L R

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

385, rue Wellington
Ottawa (Ontaro)

Your e Volre éterence

Our e Notre idterence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de Ila thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec [l'université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a I'aide d'un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme patrtielle,
de cette microforme est soumise
a la Loi canadienne sur ie droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



UNIVERSITY OF ALBERTA

CONTROL AND FILTERING OF RANDOM
PROCESSES

©

BY
HAILIANG YANG

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF STATISTICS AND APPLIED PROBABILITY

EDMONTON, ALBERTA
SPRING 1993



L R

Acquisitions and

Bibliothéque nationale
Jdu Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the Natior:: _ibrary of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your e Volre o loice

Our et Notres retdeences

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autremen': reproduits sans son
autorisation.

ISBN ©@-315-82242-2

Canada



i%i University of Albenta Statistics and Applied Probability Inter-departmental Correspordence

Statistical Services Centre Phonc: 492-5129 FAX: 492-2927

To: Faculty of Graduate Studics and Research Date: 24 March 1993

From: Dr.R. Elliott

Subject: Ph.D. Thesis of Hailiang Yang

Hailiang Yang has my permission to include our co-authored papers as a part of his Ph.D thesis.

LSt T

Professor Robert Elliott



EXP: HEC FINANCE +33 1 396477085 1993-04-19 172110 G3-96 S *1

HAWES ETUDES COMMERCIALFS

INSTITUT SUPERIEUR LS AFFAIRES

HEC MANAGEMENT - DOCIORAT

78381 JOUY-EN-JCISAS CEDEX (FRANCE)
TEIEPHONE. ; (1) 30 67 72 89, TELEX ; 1697042 F,

TEIFCOPIE ; (1) 39 67 74 4.

DOCTORAT HEC

PAGE DE GARDE TELFE.COPIE
(TELECOPY FRONT PAGE)

Date : #h&lJﬁ’h,J‘??ﬁ ........

de: ) CHESNVE
e Hore. CHESV y

Téléphone:  33(1)'39 g ¥ ¥2 39

FaX:  33(1)3967 7440 s s b
A -
(to)

Télephone: ..o eevcsnnesisnesssanne P e SR RS s a R et e besees s beenesavets | NP
Fax : N s B, APy AT YA Y ‘iz., ...... 249.. «2"7‘ ........

---------------- LYY TITPIreS en ssenn

Nombre de pages : Number of pages (including this one) : .2/

Observations ;

m CHAMBRE DE COMMERCE ET D'INDUSTRIE DE PARIS



HAUTES EYUDES COMMERCIALES

INSTIUT SUPERIFUR DES AFFAIRES

HEC MANAGEMENT - DOCTORAT

78351 JOUY-EN-JUSAS CEDEX (FRANCE)
LEH-ION[ 1)) 3967 72 89, YELEX : 697 942F,

TELECOPIE : (1) 39 67 74 40.

Jouy-en-Josas, April 15th, §993

To whom it may concern

Mr. YANG has my permission to includc our joint manuscript entitled :

"Diffusion Coefficient Lstimation and Asset Pricing when Risk Prethig and
Sensitivitics are Timc Varying", with the names of the different co-authm']s, in his

Ph.D. dissertation.

arc CHIESNEY
Associate Professor
Doctorat HEEC

m CHAMBRE DE COMMERCE E7 D'INDUSTRIE DE PARIS




Dilip B. Mudan

College of Business and Managemem
University of Maryland

College Park, Md. 20742

January 8 1903

Prof. Robert Elliott

Dept. of Statistics and Applied Probability
Central Academic Building, 434
University of Alberta

Edmonton, Alberta

CANADA T6G 1X5

Dear Prof. Elliott,
I am writing to give my consent to the inclusion of the paper entitled,
"Diffusion Coefficient Estimation and Asset Pricing when Risk Premia and
Sensitivities are Time Varyiug." cc-zuthored by Mr. Hailang Yang as part of his Ph.D.
thesis.
Yours Sincerely,
)

Dilip B. Mudan



UNIVERSITY OF ALBERTA
RELEASE FORM
NAME OF AUTHOR: Hailiang Yang
TITLE OF THESIS:
Control and Filtering of Random Processes
DEGREE FOR WHICH THESIS WAS PRESENTED: Doctor of Philosophy

YEAR THIS DEGREE GRANTED:  Spring 1993
Permission is hereby granted 10 THE UNIVERSITY OF ALBERTA LIBRARY to

reproduce single copies of this thesis and to lend or sell such copices for private, scholarly
or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive
extracts from it may bhe printed or otherwise reproduced without the author's written

permission.

{’f I A :_‘\7) 1 -
(Signed)

Permanent Address:
#25 8406 104 Street
Edmonton, Alberta
T6E 4G2

Date: M“"‘.’( 27 2 /713




University of Alberta

Faculty of Graduate Studies and Rescarch

The undersigned centify that they have read, and recommend to the Faculty of
Graduate Studics and Rescarch for acceptance, a thesis cntitled Control and Filtering
of Random Processes submitted by Hailiang Yang in partial fulfillment of the

requirements for the degree of Doeter of Philosophy.

.

P I

R. J. Elliott (Supervisor)

-

D. Wicns

—~
6?;‘4’\/ c/"[k?’ —

B. Schrquland

N
e

Sl(g g o
R. Karunamuni , i
/ X
A.T. Lau

S Mon e

J/B Moore (External Examiner)

,l ~
Date: Mo cin 23, 733




TO MY WIFE AND DAUGHTER



ABSTRACT

The partially observed control problem and the relsted filtering problem are
considered. The first chapter discusses a partially observed control problem when the
control parameter appears in both the drift and diffusion coefficients. A stochastic
minimum principle is obtained by improving techniques of Bensoussan.

In the second chapter, the partially observed control for a Markov chain is
discussed and treated in terms of the associated Zakai equation. New equations for the
adjoint processes are obtained.

