26:0, L-arginine, C3 

(propionylcarnitine), 

tryptophan, lysoPC a 

C26:1, carnosine, 

putrescine, lysoPC a 

C18:2, lysoPC a 

C16:1, lysoPC a 

C14:0, methionine-

sulfoxide, spermidine, 

trimethylamine N-

oxide 

urea, L-arginine, 

choline, glycine, acetic 

acid, dimethylamine, 

formate, 3-

hydroxybutyric acid, 

dimethyl sulfone, 

acetoacetate, sarcosine 

SNG vs 

TRP 

isobutyric 

acid 

NS L-acetylcarnitine acetyl-ornithine, 

kynurenine, 

methionine 

choline, L-ornithine, 

ethanol 
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TWN 

vs TRP 

ethanol C3 

(propionylcarnitine), 

serotonin 

trans-hyrdoxyproline, 

kynurenine, 

hypoxanthine, acetone, 

formate, SM C20:2, 

lysoPC a C26:1 

SM C20:2, valine, L-

lactic acid, Isobutyric 

acid 

L-ornithine, 3-methyl-

2-oxovaleric acid, 

ethanol 
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Table 3.  Partial least squares discriminant analysis (PLS-DA) analysis of four comparison 

groups from the discovery dataset. Multivariate statistical analysis of the discovery dataset using 

PLS-DA revealed top 15 metabolites that significantly (p-value<0.05) differentiate between the 

two comparison groups at each timepoint. NS = Not Significant; CNT = control open ewes; PRG 

= pregnant ewes; SNG = pregnant ewes that delivered one lamb; TWN = pregnant ewes that 

delivered two lambs; TRP = pregnant ewes that delivered more than two lambs. Day -7 refers to 

seven days prior to initiation of gestation and day 0 is the start of pregnancy. 

PLS-DA VIP 

 Day -7 Day 0 Day 35 Day 50 Day 70 

CNT vs 

PRG 

NS NS putrescine, butyrate, 

sarcosine, L-ornithine, 

acetone, total 

dimethylarginine, 

ethanol, L-lysine, C3 

(propionylcarnitine), 

taurine, methanol, 

trimethylamine N-

oxide, isobutyric acid, 

aspartic acid, 3-

hydroxyisovaleric acid 

acetic acid, urea, 

SM (OH) C24:1, 

lysoPC a C26:0, 

lysoPC a C26:1, 

tryptophan, C3 

(propionylcarniti

ne), carnosine, 

alpha-

aminoadipic acid, 

putrescine, 

trimethylamine 

N-oxide, lysoPC 

a C18:2, hippuric 

acid, lysoPC a 

C14:0, L-arginine 

urea, glycine, acetic 

acid, L-arginine, 

dimethyl sulfone, 3-

hydroxybutyric acid, 

ethanol, L-lactic acid, 

L-lysine, sarcosine, 

dimethylamine, D-

glucose, tyrosine, L-

alanine, betaine 

CNT vs 

MLP 

Tendency urea, L-ornithine, L-

lysine, acetoacetate, 

acetic acid, glycine, 

kynurenine, 3-

hydroxybutyric acid, 

trans-hydroxyProline, 

total dimethylarginine, 

SM C16:0, taurine, L-

threonine, methanol, 

butyrate 

acetic acid, L-

ornithine, L-lysine, 

methanol, taurine, 

trimethylamine N-

oxide, acetone, citric 

acid, sarcosine, 

ethanol, isobutyric 

acid, C0 (Carnitine), 

aspartic acid, butyrate, 

total dimethylarginine 

acetic acid, urea, 

L-arginine, 

tryptophan, 

carnosine, 3-

hydroxybutyric 

acid, dimethyl 

sulfone, 

trimethylamine 

N-oxide, L-

lysine, L-

carnitine, lysoPC 

a C18:2, L-

ornithine, 

hippuric acid, C0 

urea, dimethylamine, L-

arginine, glycine, 

dimethyl sulfone, 

choline, acetic acid, 

formate, 3-

hydroxybutyric acid, L-

alanine, isobutyric acid, 

acetoacetate, isoleucine, 

L-lysine, pyruvic acid 
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(Carnitine), 

methanol 

SNG vs 

TRP 

NS NS NS NS Tendency 

TWN 

vs TRP 

NS NS NS NS NS 
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Table 4.  Receiver Operating Characteristics (ROC) analysis of the comparison groups in 

the discovery and validation datasets. Candidate biomarkers were evaluated during all five 

timepoints of the discovery phase and day 50 of gestation was the best timepoint to reveal 

candidate biomarkers of ewe PLS. Therefore, biomarker analysis was pursued for only day 50 of 

gestation in the validation phase. The panel of metabolites that reached an area-under-the-curve 

(AU-ROC) of at least 0.65 or were significant (p-value<0.05) were considered as candidate 

biomarkers in the discovery phase and were confirmed as biomarkers if the AU-ROC and p-value 

improved in the validation analysis. NS = Not Significant; NA = biomarker not available; CNT = 

control open ewes; PRG = pregnant ewes; SNG = pregnant ewes that delivered one lamb; TWN = 

pregnant ewes that delivered two lambs; TRP = pregnant ewes that delivered more than two lambs. 

