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Abstract

Internal gravity waves transport energy and momentum in both the atmosphere and

the ocean. This physical process occurs at such small length scales that it is not cap-

tured by coarse resolution numerical models of weather and climate. A series of ex-

periments is presented that model the generation of non-hydrostatic internal gravity

waves by intrusions and by the forcing of wind driven turbulent eddies in the sur-

face mixed layer of the ocean. In a first set of experiments, gravity currents intrude

into a uniformly stratified ambient fluid and the internal waves that are launched

are examined with a finite-volume, full-depth, lock-release setup. In a second set

of experiments, isolated rough topography is towed through stratified fluid and the

interaction between the turbulent wake and internal waves is investigated. In a third

set of experiments, a turbulent shear layer is forced by a conveyor belt affixed with

flat plates near the surface of a stratified fluid and downward propagating internal

waves are generated. The turbulence in the shear layer is characterized using par-

ticle image velocimetry to measure the kinetic energy as well as length and time

scales. The internal waves are measured using synthetic schlieren to determine the

amplitudes, frequencies, and the energy of the generated waves. Finally, numerical

simulations are used to validate and extend the results of laboratory experiments.

The thesis will address the question of what fraction of the turbulent kinetic energy

of a shear turbulent mixed layer is radiated away by internal waves. Implications

for internal waves propagating into the ocean are discussed.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Internal gravity waves

Internal gravity waves are a common phenomenon in density stratified fluids such

as the oceans and the atmosphere (Garrett and Munk (1979), Staquet and Sommeria

(2002)). An internal gravity wave, or more simply an internal wave, is an oscilla-

tion of fluid due to the combined influence of the inertia of the fluid and a restoring

buoyancy force. They occur within the body of the fluid either at an interface be-

tween two layers with different densities, such as fresh water overlying salt water,

or within density gradients, such as the continuous change of density due to salinity

or temperature. They are distinguished from surface waves on an air-water interface

in that the density differences are relatively small.

The theoretical properties of internal waves are discussed in many fluid dynam-

ics textbooks (e.g. Gill (1982); Kundu (1990)). Internal waves are theoretically

interesting in part because the phase velocity, ~cp, is perpendicular to the group ve-

locity, ~cg. That is, the direction that the crests and troughs are observed to move

is at right angles to the direction that the energy of the wave propagates. Contrast

this with the more everyday experience of surface water waves where the crests

move in the same direction as the wave energy. Internal waves are also dispersive,

which means the speed of propagation is a function of the wave number vector,
~k = (kx, kz). This is different from what is commonly learnt in undergraduate stud-

ies of the physics of mechanical waves where the wave speed is a function only of
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properties of the undisturbed fluid. Furthermore, if not constrained to an interface,

internal waves can propagate vertically as well as horizontally. The dispersion re-

lation for internal waves forces the angle to the vertical, θ, at which these waves

propagate to be a function of their frequency, ω. In two dimensions, the dispersion

relation is

ω =
Nkx√
k2
x + k2

z

= N cos θ (1.1)

where N = − g
ρ0

dρ
dz

is the buoyancy frequency.

Internal waves are important because they provide a mechanism for transporting

energy and momentum in a fluid. Researchers who study internal waves are typi-

cally interested in the generation, the propagation and evolution, and the eventual

breaking of waves (Thorpe (1975)). Each one of these three aspects is important for

understanding and predicting the role internal waves play in distributing energy in a

system. Wave generation is concerned with the mechanisms that create the waves,

the quantity of energy that is extracted from the background flow or from a localized

source and the characteristics such as the frequency and wave number spectrum of

waves produced. Propagation problems involve the transport of energy and how the

waves evolve depending on changes in the background properties of the fluid and

by interacting with other waves. Wave energy is deposited when waves overturn

and break leading to localized mixing or acceleration of the background flow. The

research presented in this thesis focuses only on wave generation problems.

Internal waves can be generated whenever there is a vertical disturbance of a

stratified fluid. For example, consider the phenomena of ‘dead-water’ where boats

enter a body of water and, even with the engines at full power, are unable to main-

tain their previous speed (Ekman (1904)). This is due to fresh water run-off that

floats above the sea water. A boat’s propeller disturbs this interface and generates

internal waves. Because energy is going into the internal waves, it is not going into

accelerating the boat forward. In the atmosphere, internal waves can be launched

by the flow of air over mountain ranges which lifts dense air upwards and launches

upward propagating internal waves. These waves eventually break depositing mo-

mentum and act as a drag force on the atmosphere. In the ocean, currents and tides

can push stratified fluid over sills, continental shelves, and sea-mounts to generate
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internal waves.

Internal waves can also be generated in the laboratory. The classic experiment

is the oscillation of a cylinder that forces fluid up and down (Mowbray and Rarity

(1967a)). If the frequency of oscillation is sufficiently low, beams of internal waves

are observed to radiate away at an angle related to this frequency. But internal

waves can be generated whenever stably stratified fluid is displaced. In this thesis,

we examine the generation of internal waves by intrusive gravity currents, by flow

over isolated rough topography, and by a turbulent shear layer.

1.1.2 Waves and ocean mixing

One of the tools used in climate change science is the numerical general circulation

model (GCM) that simulates the atmosphere and oceans in order to understand

how our climate works and create scenarios of future climate. These models are

typically set up to simulate averages of the environmental state over time scales of

many decades or longer and therefore have relatively coarse resolutions. Even state-

of-the-art ocean GCMs have grid length scales on the order of tens of kilometres,

which is larger than the wavelengths of non-hydrostatic internal waves generated by

turbulent processes. To include these sub-grid scale physical processes into GCMs,

they must be parametrized. This means taking the large scale model variables,

and, through physical modelling and empirical studies, providing the appropriate

adjustment to the large scale model variables which averages the net effect of the

various small scale processes.

An important area of current research is understanding the role internal waves

play in controlling the meridional overturning circulation (MOC) of the ocean (Wun-

sch and Ferrari (2004)). The MOC is associated with sinking of dense near-surface

waters at high latitudes and upwelling elsewhere (Vallis (2006)). Although not

wholly resolved, the downwelling is caused by a combination of surface cooling

which leads to convection (Marshall and Schott (1999)) and wind forcing with a

circumpolar channel (Vallis (2006)). The physics behind the upwelling is more

poorly understood. Upwelling requires the mixing down of heat from the surface

into the interior of the ocean. Without this mixing and the associated heat transport,
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the deep ocean would eventually fill with dense, stagnant water and there would be

no deep circulation.

On average, there needs to be an amount of mixing in the world’s oceans char-

acterized by a diffusivity of κ = 10−4 m2 s−1 (Munk and Wunsch (1998)) based a

on one dimensional advective-diffusion balance by matching observed stratification

profiles of the ocean and using a global mean vertical upwelling of w = 10−7ms−1.

Up to recently, GCMs have used a constant diffusivity as a parametrization of the

sub-grid scale mixing that must be occurring. However, various studies have found

that 10−5 m2 s−1 is a fairly typical value in the abyssal ocean. More vigorous mix-

ing has been observed at various hot spots having higher diffusivity associated with

tidal flow over topography (Ledwell et al. (2000); Polzin et al. (1997)). This inten-

sified mixing has been linked to internal wave generation and consequent breaking.

Internal waves are thought to provide a transport mechanism for energy and mo-

mentum from tidal and wind sources into the abyssal ocean where, after they break,

they cause localized mixing (Munk and Wunsch (1998)). In total, an estimated 2.1

TW of energy is required to drive this mixing and thus the Meridional Overturn-

ing Circulation. It is thought that both the tides and winds each provide about 1

TW of energy. Over the last decade, there has been substantial work done in better

quantifying the energy input into the internal wave field by tidal flows over rough

topography (see the review by Garrett and Kunze (2007)) but less in quantifying the

energy input by winds.

This thesis was motivated in part by asking how the energy input by wind acting

on the ocean mixed layer can generate internal waves and whether those waves

could lead to ocean mixing. Waves are usually considered to be important because

they can lead to turbulence and mixing. We are investigating the inverse process:

how can turbulence generate internal waves?

These turbulently generated internal waves may also be significant in other geo-

physical applications. The interconnection between turbulence and waves is impor-

tant to the mixing of biological and chemical nutrients in lakes (Wüest and Lorke

(2003)). As the wind blows across the surface of a lake, turbulent eddies can form

which may launch waves into the lake which, when they break, can cause localized
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mixing. Another example is tailings ponds in the mining industry that are designed

to have particles settle to the bottom and where mixing is generally undesirable.

Finally, at the top of the troposphere sheared turbulence creates waves that may

propagate into the stratosphere. Convective storms impinging upon the base of the

stratosphere (Song et al. (2003), Michaelian et al. (2002)) may lead to turbulently

generated internal waves.

This thesis hopes to address how significant, in terms of energy, are the waves

generated by a shear turbulent layer. Kantha and Clayson (2007) suggested inter-

nal waves probably do not extract substantial energy out of the ocean mixed layer

such that the turbulent kinetic energy budget needs to be modified. But, since the

total amount of energy available in the ocean mixed layer is large, even a compar-

atively small percentage may be relevant for the energy budget of internal waves.

von Storch et al. (2007) used a 1/10◦ GCM to show that 3.8 TW of power was gen-

erated at the sea surface by the wind and 1.1 TW passed through the surface mixed

layer (≈ 100 m) to the ocean beneath. However, Watanabe and Hibiya (2008) have

performed simulations that show the vast majority of wind induced energy is dis-

sipated in the top 1000 m of the ocean leaving a relatively small fraction available

for deep ocean mixing. We are interested in characterizing the wave energy as a

fraction of the turbulent energy of the forcing and determining whether the waves

extract an insignificantly small fraction (on the order of < 0.1% of the energy), a

significant but relatively small fraction (on the order of 1%), or a significant and

relatively large fraction (on the order of 10%). This can then be used to motivate

whether a parametrization for wind driven, turbulently generated internal waves

should be developed.

1.2 Background

Here, we summarize previous studies on internal wave generation. Identification of

some unresolved questions helped motivate the experiments described in this thesis.
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1.2.1 Waves and intrusions

When the door to a house is opened on a calm winter day, cold dense air flows in

by the occupant’s feet. This is an example of a gravity current, which is an impor-

tant class of stratified flow (Simpson (1997)). In a stratified fluid, a gravity current

will travel at the depth of its neutral buoyancy and is called an intrusive gravity cur-

rent or an intrusion. The dynamics of both gravity currents and intrusions have been

extensively explored using laboratory experiments (e.g. Keulegan (1957); Maxwor-

thy et al. (2002)), numerical simulations (e.g. Birman et al. (2007); Ungarish and

Huppert (2002)) and analytical theory (e.g. Benjamin (1968); Ungarish (2006)).

Since an intrusion displaces stratified fluid, it can generate internal waves. In

partial-depth lock-release experiments, Sutherland et al. (2007) observed that intru-

sions can force high frequency internal waves in a stratified ambient. For symmet-

ric intrusions, laboratory experiments in Sutherland and Nault (2007) demonstrated

that internal waves play an important role in maintaining a constant intrusion speed

for a much greater distance than shallow water theory and numerical simulations

would suggest (Ungarish (2005)). When an intrusion is not travelling at the mid-

depth of the fluid, the initial intrusion speed is significantly increased (Bolster et al.

(2008)). In this thesis, we focus on the properties of the internal waves generated

by symmetric and non-symmetric intrusions. We are interested in the impact of

internal waves on the long-term evolution of an intrusion in symmetric and non-

symmetric cases.

1.2.2 Waves and topography

Winds in the atmosphere and tides in ocean can force fluid to flow over topography.

This vertical displacement of stratified fluid generates internal waves. Steady flow

of speed U over small-amplitude sinusoidal topography of wave number k can ex-

cite internal waves with a frequency of ωexc = Uk with an amplitude proportional to

the amplitude of the topography (Baines (1982)). This is valid as long as ωexc < N .

If the excitation frequency is higher than the buoyancy frequency, exponentially

decaying evanescent waves are forced.
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Bell (1975) investigated wave generation by oscillating tidal flow over topog-

raphy at the bottom of the ocean. As described above, the conversion from the

barotropic tide to an internal tide has been the focus of much recent interest as a

source of mixing in the deep ocean (Garrett and Kunze (2007)). There have been

many numerical and theoretical studies examining the effects of finite depth of the

ocean (Khatiwala (2003); Smith and Young (2002)), finite slope of the topography

(Balmforth et al. (2002)), steep topography (Llewellyn Smith and Young (2003);

St. Laurent et al. (2003)) and three-dimensional topography (Holloway and Merri-

field (1999); Munroe and Lamb (2005)) on internal wave generation.

Recent experimental work by Aguilar and Sutherland (2006) looked at the flow

of stratified fluid over ‘rough topography’ (with either rectangular or triangular

‘hills’). As with sinusoidal topography, waves were observed if the forcing fre-

quency was less than the buoyancy frequency. However, when the flow was super-

critical, where ωexc > N , a turbulent wake in the lee of the topography could launch

internal waves. The frequency was independent of the forcing frequency but equal

to a fixed fraction of the buoyancy frequency (ω = 0.7N ). In the actual experiment,

the topography is towed upside down along the surface of the fluid and the internal

waves propagate downwards. By a change in reference frame, this is equivalent

to having the fluid moving and the topography stationary. Also, since the flow is

Boussinesq, the waves propagating downward can be treated the same as waves

propagating upward. In that paper, as in most work on internal waves and topogra-

phy, the fluid is stratified over the full depth of the fluid. In this thesis, we investi-

gate the effect of a mixed layer adjacent to rough topography on the generation of

internal waves for both sub-critical and super-critical flow.

1.2.3 Waves and turbulence

Turbulence is important in the ocean for mixing of biological and chemical nutri-

ents, dispersal of pollutants, and plays a crucial role in the general circulation which

is important for climate models (Thorpe (2004)). Turbulent flows can also generate

internal waves. These waves can then propagate through fluid transporting energy

away from their source.
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Previous papers have investigated internal waves generated by turbulent wakes

from towed spheres (Bonneton et al. (2006); Diamessis et al. (2005)), from a turbu-

lent bottom Ekman layer (Taylor and Sarkar (2007)), turbulent shear flow (Suther-

land and Linden (1998)) and stationary turbulence (Dohan and Sutherland (2005);

Linden (1975)). Interestingly, although the forcing spans a broad spectrum of time

and length scales, it has been found that the frequency, ω, of the resultant inter-

nal waves lies in a fairly narrow band in proportion to the buoyancy frequency, N ,

namely ω/N ≈ 0.7.

Turbulent entrainment of a stratified fluid can generate internal waves. Tur-

bulent entrainment is a well-studied class of problems involving the rate at which

either shear-free or sheared turbulence mixes into initially two-layered or continu-

ously stratified fluid (Fernando (1991)). In shear-free experiments with a continu-

ously stratified fluid, it is unclear whether internal waves are (Linden (1975)) or are

not (Xuequan and Hopfinger (1986)) significant in changing the entrainment rate as

compared to a two-layer fluid in which internal waves are not generated. However,

it was only with the mixing box experiments of Dohan and Sutherland (2005), that

the focus shifted from the turbulence and the entrainment process to a detailed study

of the internal waves generated.

An example of an entrainment study of a continuous stratified fluid with a mean

flow is a surface driven flow in an annular tank (Kato and Phillips (1969)). Internal

waves were shown to affect significantly the entrainment rate as compared to a two-

layered fluid (Kantha et al. (1977)). However, a detailed study of the internal waves

has not been performed. In this thesis, we explore the properties of internal waves

generated by a turbulent mean flow and especially with reference to the motivational

problem of wind-driven turbulence in the mixed layer of the oceans and lakes.

1.3 Experimental considerations

Both laboratory and numerical experiments are used in this thesis to study internal

waves. These tools can provide insight into generation mechanisms of internal

waves by intrusions, topography, and turbulence.
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Laboratory experiments are used because they are able to investigate repro-

ducibly particular fluid dynamical processes under controlled conditions. This pro-

vides more direct insight into the underlying mechanisms than what can be obtained

by observations of internal waves in field experiments.

Synthetic schlieren (Sutherland et al. (1999)), uses the changes in refraction of

light with density to detect non-intrusively vertical displacements of stratified fluids.

By knowing the displacement of lines of constant density, linear theory can be used

to determine the velocities, amplitudes, frequencies, momentum and energy fluxes

of internal waves propagating in the fluid.

To quantify the velocity field in a turbulent flow, particle image velocimetry

(PIV) can be used. This is a experimental technique new to our lab but used widely

elsewhere. Our version of PIV uses a laser light sheet to illuminate neutrally buoy-

ant particles suspended in the flow. By computing the cross-correlation of video

image pairs taken at a small time interval apart, the displacement of the particles

and hence the velocity of the fluid can be inferred. From the velocity field, the

turbulent kinetic energy can be estimated.

Laboratory experiments are limited, however, in terms of scale. Our experi-

ments are performed in relatively small tank where the presence of walls limits the

applicability of the results to, say, the ocean. Numerical studies provide one way of

overcoming that limitation. Like with an analytical model, a numerical simulation

is essentially a mathematical model which tries to capture the essential physics of

the problem and makes assumptions about which approximations are appropriate.

Here, direct numerical simulations are used to solve the equations of motion. These

provide additional information and verify some of the conclusions of the laboratory

experiments notwithstanding the experimental limitations.

1.4 Thesis overview

The thesis begins with an experimental investigation in chapter 2 of internal wave

generation by an intrusive gravity current. Dye was used to identify the intrusion

and horizontal dye lines were used to visualize the waves. The internal waves are
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shown to impact significantly the evolution of the intrusion by propagating faster

and taking energy away from the current.

Chapter 3 reports on the results of towed topography laboratory experiments.

This experimental apparatus, which was based on the setup used in Aguilar (2005),

consisted of a shallow mixed upper layer and a deep continuously stratified lower

layer. A source of turbulence, namely a rectangular wave form representing iso-

lated rough topography, was dragged through the upper layer. Internal waves could

freely propagate in the lower layer. The internal waves were measured using syn-

thetic schlieren to determine the frequencies of the generated waves. The original

intention was to examine the internal waves and relate their properties to those of

the turbulent wake behind the towed topography. However, it was determined that

this apparatus was inappropriate for studying the coupling between sheared turbu-

lence and waves because it did not distinguish waves generated from the turbulent

wake from waves produced by flow over the topography. We did show that even

with a surface mixed layer, and consistent with previous studies, stratified flow over

isolated rough topography generated waves in a narrow range of a fixed fraction of

the buoyancy frequency.

Chapter 4 describes and analyzes the experimental results of an original exper-

imental setup involving a moving conveyor belt apparatus positioned at the surface

that continuously forces a stratified fluid. In these experiments a turbulent mixed

layer developed and internal waves were observed to propagate away. This lid-

driven cavity flow has similarities with previous mixing box experiments (e.g. Do-

han (2004)) but explicitly forces a mean shear. Conceptually, the setup represents

the physical scenario of the wind forced ocean mixed layer which was the origi-

nal motivation for this work. Particle image velocimetry was used to measure the

velocity field and hence the turbulence in the mixed layer and synthetic schlieren

was used to measure the waves in the stratified ambient. Empirical results are pre-

sented. Most significantly, it is shown that the energy density of the wave field is

on the order of 2-3% of the turbulent kinetic energy density of the mixed layer.

Chapter 5 presents direct numerical simulations that validate and extend the lab-

oratory results from the conveyor belt chapter. Two-dimensional simulations in a
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horizontally periodic domain show the same qualitative features as the correspond-

ing laboratory experiments. In particular, it is demonstrated that the conveyor belt

experiments can be assumed to be essentially two-dimensional and that the pres-

ence of tank walls are not critical to the empirical results. Additionally, an energy

budget is constructed which suggests that on the order of 10% of the energy input

by the surface forcing is transferred to the internal wave field.

Finally, in chapter 6 the interconnections between each of these distinct projects

is examined and future work is suggested.
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Chapter 2

Intrusive Gravity Currents and
Internal Waves

An initial project completed during the course of this PhD was a laboratory ex-

periment on the generation of internal waves by intrusive gravity currents. The

content presented in this chapter was published in the Journal of Fluid Mechanics

as Munroe et al. (2009). That paper also included a section on the numerical mod-

elling of the flow. Since the author of this thesis did not do the modelling or write

up those results, the numerical section has been omitted from this chapter.

2.1 Introduction

Gravity currents are flows driven by horizontal density variations. In the simplest ar-

rangement, heavy fluid flows beneath a uniform ambient. This describes a bottom-

propagating gravity current and models natural examples such as sea breezes or

cold thunderstorm outflows. At sufficiently large spatial and slow temporal scales

a gravity current may be affected by a continuously stratified ambient and, in par-

ticular, may generate internal gravity waves. An internal gravity wave is caused by

the displacement of a fluid parcel from rest which responds to a restoring force due

to buoyancy. This interaction can be more substantial if the density of the gravity

current matches the density of the stratified ambient at some vertical level, in which

case it is referred to as an intrusion. Such a circumstance may arise, for example, at

the outflow of a thunderstorm near the tropopause or when a rising plume spreads

horizontally where it encounters an atmospheric inversion (see Simpson (1997) for
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a comprehensive review of examples of gravity currents in environmental and in-

dustrial contexts.)

In laboratory experiments the most commonly studied gravity current is heavy

fluid propagating along a rigid bottom boundary beneath a uniform ambient (Ben-

jamin, 1968; Britter and Simpson, 1978; Huppert and Simpson, 1980; Keulegan,

1957; Klemp et al., 1994; Shin et al., 2004; Simpson, 1972; Simpson and Britter,

1979). In a typical lock-release experiment in a long rectangular tank, a finite vol-

ume of uniform-density salt water is held behind a gate in a lock. On the other side

of the gate is uniform ambient fluid. When the gate is removed, horizontal density

differences establish a horizontal pressure gradient which causes the current to flow

into the ambient and the ambient to move backward into the lock as a return flow.

