CAN.ADIA.N THESES THESES CANADIENNES

. I National Library Bibliothéque nationa’le o »
of Canada . "Uu Canada ' ON MICROFICHE .',SUR MICROFICHE _
. . - i
\
l |
ot ?1,
. N\
° ‘ < .
.- Y
e y CBRiAN CHARLES /"’/a'ﬂvrf" o
NAME OF AUTHS‘NNOM DE L*AUTEUR a1 RRLE / E,Q e

~

TITLE OF THESIS/TITRE DE LA mm% PERMMTATAON : C@Oa PS O‘F PR’)M E PoweER.

| JPEGREE -
’ ' \? . S . X . . B .o ~ R ' \d
UNIERSITY/UN/VERSITE __Uw WVERS LTY dF AL@EKTA
" DEGREZHIOF WHICH THESIS WAS PRESENTED/ . - e o
GRADE POUR LEQUEL CETTE THESE FUT PR f‘smﬁf MA;TﬁR L Scie NEE
YEAR THIS DEGREE CONFERRED/ANN&’ D gnmr/ow DE CE GRADE, - 17 ?‘S : _ » |
NAME OF supenwson//vou DU DIRECTEUR DE THESE R D. BERC aV R o -
T . — :

5

o

“Permission is . hereby granted to the'NATIONAL LIBRARY OF L’a«itbrisatioh “éls‘t par la'!.p“rés'evrﬁe ,accbrdéé a'.'./a"B'lB'L/'OfHE- N

 CANADA to microfilm this thesis and_ to lend or sel| copies\ _OUE NATIONALE DU CANADA da rmcrohlmer carte thése et l

-

of the film. S

*

- de prélar ou de vendre des exempla/res du fllm -

The author reserves othér 'publication rights, and neither the L auteur s8 résarVe /es autras dro:ts da pubhcauon ni Ia a

thes;s nor extenswe extracts from it may be printed or othar-' K thése m de /ong;(;%ts do celle~ci. ne daivent atre /mpnmds '

. wise reproduced wuthout the author s wrltten permusslon. .

: DAst/DAré /4(«{%‘//3/1921’
- . ’ "‘_':

../

-ou autrement reprodmts sans Iautonsauon écme de /auleur

- Ve ¢

* ST~

PERMANENT ADDRESS‘/RE‘SI_DENCE FIXE

P

523 Ffzgmg /?,o L

aTMMﬁ—a——-ﬂﬁ-@m

K2c

dMl

A

L ONLe91 1374



. " : ¢ ' .
‘THE UNIVER§ITY OF ALBERTA
- ’ (‘.‘ N )

v \

-

PRIMITIVE PERUTATION GROUPS OF PRIME POWER DEGREE,

%
- ) by
0 BRIAN MORTIMER ,
>
;o
A THESIS -

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
q ’ Y . .

IN PARTIAL FULFILLMENT OF THE' REQUIREMENTS FOR THE DEGREE
© OF MASTER OF SCIENCE
IN

MATHEMATICS
DEPARTMENT OF MATHEMATICS

Y
'EDMONTON, ALBERTA

. FALL, 1975



P
THE UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH

[

> |
The undersigned certiff‘that the§ have read, and recommend to

the Faculty of.Grad%ate Studies and Research, foanccepcance, a ghesis_.‘
-entitled PRIMITIVE PERMUTATiON GROUPS OF,PRIME POWER DEGREE sukmitted by

i

BRIAN MORTIMER in partial fulfillment of ‘the requirements for the degree

m

of Master of Science in Mathematics ) » /




DEDICATION'

.

. To Campanula Zaswcarpa and * other treasures of .

) the' high, windblown and - solitary places.

.

.
. W '
iy .
P : .
% - '
4 B
e L
"
Yoo . .v
P R
v T
. .. N -
. [N
hd \ ' .
C E
. -
’ij" .
. i : - )
. £y . \ - ’
. .



oW
. ~ ABSTRACT | | |
) ’t /” ' . _— : . | ‘ ‘ )
‘ In 1969 H. Wielandt [12] developed a new method ‘for studying

permutation groups by using the algebra of functions mapp!ng the - permu-'

i

ted set into a §1e1d. leing this technique ‘he was able to elassify the» .

uni primibive groups of degree ,52 o o ﬁ“

v

In this thesis we apply the’ Wielandt method to the case of
'degree p3 . Chapter IlI is devoted to generalizing these techniques
lto more than two variables and to general results on primitivity

Chapter v contains the main theorems: *It is shown there (Theorem 4,

.that a uni-primitive group of degree ‘p3; containing a. regular elemen-h

Ry

A

unntabelian subgroup is either c0ntained in the affine group,;"almost”ilasﬁl

imprimitive or else very non- geometric. Finally, the last ‘two possibil—'

) ities are'eliminated when, p = 3 (Theorem'4.6).

%ﬁ T A
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.~ CHAPTER I -2

, -.// | \\Ni" Introduction' | )
. | ) N\ | . .4 o {
| _Let V(n,p%). denote the n - dimensional vector spate over
" | : e e N | e. [ en - R
the field,. F e , swith p elements; ‘V(n,pi) thas p vectors. In
P, S |

o this vector space we call the translates of'the linear vector subspaces,
' s
linear sub-variegies. It is somet imes conceptually advantageous to
neglect completely the co- ordinate system of.” V(n,p ) and‘concentrate.

onlx on the incidence relationships of the linear sub-varieties The

. {E result is the affine‘ n - space over T : 'denoted AG(n,p )-. , _
Q‘ A o -d‘ . . o P: “,".r' b f"g o :L,

The automorphism group of AG(n,p ) :consists of all collinea~
‘tions'of AG(n P ) s i, e. all mappings of the points to the points which :
map‘linear Sub—varieties to 1inear sub—varieties.p In terms of the vec—

tor Space structure we can realize this group as the set of all mappings.-

;/ i Ax » Ax® + b where 4 € GL(n,p ) the general linear group, X ; b,l 1.-
o in V(“’p ) and Qe AﬁE(F,e) acts on’ x’ componentwise @mtin [21).
1,//&’"We de“Ote this grOUP by Aff(n,pg) and call it the affine g’ up.

B /
8 : From the form of the mappings in Aff(n,p ) given above we easily
o deduce the order of the group from the order of GL(n,p ) and AutOF )
v S IR . _ , R YP e
L g ’ T.,a AR _' ‘ . ne(n+l) . e'p,y. R
- Lemma 1.1: The: ‘order of ~Aff;(r‘1,P;e) 1s e* p 2 , —""'; I (p ) " "

”“iﬂl

We see'that Aff(n,p ) and its subgroups provide many

[ examples of permutation groups of degree a power of p . Note that

: since GL(n P ) is transitive on the non—zero vectors of V(n,p ) , o
Afi(n,p ) is a 2-transitive permutation group,jit is not in general

- 3-transitive. So welmight hope to find many permutation groups of

N



fixes .Fg elementwise, the automorphisms of E

m = ne .
. L .

Lemma 1l2: G is primitive if. and only if the subgroup

\

.‘a

: uni~primitive.»*‘

degree pm for some m which are not multiply transitive among the sub-

groups of Aff (n,p ) where m = ne .
!

_ _iinifaetiwe,eaﬁLrestrict_ourselyes_toi;Affim,p)ii;eEoriif,
m = en ‘then V(m,p) is isomorphic as an E% - veftor-Space;to
V(n,pe) . 'A130uan‘?F o ~ linear transfbrmation on V(n,p%) 1is also s

p ' * q ¥

[

.Fé - linear and eorresponde_under the'aboVe isomorphismAto.an F§.¥‘

linear transformation on V(m,p) .‘ Moreover.Since any « € Aut(Fie)

, induce F - linear
e P

\

: : : , “ip
transformations on V(n pe)‘ and hence on V(m,p) . Therefore we may

L
vconsider Aifgn,p ) as a permutation subgroup of Aff (m, p) whenever

\,"

':f . We,make_the fdilowingfde§$ﬁitioné;- R ;k“‘ : o ,)f

- Definition: Let-‘Cl permute Q transitively. 1f whenever wé have a .

AcQ euch'thet V-g €6, Ag rlA A or :¢‘,fwe nave-eA = Q. or
. 4 . ‘ - ‘ . . .
[a] = 1 then we say that G is Brimitive. '

&

ks

4

{g € G l ag = a} is maximal in G : ': ‘ 4431u”’::fj;£7j":

Proof: 'See;WielendtﬁIll;'pg. 15];“‘,:”_; g

'., . . B
e -

Every mhltiply transitive group is prbmitive, but there are

primitive'greups Which are not 2- transitive and we call suchﬂe group

_»v_."

- T T YRS I T AU
. In 1906 -Burnside [5, pg.'339] proved tie following result: . . °



| | | 1
- Theorem 1.3: Let G be a transitive permutation group.of'degrge P .

_result hplds for ‘ﬁg ;

. N '
many reSults from this source .are a sumed here without proof

. »
Let ;;Lhe a Sylow p - subgroup of G. Then either.

(1) PG, C< Aff(1,p) and [P| = p',i or
P » S :
(1) G 1is 2 - tramnsitive.
-« . |
In 1969 Wielandt [12] was able to show that a.correspohding_

-

D -
‘I

. » ,
Theorem 1.4: Let G be a transitive permutation group o%~degre5 pz',_

aud,let P be a Sylow p'- subgroup of G 4then either
(1) G is unieprimitive; 'P_~is_reguier‘giquhtary'ebeiianiog
| B lorder:.pg'vandl : .> | - B
X ) (a‘)A'P<‘.k_G ,‘G_<>_.Af‘f(2,>pb)¢,; orl S
| ‘(bX é p>h’, N;ew'imorhmitive'Subérouﬁrot:index'g.;.ora,'
. e - I A
éii):,éh-is.imprrmitrve;for,'

: ,(iii) G 1s 2 - trausitive.'

In this thesis, we consider the case of degree p3 | 'ﬁan§.f

bi'. results are proved though for the case of p ; Th!s work is essen—'

e

-

tially a‘generalization of the latter sections of WIelandt [12] and h»:'



N

B - . CHAPTER II
) o The Sylow p -.Subgrw’of ¢ .
- . ’ R ) .0 . ‘ R
' : 4 ..
| 4 |
In the case of degree- p;! and‘ with more difficulty;'in'the

!