In the chapter on discrete adaptive filters a discrete time Hidden Markov Model is
considered. Finite closed form filters are obtained for the state of the process, and also
processes such as the occupation time and number of jumps from onc state to another.
These enable the parameters of the model to be re-estimated from a conditional log-
likelihood

The chapter on estimating the diffusion coefficient discusses increments of various
powers of a scalar diffusion. An investigation of the minimum variance estimator gives a

unique optimal power.
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Introduction

The work in this thesis is presented in four papers which have been prepared for
publication.

In the first chapter, "Control of Partially Observed Diffusions”, the optimal control
of a partially observed diffusion is discussed when the control parameter appears in both
the drift and diffusion coefficients.

The minimum principle satisfied by an optimal control in a partially observed
stochastic control problem has been discussed by many authors. See, for example, papers
by Baras, Elliott and Kohlmann, Bensoussan, Elliott and Haussmann. In these articles,
however, the control parameter occurs in only the drift coefficient. For a fully observed
stochastic control problem Bensoussan and Elliott do consider the case when the control
variable also appears in the diffusion coefficient, and Elliott gives an explicit equation for
the adjoint process when the optimal control is Markov.

In the first chapter we consider a state process, which is only partially observed
through a noisy observation process, and for which the control parameter is present in both
the drift and diffusion coefficients. Using a differentiation result of Blagovescenskii and
Freidlin, and adapting techniques of Bensoussan, an adjoint process is described and a
stochastic minimum principle is obtained for an optimum control.

The second chapter, "Forward and Backward Equations for an Adjoint Process”,

discusses a Markov chain observed only through a noisy continuous observation process.

Consider a system whose state is described by a Markov chain X;. Without loss of

~



2

generality the state space of the Markov chain can be taken to be the set of unit basis vectors

in RN. We shall suppose our X, process is not observed directly. Rather X, is observed

through the noisy process y,, where
Y = _/(; th(XS)ds+wt.
Here w is a Brownian motion independent of X.

For simplicity a terminal cost is considered and the control problem is formulated
in separated form by considering an unnormalized conditional distribution of X,

By introducing a Gateaux derivative the minimum principle, satisfied by an optimal
control, is derived. If the optimal control is Markov new forward and backward equations
satisfied by the adjoint process are obtained. A similar problem for a controlled Markov
chain for which only the jump times, but not the jump locations, can be observed has been
discussed by Elliott.

The chapter "How to Count and Guess Well: Discrete Adaptive Filters" considers a
discrete state and time Markov chain which is observed through a finite state function
which is subject to random perturbations. Such a situation is often called a Hidden Markov
Model. Discrete filtering consists of counting the occurrences of various states of a discrete
observation process and then making the best estimates of quantities related to an

unobserved state process. Our Hidden Markov Model consists of a homogeneous, finite

state, discrete time Markov chain X . Without loss of generality, the state space of X can
be taken to be the set of .nii vector S = {el, —reyh g = o,..,1,0,..,0e RN | and

write P = (pji) the matrix of transition probabilities it can be shown that X has a

semimartingale form

X =PX i+m , neZ®
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where m,, is a martingale increment. The process X is not observed directly; instead we
suppose there is a discrete time, finite state observation process Y. Again, the finite range
of Y can be identified with the set of unit vectors {fj, ..., fk }. fj =0, ... 1, ....0'e Rk .
and with D=(dji) where dji =P(Yn=fjJ Xn-l'_'ei) , the relation between X and Y can also be
expressed in semimartingale form as:

Y, =DX, *H, ne zt,
where |, is a martingale increment.

In a recent paper, Elliott obtained finite dimensional filters and smoothers for a
continuous time Markov chain observed in Gaussian noise. In addition to the filter for the
state, finite dimensional filters and smoothers are obtained for the number of jumps from
one state to another, for the occupation time of any state, and also of a process related to the
observation. The methods of this chapter are an adaptation to discrete time and state of
those of Elliott. The appiication of methods from the discrete time general theory of
processes in this situation is not well known and sheds light on the problems. Early
contributions can be found in the papers of Boel and Segall. Chapter three begins with
martingale representation and Girsanov results related to multivariate point processes. The
semimartingale representation of the Hidden Markov Model is next given and followed by a
general filtering result. A general unnormalized, or Zakai, estimate is derived. Compared
with the normalized filter this has a remarkably simple form. Then, specializing this result,
we obtain recursive estimates and smoothers for the state of the process, the number of
jumps from one state to another, the occupation time of a state and of a process related to

the observations.



Following Elliott's paper, a particular trick used is to exploit the idempotent
property of X; instead of estimating H, which would involve HX, we estimate HX. This

introduces HX®X but this can be expressed in terms of HX itself and so, unlike H, HX

has a recursive estimate. Taking the inner product with 1=(1, 1, ..., 1) then gives an
estimate for H. From these estimates new optimal values for the parameters Pii and dji in
the matrices P and D can be obtained. Using the new parameters, and perhaps new
observations, a sequence of increasingly better models can be obtained.

We believe our model is of wide applicability and generality. Our model, by
discretizing time and state, can be made an approximation to many continuous models,
including non-linear diffusion models in continuous time. In particular, by discretizing and
approximating the noise in the observations, the case of a Markov chain observed in
Gaussian noise can be approximated by a Hidden Markov Model. Discretization is
ne;cessary for numerical implementation. Furthermore, our model re-tunes its parameters in
an increasingly optimal way.

Given a diffusion process it is often easier to estimate the drift coefficient than the
diffusion coefficient. Log-normal diffusion processes are frequently used to model asset
prices in finance and , in a recent paper, Chesney and Elliott have used the Mihlstein
approximation to estimate the diffusion coefficient, (known in finance as the volatility).

In chapter four, "Estimation of the Diffusion Coefficient", a general (scalar)
diffusion x, is considered. By introducing the process Y; = €xpx; properties of the
exponential can be exploited. In the paper of Chesney and Elliott a point estimate for the
diffusion coefficient is obtained by comparing expressions derived from ¥, and yt'l; in

this chapter estimates for the diffusion coefficient of x; are obtained by using the Ito
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calculus and Mihlstein approximations, and comparing expressions for v, and yt“. (ot real).
The minimum variance estimate gives a unique optimal value of . A table illustrating
optimal o values is also presented.