Observations show that the speed of the gravity current is constant for several lock

lengths. A prediction of this speed was given by the analytical theory of Benjamin

(1968) which examined the prototype problem of the gravity current of a heavy fluid

of density ρc propagating beneath lighter fluid of density ρa. For a steady current,

the front speed, U , is given by

U = FrB
√
g′H (2.1)

where g′ = g(ρc − ρa)/ρa is the reduced gravity, H is the total depth of the fluid,

and FrB is the Froude number. Using mass and momentum conservation within a

control volume, Benjamin (1968) determined that

FrB(h̃) =

√
h̃(1− h̃)(2− h̃)

1 + h̃
, (2.2)

in which h̃ = h/H is the relative depth of the current head. In particular, for an

energy-conserving current released from a full-depth lock, h = H/2 and FrB =

1/2.

Bottom-propagating gravity currents beneath a two-layer ambient were exam-

ined by Rottman and Simpson (1983), and the first experiments and simulations of

a gravity current travelling along a rigid bottom under a continuously stratified fluid

were performed by Maxworthy et al. (2002). The latter found an empirical relation-

ship between the speed of the front of the gravity current and the parameters of the
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system such as the density of the current and the strength of the stratification. By

analogy with (2.1) they found

U = FrNH, (2.3)

in which N is the buoyancy frequency, which characterized the stratification of the

ambient, and Fr is the Froude number appropriate for gravity currents in a stratified

ambient. For gravity currents having the same density as that at the base of the

ambient, they found Fr ' 0.266. They also determined that the aspect ratio of

the lock is unimportant as far as the initial dynamics of the gravity current were

concerned. They were interested in the transition from the supercritical case to the

subcritical case. In the supercritical case the current travelled faster than the fastest

long wave speed and no internal waves were generated. In the subcritical case,

internal waves were generated and these were observed to act back upon the gravity

current causing it to advance in a pulsating fashion.

Using an extension of shallow water theory from homogeneous to stratified am-

bients, Ungarish and Huppert (2002) showed that their model well captured the

initial slumping phase of such bottom propagating gravity currents observed both

in fully nonlinear numerical simulations and in experiments. Specifically, the speed

was predicted by (2.3) with

Fr = FrB(h̃)(1− S + Sh̃/2)1/2, (2.4)

in which S = (ρb − ρ0)/(ρ` − ρ0) is the ratio of the density difference between

the bottom and top of the ambient to the density difference between the lock-fluid

and the top of the ambient. The prediction was developed for bottom-propagating

gravity currents, in which case 0 ≤ S ≤ 1 (Ungarish (2006)). For a full-depth

lock-release current, one expects h̃ = 1/2 in which case FrB = 1/2, as above.

If the lock fluid density matches that at the bottom of the ambient, S = 1 and

so Fr = Fr0 ≡ 1/4. This result lies in close agreement with the experimental

observation of Maxworthy et al. (2002).

More recently Ungarish (2006) derived an analytic model based upon shallow

water theory that predicted the long-time evolution of bottom propagating gravity

currents. These results were compared with numerical simulations (Birman et al.
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(2007)) and showed good agreement for shallow-depth currents (h̃ � 1/2) in rel-

atively weakly stratified fluids. For subcritical currents in strong stratification the

theory predicted multiple solutions for the current speed and the simulations showed

the current speed matched better with solutions slower than the fastest predicted

speed.

The evolution of intrusions is less understood than that of gravity currents (Brit-

ter and Simpson (1981); Holyer and Huppert (1980); Lowe et al. (2002); Monaghan

(2007); Sutherland et al. (2004)). By allowing the interface ahead of an intrusion to

be vertically displaced, Benjamin’s (1968) theory was adapted to predict the prop-

agation speed of intrusions in a two-layer fluid (Flynn and Linden (2006)). This

speed was predicted on heuristic grounds by Cheong et al. (2006) (hereafter re-

ferred to by “CKL”), who estimated the speed by relating the available potential

energy of the system before the lock-fluid was released to the consequent kinetic

energy of the intrusion.

Numerous experiments have been performed that examine the speed and struc-

ture of intrusions propagating at mid-depth in uniformly stratified ambient, these re-

sulting either from a full-depth lock-release (Sutherland and Nault (2007)) or from

a localized mixed patch (Amen and Maxworthy (1980); Manins (1976); Schoo-

ley and Hughes (1972); Silva and Fernando (1998); Sutherland et al. (2007); Wu

(1969)).

Only recently have laboratory experiments been performed to examine the asym-

metric circumstance of intrusions propagating at arbitrary depth in a uniformly

stratified fluid (Bolster et al. (2008)). These authors extended the CKL result by

fitting a quadratic to the mid-depth, top and bottom propagating intrusion speeds,

that were predicted by (2.3) with Fr0 = 1/4 (Ungarish (2006); Ungarish and Hup-

pert (2002)) and Fr0 = 0.266 (Maxworthy et al. (2002)). Thus they heuristically

predicted that the speed of an intrusion propagating at depth hL is given by (2.3)

with

Fr = Fr0

√
3

(
hL
H
− 1

2

)2

+
1

4
. (2.5)

They found good agreement with both numerical simulations and laboratory exper-

iments, the theory more closely matching the experimental results using Fr0 = 1/4.
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Whereas Bolster et al. (2008) examined the initial intrusion speed, this paper

focuses upon the generation of internal waves by asymmetric intrusions and studies

the consequent influence of internal waves upon the long-time evolution of the in-

trusion. The length of the lock is small compared with the full length of the tank so

that the initial behaviour of the intrusions can be examined as well as the long-time

behaviour which is affected by the motion of internal waves in the ambient. In these

experiments intrusions were created by having an intermediate density between the

average density of the ambient and the density at the base of the stratification. We

also conducted experiments in which the density of the fluid in the lock exceeded

that of the bottom of the stratification. As such these investigations bridge the gap

between studies of a bottom-propagating current and of a symmetric intrusion in a

uniformly stratified ambient.

Shallow water theory and numerical simulations (Ungarish (2005)) have pre-

dicted that the intrusion should evolve from a steady state (constant speed) phase

to a decelerating (self-similar) phase. Such behaviour is anticipated by shallow-

water theory (Ungarish (2006)) because the current speed is predicted to decrease

as the current depth decreases according to (2.4). However, our experiments show

this is not the case for intrusions released from a full-depth lock. Consistent with

Sutherland and Nault (2007), symmetric intrusions are found to propagate at con-

stant speed up to 20 lock-lengths with no appearance of a self-similar phase. This

occurs despite the fact that the head height continuously decreases with distance

from the lock. Such behaviour occurred because the intrusion evolved into the form

of a closed-core solitary wave. For asymmetric intrusions, the return flow launches

internal waves that reflect off the lock-end of the tank and then catch up with the

intrusion head, halting its advance. Until this occurs the intrusion propagates as

constant speed even as the waves act to reduce the head depth to zero. Internal

waves thus play an important role in the long-time evolution of intrusions as we

show quantitatively through an analysis of the wave properties both in experiments

and in numerical simulations.

The paper is organized as follows. The experimental setup and analysis meth-

ods are described in section 2.2 and the experimental results are presented in sec-
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Figure 2.1: Setup and definition of parameters for intrusion experiments.

tion 2.3. The analyses focus upon the intrusion speed and the impact of internal

gravity waves generated by the intrusion and upon how the waves can cause the

intrusion to stop before reaching the end of the tank. Conclusions and future work

are given in section 2.4.

2.2 Experimental setup and analysis

Experiments were performed in a glass tank measuring L = 197.1 cm long by

17.4 cm wide by 48.5 cm tall as shown in figure 2.1. The tank was left open to the

atmosphere at the top. Salt water with a linearly stratified density profile filled the

tank using the standard ‘double bucket’ technique (Oster, 1965). Dye lines of red

food colouring were added every 5 cm while the tank was being filled in order to

visualize internal gravity waves generated in the experiment. The total depth, H ,

of the ambient was either 30 cm or 15 cm for all experiments. The strength of the

stratification, measured by the buoyancy frequency

N =

√
− g

ρ0

dρ

dz
, (2.6)

varied between 0.34 s−1 and 2.0 s−1 (bottom to top density differences between

0.003 and 0.14 g cm−3) for different experimental runs. A vertically traversing

50 cm long Fast Conductivity and Temperature Probe (Precision Measurement En-

gineering) was used to measure the density profile of the stratification. The probe

was recalibrated before each experiment.

The experiments had corresponding Reynolds numbers, based upon N and H ,

ranging from Re(= NH2/ν) ' 8×103 to 1.8×105. These values were sufficiently

17



large that viscosity was not expected to play a significant role in the dynamics of

the intrusions. The Schmidt number was Sc = 103.

After filling the tank, a 0.4 cm thick gate was inserted between a pair of vertical

glass guides to create a water-tight lock at one end of the tank. The length of the

lock was set to ` = 8.5 cm, 18.5 cm, or 38.5 cm. Most of the experiments were

performed with a lock length of ` = 18.5 cm.

A small amount of blue dye was added to the fluid in the lock and the contents

were vigorously stirred until the lock-fluid had uniform density. The dye allowed

the intrusion to be visualized during the experiment and was introduced in suffi-

ciently low concentrations that it did not significantly change the density of the

fluid in the lock.

In some experiments, additional salt was added to the lock-fluid before its con-

tents were mixed. After mixing, the density of the lock was measured using a

hydrometer placed in the lock. In some experiments, the density was measured

using an Anton Paar Densitometer.

The intrusion propagated at a depth such that the density of the lock-fluid was

equal to the density of the undisturbed stratified fluid at that depth. If no salt was

added, the lock-fluid density, ρ`, was the average, ρ̄, of the density at the top, ρT ,

and the density at the bottom, ρB, of the ambient and the intrusion travelled at

mid-depth, h/H = 1/2. Here h is the vertical position of the intrusion measured

from the bottom of the tank and H is the total depth of the ambient. Adding salt

to the lock increased the density of the lock-fluid. If ρ̄ < ρ` < ρB, the intrusion

propagated between the bottom and mid-depth. Since the stratification was linear,

we can calculate this intrusion depth to be h/H = (ρB−ρ`)/(ρB−ρT ). Analogous

to Sutherland et al. (2004), the depth can be characterized by a non-dimensional

parameter

ε =
ρ` − ρ̄
ρB − ρT . (2.7)

Note that h/H = 1/2 − ε, so both h/H and ε are measures of the relative density

of the lock-fluid subject to 0 < h/H < 1 and −1/2 < ε < 1/2 for ρT < ρ` < ρB.

If ρ` ≥ ρB then the intrusion runs along the bottom of the tank and ε > 1/2

even though h/H = 0. Although we did not run any experiments where ρ` < ρ̄

18



(which correspond to ε < 0 or h/H > 1/2) we assume the experiment is sym-

metrical about ε = 0 since the problem is Boussinesq. When ε > 1/2 the gravity

current runs along the bottom and when ε < −1/2 the gravity current runs along

the surface. The choice of a non-dimensional parameter for density is not unique.

For example, in Maxworthy et al. (2002) the relative density was represented by

R = (ρ` − ρT )/(ρB − ρT ). We have chosen to use ε because it serves to emphasize

the symmetry of the problem.

A digital video camera (3 CCD Sony DVD Steadycam) was positioned 3.5 m

from the front of the tank so that the entire length of the tank was in the camera’s

field of view. Each experiment was recorded onto video tape for later analysis.

The frame rate was as small as ∆t = 1/30 s and the spatial resolution allowed

disturbances as small as ∆z ' ∆x ' 0.4 cm to be visualized. The dynamics

of the system were primarily two dimensional, as corroborated by the numerical

simulations discussed later. Thus we did not analyze the cross-tank structure of the

gravity current as it evolved.

After the tank was set up, the gate was quickly removed. An unavoidable side

effect of this procedure was to introduce turbulence (and hence mixing) as fluid is

dragged along by the upward movement of the gate. As is typical in lock-release

experiments (Simpson (1982)), this mixing did not significantly affect the evolution

of the intrusion after propagating a small distance from the lock.

After the removal of the gate, the lock-fluid collapsed into an intrusive gravity

current which propagated horizontally along the length of the tank. The centre of

the current was at a neutrally buoyant depth. We marked the end of the experiment

as the point in time at which the far end-wall effects, such as the reflection of waves,

started to impact the evolution of the intrusion.

The “DigImage” software package (Dalziel, 1992) was used to perform most

of the analyses. One of the features of DigImage was to create horizontal and

vertical time-series from the raw video signal recorded during the experiment. A

horizontal time-series was constructed by choosing a vertical position (a particular

pixel coordinate), extracting a row of pixels at that height from successive frames of

the video and vertically stacking these horizontal slices. Vertical time-series were
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created in a similar manner from successive vertical slices.

To measure the position of the gravity current as a function of time, we used

a horizontal time-series taken at a vertical position corresponding to the depth of

the intrusion. The front of the intrusion was identified in the horizontal time-series

by the diagonal contour separating the darkly dyed intruding lock-fluid and the rel-

atively light intensity ambient. This is shown, for example, in figure 2.2a. The

horizontal time series was taken at the horizontal level corresponding to the neu-

tral buoyancy level of the lock fluid. After a brief acceleration time, the intrusion

propagated at a nearly constant speed, Ugc. The distance over which the intrusion

propagated in steady-state depended upon the consequent interaction between the

intrusion and internal waves. In all experiments, the speed was found to be constant

between 1 lock-length and at least 3 lock-lengths from the gate. The velocity of

the intrusion-head was thus determined by finding the slope of the line, typically

between 1 and 3 lock-lengths from the gate, as indicated in figure 2.2a. As was

characteristic of all experiments, the intrusion travelled at an initial constant speed

at least up to 3 lock-lengths. We denote the horizontal distance travelled by the in-

trusion before the nose velocity first became zero as the propagation distance, Lmax,

which is also indicated on figure 2.2a. The notation Lmax is not meant to indicate

that the intrusion goes no further than this distance. At later times the intrusion

moves forward in a pulsating way but, as we will show, this is a consequence of in-

ternal waves advecting the lock-fluid as was observed by Maxworthy et al. (2002).

The motion does not result from horizontal density gradients establishing horizon-

tal pressure gradients, which is the mechanism usually ascribed to drive a gravity

current.

The dye-lines added when the tank was being filled allow for the analysis of

internal waves generated by the intrusion. In most experiments we measured the

wave phase speed, cp, of the first wave generated by creating a horizontal time-

series at the z = 25 cm dye-line from the bottom of the tank (e.g. figure 2.2b).

The superimposed vertically offset lines indicate slopes used to measure speeds.

Because the intrusions propagated at mid-depth or below, a horizontal time-series

at this height revealed a clear signal of the dye-line being displaced by the waves
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Figure 2.2: (a) Horizontal time-series taken from experiments with ε = 0.27, H =
30 cm, N = 1.8 s−1, and ` = 18.5 cm. The time series is taken from a horizontal
slice through movies of the experiment situated z = 7.5 cm above the bottom of the
tank close to the neutral buoyancy level of the lock fluid. The superimposed solid
lines show the intrusion speed, Ugc and propagation distance, Lmax. The sloped
dark wedge ahead of the intrusion results from the vertical displacement of a dye-
line through the level z = 7.5 cm. The displacement occurs due to internal waves
launched ahead of the intrusion. (b) Horizontal time-series taken from the same
experiment at the z = 25 cm. The superimposed solid line indicates the phase speed
of internal waves moving ahead of the intrusion. The slope dark lines occurring at
later times result from the dye line at z ' 25 cm moving vertically through the
plane z = 25 cm above and behind the intrusion head.

without contamination by the intrusion itself. The slope of the contour in the hor-

izontal time-series marking the initial displacement of the dye-line allowed us to

compute the phase speed.

The frequency of the waves were found by using a vertical time-series at x =

60 cm from the lock-end of the tank, as shown in figure 2.3. We measured the time,

∆T , between the first crest and first trough to pass this point. We estimated the

period to be T = 2∆T and the frequency to be ω = 2π/T .

The internal wave amplitude was found by measuring the maximum displace-

ment of each dye line and dividing by two as shown for the third dye-line in fig-

ure 2.3. These amplitude measurements were performed using vertical time-series

at x = 60 cm and x = 160 cm from the lock-end of the tank.
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Figure 2.3: Vertical time-series from experiment with ε = 0.27 taken at x = 60 cm
showing the measurement of the half-period, ∆T , of the leading internal wave and
the measurement of the peak-to-peak displacement, 2A, of a dye-line.

2.3 Experimental results

Figures 2.3, 2.5, and 2.6 show three experiments demonstrating the characteristic

behaviour of symmetric (h/H = 1/2), asymmetric (0 < h/H < 1/2) and bottom-

propagating (h/H = 0) intrusions. For these experiments, the depth of the tank was

H = 30 cm, the lock length was ` = 18.5 cm, and the buoyancy frequency ranged

from N = 1.7− 2.0 s−1.

For the experiment shown in figure 2.3, no salt was added to the lock so that

ε = 0. In this case the intrusion travelled down the middle of the tank. In the initial

collapse stage at t = 2 s (figure 2.3a) the lock-fluid intrudes into the ambient and a

return flow above and below the intrusion moves into the lock. The asymmetry in

the return flow occurs because the gate is not removed instantaneously. At t = 7 s

(figure 2.3b) a clear head develops which travels at a constant speed along the tank

with a sinuous tail in its lee. At t = 21 s (figure 2.3d) the intrusion head has thinned

considerably and the intrusion reaches the end of the tank. The leading internal

wave is locked to the head of the intrusion and dye-lines are displaced only slightly

in front of the head. The dye-lines reveal the existence of a mode-2 internal wave,

for which dye-lines displace upward in the top half and downward in the bottom

half of the tank.

In figure 2.5, salt was added to the lock so that ε = 0.27. Note that the in-

trusion is asymmetric. In the initial collapse stage at t = 2 s (figure 2.5a) the dark

lock-fluid intrudes into the ambient with return flows occurring above and below. In
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Figure 2.4: Snapshots from experiment with ε = 0, for which the intrusion travels
along the middle of the tank, at times (a) t = 2 s (Nt ' 2), (b) t = 7 s (Nt ' 14),
(c) t = 12 s (Nt ' 20) and (d) t = 21 s (Nt ' 42).
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Figure 2.5: As in figure 2.3 but for an experiment with ε = 0.27: (a) t = 2 s
(Nt ' 3.4), (b) t = 7 s (Nt ' 11.8), (c) t = 12 s (Nt ' 20.2) and (d) t =
17 s (Nt ' 28.7). Corresponding horizontal and vertical time series are shown in
figures 2.2 and 2.3, respectively.
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Figure 2.6: As in figure 2.3 but for ε = 0.54: (a) t = 2 s (Nt ' 3.6), (b) t = 7 s
(Nt ' 12.6)and (c) t = 12 s (Nt ' 21.6).

figure 2.5b a clear head develops shortly after being released. The intrusion propa-

gates at a constant speed until t = 12 s (figure 2.5c) at which time the intrusion head

gradually collapses due to the advance from behind of an internal wave generated

by the return flow. The leading wave is far in advance of the head and has reached

the end of the tank. After stopping, the lock-fluid is effectively incorporated into

the wave-field. In the image shown at 17 s (figure 2.5d) the dyed fluid has been

carried a short distance forward of the original stopping distance through the action

of the waves. The motion of the front of the intrusion head over time is more clearly

shown through the horizontal time series in figure 2.2a.

In figure 2.6, salt was added to the lock so that ε = 0.54. The current travelled

along the bottom of the tank. In the initial collapse stage at t = 2 s (figure 2.6a)

lock-fluid flows beneath the ambient fluid. The ambient fluid flows above the lock-

fluid into the lock. At t = 7 s (figure 2.6b) the current with a clearly defined head

is propagating at a constant speed. There is a small wedge of undyed fluid beneath

the head. Since the lock-fluid was slightly more dense than the bottom density

of the ambient there must have been some entrainment of ambient fluid to lower

the density of the head, for example, through interactions with the viscous bottom
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boundary layer (Härtel et al. (2000)). At t = 12 s (figure 2.6c) the head is a thin

wedge shape and the leading wave has reached the end of the tank. The dye-lines

indicate a mode-1 internal wave for which all the dye-lines are displaced upwards

above the current head.

In experiments with still larger ε >∼ 0.65 (not shown) the gravity current excites

mode-1 waves but the current is observed to propagate nearly to the end of the

tank before its speed is affected by interactions with the wave reflecting from the

end-wall of the tank.

2.3.1 Intrusion speed

In all our experiments, after a brief acceleration time the gravity current propagated

at a constant speed for a distance along the tank. Figure 2.7 shows the initial in-

trusion speed as a function of the relative density of the lock-fluid. The error bars

on ε indicate the sensitivity in determining this parameter from traverse data. The

appropriate characteristic scaling of the intrusion speed is given by NH in which

N is given by (2.6). The minimum intrusion speed occurs when ε = 0, which cor-

responds to the density of the lock-fluid being equal to the average density of the

ambient. As ε moves away from zero, the speed of the intrusion increases although

its speed does not change much for 0 ≤ ε
<∼ 0.2. As the system makes the transition

from an intrusion to a bottom-propagating current the speed increases significantly

with ε.

These intrusion results are compared with the prediction of Bolster et al. (2008)

(eq. (2.5)), which is recast in terms of the ε parameter to give

Ugc
NH

= Fr0

√
3ε2 + 1/4, (2.8)

in which we use Fr0 = 0.25, as predicted by Ungarish (2006). The curve is plot-

ted as the solid line in figure 2.7. Consistent with Bolster et al. (2008) (who also

examined −0.5 < ε < 0 cases), we find the theory agrees well with the observed

speeds.

The good fit might be expected because (2.8) results from making a quadratic fit

to the square of the velocity as a function of ε insisting only that the speed in the case
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Figure 2.7: Relative intrusion speed plotted against ε as measured in experiments
with ` = 18.6 cm and H = 30 cm (crosses) and H = 15 cm (upside-down tri-
angles). The open circles show the corresponding measurements determined from
four numerical simulations. Plotted as a solid line is the predicted speed of intru-
sions determined by the adaption of CKL theory Bolster et al. (2008) as given by
eq. 2.8. The dashed line shows the prediction of shallow water theory for bottom-
propagating gravity currents as given by eq. 2.9. Typical errors in the estimate of ε
are shown toward the lower right-hand corner of the plot.

ε = 1/2 is set by Fr0 = 1/4. By symmetry, the speed in the case ε = 0 should be

half this value and the change in speed as a function of ε should be zero about ε = 0.