Day -7 refers to seven days prior to initiation of gestation and day 0 is the start of pregnancy 

ROC 

Discovery Phase 
Validation 

Phase 

 Day -7 Day 0 Day 35 Day 50 Day 70 Day 50 

CNT 

vs 

PRG 

NA NA NA 

methanol, L-

carnitine, D-

glucose, L-

arginine, urea 

urea, glycine methanol,  

L-carnitine,  

D-glucose,  

L-arginine, urea 

NA NA NA 
AU-ROC=0.76 

p<0.10 

AU-ROC=0.98 

p<0.001 

AU-ROC=0.90 

p<0.05 

CNT 

vs 

MLP 

NA 

L-ornithine, 

choline 

acetone, L-

ornithine, C0, total 

dimethylarginine 

methanol, L-

carnitine, D-

glucose, L-

arginine, urea 

choline, urea, L-

arginine, glycine 

methanol,  

L-carnitine,  

D-glucose,  

L-arginine, urea 

NA 
AU-ROC=0.79 

p<0.05 

AU-ROC=0.73 

p<0.05 

AU-ROC=0.76 

p<0.05 

AU-ROC=0.97 

p<0.01 

AU-ROC=0.93 

p<0.001 

SNG 

vs 

TRP 

choline,  

L-carnitine,  

L-phenylalanine 

C4, L-threonine, 

trans-

hydroxyproline 

L-acetylcarnitine,  

L-carnitine, trans-

hydroxyproline 

methionine, L-

carnitine 

choline,  

D-glucose,  

L-phenylalanine 

methionine,  

L-carnitine 

AU-ROC=0.80 

p<0.05 

AU-ROC=0.74 

p<0.05 

AU-ROC=0.76 

p<0.10 

AU-ROC=0.78 

p<0.05 

AU-ROC=0.81 

p<0.05 

AU-ROC=0.84 

p<0.001 

TWN 

vs 

TRP 

hypoxanthine,  

L-phenylalanine, 

choline,  

serotonin, C3 hypoxanthine, 

trans-

isobutyric acid, 

L-lactic acid, L-

carnitine, 

hypoxanthine,  isobutyric acid, 

L-lactic acid,  
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L-carnitine, 

creatinine 

hydroxyproline, 

kynurenine 

valine, tyrosine, 

methanol 

L-phenylalanine, 

L-carnitine, 

isobutyric acid 

L-carnitine, 

valine, tyrosine, 

methanol 

AU-ROC=0.77 

p<0.10 

AU-ROC=0.74 

p<0.05 

AU-ROC=0.75 

p<0.05 

AU-ROC=0.66 

p<0.10 

AU-ROC=0.77 

p<0.05 

AU-ROC=0.81 

p<0.05 
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Table 5. Performance comparison of metabolomic biomarkers and ultrasonography. 

Sensitivity and specificity and the ability to predict sheep PLS is compared between 

ultrasonography and regression models of blood metabolite biomarkers. Most biomarker panels 

offer a higher sensitivity and specificity than that of ultrasound diagnosis of PLS. The values 

calculated for ultrasound are for detecting pregnancy status (CNT vs PRG) and whether the 

pregnant ewes carry a single fetus or more (SNG vs MLP) while, the biomarker panels also identify 

the specific number of the litter (i.e., SNG, TWN, TRP). 

 Ultrasonography 

CNT vs PRG 

Ultrasonography 

SNG vs MLP 

CNT vs PRG SNG vs TRP TWN vs TRP 

Sensitivity 0.56  0.87 0.69 0.56 0.66 

Specificity 0.70  0.53 0.85 0.91 0.85 

AU-ROC 0.65  0.68 0.76 0.82 0.80 
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Table 6. Serum metabolome associated with sheep pregnancy. Metabolites include those 

identified and quantified by NMR and LC-MS/MS from serum of healthy sheep assessed for 

pregnancy and litter size. Metabolite IDs identified by ^ refer to an isomer of that lipid. Note that 

total dimethylarginine does not have a LMDB ID since it consists of the sum of two metabolites 

(symmetrical and asymmetric dimethylarginine). 