The scalar diffusion estimation strategy is then extended to also allow estimation of
the instantaneous variation in the predictable quadratic covariation of two diffusion
processes. Such a point estimate may be used to accommodate time varying risk
sensitivities in asset pricing models that simultaneously permit time variation in risk premia

as well. Applications to the Capital Asset Pricing Model illustrate the procedure.



CL:.pter One
Control of Partially Observed Diffusions

1. Introduction

The adjoint process, and related minimum principles, for partially observed
stochastic control problems have been investigated in several recent papers. See,
for example, the works of Bensoussan (Ref. 1), Haussmann (Ref. 2), Baras, Elliott
and Kohlmann (Ref. 3) and Elliott (Ref. 4). In these papers, however, the control
variable occurs in only the drift coefficient. For a fully observed stochastic control
problem Bensoussan (Ref. 5) does consider the case when the control also appears
in the diffusion coefficient. This case is also discussed in (Ref. 6), and, when the
optimal control is Markov, an explicit equation for the adjoint process is derived.

In this paper we consider a state process, which is only partially observed
through a noisy observation process, and for which the control variable is present in
both the drift and diffusion coefficients. By adapting the techniques of Bensoussan
(Ref. 5) an adjoint process is described and a minimum principle obtained for an
optimum control. To the best of our knowledge, this is the first paper that discusses

this problem for the partially observed case when the control appears in both the

drift and diffusion terms.

A version of this chapter has been published. Robert J. Elliott and Hailiang Yang.
Journal of Optimization Theory and Applications. Vol. 71, No. 3., December 1991,
485-501.
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2. Dynamics
Suppose that the state of the system is described by a stochastic differential

equation,
dz, = f(t,z¢,u)dt + g(t,z¢ u)dwy. 1, € R 29 =20, 0Kt < T. (1)

The control parameter u will take values in a compact, convex subset U of
some Euclidean space R¥.
We shall assume the following;:
(A1) zo € RY is given.
(A2) f:[0,T) x R x U — R? is continuous, and continuously differentiable
with respect to z,u.
(A3) ¢:[0,T)]xR*xU - R?*@ R™ is a continuous, matrix valued function,
which is continuously differentiable with respect to z,u. The columns of
g will be denoted by ¢‘® for £ =1,2,...,n.

(A4) There is a constant K such that
1+ )T o)l + et o)l + [fult, 2, )] S K
lg(t, z,w)| +lg=(t, 7, u)| + |gu(t, z,u)| < K.
Suppose the observation process is given by
dy: = h(z,)dt + dvy, ye € R™, yo=0,0<t<T. (2)

In the above equations w = (w!,...,w") and v = (v},...,v™) are independent

Brownian motions. We also assume:
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(A5) h: R?* — R™ is Borel measurable, continuously differentiable in z, and

for some constant K,
[h(z)| + |he(z)] £ K.

Let P denote Wiener measure on C([0,T], R") and  denote Wiener measure on
C([0,T], R™). Consider the space = C([0, T}, R*)x C([0,T], R™) with coordinate

functions (w¢,y:) and define Wiener measure P on Q by
P(dw. dy) = P(dw)u(dy)-

DEFINITION 2.1. Write {F:} for the right continuous, complete filtration on
C([0,T],R") generated by FY = o{w,, s < t}. Write Y = {Y;} for the right
continuous complete filtration on C([0,T],R™) generated by Y;? = o{y, — yr, 0 <
r < s < t}. The set of admissible control functions U will be the Y-predictable

functions on [0,T] x C([0,T}, R™) with values in U. Then
U c L}0,7)
= {v(t.w') : o(t,w') € L*([0,T] x (C((0, T}, R™)), dt x du; R"),
for a.e. t, v(t,-) € L(C([0,T), R™),Y:,dp, R¥)}.

For u € U, write X¥,(z) for the unique strong solution of (1) corresponding to

control u. and with X} () = z.

Write

220 = exo ([ HO2 @) e = 3 [ I (@) 3



and define a new probability measure P* on § by

dP*

-d—P; = Z&“T(Io).

Then under P*, (X¢§,(20), yt) 1s a solution of (1) and (2).

Cost. We shall suppose the cost is

(Xo7(z0)) + / {(r.Xg (20)s up)dr.

We suppose

(A6) |C(z)| + |Ci(z)| + |Crz(z)] £ K(1 + |2|?), for some g < oo.

(A7) €:[0,T)xR?xU — R is Borel measurable and continuously differentiable

in (z,u). Furthermore ¢ and its derivatives in z and u satisfy linear growth

conditions in z.

The expected cost if a control u € U is used is, therefore,
T
J(u) = E" [C(X(‘,“T(.ro)) + / £(r, X&“,(zo),ur)dr].
0
In terms of P, this is

T
J(u)=E [Z(’,‘,T(zg)(C(X(’)"T(xo)) + / o(r, X(',‘,,(:c(,),ur)dr')].
0
Consider the d + 1 dimensional system given by

t t
Xt =2+ / F(r, X2 (2),up)dr + / o(r, X2 (2), up )W,
] 8

t
Zo= 5+ [ 23 hK ()

o (XY g (f X))
s,t“(Z:t) f(r)—( 0 )

Write
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(g(r, X2 (z),ur) 0 )
g(r) = '
0 Z¥ (z,z)h(X} ()

() =()

Then we can write (4) as

<!

t t
Xi(z)=12 +/ flr, X5 (%), ur)dr +/ §(r, X3 (2), ur)dWr. (5)

X5 (Z)

As in (Ref. 3) we can assume the Jacobian —z=— = D“, exists for all s, ¢, ¥ and

all w not in a set of measure zero, and is the solution of

n+m

By =1+ / Far e (@) unDe dr+ Y

i=1

/ §9(r, X2 (3),u,) D2, dWE. (6)

3

Here I is (d + 1) x (d + 1) identity matrix. In fact, if the coefficients f and § are
C* the map & — X (%) is CF1,

Similarly to (Ref. 3) the matrix process H defined by

L =1— /H fa(r, X2 (3), u,.)—z P X (:z),u,)2)dr

m+n
f B2 50, X2,(8), u, )W (7)

exists and HY, = (D* ,)"
REMARK 2.1. Write | X*(Z0)]le = sup |X3,(Zo)l, |D%[s = sup |D§,l. ||l =
0<s<t 0<s<t
sup |H5‘,| Then || X*(&o)|7. |D*|lr, ||H*||r are in LP, 1 < P < oo.
0<s<t
We shall suppose there is an optimal control u* € U, so that J(u*) < J(u) for
all otheru € U.