One could also form a good quadratic fit by requiring the speed, not the square of

the speed, be quadratic. However, Bolster et al. (2008) argue that fitting the square

of the speed is appropriate on energetic grounds. The available potential energy

stored in the lock is released both to the motion of the intrusion and the kinetic

and available potential energy of the ambient. Assuming the partition of energy

into the intrusion and ambient are in proportion, it is appropriate to compare the

kinetic energy of the intrusion, proportional to its velocity squared, to the available

potential energy of the lock-fluid.

The speed of bottom-propagating currents (for which ε > 1/2) is influenced not

only by the available potential energy of the lock-fluid but also by the normal force

of the bottom of the tank acting upon the current. Such effects were accounted for

by Ungarish (2006), who used Long’s model (Long (1953, 1955)) and shallow wa-

ter theory to extended Benjamin’s theory (Benjamin (1968)) to gravity currents in

stratified environments. Recasting (2.4) in terms of ε and using h̃ = 1/2, appropri-
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ate for a full-depth lock release, the speed is predicted to be

Ugc
NH

= Fr0

√
4ε− 1

ε+ 1/2
, (2.9)

Here we have related S to ε using S = 1/(|ε| + 1/2). This curve is plotted as the

dashed line in figure 2.7 for ε ≥ 1/2.

We find that the theory does reasonably well though it moderately underpre-

dicts the speed of currents with ε ' 0.7. This could be a consequence of exper-

imental error, however a similar discrepancy between numerical simulations and

shallow water theory for full-depth lock-release currents was noted by Birman et al.

(2007). Nonetheless, the agreement is promising considering that the full-depth

lock-release case is an extreme extension of shallow water theory: predicting the

current speed is ‘problematic’ because of the strong return flow in the ambient

above the intrusion (Ungarish (2006)).

The agreement may lead one to conclude that the excitation of internal waves

is inconsequential in establishing the steady-state speed. However, the situation is

more ‘subtle’ than this (Bolster et al. (2008)). The very process of collapse means

that the stratified ambient must be displaced above and below the head of the intru-

sion, a process that extracts part of the available potential energy from the lock fluid

and which necessarily excites internal waves if not ahead of the current, certainly in

its lee. In part for this reason, but also because the mean ambient density ahead of

the intrusion is reduced, the Froude number for a bottom propagating current with

ε = 1/2 is Fr0 ' 1/4 (Ungarish (2006)) and not Fr0 = 1/2, as would be the case

for a gravity current in a uniform-density ambient (Benjamin (1968)).

The discussion so far has focused upon the initial speed of the intrusion and

bottom-propagating gravity currents. But the main interest of this paper is upon the

its consequent evolution. Shallow water theory predicts that the currents decelerate

after propagating one lock length as a consequence of the decreased depth of the

current head (e.g. see Fig. 4 of Ungarish (2006)). However, we find this is not the

case. Not only does the available potential energy released from the lock go into the

kinetic energy of the current, but it is also transformed into the available potential

energy and kinetic energy of the ambient. It is the transformation of energy into the
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latter and the consequent interactions between the ambient and intrusion that results

in intrusions propagating long distances from the lock at constant speed even as the

intrusion head height decreases. In intermediate ε cases, the ambient can then act

abruptly to halt its advance.

Clearly the return flow plays an important role in the generation of internal

waves and their consequent impact upon the flow evolution. In the following sub-

section we examine the observed characteristics of these waves and so estimate the

relative energy associated with wave generation and their consequent impact upon

the intrusion head.

2.3.2 Internal gravity waves

The release of the lock-fluid generated internal waves, which were visualized by

the vertical deflection of the horizontal dye-lines in the tank. The internal waves

were vertically trapped between the rigid bottom of the tank and the free surface.

The properties of the internal gravity waves generated in this experiment are set by

the geometry of the tank, the stratification of the ambient, and the density of the

intrusion. The characteristics of the leading internal wave were determined from

the initial displacement of the dye-lines occurring in advance of the head of the

intrusion. It is assumed that the trailing internal waves resulting from the return

flow that reflects off the end-wall of the lock have the same characteristics as the

leading waves. For example, horizontal time-series as shown in figure 2.2 reveal the

phase speed of leading wave (indicated by the superimposed line labelled cp) and

that of the trailing waves (indicated by the slope of the black dye lines occurring

approximately 5 and 10 s later) consistently match.

Figure 2.8 shows the phase speed, cp, plotted against the gravity current speed,

Ugc. For ε = 0, the waves travel at the same speed as the gravity current and are

consistent, for example, with the experiment shown in figure 2.3. As ε increases

from 0, the wave speed increases quickly while the gravity current speed increases

slowly, consistent with figure 2.7. The internal waves no longer couple to the head

of the current but propagate well in front of it. Simultaneously, upon reflection from

the end-wall of the lock, the return flow excites internal waves that catch up with
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30



the intrusion head, pinching it into a wedge-shape and causing the intrusion to stop

propagating.

The increase in phase speed is due to a change in the structure of the internal

waves. There is a transition between internal waves with a mode-2 vertical structure

for small values of ε to a mode-1 vertical structure for larger values of ε. In general,

the waves observed in our experiments are a superposition of different wave modes.

Nevertheless, the dominant behaviour is characterized by a superposition of mode-

1 and mode-2 waves. A long mode-n internal wave has a phase speed given by

c = NH
nπ

. These phase speeds for long mode-1 and mode-2 waves are superimposed

in figure 2.8 as solid lines.

To understand the transition from mode-2 to mode-1, consider an idealized in-

ternal wave with normalized vertical displacement given by

f(z) =

 sin
(
π( z

H
− 1

2
+ε)

1
2

+ε

)
z
H
≥ 1

2
− ε

− 1
2
−ε

1
2

+ε
sin
(
π z

H
1
2
−ε

)
z
H
≤ 1

2
− ε

(2.10)

This function was chosen as an approximation to the actual vertical displacements

of the dye-line. At the matching point, z/H = 1/2− ε, this function is continuous

and has a continuous first derivative. Further justification of this choice of function

is given below.

A discrete sine transform was used to compute the amount of relative energy in

the first and second modes of the vertical displacements of dye-lines. These ener-

gies are plotted against ε in figure 2.9. Also plotted is a Fourier sine decomposition

of the first two coefficients squared (b2
1 and b2

2) of equation (2.10). The typical error

bars for the relative wave energy, shown to the right, reflect the coarse determina-

tion of the wave amplitudes from a discrete set of dye-lines. Despite these errors,

the analytical model and the experimental data confirm that for low values of ε, the

internal wave is primarily mode-2, as indicated by the fact that the squares (repre-

senting the fraction of energy in mode-2 waves) lie above the crosses (representing

the fraction of energy in mode-1 waves). For ε > 0.18, energy in mode-1 exceeds

that in mode-2 waves, and correspondingly the crosses lie above the squares. The

analytical model suggests that the mode-1 and mode-2 components account for at

least 70% of the total internal wave energy.

31



0.0 0.1 0.2 0.3 0.4 0.5
ǫ

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
W

av
e

E
ne

rg
y

Figure 2.9: Normalized energy of mode-1 (solid line) and mode-2 (dashed line)
components versus ε for equation (2.10). The dotted-dashed line shows the sum of
mode-1 and mode-2 energies. The cross-over point where the mode-1 energy begins
to exceed the mode-2 energy occurs at ε ' 0.18 and the minimum energy captured
by the mode-1 and mode-2 components is 0.72. The data points show the relative
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as computed from a range of experiments. Typical error bars of the experimental
data are indicated to the right.
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Figure 2.10: Frequency of the internal wave normalized by the buoyancy frequency
in experiments with ` = 18.5 cm andH = 30 cm (crosses) andH = 15 cm (upside-
down triangles). The dashed line shows the mean frequency. Typical error bars are
indicated.

Thus the intrusion exists in one of three regimes depending upon the value of

ε. For ε ' 0, the advance of the intrusion is supercritical to the mode-2 internal

waves that are dominantly excited, for 0.18
<∼ ε

<∼ 0.6 the intrusion and bottom-

propagating gravity currents are subcritical to mode-1 internal waves that are dom-

inantly excited, and for ε >∼ 0.6 the bottom-propagating gravity currents are super-

critical to the mode-1 waves that are dominantly excited.

Figure 2.10 shows that the frequency, ω, of these waves normalized by the buoy-

ancy frequency is independent of ε with ε 6= 0 and has a mean value of 0.52 and

a standard deviation of 0.10 over all experiments. Although one might expect that

the collapse of the lock-fluid would generate a spectrum of frequencies, the waves

themselves are excited in a narrow frequency band. This frequency selection has

been observed in a variety of experiments and simulations in which waves were

generated by grid-generated turbulence (Dohan and Sutherland, 2002, 2003), tur-

bulence resulting from flow over rough topography (Aguilar and Sutherland, 2006),

and from an intrusion at the interface of a uniform density fluid and a uniformly

stratified fluid (Flynn and Sutherland, 2004).

Because ω is comparable to N , the waves cannot be treated as long. The phase

speed of a mode-n internal wave of frequency ω is given by c = H
nπ

√
N2 − ω2.

33



−1 −0.5 0 0.5 1
ξ/Amax

0

10

20

30

z

a) ǫ = 0

−1 −0.5 0 0.5 1
ξ/Amax

b) ǫ = 0.27

−1 −0.5 0 0.5 1
ξ/Amax

c) ǫ = 0.54

Figure 2.11: Normalized maximum vertical displacement of dye-lines as function
of height taken at x = 60 cm and computed over first wave period. The dotted lines
show equation (2.10) plotted for the corresponding value of ε with (a) ε = 0 (b)
ε = 0.27 (c) ε = 0.54.

Since we found on average ω = 0.52N , we can compute the speed of a typical

mode-1 and mode-2 wave. These speeds are plotted as dashed lines on figure 2.8.

These phase speeds underestimate the phase speeds observed in our experiments.

The fact that the observed phase speeds are larger than linear theory predicts indi-

cates the waves are nonlinear.

Figure 2.11 shows vertical profiles of the maximum vertical displacement of

the ambient measured in three experiments from vertical time series examining the

displacement of 5 dye lines at x = 60 cm. This distance, a little more than 2 lock-

lengths from the gate, is chosen to be sufficiently close to the lock that reflecting

waves from the lock-end of the tank do not interact with the intrusion head as it

passes this position. The dashed lines in the figure show amplitude profiles using

equation (2.10) overlaid on measurements taken from three sample experiments.

The three profiles, which correspond to the experiments with snapshots shown in

figures 2.3, 2.5 and 2.6, clearly reveal displacements with a mode-2 shape if ε = 0

(figure 2.11a), a mixed mode-1 and mode-2 shape if ε = 0.27 (figure 2.11b), and a

mode-1 shape if ε = 0.54 (figure 2.11c).

From the amplitude, frequency and vertical mode structure of the waves, we

estimate the energy associated with waves in the ambient during the slumping-phase
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of the intrusion. Defining the vertical displacement amplitude, Aξ, to be the largest

displacement of the set of the five dye-lines, the energy density per unit mass is

given by

< Ewave >=
1

2
N2Aξ

2. (2.11)

The energy per unit tank-width associated with the ambient is then estimated by

multiplying the energy density by the area

Awave =

{
(1 + 2|ε|)`H |ε| < 1/2
2`H |ε| ≥ 1/2.

(2.12)

Here the horizontal length-scale is assumed to increase in proportion to ε as the

waves evolve from having a mode-2 to a mode-1 structure. This is consistent with

the observation that the frequency is fixed but the vertical scale doubles as ε in-

creases from 0 to 1/2.

The resulting energy is compared with the available potential energy per unit

width of the fluid in the tank before the gate is extracted. This is calculated as the

difference between the potential energy of the initial state and the final state that

would occur in the absence of mixing:

APE0 =

∫ L

0

∫ H

0

g (ρinitial(x, z)− ρfinal(z)) zdzdx (2.13)

In the initial configuration, homogeneous fluid of density ρ` resides in a lock of

length ` beside the uniformly stratified ambient of length L − `, as shown in fig-

ure 2.1. Explicitly, the density structure is given by

ρinitial(x, z) =

{
ρ` 0 < x < `
ρB + (ρT − ρB) z

H
` < x < L.

(2.14)

Assuming no mixing occurs, the final state is that of a piecewise-uniform stratified

fluid with a horizontal slab of fluid of density ρ` occupying the full length L of the

tank about the neutrally buoyant depth of the ambient before the experiment begins.

(See figure 2.3d). From conservation of mass of the lock- and ambient-fluid, this

final density profile is given by

ρfinal(z) =


ρ` + (ρT − ρ`) z−h0

H−h0
h0 < z < H

ρ` h1 < z < h0

ρB + (ρ` − ρB) z
h1

0 < z < h1.
(2.15)
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If ρ` < ρB, then

h1 =
ρ` − ρB
ρT − ρBH

L− `
L

and h0 = h1 +H
`

L
.

Otherwise, if ρ` > ρB, then h1 = 0 and h0 = H`/L. The available potential energy

per unit width is thus given by

APE0 =
1

24
ρ0

(
1− `

L

)
`H3N2

{
12ε2 + 1 |ε| < 1/2
12|ε| − 2 |ε| > 1/2,

(2.16)

which increases with the absolute value of ε and with the strength of the stratifica-

tion.

Using (2.16) to normalize the energy associated with waves given by (2.11)

and (2.12), we compute the relative percentage of energy and plot this against ε in

figure 2.12. The internal waves generated by the release of the lock-fluid accounted

for between 7% and 22% of the available potential energy in the system over 25

experiments where the vertical displacements were measured. This is smaller than

the 36% of energy determined by Ungarish and Huppert (2006) for the case ε =

1/2 in part because we make a conservative estimate of the wave energy based

upon the one wavelength of the disturbance determined by the lock-length and the

wave-mode, the latter which depends upon ε. The relative energy is larger between

ε = 0.1 and 0.5, corresponding to the cases in which the intrusion stopped before

reaching the end of the tank. This analysis demonstrates that a significant enough

amount of the available potential energy goes into internal waves and this energy

transfer, as a result, significantly influences the dynamics of an intrusion not only

at long times but also during the initial stages of its evolution.

2.3.3 Wave amplitudes and energy

To illustrate this impact, we assume the depth-relative amplitude of the waves in-

creases linearly with ε until this parameter exceeds 1/2. Thereafter the amplitude is

assumed to be constant. By symmetry, we expect the relative amplitude to double

as ε increases from 0 to 1/2. Therefore, we have

Aξ/H =

{
α(1/2 + |ε|) |ε| ≤ 1/2
α |ε| > 1/2

(2.17)
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Figure 2.12: Total energy associated with internal waves, shown as a fraction of the
initial total available potential energy of the system and plotted versus ε. The solid
line shows an empirically determined curve using (2.11), (2.12) and (2.16) which
is fit to the data using α = 0.18. Typical error bars are indicated.

Using this formula, we compute the associated energy of the waves over a volume

given by (2.12) and empirically determine the value of α that fits the observed data.

Explicitly, we find α = 0.18± 0.01. This implies, in particular, that intrusions with

ε ' 0.5 excite internal waves whose amplitudes are almost one-fifth the tank depth.

The corresponding energy normalized by the initial available potential energy

of the system is plotted as the solid line in figure 2.12. Note that the relative en-

ergy decreases for ε > 1/2 because the energy associated with waves generated by

bottom-propagating currents is constant whereas the available potential energy of

the system increases with increasing density of the lock fluid.

As the waves change from mode-2 to mode-1, their amplitude and wavelength

doubles and so their associated available potential energy increases by a factor of

8. Meanwhile, the available potential energy associated with the lock fluid given by

(2.16) increases by a factor 4 as ε changes from 0 to 1/2. Therefore, as expected

from symmetry. The percentage change in relative available potential energy is

twice as large for mode-1 waves with ε = 1/2 as for mode-2 waves with ε = 0.
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Figure 2.13: Maximum distance travelled by intrusion in experiments with ` =
18.5 cm and H = 30 cm (crosses) and H = 15 cm (upside-down triangles). The
results of numerical simulations are shown by open circles. For these H = 30 cm.
Small, medium and large circles represent the intrusion distances found in simu-
lations with ` = 18.6, 40 and 80 cm, respectively. Typical errors in estimating ε
in experiments are indicated toward the bottom right-hand side of the plot. Values
are plotted only for those experiments in which the intrusion did not interact with
the far end of the tank before being stopped by internal waves catching up to the
intrusion head from the lock-end of the tank.

2.3.4 Intrusion propagation distance

A universal feature of our experiments is that the intrusions started off at an initially

constant speed after a brief acceleration phase. In some cases the intrusion propa-

gated to the end of the tank where it stopped due to the rigid vertical boundary. This

occurred either in experiments with ε ∼ 0 or ε � 1/2. Otherwise, due to interac-

tions with internal gravity waves, the intrusion stopped abruptly midway along the

tank.

Figure 2.13 shows the relative distance the intrusion travelled in units of lock

lengths before this stopping first occurred.
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Such an interaction between internal waves and subcritical bottom-propagating

gravity currents was also observed by Maxworthy et al. (2002). An estimate of

the distance over which the the waves interact strongly with the current head was

provided by Ungarish and Huppert (2004), who claimed the internal waves were

locked with the head over the first two wavelengths of motion. Thereafter the waves

“unlocked from the head and moves forward relative to the current until the crest

reaches the nose (and thus slows it down)”. Our intrusion experiments demonstrate

a different interaction mechanism. As shown, for example, in Figure 2.2a, we find

the waves are not locked with the head but advance at constant speed toward the

intrusion head after reflecting from the lock-end of the tank. The current does not

slow down after interacting, but stops abruptly. Stopping occurs if the intrusion

speed is slower than the internal wave speed.

The speed of both waves and intrusions depends upon the value of ε. If ε ∼
0 the intrusion speed is comparable to the mode-2 internal wave speed. If ε �
1/2, the bottom-propagating gravity current propagates at speeds comparable to or

faster than the mode-1 internal wave speed. In both circumstances the intrusion is

supercritical and so waves reflecting from the lock-end of the tank do not catch up

with the intrusion head.

At intermediate values of ε, the return flow into the lock excites internal waves

that reflect off the lock-end of the tank and then propagate toward the intrusion head

at a faster speed than the intrusion itself: the intrusion is subcritical. The advance

of the intrusion stops when the waves catch up with the head. This occurs on a time

scale which, for fixed N and H , depends upon the mode number (depending upon

ε) and the lock length.

We estimate the stopping distance of intrusions from the time taken for internal

waves generated in the return flow to reflect off the lock-wall of the tank and then

catch up to the intrusion head. We crudely estimate the speed of these waves to be

given by

c =
NH

π
(1/2 + |ε|) |ε| ≤ 1/2. (2.18)

This corresponds to a linear increase in the phase speed from that of mode-2 to

mode-1 waves as ε increases from 0 to 0.5. The relative distance from the gate that
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a subcritical intrusion moving at speed Ugc travels before internal waves at speed

c > Ugc catch up to it is
Lmax
`

=
2Ugc
c− Ugc

. (2.19)

Using (2.8) and (2.18) gives the solid curve plotted in figure 2.13. This estimate

agrees well with the observed stopping distance of the intrusion.

2.4 Discussion and conclusions

Experiments have investigated intrusions and their interactions with internal waves

in a uniformly stratified ambient.

Two-dimensional numerical simulations of this laboratory experiment (described

and analyzed in Munroe et al. (2009)) capture the observed structure and speed

of the intrusions which indicates that their macroscopic dynamics can be well de-

scribed by a two-dimensional model.

The speed of the intrusion was found to match the prediction of Bolster et al.

(2008) in circumstances with ε < 0.5. For ε > 0.5, the theoretical prediction of Un-

garish and Huppert (2002) and the empirical prediction of Maxworthy et al. (2002)

is close to the observed speed of bottom-propagating gravity currents, though the-

ory moderately underpredicts the speed.

It is well-established that a gravity current in a uniform-density ambient prop-

agates 6 to 10 lock-lengths before entering the ‘self-similar’ phase in which the

current decelerates. This occurs because the finite volume of lock-fluid requires the

head-height to decrease and, consequently, the horizontal pressure gradient force

driving the current decreases. Our results show this does not occur for intrusions

released into a uniformly stratified ambient from a high aspect-ratio lock. Internal

waves interacting with the intrusion head dominate the long-time evolution of the

intrusion. In symmetric cases, the waves propagate at the same speed as the in-

trusion and carry the lock-fluid at constant speed well past 10 lock lengths, even

though the vertical extent of the head decreases substantially. In asymmetric cases,

waves that reflect from the lock-end of the tank catch up with the head and halt its

advance. Thereafter, the lock-fluid slowly undulates forward driven dominantly by
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the wave field and not by horizontal pressure gradients established through horizon-

tal density changes between the intrusion and ambient.

The distance travelled by the intrusion before stopping is related to the wave

speed of the internal waves generated. Intrusions travelling near the mid-depth

of the tank excite mode-2 waves. In the limit of an intrusion becoming a gravity

current, more mode-1-like waves are produced. Mode-1 waves travel faster than

mode-2 waves and faster than the intrusion for intermediate values of ε. The mode-

1 waves, which reflect off the rear wall of the tank and then catch up with the

intrusion head, cause the intrusion to stop before hitting the end of the tank. The

energy associated with the waves lies between 10 and 20% of the initial available

potential energy of the lock-fluid. This may not be so large as to have a leading

order effect upon the intrusion speed, but it is large enough to affect non-negligibly

the consequent evolution of the intrusion in terms of the propagation distance.

Energy analyses of intrusions in the supplementary numerical simulations (Munroe

et al. (2009)) show that a substantial fraction of the initial available potential energy

is transferred to the ambient if ε is sufficiently larger than zero and mode-1 waves

are predominately excited.

Experimental data were used to derive an empirical formula for the wave en-

ergy. This result showed that, for bottom-propagating gravity currents, the energy

of waves relative to the initial available potential energy decreases as ε increases.

These results are consistent with the observation that internal waves do not strongly

influence the consequent motion of the current if ε is large.

In none of the experiments performed did we observe the transition from steady-

state to self-similar propagation of the intrusion, as predicted by Ungarish (2005).