Platform Metabolite LMDB ID ClassyFire Chemical 

Classification 

NMR 

1-Methylhistidine LMDB00001 Carboxylic acids and derivatives 

2-Hydroxybutyric acid LMDB00003 Hydroxy acids and derivatives 

2-Hydroxyisovalerate LMDB01096 Fatty Acyl derivatives 

3-Hydroxybutyric acid LMDB00144 Hydroxy acids and derivatives 

3-Hydroxyisovaleric acid LMDB00238 Fatty Acyl derivatives 

3-Methyl-2-oxovaleric acid LMDB01097 Keto acids and derivatives 

Acetic acid LMDB00014 Carboxylic acids and derivatives 

Acetoacetate  LMDB00026 Keto acids and derivatives 

Acetone LMDB00352 Organooxygen compounds 

L-Arginine LMDB00171 Carboxylic acids and derivatives 

L-Asparagine LMDB00075 Carboxylic acids and derivatives 

Betaine LMDB00015 Carboxylic acids and derivatives 

Butyrate LMDB00013 Fatty Acyl derivatives 

Choline LMDB00041 Organonitrogen compounds 

Citric acid LMDB00040 Carboxylic acids and derivatives 

Creatine LMDB00029 Carboxylic acids and derivatives 

Creatinine LMDB00180 Carboxylic acids and derivatives 

Dimethylamine LMDB00037 Organonitrogen compounds 

Dimethyl sulfone LMDB00459 Sulfonyl compounds 

Dimethylglycine LMDB00039 Carboxylic acids and derivatives 

D-Mannose LMDB00076 Organooxygen compounds 

Ethanol LMDB00044 Organooxygen compounds 

Formate LMDB00060 Carboxylic acids and derivatives 

Glucose LMDB00048 Organooxygen compounds 

Glycerol LMDB00055 Organooxygen compounds 

Glycine LMDB00049 Carboxylic acids and derivatives 

Hippuric acid LMDB00227 Benzene and substituted benzene 

derivatives 
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Hypoxanthine LMDB00067 Imidazopyrimidines 

Isobutyric acid LMDB00357 Carboxylic acids and derivatives 

Isoleucine LMDB00077 Carboxylic acids and derivatives 

L-Acetylcarnitine LMDB00091 Fatty Acyl derivatives 

L-Alanine LMDB00070 Carboxylic acids and derivatives 

L-Carnitine LMDB00027 Organonitrogen compounds 

L-Glutamic acid LMDB00063 Carboxylic acids and derivatives 

L-Glutamine LMDB00202 Carboxylic acids and derivatives 

L-Histidine LMDB00080 Carboxylic acids and derivatives 

L-Lactic acid LMDB00084 Hydroxy acids and derivatives 

L-Leucine LMDB00215 Carboxylic acids and derivatives 

L-Ornithine LMDB00099 Carboxylic acids and derivatives 

L-Phenylalanine LMDB00069 Carboxylic acids and derivatives 

L-Proline  LMDB00071 Carboxylic acids and derivatives 

L-Serine  LMDB00083 Carboxylic acids and derivatives 

L-Threonine LMDB00074 Carboxylic acids and derivatives 

L-Lysine LMDB00081 Carboxylic acids and derivatives 

Malonic acid LMDB00217 Carboxylic acids and derivatives 

Methanol LMDB00358 Organooxygen compounds 

Methionine LMDB00221 Carboxylic acids and derivatives 

Oxoglutaric acid LMDB00094 Keto acids and derivatives 

Pyruvic acid LMDB00112 Keto acids and derivatives 

Sarcosine LMDB00124 Carboxylic acids and derivatives 

Tyrosine LMDB00068 Carboxylic acids and derivatives 

Urea LMDB00131 Organic carbonic acids and 

derivatives 

Valine LMDB00271 Carboxylic acids and derivatives 

L
C

-M
S

/M
S

 

SM (OH) C14:1 LMDB00624 Sphingolipids 

SM C16:0 LMDB00524 Sphingolipids 

SM C16:1 LMDB00656 Sphingolipids 

SM (OH) C16:1 LMDB00780 Sphingolipids 

SM C18:0 LMDB00569 Sphingolipids 

SM C18:1 LMDB01208 Sphingolipids 

SM C20:2 LMDB00626 Sphingolipids 

SM (OH) C22:1 LMDB00627 Sphingolipids 

SM (OH) C22:2 LMDB00628 Sphingolipids 

SM (OH) C24:1 LMDB00630 Sphingolipids 

Acetylornithine LMDB00430 Carboxylic acids and derivatives 

Alpha-aminoadipic acid LMDB00168 Carboxylic acids and derivatives 
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Asymmetric dimethylarginine (ADMA) LMDB00344 Carboxylic acids and derivatives 