NOTATION 2.1. We shall write X* for X*" and 56,: for 5(',‘:,, etc.
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3. Differentiability
Suppose u* € U is an optimal control. Consider any other control ¢ € I’. Then
for 6 € [0,1]

ug(t) = u*(t) + e —u"(tHh el

and

J(ug) 2 J(u). (8)

If the Gateaux derivative J'(u*) of J, as a functional on the Hilbert space

L%[0,T), is well defined, differentiating (8) in € implies
(J'(u"), v(t) —u*(t)) 2 0

forallveU.

LEMMA 3.1. Suppose v € U is such that uj = u* +6v € U for 6 € [0,a]. Write

< X (o)
9 ~ - . r- * — O»t O »y
Xg (Zo) for the trajectory associated with uy. Then M, = 0 sy exists

a.s. and is the unique solution of the equation
t -~ ~ ~ L
M= [ (el 23 o) i)y + Fulr R (o) o
0
n+m t N —
+ 3 [[9000,% (o), 0,0,
i=1 Y0

n t —
+ Z/o §O(r, X5 +(Z0), ur)v-dWy, (9)
=1

becauseforn+1<:<n+m, g}fj): .

Proof. The result follows from the theorem of Blagovescenskii and Freidlin

(Refs. 7-8) on the differentiability of solutions of stochastic differential equations
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4

which depend on a parameter. In effect the result of (Refs. 7-8) states that, if
the coefficients are differentiable, the equation for the derivative is obtained by
differentiation. Considering the initial condition as a parameter this result gives, in

particular, the equation for the differential or Jacobian as in (6). g
LEMMA 3.2, Write

o = / (Bg.o ) Fulryoedr + Z / (55,7230 Yor

- Z/ (D538 (Mg (ryordr (10)

where fy, §z, §u are as in equation (9). Then M; = fJa",ﬁo,,.
Proof. By differentiating, we see the pro.uct ﬁg,tﬁo,t satisfies equation (9). O

LEMMA 3.3.

dJ(up)
dé

o=0 E[af(}?g,T(io))ﬁa,Tﬁo,T
/ (e ry 'YO r(xO)v *)Do rﬁO r+ Eu(r, 73’r($0), u:)vr)dr]

where
C(X3,7(%0)) = 23 7(20)C( X5 7(20))
{r, X3,00ut) = 25 o (20)E(r, X5 (20). u})-
Proof.

. T
J(uj) = E |C(XE 7(%0)) + Z& plzo) [ (r, X5 -(z0), uj(r))dr)
- 0

=FE C’( X’o r(Zo0) )+/ Z0 A(r, X (a:o) ug(r)) dr+/ / €(s)ds dz¢ ,.}

f e T -
= B[O rtaa) + [ Er % (Go), ualo)er]
- 0
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So
~ o~ 7‘ -~ ~
30 lome = E[Ci(..’g_T(.i'o)):\IT +/0 (€x(r. X¢ (T0). up) M,
+ u(r, X5, (80), w3 )or)dr |
substituting M, = 55‘,,770,, the result follows. O

Consider the right continuous version of the square integrable martingale
= B[Cu(Fireo)Bir + [ G % (o), up) B dr 161
0

where G, is the right continuous complete o-field on Q, generated by G = FY @ Y.

From (Ref. 9) N, has a martingale representation
N =E[CE(X3‘,T(.%0))D3’T+/ €z(r, X§ (80),u D0 rdr + Z / 1AW
0
where the 4 are G, predictable processes such that
T .
E[/ (’7})2dr] < o0
0
Write
t~ ~ ~
o= No— [ Galr, % (30), 1) D
0
bt = ft(ﬁg,t)_l
T
= B[Cx(Ri p(ea)Dir + [ &l X (20), )7 e 1G],
THEOREM 3.1.

* T n T
L 5ef - 5 20670 7 (slond
oo = E /0 Pafu(s)vsds ; / 532 (5)5D (s)vsds + /0 o(5)v,ds

T '
“'Z/ ’rs(DE,s)'lﬁﬁ"(S)vsds]- (11)
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Proof. The product rule gives
Er o = / (D5 )7 Fulyv.ds

+L / 6.(Ds,0) 250 ()ued W Z / 6u(D5,0) 09 ()94 (s )vds

n+m

3 / 3070 od WD — / Ex()( D5 )i, eds

+Z/ (Dg )" g (s)v, 7D ds. (12)

However, from Lemma 3.3

dJ(up)
df le=o

= Bler-fur+ / (63(5)D3 fo,s + Eulsyoa)ds] . (13)

Substituting (12) in (13) and using the definition of p, the result follows. O
REMARK 3.1. Write X:T(:E) (X[ r(z),Z; p(x,2))" for the solution of (4) using

control u*. Then, by uniqueness,
Z;‘T(x,Z) = ZZ:,T(J:, 1) (14)

and Z{ ;(z,1) is the density given by (3).

LEMMA 3.4.

0Z; p(z, 2)

= Zip(,1) (15)

= Zg,:l(xﬂvl)ZS,T(wvl) (16)
and

0Z; r(z,1) X Ton(zr,) .,
I = 2 (| S5 b ) (17)



OXy,

where Dy | = —2.