The symmetric intrusion propagates beyond 10 lock lengths without deceleration.

Indeed, Sutherland and Nault (2007) have shown that symmetric intrusions can

propagate up to 22 lock-lengths without decelerating as a result of coupling with

mode-2 internal waves. The long-time evolution in this case is best described by

the propagation of closed core solitary waves. Asymmetric intrusions with 0.18
<∼

ε < 0.5 propagate at constant speed until suddenly stopping due to interaction with

internal waves.
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Some signature of a self-similar phase seemed to occur in experiments by Wu

(1969) and Amen and Maxworthy (1980), consistent with shallow water predic-

tions (Ungarish (2005)). So why was the self-similar phase not observed in our

experiments? A likely explanation is that those experiments generated symmetric

intrusions from the collapse of a mixed region that did not extend over the full depth

of the tank, a circumstance that is better described by the approximations of shallow

water theory. Thus it seems in those circumstances that the collapsing mixed fluid

did not excite such large amplitude internal waves and that the fluid became suffi-

ciently diluted through mixing with the ambient that its advance slowed. Clearly

more experiments on partial-depth mixed region collapse should be performed to

examine this circumstance in more detail.

In order to focus upon the interactions between intrusions and internal waves,

our laboratory experiments were confined to the examination of relatively short

locks compared to the length of the tank. In longer tanks with longer locks a pro-

portionally smaller volume of the intrusion would mix with the ambient. In these

circumstances it may be that asymmetric intrusions would evolve into a self-similar

phase before interacting with internal waves reflecting from the lock-end of the tank

(Paul F. Linden, private communication). Nonetheless, we have seen that symmetric

intrusions (with ε = 0) propagate over 10 lock-lengths without decelerating all the

while with the head-height decreasing. Internal waves locked to the intrusion head,

not horizontal density gradients between the intrusion and ambient, are responsi-

ble for the transport at constant speed. Likewise, in asymmetric circumstances the

intrusion stops due to interactions with internal waves and thereafter the transport

of lock-fluid is governed primarily by the waves, not horizontal density gradients.

In general, the experimental results show that the long-time evolution of intrusions

in uniformly stratified fluid is not necessarily well modelled by a straightforward

adaptation of Benjamin’s theory that neglects the generation and consequent influ-

ence of internal waves upon the flow.
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Chapter 3

Forcing by Turbulence near Rough
Isolated Topography

The content of this chapter was previously published in the journal Environmental

Fluid Mechanics as Munroe and Sutherland (2008).

3.1 Introduction

In this chapter, we examine the generation of internal gravity waves by a moving

source of turbulence. We have reused the apparatus of the towed topography of

Aguilar and Sutherland (2006) but changed the stratification. In our experiments,

internal waves in a linearly stratified layer are forced from above by sheared tur-

bulence in a uniform density layer. Thus, we can compare the effect of a moving

source of turbulence in a fully stratified fluid, the case presented by Aguilar and

Sutherland (2006), to a stratified fluid with a well-mixed upper layer, the case in-

vestigated here. Since the physical application of this work is to the turbulence from

wind driven eddies in the ocean mixed layer it is more reasonable to use this shear

turbulence apparatus as opposed to a grid generated stationary turbulence setup

(Dohan and Sutherland (2005)). Note that the focus of the present study is not on

topographically generated waves, although the apparatus has been used previously

for that purpose. Rather, we are looking at waves launched by turbulent eddies.

We view the ‘rough topography’ acting as an eddy generator due to boundary layer

separation and its turbulent wake. We show that for our surface mixed case the

generated internal waves have frequencies, as expected, in a narrow range of a fixed
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Figure 3.1: a) Typical stratifications. The solid line shows the density profile of the
uniform stratification experiments. The dashed line shows the density profile of the
surface mixed layer experiments. b) Setup of apparatus.

factor of the buoyancy frequency.

3.2 Setup and methods

We performed our experiments in a 197.1 cm long glass tank that is 48.5 cm deep

and 17.4 cm wide. A linearly stratified fluid was created in the tank using the stan-

dard ‘double bucket’ technique (Oster (1965)) to a total depth H = 27 cm. The

typical buoyancy frequency for all experiments in the stratified lower region was

N ≈ 1.1 s−1. The density was measured using a Standard Precision Conductivity

Probe set up to traverse the entire depth of the fluid. This was the stratification used

for uniformly stratified experiments and is sketched by the solid line in Figure 3.1a.

For the surface mixed layer experiments, approximately 5 cm of the fluid was si-

phoned off and was replaced with an equal volume of fresh water, ρm = 1.0 g cm−3.

This created a density profile as sketched in Figure 3.1a using a dashed line. Af-

ter repeated experiments this mixed region may deepen to approximately 7 cm. A

wooden square waveform of the same width as the tank, with peak-to-peak height

2.7 cm and wavelength λ = 13.7 cm is towed at a constant speed using a pulley

system along the top of the tank as shown in Figure 3.1b. The topographic wave

number is k = 2π/λ = 0.46 cm−1.

The goal of this apparatus is to produce a moving patch of turbulent eddies in

a mixed layer and then observe internal waves generated in the linearly stratified

ambient beneath. The rectangular waveform acts as an eddy generator as fluid
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separates off the sharp corners and produces vortices. The waveform, which is

pulled from left to right, is connected to a motor such that the towing speed is in the

range U = 0.8 cm s−1 to 5.0 cm s−1 to within±0.05 cm s−1. Using a characteristic

horizontal length scale of the towed object, L = 14 cm, and the viscosity of water,

ν = 0.01 cm2/s we calculate a Reynolds number of Re = UL/ν as ranging from

Re = 1100 to 7000. With this range of Reynolds numbers we expect to see flow

separation and eddies form in the lee of the topography. The waveform, which

floats on the surface, is weighted such that the troughs are at the waterline. Different

towing speeds excite eddies of different dominant frequencies, namely ωexc = Uk.

It is natural to form a Froude number, Fr = Uk/N = ωexc/N to characterize the

towing speed and hence the excitation frequency.

The turbulence in the lee of the towed object can be characterized using particle

image velocimetry (Fincham and Delerce (2000)). Figure 3.2 shows some details

of the structure of the forcing velocity field for the case with a mixed layer. The

upper frame shows a typical vector plot of the velocity field obtained in the lee of

the towed object as a time series. From this time series, it can be seen that the

integral length scale of the dominant eddies is about 6 cm which is the same as the

thickness of the mixed layer. The integral time scale is approximately 5 seconds.

The lower frame shows the energy density in the mixed layer as a function of time

for three independent experiments.

The turbulent eddies impinge upon the stratified region to force internal waves.

The internal waves are measured using synthetic schlieren (Sutherland et al. (1999)).

This optical technique takes advantage of the variation of index of refraction of light

as a function of density and allows us to measure non-intrusively the frequency,

wave numbers, and amplitudes of the internal waves.

Figure 3.3 shows images produced using synthetic schlieren taken from typical

experiments. The field shown is N2
t which is proportional to the vertical displace-

ment of the fluid. Although the entire length of the tank is almost 2 m, the camera’s

field of view is only 27.5 cm wide by 20 cm high. We define a world coordinate sys-

tem where x = 0 cm corresponds to the left edge of the field of view and z = 0 cm

is the surface. In this region of interest, located at the middle of the tank, we assume
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Figure 3.2: The lee of the towed object for Fr = 1.46 showing a) velocity field as
a vertical time series and b) the energy density of the mixed layer as a function of
time for three separate runs of the experiment.

the end walls of the tank are far enough away that reflection of waves is unimpor-

tant. Reflection of waves off the bottom of the tank still occurs. Figure 3.3a,c,d

shows an experiment with Fr = 0.53 < 1. This is a sub-critical experiment since

the forcing frequency is less than the buoyancy frequency. Figure 3.3b,d,e shows an

experiment with Fr = 1.73 > 1. This is a super-critical experiment since the forc-

ing frequency is greater than the buoyancy frequency. Vertical (Figure 3.3a,b) and

horizontal (Figure 3.3c,d) time series show how the waves in these two cases are

generated and propagate over time. In the vertical time series taken at x = 13.7 cm,

which is halfway through the field of view, we can see that there is not much signal

directly over the topography. In the wake of the topography, where there is more

turbulence visible, strong vertically propagating waves can be seen. On the upper

axis is the equivalent horizontal spatial scale defined as taking time and multiply-

ing by the towing speed. It is difficult to isolate individual waves in a vertical time

series since waves generated at different times are visible in the same image. How-

ever, using a horizontal time series, taken at z = −15 cm, it is much clearer to see

waves produced at the same time.

The window selected in time for the time series ranges from t = 0 s to t = 60 s.
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Figure 3.3: Turbulently generated internal waves shown using a) vertical time series
at x = 13.7 cm with the equivalent horizontal scale (x = |U |t) shown in the top
axis, c) horizontal time series at z = −15 cm, and e) power spectrum of the hori-
zontal time series for an experiment with Fr = 0.53. b), d), f) are respectively the
same but for Fr = 1.73. Contours in a-d) are plotted at values between −0.15 and
0.15 s−3 spaced by 0.10 s−3. The spectra are normalized to have maximum value
of unity.
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Here, t = 0 s is defined as the time at which the waveform started moving. The fre-

quency and the wave number of the internal waves were calculated using a discrete

Fourier transform. Examples of power spectra measured are given in Figure 3.3e, f.

Note that the resolution is proportional to the inverse of the domain of our field of

view and can not easily be improved without using a larger tank and apparatus. We

estimated the location of the peak and the error using a Gaussian best fit. The largest

peak is indicated by the intersection of dashed lines. The width of Gaussian fit gives

the standard deviation in the error which is typically 10% of the frequency measure-

ment. Comparing the different experiments, the spectra are noticeably broader for

super-critical forcing than for sub-critical forcing. As can been seen in Figure 3.3e,

there may be more than one peak in the power spectrum. Being more restrictive

in choosing the window in time on a per-experiment basis could be done to isolate

waves generated directly beneath the topography from those generated by the lee of

the topography. Reducing the length of the window in time, however, reduces the

resolution in determining the frequency. We define the dominant wave frequency

as the frequency associated with the largest peak in the power spectrum and hence

the waves with the largest energy. The consistent approach of using a window in

time with a fixed length was applied to all experiments.

3.3 Analysis and results

Figure 3.4 shows the relative wave frequency, ω/N , as a function of the forcing

frequency expressed as a Froude number, Fr = Uk/N . The plotted values are the

means of dominant frequencies determined according to the method in the previous

section for each of three horizontal time series at z = −13,−15, and −17 cm. The

error bars are the standard error in the mean for each experiment. The dotted line

shows ω = NFr = ωexc, which is the wave frequency predicted by linear theory for

flow over sinusoidal hills. The vertical dashed line indicates the boundary between

sub-critical, ωexc < N and super-critical, ωexc > N .

A series of 12 experiments using a uniform stratification over the entire depth

(Aguilar and Sutherland (2006)) is given in Figure 3.4a. When Fr < 0.7, topo-
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Figure 3.4: Plot of measured dominant relative internal wave frequency, ω/N , as
a function of Fr = ωexc/N for a) uniformly stratified experiments and b) surface
mixed layer experiments. The open circles in a) are waves generated in the far lee
by turbulence only.

graphically generated waves with the same frequency as the forcing frequency are

observed as the dominant signal. In the super-critical region, the dominant wave fre-

quency is independent of Fr and has a mean value of 0.55± 0.04. It is known from

previous work (Aguilar and Sutherland (2006)) that this frequency corresponds to

internal waves generated in the near lee of the towed topography. The near lee is

characterized by an undulating “boundary-trapped lee wave” which acts as a source

of internal waves. Waves generated by turbulence in the far lee are distinguished

from orographic- and lee-generated waves by separation in time. In the far lee, de-

fined as beyond two buoyancy periods after the trailing edge of the topography has

passed, the flow is much less coherent and more turbulent. The open circles in Fig-

ure 3.4a correspond to horizontal time series being windowed in time such that only

information from the far lee is included. The waves here have a mean frequency of

0.71± 0.09.

We can compare these uniform stratified experiments with our surface mixed

experiments to determine the importance of the turbulent forcing being located in a
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mixed layer as opposed to a stratified layer. The relative wave frequency, as shown

in Figure 3.4b, increases until Fr ≈ 0.7. In the super-critical region, the wave

frequency is independent of Fr and has a mean value is 0.69 ± 0.03. This is the

same as the frequency observed in the far lee of the uniformly stratified experiments.

Note that in this case no windowing in time has been used to differentiate the near

lee versus far lee. This suggests that the dominant frequency observed is due to

waves generated by shear turbulence. Towing rough topography through a mixed

layer precludes the development of a boundary-trapped lee wave and leaves only

the turbulence in the wake as a source for internal wave generation. The horizontal

wave number is a constant for all experiments.

This wave number, |kx| = 0.46 cm−1 is coincidentally the same as the wave

number given by the periodicity of the rectangular topography. However, length

scales of topographic amplitude and wave length and mixed layer depth are all

similar for these experiment so it not clear what sets the horizontal length scale of

the waves. From other experiments performed (not shown) using a towed plate with

an effective wavelength of λ = 0 cm and the same amplitude as the rectangular

topography we have observed generated waves have the same horizontal length

scale and frequency but much larger amplitude.

Further experiments to distinguish which length scale sets the length scale of

the dominant eddies of turbulence in the lee and thus the length scale of the internal

waves is on-going. The results presented here show that the frequency of the waves

depends weakly on the thickness of the mixed layer.

The amplitude of the waves, computed as the root mean square of the horizontal

time series, increases with towing speed. The dependence seems to be a fractional

power law and further analysis is currently being performed. The wave amplitude

also depends on the topographic amplitude (Aguilar and Sutherland (2006)) and

may depend on the thickness of the mixed layer.
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3.4 Discussion and conclusions

Experiments with a surface mixed layer above uniformly stratified fluid demonstrate

that the frequency of turbulently generated internal waves occur in a narrow band

around a fixed fraction of the buoyancy frequency.

The observation that the wave frequency matches the forcing frequency up un-

til Fr ' 0.7 and then remains roughly constant at ω/N ' 0.7 is consistent with

previous experimental studies of turbulence generated internal waves (Aguilar and

Sutherland (2006); Dohan and Sutherland (2005)). It has been suggested by Dohan

and Sutherland (2005) that waves of this frequency are dominant because waves

with ω/N = 1/
√

2 ' 0.71 are the ones that have the maximum vertical flux of hor-

izontal momentum and thus there is an interaction between the wave field and the

turbulent region which excite waves close to this frequency. Another explanation

is proposed by Taylor and Sarkar (2007) where it is suggested that waves of this

frequency endure the least amount of viscous damping and thus are the dominant

waves observed.

Internal waves from both sheared turbulence, such as in this experiment, and sta-

tionary turbulence, such as the the experiments by Dohan and Sutherland (2005) are

observed to have the same characteristic frequencies. From observations in Dohan

and Sutherland (2005), a broad range of turbulent eddies with different characteris-

tic velocity and length scales generates a relatively narrow band of internal waves

in terms of frequency and length scales. This suggests the properties of these tur-

bulence generated waves are universal and independent of the forcing mechanism.

3.5 Afterword

This experimental apparatus was originally intended to explore the generation of

internal waves by sheared turbulence. Further analysis showed that although there

was a turbulent wake and internal waves were observed to be generated, it was

impossible to identify only the waves forced directly by the turbulence. When the

towed waveform is stopped before it reaches the end of the tank, the fluid that had

been pushed ahead of the topography is forced to run under the waveform. This
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displacement of stratified fluid is an additional source of internal waves.

Since the turbulently generated waves are only forced while the topography is

in motion, the waves are transient and it is difficult to use Fourier-transformed time

series to analyze the wave properties.

For these two reasons, a new experimental apparatus involving a conveyor belt

forcing the surface the fluid was designed to study internal waves generated by

sheared turbulence. This is the focus of chapter 4.
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Chapter 4

Conveyor Belt Driven Flow

The primary focus of the research in this thesis is the amount of energy transferred

to internal waves by a turbulent mixed region. As was mentioned in the previous

chapter, the towed topography experiments do not appropriately model a sustained

sheared turbulent flow forcing internal waves in a stratified ambient fluid. The

experiment was redesigned to resemble more directly the physical scenario of wind

stress on the surface of a stratified ocean. In particular, a conveyor belt was set up

to drag the surface fluid thus imparting a shear stress to the fluid. The fluid was

initially linearly stratified as it was hypothesized that a turbulent mixed layer would

develop near the belt and internal waves would be observed propagating away from

the mixed region.

The chapter is organized as follows. In section 4.1 a description of the experi-

mental apparatus and setup is presented. In section 4.2, results about the deepening

rate of the mixed layer are shown. In sections 4.3 and 4.4 analysis of the wave

properties and turbulence properties are given, respectively. Section 4.5 combines

these results to give a prediction of waves based on the turbulent description. Fi-

nally, in section 4.6, we conclude with future work and suggest methods to test our

predictions.

4.1 Apparatus

These experiments are conducted in an acrylic tank with length 47.6 cm, width

9.7 cm, and height 50.0 cm as shown in figure 4.1. The wall thickness is 0.8 cm.
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Figure 4.1: Front and side view of tank showing dimensions.

This tank is only a quarter of the length and half as wide as the towed topography

tank described in chapter 3.

A conveyor belt at the surface drives the flow in the tank. The support structure

for the conveyor built was prototyped using Lego Technic/Mindstorms sets, shown

with a computer rendering in figure 4.2, and it was determined that this prototype

worked sufficiently well that useful data could be collected. That data is presented

here. A photograph of the conveyor belt apparatus in the tank is shown in figure 4.3.

In the broadest sense, this experiment mimics wind blowing across the surface

of the ocean. Although not attempting to replicate the full-scale dynamics, an ap-

paratus has been developed that physically models the phenomena of turbulently

generated waves by wind driven turbulence in the ocean mixed layer. The setup

is shown schematically in figure 4.4. A variable-speed conveyor belt is half-way

submerged in a tank of salt-stratified fluid. The conveyor belt is 8 cm wide and has

a distance 40 cm between the two wheels. The radius of the wheels is r = 2.5 cm.

The belt is made of flexible rubber with plastic plates every 2 cm. The plates span

the width of the belt, have height of 0.4 cm, and a thickness of 0.1 cm. The purpose
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Figure 4.2: Computer rendering of conveyor belt apparatus.

Figure 4.3: Photograph of conveyor belt and tank. The conveyor belt structure
rests on the top of the tank. A screen of black and white lines and a bank florescent
lights are positioned behind the tank to be used to visualize the internal waves using
synthetic schlieren.
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of the plates is to increase the drag of the belt on the fluid. The belt is usually im-

mersed in the fluid such that the center of the driving wheels are at the water line.

Each driving wheel is connected via gears to a computer controlled servo motor

which is synchronized to move at the same speed. The belt moves in a counter-

clockwise direction. The speed of rotation of the wheels is set in units of n degrees

per second. Based on the radius of the driving wheel, r, the speed of the belt can be

estimated as U = 2πrn/360 = nπ/90. The range of belt speeds achievable is from

0 to 20 cm s−1. The belt speed is held constant for any particular experimental run.

During an experiment, the belt is impulsively started to run a specific speed and

not ramped slowly up to speed. The stratified fluid is mixed at the surface. This

mixing layer deepens quickly over about 10 to 30 s and then deepens much more

slowly. This behaviour is explored in section 4.2.

A coordinate system is defined where x is increasing to the right and z is de-

creasing downwards. The origin was chosen at the left side of the tank and at the

base of the structure of the conveyor belt apparatus (see figure 4.4). The choice

of origin is arbitrary but this particular choice made it easier to compare between

different experiments as the large feature of the conveyor belt is easily identified in

digital video. For analysis, only selected fields of view in the upper and lower parts

of the tank are used to measure the turbulence and the waves, respectively. These

are indicated in the sketch of figure 4.4. These fields of view are called ‘regions of

interest.’

Up to three digital cameras were used in a single experiment measuring of the

thickness of the mixed layer, the turbulence in the mixed layer, and the waves in the

stratified lower layer, respectively. Most experiments, however, were ran with only

one camera measuring one of these three aspects.

The stratification was created using a double-bucket apparatus (Oster (1965))

with a buoyancy frequency of N =
√
− g
ρ0

dρ
dz

= 1.4 s−1 where g is the acceleration

due to gravity, ρ0 = 1.00 g cm−3 is a reference density, and ρ(z) is the density of

the fluid as a function of depth.

A conductivity probe (Precision Measurement Engineering) was used to mea-

sure the density stratification at the beginning of each experiment. Experiments
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Figure 4.4: Front and side views of the tank. The left inside edge of the tank is
defined as x = 0 increasing to the right and the base of the support structure for the
conveyor belt is defined as z = 0 increasing up., The upper shaded region indicate
the plane where PIV measurements for turbulence are taken. The lower shaded
region shows where synthetic schlieren measurements for waves are taken. Note
that for synthetic schlieren, the waves are assumed to be uniform across the width
of the tank.
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with different values of U were performed consecutively with at least a 20 minute

delay for the fluid to come to rest. This allows investigation of the effect of differ-

ence thicknesses of the layer and saves having to drain and refill the tank.

Vertical traverses of density data were taken at the beginning and part way

through sets of experiments. Figure 4.5 shows examples of the density profiles

achieved. The buoyancy frequency was estimated by a linear regression through the

linearly stratified region. Over several sets of experiments values of N = 1.38 s−1

to 1.50 s−1 were achieved using the same mass of salt and volume of water in the

double-bucket apparatus. The error in estimating N is ±0.1 s−1.

There was usually a small mixed region near the bottom of the tank due the

initial mixing when the tank is being filled.

4.2 Mixed layer deepening

Food-grade dye was added to the upper part of the fluid to act as a passive tracer

marking the thickness of the mixed layer. Red dye as opposed to, say, blue dye

was chosen for the mixed layer because the red light of the laser light sheet used

to observe the turbulence is absorbed the least by red dye. The experiments listed

in table 4.1 were used to explore how the depth of the mixed layer deepened over

time. These mixed layer deepening experiments took several hours to run.