C0 (Carnitine) LMDB00027 Organonitrogen compounds 

C14:1 (tetradecenoylcarnitine) LMDB01011 Fatty Acyl derivatives 

C2 (Acetylcarnitine) LMDB00091 Fatty Acyl derivatives 

C3 (Propionylcarnitine) LMDB00253 Fatty Acyl derivatives 

C4 (butyrylcarnitine) LMDB00374 Fatty Acyl derivatives 

C5 (Valerylcarnitine) LMDB00581 Fatty Acyl derivatives 

Carnosine LMDB00010 Peptides 

Citrulline LMDB00274 Carboxylic acids and derivatives 

Kynurenine LMDB00214 Organooxygen compounds 

L-Aspartic acid LMDB00085 Carboxylic acids and derivatives 

lysoPC a C14:0 LMDB00525 Glycerophospholipids 

lysoPC a C16:0 LMDB00526 Glycerophospholipids 

lysoPC a C16:1 LMDB00527 Glycerophospholipids 

lysoPC a C17:0 LMDB00571 Glycerophospholipids 

lysoPC a C18:0 LMDB00528 Glycerophospholipids 

lysoPC a C18:1 LMDB00409 Glycerophospholipids 

lysoPC a C18:2 LMDB00530 Glycerophospholipids 

lysoPC a C20:3 LMDB00533 Glycerophospholipids 

lysoPC a C20:4 LMDB00534 Glycerophospholipids 

lysoPC a C26:0 LMDB00653 Glycerophospholipids 

lysoPC a C26:1 LMDB01226 Glycerophospholipids 

Methionine sulfoxide LMDB00373 Carboxylic acids and derivatives 

PC aa C32:2 LMDB01211^ Glycerophospholipids 

PC aa C36:0 LMDB01212 ^ Glycerophospholipids 

PC ae C36:0 LMDB01210 ^ Glycerophospholipids 

PC aa C36:6 LMDB01110 ^ Glycerophospholipids 

PC aa C38:0 LMDB01111 ^ Glycerophospholipids 

PC aa C38:6 LMDB01122 ^ Glycerophospholipids 

PC aa C40:1 LMDB01119 ^ Glycerophospholipids 

PC aa C40:2 LMDB01125 ^ Glycerophospholipids 

PC aa C40:6 LMDB01140 ^ Glycerophospholipids 

PC ae C40:6 LMDB00599 Glycerophospholipids 

Putrescine LMDB00329 Organonitrogen compounds 

Serotonin LMDB00120 Indoles and derivatives 

Spermidine LMDB00311 Organonitrogen compounds 

Spermine LMDB00310 Organonitrogen compounds 

Taurine LMDB00115 Organic sulfonic acids and 

derivatives 
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Total dimethylarginine N/A Carboxylic acids and derivatives 

trans-Hydroxyproline (t4-OH-Pro) LMDB00230 Carboxylic acids and derivatives 

Trimethylamine N-oxide LMDB00278 Organonitrogen compounds 

Tryptophan LMDB00279 Indoles and derivatives 
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Table 7. Biomarker concentrations adjusted for calculation in the logistic regression. Raw 

concentration of each metabolite (indicated in [ ]) is converted based on the following formula and 

the resulting value is used in the corresponding logistic regression. 

 CNT vs PRG SNG vs TRP TWN vs TRP 

Methanol Log2([methanol]/4901.36) – 

7.13)/1.08 

N/A Log2([methanol]/2261.69) + 

0.25)/0.07 

L-carnitine Log2([L-carnitine]/3733.21) 

– 6.76)/0.56 

Log2([L-carnitine]/39.70) + 

0.98)/0.10 

Log2([L-carnitine]/1961.53) + 

0.0.26)/0.03 

D-glucose Log2([D-

glucose]/384197.32) – 

6.76)/0.57 

N/A N/A 

L-arginine Log2([L-

arginine]/21202.62) – 

6.85)/0.81 

N/A N/A 

Urea Log2([urea]/205076.40) – 

6.80)/0.61 

N/A N/A 

Methionine N/A Log2([methionine]/30.22) + 

0.98)/0.12 

N/A 

Isobutyric 

Acid 

N/A N/A Log2([isobutyric acid]/669.83) 