’case‘of degree p2' we ‘can prove that when “G {s uni-primitive, a- Sylow

»p —'Subgroup, P‘, of G 1is a regular elementary abelian subgroup. ¢

This allows us to represent P as the translations in a finite vectbr :

‘ 'space and G .as a permutawion group of this vector space. The follow-

L

ving example shows that we'.can not hope for-a general result of this

0

o2

type in the case of degree p3 .

a

2.1 Example: ,The.Group:of_the‘ZY Lines on*a.Cubic Surface.
N I ° ’ . » . . )
A general CUbic surface in complex three space contains

7

exactly 27 straight lines These are positioned in such a‘way that

each/is concurrent with 10 others._ The resulting 1ncidence structure L

: has an automorphism group with an index 2. subgroup G of order 25 920

. /

/

This latter group,. G is’ abstractly isomorphic with several claSsical

a

groups including PSp(4 3) and,-PSU(A-Z)..and.is simple.“ There have

LN

'R

'been a number of extensive studies made of this group and its'associated

incidence structures, for example Baker [4], Dickson [5]
. . E _

. G has a 5 dimensional complex representation. fln‘fact:h
» S

g < <B ,C 1Dy S> where, (Baker [4], pg. 61) l?:ﬁ',;‘?li'"hf;;‘ '”kffif”i“
(T e o (100 0 0
210 0 ‘0 0 o100 0
‘B2 |o-0 11 1 Love=log0 0 ool
b0 0w wt fo o000 1f
oo w0 o0 1 00
-4 -



f1 0 0 0 0

K | T ) ;
10 0-1 00 ) 0 w0 0 0

, D=f0-1 0 00 ' , s=/00 L0 o

00 0-10 10 00 « 0

0ooo-y - oo oo W
and w’ isﬂa primitive cube root oﬁ»uniry;;vNore‘that B4:= C3‘E'D2'

s? =1. NoW’leE E’:,(Dsz)z ,.T = C-lEC~, pv=vES . Then U3'=jE‘ =

‘ t. . B 4 o
'T3 =1 and, ’ L o, e

o .
o
o
o
—
[
(o)
o
o
o
[
o
o
o
o

-, 0w 0 0 0 o w0 'o-_lo Jo.1 0 :o 0.
=100 o of, t=f00 00|, u=]oowo o

‘.

_L_O‘ 000 wzj i‘ﬁ:_.Lo-o‘fo_‘o w.ZJ o \o_ 00.0 u

d Thusv L = <ElU ,I> is an elemenrary abelian grouo of order 2; JC:;aqtéfd'

on .L: by, ,‘C = U ,.Eé = T_;_TCA- UPIE lT l Thus C‘e N (L) énd.,
| H = <E ,U,T, C>’ i@ a sub-group of G of order 81 As 25 920 = 26 34 5
| "H 1s Sylow. f‘b‘ ' n,'lr S . d L ,;:_;1'¢ff d_ f‘

. . , o E . . . . . v
Since H is-a non-abelian p- group, 9 < [H Z(H)] < 27 CIf _$j‘

o{ : Z(H)] _::then since C (<C>) —-<U> s '3 F e Z(H) \ L . But then

H = <F,L> is abelian which is not the case, Thus f[ Z(H)] = 27 and’;;.}ﬂ

Z(H). = <u> -, :'. . : R " N L ‘. . & '

B i «

Now consider_ K‘= <B D E (DC

This is a maximal sub— ,,;‘~5 ”

group of /G of order 960 ~3 5‘ Baker [3, pg 71{‘JRiCk8°n EJ/ pg‘ff;;"

‘ 30}] Thus K has index 27 in K and G acting on',K by conjugation



. ¥

: .. S, ) o

gives a primitive action of degree 27. Note that since %6 I |G| 3

. ] . "‘ . * oo S ;- .

is not 2 - transitive in this action. Thus G provides an example of

a degree’ p3 uni-primitive group in which the Sylow p - ‘subgroup has
, - N Co ) . o R

3 S o T ‘.

—

[N

order - p4‘> P

<P
,
s

»

. . - A
- Moreover G does not coptain §Qy'regu%ar abelian subgroups.
: . o A . T S L
For if L' was one such theu’gy»a suitable conjugation, since L' .is/'
) . . . . . . ' Y / .
a3 -group, L'<H., Now L' n K=<1I> so L" < L . Therefore :
[ 3 _ '/

“H = LL' and: TLanl =9 . But then Ln L' commutes with both L

and L",and.hencejwith H. ,But. () has order 3. Therefore‘,G (f

‘.contains'go regular;abelian subgrogpsf

i : ,0_' . )
G does in fact contain a regular subgrOup Indeed C norma- - |
tlizes the subgroup. <U ET l "of. L, so that L' = <U, ET—l- > is
of order 27, Eﬂﬁthermore,v-K nlL's= Kf)H nL' & <E> n L' =<1>-. 3.°‘j
’ ' ’ s .. N e '

Therefore G = K°L' and L' is transitiye,of order'22,°i.e. it is‘
re‘ular.~ : . o PR ——

We- observe finally that as o(G) .6°34'5' andv t

o(Aff(3 3)) = z_ ©3°.13, G is'not a subgroup of Aff(3 3) %

It Would be 1nteresting to know if there are uni—primitive

hgroups of degree ? without regular Subgroups

2.2 Rexnark_s‘on'the. Szlow-p -.=£Subgroupsi,of ' G .
The above example shows that we must modify our assumptions, ':‘42"

.'-in the p3: case, if we are to distinguish uni—primitive subgroups of
o kd o e
- the"affine group We therefore meke the following assumption. f’y;:P,’*



Assumption: G 1s a permutation group acting on  , a set of order >

pn s and G contains a regular elémentary abelian subgroup, T . ©

We can identify Q :with V(n,p) in such a way that T

becomes the translations, - Now, T <{Aff(n,p) . Conversely if. g 1is

any permutation of Q such that ™ =1 , ‘then in particular g
. ! :

permutes the maximal subgroups of T amongst themselves. This impliés

that g permutes the orbits of the maximal subgroups and so takes

hyperplanes to hyperplanes. Thus "g ¢ Aff(n,p) .
o -, |
Theorem 2.1: G n Aff(n,p) = Ny (T) .
| * - : . .. ’
We can pake a\few,general remarks about thé‘Sylow pr —-gub- N
% B ‘ ( . ’j / ‘- N . ' (\)
group of G .. - : : . .
. v N ‘ .
Lemma 2.2: If T 1s not' Sylow then R o L
———— e - " : A . +
(1) p| (D : , and . S s
L o ‘ , v
(1) |z(p)| g_Pn—l for any :Sylow p - Eubgroupw P of G. - o

Proof: . . o " g

L4

(1) Let P .be a S&iow:‘p - subgroup contiiniﬁg' T . Then T # P
450 T i.Wé(T):i:”c(T) since - P is a p.~ roup. Tﬁereforef'

Gy

EARCACIE RRINCIFE N
' ﬂii). As Qbo?e lCG(T)\ consiéts gf‘é?liineationsfSﬁtlfIf ?é;ééi£’: -
'éeﬁtféliZing in Aff(n,ﬁ)-:siﬁcé it'is a reguié? ﬁé:ﬁaif@uﬁ;
,gfogp.: The:éfo;é _Zﬂ?);i T . f@ptééinée ‘Z(P).§ Th§:P , P

does not centralize T and Z(P) <T . _»-}v:'. va'; -
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‘ CHAPTER 1II . , T
__O—ﬁ—f-r—- .

Techniques and Tools

[N

i

' ' \ ’ ’

3.1 The Function Space: . : . | o /

?

In [12], Wielandt has developed a method for detailed study

of a permutation group acting oﬁ a ;et Q, which involves 1ooking at the

~ vector space of-ﬁunctions f Q + K for some: field K.

5

Definition: ‘For a field\ K , let F‘A= {f-: s K} akllf em%haSis is

1
needed on the field, we write FR[K]

3 : Fl is an algebra under pointwise multiplication -and addition

of functions. In the case that 1Y) is a vector space of dimension n
L}

°

" we can use Lagrange 1nterpolation and represent any function on 0 by

a. polynomial in n. variables o If Q V(n,p) then the function Xip
is the same as - Xi 80 that two distinct polynomials may represent the
samevfunction This méahs that we can not quite manipulate the elements-
of Fl asipolpnomials unless the degrees stay small For any polynomial

l

_f » We let '[f] denote its reduct}on £o lowest degrees using x"= Xi

for each i.

Many of the standard tools of analysis can be applied to

. these finite function spaces We make,the following definitions

. T . . { . PR,

/

- Definitions: (i) For anngubset A of Q let XA be the character— o

‘; istic function of A i-i; xA(p) = 0 if p ( A "lx if;tyv

(ii) ?or»;f = Zvael-.; X ,.r:xn B 1 define the partial

‘ .

\



derivative of f with respecé*to Xi by
. o
of )' . . n .
g =) e, a <X
T S e
. ! . s ) Lo
(iii) For f ¢ Fl ’ and;_for each su 0y define the

‘integral of £ over A by fA £= ) £(p) .

(iv) For f,g e Fl .define the convolution of f and g by

(H42) (0) = [ £Welp-w) au
(v) For f e F., f =.z aH; S S ¢ ; let ;V//

1 el,ono,en 1 n

i3

e ..o ‘¢ 0}, EEEhdegreezgﬁ f

deg f = max {el+'...+en ta ‘ ‘
. . 1 """n . . L

(vi) - For a subset M of F; , let deg M = max{deg £ : f ¢ M} .

Note_th;t defiqitions'(ii), (v) and (vi) are<contingent on

2 being a vectot'ébaogf_. f : . ; : o f oo TG ?: < Ahf
. R W . ' . ' o
We geagralize some of tﬂe tgchnical results of Wlelandt [12]
N : .
to.mn. variables in the following sections

R

3.1.1 Iotegrettonh

“f We assume that F is a ring of polynomials over a field andi

1

that’ Q is a vector space ‘over E% ,' It is straightforward from the
‘definition that 1ntegration is a linear functional.. Thus we. may/}nte— =

_-grate term by jerm.. Moreover .

B



10.

- e - e . e | e
o 1 n_ 1 : 2. n
X .o X = [ X, X, o X
-fQ 1 ' LF 1o LF- 2 T }? o ?
| n P P 'R
so it is enough to evaluate fF X" for allbchdicee of m. Butdthis
: FERR A | 5 : .
1s just 1+ Zm + ...+ (pfl)m (mod p) . Let Im = J; ,Xp = Z a®
. P ' ' -
Then if b # 0, I = Z Z(ba) Im . Thus (b™-1)I_=0. and .