Because the mixed layer deepened relatively slowly (on the order of several

hours to reach the bottom of the tank), a time-lapse camera was set up. Figure 4.6

shows a sequence of images taken at progressively larger time intervals. The time

lapse method sequentially captured 1 image every second for 10 minutes, then 1

image every 10 seconds for 20 minutes, and finally 1 image every minute until the

end of the experiment.

A vertical time series through the center of the tank (x = 24 cm) is used to

measure the deepening mixed layer over time as shown in figure 4.7a. The colour

image is converted to a gray scale image and then a threshold filter is applied to

convert it to a black and white image. This creates a region of ‘white’ on the interior

of the vertical time series which represents the undyed fluid. Searching for the

58



−40

−30

−20

−10

0

z
(c
m

)

1 1.08

−40

−30

−20

−10

0

z
(c
m

)

1 1.08
ρ(g/cm3)

1 1.08

a) b) c)

d) e) f)

Figure 4.5: Examples of stratifications measured in conveyor belt experiments. Pan-
els a, b, c show the stratifications obtained at the beginning, middle, and near the
end of a single 5 hour long mixed layer deepening experiment (e090128a). Pan-
els d, e, f show the stratifications obtained before and after distinct experiments
performed using the same starting stratification (e090224).
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Figure 4.6: Snapshots at various times showing deepening of mixed region (for
experiment e090120a). Red dye marks the thickness of the mixed layer at the times
shown. The mixing is fairly uniform across the tank with slightly more mixing at
the right side and slightly less on the left side.

60



0 20 40 60 80 100 120 140 160 180

t (min)

−40

−35

−30

−25

−20

−15

−10

−5

0

z
(c

m
)

0 20 40 60 80 100 120 140 160 180

t (min)

−40

−35

−30

−25

−20

−15

−10

−5

0
(a) (b)

Figure 4.7: (a) Vertical time series through centre of the tank, x = 24 cm. The
vertical white lines indicate changes in the sampling rate of the time lapse video (see
text for details). (b) Thresholded image shown in gray and white and the interface
(with a 10-element smoothing filter applied) shown as the solid black line.

largest coordinate of only the white pixels thus gives the position of the base of the

mixed layer. This process is shown in figure 4.7b.

The mixed layer depth is plotted against time, figure 4.8, for each of the three

experiments listed in table 4.1. To fit a power law, the graph is made on log-log

axes and a linear regression is used. The results are listed in the same table. For

experiment e090128a, vertical barriers were placed at x = 12 cm and x = 36 cm in

order to investigate the effect of a narrow tank. The width does not seem to impact

significantly the deepening rate of the mixed layer.

After the initial deepening, this analysis shows that mixed layer deepens slowly

compared to the time scales of the waves and turbulence studied in the rest of this

chapter. Hence, we can assume that the depth of the mixed layer is fixed for the pur-

poses of analysis of waves and turbulence for any particular experiment. The depth

of the mixed layer is still a relevant parameter but will assumed to be a constant

parameter when comparing individual experiments.
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Figure 4.8: (a) Curves show mixed layer depths as a function of time for different
experiments. (b) as in (a) but on a log-log scale and showing linear regressions
and using non-dimensional units. The legend indicates the power law measured for
each experiment.
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Table 4.1: List of experiments measuring rate of mixed depth deepening

Experiment U (cm/s) Power law Note
e090115a 8 ∼ t0.12 x = 24 cm
e090120a 16 ∼ t0.20 x = 24 cm
e090128a 16 ∼ t0.17 x = 8 cm
e090128a 16 ∼ t0.17 x = 24 cm
e090128a 16 ∼ t0.14 x = 40 cm

Entrainment of stratified fluid by turbulent mixing has a long history in the liter-

ature. There are industrial applications such as gases in mines, and environmental

processes such as deepening of the ocean mixed layer by a storm and eroding of

an atmospheric inversion. In laboratory studies two primary types of experiments

are performed: shear-free turbulence and turbulence with a sheared mean flow. The

former is often created using a mixing box experiment (Rouse and Dodu (1955),

Turner (1968), Linden (1975), Xuequan and Hopfinger (1986), Dohan and Suther-

land (2003)). The latter is either done through a surface stress in a annular tank

(Kato and Phillips (1969), Kantha et al. (1977)), a buoyant overflow (Ellison and

Turner (1959)) or a Odell-Kovasznay flume with an accelerated upper section and a

stationary lower section (Narimousa and Fernando (1987)). The stratification is ei-

ther a two layer fluid or linearly stratified. In a linear stratified fluid, internal waves

can propagate away from the mixing region slowing the rate of deepening (Linden

(1975)). It is common to express the rate of deepening in terms of an entrainment

coefficient, E = ue/u which is the ratio of the deepening rate ue = dD/dt to the

characteristic velocity scale u. Ellison and Turner (1959) were the first to conjec-

ture that the rate of entrainment should be a function of the Richardson number,

E = f(Ri). See Fernando (1991) for a review of turbulent mixing of both shear-

free and sheared stratified flows.

Typically, papers discussing the turbulent entrainment rates report their results

in terms of a power law based on Ri of the form E = k Ri−n (e.g. the review by

Fernando (1991)). However, there are several different ‘Richardson numbers’ based

on several different velocity and length scales that have been used. All capture the

relative importance of buoyancy forces versus shear stresses but direct comparison
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of results from one paper to another can be non-trivial.

For example, Kato and Phillips (1969) suggested that E ∼ Ri−1 using a bulk

Richardson number of Ri = (g∆ρ/ρ0)D/u2
∗ where u∗ is the frictional velocity

imposed on the surface of an annular tank with linear stratification. For our ex-

periment, we choose a characteristic velocity as u = U , the belt speed. A linear

background stratification with constant gradient of Γ = dρ/dz gives a depth depen-

dent density jump of ∆ρ = ΓD/2. Integrating

E =
ue
u

=
dD/dt

u
∼
(
gΓ/ρ0D

2

u2

)−n
(4.1)

leads to a power law of the form

D ∼ t1/(1+2n) (4.2)

A different choice of characteristic velocity, assuming that u is time independent,

would lead to a different constant of proportionality but the same exponent in the

power law. As shown in figure 4.8, we observed that our mixed layer depth in-

creased with a power law in the range of D ∼ t0.12 to D ∼ t0.20. This corre-

sponds to values of n in the range of 2 to 3.5 which is much higher than what Kato

and Phillips (1969) found. Expressed as power law, their experiments suggest that

D ∼ t1/3. We only performed a few experiments on the rate of change of the mixed

layer depth and hence the errors is the estimate of the power law are fairly large

with the uncertainty in the exponent being 25%. However, these measurements

are sufficient to demonstrate a difference in behaviour with the Kato and Phillips

(1969) experiments, namely, that the mixed layer deepens much more slowly in our

experiments.

Unexpectedly, we find that our deepening rates are more consistent with the

rates reported in Xuequan and Hopfinger (1986) of a shear-free mixing box exper-

iment with a oscillating grid. They reported deepening rates of D ∼ t1/5 for two

layer stratifications and D ∼ t1/8 for constant gradient stratifications.
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4.3 Wave measurements

The turbulent forcing in the upper mixed region produces internal waves in the

lower stratified region. To quantitatively measure the internal waves in the stratified

region, synthetic schlieren (Sutherland et al. (1999)) was used.

Behind the tank a bank of fluorescent lights illuminated a screen of black and

white lines. The lines were 0.2 cm thick and the screen was placed 10 cm behind

the tank. A digital video camera recorded the image of the screen through the

salt-stratified fluid. Internal waves change the local density and hence the index

of refraction. This distorts the image of the lines. This technique, called synthetic

schlieren, can be used to determine the changes in the stratification, characterized

by the perturbation buoyancy frequency, ∆N2, or the rate of change of the pertur-

bation buoyancy frequency, ∆N2
t .

For these conveyor belt experiments, sample raw images of data applicable

to schlieren analysis are shown in figure 4.9. For the conveyor belt experiments,

there are 36 distinct experiments that have data which can be analyzed by synthetic

schlieren. Often these experiments are done in sequence with different belt speeds

but increasing mixed depth. Variation between sequences of experiments is primar-

ily due to the experimental error in creating the initial linear stratification of salt

water.

We analyzed a region of interest away from the sides, bottom, and mixed layer

for waves. In particular, we define the region as 10 cm < x < 34 cm at ∆x =

1.0 cm intervals, −35 cm < z < −15 cm using every pixel of resolution available,

and all frames (either 24 fps or 30 fps depending on the camera used) in time.

The simplest analysis is to perform qualitative schlieren by subtracting from the

current image an initial image before the experiment began. This is depicted in

figure 4.10.

To use quantitative synthetic schlieren, the open source software igwtools was

used. Specifically, the ‘dn2t’ mode is used with the derivative computed over frames

spaced by ∆t = 1/15 s apart. The physical parameters of the distance from the grid

to the back of the tank, the thickness of the tank walls, and the width of the tank
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Figure 4.9: Examples of the raw images used for synthetic schlieren analysis of
internal waves. a) Early experiments captured the entire tank in the field of view,
e.g. e080730e at t = 50 s. b) Later experiments zoomed in on only a region of
interest below the mixed region, e.g. e090303f at t = 50 s.
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Figure 4.10: An example of qualitative schlieren. (a) A snapshot from before the
experiment is started. (b) A snapshot during the experiment. (c) The difference in
pixel intensities between (a) and (b). This shows the structure of the internal waves.
Note the horizontal lines are actually more finely spaced than (a) and (b) suggest.
See figure 4.9 for a better image of the lines.
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Figure 4.11: ∆N2
t field (a) snapshot at t = 50 s (b) horizontal time series at z =

−25 cm of experiment e080730c. The colour scale used ranges from -0.1 s−3 (blue)
to 0.1 s−3 (red).

were used. This gives the ∆N2
t field as shown, for example, in figure 4.11.

We observed wave packets propagating downwards. Wave packets travelling

both towards the right and the left are observed. Horizontal time series were con-

structed to observe the waves passing a particular vertical position (see figure 4.11b

for an example). There was a dominant observed frequency in the waves of approx-

imately ω = 1 s−1 (or ω/N = 0.7) as can been seen by the quasi-uniformly spaced

lines of constant phase in the horizontal time series.

To compute the energy of the waves, the horizontal time series was Fourier

transformed to kx − ω-space (e.g. figure 4.12). The DC component of the spectra

(kx = 0 and ω = 0) was explicitly set to zero. The spectra were low-pass filtered

with a cut-off such that ω < N , to consider only freely propagating internal waves,

and kx < 1.0 to eliminate high frequency noise.

The vertical displacement, ξ, in Fourier space is related to ∆N2
t by

Aξ = A∆N2
t
/(N3kx sin Θ) (4.3)

where Aq(kx, ω) represents the amplitude of the spectral component of the field q
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Figure 4.12: Wave spectrum in kx, ω-space of the horizontal time series shown in
figure 4.11. The right axis shows the sum in energy over all kx while the lower axes
shows the sum in energy over all ω (experiment e080730c).
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Figure 4.13: Wave energy density as a function of depth for experiment e080730c.
A representative value of the wave energy density is taken as the average value over
the solid black region.

where ω = N cos Θ. Using characteristic values of N = 1.4s−1, sin(θ) = 1/
√

2,

andA∆N2
t

= 0.1 (as given in figure 4.11) we use equation 4.3 and find thatAξ/λ has

a typical value of approximately 0.8% justifying the use of linear theory to analyze

the internal waves. The energy density of a single plane wave is given by

E ′wave =
1

2
ρ0A

2
ξN

2. (4.4)

This energy was computed for each component kx, ω and integrated to give the total

wave energy density in the horizontal time series.

Ewave =

∫
E ′wavedkxdω (4.5)

Repeating this procedure for each horizontal slice taken at different vertical

levels allows us to plot Ewave as a function of depth, z, as shown in figure 4.13. The

wave energy density is approximately constant below z = −20 cm so a vertical

average between −30 cm < z < −20 cm is taken to get a measurement of the

wave energy as a function of the conveyor belt speed.
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Table 4.2: The wave energy density, Ewave, for each synthetic schlieren experiment.

Expt:DatasetId U (cm/s) N (1/s) D (cm) Ewave (J/cm3)
e080729a:22 4 1.50 4.2 0.0054
e080730a:2 4 1.44 4.9 0.0011
e090224a:46 4 1.47 6.1 0.0020
e080730f:7 4 1.44 16.5 0.0003
e090224f:54 4 1.47 18.9 0.0005
e090303a:60 6 1.41 6.1 0.0056
e080729b:23 8 1.50 5.6 0.0358
e080730b:3 8 1.44 6.7 0.0041
e090303h:67 8 1.41 7.0 0.0142
e090224b:47 8 1.47 8.0 0.0055
e090224b:48 8 1.47 8.0 0.0053
e080730g:8 8 1.44 16.3 0.0021
e090224g:55 8 1.47 19.2 0.0032
e090224g:56 8 1.47 19.2 0.0058
e090303b:61 10 1.41 9.2 0.0158
e080729c:24 12 1.50 8.4 0.0636
e080730c:4 12 1.44 8.8 0.0095
e080730c:18 12 1.44 8.8 0.0258
e080730c:73 12 1.44 8.8 0.0090
e090224c:49 12 1.47 10.8 0.0168
e090224c:50 12 1.47 10.8 0.0190
e090303i:68 12 1.41 11.0 0.0376
e080730h:9 12 1.44 17.7 0.0052
e090224h:57 12 1.47 19.8 0.0104
e090303c:62 14 1.41 12.9 0.0286
e090303c:70 14 1.41 12.9 0.0911
e080730d:5 16 1.44 11.1 0.0179
e090224d:51 16 1.47 14.5 0.0253
e090224d:52 16 1.47 14.5 0.0260
e090303j:69 16 1.41 14.9 0.0366
e090303d:63 16 1.41 15.9 0.0163
e080730i:10 16 1.44 17.3 0.0085
e080729d:25 16 1.50 20.0 0.1458
e090224i:58 16 1.47 20.4 0.0485
e090303e:64 18 1.41 18.9 0.0208
e080730e:6 20 1.44 14.2 0.0195
e080729e:26 20 1.50 14.3 0.1213
e090224e:53 20 1.47 17.4 0.0299
e080730j:11 20 1.44 19.2 0.0158
e090303f:65 20 1.41 21.7 0.0269
e090224j:59 20 1.47 21.9 0.0144
e090303g:66 22 1.41 23.6 0.0196
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This analysis was repeated for each experiment that could be processed with

synthetic schlieren. In figure 4.14 we show how Ewave varies with the belt speed

U . The average energy of the waves increases with the belt speed U but there

is also an increase in the range of Ewave. The depth of the mixed layer is also

changing between experiments which is another relevant parameter in describe the

energy of the waves. The values are given in table 4.2. The energy densities seems

to be linearly dependent on the belt speed which is unexpected since one would

expect that energy should scale with velocity squared. The figure also shows that

the energy density decreases with increasing mixed layer depth.

Figure 4.14 demonstrates that as the belt speed U increases then so does the en-

ergy density of the wave field. However, either a peak of wave energy is occurring

at about U = 16 cm s−1 or the wave energy is reaching a saturation level. Satu-

ration in this case means that the turbulence is unable to force waves with larger

amplitudes.

Figure 4.14 also shows that for a series of experiments with the same buoyancy

frequency but with increased mixed layer depth the wave energy density describes

the same trend but is shifted down. Therefore, as the thickness of the mixed layer

increases, the energy density decreases.

Finally, figure 4.14 suggests that the order of experiments is significant because

the mixed layer deepens at different rates depending on the belt speed. However,

this does not seem to impact the general trend of increasing wave energy density

with increased belt speed U .

The energy density scales with the square of the buoyancy frequency. There-

fore an overestimation of the background buoyancy frequency will lead to a gross

overestimation of the wave energy density. For the experimental series e080729 it

is possible that the initial buoyancy frequency was incorrectly overestimated lead-

ing to the considerably larger energy observed. Stratifications for all experiments

were created using the same procedure, the same mass of salt and the same volume

of water in the double-bucket apparatus. The variation in stratification between

experimental series was due to experimental error. The buoyancy frequency mea-

sured for e080729 was N = 1.50 which was the highest initial N for all series of
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Figure 4.14: Wave energy density as a function of belt speed. The colours indicate
experiments that were done in succession with the same starting stratification. The
lines indicate the order the experiments were performed starting from the slowest
belt speed.

experiments.

It had initially been assumed that the buoyancy frequency in the lower stratified

region remained constant between one run and the next. However, upon exami-

nation of density profiles taken part way through and at the end of a sequence of

experiments, the stratification in the lower region increased over the course of the

series, thereby increasing the buoyancy frequency. This in turn caused an underes-

timation of the wave energy density. Therefore, it was not possible to determine the

quantitative effect of the deepening mixed region alone on the wave energy density.

4.4 Turbulence measurements

The upper mixed region is turbulently forced and exhibits motion on a range of

scales. Since the fluid is not density stratified and the flow varies across the tank,

synthetic schlieren could not be used to visualize the flow field. We required a

quantitative technique that could make whole field measurements of the velocity
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field. In our lab we had access to a line laser that produced a laser light sheet and

a digital video camera so it was natural to attempt a simple form of particle image

velocimetry (PIV) to measure the turbulence. There are other techniques that might

have been used given different resources as well as more complex versions of PIV

that were available commercially. The advantage of this technique is that it was

available, relatively inexpensive, and sufficient for our purposes.

Nearly neutrally buoyant Pliolite particles were injected in a salt water mixture

at about 2 cm below the surface prior the start of the experiment. Pliolite has a

specific density of 1.03 (Eliokem Material & Concepts product data sheet). The

particles tracked the motions of the fluid and also marked the depth of the mixed

region when the red dye was not used. A laser light sheet illuminated a plane of the

particles the upper mixed layer of the tank. The laser light passed through a lens

to create a light sheet that is uniform in intensity along the line and had a uniform

distribution across the line. (SNF Straight Line, 600 nm, < 1 mW, manufactured by

Lasiris, Inc.). The particle seeding was relatively sparse compared to a conventional

PIV setup. However, the laser light intensity is also typically much higher. A JAI

digital video camera with a higher resolution of 1372×1024 recording at 24 frames

per second was used to capture the motion of the particles.

Figure 4.15 shows an example of a raw image obtained. The images are natu-

rally very dark due to the low light conditions used (the laser is fairly weak and the

lab lights are turned off during a PIV experiment). This can also be seen by looking

at the histogram of the image as shown in figure 4.16. The histogram is doubly-

peaked with the first peak being the ‘black’ background and the second being the

light from the laser sheet. However, the image as recorded is much darker that what

was observed by eye during the experiment. Since the laser was red, the experiment

observed by eye in the lab were also red. The JAI camera was a gray-scale camera

and only captured the light intensity.

Although the PIV processing software (see below) was able to use these images

to infer the velocity field, the particles were barely obvious by eye. For the reader’s

benefit, we enhance the image by performing a gamma correction which spreads

out the ‘dark’ values over a larger range of numerical intensities as demonstrated
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Figure 4.15: Example of a raw image as recorded by DigiFlow from a PIV experi-
ment.
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Figure 4.16: Histogram of intensities of raw image as recorded by DigiFlow.

by the histogram in figure 4.17. We also change bounds of the colour map to focus

on the region where there is the most information as in figure 4.18.

We processed the images from the camera using open source software CIVx

(version 20051012). We chose an interrogation-window size of 32 pixels and a

search-window size of 64 pixels. The search grid was set so that we had 100%

overlap between adjacent grid boxes. A smoothing parameter of ρ = 1 was used.

CIVx is a hierarchical PIV analysis program which uses two iterations to analyze

the flow field. The first cross-correlation estimates the velocity field and the second

uses this as an estimate to make a more accurate analysis of the velocity field in a

second pass. See Fincham and Delerce (2000); Fincham and Spedding (1997) and

the user manual of CIVx for more details. The same parameters were used for both

the first and second iteration of CIVx.

There were 36 conveyor belt experiments for which turbulence measurements

using PIV were obtained. The output of CIVx is a velocity field ~u = (u,w) with

horizontal and vertical components on a two dimensional grid at each time interval.

We were only concerned with a region of interest below the conveyor belt, away
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Figure 4.17: Histogram of intensities of gamma corrected image. The ‘dark’
colours have been spread out over a large range of numeric intensity values as com-
pared to figure 4.16.

from the side walls, and above the stratified region. An example of the vector field

~u is given in figure 4.19a. This vector field was averaged over two minutes of the

experiment to give the mean flow, < ~u >, that developed in the mixed layer. A per-

turbation velocity, ~u′ = ~u− < ~u >, was computed for each frame captured by PIV.

The mean circulation is shown in figure 4.19b and an example of the perturbation

velocity is shown in figure 4.19c.

The average turbulent kinetic energy density was computed by

ETKE =
1

A

∫
1

2
ρ0

(
u′2 + w′2

)
dA (4.6)

where A is the area of the region of interest for the turbulence. This quantity is

plotted against time in figure 4.20 where t = 0 corresponds to when the conveyor

belt was first turned on. In this example, as in all other experiments performed,

there was no observed trend showing either increasing or decreasing ETKE over

the duration of each experiment.

The frequency spectrum ofETKE was red with an example shown in figure 4.21.
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Figure 4.18: Example of a PIV image for processing, enhanced with a gamma
correction and using a narrower colormap to show details.
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Figure 4.19: Sample velocity field measurements from PIV taken from experiment
e090224h show using a quiver plot where the length of the arrows are proportional
to the speed and the direction of the arrows indicated the direction of the flow. a)
Total velocity field b) Mean circulation c) Perturbation velocity field
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Figure 4.20: Turbulent kinetic energy density of the mixed layer as a function of
time for experiment e090224h. The black line indicated the average in time.

For that experiment, the power law was ETKE ∝ ω−0.43. There was no dominant

frequency observed in the frequency spectrum.

We computed the time average of the ETKE to get an estimate of the turbu-

lent energy for each experiment with its corresponding conveyor belt speed. The

average turbulence kinetic energy is plotted against the belt speed U as shown in

figure 4.22. The values are given in table 4.3.