+ 0.26)/0.03 

L-lactic 

acid 

N/A N/A Log2([L-lactic 

acid]/145410.12) + 0.26)/0.04 

Valine N/A N/A Log2([valine]/10719.58) + 

0.26)/0.03 

Tyrosine N/A N/A Log2([tyrosine]/3242.95) + 

0.26)/0.05 
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Figures  

 

Figure 1.  Receiver Operating Characteristics (ROC) curve of biomarkers of sheep 

pregnancy. The panel of five metabolites (methanol, L-carnitine, D-glucose, L-arginine, urea) 

from the CNT vs PRG comparison were selected as significant (p-value<0.05) biomarkers of sheep 

pregnancy.  
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Figure 2.  Receiver Operating Characteristics (ROC) curve of biomarkers of pregnant ewes 

with a single or more than two lambs. The comparison of SNG vs TRP groups identified 

methionine and L-carnitine as significant (p-value<0.001) biomarkers that would identify ewes 

that carry a single lamb or those that carry more than two lambs.  
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Figure 3. Receiver Operating Characteristics (ROC) curve of biomarkers of pregnant ewes 

with twin or triplet lambs.  A panel of six metabolites (isobutyric acid, L-lactic acid, L-carnitine, 

valine, tyrosine, methanol) from comparing TWN vs TRP groups were identified as significance 

(p-value<0.05) biomarkers of pregnant ewes that carry multiple lambs.  
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Chapter 5: Conclusion 
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The Canadian sheep industry is worth more than $750 million GDP a year. While still a relatively 

small segment of the livestock industry (about 4% of the total Canadian meat market), the sheep 

industry is expected to grow by about 3.5% per year for the next 5 years. As with nearly all 

livestock operations, profitability and viability in sheep farming are greatly impacted by three key 

production traits: 1) feed efficiency, 2) meat production and 3) reproductive performance of the 

maternal flock. Animal feed contributes up to 85% of the cost of production for sheep producers. 

Farm revenue on the other hand is based on the number of viable lambs born and weaned and the 

carcass meat yield from each animal. The challenge for sheep producers is to increase production 

efficiency by maximizing yield while maintaining or minimizing input. This often means 

identifying or selecting for ewes (or rams) that are most feed-efficient, fertile and able to deliver 

viable lambs. Being able to predict these traits early on in a sheep’s lifecycle provides the 

opportunity for producers to make feed adjustments, select or cull animals and improve their 

overall operational efficiency. As highlighted in the first chapter of this thesis, a number of newly 

emerging technologies (genomics, proteomics and metabolomics) offer sheep farmers the 

opportunity to identify or predict the most fertile ewes and the most feed-efficient lambs.  Among 

all of these “omics” technologies, I believe that metabolomics offers some of the most exciting 

and affordable approaches to help producers optimize their operations and realize significant 

economic benefits. Therefore, the central hypothesis behind this thesis is that metabolomics can 

be used to identify and quantify blood biomarkers of key economic and production traits in sheep. 

To test this hypothesis I set out to complete three specific objectives: (1) comprehensively 

identify and quantify the blood metabolome of sheep, (2) identify and quantify blood biomarkers 

of residual feed intake (RFI) and carcass merit in lambs, and (3) identify and quantify predictive 

blood biomarkers of pregnancy and litter size (PLS) in sheep. To further formulate the hypothesis 
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and achieve these objectives, I spent a number of months developing a multidisciplinary 

collaboration and consulting with a team of scientists and sheep producers to develop the research 

plan. My research objectives were chosen and refined based on initial interactions and feedback 

from sheep industry leaders and sheep organizations in both Alberta and across Canada. In 

particular, I sought feedback about industry expectations and production priorities that fostered 

increasing revenue and decreasing production costs for sheep producers. Based on this feedback, 

the key traits that were determined to be most important to producers were: 1) RFI (as a measure 

of feed efficiency), 2) muscle:bone ratio (MBR), 3) carcass yield grade (YG), as two measures of 

carcass merit, and 4) PLS detection before 60 days into gestation. These four traits all have 

substantial influence on sheep production profitability.  

These research ideas and objectives were then framed into grant applications that involved 

a number of universities and colleges across Canada [University of Alberta (Edmonton, AB), 

University of Calgary (Calgary, AB), University of Guelph (Guelph, ON), Laval University 

(Quebec, QC), Olds College (Olds, AB), and Lakeland College (Vermillion, AB)], as well as 

research centers in Alberta (The Metabolomics Innovation Center, Livestock Gentec), and 

provincial partners (Alberta Agriculture and Forestry). Because of the close involvement of the 

Canadian sheep industry, we also received significant (financial and technical) support from sheep 

organizations around the country, including provincial organizations such as the Alberta Lamb 

Producers, the Alberta Sheep Breeders’ Association, the Ontario Sheep Farmers, and national 

organizations such as the National Sheep Network and the Canadian Sheep Breeders’ Association. 