¢

| I =0 unless b' =1 for all b # 0. In.fmb , b" é_i for enety b

" only if m = p-1 . Theni.Ip- = (p- l) 1 -1 .. Therefore,

0 if 31 _._ei#'p—l

.It follows that if f = Z a; -;e'kl 1 ‘;;”xn n~t‘with-éii  'df* A
e <pml '.the“ JQ £e D" - 1,....,p 1 a’.@ Jn =0 1f and .."".‘51-‘/,' 1f :
" deg £ < n(p-1) . ﬁe can sny more, be;:nn‘. 1 i “oe f e X + b then
0 is the equation of a3 hyperplane We will 1et T stand ambig:v”
.t duously, for both the hyperplane and its equation ~'51398 apk};='1::_i ft"
"‘:fqr all a # 0 in Fp(; xﬁ = (l—-1rp ) t Now,a-dt-'dimeneieneiyiiﬁéengn o
' Subnatiety, Y s of Q AG(n,p) s the interseetion, 'ﬂi_n.fdjﬁﬁfd_se:n‘ o
of some §§t of d hyperplanes And» XY ‘ 4fff;fvf,x in;dﬁsted

o deg xY < (p l)

biTheofem 3'1' If f’e'Fi and deg f < (n-d)(b l) then 'fY f?=d0v fdt’ﬁ.-f
every d - dimensional linear sub~variety, Y ’. of Q 132";,“;;!:d:
Proof: | f = j CEY . and ae,"" £y k'f_n'( R I

\ B )



11.

N
.

! . Sy

3/1.2  Differentiation. : o

AU of the usual differentiation properties hold -except" the.

h-chain and product formulae In these lattercasesproblems-arise due.to
the~cancellation phenomena; However we will not have to differentiate
any. products in this work with total degree greater than p-1 and in this»f

situation ﬂifferentiation of pfoducts by the product formula is valid

K

1 le . n axnl‘ S b

ST e alx1 + a xn . ‘Then- D(n) =»Z a a; = 0 if and.only if (al,.rt?an),
is a point of.the hyperplane Thus given two hyperplanes nil,‘ﬂz-through

" Let Duéfa —é—f+ oot Q ,—g—- and T “be a hyperplane,[

- . T
'(0,0 0), we can’ find linear differential operators Di-,_Dz" such:
'_that D (n ) # 0 D (Wz) and D (ﬂ ) =0 = D (ﬂ ) ; By similar argu—-

'ments we can’ show that if Y is a subspace of Q then D annihilates .

*

X

Xy if and onlygif-'(olgrg.,a ) € Y

3.l.3‘ Convolution; R

Convoiutions'arise naturally»in the’Stud?-of:the funetions«h

«1 fp: Q -+ K for ‘the following reasdn.; If T‘ is the translations on Q' .
and KT is the group algebra of T over K then there is an additive‘;l

' ,1somorphism _¢_ Fl > KT given by ¢(f) = Z f(O ) t where we.. fix :
R C . s teT -

*once and for all- 6 (0 0,...,0) in Q Now if we:, use the group
’ algebra multiplication to define via the bijection ¢ » 8 new multi-“

‘7xplication on F we obtain the convolution product. Thusv jfgbl

1 Y
._ <F},;+-,*>.~: <KfI_‘,+’->,:‘ o
DA S -Z‘\>;
The following result reﬂates the degrees of the eonvolutes to*#'f E

:’f.the degrees of their convolution productr ,_Q‘»I'.~ ’_‘51 f~7
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Theorem 3.2: If Q is the n —-dimensional ‘vector . Space’ over Eb .and

+deg f2 M , th‘en_-v‘

f, € F. (hence reduced) : and if deg fl

i 1
Wm<n(p-1) =>F ¥ £, =0 L RN

D> n(p-1) => deg' £y * £, < deg £, +'deg £, ~ n(p-1)

(AL m> (20-1) (p-1) => deg £; * £, = deg £ + deg £, - n(p-1) .
° B \ . B . . . . ~ R . .

o

‘~Proof. As in Wielandt [12, pg 78 lemmari;\iol we only have to show

_that the. terms of highest degree in the product f. * f2 of (iii),-

-don t cancel

1

N

of: degree n,

then among the terms of £, i ,i

If deg £ = n

i i 1

,choose the maximal exponent ei of "x ‘ Then amongst those termstof

..degree ni ; containing X1 1 ;choose the maximal exponent of X2 R

._«Hez j

Repeat this proeess with ‘each variable in succession ~: ff"

ey L en ‘ en s en‘:rgv D ,
' me L "X * R G & . e R

e+ ... % e =m and n1 +- n > (2n—l)(p l) Thus, since .

1
1

-;i_

e, +e 2 d 2(p~1) for every j ; we must have e ;‘+'ej2 > p-l for L

I 3

:Teach j Then as in Wielandt [12, pg. 78], the convolution is not

. zero. = - - g .'_;[7_‘ff R .

e e DT el+e1-<p-1> 1 ~<P"1>

'Claim. the term Xl 1 v X S coming

-'from the above convolution, comes from no other convolution of monomials :
- ¢ {.;;-ﬁ~ . ,‘:“jj[._y_g'ff 1 0 ».'243-.i 2 'f'j~ ‘2 BT L

in £,

kifﬁterm then d +d;" =e " +e ?_' for,all‘ J If . ni > dl ;;-: +

'{'fd;%. for either _i then :n +n,’ “;-+1,..Af.enl'+}e'2 +‘J:mt+f

)"+ ., + 4, dn + +d 2 ,"a,contfa’dicftion,' Therefore Xhe -

\F oy dn oodpd
or 1f X, T * v X S
1 and f2 .;ot %ff'xl"_... X, xl ""xn gives this o

1' 2.0 1 i

T s T
. 12 T 8 A
1. \1 2" '
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for all 1 and j . []

have F (F ) = F (A) < F5(C3 where we have taken A = {6} t'l :

13,

of the product. are ofAdegree_ ny . and\,n2 _resPectively,v low we use the
maximality of - the e'i's« for successive J's to siow that dji = eji

3

/

Lo

3.2 G ~ Modules and Rrimitivity. .

G is a permutatioﬁ group acting on. and Fl ‘conSists of

functions mapping 0 toa fieldlev. ,To_relate the two-objects‘we

must define;a G_ actionlon Fl itself. For g in G we let

. . -1 ) : . .
, fg(p)5= f(bgjf) . Thls%gives a consistent group action Among»the sub-

spaces of Fl » We mow single out a special sort »

2221&121923' A subspace” of F) is G'- invariant if . _,l/‘

| Mg'g {£8 :f e M) = M for all geG . Such a subspace is called a [

: module B

We haVe the following standard examples. _ l itself ' Chy

the subspace of constant functions,and c L, the subspace of functdons N

’vrwith integral over Q equal to zero. To produce other G —-modules is :

a.major problem of this method We will give a construction in fhe nextlf'f“
sectiona ':ii‘fi L ;3f.7:f_'d_";.'
We can relate the substructures of F1 to those of G in

-varions‘ways One is to start with subsets A of Q and A of Fl

o and to set . P (qg & {g € c l Vf € Ay Vd e~A f(é) = f(ég)}

note that if A

) < ‘2 then F(A)CF(A) Thusif CcAcF1

-

(F ) 3 1. and ‘F (C) =G ‘so. GG c F6(A3 < G 7¥fj1.h{‘:“ g
".'7_ L o o 1fﬂ-;  15 T A
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- In general FA(A) need net be a group, but it ishin‘some
special instances. L ' ' : . ,-.;$‘ _ (_

Lemma'3;4:

) 'ffoof:

«

e

NN

NeES

(411)

i £(8) = £( ) ,fh'l<a) ;.<ﬁut' P A 8o 'fh\}<5) -

(ii)

_;l (ii{)

B of the Stone—Wierstrass theorem of analysis.n"f N ;_'- a

.

}Suppose that G 1is transitive on . .
If A is Glf'invariant'ork A 1is G-—'invariantpthen,'FA(A)

1is a subgroup of G‘.'

FS(A) G => A i C, the constant functions.%‘

st(A)iz é6.=> A separates points from 6 ‘i.e”' V a‘#-ﬁ

’jbfle,A such that f(a) #‘f(d) .

(i) - This 1s clear if 'A-'is¥G - invariant Suppose A is G —.'

invariant and g,h € F a) . Then Ve € A f € A ,

A 8
‘l N L ' o o
f “.Q§g) = f(Ggh)i-_ Therefore gh € (A) , Moreover,‘ o
L1 g o SR
£(e8 )= <6> = fg(ag> = f<6) s 80’ e FA<A>
- ' L oy Lo :
F (A) = G ‘implies that V g € G V f e A f(d) = f(Gg)
ﬂ

But G is transitive so this says that f 1s constant

Rl

EG(A)

ﬁ(dg)'# f(5) . But again since G is transitive this says

thatﬂ A separates points of Q from 6 ﬂj‘iﬂj:i.

oo

o

N

Ga implies that if (Sg # 6 then 3 f s A such that

g N . /

:;The first part of the following theorenﬂis a finite version ff',f»f

' !252252341;2 (i) If A is a sub-algebra of F1 (1 e. if A is U

5 -closeq under multiplication) which contains the constants and separates ‘fglf :



. » P
points then - A = Fl .
(11) 1f tg%re is a G - invariant subfalgebra\ A properly contained
- between C 'and Fl' then ere'is/a'group proper1§ contained.gf
:\‘ : dfrbetween Gd and, G and islimprinitive.
: o ' . » L o P i
Proof: - (i) Let o # 8 be points of Q Then there is 'ﬁ € A with
_ f(a) # f(B) vSince A :is an algebra containing the constants
3-<7_ A it contains R vhere f B(y) f(y)-f(B) / f(a) f(B)
\ y =1 o " = is . . .
f (a) l ’faB(B) N9: .SO Q{ } B#a ' S in A Since

the characteristic functions are ‘a basis for Fl s A =“Fi .

(i1) SBy’thevabove_lemnas :F.(A) is a SUbgroub and clearly

g < FG(A) <G . However, if F (A) = GG' thenuby-tne-lenma'viu

o

and proof o§ (i), ‘A contains the characteristic function oﬁpgj

. 6 But then A is G - invariant and G is transitive ‘_.G;A’.““

-(otherwise it is imprimitive), so A contains‘all character—
‘,%ax ',istic functions and A = Fl s a contradiction.. Therefore

FG(A) G and by lemma 1 2 G is imprimitive.._. ”2sD'f"”

)J\"

Ss %

;;v/"" i We can use this theorem to: provide a criterion for the trivi- ;:
ality °f a G- module «’,f_.';b"f xﬂ’:f,Jl_*fjﬁfﬁyr'w°f."