4.5 Results

The lighting conditions in our laboratory required for particle image velocimetry

(PIV) and for synthetic schlieren (SS) were in conflict. PIV requires the lab lights

to be turned off while SS needs bright back lighting. Although it is possible for these

two techniques to be done concurrently (Dalziel et al. (2007)), this was not done in

these experiments. An experimental sequence (different values of U between tank

refills) is either configured for PIV or SS and the data is compared by matching the

belt speed, and the stratification including initial mixed layer depth. The effect is
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Table 4.3: The turbulent kinetic energy density, ETKE , for each PIV experiment.

Expt:DatasetId U (cm/s) N (1/s) D (cm) ETKE (J/cm3)
e080728a:13 4 1.38 6.0 0.0826
e090224a:101 4 1.47 6.1 0.6573
e080728k:85 4 1.38 10.2 0.1166
e080728f:80 4 1.38 13.3 0.1093
e090224f:106 4 1.47 18.9 0.1115
e090303a:111 6 1.41 6.1 0.6768
e080728b:14 8 1.38 6.6 0.4087
e090303h:117 8 1.41 7.0 0.5936
e090224b:102 8 1.47 8.0 0.5778
e080728l:86 8 1.38 10.2 0.3507
e080728g:81 8 1.38 10.5 0.4309
e090224g:107 8 1.47 19.2 0.2885
e090303b:112 10 1.41 9.2 0.9191
e080728c:12 12 1.38 7.7 0.8897
e090224c:103 12 1.47 10.8 0.9760
e090303i:118 12 1.41 11.0 1.1675
e080728h:82 12 1.38 11.3 0.6149
e080728m:87 12 1.38 13.3 0.6472
e090224h:108 12 1.47 19.8 0.4916
e090303c:71 14 1.41 12.9 1.2009
e080728d:15 16 1.38 10.2 1.3378
e080728i:83 16 1.38 14.0 0.9503
e090224d:104 16 1.47 14.5 1.3536
e090303j:119 16 1.41 14.9 1.2685
e090303d:113 16 1.41 15.9 1.6098
e080728n:88 16 1.38 16.3 0.8762
e090224i:109 16 1.47 20.4 0.7587
e090303e:114 18 1.41 18.9 1.4959
e080728e:16 20 1.38 11.9 1.5768
e080728j:84 20 1.38 16.4 1.4547
e080728o:89 20 1.38 16.5 1.2655
e090224e:105 20 1.47 17.4 1.7284
e090303f:115 20 1.41 21.7 1.1847
e090224j:110 20 1.47 21.9 0.9748
e090303g:116 22 1.41 23.6 1.0326
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Figure 4.21: Normalized power spectrum of ETKE for e090224h. The solid black
line is the least squares fit to the power law ∼ ω−0.43. The vertical dashed line is
the buoyancy frequency, N = 1.40 s−1

to create a composite experiment as shown in figure 4.23. For some experiments,

both PIV and SS were set up so that one method could ‘take over’ from the other to

provide as close to simultaneous measurements as possible.

Experiments were performed by varying the belt speed, U , which set the amount

of energy that was imparted to the system. Figure 4.24a shows the energy density of

the turbulence and the waves as a function of U . Both energy densities increase with

U . When wave energy density is plotted as a fraction of turbulent kinetic energy,

as in figure 4.24b, it is found that the wave energy density is a rough fraction of the

turbulent energy density, namely, Ewave/ETKE = 2.4± 1.4%.

4.6 Discussion and conclusions

Internal waves generated by turbulence have been observed in a variety of experi-

mental configurations. This project used a new experimental setup that had a con-

tinually forced turbulent shear mixed layer above a stably stratified region. Internal
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Figure 4.22: Turbulent kinetic energy as a function of belt speed. The blue circles
are experiments where the depth of the mixed region is between 0 cm and 10 cm,
the green squares between 10 cm and 20 cm, and the red diamonds between 20 cm
and 30 cm.

Figure 4.23: Composite image of turbulence and wave visualization methods
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Figure 4.24: Comparison between energy density of mixed layer and stratified layer.
The upper panel shows the average energy density grouped by belt speed as a func-
tion of belt speed. The lower panel shows the ratio of wave energy to turbulent
kinetic energy. The solid black line is the average at 0.024± 0.014.
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waves were measured in the stratified region. The energetics of both the turbulence

and waves have been measured and it was found that wave energy density is a con-

stant fraction of the turbulent energy density. Non-transient waves are generated

that are suitable for both spectral analysis and statistical averaging.

Wave energy density is on the order of 1% of the turbulent kinetic energy den-

sity. With reference to the motivation given in chapter 1, this suggests that internal

wave generation is significant.

There are still several possible concerns with this experimental setup and the

subsequent analysis which will need to be resolved before the results can be gener-

alized. First, the experiment is limited to a finite sized tank which sets up a mean

circulation in the mixed region and allows for wave reflection off both the side walls

and the bottom of the tank. Second, the turbulence measurements are only able to

capture two of the three components of the velocity field in the mixed region. Third,

it is not known if it will be possible to scale this result up to either an oceanic or

atmospheric context. The next chapter describes numerical simulations that address

whether the existence of the walls of the tank significantly changes the relationship

between the turbulence and the waves.
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Chapter 5

Numerical Modelling

5.1 Introduction

The results of chapter 4 suggested that is is possible to characterize the energy of

internal waves produced by sheared turbulence as a fixed fraction of the turbulent

kinetic energy of the mixed layer. However, the laboratory experiments were lim-

ited in a fairly short tank that caused a recirculating flow in the mixed region and

wave reflections off the sides and bottom of the tank. In order eventually to apply

those results to a geophysical context, it is useful to know limitations of the tank

geometry. To address this, direct numerical simulations were performed.

During lab experiments, the turbulence measurements performed using PIV

were limited to two dimensions (2-D). In the numerical simulations, the model

is run in 2-D mode. Although this will prevent turbulence from fully developing,

it will help identify whether the lab experiments are essentially 2-D, as has been

assumed, or require a 3-D model. If the 2-D simulations capture the essential ob-

servations made in the lab experiments, we can conclude that the wave generation

process is essentially 2-D.

The data gathered in the lab was of limited resolution, especially in the turbulent

mixed region. Numerical simulations will allow for more detailed information. This

is especially useful for analyzing the spectra of both the turbulence and the waves.

Also, an energy budget partitioning the energy input in the system into kinetic and

potential of both the turbulence and the waves can be performed.

In this chapter the numerical model, Diablo, is described in the remainder of
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this section. The setup of the numeric model is given in section 5.2. The turbulence

in an upper mixed region is examined in section 5.3. The waves in a lower stratified

region are investigated in section 5.4. Results and comparisons between the waves

and turbulence are discussed as well as an energy budget in section 5.5. Conclusions

and future work are in section 5.7.

5.1.1 Diablo

The software used for numerical modelling is called Diablo. Its name comes from

the phrase “Direct numerical simulation In A Box, Laptop Optimized”. It has two

particular useful features for our research problem. The first is that it can solve

the Boussinesq Navier-Stokes equations numerically in two or three dimensions by

resolving the smallest turbulent scales. The code also supports a large-eddy simu-

lation (LES) scheme, though this feature was not used in this thesis. The second is

that the code is written primarily for the pedagogical purpose of teaching graduate

students about computational fluid dynamics (CFD) so it is easier to understand and

to modify as compared to other research level CFD codes. In particular, compared

to more full-featured software such as global ocean circulation models, there are

no physical parametrizations that need to be disabled for a process study such as

this. For example, there are no parametrizations of turbulence used, there is no to-

pography to configure, and there are no parametrizations of surface fluxes such as

precipitation or solar heating. The code was developed at the University of Califor-

nia, San Diego, by Tom Bewley and John Taylor and has been released under the

GNU General Public License. See Taylor (2008) and Bewley (2009) for full details

of the software.

The following description is given on its web page:

Diablo is an open-source, MPI-based, portably efficient, easy-to-read/modify

DNS/LES code in Fortran90 syntax for computing turbulence in 3D

or 2D rectangular geometries with periodic boundary conditions in 3,

2, 1, or 0 directions and simple Dirichlet, Neumann, or stress-free

boundary conditions in the others. It allows for a wide variety of

triply periodic, channel, duct, and cavity flows to be studied. Pas-
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sive and active scalars may be incorporated to study the effects of den-

sity/temperature/salinity/concentration gradients. 1

5.1.2 Model equations

Diablo solves the incompressible Navier-Stokes equations

∂~u

∂t
+ ~u · ∇~u = − 1

ρ0

∇p′ − g

ρ0

ρ′k̂ + ν∇2~u (5.1)

∂ρ′

∂t
+ ~u · ∇ρ′ = κ∇2ρ′ (5.2)

∇ · ~u = 0 (5.3)

where ~u is the velocity vector, ρ0 is a reference density, p′ is the perturbation pres-

sure, rho′ is the perturbation density, g is the acceleration due to gravity, ν is the

kinematic viscosity, and κ is the mass diffusivity. For our simulations, we have a

Schmidt number of Sc = 1 meaning that κ = ν. The model is developed for either

0, 1, 2, or 3 periodic directions. Here, we used the configuration with 1 periodic di-

rection, which is described in the documentation as the ‘duct flow’ case. The model

is finite difference in the vertical direction and spectral in the horizontal directions.

In the model, the developers refer to the vertical direction as Y (e.g. the num-

ber of vertical levels is given by NY) and the vertical velocity is represented by V.

However, we will adopt the convention that z is the vertical direction and w is the

vertical velocity to be consistent with the laboratory experiments. This renaming

has no effect on the results of this chapter but is significant for re-examining the

raw output from the model in the future.

5.1.3 Previous work

Diablo was identified as a suitable model to use because of the work done by Tay-

lor and Sarkar (2007). Those authors used Diablo to model a turbulent bottom

boundary Ekman layer in a stratified fluid and observed internal waves propagating

upwards. Because this was qualitatively similar to the type of simulation we wanted

to perform, it suggested that Diablo would be applicable to our particular research

problem.
1http://numerical-renaissance.com/Diablo.html
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Figure 5.1: The numerical simulation setup. In preliminary designs, the horizontal
velocity profile, Ū(z), was originally intended to be like the dashed curve. However,
to ensure instability and development of turbulent eddies, a curve similar to the solid
line is instead used with a thin frictional layer of thickness δ. See text for further
details. The background density profile, ρ̄(z), is a mixed layer of density ρT and
thickness H overlaying a linearly stratified region with density gradient Γ. There is
a density jump of ∆ρ between the mixed and stratified regions.

5.2 Setup

The goal of this thesis is to describe the generation of internal waves by sheared

turbulence with application to geophysical flows. The laboratory experiments de-

scribed in the previous chapter suffer from two major limitations that can be ad-

dressed with numerical simulations. The first is the existence of side and bottom

walls of the tank. The second is the limited information about the turbulent field

that can be obtained using our PIV setup.

In these simulations the goal was to create a horizontally periodic, vertically

bounded domain with a rigid upper moving boundary. This is a variation of a clas-

sic problem in computational fluid dynamics known as a lid-driven cavity flow (see

Shankar and Deshpande (2000) for a review). The laboratory experiments are es-

sentially a lid-driven cavity flow of a stratified fluid.

The numeric setup is detailed in the schematic in figure 5.1. The impulsively

started plate, also known as Stokes’ first problem (Kundu (1990)), was initially
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investigated as a reasonable set of initial conditions. Instability theory, however,

can be used to show that this parallel flow is stable to small perturbations (see

the next section for further details). A initial flow like a Blasius profile was also

considered, which has U ′(0) = U ′′(0) to ensure an inflection point at the boundary.

It is possible for this profile go unstable and lead to turbulence. However, in our

simulations, only weak instabilities were formed which were quickly damped out

by numerical viscosity before turbulence could develop. Furthermore, since there

was no energy input into the domain, viscosity would reduce the strength of the flow

over time. Blasius flow is usually achieved with a pressure gradient and is used to

model the growth of a boundary layer. Instability occurs due to an adverse pressure

gradient. The concept of using a pressure gradient in the forcing of the problem led

to the eventual initial and boundary conditions chosen.

The initial conditions chosen were

u = εN(0, 1) (5.4)

w = εN(0, 1) (5.5)

ρ =

{
ρT if z > −H
ρT + ∆ρ+ Γ(z +H) if z < −H (5.6)

where the velocity field was initially seeded with noise of amplitude ε from a Gaus-

sian distribution, N(0, 1). This velocity field was filtered by the code to ensure that

it was divergence-free before the simulation began. The initial stratification was a

mixed layer of thickness H overlaying linearly stratified fluid. The density profile

was defined by a density in the upper mixed layer, ρT, a density jump, ∆ρ, and the

linearly stratified layer with constant density gradient, Γ. This profile was chosen

to model the stratification observed in the lab experiments.

A pressure gradient given by

dp

dx
(z) =

{
dp
dx0

if z > −δ
0 if z < −δ (5.7)

forced the system throughout the simulation. A thin horizontal layer of thickness

δ at the top of the domain acted as a frictional layer dragging the unforced fluid

beneath it. The pressure gradient ensured energy was continually being added to

the system. This combination of initial and boundary conditions led to results such
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Figure 5.2: An example snapshot of the output of a simulation run. The upper
region shows the perturbation velocity field of the mixed layer overlaid on a colour
map of the turbulent kinetic energy of the flow. The lower regions shows the vertical
displacement field. The solid line is the mean horizontal velocity.

as figure 5.2. Since this was qualitatively similar to what was observed in the lab

experiments, with a shear turbulent mixed layer and downward propagating waves

in a stratified lower layer, it was deemed sufficiently promising to proceed with

further analysis.

5.2.1 Grid

The numerical grid was stretched in the vertical, as depicted in figure 5.3, to allow

more points to the turbulent upper region and less to the stratified wave region for a

given grid size. It was assumed that the length scales of the turbulence are shorter

than that of the waves and thus require higher resolutions to be resolved. Also, we

wanted to place the bottom of the domain sufficiently far away that waves reflected

off the solid boundary would not come back into the measurement region during

the simulation run.
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Figure 5.3: Typical (a) grid used for numeric simulation (showing only every 16th
grid line) and (b) grid spacing ∆z as a function of depth. The vertical grid is
stretched according to equation 5.8 so that there are more grid points in the upper
turbulent region and less points in the stratified wave region. The grid parameters
used are Lz = 40, nz = 256, and CS = 1.0.

The stretching function used is

z[j + 1] = Lz(tanh(CS((2(j − 1))/(nz)))− 1)/ tanh(CS) (5.8)

where CS is the grid stretching parameter, Lz is the total height of the domain, and

nz is the number of grid points in the vertical. In the limit as CS goes to 0, the grid

becomes uniform in the vertical. For example, a value of CS = 1.0 means the grid

stretches from ∆z = 0.023 at the top of ∆z = 0.326 at the bottom with Lz = 40

and nz = 256.

The coordinate system was defined so that z = 0 is the top of the domain and

z increasing upwards. A resolution of 256 × 256 was used with a fixed time step

of ∆t = 0.0001. This combination allowed the simulation to converge numerically

over the simulation. The domain size was LX × LZ = 3.14× 40.

The model output included snapshots of the U , W and ρ fields every n = 250

time steps. The model was low-pass filtered after every time step for numeric sta-
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Table 5.1: Partial list of parameters for numeric simulations. The full list of pa-
rameters is found in the appendix. These are the values used for the base case
simulations. Comparisons of the results when these parameters were changed are
made in the text.

Parameter Value or Range
dp
dx0

−1.0 . . .− 6.0
δ 0.1
H 1.0
ρt 0.5
∆ρ 0.5
ν 0.0001

bility. Some of the important parameters used are given in table 5.1. A full list of

parameters and further information how the model was run is found in the appendix.

The simulations were run on the University of Alberta Linux cluster.

5.3 Turbulence

In this section we present some of the observations about the sheared turbulent flow

created in the mixed layer.

5.3.1 Laminar flow

In order to model a turbulent flow, a hydrodynamically unstable basic flow was

used. As mentioned above, although profiles such as Blasius flow and Couette-

Poisson flow were investigated, it was determined that it was difficult to ensure these

profiles were unstable and evolved into turbulence. From hydrodynamic instability

theory, the velocity profile of a inviscid parallel flow is unstable only if U ′′(z) = 0

somewhere in the flow (Drazin and Reid (1981)). Also, a source of energy was

necessary to drive the system and to force continually the turbulence.

Before tackling the turbulent flow, it is useful to understand the nature of the

flow under low Reynolds numbers, where viscosity dominates, and the flow is lam-

inar. This laminar flow can be modelled as a Poisson flow in the frictional layer

and a start-up Couette flow in the rest of the flow. In particular, using the boundary
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conditions

u(0) = 0 (5.9)
du

dz
(−δ) = 0 (5.10)

leads to the flow in the frictional layer of

u =
1

2νρ0

dp

dx
(z2 + 2zδ) (5.11)

assuming steady state.

This simulation is designed to produce strong inflection point in the mean hori-

zontal velocity profile that is hydrodynamically unstable and likely to develop into

turbulent flow. The laminar profile also suggests a horizontal velocity scale of

U = − 1

2νρ0

dp

dx
δ2. (5.12)

A Reynolds number can then be formed as Re = Uδ
ν

. This non-dimensional number,

in the absence of buoyancy, determines whether the flow is dominated by viscosity

and remains laminar or dominated by inertia and becomes turbulent. Since we

desire a turbulent flow, we need to decrease the viscosity, ν, and hence increase Re

sufficiently such that the flow becomes turbulent.

Laminar Solution

We can derive a solution to the time dependent mean horizontal velocity if we as-

sume the flow remains laminar. The problem to be solved is

∂Ū

∂t
= − 1

ρ0

dp

dx
+ ν

d2Ū

dz2
(5.13)

Ū(z, 0) = 0 (5.14)

Ū(0, t) = 0 (5.15)

Note that dp
dx

is a piecewise constant function of z. This is an inhomogeneous heat

equation with time independent forcing on a semi-infinite domain. The solution is

given by

Ū(z, t) =

∫ t

0

∫ δ

0

1√
4πν(t− s) × (5.16)(

exp

(
− (z + η)2

4ν(t− s)
)
− exp

(
− (z − η)2

4ν(t− s)
))(

− 1

ρ0

dp

dx0

)
dηds
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Although the inner integral can be expressed in terms of error functions, the outer

internal needs to be evaluated numerically.

Plots of the theoretical laminar velocity profile are shown in figure 5.4. When

compared with the results of a purely laminar flow (figure 5.5a), qualitatively the

mean flow develops similarly.

5.3.2 Instability

When viscosity is reduced, the flow developed instabilities and became turbulent.

As shown in figure 5.5b, for this run the instability occurred at t = 3. Rather

than momentum diffusing slowly downwards, it was turbulently mixed quickly to

the bottom of the mixed layer. The density jump at the base of the mixed layer

prevented the mixed region from continuing to grow significantly over the duration

of the simulation.

5.3.3 Analysis

The horizontal mean of the horizontal velocity was computed as Ū(z, t). The per-

turbation horizontal velocity was defined as u = U − Ū . The perturbation vertical

velocity was the same as the total vertical velocity, w = W .

The energy content of the turbulence was quantified by computing the turbulent

kinetic energy density using

E =

∫ −δ−0.1

−H+0.1

∫ Lx

0

1

2
ρ0
H − 0.2

Lx
(u2 + w2)dxdz (5.17)

This density was computed over the vertical region−H+0.1 < z < −δ−0.1. This

region was away from both the interface and the upper frictional layer. The energy

was averaged over that area to compute a turbulent kinetic energy density. The

density was computed each of 5 < t < 20 and then averaged to get a representative

value for ETKE . The starting time of t = 5 was chosen to let the instability develop

and turbulent eddies fill the mixed region. The same procedure was used in the

conveyor belt laboratory experiment to quantify the turbulent kinetic energy.
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Figure 5.4: Evolution of horizontal velocity based on laminar flow and molecular
diffusion of momentum. a) Time series for horizontal velocity, b) velocity profiles
at ∆t = 1 intervals, c) Total energy as function of time d) Power input due to
pressure field based on −udp/dx term shown as a dashed line while the actual rate
of change of energy is shown as a solid line.
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Figure 5.5: Horizontally averaged velocity as a function of depth, z, and time, t.
The upper horizontal line marks the thickness δ of the frictional layer and the lower
horizontal line marks the position bottom of the mixed region. (a) The viscosity is
ν = 0.01 and the flow remains laminar but when (b) ν = 0.0001, the flow goes
turbulent at t = 3. In both cases, PX0 = −4.0.
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Figure 5.6: (a) Horizontal time series of the turbulent kinetic energy at z = 0.5. (b)
Fourier transform of (a) in the x-direction.

5.3.4 Spectrum

Turbulence distributes energy over a range of scales. Since this was a 2-D simu-

lation, we expected the energy to cascade up from smaller wave numbers to larger

wave numbers. Figure 5.6 shows a horizontal time series of the mixed layer along

with its Fourier transform in x. In order to resolve the horizontal wave number a

horizontal domain size of LX = 4π was used for this one run while keeping the

horizontal resolution the same. The eddies can be seen to move from left to right in

the direction of the background mean flow. The flow accelerates over time which is

why the slope of the eddies in the horizontal time series decreases with time. The

spectrum shows that at early times the eddies are distributed over a range of hori-

zontal scales. Soon, however, most of the energy was distributed primarily at fairly

small wave numbers.
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5.4 Waves

Although the vertical displacement field, ξ, is not an explicit variable in the numer-

ical model, it can be determined from the density field, ρ. The horizontal mean of

the density field is denoted as ρ̄(z, t). The background density field was a func-

tion of time since the mixed layer was slowly deepening during the simulation. We

define ξ implicitly according to

ρ(x, z, t) = ρ̄(z + ξ(x, z, t), t) (5.18)

A Taylor series expansion gives

ρ(x, z, t) = ρ̄(z, t) + ξ(x, z, t)dρ̄/dz (5.19)

Well below the mixed layer where we measure the waves, we assumed the density

gradient remains the same as in the initial conditions, dρ̄/dz = Γ. Therefore,

ξ(x, z, t) = (ρ(x, z, t)− dρ̄(z, t))/Γ (5.20)

The wave field was analyzed by constructing horizontal time series at a fixed

vertical position as in figure 5.7. The energy density was computed, using the

method described for the conveyor belt laboratory experiments, by integrating over

all frequencies and wave numbers. The process was repeated at several vertical

positions, −H − 8 < z < −H − 1 and the average taken to give a representative

value for the energy density of the wave field. The wave spectrum based on the

horizontal time series can also give the dominant frequency and wave number of the

wave field. This is determined by the position of the largest peak in the spectrum.