As part of this support, we gained access to multiple private sheep flocks in the provinces of 

Alberta and Ontario to collect >1400 blood samples. 
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Prior to undertaking the experimental portion of this project, I conducted an extensive 

literature review on sheep metabolomics in an effort to determine what was known about the sheep 

metabolome. This was aimed at completing objective one (comprehensively identify and quantify 

the blood metabolome of sheep). In the course of conducting this literature review, I realized that 

to fully understand what was known about the sheep metabolome, I would also have to 

contextualize it with what was known about the metabolomes of other livestock species (cattle, 

pigs, horses, goats, etc.).  As a result, I expanded my original objective from only 

reviewing/characterizing the sheep metabolome to reviewing/characterizing the metabolomes of 

all major livestock species. However, I quickly found out that much of the information on livestock 

metabolomes and livestock metabolomics was very diffuse and poorly consolidated. Therefore, I 

decided to consolidate this information into an open access, electronically accessible database 

called the Livestock Metabolome Database (LMDB – http://www.lmdb.ca). Chapter two of this 

thesis describes the methods used to assemble the data and the software used to put the database 

online. In assembling this database, I reviewed nearly 150 publications in peer-reviewed journals 

and extracted data on nearly 1100 metabolites or metabolite species. It was through this work that 

I also identified a number of trends and gaps in the knowledge of the sheep metabolome. In 

particular, I concluded that application of metabolomics in sheep research is rather outdated and 

the sheep serum metabolome has been poorly investigated. I also found that the use of 

metabolomics to explore biomarkers of important production traits in sheep, such as RFI, carcass 

merit and PLS is generally lacking in the literature. Another gap observed from this review was 

the limited scope of metabolite detection in the few sheep metabolomics publications. The majority 

of the studies reported only a handful of metabolites from the sheep metabolome or used only a 

single analytical platform to characterize the metabolome. Indeed, there were no published studies 
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at the time that used more than one analytical platform to explore the sheep serum metabolome. 

More importantly, the majority of studies lacked quantified data and just reported the presence or 

absence of a metabolite. This analysis essentially identified a number of opportunities to fully 

characterize the sheep metabolome (especially the serum metabolome) using experimental 

methods. This led to the work described in chapter three of this thesis. 

The experimental work described in chapter three allowed me to further address objective 

one (comprehensively identify and quantify the blood metabolome of sheep), while at the same 

time completing objective two (identify and quantify predictive blood biomarkers of RFI and 

carcass merit in lambs). In working towards these two objectives, I used four analytical platforms 

that are relatively popular in metabolomics studies. These include nuclear magnetic resonance 

(NMR) spectroscopy, direct injection tandem mass spectrometry (DI-MS/MS), liquid 

chromatography tandem mass spectrometry (LC-MS/MS) and inductively coupled plasma mass 

spectrometry (ICP-MS). The NMR method is particularly useful for detecting sugars, alcohols, 

polyols and volatile compounds. The DI-MS/MS method is useful for detecting and quantifying 

lipids and acylcarnitines. The LC-MS/MS method is best for detecting organic acids, amino acids 

and biogenic amines, while ICP-MS is best for the detection and quantification of metal ions. 

Analyzing the serum samples with these instruments allowed us to explore different categories of 

metabolites and report a wide range of concentrations. 

Residual feed intake and carcass merit are two traits that contribute substantially to 

profitability of sheep production. Because animal feed is the biggest contributor to production 

costs, any route that can reduce feed requirements will obviously improve farm profitability. 

Carcass yield and quality are other factors that play a role in determining the price obtained for 

feedlot lambs and, therefore, overall farm income. There is more than one way to manage animal 
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feed and identifying/selecting an animal’s feed efficiency level. Direct measurement of RFI 

requires lengthy trials, expensive equipment, and technical knowledge to process the data. On the 

other hand, direct measurement of carcass quality requires ultrasound, a method that is expensive 

and rarely practiced by sheep producers in Alberta. Another way of quantifying carcass merit is 

post-mortem evaluation of the casrcass which obviously defeats the purpose of selection for future 

breeding. As a result, indirect measurement of these traits using readily accessible blood 

biomarkers in live animals would be preferred. Therefore, I used the analytical instruments 

mentioned above to profile the serum metabolome of sheep categorized based on RFI and carcass 

merit. From these studies, I discovered a panel of three serum metabolites that can serve as 

candidate biomarkers for detecting sheep RFI (isopropyl alcohol, aminoadipic acid, and acetone). 