.ylggggkg;g A submodule is invariant by the translations if and only if

"f.it is closed under partial differentiation.‘ HenCe every G -~modu1e is ii.'af

~ B
. ._- 'S .

:,'closed under partial differentiation

™

:Prdqfé‘~rhis“is wiéiandtf[12]l£héérenﬁla,2,’gage‘32;:]g<,D"

ol



.the‘polynomials in 'F

o N :
Theorem'3.7“ If G is primitive and there is a G - module, »M,, nith
a linear differential operator d ‘sueh that M = 0 R then M {0}

cor. C. R S o L

" Proof: Suppose M # {O} “Then - since M is closed under partial differ-*
‘entiation it contains the constants. By a linear transformation of ‘the

fvariables_we may asSume.that 3= 52— . Then-the kernelrof ] :iS' Ai,"

l which are independent of Xl A is clearly an’

gebra Now if aM 0 and M >C, the algebra generated by M sat-f

isfies the conditions of theorem (ii) and G is imprimitive Therefore»

There is another subspace of F.

1 which is important in the

'h generation of G - modules and the study of G

-

.'.Definition: Thé?éhbspace“of'wGe = invariant functions:.f{f IR I

V 8 € G } s denoted by F1 Ge _;A‘ :f,;."f*f .i 7":};: o

F

'-Jbiemna'3l8 dim F. G, = rank G f'rtheinnmber}of'orhite:ofi;Gef{.

K/ 1 6

:;Proof Clearly F Ge consists éxactly of the functiqnhvuhich are !

’constant on G - grbits.w Therefore {XA A is an orbit of G P“?is

S e T T T S BT T o
a. basis of F Ge -5.Dj.‘ ;;“:N.3F .'t,;t:; f,~:vu; 1 Qﬁg ti‘ﬁf‘.-

The iSomorphiSm ¢ 3 Fl + KT carries 1 6 to a.sub—group

(

ffS of KT ’ called the Schur ring of G The following theorem is the L

. key to relating the group theoretic structure of G to the permutation ‘;‘



. »

17.

.aCtion'of G .

Theorem 3.9: F, Gy is closed under convolutionl

'grogg As noted earlier convolutions in. Fl vare carried ouer to multi—
plications in KT . *So’ this assertion is equivalent to the closure of.
S under multiplication i, e to the fact that the Schur ring is indeed _
':a ring. This final reSult is non~trivial and is proved in. Wielandt [ll

ﬂ» page 61] for example. ‘D

16

The importance of F. G, in the'cOnstruction of G- modules
'.'is due to the following theorem.i

@

Theorem 3.10: If f ¢ F, c6 then £ % c - {f b b éc } is a 6.

' "module' vf * Cl~ is generated by éll of- the proper partial derivatives

of f ‘and moreover deg(f*C ) =(deg f) 1. R ',;‘l lfgﬁ o
" Proof: See"wréiandt_{lz;-p5g¢_87l. o e

i

'_ We again identify Q with V(n,p) and let e = (o o,...,0)

_ s

. This’ vector SPace admits maPPings of the form sm 6 > m5 ' h\
6n51,m6 ,md ) for 53=”(61,...,5 ) e, with me r \{o} v rhése'~7_r,
are the dilations and form a group, ﬁ7; For aisubSet"A Of 'Q 'let
,i"s'rf;; s el S b e '
'A ?1=>{6‘m~; 6 € A} ‘ Then since the elements of D fix 6 and
T "slide" the points of Q along the lines througH 46' A and jiifxfiﬁ

' A‘m _are on the same lines through 6 : Furthermore if wA is the

- set of points on lines through 6 and points of A R then/;fj

j_'w = A y A ,;.. u A p -1 :_”
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, S : oo 8
+  We want to show that if A" is a Ge - orbit then so is A ™

for each m .f"It is enough to do this when 'm =1 is a prime. Take -
K = E‘ . Note that r <p . As we have observed_ S is elOsed under

‘."multiplication in KT and ¢(XA) = 2_ t . ‘But we are in'characteris_

Y tea R
tic r so;f Z ( Z since the order of the' t's is. >r .
' o 7teA o “ted _- ‘ _ . o "
AHoWever ¢(x .Z tf » 80 X o € Fl Ge.. Since '{XA A is a
o '.A’r Coted ‘AT _ .
Gy - orﬁit}~ais a hasislfor Fl.Ce', End the supports df_the 'X'
.0 e s R S . ~;A5r

- for various _Aﬁs,’are.disjoint-and'since‘there are as many A r 's as -
I . s o S T
A's , we must have A r ‘among the orbité.oﬁ»iGe .

' Theorem 3. 11 / If A is an orbit of Ge end. m € E};}.tO}etthen A~m
.is an orbit of Ge .'_‘ RE | .
As observeg before, the set wA of lines through 9

"touched by A is covered by the images of A under D ; Suppose'theref ‘
. is 's'p,m'g line 'x‘ .»,af._»ilpA 'wbitb-,_;_ I-AnA;l-sjk 'I’hen Vm , IA n o “‘] = k

SMoreover there are ,le distinct images A A u,...

..,these partition ) A \ {ﬁ} But these sets must p@rtition every other o

‘::line of wA. through 6 and the number( k is therefore independent of ¥31f:-

i ' R AR
:,,the 1ine A in wA Also kIP- b o ‘
h? The 2—closure of a transitive group H of permutations on a.
';,séchr is the largest Subgroup of SP, which hasathe same orbits for

v

B fla point stabilizer as the given gr0up,‘ H v we denote the\Z—closure Of



‘b“ .

. G:mation about F1 0

' andfonly if- G

' ”_Aasumption“onj'G : ' G is a: group permuting Q = V(n,p) = AG(n,p) y
o G-:-G(z)_;lile is 2 closed, and G contains T, ‘the translations on ':pfif

S EREI s
. . We have just shown that. Vhsm €D, Ge ~and'""_G6 m have

H yby ‘H(Z)
' : - S s,
the same orbits. Therefore, G and ¢ have the ‘same 2-closure, call

it G(z) < Wielandt shows that G < G(z)_ and G . is uni-primitﬁVe if

(2) is uni—primitive (Wielandt [12, pg._lO]) . The 2-

'closure has the advantage of befhg normalized by the dilations. We aim :

k3

to show that any uni- primitive group containing the translations is in L
.the affine group, &80 replacing it by a larger uni-primitive group does

- no harm.» Thus we make the following assumption.;@;rt‘

3

. We note’ that since each,_sﬁ, _fixes 8, Gy = ce.'m, also.

The HSSumption that D normalizes G;ﬂgiyes“ﬁéimhch m?f?“infot-ffh

Sgﬁand G - modules
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Ay

P .
N | e . i \
Definition: " If f = Z a, oee Xn n is'in reduced form then" _
— : Cee - V- _
o e e
wig () ‘.X 1 Lox f(n)j is called

set™V f .
- e .. te En(mod’p-l)

- the nth homogeneoqs part of f . If f _?(n for some ©n then f

4

is homogeneous

3

. We now have the following theorem (Wielandt [12, pages -84-85])

- Theorem 3.12:l Take f e'Fl .A'Then;

W £=¢D 4. +ff(9f1>

(1) (n)(ap) (n)(p) o
v - . * s R .
i ; . : . o B <
(111) £ € F, G, implies ’f»m7?,Fl_Ge -
v (n)(p) Z | a " £(ap) = - ) mf @. ) .
s . C - a&np ' :. SmED o '} - R . _
| a¥0 ' ' C | ]
W) ffe F. G ‘inplies f(n)'e‘Fl Ge fcr'.ﬁ = 1}""p7; ‘

L]
-

1.9

‘_[(Vi) If M- is ‘a G - module generated by homogeneous pég§nomials

ot

»

then fe M implies 'f(”) '8 for n =71;§..,p—1'Qj" ij.

Fi G9 contains an’ important subalgeb;a, denoted Fl Ge

*COn51sting of the Ge - invaria%t functions which are also invariant

“under the dilations This is the. rational sub-algebra of F 6

"Fing contains exactly the functions that are cqngtant on the setéi/

R \ {6L with A ag,- orbit. Since F G0 F (cnn) Y where wc u D
A % | 6 I

17 ;

o Q =
s the Split extension of G by D > F 6 is closed under convolution..-'

) 'by theorem 3 9 Fl Gg’ is called trivial if it consists of func;lh

N B |
: 'f\\bnstant on Q \ {6} : This is the casé exﬁctly when every orbig)of
TS o W',fj»v; R ,’fv‘jvﬁg; - _; j;
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C6 » which is not {0}, touches all lines through 6 . Uni—orimitlve
groups of degree p3 with F1 Gg trivial occur for all p >\2 , (see
section 5.1). ©

\ - ] | j .

By considering'the two cases F1 Gg trivial or not, we can

obtain yet mor e information about Fl g Take the case of F Gg
trivial first. SuppoSe h is a homogeneous polyriomial in ‘Fl Ge _and5
that h has a zero mot at 6 . Then since h 1is homogeneous, the set

oflpointS‘where' h 1is zero is a union ;w,;of lines through 6’. If

F1 Gg 'and is not constant‘on' Q—B_,ia contradiction.

nixwe

‘Therefore anyﬁnoanEro\homogeneous polynomial in . F1~Gév is zero only’ at

Now 1if hl ,‘h2 are any- two polynomials of the same homogen—
eous degree, h, = h'(n) » them for any point 0 of Qeedh,

1M

Sl

. h;ez hi(p)‘hz‘hz(p)'hl is homogéneous.and h (O) =0 . ;Thus h, is

'.identicallyfzero and- hl - is a- scalar multiple of -hzsz By theorem o

3. 12 (1) and (v), we always have F 6 = Hl ® ..: evﬂp—l where Hi

1)

consists of the homogeneous functions h = h . We have just shown

1

that if 1 # p—l , then H is at most one dimensional and if 1= p—l

*  then-: Hp’l is 2 dimensional Hp_l_= <1 XQ 8. (note: we;pick UP'thel

_n~extra*d1mension 51nce ll:hxg' iS not stric;;“qrhonogeneoﬁs oolynomiai). tr»

We have also shown that there is no function 1ﬁ? ' of*dégfeéh-_s

1 9
‘s(P 1) where l <s S,nel » since Hp 1 = <l Xp lYP lzp -1,

‘We can say more about the structure of °F Gy -

nomial f € F Ge and an integer t , 0% t < p-l 8uch that f

,Theorem 3. 13 If F1 G6 is trivial then there is a homogeneous poly- -

1
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| L i et :
= <f> : = X
F ?6' <1> & <f o ...osf >@ ... 6 <f XQ_—G

'

.where o RanR:G = # of orbits-of G6 on N = t+1

A

Proof: The subscripts 1 with Hi #IO’gform a;muitiplicative subgroup
o * . '
of [ . Indeed, f =f@®™ g = g( m) 1mplies fg = (fg)(mn)
. - .
But Wp is cyclic so this subgroup has a generator j for some

Hj # 0 . Take f € Hj . Then V¥ m f" ¢ H m and as, m 1ncreases we
oy .

move through all noz—zero H's .-

The remark on the rank follows from lemma 3 8.