Proof. (15) is immediate from (14). Now
T
fr(a 1) =1 +/ Z} (2, DA (2))dys
t

Applying the differentiation result of Blagovescenskii and Freidlin (Ref. 7-8) we

have
8z} r(z,1) 70z} (1), T . Oh v
oz —/; Th(-’xt,r(m))dyr‘*‘./; Z{.(z,1) E(.X,,r(m))D,_,dy,-.

This equation can be solved by variation of constants to give

aZ:T(x’ 1) * Tah * * Tah % * -
T“ = Zt,T(wv 1) (J/z gg(Xt,r(m))Dt,rdyr" t a(At,r(m))Dz,r'h(kt,r(T))dr)
and the result follows from (2). ]

NoTaTION 3.1. Write Zg , for Z§ ,(z0,1), Z;p for Z; p(z,1),

" * * - % Tah * *—1 *
#(t) = (Cz(Xo,T(fBO))Dz,T + C(Xo,T(l‘o))( B 'Dz,rdvr)vzu,t C(.XO.T(:CO)))

and

¥(r) = (€(r)D;, + E(r)(‘/t r gg Dy, - dvy), 255" €r))-

Note that the linear growth conditions of ¢ and £,, the integrability properties

of D* and the boundedness of A and h; imply that

/ts ([d)(n)dn) dZ; .

is a square integrable martingale.
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LEMMA 3.6.

po= B[22, (o0 + | “s(r)dr) 1] (18)
Proof.

—~ " ~~ T~ ~ ~
o= E[CeZs ro)Dir + [ &atr, %5, (@), ui)Didr 161
t

WL C(X32(w0)), Zir C(Xir(20)))

= E[(25.2C:(Xs r(0)Dir + 23

T * * * 6Z:T(m) *
+ [ (Z308tr0Dsy + 23 T ), Zigtlr)) dr |64

Substituting (17) this is

* 'l 3 * * Tah * L Xod *
— E[2 r{Cu(X3 p(za)Dir + CX3r(ao) (| 5, - Dipdon), 23 CLXs (2o}
T * * " Oh * *—

+ [ 23 {tstnDi, + 0 [ 5 - Diy-don), Ziz ) 16
T

= E[25000)+ [ 25, 0(r)dr 16, (19)
t

Now

T

T
E| / Z; (r)dr | G| = 25 ,E| / Z;,9(r)dr | G|
t 1
T T r
= 23,5 [Zir [ vy = [ ([ wman)azi, 16,
t t t
However, the last term is a square integrable (P, G;) martingale, so
T T
B[[ %9020 16 = 23,B[2ir [ vr)ir 16
t t

=E[Z5; /t Tz,/)(r)dr | gt].
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Substituting in (19)
T
pe=FE|Z; ¢(t)+/ v(r)dr) |G
t [ O.T( ) ( ) l t]
and using Bayes’ formula, this is

= E* [¢(t) + /;Td:(r)dr | gt] Zy 4

= E [zg‘, (¢(t) + /: Tw(r)dr) |g,].

DEFINITION 3.2. The adjoint process will be the process p defined by

ElZ, | Y]
255 | Y5 V {z}]

p3=E[Z33|)’;V{1‘}] E|

) E[Z§, | Y]
Y,V {z}] ElZ:, Y,V (2]]

=E[ g,T(¢(s)+ / T?,!:(r)dr)

=2 s+ [ 500 [ vy )] Bl 1 )

=5 [(6)+ [ v EIZ;, 1%

st{x}}.

As in Bensoussan (Ref. 1), the adjoint process depends on z, which represents
the state of the process at time s. However, z is just a parameter which is integrated
out in the minimum principle of Theorem 3.2.

Returning to the perturbation

ug(t) = u’(t) + 6(v(t) — u*(1))
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of the optimal control, we have

dJ (ug)

> 0.
dé §=0 —0

That 1s

[/ Poful(s)(v(s) — u™(s))ds — Z/ $s0(8)55 (s)(v(s) — u*(s))ds

0 i==1

+f Te"u(s>(v<s>—u*(s>>ds+§ / 55(B5,0 7189 (s)(v(s) — w*(s))ds] 2 0

forallve U. Now

B| / Bafuls)(v(s) —u™(s )ds—Z / Pads ()38 (s)(v(s) = u*(s))ds
[ e(s)(v(a)—u*(s))dwz [ B0 00 - v (o)as]

T n
= £[ [ Blp s>—2pg"’(s)g"><s)+fu<s>+2 (D573 1Y)

=1

- (v(s) — u"(s))ds] > 0. (20)

Therefore, because (20) is true for all v € U, we have for a.e. t and a.s. w.

E[po/u9)o(s) w7 () = 3 ()0 (5)(0() = ()

i=1

Eu(5)(0ls) — () + 3 5B ) 50 )(w() - wi(s)) | Y] 20 (21)

=1
forallvel.

From (21)

E[pofu(s)(v(s) = u*(s)) - Zﬁséi')(a)g"’(S)(v(S) ~ u*(s))
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+ Eu(s)(v(s) — u*(s)) + Z 5';(53‘5)‘]gfli)(s)(z'(.s) — u*(s)) | Y,]
i=1
T
= B[E[Z3(60) + | w(r)in) | Gu]Fu(o)ot) - (o)

_ZE[ZOT () + / »(r)dr)

i=1

G| 3 ()3 () 0(e) ~ u*(s))
+ 23 7(Z5 7 ul))(v(8) = w(s))

+ 230 S Zi7AiD; ) T 8 () (w(s) — u'(s))

i=1

)-j.,]

=2 [(s6s)+ [ () Fuls)ots) = u7(9)

n

-Z (s)+ / $(r)dr ) 35 ()38 (5)(v(5) = u'(s))

=1

+ 257 Lu(s)(o(s) — w7(s))

);]