Additionally, I discovered two panels of candidate serum biomarkers for detecting MBR and 

carcass YG (lysoPC a C26:1 for MBR and total dimethylarginine, citric acid, hypoxanthine, 

hippuric acid, asymmetric dimethylarginine, l-phenylalanine, and SM C16:1 for YG). These 

results were published in the Journal of Animal Science. 

Chapter four of my thesis focused on objective three (identify and quantify predictive blood 

biomarkers of PLS in sheep). Pregnancy and the number of lambs a ewe delivers are other key 

aspects that determines a sheep producer’s income. The number of lambs born and weaned is a 

determining factor in replacing the maternal flock and creating revenue by selling the top ram-

lambs as seedstock, backgrounding the ram-lambs in the feedlot and retaining/selling the ewe-

lambs as replacements. Increasing lambing rate is, in part, dependent on detecting pregnancy at 

early stages of gestation. The sheep industry is currently limited to using ultrasonography for direct 

detection of ewe pregnancy between 40-90 days into gestation. This requires specialized 

equipment, certification and specialized training and, perhaps, booking appointments with the 
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service providers several weeks in advance. Moreover, the accuracy of detecting litter size via 

ultrasound relies mostly on the experience of the operator and the timepoint in pregnancy 

detection. Indirect measurement of PLS using blood biomarkers could offer a cheaper and faster 

alternative. While plasma progesterone can be used, there are no commercially available kits for 

measuring this hormone in sheep and no serum-based markers for sheep PLS have been identified. 

Therefore, I designed a longitudinal study and collected blood from pregnant ewes at five 

timepoints from seven days prior to conception until 70 days into gestation. These samples were 

taken from different breeds, in different farms with varying management practices, so that the 

resulting biomarkers would have global application. I used the same analytical platforms (NMR, 

DI-MS/MS and LC-MS/MS) and statistical methods to analyze these serum samples as done in 

chapter three. Through this work, I was able to identify a panel of five candidate serum biomarkers 

(methanol, L-carnitine, D-glucose, L-arginine and urea) for detecting pregnancy at day 50 of 

gestation. At the same timepoint, I also identified two other panels of biomarkers that could detect 

how many lambs a pregnant ewe would deliver (methionine and L-carnitine to detect pregnant 

ewes that deliver a single lamb or more than two lambs, and methionine, isobutyric acid, L-lactic 

acid, L-carnitine, valine, tyrosine, and methanol to detect pregnant ewes that deliver two or more 

lambs). I then validated the initial discovery biomarkers using a cohort that was three times larger 

and confirmed 50 days post-conception is the earliest point in time to detect sheep PLS using 

metabolite blood biomarkers. These biomarkers are independent of breed, environmental 

conditions and management system.  

In both studies described in chapters three and four, I chose to analyze serum (obtained 

from blood) because it is a readily accessible biofluid that is ideal for investigating biomarkers of 

different traits. This is because blood uniformly bathes all organs in the body and therefore 
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provides a global metabolic picture of all physiological activities within the body. Blood collection 

from sheep is a relatively straightforward procedure and blood can be drawn at large volumes 

within the boundaries of animal care codes. This is an important consideration when conducting 

metabolomics analysis by NMR or MS-based instrument. The lack of adequate sample volume is 

often a bottleneck in metabolomics, especially comprehensive, quantitative, multi-platform 

metabolomic studies that use NMR, LC-MS/MS, DI-MS/MS and ICP-MS – as done in this thesis. 

I typically collected 7-10 mL of blood from each animal, which yields 40-50% serum (3-5 mL). 

This supplied me with adequate sample size to allow using a small quantity for instrument 

optimization and the remaining amount for metabolomic analysis. More precisely, depending on 

methods used to run the samples, I used about 500 µL of serum for NMR, about 200 µL for DI-

MS/MS and LC-MS/MS, and less than 500 µL for ICP-MS  

By successfully completing these projects, I was able to prove the hypothesis that 

metabolomics can be used to identify and quantify blood biomarkers of key economic and 

production traits in sheep. Furthermore, I was able to meet all three objectives set out for this 

thesis. With regard to objective one, I conducted a comprehensive assessment of the sheep serum 

metabolome by gathering the published data from the literature and conducting a detailed 

experimental analysis of sheep serum samples using NMR, LC-MS/MS, DI-MS/MS and ICP-MS. 