Note: f may not be of mihimal-nonrzero'degree'in'F;wGel.

9

Now suppose F is>non-trivial and n=3 . 1Reeall that.
wA denotes the lines through f .and points of A\é § .. - The non- _

triviality of Fl Ge ‘assures us that there 1s more than one set wA

when A 1s restricted to be a G6 - orbit. Suppose there are» t lines;,
through B _1n _wA: Then f =. X¢ + (t l)xe Ag¢ .XX’E FI/G6 is,ak '? :
: 4 _ _ _ : A o

P

non-constant sum of characteristic functiOns of lines. ‘NOw if
l » Ty IA are planes then XA (l-n P~ 1)(l-Tr P~ 1) =, 1 - ﬂlp 1

. p—l x P~ 1 p-1
) nz'v 1 .2 . :Thus».deg fA‘_ p- 1 or. 2(P 1)

Consider f*f ) and Suppose deg f = 2(p 1) By theorem .
3.3, deg fA * fA < p-l . But ff A f 9 are distinct lines through
0, then by considering the definition of convolution we see that ‘14 'L%:fo

’XX"*'XX ,#‘xﬁ where o is the plane (through 6) generated by A
1% T o : B g

‘and Aéa.rdglso XA **Xxiié,ol,j_rherefore,;rA'#'fA,:ig;s-sumogf;

.y S . A‘j
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1]
!
¢

characteristic functions of planes. Thus hdeg fh * fA =0 or (p-1)
. P ’ '

Therefore we either have a function in Fl Ge ,of‘degree “p-l

or else fA‘* fA is a constant-for every A . Actuallygwe must_hayev
f, *f, e€C for ghy two G, orbits ‘A, and A, by an ’identical
Al A2 x 8 1 ° 2 S
.argument. It seems very unlikely"that all of these convolutions‘should
end up in ‘C_.~ We can as ‘'yet only offer the following‘howevgr:»
w . . . . . : .
. ' C . - . L/ .
Theorem 3.14:;,If Fl Gy 1s non-trivial and. p = 3 then EI'Ge

contains a function of degree . 2 (n=3) .

Probf; We have'only to show thatfthere isrno'possible collectionsof
sets of lines\ wA with fAlf# fA2 e:C;;forhevery_pairsof-orbitsp, (Al »
AZ . . .

N .

S ‘ _ By theorem 3 15 (below) no orbit of Ge ‘is contained in a
subspace so there must be at least 3 lines in each- WA and the lines

‘are not in a plane. Since we can replace wA with the lines through -
R A

6 it doesn t contain we may therefore assume that WA consists of

"3, 4, 5 or 6 of the thirteen lines through _Bc in AG(3 3)

In the first place th}* fA't Fl'Gg for any choice.of K so

Jmust be constant at 1east on wA" for any K If we represent the

'"lines of wA by points on- T, then by a straight forward case study
| 'fwe have the following possibilities which satisfy this initial criterion:_h:*
; :for K= F, ._(Figure 0) (*11) is not. posaib‘le, since with x = Q5 the“,; |
'h’rational numbers; we end up‘with a.lgef— erbit contained in 4 gine; con-f

trarv to 3 15 : None of the other configurations give a. wA with

fAf* fA: gonstant., Therefore deg (f*f) = p 1 - 2 : “,.f<” L

-
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. N

(11)

Figure ] -

to

" We conclude this section on. Fl Ge’ witn”an'imoortant-cherac:~'

terization of primitivity in G . 4"_ . j'  .

| Theorem 3 15 G 1is primitive if and only if no orbit of Ge tlies in
. AT R L

a proper subSpace of Q = V(n,p) N

Proof: (+) Throughout this proof only we take K Q Suppose- A is

:a"ce - orbit which generates a proper subspace, ‘r i °f Q Ih§n~h‘

o | S | . ‘;,,
wa € 1, 6 ..’We look.at_ f xw wa,.h By_definition,5
£(p) = j X (o—w)x (w) -.f | (w ) X (w ).. Thus f(p) > o
o WA N wA g’ p=m1+w Xw | wA 2" _ |
if and only if p is in the subspace spanned by 9 and two points of

. wA (i €. the wl , W with p = w ) As we continue we find that ffi

-2
| (xw ) E the ith 'convolution power of - XW is positiVe exactly on

the points p of Q with p = w + o + wi for some wj s in WA

14
- Thus’ for sufficiently 1arge f., (XW ) L is positive exactly on . T
:  -Therefore XP € F1 Ge‘_fia‘% I v _f:’.kyfA.
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Now take (@5e00,0 ) € T\ i Then 3 = Z ai aa annihilates .
‘ XF aﬁd allfderivateé of xr . But M= XP * C is a non-constant G -

module and is generated by the derivates of XF . Therefore S(M) = 0-.

By theorem 3.7, G is imprimitive.

+) Suppose G- is imprimitive and T’ is a block of G contain—'
ing 9 . By the proof of theorem 4 2 (which is proved independently of
| any. other results in this thesis) T 18 a proper‘subspaCe of Q,.

: Gy S
Thus if P e r\e then ‘the Gy r'orbit;‘Afh'P-Q is necesgarily in I ..[J.



"ffProof; We require a. technical lemma from Wielandt [12] which is

-4
. CHAPTER IV
. R 4 .
; - The Problem
\ -
41 MWe-restrict'ourselves now'to the .case with n =3 . The follow-

ing theorem provides an initial classification of permutation groups of
"degree p3 . o l;l', - _-.' o 4H“:»,.-
' Theorém 4 1: "If Q’=‘AG(3,p) , G permutes Q and G lcontains_ T,

the translations on Q ,then one of . the following is true

) r Qa6 _<_i;Aff‘(.3,P)A-:.j.

-LV(ii)' (a) is imprimitive or (b) contains an imprimitive subgroup

' of index 3 which is normal or contains an index 2/8ubgroup

>

which is normal in G .

..Eiii) 'There sre‘no planes T Such that "g isla plane for euery‘“:j'
.8 €G- and either | ‘ A . . ". i“ -“_.’> b 'l
if:(gj?ithéreuis.no‘lineihX;_sugh ﬁhé?i!X?Tﬁiéialline_fg;'gii»'i.
e ”dg'e G-;‘or.:fn ’. v‘ﬁ:'ﬁf R _/“j:f' R
o ~“h)i there is an orbit A of Ge which contains points of
. "f at most p+l lines through ) and no 3 of these lines 'ﬂ

o B s o
l? are coplanar or ol

(c) p= zvsféurﬂ‘

NS T

.H*Uf}contained in the proof of his theorem 16 4 ‘on page 69

“l;emina'f“~ Let g act on AG(2,p) ‘80 that Ais =.A (1-1 2 3) for three,_}f;

’

l:non-collinear points and suchlthat each of the parallcl pencils geﬁerated

1 “1by A Aj (i#j) consists of lines mapped to lines by g . Then g is

L= 2-

RS
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the identitp._ ' o _l - ' _f. . ;

For the praof of the & theoren let A = {1.] A% ‘1 a line
'ifor all g e G} and ﬂ {m I-ng: is arplane for.all’ g ebG}v Since"
'3T‘§_v ‘A and Il are unions of parallel pehcils of lines and planesp«;
bb.respectively Ig/we view Q as embedded in- a projective 3 = Space
then each of the penc1ls in A determines a unique point on - ﬂm , the;_
.;plane at infinity,and each of the pencils in H determines a line on
nm‘; Let S be the set of points,_ L the set of 1ines, 80 determined

on T, ~and let J = <8, L> be the incidence structure they inherit from

M * . 1_'[d . 't‘ ) ,'_.v_f . _ ,.ﬁ
| If Plj,.Pzp are parallel pencils of planes in H then o
x-APian {nlnnz s ni € P } is a parallel pencil of lines which beldng to.

N Therefore . is closed under the intersection of 1ines.. Note that

hif PAg L is the line coming from P < H and ) 3 S c0mes from

N

Jc A ' then P I ] if and only if every line of ] is incident with :

54_ some plane of fE and vice versa. Let S < S be those points of S

. '-:_which are incident with at 1east 2 lines of L L@:'rJ; = <S L>

We assert that G aets as a permutation group of J s pre—'-""’

”;serving incidences Indeed if N ll "2 ,1d3ﬁe H then for any g €. G

o 8 g
:;wl ﬂz : are planes and ﬂl
" the pencils in ﬁ as units, so 'G permutes the lines L::of;gJ;‘

‘r’consistently

'\\.""

Now if ) £ S then P1 n P = J for some pencils P1 s P2

- of planes in L Take 21,2 ] ﬂt, Then there are planes Fi € P
:suchAthat ni I 2 , Also nl}{1r eo: 23 el ﬂl n: HZ ie a line end

Sl e
S Al

g n ,"2 - ("1n"2)g =. ¢ Thus : G permutes '/
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73

(2 =0 . Thus llg is parallel to’ .23g . Similerlyinl & ll‘l ghbk

',and finally R T E‘ . Thus ]g is a parallel pencil in A and

€ ] = P1 n_PZ'. But then 2 g 2 & ‘are lines in \nlg»; ng'h 235 =

o 2

That 1ncidence is- preserved is clear.