5.5 Results

5.5.1 Wave properties

By plotting the dominant frequency as a function of |PX0|, the dependence of

the waves on the forcing is observed. Figure 5.8 shows that as |PX0| increases,

the frequency of the waves increases. Doubling the thickness of the mixed layer

decreases the frequency of the waves. With the default resolution of LX = 3.14,
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Figure 5.7: Example of (a) horizontal time series at z = −6.0 of the vertical dis-
placement field, ξ and (b) the power spectrum of the same field. Note the strong
peak in the spectrum indicating that the wave field is dominated by a particular
frequency and wave number.
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Figure 5.8: Dominant frequency ω of the internal waves based on the spectrum of
the horizontal time series at z = −H − 5. The forcing |PX0| is varied between
simulations. The solid line shows the control case with H = 1 while the dashed
line is with H = 2.

the dominant value of the wave number cannot be determined with a resolution

better than ∆kx = 2. For all values of |PX0| and H simulated, the dominant

value of wave number found was kx = −2. To investigate the horizontal number

dependence in more detail, two additional simulations were performed with Lx =

12.56 and nx = 1024 which maintained the same horizontal resolution. This allows

the wave number to be resolved to a resolution of ∆kx = 0.5. For this pair of

simulations, PX0 = −4 and the mixed layer thickness was set to H = 1 and

H = 2. For the first experiment, the dominant wave number was at kx = −1.5 and

for the second at kx = −1.0. This suggests that as the thickness of the mixed layer

is increased, the horizontal wave length of the waves increased.

5.5.2 Energy comparison

In the previous two sections we explored the properties of the turbulence and of the

waves in the numerical simulations. Here we combine these two types of analysis
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to determine if we can represent the energy of the waves as a constant fraction of

the turbulent kinetic energy as was done with the lab experiments in chapter 4.

The energy density of both the turbulent field and the wave field are plotted

against the forcing parameter |PX0| as shown in figure 5.9a. As a ratio, they

are plotted in figure 5.9b. On average, this ratio is 3%. However, the ratio of

Ewave/ETKE is increasing with |PX0| (figure 5.9b).

5.5.3 Energy partition

Because we have information about the entire domain we are also able to construct

an energy budget. This is more complicated than simply characterizing the energy

in terms of kinetic and potential energy. As described in Winters et al. (1995), it

is important to distinguish between reversible perturbations of the density field to

waves and non-reversible changes due to mixing. For our purposes, we also need to

distinguish between the energy in the turbulent mixed layer and the wave dominated

stratified layer.

We divide the domain into a ‘mixed layer’ from z > z∗ where turbulence and

mixing dominate and a ‘stratified layer’ (z∗ > z > zbottom) where waves dominate.

A value of z∗ = −H − 1, one unit below the mixed region was chosen. Using

z∗ = −H is a poor choice because the turbulent kinetic energy dominates the wave

field near z = −H and it was difficult to separate the two. Also the mixed layer

will deepen over time and not remain at a thickness of H .

Since the system was being continually forced, the total amount of energy in

the system was always increasing over time. Unlike the experiments presented in

chapter 4, the mean flow does not reach a balance between energy input and viscous

dissipation. We computed the energy input by integrating the energy equation in

time.

E(t) = −ρ0

∫ 0

δ

U(z, t)
dp

dx
dz (5.21)

The pressure gradient was a known parameter in the frictional layer of thickness δ

and the mean horizontal velocity, U(z, t), was taken from the output of the simula-

tion.

The energy that entered the system was partitioned into the kinetic energy of
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Figure 5.9: Summary of energy measurements over several experiments. The black
line represents the ‘control’ simulation and the coloured lines are simulations where
one of the parameters, as indicated by the inset legend, have been changed. (a) En-
ergy of the turbulence (squares) and the waves (circles) plotted against PX0 (b)
Ratio Ewave/Eturb plotted against PX0. The dashed horizontal line shows the aver-
age.
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the mean flow, the turbulent kinetic energy, the change in potential energy due

to diabatic processes (mixing), changes in potential energy due to adiabatic pro-

cesses (stirring) and interfacial waves, the kinetic and potential energy of the inter-

nal waves, and the increase of the internal energy due to dissipation by viscosity.

The mean kinetic energy was given by

Ekmean(t) =
1

2
ρ0

∫ ∫ 0

zbottom

Ū(z, t)2dzdx (5.22)

This term captures the background horizontal flow which was continually being

accelerated throughout the simulation.

As the mean flow went unstable, eddies developed which were measured in

terms of the perturbation velocity components. We measured the turbulent kinetic

energy by

Ekmixed(t) =
1

2
ρ0

∫ ∫ 0

z∗
u′(x, z, t)2 + w′(x, z, t)2dzdx (5.23)

This term includes both the energy of the turbulence plus the kinetic energy of the

interfacial wave between the mixed region and the stratified region. It also includes

a small amount of the internal wave energy which we assume is negligible.

We note from movies of the simulation that the flow was dominated only by

internal waves below z = z∗. Therefore, we can use

Ekwave(t) =
1

2
ρ0

∫ ∫ z∗

zbottom

u′(x, z, t)2 + w′(x, z, t)2dzdx (5.24)

as a measure of the kinetic energy associated with internal waves.

The measurement of the potential energy was slightly more complicated. We

needed to be careful about the difference between reversible changes in the density

field due to either waves or stirring and non-reversible changes due to mixing of the

fluid. Here, we consider mixing to be the effect of molecular diffusivity. A change

due to the mixing is given by a change in the available potential energy.

∆APE(t) =

∫ ∫ 0

z∗
(ρ̄(z, t)− ρ̄(z, 0)) gz dzdx (5.25)

The change in potential energy due to stirring of the fluid at the base of the

mixed region was calculated as

Epmixed(t) =

∫ ∫ 0

z∗
(ρ(x, z, t)− ρ̄(z, t)) gz dzdx (5.26)
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This also includes the potential energy due to the displacement of the interface at

the base of the mixed layer.

The potential energy of the internal waves was given by

Epwave(t) =
1

2
ρ0N

2
0

∫ ∫ z∗

zbase

ξ(x, z, t)2dzdx (5.27)

Equipartition of energy into kinetic and potential for waves provides a test to ensure

the numerics are valid and the wave energy is being properly computed. We note

that in our analysis (figure 5.10) this condition is satisfied. The total internal wave

energy is

Ewave(t) = Ekwave(t) + Epwave(t) (5.28)

The dissipation term was estimated by the difference between the energy input

and the terms already accounted for in the energy budget.

Figure 5.10 presents the energy terms as a function of time for a simulation

with PX0 = −4. Figure 5.10a shows the energy input in absolute units parti-

tioned into each of the energy terms described above while figure 5.10b shows the

relative distribution of energy as a percentage of the total at any one time. The

total energy increased quadratically up until about t = 3 when instabilities set in

and then grew approximately linearly. In the initial acceleration phase, the energy

was partitioned into approximately 80% going to the mean flow and 20% going to

dissipation. When the instabilities kicked in, energy quickly transferred from the

mean flow, Ekmean, to the eddies in the mixed layer, Ekmixed. Soon afterwards, the

kinetic energy of the eddies began to be converted into two types of potential en-

ergy changes. The first was non-reversible changes in potential energy (labelled as

‘mixing’) by deepening of the mixed layer into the stratified layer. The second was

into reversible changes in potential energy (labelled ‘stirring’) by the lifting up of

denser fluid parcels into the mixed layer and the forcing of interfacial waves on the

density jump between the mixed layer and stratified region. Concurrently, internal

waves were being generated and propagating down into the stratified region. Past

t = 13, the rates of change of each energy category are in equilibrium with each

other according to figure 5.10b where the relative proportion were approximately

constant.
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Figure 5.10: Energy versus time. In (a) the energy of each partition is plotted
in absolute units as a stacked plot where the thickness of each region shows the
amount of energy while in (b) the energy of each partition is shown as a relative
fraction of the total energy input.
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From figure 5.10, we can estimate the rate of growth and relative distribution

of each energy category as fraction of the total energy input. We can use the dif-

ferences in rates between the energy terms to compute an energy budget as shown

in figure 5.11. The inspiration for this type of budget was drawn from figure 5 of

Wunsch and Ferrari (2004) showing a ‘strawman’ energy budget for the ocean. The

arrows show the power going into and out of each energy category and the percent-

ages indicate the average relative proportion over the interval 13 < t < 20. The

power input into the system was 10.5 (here, power represents units of energy per

unit time per unit width). Of that, a power of 5.8 or roughly half is transferred into

turbulent motions. The mean flow continues to accelerate which is why the arrows

into and out of this box do not balance. The mean flow accounts for 33% of the total

energy input. Our assumption is that the connection between the mean background

flow and the other energy categories is only through the turbulent motions of the

mixed layer. We infer from figure 5.10a that a constant rate of change occurs in the

dissipation, mixing, stirring, turbulent kinetic, and internal wave energy terms. In

particular, a power of 1.0 is estimated coming from the turbulent motions to the in-

ternal wave field. Thus, after the system has established equilibrium, we conclude

that 1.0/10.5 or on the order of 10% of the energy input is being converted into

internal waves and radiated away.

5.6 Discussion

The results described above establish a control set of experiments with PX0 =

−1,−2,−3,−4,−5,−6 to which comparisons can be made by changing some of

the parameters.

First, we tested whether the doubling the mixed layer thickness changes the

dominant horizontal wave number of the waves. The width of the domain sets

the limit of resolution of the horizontal wave number. The control case domain

width of π is insufficient to test the change. Therefore, simulations were ran with

a horizontal domain size of 4π and the same horizontal resolution to increase the

resolvable wave number. This was done for both a mixed depth of 1 and a mixed
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depth of 2. It was determined that doubling the mixed depth significantly shifted

the dominant horizontal wave number of the waves closer to zero.

Quadrupling the domain size, as in the previous paragraph, may have impacted

the energy density of either the turbulence or the waves. However, by comparing the

results with a graph like figure 5.9 (not shown), changes to the horizontal domain

size had no substantial affect on the energy density.

Doubling both the vertical and horizontal resolution to a grid of 512× 512 pro-

duced essentially the same results as given in figure 5.9 (not shown). This indicates

that the chosen grid resolution of 256 × 256 is likely sufficient for resolving the

energy containing scales of motion. With regards to computational efficiency, the

standard resolution case took approximately 4 hours to complete a single run while

the high resolution case took 28 hours for the same set of parameters.

Movies of the evolution of the wave field and the turbulent field show that the

wave packets are launched when an eddy hits the interface. If the vortex hits the

interface straight down, waves are launched to both the left and right. If the eddy

hits the interface while being carried along in the direction of the mean flow, only

the waves propagating in the same direction are observed.

The density of the mixed layer is used to establish, via equation 5.6, the density

of the entire fluid. When the density ρT was doubled while keeping the density

jump and density gradient the same, the energy of both the turbulence and waves

did not substantially change. However, doubling the thickness of the mixed layer

increased the size of the eddies. The energy ratio between the waves and the turbu-

lence is decreased by increasing the size of the mixed layer. Doubling the density

jump also decreased the energy ratio but to a lesser extent than doubling the mixed

layer thickness. The turbulent energy density does not depend on the thickness of

the mixed layer nor the density jump. These results are shown in figure 5.9.

5.7 Conclusions

The numerical simulations examined a turbulent mean flow above a stably stratified

region in a horizontal periodic domain. We observed the ratio of the wave energy
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density to the turbulent kinetic energy density is typically in the range of 1% to 3%

which is comparable to results obtained in the laboratory experiments of chapter 4.

Furthermore, the power input into the internal wave field is on the order of 10% of

the energy input into the system.

5.7.1 Laboratory versus numerical models

The numerical simulations presented in this chapter were designed to interpret the

results of the conveyor belt experiments in chapter 4. Qualitatively, as shown by

comparing figures 4.23 and 5.2, both show a turbulent eddy field in a mixed region

and internal waves propagating downwards.

All of the variables in the numerical simulation were collected and analyzed

to describe the state of the system at any time. Also, direct tests of the effect of

changing different parameters on the system were made. In these ways, numerical

simulations were beneficial for supplementing the results of laboratory studies.

In each of these two studies, the wave energy density was shown to be roughly

a fixed fraction of the turbulent kinetic energy density. Since the numerical simu-

lations were only 2-D, this suggests our laboratory experiment was dominated by

2-D processes. Also, since our numerical simulations were in a horizontally pe-

riodic and vertically semi-unbounded domain, it suggests that the presence of the

tank walls in the laboratory setup were not critical to the results.

5.7.2 Future work

Although the model supports three dimensions, they were too computationally ex-

pensive for the purposes of this study, so only the much cheaper two dimensional

simulation were performed; since turbulence is inherently three dimensional, we

did not simulate a fully developed turbulent flow. Future work includes running

the model with three dimensions. We expect that there will be a cascade of energy

down to smaller scales as opposed to the instability forming large scale 2-D eddies.

This might change the wave numbers of the internal waves generated.
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Chapter 6

Conclusion

6.1 Summary of thesis

Wave generation by intrusions, rough topography, and shear turbulence was exam-

ined in this thesis. In this section, we summarize the major results.

In chapter 2, we examined the impact of internal waves on the long-term evolu-

tion of intrusions using full-depth lock-release experiments. By varying the density

of an intrusion we were able to control the vertical position at which the intrusion

propagated. After an initial adjustment, the intrusions and the internal waves they

generated travelled at a constant speed. For small departures from symmetry, the in-

trusion speed depended weakly upon intrusion density relative to the ambient fluid

density. However, the internal wave speed approximately doubled as the waves

changed from having a mode-2 structure when generated by a symmetric intrusion

to having a mode-1 structure when generated by an intrusion propagating near the

bottom. In the latter circumstance, the interactions between the intrusion and inter-

nal waves reflected from the lock-end of the tank were sufficiently strong that the

intrusion stopped propagating before reaching the end of the tank. This revealed

a significant transfer of available potential energy to the ambient in asymmetric

circumstances.

Flow over rough topography, when the speed of the flow is sufficiently fast, gen-

erates waves in a relatively narrow frequency band either with or without a mixed

layer near the topography. This generation mechanism was explored in chapter 3

with a series of experiments which consisted of a shallow mixed upper layer and
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a deep continuously stratified lower layer. A source of turbulence was dragged

through the upper layer. Internal waves can freely propagate in the lower layer. The

internal waves were measured using synthetic schlieren to determine the frequen-

cies of the generated waves. For sub-critical flow, the frequency was proportional to

the flow speed. For super-critical flow, and consistent with previous studies, it was

found that the characteristic frequencies of internal waves generated by turbulence

are an approximate constant fraction of ≈ 0.7 of the buoyancy frequency.

In chapters 4 and 5 we considered a shear turbulent flow which formed a surface

mixed layer above a linear stratified ambient. We used synthetic schlieren for wave

measurements and particle image velocimetry for turbulence measurement in the

laboratory experiments. The computational experiments were based on 2-D direct

numerical simulations. In both laboratory and numerical studies, we found that

non-hydrostatic waves were generated with a wave energy density approximately

1% to 3% of the turbulent kinetic energy density of the turbulent mixed layer. If

the turbulence was very energetic, say, due to the passage of a storm, the amount

of wave energy generated could be relatively significant to the energy budget for

internal waves. Our numerical simulations suggested that the internal waves were

forced by eddies impacting on the density interface. The horizontal scale of the

waves was set by the size of the eddies, which in turn were related to the thickness

of the mixed layer, and the time scale was set by the velocity at which the mean

flow advects the eddies since the frequency of the waves increased with the speed

of the mean flow. Furthermore, in the numerical study, we found that on the order

of 10% of the energy input into the system by a surface stress was radiated away by

downward propagating internal waves. This suggests that turbulent mean flows are

fairly efficient at generating internal waves.

6.2 Significance of results

One of the goals of this research was to motivate the development of a parametriza-

tion for general circulation models to capture the net effect of turbulently generated

internal waves on mixing.
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We know from previous estimates (Wunsch and Ferrari (2004)) that approxi-

mately 20 TW of wind power are imparted by surface wind stresses to the upper

ocean. The vast majority of this energy (≈ 19TW) is estimated to go into surface

waves and turbulence and only 0.6 TW into inertial frequency internal waves. Our

laboratory and numerical experiments suggest that on the order of 2% to 10% of

energy input by surface stresses on a turbulent mixed layer above a stratified ambi-

ent fluid is radiated away by non-hydrostatic internal waves. This implies that on

the order of 0.2 TW to 2 TW is transferred to the internal wave field. Since these

are high frequency waves, it is expected that most of this wave energy will remain

in the thermocline and contribute to upper ocean mixing. Even if this estimate is

off by an order of magnitude, it still suggests that the generation of internal waves

by turbulence is an important mechanism for energy transport. When analyzing the

energy pathways in the ocean, especially for the meridional overturning circulation,

the uncertainties are often described in units on the order of 100 GW and so this

generation mechanism should be included.

A parametrization of this internal wave generation mechanism still requires

much work. In terms of scales, we suspect that the belt speed in the laboratory ex-

periment can be related to the square root of the surface wind stress, the buoyancy

in the lab to the stratification in the thermocline, and the depth of the mixed layer

to the depth of the ocean mixed layer. The internal waves energy density is a ratio

of approximately 2% of the turbulent kinetic energy density. A full parametriza-

tion requires more information about the internal waves that were not addressed in

this thesis, namely their evolution and where they are likely to break. Also, the

stratifications used in both the laboratory and numerical studies were idealized as

compared to those found in the ocean. The conclusion of this thesis is that further

development of such a parametrization should be pursued.

6.3 Future work

The theory described in Dohan and Sutherland (2005) hypothesized that internal

waves generated due to turbulence are narrow banded in frequency because of a
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feedback loop of the waves with the largest wave momentum or largest energy mo-

mentum on the source. For our sheared turbulent flow experiments and simulations,

we did not observe that the dominant frequency was a fixed fraction of the buoyancy

frequency. Comparing the numerical and laboratory experiments of the turbulent

shear flows, we conjecture that the process of wave generation we observed was

dominantly 2-D. The numerical models need to be extended to three dimensions

to examine what effect 3-D turbulent structures and a broad frequency spectrum

forcing has on the wave field and whether this produces waves of the characteristic

frequency that are typically associated with turbulently generated waves.

Further investigation is needed to compare our experiments to the model of

Taylor and Sarkar (2007) who suggested that viscosity is responsible for the narrow

frequency band of turbulently-generated internal waves They conjecture that since

both low and high frequency waves have relatively low vertical group velocities,

viscosity has more time to act so only waves close to the maximum vertical group

velocity, namely those with ω ≈ 0.7N , are observed to propagate away from the

turbulent region. This could be experimentally tested by increasing the viscosity of

the fluid by adding a high viscosity fluid such as glycerol. However, in our exper-

iments we do not observe a fan of waves indicating a broad range of frequencies

near the generation site and more narrowly banded waves further away. Rather, we

observe that the wave frequency is set immediately at the turbulent source.

The conveyor belt laboratory experiment would benefit from higher resolution

particle image velocimetry or another measurement technique to describe better the

turbulence in the mixed layer. We were unable to resolve the small-scale motions

of the flow and analyze the turbulence spectrum. Also, since the internal waves are

coupled to the turbulent mixed layer, more information about the turbulent eddies

immediately at the interface would be useful in explaining the specific mechanism

of the wave generation.
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A. Wüest and A. Lorke. Small-scale hydrodynamics in lakes. Annual Review of
Fluid Mechanics, 35(1):373–412, 2003.

C. Wunsch and R. Ferrari. Vertical mixing, energy, and general circulation of the
oceans. Annual Review of Fluid Mechanics, 36:281–314, 2004.

E. Xuequan and E. J. Hopfinger. On mixing across an interface in stably stratified
fluid. Journal of Fluid Mechanics Digital Archive, 166(-1):227–244, 1986.

119



Appendix A

Data

A.1 Laboratory experiments

A.1.1 Database

The experimental data is stored in a sqlite3 database called ‘igwturbgen.db’. A rela-

tional database was chosen to allow the data to be well organized. When this section

refers to the ‘SQL Database’ this is the file that is implied. The table structure is

given in Figure A.1 and will be referred to throughout this section.

A useful tool browse the contents of this database is public domain SQLite

Database Browser (http://sqlitebrowser.sourceforge.net)

A.1.2 Digital video

The central table in this organizational structure is ‘dv’ which lists all of the digital

video clips obtained from experiments. The table specifies the filename, camera

type, resolution, frame, and length of clip. Each dv is assigned a ‘grid’ from the

‘grids’ table that provides information about the world grid. Also, each dv is as-

signed to a particular experiment in the ‘experiments’ table. A particular experiment

may be comprised of several pieces of dv if several cameras were used or a single

camera was turned on and off repeatedly during an experiment. If the dv id is in

the ‘schlieren dv’ table that mean that the clip can be processed using synthetic

schlieren and if the dv id is in the ‘piv dv’ table that means that the clip can be

processed using particle image velocimetry.
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Figure A.1: Database schema for igwturbgen.db
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A.1.3 Experiment names

Experiments are identified by the date the data was collected under the naming

scheme eYYMMDD[a-z]. For example, the third experiment of the day performed

on August 13, 2007 would be called e070813c. Names of the form eYYMMDD

are meta-experiments and are used for days where multiple experiments will share

some data (such as camera configuration or traverse data). There is a one-to-one

correspondence of the experiment name used in the lab book and the experiment id

used in the SQL database.

This system explicitly assumes that there will be no more than 26 experiments

on a given day.

A.1.4 World coordinate system

Every experiment has an associated world coordinate system mapping pixel coordi-

nates to a lab reference frame. The vertical coordinate is z (pointing upwards), the

along tank coordinate is x (pointing to the right), and the traverse tank coordinate

is y (pointing from the front of the tank to the back).

To determine a world coordinate grid, the command line tool igwgrid was used

which takes an image or digital video clip and presents to the user a graphical editor

that allows reference points to be chosen.