+ZZS}17§ D )79 (s)(w(s) - u*(9))
=1

v, E|2,
=5 [(ss)+ | B )i ) B2 | ViFu(s)o(s) = ()

n T . .
=30 (69 + [ vsar) Bz, 1 VIE @) 0(s)  w*(5)

i=1 3
+ Z3 7 0u(5)ELZ; , | Ya)(v(s) = w"(s))
+Zzg—Tl7; VLEZS, | E(s) (u(s) — u( )m] >0 o
Write

E(Z;, | Y]
E{Z§,| Y,V {z}]

{(s) = Eli(s) | Y V {=}] = E"[t(s) | Y, v {=}]E(Z;,, 1 V.]

o E[Z;,|Y)]
%% = El5(D5,) " 1 LV el gy Ty
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Define the Hamiltonian by
- n . = LI
H(3,0,t,p(t)) = pofult, £,0)= D ped (8,8, u})g(t, &, 0)+L(t, &,0)+ ) _ 7§ (8, 5,v).
=1 i=1

THEOREM 3.2. If u* is the optimal control, then a.e. s

E

Proof. From (14), fu(s)and §(s) (i € n) are Y,V{z} measurable. Therefore,

0 a.s.

(Z,u",s,p(s))(v(s) — u™(

.[OH
B (5
0< B [(6(s) + / $(r)dr) BIZ3,, | Vil Fu(5)(v(s) = u™(s)
-3 (6t5) + f $(r)dr) B(Z3 , | V)i ()3 ()(0(s) — u*(s)
i=1 g

+ Z; 7 0(5)EZ5 , | Val(o(s) ~ u'(5))

d

- E{E [(¢(s) + / Tu')(r)dr) E[Z;, | Yol fu(s)(v(s) = u*(s))

+Zza}17;<D05 )E[Z3 | V] (s)(v(s) — u¥(s))

no T . ‘
-3 (¢ + | wtrar) Bz , 1 %53 (s)(w() v (5)

+ 257 Gu($)E[Z5 5 | Vol(v(s) — u™(s))

3

+ Z Z; 751Dy ) 2 , | V1§D (s)(w(s) — u*(s))

= " [pofu(s)(0(s) = u*(s)) = Y_ pufis ()3 ()(0(s) = u™(s))

=1

+ E*[Z57 6u(s) | Y5 v {z}] - EiZg,, | Ya](v(s) — u*(s))

3

+ Y ErZ;F3UDs )T YL V {2HEIZs, | Yl (s)(v(s) — ut(s))

i=1



= E* [p,fu(s)(v(s) —ut(s)) = D peds ()M (s) — u(#))
i=1

E[Z;, | Y]

Z5, | Ysv{z}]

+ E[lu(s) | Y, V {z}] E (u(s) = ut(s)

= . E(Z;,|Y, ,
+ Y E[F(Dge) 7 1YV {a)] E[Zg[ ‘l";..l v {]r}] LGNS () = u?(s)) | y_,]

i=1

=E” [psfu(S)(U(s) —u*(s)) — Zpsggi)(s)gii)(s)(v(s) —u*(s))

=1

+ 8u(s)(0(s) = u*(8)) + Y 7 (s)(w(s) = w*(9)) | Yo
i=1

H .
o L R )

ov Y”] )

So the result follows. O
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Chapter Two

Forward and Backward Equations
for an Adjoint Process

1. Introduction
Without loss of generality the state space of a finite state Markov chain can
be taken to be the set of unit basis vectors in RV. We suppose such a chain X,

0 <t < T, is observed through the noisy process y, where
t
Y = / h(X,)ds + w;. (1.1)
0

Here w is a Brownian motion independent of X.

For simplicity a terminal cost of the form (¢, X7} is considered and, following
Davis, [5], the control problem is formulated in separated form by considering an
unnormalized conditional distribution of X,.

An adjoint process is introduced and shown to satisfy forward and backward
equations. Early works of Bismut [3], [4] have discussed the adjoint process using
different methods. Some of our techniques are related to those of Bensoussan [1]. A
similar problem for a controlled Markov chain for which only the jump times, but

not the jump locations, can be observed is discussed in [7].

A version of this chapter has been published. Robert J. Elliott and Hailiang Yang.
Stochastic Processes. A Festschrift in honour of Gopinath Kallianpur. Springer-
Verlag, 1993, 61-70.

23
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2. The System
The formulation in this section is well known. Let {X,}, t € [0, T] be a Markov

chain, defined on a probability space (£, F, P), whose state space is the set

S={61,...,6N}

where ¢; = (0,...,1,0,...,0)', ¢ =1,2,...,N, is a unit vector of RN,

Write p! = P(X, = ¢;), 0 <1 < W. We shall suppose that for some family of
matrices which depend on the control parameter A,(u), p; = (p},...,p{)" satisfies
the forward Kolmogorov equation

d
—c% = A(w)pe. (2.1)

A = (aij(t,u)), t 20, is the family of @ matrices of the process. We shall suppose
the a;;(t,u) are differentiable in u.

Suppose y; is a Brownian motion process on (2, F,P) independent of X,
and write Y; for the right continuous, complete filtration generated by y. The
set U of admissible controls will be the set of Y -predictable functions with val-
ues in a compact, convex set U C RF. Suppose h is a real valued function
on S, (so h is just given by a vector A = (h(ey),...,h(en)). For u € U write
Ay, =exp { / th(X;‘)dyr - % / t[h(X;‘)[2dr} and define a new probability measure

s s
P* by

= AO,T' (2.2)

Then according to Girsanov’s Theorem, P is a probability measure, and under P*

the process W} 1s a Brownian motion, where W, is defined by

t
v = / B(X)ds + W (2.3)
0
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Also {X,} and {W,} are independent, and {X,} has the same distribution as under

measure P. Note that under P the process y represents a noisy observation of
/oth(X;‘)ds as in (1.1).