)g = P 8 P g 50 Jg . ‘Thué‘ G also permutes the points- in st

e -

Now if G acting on J fixes an element line or point,

f_then G permutes the elements of this pencil amongst themselves and G 'g“f,

s imprimitive. ST

We examine the possibilities for J JH. isiclosed uﬁdgr'infi*fﬂ
;terSection of 1ines. Therefore it is one of the following types-z (Sééqﬁ;fva
””for example Albert and Sandler [l page 7] ) R ot

@ e
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e e T v

©..(e). J contains a quadrilateral
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b I3

- In case (i), the line is fixed and G is imprimitive. In cases- (ii);
(iii)(a), (iv)(a) and (b) the‘point A is’fixed so C is again imprim-
| itive. 1In the case (1i1) (b) the stabilizer of an edge has index 1 or 3 -
and is imprimitive The stabilizer of the triangle has index l or 2 in | d_h

this stabilizer of an edge and is normal in ‘G

AN
s \

We will show that in case (iv)(cs e <‘“

gm 3,p) Since
T R Aff(3,p) , T q G will then follow. The configutation (iv)(c)
implies that we can find in 2y fo%r planes of H no three of which'
Nare co-axial l . "2 y- n3 y n4 . Take g € G and let Ai = njnnknnl 'f‘if“
o for {i j k y1}= {1 2 3 4} Then we can find an heAff/S,p) suc* t“at AghﬂA

for i-l 2 3 4 since Aff(3,p) is transitive on’ the sets of 4 independent

poznts. ’Thie follars qince FL(3,p\ is transitive on. the bases of V(3,p) )

'[h Then since gh maps each ﬂi to a plane it fixes these planes. eih)ii

i

-

We claim that each plape is fixed pointwise by gh
ST - N : X
ﬁff’3 Let} zij i j Then every line of "yf

-1d99t,1t>'- Similarly gh fi"es "2 3 and 1r4 POintwise.

' ;



. Now if B e Q, not on fori i=1,2 3 4 then _32 2' I B

, . _ 'h

"-such that £ ”'213 ,Az: [l fay Then zg Ilz and , zg nnl = waﬂl ;
’I‘heref'ore zszﬁh =% . Similarly JL'Vg._h: AR Finally th (lnl')gh
an' 8 . Thus gh ¥:1dentity, g = h-'1 ;and g,eyAff(B,p).. Therefore -

UKG <- Aff(B,p)

| :If- [ | =0 then there are no planes whose image nnder :

'every ‘g e‘G is a plane IS I = 0 but we may have ‘ISI > 0 i e.:;;}?ft
5 ipencils in AL In this sgtuation it is conceivable that there are:;iﬁ:li-“’
_uparallel pencils in A which are not mapped to- single parallel pencils‘}ffif”

Zby evety element of G A

*7'ciaimef |L[ - 0 then s can not contain three collinear poidtsif'ff

B ’yift'p >-2' Lndeed if ]1 , 2 ; 13 are collinear points of S with ;1?“ .

“]i coming from the line pencil Ji then there 18 a parallel pencil of

‘ff_pianes P such that every plane ﬂ of P contains lines from each of

L ::]1 , ]2 , )3 .: Choose 2 ]i. for some n € P 3 non-concurrentf.:;:””ﬁ?
e ‘Let A e g with {i,j k} - {1 2, 3} We can find h € Aff(3,p);_

RS i " k- ORI
: stuch that - gh fixes A 1= 1 2 3 Then z 8{ - z for A= 1 2 3 s

>‘5m”?We will show that v € H



 Figure I

>~f-Now't:‘ake"-any.l'aoint‘i Bem. B is on a line 2 || 21

ure 11). Unless 2IA ; l‘_contains two points, namely lnﬁz‘

1l

;'2r323 ) which have' gh images in g ﬂ ‘ﬁ ,£g"
‘ Rgh cm . But if BA1 II l we can use: the line incident with

\jparallel to. 25 76'1:-{13 “This will'fail only if Vi s BAi H z

32,

(Fig=

and

is a Iine, 80 .

B and

',But then we have the configuration of Figure III.. Ihis ;s Aff(3 2)

. ‘
'iand P= 2 .
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So we have shown that if |L| = 0 then the points of S

form a k- arc where k = |5] in the language of Dembows

L

no 3 are collinear Thus‘ ISllj_p+1f'since~‘p ¥fé' (Dembowshi, page.
ﬂ49) Now if'(iii)(a) andh(c) do not hold we haVe :]S|.$ li'and there
'.are lines through 6 which are always mapped to lines by G and |
.hence by Ge L_;We have shown_that there are at most p+1 suchilines

and no three are coplanar. If ye_take A as any Ge~uorbit of_points

(%]

AT

on these linesvwevarevdone and.case'(iii)(b) holds;_ D.
, h A ) _ o

In the corresponding classification of groups of degree p2 s
Y

';‘Wielandt showed that groups of type (iii) must by multiply transitive.'

.

} We have only partial results in this direction, though in the case of =
3‘b degree vp3' The conjecture is that all primitive groups of the final

b‘.type (ili) are multiplv transitive or are in Aff(B,p)

As -an addendum to the above theorqn we note that even if

{L] 0 and G is imprimitive, the blocks still must be linear...}f .
TheOrem 4.2 CIf G is imprimitive then the blocks of G are either
'.1ines or planes.ib‘cr‘-‘t‘

lProof Let W be a block a'Bfelw" ”Then since'5G-"¢ontains3a-trans-”fisi
i 3,1ation t such that a = 89 W = W and the whole line through G
and‘ B : ,tua > is in w Thus w is a. 1inear subspace, i e.jﬁ

e

B xffa 1ine or a. plane ;_;>va'jifaf: ”'-_-.:',ij‘-~ ';?‘hgb ‘:lf/'f
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. 4.2 Criteria.

It is evident that if we are to elucidaé% the case (iii)’bf
theorem 4.1, we must find a way of keeping careful scrutiny of the G

' images of planes and lines.

It is.pr.oved for a gen,n on. j’\>

- ; ; BN

Theorem 4.3: 1f* £ maps A6(n,p) to 1¢,% 1} dn'E_,ph2,n22 ,~-fxf__.=o'

s

‘ < o . n-1
for every line A and f has at most pn 1_ zeros, then either,

. (1) f 1is constant but not zero, or '

(11) £ has exaetly; p“fl zeros 3ﬁd,théy fori enf}(n-lj'- aiﬁen-,r

,sional:linear_eubfvériety, _l..-"‘ TR

Proof _For. the sake’ of brevity we will abbreviate linear subvariety

'to 1 -s.. We decomposelthe proof into several steps._ Assnme» i satis—:. -

fies the hypotheses.;
.(1). I is conStant.on any 1{'§Q;ﬁh§re.itlhas'nofzerog:;,

Let A be a line and suppose f has value +1 m :,,_

times on A and is never zero on A ' Then since ffk £ =1

1ll

"_m—(p-m) = Zm—p 0 (mod p) and P # 2 ; m = 0 or ’ and
".f ‘is conStant on k Now let Y be a l -s. ané&p‘ppose -

vif has no zeros on Y Then f is constant on. every line

.J~lf“wpf"{of Y and hence is constant on. AY f.fe,fpnylPﬁrltff;3l,fff Coo
C(11) Suppose m is a: k - dimensional l -s. of AG(n,p) with

Tt
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k 22 . Then f «can not have a unique zero on T .’

Let‘ A be the_unique zero of f on n';. If A isfa:_
line of 7, A IA s then since ‘fx f=0 " there are.bointé,
B and c",ion'-x such that :f(B) = +1., f(C) = -1 . Now
since 'dim(ﬂj 3_2 there is a point of m not on A c51i
-itk ﬁ :t The lines DB , DC E; not contain A so f -hae
no zero‘on them‘ Thué f is constant on these lines Bnt4

~ Y
then +1 = f(B) £(D) = f(C) ==1,a contradiction.

¥

@

y
{
. ’
0'0A:
\ 2 ".\"._. -

We now prove the theorem by induction on n_. We do this by S
in factproving that the following assertion holds and that the theorem.“
holds for each succesive n. S : ‘gf-‘ ”:ﬁ',J"&

oy 'f(*)'iIfr n .1s‘a k - dimensional 1 -s. of AG(n,p) . with
O <k < n—2f, such that f|n i a non—zero constant then there ‘is a 1 L
(k+1) - dimensional 1 -S., fn‘",pwith'.n contained in n' and fln

. a conetant. ‘ hj'_ ;Q.,’._h_. SR .;;.* : _



-

36;

For n.= 2 , we have the'affine plane;and; f has <p° zeros.
Suppose f(A) # 0 . There are p+i lines of Q through "A and so
one of them containg no iero. Then by (i) f is constant on this 1.-s.

V)

- For t"he theorem when n =.2 , we kri‘ow that f ‘can not have a
| .unique zero and if it is not a constant it must&have at least one zero
".since fx"f =0 for every line, Thus there 1s a line joining two i
points Bhlend -C'iwithh‘f(B) f(C) = 0 | If f}BC is not Zero there
- are points D and’ E on ~BC with f(D) = +1 E f(E) =>-l | There~:v
are P 1ines through each of these p01nts without counting BC -and f(
each of these pencils of lines partitions.the ;iros.of .f not on. BC o
,hThere are at most P- 2 - zeros not on‘ BC. S0 we have.at least 2 lines i
thrOugh each of D and E where f .is constant.‘ These lines can t L
'.all be parallel S0 we find a point W with +1 = r(D) fOﬂ) = f(C) =

-1, a contradiction. Therefore f 1s zero and the theorem is true'

_in dimension 2.




(Biggs [6], page 3]) Let m- of these contain ‘no zeros of £, By

-”'Therefore,

- 8o
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"™ .

Now suppose.that the theorem is true for dimensions less than

~

'n . We will show that (*) is valid and from this that the theorem is.

true for dimension =n ..

n 1is cbntained in (pn k-1)/(p-—l) 1-—s of dimension k+l

~(i),. f is”constent on each'of these~ s0 i# is enough to show that

m>1. Each of the {E—~—~——-- m} varieties where f is not constant

is an_ AG(k+l,p) and k+1 < n by assumption. Therefore f has pk

zZeros on,eachvof~these varieties by induction.» These varieties inter—r
sect in pairs at n 30.thesejzeros-arehdistinct. ;We heve'counted;at A

least {P————- }\' pk zeros and f has at most 'pq—»l-".zerobsﬁ

I n"—‘k"‘ . s
et SHR

: nék—li. t R
A St O

- A\I~ B -1 n—k 1 .

m>

0.

fiBut this says that if n > k+2 then ‘m > l Sop(*){is;estabiished?forl.-'

’a11 n.