For some experiments, a 10 cm by 10 cm L-shaped scale was used as a reference

shape in the scene of the experiment.

This information is organized with the the ‘grids’ table the SQL database.

A.1.5 Stratification measurements

The density stratification for all experiments consists of a uniformly mixed region

of density ρmixed of thickness hupper which is above a linearly stratified region

with buoyancy frequency N of thickness hlower. The density jump between the

upper and lower layer is denoted by ∆ρ. The total depth of the fluid is given

by H = hupper + hlower. Any stratification can be described by the parameters

(H, hupper, ρmixed,∆ρ,N). Depending on the stratification, it is possible for ρmixed,
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∆ρ, or N to be zero.

The table ‘stratifications’ stores the values of the stratification parameters along

with the traverse that was used to determine these values.

Traverse files are either produced by a LabView visual instrument or by hand

using spot samples measured by the density meter. These files are saved with the

filename trav[0-9].dat in a directory of the same name as the corresponding

experiment or the name of a group of experiments (e.g. all experiments from the

same day). Often, but not always, traverses were taken before and after an experi-

ment. The numerical index of the traverse indicates the order it was taken on that

day and/or for that experiment.

The structure of the traverse files is text files with tab separated columns. The

first column contains the vertical position, the second contains the calculated den-

sity and the third (optional) contains the voltage of the conductivity probe. For

traverses based on the conductivity probe there is often a corresponding file called

calibration.dat listing reference densities and reference voltages.

If calibration data is available, the computed density is recomputed from the

voltage data (occasionally, the calibration data entered into LabView software was

incorrect). If not, the value stored in the traverse is used. Manual traverses deter-

mined using the density meter do not have calibration data or voltage data so the

density values they contain are used directly.

In development of these experiments, the origin of the vertical position did not

always correspond to the origin of the lab reference frame (that is, z = 0 for the

surface; see section A.1.4 for details on the world coordinate system). There is

a value in the ‘stratification’ table called zoffset which is used for adjusting the

vertical position to match the lab reference frame.

The stratification parameters, are computed using a least squares estimation rou-

tine. The script performing the estimation is called traverses.py. Sometimes

it was necessary to restrict the region where the buoyancy frequency was calcu-

lated to a subset of the entire traverse. This subinterval is defined by (zmin, zmax)

which is also recorded in the ‘stratifications’ table if they were used.

The table ‘traverses’ lists every traverse taken. Traverses are associated with
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individual experiments via the ’stratifications’ table. It is possible that a single

traverse is used for several experiments and likewise that multiple traverses were

taken during a single experiment.

A.1.6 Parameters

Different analysis parameters are used for both synthetic schlieren and for particle

image velocimetry. See the database tables ‘schlieren parameters’ and ‘piv parameters’,

respectively.

A.1.7 Regions

Often, the entire spatial and temporal domain and resolution captured by a particular

digital video clip is not needed to perform analysis. For analysis across multiple

experiments, it is preferred that the same domain and resolution is used. Also,

there may be dependence on domain size and resolution in the different types of

analysis. A region of interest is defined as a rectangular domain in vertical and

horizontal space and time interval at a fixed resolution. This region is tagged with a

‘region id’ and the information is stored in the ‘regions’ table of the SQL database.

A.1.8 Datasets

Given a particular digital video clip, a region of interest, and an analysis method

with specific parameters a computation is performed. The result of this computation

is called a dataset and is tracked with a dataset id in the table ‘datasets’ of the

SQL database. It is used for the internal accounting of batch computation jobs and

identifying the exact computation used to make a particular analysis result.

A.2 Numerical experiments

As described in chapter 5, the numerical code Diablo was used to perform DNS

simulations of turbulence and waves.

This section provides some specific details on how the code was modified and

how it was run.
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A.2.1 Running the model

Diablo takes two parameter files input.dat and input chat.dat to control the simula-

tion. And example of each of these are shown in listings A.1 and A.2, respectively.

Listing A.1 input.dat
C A data file for Diablo. This is a generic, easy method of data
C input, as long as you don’t change the number of comment lines.
C Note that the grid size is defined in the file grid_def.

C FLAVOR VERSION
’Basic’ 1.2

C Parameters: NU, LX, LY, LZ
1.0D-5 2.0 2.0 3.14

C Method: NUM_PER_DIR, CREATE_NEW_FLOW
2 .TRUE.

C Time March: N_TIME_STEPS, DELTA_T, RESET_TIME, VARIABLE_DT, CFL, UPDATE_DT
50000 0.005 .FALSE. .TRUE. 0.5 1

C I/O: VERBOSITY, SAVE_FLOW_INT, SAVE_STATS_INT, MOVIE
2 250 250 .FALSE.

C Here include 6*N_TH lines, see below for format
C CREATE_NEW_TH(1) Create new field or Read from DIABLO_TH.START

.TRUE.
C FILTER_TH(1) FILTER_INT(1) (If and how often to filter)

.TRUE. 1
C RI_TAU(1) PR(1) REACTION(1) NON_NEG_SCALAR(N)

-2.0 1.0 0.0 .FALSE.

C When including scalar advection, include 6 lines like the following
C for each scalar

C CREATE_NEW_TH(1) Create new field or Read from DIABLO_TH.START
.TRUE.

C FILTER_TH(1) FILTER_INT(1) (If and how often to filter)
.TRUE. 10

C RI_TAU(1) PR(1) REACTION(N) NON_NEG_SCALAR(N)
0.0 1.0 0.0 .FALSE.

A.2.2 Code modifications

A copy of the Diablo source code was obtained in October 2008 from http:

//numerical-renaissance.com/Diablo.html and few a modifications

were made as explained here.

Listing A.3 shows the code snippet added that controls the external forcing that

drives the simulation. This code was added as part of the time stepping subroutine

RK2 along the a new forcing type F_TYPE = 3.

The density profile is initialized the subroutine CREATE_TH with a mixed layer

overlaying a linear stratified region. The specific function used is given in list-

ing A.4. The velocity profile is initialized in the subroutine CREATE_FLOW with
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Listing A.2 input chan.dat
C A data file for diablo. This is a generic, easy method of data
C input, as long as you don’t change the number of comment lines.
C Note that the grid size is defined in the file grid_def.
C VERSION

1.2
C TIME_AD_METH

2
C LES: LES_MODEL_TYPE (IF USING LES IN SIMULATION.....)

2
C ICs: IC_TYPE, KICK

5 0.001
C Forcing: F_TYPE, UBULK0, PX0, OMEGA0, AMP_OMEGA0

3 0.0 -0.04 6.28 0.1
C BCs: U_BC_YMIN, U_BC_YMIN_C1, U_BC_YMIN_C2, U_BC_YMIN_C3

0 0.0 0.0 0.0
C BCs: V_BC_YMIN, V_BC_YMIN_C1, V_BC_YMIN_C2, V_BC_YMIN_C3

0 0.0 0.0 0.0
C BCs: W_BC_YMIN, W_BC_YMIN_C1, W_BC_YMIN_C2, W_BC_YMIN_C3

0 0.0 0.0 0.0
C BCs: U_BC_YMAX, U_BC_YMAX_C1, U_BC_YMAX_C2, U_BC_YMAX_C3

1 0.0 0.0 0.1
C BCs: V_BC_YMAX, V_BC_YMAX_C1, V_BC_YMAX_C2, V_BC_YMAX_C3

0 0.0 0.0 0.0
C BCs: W_BC_YMAX, W_BC_YMAX_C1, W_BC_YMAX_C2, W_BC_YMAX_C3

0 0.0 0.0 0.0
C Here include 4*N_TH lines, see below for format
C BCs: TH_BC_YMIN(1), TH_BC_YMIN_C1(1), TH_BC_YMIN_C2(1), TH_BC_YMIN_C3(1)

1 0.0 -1.00 0.50
C BCs: TH_BC_YMAX(1), TH_BC_YMAX_C1(1), TH_BC_YMAX_C2(1), TH_BC_YMAX_C3(1)

1 0.0 0.50 1.00

C Description
C For channel flows (NUM_PER_DIR=2):
C IC_TYPE specifies the functional form for the initial velocity
C KICK is a scale factor on the noise added when creating a new flow.
C F_TYPE=0 gives constant mass flux flow (maintaining UBULK0).
C F_TYPE=1 gives constant pressure gradient flow (PX0 constant).
C F_TYPE=2 is for an oscillatory pressure gradient of the form:
C PX0+AMP_OMEGA0*cos(OMEGA0*TIME)
C U_BC_YMIN is the BC TYPE on the U velocity component at the lower wall
C (0 for Dirichlet, 1 for Neumann)
C U_BC_YMIN_C1 is the value of the velocity (if Dirichlet) or it’s
C gradient (if Neumann)

C When including scalar advection, include 4 lines like the following for
C each scalar

C BCs: TH_BC_YMIN(1), TH_BC_YMIN_C1(1), TH_BC_YMIN_C2(1), TH_BC_YMIN_C3(1)
1 0.0 0.0 0.0

C BCs: TH_BC_YMAX(1), TH_BC_YMAX_C1(1), TH_BC_YMAX_C2(1), TH_BC_YMAX_C3(1)
1 0.0 0.0 0.0

Listing A.3 Pressure forcing
ELSE IF (F_TYPE.EQ.3) THEN

! Adverse pressure gradient in boundary layer
DO J=JSTART,JEND

IF(GYF(J).GT.(LY/2.0-U_BC_YMAX_C3)) THEN
CR1(0,0,J)=CR1(0,0,J)-TEMP4*PX0

END IF
END DO
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Gaussian white noise of an amplitude given by KICK. These were both associated

with initial condition IC_TYPE = 5.

Listing A.4 Density Profile Initial Condition
ELSE IF (IC_TYPE.EQ.5) THEN

DO J=0,NY
DO K=0,NZM
DO I=0,NXM

! Mixed layer of thickness TH_BC_YMAX_C3
! of density TH_BC_YMAX_C2
! overlaying stratified region with drhodz = TH_BC_YMIN_C2
! with a density jump of TH_BC_YMIN_C3

IF (GYF(J) .GT. (GYF(NY) - TH_BC_YMAX_C3(N))) THEN
TH(I,K,J,N)=TH_BC_YMAX_C2(N)

ELSE
TH(I,K,J,N)=TH_BC_YMIN_C2(N)*(GYF(J)-GYF(NY)

& + TH_BC_YMAX_C3(N) ) + TH_BC_YMAX_C2(N)
& + TH_BC_YMIN_C3(N)

END IF
END DO

END DO
END DO

Finally, some bugs were solved relating to how NetCDF files were saved for

the channel case. In future work with this code base, it is strong recommended that

the developers be contacted for the most recent version and these (few) changes by

made to extend this work.

Running make should create and executable called diablo. Thus controlling

simulation is done by creating the three files input.dat, input_chan.dat,

and grid_def and compiling the executable. These steps are all automated in the

script model_run.py. This script creates these control files, generates a vertical

grid, compiles the executable, and submits the simulation to the batch system. Each

run is identified by an unique positive integer, called a run_id, and the results are

store in a directory with that name. The particular parameters used are stored in

the Python pickled file parameters.pkl. The table A.1 lists the parameters that

can be changed in the model.

A.2.3 Output

A snapshot of the U , W , ρ, and P fields are saved every so many timesteps, (given

by SaveInterval, into a NetCDF file called vis.nc. Python code (e.g. list-

ing A.5) or any other NetCDF library may be used to read this data file.
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Table A.1: List of all parameters for model. Here are all
the parameters that have been setup to be easily changed be-
tween numeric simulations.

Parameter Symbol Value Description
in code in thesis or range
PX0 dp/dx0 -1.0 to -6.0 pressure gradient
H H 1.0, 2.0 thickness of mixed layer
delta δ 0.1 thickness of frictional layer
rho mixed ρT 0.50, 1.0 density of mixed layer
delta rho δρ 0.50, 1.0 density jump at base of mixed layer
DRHODZ Γ = dρ/dz -1.0 density gradient
RITAU g/ρ0 1000 acceleration due to gravity
PR Pr 1.0 Prandtl number
NU ν 0.0001 viscosity
KICK ε 0.001 size of initial velocity perturbation
NX nx 256 number of horizontal grid points
NY nz 256 number of vertical grid points
NZ ny 1 number of spanwise grid points
LX Lx 3.14 width of domain
LY Lz 40 height of domain
LZ Ly 3.14 span of domain
CS CS 1.00 stretched grid parameter
NTimeSteps nt 50000 total number of timesteps
DeltaT δt 0.0004 time step
VarDT False variable time step flag
SaveInterval 250 time steps to dump state variables
FilterInterval 1 time steps to filter variables

Listing A.5 Example of retrieving numerical simulation output data from a NetCDF
file. Notice that Diablo calls the vertical direction y but we call it z to be consistent
with the lab coordinate system.
import netCDF4
# Open NetCDF file
vis = netCDF4.Dataset(’vis.nc’)

# Load data - [t-index slice, 0, z-index slice, x-index slice]
U = vis.variables[’U’][:,0,:,:]
W = vis.variables[’V’][:,0,:,:]
rho = vis.variables[’TH’][:,0,:,:,:]

# Load grid
x = vis.variables[’x’][:]
z = vis.variables[’y’][:]
t = vis.variables[’t’][:]

# Close NetCDF file
vis.close()
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A.2.4 Simulation parameters

Table A.2: List of numerical simulations

Run Id PX0 H δρ ρT ν LX NX LZ NZ ∆t
563 -1.0 1.0 0.5 0.5 1.0e-04 3.14 64 40.00 256 4.0e-04
564 -2.0 1.0 0.5 0.5 1.0e-04 3.14 64 40.00 256 4.0e-04
565 -3.0 1.0 0.5 0.5 1.0e-04 3.14 64 40.00 256 4.0e-04
566 -4.0 1.0 0.5 0.5 1.0e-04 3.14 64 40.00 256 4.0e-04
567 -5.0 1.0 0.5 0.5 1.0e-04 3.14 64 40.00 256 4.0e-04
568 -6.0 1.0 0.5 0.5 1.0e-04 3.14 64 40.00 256 4.0e-04
557 -1.0 1.0 0.5 0.5 1.0e-04 3.14 128 40.00 256 4.0e-04
558 -2.0 1.0 0.5 0.5 1.0e-04 3.14 128 40.00 256 4.0e-04
559 -3.0 1.0 0.5 0.5 1.0e-04 3.14 128 40.00 256 4.0e-04
514 -4.0 1.0 0.5 0.5 1.0e-04 3.14 128 40.00 256 4.0e-04
560 -4.0 1.0 0.5 0.5 1.0e-04 3.14 128 40.00 256 4.0e-04
561 -5.0 1.0 0.5 0.5 1.0e-04 3.14 128 40.00 256 4.0e-04
562 -6.0 1.0 0.5 0.5 1.0e-04 3.14 128 40.00 256 4.0e-04
550 -1.0 1.0 0.5 0.5 1.0e-04 3.14 256 40.00 256 4.0e-04
551 -2.0 1.0 0.5 0.5 1.0e-04 3.14 256 40.00 256 4.0e-04
552 -3.0 1.0 0.5 0.5 1.0e-04 3.14 256 40.00 256 4.0e-04
553 -4.0 1.0 0.5 0.5 1.0e-04 3.14 256 40.00 256 4.0e-04
554 -5.0 1.0 0.5 0.5 1.0e-04 3.14 256 40.00 256 4.0e-04
555 -6.0 1.0 0.5 0.5 1.0e-04 3.14 256 40.00 256 4.0e-04
593 -1.0 1.0 0.5 1.0 1.0e-04 3.14 256 40.00 256 4.0e-04
594 -2.0 1.0 0.5 1.0 1.0e-04 3.14 256 40.00 256 4.0e-04
595 -3.0 1.0 0.5 1.0 1.0e-04 3.14 256 40.00 256 4.0e-04
596 -4.0 1.0 0.5 1.0 1.0e-04 3.14 256 40.00 256 4.0e-04
597 -5.0 1.0 0.5 1.0 1.0e-04 3.14 256 40.00 256 4.0e-04
598 -6.0 1.0 0.5 1.0 1.0e-04 3.14 256 40.00 256 4.0e-04
544 -1.0 1.0 1.0 0.5 1.0e-04 3.14 256 40.00 256 4.0e-04
545 -2.0 1.0 1.0 0.5 1.0e-04 3.14 256 40.00 256 4.0e-04
546 -3.0 1.0 1.0 0.5 1.0e-04 3.14 256 40.00 256 4.0e-04
547 -4.0 1.0 1.0 0.5 1.0e-04 3.14 256 40.00 256 4.0e-04
548 -5.0 1.0 1.0 0.5 1.0e-04 3.14 256 40.00 256 4.0e-04
549 -6.0 1.0 1.0 0.5 1.0e-04 3.14 256 40.00 256 4.0e-04
520 -1.0 2.0 0.5 0.5 1.0e-04 3.14 256 40.00 256 4.0e-04
521 -2.0 2.0 0.5 0.5 1.0e-04 3.14 256 40.00 256 4.0e-04
522 -3.0 2.0 0.5 0.5 1.0e-04 3.14 256 40.00 256 4.0e-04
523 -4.0 2.0 0.5 0.5 1.0e-04 3.14 256 40.00 256 4.0e-04
524 -5.0 2.0 0.5 0.5 1.0e-04 3.14 256 40.00 256 4.0e-04
525 -6.0 2.0 0.5 0.5 1.0e-04 3.14 256 40.00 256 4.0e-04
526 -1.0 2.0 1.0 1.0 1.0e-04 3.14 256 40.00 256 4.0e-04
527 -2.0 2.0 1.0 1.0 1.0e-04 3.14 256 40.00 256 4.0e-04
528 -3.0 2.0 1.0 1.0 1.0e-04 3.14 256 40.00 256 4.0e-04
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Table A.2: List of numerical simulations (continued)

Run Id PX0 H δρ ρT ν LX NX LZ NZ ∆t
517 -4.0 2.0 1.0 1.0 1.0e-04 3.14 256 40.00 256 4.0e-04
529 -4.0 2.0 1.0 1.0 1.0e-04 3.14 256 40.00 256 4.0e-04
530 -5.0 2.0 1.0 1.0 1.0e-04 3.14 256 40.00 256 4.0e-04
531 -6.0 2.0 1.0 1.0 1.0e-04 3.14 256 40.00 256 4.0e-04
538 -1.0 1.0 0.5 0.5 1.0e-04 3.14 512 40.00 512 2.0e-04
539 -2.0 1.0 0.5 0.5 1.0e-04 3.14 512 40.00 512 2.0e-04
540 -3.0 1.0 0.5 0.5 1.0e-04 3.14 512 40.00 512 2.0e-04
541 -4.0 1.0 0.5 0.5 1.0e-04 3.14 512 40.00 512 2.0e-04
542 -5.0 1.0 0.5 0.5 1.0e-04 3.14 512 40.00 512 2.0e-04
543 -6.0 1.0 0.5 0.5 1.0e-04 3.14 512 40.00 512 2.0e-04
569 -1.0 1.0 0.5 0.5 1.0e-04 6.28 256 40.00 256 4.0e-04
570 -2.0 1.0 0.5 0.5 1.0e-04 6.28 256 40.00 256 4.0e-04
571 -3.0 1.0 0.5 0.5 1.0e-04 6.28 256 40.00 256 4.0e-04
572 -4.0 1.0 0.5 0.5 1.0e-04 6.28 256 40.00 256 4.0e-04
573 -5.0 1.0 0.5 0.5 1.0e-04 6.28 256 40.00 256 4.0e-04
574 -6.0 1.0 0.5 0.5 1.0e-04 6.28 256 40.00 256 4.0e-04
575 -1.0 2.0 0.5 0.5 1.0e-04 6.28 256 40.00 256 4.0e-04
576 -2.0 2.0 0.5 0.5 1.0e-04 6.28 256 40.00 256 4.0e-04
577 -3.0 2.0 0.5 0.5 1.0e-04 6.28 256 40.00 256 4.0e-04
578 -4.0 2.0 0.5 0.5 1.0e-04 6.28 256 40.00 256 4.0e-04
579 -5.0 2.0 0.5 0.5 1.0e-04 6.28 256 40.00 256 4.0e-04
580 -6.0 2.0 0.5 0.5 1.0e-04 6.28 256 40.00 256 4.0e-04
511 -4.0 1.0 0.5 0.5 1.0e-04 6.28 512 40.00 256 4.0e-04
581 -1.0 1.0 0.5 0.5 1.0e-04 12.56 256 40.00 256 4.0e-04
582 -2.0 1.0 0.5 0.5 1.0e-04 12.56 256 40.00 256 4.0e-04
583 -3.0 1.0 0.5 0.5 1.0e-04 12.56 256 40.00 256 4.0e-04
584 -4.0 1.0 0.5 0.5 1.0e-04 12.56 256 40.00 256 4.0e-04
585 -5.0 1.0 0.5 0.5 1.0e-04 12.56 256 40.00 256 4.0e-04
586 -6.0 1.0 0.5 0.5 1.0e-04 12.56 256 40.00 256 4.0e-04
587 -1.0 2.0 0.5 0.5 1.0e-04 12.56 256 40.00 256 4.0e-04
588 -2.0 2.0 0.5 0.5 1.0e-04 12.56 256 40.00 256 4.0e-04
589 -3.0 2.0 0.5 0.5 1.0e-04 12.56 256 40.00 256 4.0e-04
590 -4.0 2.0 0.5 0.5 1.0e-04 12.56 256 40.00 256 4.0e-04
591 -5.0 2.0 0.5 0.5 1.0e-04 12.56 256 40.00 256 4.0e-04
592 -6.0 2.0 0.5 0.5 1.0e-04 12.56 256 40.00 256 4.0e-04
513 -4.0 1.0 0.5 0.5 1.0e-04 12.56 1024 40.00 256 4.0e-04
556 -4.0 2.0 0.5 0.5 1.0e-04 12.56 1024 40.00 256 4.0e-04
516 -4.0 1.0 0.5 0.5 1.0e-03 3.14 256 40.00 256 4.0e-04
515 -4.0 1.0 0.5 0.5 1.0e-02 3.14 256 40.00 256 4.0e-04
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