From Davis [3] or Elliott [6] we know that if p} is the Y; optional projection
of I{x,=e;} under P*, then P o= E*[I1x.=e;y | Yi] = P*[Xy = ¢; | ¥}] as. and

pe=(Bi,...,PY) satisfies
dpe = A(u)pedt + (H ~ B'peI)poduy, (2.4)

where &' = (h(e1),...,h(exn)), H is the N x N diagonal matrix with elements
H;; = h(e;) and I is the N x N identity matrix. v, is the innovations process, given
by

dvy = dy; — B'pydt. (2.5)

Now Ao,7 = Ag,¢ - Ay,7 5O

ﬁ; = Eu[I{Xg=e.'} l YPf]

_ ElA§ Iix,=e;) | V4]
E[A§, | YY)

Let g; be the Y; optimal projection of A§ ,I1x,=.;}- Then
¢t = E[AS Jix,=ei} | V]

a.s. and g; = (¢},...,q")’, the unnormalized density of X, conditional on ¥;, satis-
fies

0t = B E[AY, | V2] = peAg 6)
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Here A" is the Y-optional projection of A* under measure P, so that A, = E[Af, |
Y)) a.s. Now A, ,, satisfies

d&o ¢ = Ko 1h(Xe)dye. (2.7)
Here
h(X:) = E[A} h(X) | Y/ E[AG, | Vi
= E*[h(X:) | T3],
Therefore, by 1té’s rule from (2.6), (2.4) and (2.7)

dg, = ﬁtKo,til(Xt)dyz + ApAo dt

+ (H = K'peD)pRosdve + (H — R'ped)pelo,ch( X )dt.

Since
. N
h'py = Z h(e:)E*[I{x,=e:} | Yi]
=1
_]v
= B*[ Y Meixmen | Vo] = E¥R(X) | VL
=1
we see

dg; = qtiz(Xt)dyt + Agqidt + Hqudy;
— R(X))qedy: — (H — h(X:)D)geh(X,)dt

+ (H - (X )I)qh(X,)dt.



V]
-3

That is, g, satisfies the Zakai equation
dg: = Ae(u)qedt + Hqidy,. (2.8)
Cost: The cost function will be
J(u) = E*[(€. X7)] = E[AG 7(€. XF)]
= E[(¢, AT X7)] = E[{¢. E[AYXF | Yi])]
= E[{(, ¢1)]-

The control problem has, therefore, been formulated in separated form: find
u € U which minimizes

J(u) = E[(¢, g7)] (2.9)

where ¢ is given by (2.8).
3. Differentiation
For u € U write ®*(t, s) for the fundamental matrix solution of
d®®(t,s) = A, (u)d*(t, s)dt + H®"(t,s)dy; (3.1)
with initial condition ®*(s, <} = I, the N x N identity matrix.
LEMMA 3.1. For u € U, consider the matrix ¥* defined by the equation
¢
T¥(t,s) = I—/ U*(r,s)A (u)dr

t t
——/ ‘I'“der+/ U H%dr. (3.2)
L} 8
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Then $*®* =T fort > s.
Proof: Using the Ité rule we see d(¥®) =0, ¥(s,s)®(s,s)=1I.
We shall suppose there is an optimal control u* € U. Write ¢* for qv, o*

for ®*" etc. Consider any other control v € U. Then for § € [0,1], ug(t) =
u*(t) + 6(v(t) —u*(t)) € U.
Now
J(ug) = J(u®). | (3.3)

Therefore, if the Gateaux derivative J'(u*) of J, as a functional on the Hilbert space
H = L*[Q x [0, T}, R¥), is well defined, differentiating (3.3) in 6 and letting § =0,
we have

(T'(u"), v(t) —u’(t)) 20 (3.4)
forallveU.

LEMMA 3.2. Suppose v € U is such that u} = u* + v € U for § € [0,a]. Write
. " 0 . . .
q:(8) for the solution g;(uj) of (2.8). Then z; = @at%—l .0=0 exists and is the unique

solution of the equation
t 54 t t §
z = / (———(u*)) vrgrdr +/ A(uy)zqdr +/ Hz.dy,. (3.5)
o \Ou 0 0
Proof: Differentiating under the integrals gives the result. This is justified by
the result of [4].
LEmMA 3.3. Wnite
‘ * 6‘4 * *
me= [ 0 (G0 (36)
Then z; = ®*(¢,0)70,¢.

Proof: By Ité’s rule we see ®*(t,0)n0,: satisfies the equation (3.5).



COROLLARY 3.4. Because J(up) = E[(C,q;“’)] we see

= E[((.®*(T,0)no.1)). (3.7)

o
a6 Yo =0

Write M, = E[®*(T.0)'¢ | Y;]. Then M is a square integrable martingale on
the Y -filtration; hence, (see [6]), M, has representation
M, = E[®*(T,0)¢] + fo t')‘rdyr (3.8)
where 7 is a {Y¥;} predictable process, such that
T
'/(; E|v2|dr < oc.
DEFINITION 3.5 The adjoint process is
pe = W*(£,0)' M,
where the prime ' denotes the transpose of the matrix.
THEOREM 3.6.

9 (up)

6 e:g=/0TE[<Pr’g—f-(U*)vrq:>]dr. (3.9)

Proof. Using (3.6) and (3.8)
T T
0A .
<-MT7770,T> =/ <Mr$w*(r70)5—_(u")vr4r>dr+/ ('/r»nO.r)dyr-
0 u 0

From (3.7)
87 (up)

EY) = E[<MT7 770,T)]1

§=0

so the result follows. a
Under integrability conditions J' is in H, and so a Gateaux derivative.
Now consider perturbations of u* of the form ug(t) = u*(t) + 6(v(t) - u*(t))

for § € [0,1], and any v € U. Then

0J (us)
00 =0

for all v € U. So we have the following

= (J'(u*), v - u*) Z 0
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THEOREM 3.7. Suppose u* € U is an optimal control. Then a.s. inw and a.e. int

(e Laut)(o— e ) 2 0. (310)

4. Equations for the Adjoint Process

Suppose the optimal control u* is a Markov, feedback control in the state

variable q.

We have the following expression for the integrand in (3.8).