From the experimental works presented in chapters three and four, I identified 161 unique 

metabolites along with their concentrations in sheep serum. As a result of this experimental work, 

the number of known serum metabolites in the sheep metabolome expanded by 50%. I also 

revealed, for the first time, the kinetics of sheep serum metabolome over the course of the first 70 

days of pregnancy. Data on the sheep serum metabolome is now housed in the LMDB, which is 

an open access database for the public. As part of objective two and three, I also identified and 
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quantified novel serum biomarkers of sheep RFI, carcass merit, and PLS. The biomarkers for the 

first two traits require further validation, while the serum biomarkers of sheep PLS have been 

validated. In particular, based on the data from the sheep PLS study, 50 days post-conception 

appears to be the earliest point in time to simultaneously detect biomarkers of sheep PLS.  

I believe these results illustrate the potential that metabolomics offers to livestock 

researchers and producers alike, particularly with regard to revealing predictive biomarkers of 

economically important traits in livestock. I believe this work has significantly expanded what is 

known in the field of livestock metabolomics and it has shown that metabolomics can be 

productively applied to sheep research with promising applications for sheep production.  

Future Research 

The work I started could proceed in a number of directions, some of which I would hope to 

undertake myself in the near term. One obvious research activity that could be pursued is an update 

of the LMDB. This resource was last comprehensively updated in 2017 and a great number of 

high-quality livestock metabolomics papers have appeared in the past three years. Indeed, a quick 

check of PubMed for the words “livestock” and “metabolomics” shows that livestock 

metabolomics research is accelerating, comparing 16 papers published on the subject in 2016 to 

51 publications in 2020. I expect the rate of publications in this area to grow exponentially. I 

believe an updated LMDB could serve as a convenient route to standardize and consolidate the 

most recent published livestock metabolome data in a centralized, online repository.  

With regard to my work on sheep RFI and carcass quality, there are at least two obvious 

routes to follow. One is to validate the candidate biomarkers using a sample size that is at least 

three times larger than the initial cohort. The second is to investigate how early in the sheep life 

cycle the biomarkers can be distinguished. Currently, the Canadian sheep industry appears to be 
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largely unaware about RFI as a measure of feed efficiency, therefore, educating sheep producers 

on this topic and uncovering ways to measure RFI is another route to follow. I am currently 

working with the provincial and national sheep organizations to plan and deliver seminars, courses 

and (virtual) tours for Canadian sheep producers to expand their knowledge and provide a toolkit 

on efficient feed (and other) management practices. In addition, very little research has been done 

to improve carcass yield and quality in Canadian sheep flocks while similar research on beef and 

dairy cattle is relatively advanced. Therefore, the wealth of experience and results published from 

other large ruminant (i.e., cattle) studies and previous metabolomics studies could pave the way 

for more detailed research on sheep RFI and carcass merit in the future. 

With regard to my work on sheep PLS, I believe that since the biomarkers have been 

validated, translating the results for field application is the most appropriate future path. The 

metabolite biomarkers of sheep PLS reported in this thesis resulted from vigorous statistical 

analysis of nearly 1200 serum samples collected over five timepoints in two experimental phases, 

from sheep on six commercial flocks in two different provinces. Overall, the results appear to be 

robust and high performing. Furthermore, it would be interesting to see if these markers could be 

further validated in other countries (such as New Zealand or Australia) where the sheep industry 

is much larger. Therefore, it seems reasonable to introduce these biomarkers for use in the 

Canadian sheep industry (and possibly elsewhere). I believe the markers identified from this 

project could be translated or commercialized via three routes: 1) a laboratory kit which is designed 

to run in a centralized lab, 2) a handheld device that can do real-time pen-side detection, or 3) an 

in-line system that could be incorporated into the milking machines or other facilities pre-installed 

on the farm. The first two options are most feasible, as not all producers have pre-installed 

facilities, like a milking system on their farm, and not all equipment can easily take-in an add-on 
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feature. In terms of simplicity, the easiest and fastest route to bring this test “online” is to have a 

centralized laboratory analyze blood samples sent from producers using a PLS detection kit. In 

terms of cost and convenience, the best route is to develop a handheld device that the producers 

can use at their discretion. Such a device would perhaps use a lateral flow system to separate serum, 

a set of enzyme-based colorimetric assays and a simple color sensor to detect and quantify the 

metabolites. We envision this device requiring a few drops of blood to simultaneously analyze 

pregnancy and the number of fetuses a pregnant ewe is carrying. I have already initiated efforts 

towards developing this handheld device and am hopeful that such a system will be available in 

the near future. 
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