* For the'theorem.in'dimensionvvn: nowhneineed;i, KRR J£;~] -
» .(g,) -If;:'_‘a" 1ine_ '} A ..:_cont_:einsj 2 -_'zero-s of f,, _ ;hm . # }\EO

Indeed, suppose fIA 3 0 Then since fjk f= 0 > there are .

”--fpoints A and B on’ A with f(A) = +1 f(B) = -1 NOW bY (*) usedl'

njibver and over there are. hyperplanes ﬂl ,'ﬂz_ such that flﬂi - +1“

o
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'/ &
. fr"2 = -1 and A Ifﬂl , B I,“ZH'V
. : ‘ o e
L | -
- Xa.
1

. . . v . ‘ 5 '.v N /" B

.The hyperplanes Wl .ﬂé must be.parallel Thus every line of the

iﬂpencil parallel to A intersects each of "1 and "2 ; 1;ét"ij1§L}'~

.-.not constant on any of these p Bl 1ines.: By (i) f has at least one'?‘

zero on each of these lines and we know that it has two zeros on A

a. contradiction, since f has at most p '1 zeros.v Hence fIA is

zero,f
Now for the theorem in dimension n . If;'f7his-notj¢onsﬁentQ.

_ then f has a zero, lhb. SR

Vi
\

Suppose n is a 1inear subvariety of dimension k < n-2

e

‘3-such that fln Then there is a. 2~ dimensional l.—s, ﬂ such

|

- that lnmrl = 1 (sinoe co-dimension ‘n>2 ) Now by (11) since f } 8

:ﬂ;3has one-zero on\ w .it has‘another._ Therefore, there is a zero,» C » off*;”:"

f outside n ,‘\Let n be the 1.—s. spanneJ by n and C .-»;

A\
A
\

R



- Jfore, there is a,hyperplane n such that f is zero on n Since n

39.

. Claim: fJn: iis'zero, Let DI n ; then f DC is zero. by (iv)

@

vTherefOre -fv'is'zero at all points of n which are on lines joining Y

C -to'points of n .. This includes all of n except the k - dimen-l : o

'_sional 1.4s. of n ; through C and parallel to n 3 call it n

But if' p > 24 there is a point of n in neither n nor n and we

can repeat the argument fron this point.' Thus fl gy zero.'

S

We can continue this process as long as’ dim(n) < n-2 There—'fz7

n41'

‘Tv.ha§-'ﬁf : P°i“ts and f has at most pnxl zeros the theorem follows._Df}g:}

,_/ 3
The criterion of theorem 4 3 is ueeful fqr the following

-

hyreason If =4 X+ ;;. + a X + b with ‘a; ein then ﬂ - 0 has'pljrf”

11 i

. exactly ;? 1 solutions in Q » the points of the hyperplane n e ;ﬁ§§u¥;?;g1

Q +1F ;' so Tl'(p l) /2 Q > {o +1} c‘nv‘ since the multiplieative -

'group of 'ﬁ' is cyclic of order (p-l) Therefore if we can find a ;?iisiki

f“function f = "(p .1)/ 2 m a c = module M with d,gre, m) < p-1 >

.\.‘-'

'.then we know that the G images of f satisfy the hypotheses _f :;:l:hf}i:f;

hﬁe4 3 snd the zeros of f are a hyperplane in H (where this is the ﬁ‘:ff?ifef
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I of»theoremjé.l). "

I.'f.we take our field K to be ¥, then ve can also find

. functions which have small degree and represent lines i 3

i

restrict ourselves to n = 3 .
Theorem 4.4: If. the pl ’ 2 = 0 of AG(3,P ) is parallel to a plane .'
-of . AG(3,‘p») onsidered as a subgeometry of AG(B,p )_, then 2 takes ._’
'on .exactly P. values on AG(3,p) and 1ts level surfaces there ‘are |

.’planes If 2 is not parallel to a plane of AG(3,p) 5 then 2 takes E :

.--all 'pz_ values in F 2", on- AG(3,P) and its level surfaces are 1:Lnes.» '

P A o L
; : ,In particular, in the latter case, , ,Q has exactly p z’erfos an they

: ar? a_ 11“3:-‘ o - ." CT e N

. :P_.'r_c)g;f_:: = ale + .+ a3X3 + a ":. 2» is parallel to a plane of
. iAcv('a_,'pj if and only if there 18 some A € r \ {o} such that EEI
- 1#0 ’ Aa Fp Suppose 2 is parallel to. a plane of AG(3,p)

- ' _vThen A(J?.-a ) is a plane of AG(3,p) for some a e!’ so takes on
i'each' 'value‘m ;lF-p exactly on. a plane (parallel to 2) Therefore R,

o ,}takés on every value in A le + oL ' and the 1evel surfaces are the
Zsame as for }\ 2 . a | o9 e L N
Now suppose that 2 is not parallel to a plane of AG(3,p)
L ;This means,that Vao € IF 2 - has at most a- collinear set of
.‘...'tf;':zeros on AG(S,p) Thus 2 takes the value a on at most p point!s

b

L :_‘for each a g in 1‘6’ 2 But there are only p3 points in AG(3.,
2 takes each value p times and the 1eve1 surfaces are lines. []
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4L

[

] ; -;“' . .
Restricting our%glves to n-= 3 ,'we denote the variables by .

X Y and A We study now the G - module generated by the linear

functions*over K- i”es, t = <X Y Z> The functions in L measure
' in some way the extent to which a linear function is changed by G ,iso L';'ﬂ
T_L meaSures how much the planes and if K E‘z " by theorem 4 4 .the '
7.vlines rre distorted by G ...tinfxi
i;Theorem34-5 ‘Let L be a linear fbnction over \K and L' = <2> e _;?; s
7'1f deg L' < p—l then L' u L ":dlYg~1 75*“,l(';5_fl“lgfy_1°7’ZTJ?=‘:F

'f“sS'];uT-.f-7‘ >‘7

-iQProof Let H be the subspace of L'" consisting of the linear forms

v,

c,in L'V, where by a. form we shall mean a function with terms of on]y

oL

“oneudegree., Then since 2 e L' d H > l Su ose L # L' *\-rﬁeﬁ*ﬁs"'
,. pp hen -

’,;f = f

A”,And since deg f = t < p—l f is in fact a fo :

does not contain all of X Y and Z so dimK H a 1 or 2 _"f;"j_[:

”-{'Therefore by a linear change of variables we can consider H as a sub- ﬂ'-ﬁf

._O

fyspace of <X Y>= ker ;; Hence, there is some differential operator,_ ;Tiﬁ:f

: :"3:, Such that au = 0 ﬁ:_gvﬂ f"'“ -

. 'lTAké f 3 L' we will show that af - o “ Since 'hfff¢7]7f3"7fﬂ57
(O) + f(l) .,... + f(p 1) it is enongh to consider\ f homozeneo“s.-yfrh

¥¥ Now suppoae 6f = ;{fft7‘

'dhy'h # 0 Then h is a form so there is a differential operator D suchy

"”.'gthat Dh =c # O » c a constant. But qince 'Dh is a: non-zero con— b

- stant, D has order t-l,.: Thus Df is 1inear or zero, and 80 ‘ertaiw

V:ffly 3Df is zero. But BDf = D3f L Dh =c # 0 » a contradibtion T

%ffore 3(L ) = 0 But now we have a G - module

voperly containing

4i;the constants and annihilated by a linear difierential-operator._fof;fﬁ':]fti




bivf.and F, G is non-trivial, so deg L " 1 1n this case. But now we

‘h.f?know that 1inears are mapped to linears by G E so planes are preservedfv,

g f;from each line through 6 and klp-l Here p - 3 so k .llhor 2,,-a.?

42,

)

theorem 3;7; this is impdssihle; Hence L' = ) R s I

H .
i

This theorem shows that if M is a G - module with M > C
deg M< p 1. then L < M For, M- being a G - module is closed
under differentiation and hence contains a linear function But then ;:'?

<z> <M so deg b < Pl and < M S

Let m denote the smallest degree of a.non—constant functionf

- in F G and Suppose,_ f e F G deg f = m . Then if m < p ,‘f:"

l 6 1 6

M = f * C has degree < p 1 and deg L < p-l . Moreover if ‘o < p-lvi,i{.':
then 1 hs deg L< p-2 = deg f * C Take p =3, 'I’his reduces to el

‘:‘-'l‘deg L = 1 e e

Now by theorem 3 14, there is such a. function f when p o 3 o

1 6

| iand c < Aff(3 3)

: ~_7fzhggzggL113§ If G is primitive of degree 27, 6> T, an-elementary ' .\ -
;'abelian regular subgroup.then either Q;Q.,‘_gd::hf;;1¥gﬁff{;f:_vdl?»::]1,ff~.A
.,J B , P Sy e e

(ii) G 1s 2 - transitive..iegl‘egrhr

S

.h”}fProof' We have only to deal with the case where F 6 18 trivial..¢if-r‘3'f;

| ‘;:Leé A be ant orbit Of GG ) A f {6} Then A contains k pOintS_?f?an

~,i; = 2, then’ A - Q-e and c is 2‘- cransicive.r_rfjj;gg._;fﬁpv

.:gf;;l'htﬁén 'Ge has exactly one other non-trivial orbit, namely A
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.1_'Ihus.;Géb is rank 3 with stabilizer orbits of length 1, 13 and 13. :
" The, lemmas ‘5 and 7 of D G Higman [9, page 148 50] show that ve. can ‘not.
4:haVe O(G) _even If o(G) is odd then the Feit—Thompson theorem j. f:p
'.'assures us. that G -1s solvable A primitive solvable group alwaysb o

: dicontains a regular normal elementary abelian subgroup .Thus theorem 2 ld g

“shows that 65 A£G, | klu_f'_~hf'f : "’va?fj'; o _f:n;:»t,’,=‘

The case' p = 2 can also be dealt with By elementary |
ffarguments a primitive group of degree 8 is at 1east 2 - transitive (see e
3 for example Wielandt [ll page 49]) We have the following list of 7

. _,.-_

.:,examples and these are all (Burnside [51, page 218)

‘z:férbupff“'ﬁ"ih"iQrder_f;f”‘.,faTrensitivity tfl.i;:Gd;aﬁ;]:;'f

-:f:fiu;;~]:vir'ii7;‘2;1:‘§;¥?r;livflif;}:f R A R
‘wa_f»;455~gg' 6. 2. .l. ;jf?dfg},f R ',_7f'}“fl~i-f
-ig,”AB-lvf,@;f 2 3 'S5 7 28!;'“ft;>'J6iwlfif:.'_h?,AZ[%*
yAﬁaﬂx,f,gj8764 ,;-::3,:.¢&:cummm_~
CRSLGD | osea e e ', s Affu e
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'1inear,ﬁ

1, and since no three of the~il's iare coplanar, ‘x;‘

fonly if p2 happens to be in:hﬁij Since there is at most one j ) ,f'
e i ko RO
,_ﬂgiven an i ‘s, with "ij I:6p2 there are at most '2 planes ""tj with M

‘31 & (pz) # O Therefore f(pz)v % | But since 3 < k < p+1

44,

N

4.4 Groups Preser&ing_Lines But Not“Planes‘ SR

“l As noted in section 4 1 it is conceivable that there are.

.'éroups. G permuting Q- which permute some lines as. lines but no

h planes. The’ proof of theorem 4, 1 shows that if there are three 1ines‘f‘
.through’ 0 ,'A;‘, 1=1,2, 3 . such thst A 8. is a line for all g € G
.fand-‘A lies in the planea n for all i ; then ng is a plane for

']_fall g€ G Thus the set’ S of theorem 4 l has no- three points col- o

- .

Suppose that there is a line in A as defined in section 4. 1-:f“uf

: Then for any orbit A on lines through 6 and in A wA consists of :
‘ ulines through 6 ; no three in a plane. As noted before, this can Vf”
' h‘ﬂhappen only if the points where wA intersects the plane at infinity

‘:;form a k - arc in the sense of DembOWSki [7 page 149] where k 13 :1, 1,52

/

”Elthe number of lines in wA through 6 Thus k < p+1 if p > 2

' fs'Moreover by theorem 3 15. : >.34?

\"'x

. '1_. o ‘
Forr A Aj in wA and through 9 let "ij be the plane
‘,"'»_fispanned by J\ and A j Then as ﬁn the discussion after theorem 3 13

- the function f = ! Xge is in F G and f e C or deg f - p-l o
o ‘ « T e

1<j j . R

L We will show that f J C .‘ First hy theorem 3 15,, 3 < k and from

fabove k < p+1 If pl € wA ?then pl I Ai ; say, and V jnih&r (pl)"flfl

i7ff;1' e Thl f(pl) - k-l -1;H°Wever 1€ Pz v *A ‘he“:Xw (9') , °.* G

a" T e



“h:we have annihilated all terma ﬂ p

'f.igtant, a H such that a # 0 and h =@ aﬂ

,-_5,5 k-1 »_<_.p _an‘d'f(pl) #.f(pz_)_.f’

: Thus, when G preserves some lines there is a function f

| in Fl Ge of degree p-l . Hence we. have a G - module M = f * C o -

of degree p—2 . Therefore every function in M has integral zero over

: every 1ine of Q Alsé M contains the partial derivatives of f ‘o
Recall that f =.££551l J.Z' ﬁijp 1 As ve have observed ',"v"'
6

ﬁthere is a. linear differential operator 3 for each A 'such that::

‘ai(n) = 0 if and only if A I n . Since the degree of f is smallflp{l“;

'J‘we may differentiate without worry. %get h - 9 34 ...léigf;;;?iﬁeﬁi"'““’

‘ h Moreover we have not annihilated the lep 1 term since nohe of_:;*”
the lines k3,...{ak’ are in the plane 'ﬂ12 Hence, there is a con—h:

(p-D-(k-2) " s

' d.Theorem 4 7 If there is a line A of Q which is mapped to a: linef»ri‘_'ﬁf
ftby every element of G but there is no plane which is alwaye mapped

71j5;to a plane, and if k is the number of lines in the Gei- orhit of )

i;,rtheu _551- < k < p .U.f,.jf:;fa:iﬁ;tf;-_“~

‘“”32522£ If k <‘Et2 then (p 1) (k—Z) > E—l and Some derivative of h

2 2
f‘:is of the form a- (p 1)/2 ' ‘a # 0 » a constant.

T12

f;But then, by theorem dffff
"'?4 3 the zeros of (f (p 1)/2)3 are a plane for each;;g ‘€ G . Thusj?

‘Cplé‘ is mapped to a plane by every g in G ; a contradiction.;,;

Actually we have shown more.- For if there is a Ge - orbit with

‘ rdl.points from only k lines where 4 </k < 2—~ . then the argument'given L
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"planes by - e , even without the assumption that there is a line which is

always mapped P ”5#"ﬁ¢.i Thus theorem 4 1 gives the” following..,. :. -
. . A | A a /‘ .
' Thebrem 4;8:; 7;a G6 - orbit with points from only k lines,;

 where gu 6 < Aff(3,p)



CHAPTER V'

Geometric Examples -
’ L ' PR

In this section some examples will be given of some subgroups .

) (™ .
- 00 o
of Aff(3,p) %ﬂdch illustrate various possibilities of earlier theorems.,

N
B —g—? wo TR S s

. \
'a\

: Qf There is a theorem of Singer [13] which states that ‘?G(Z,q)
u:fhas, for each q ) a transitive collineation, g . of order q2+q+l .;4bi
By the fundamental theorem‘of classical projeétiveigeometry; i comes from.h]
'.;a matrix in GL(3,q) which permutes the lines through 6 in one long
“hlcyole and is regular on these lines. Thus (with q-p), Ve have a matrix y’*iﬁ
’ A € GL(3,p) which permutes the points of V(3,p) in orbits of length
hgf'P +p+l‘,.one Point of each orbit on each line through 9 Therefore the i;ﬂ
: group 1?>O<A> > the split extension of T by i is an example of a G“ﬂ
“vilwith Fl Ge: trivial and each nonftrivial Go—orbit has one point in ccmmon ip
_fwith‘each line through e e éy ertending by appropriate subgroups of D 'y

5"?ﬂ the dilations, we can 1aye any divisor of p~1 88 this number of commonulj;l

| Z;EIf A is one of the non-trivial orbits of G then \XA = -1 + f + "1”*3;‘

'"ff;points., Mbreover by theorem 3 15, each onthese G' is primitive.;;-ff'

-Examp_le 500 5= 3, A= »0.--1 o o k T >4<A> S

.I.

\
'TiThe function‘ f of theorem 3 13 is f -”(XZ"HXY -ﬁ27+YZ ) + (X6Y+Z)

‘h .\‘,_
- .
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| "a;:Example55;3;'7pggf3f!7 Let A=

. ufn iS >f2 from above. - .

Examples 5.2: p=5. let A= {0 -1 0} , D . = -1 0 0

i ol o e o)

o

. be matri_ces ovex F_ . 7T

'¢; - 5 ‘ - |
With G =T >G<A> G has rdnk 5 and the f of theorem 3 13 '

' jis a polynomial of degree 9 with terms of degrees 9 5 and l

With G = TN <A,D l> > we have a rank 3 group with each non- : o

| _trivial Ge ' orbit having 2 points on each line through 8 - The new

oA
-

: /

sl w Ge Nonfeivial -*-;;;_.*raj;;f~: S ;»:i:‘ e

In this case there is more than one set tkA 5 of lines

through Q and a Ge- - orbit A For p = 3 e have essent;l:ally only-

one geometric example and for p = 5 ' several -

be matrices over IF Then G = Txce with GS = <A B> is a uni«
'-l primitive group acting on V(3 3) It has Ge_— orbigg of length 1 6 _;i:i t

. 8 12 These cover 3 4 and 6 lines through 0. respectively.‘- If we

intersect these G6 line-orbits ch the plane at lnfinity we obtain

the following three sets. a conic, its exterior points ‘.Spoints on two |

tangents of the° conic) and its interior points (points on no tangent) "g-:* .

v

This is the only possible configuration

7 e o e b G, Meomtisof o
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-' Examgle 5.4 p =5 < Let. the. following be matrices over . I"

By = (9,0,0)}
Al“ {iﬁle»l),iﬁl,-l,O)5+(1,0 —1)}
{+(1)0 0) +(0 1 ,0) +(0 0 , 1) +(1 -1 _1)}

By = {+(1*1 -1) +(1 -1,1), +(1 1,1),4(1,1,0),#Q1, 0, 1) ,+(0,1 -1)}

[

Xn\e - 14(x2 -1)(Y -1) (z%-1) - xzyzz - (X2Y2+X222+Y222)+X 2492452

-)(A = (X Y +X222+Y222) + (—XZYZ-!-XY Z+XYZ ) + (—XY—XZ+YZ)
1 _
X, = —x YZZZ (x2Y2+x222+Yzzz) + (-x YZ+XY22+XYZ ) - (x +Y 2422 )
a
‘I'hus XA (X2Y2+X222+Y222) - (X YZ+XYZZ+XYZ ). + (~XY—XZ+!Z) . More-
over XQ-B'_4WAZ f wAi:= XY + XZ f YZ . ?hEreforo »
Fl 5 (F G ) =<1>#® <XY+XZ-YZ> 0 <XA > e <)(Q g
desrees 0 2 & .6

There is,an example with the same line orbits but with A2 split
into 2 sats of four poi1ts ' : '

o .'
o .

- fr0 o o
A="10 -1. 0 S0
0. 0 -1 '8

| let G- a:>4~c'

(1) Let Gef = <A B, C> Then Ge, has orbits touching 3 4 6 6
‘ and 12 lines, reSpectively,it.hrough 6 . G acts on the eet

- of 3 lines as | 03 These lines fall into 9 point orbits



(11)

(111)

- (1v)

i tive on the orbit of 6. lines. .;f~

50.

f:(not counting 6 itself) as follows}- 6,:6; 8, 8; 24; 12, 12;

24, 24,

Let> G, = <A,B,C,E > . Then G, has the same line
6 L, -1 0 \ -

orbits but acts on the ome of length,3yas Sy .

With Gy = <A,B,C,E Gy has 3 orbits of lines throughl .

1, 2
) ; of lengths 3, 12 and 16. The configuration which they

make on T is the 3 points of a triangle, the 12 remaining

points‘on the sides'of'the‘triangle,~and ;he points not~on

any side. i . S L - /_' VRS

A

If Ge'=:?A'B"C I> jthen G has 3 orbits of lines again but"

_this time they have 1engths 6 10 and 15 Theit images on

nm' consist of a conic, its exterior points and its interior‘ﬂv

points._ The conic is X2'+ YZ + Zz = Q .: Ge 1312 - ¢¥3n8i+'1
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