LEMMA 4.1.

= <I>*(r,0)’ Opr Hq,. + &*(r,0)' Hp,. (4.1)

t
Proof: ®*(t,0)'p: = M, = E[®*(T,0)'¢) +/ vrdy,. If u* is Markov, ¢~ is also
0

Markov. Write ¢ = g, ® = ®*(¢,0), then by the Markov property
E[®*(T,0)'¢ | Y] = E[®'®*(T,t)'¢ | ¢, ®]
'Ble*(T,8)¢ | q).
So p, = E[®*(T,t)'{ | g] is a function of ¢ only. Therefore,

Pt =po+ / —(Agrdr + Hq,dy,)

Op- Ny
/ dr+ 3 2 / ey hled)hles)aigldr

_ " 1 dp 1 &L 8%, . on,
_po+/° [3‘1 Art3 25 razh(ez)h(ea)qrq * % ]d

i,j=1
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Then

Mt = Q*(tv 0)'pt

t dp 1< 8% dp
= +/<1>* 0y [ dg, + 2 Prhenh(e;aied + 2o d
ot J, ¥ 000 (Gt 3 g e el o
t a t
* 1OPr * ' '
+/ ®*(r,0) qudy,--i—/ ®*(r,0) A(u) prdr
0 dq 0
¢ f dp,
+/ @*(T,O)'Hp,dy,.+/ **'H 9 Hg,dr. (4.2)
0 0

Since M; is a Martingale the sum of the dr integrals in (4.2) must be 0, and,

therefore,

Ir = @*(7'1 O)I apqr Hgqr + q’*(T,O)'HPr-

0

THEOREM 4.2.

* ' L‘apr t ' dpr
p: = E[®*(T,0)'{] + Hg.dy,— | (A'p,+ H Hgq.)dr. (4.3)
o Og 0 dq

Proof:

pe = U*(t,0)' M, = E[&"(T,0)'4
t
+/ ‘I,*I(@*I_a_pj_' qu+¢*'Hpr)dyr
0 9q

t t
—/A'Q*'Mrdr—/ HY*' M. .dy,
0 0

t t ap
+ / H2U* M, dr - / H\I:*’(@*'—I HQr+<I>"Hp,-)dr
0 0 dq
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tap
=E<I>“T,0'é+/ L Hq, + Hp, )dy-
[@*(T,0)'4] o(aq g p)y

t t ¢
—/ A'p,dr—/ Hprdy,-+/ H?p.dr
0 0 0

'/ot(H ‘?;;’ Ho, + H'p, )dr.

So

d * ! tapr
= E[®*(T,0)'¢] + Hqydy,
o 9g

_/:(A'pr+H aapi; Hq,-)dr.

O

From (4.2), equating the dr integrals to zero we also obtain the following resuit.

THEOREM 4.3. p; satisfies the backward parabolic system

Op.  Op ) 1 & : )
—;%+—a-q—t A+ H —— pt H t+22 ’6 3 h(ei h(eJ)qtqt+A(u )pe = 0. (44)

with terminal condition

pr =4.

REMARKS 4.4. In [3] Bismut considers a forward equation, with a terminal condi-

tion, for the adjoint process.
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Chapter Three

How to Count and Guess Well:
Discrete Adaptive Filters

1. Introduction

Discrete filtering consists of counting the occurences of various states of a dis-
crete observation process and then making the best estimates of quantities related to
an unobserved state process. The situation we consider in this paper is that of a Hid-
den Markov Model, HMM. This consists of a homogeneous, finite state, discrete time
Markov chain X;, £ € Z*. Without loss of generality, the state space of X can be
taken to be the set of unit vectors S = {ej,...,en}, & =(0,...,1,0,...,0)' € RN,
and with P = (p;;) the matrix of transition probabilities it is shown in Section 4

that X has a semimartingale form
Xe=PXyq +my, {e Z+, (1.1)

where m; is a martingale increment. The process X is not observed directly; instead
we suppose there is a discrete time, finite state observation process Y. Again, the
finite range of ¥ can be identified with the set of unit vectors {f1,..., frh fi =
(0....,1,0,...,0) € R¥, and with D = (d;;) where dj; = P(Yz = f; | Xe—1 = &),

the relation between X and ¥ can also be expressed in semimartingale form as:

Y= D—Xf—l + e, le Z+a (1'2)

A version of this chapter has been submitted for publication. Robert J. Elliott and
Hailiang Yang.
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where p¢ is a martingale increment.

This situation is often called a Hidden Markov Model, HMM., and such struc-
tures have been found useful in many areas of probabilistic modelling, including
speech processing; see Rabiner [5]. We believe our model is of wide applicability
and generality. Many state and observation processes of the form (1.1) and (1.2)
arise in the literature. Our model, by discretizing time and state, can be made an
approximation to many continuous models, including non-linear diffusion models
in continuous time. In particular, by discretizing and approximating the noise in
the observations, the case of a Markov chain observed in Gaussian noise can be ap-
proximated by a HMM. Discretization is necessary for numerical implementation.
Furthermore, our model re-tunes its parameters in an increasingly optimal way. In
addition, certain time series models can be approximated by an HMM.

The methods of this paper are an adaptation to discrete time and state of
those of Elliott [4]. The application of methods from the discrete time general the-
ory of processes in this situation is not well known and sheds light on the problems.
Early contributions can be found in the papers of Boel [3] and Segall [6]. The lat-
ter is in the spirit of this paper, but discusses only a single counting observation
process. Boel has considered multi-dimensional point processes, but has not intro-
duced Zakai equations or the change of measure. Our paper begins with martingale
representation and Girsanov results related to multivariate point processes. The
semimartingale representation of the HMM is next given and followed by a general

filtering result. A general unnormalized, or Zakai, estimate is derived in Section 6.
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Compared with the normalized filter this has a remarkably simple form. Specializ-
ing this result in Section 7 gives recursive estimates and smoothers for the state of
the process, the number of jumps from one state to another, the occupation time
of a state and of a process related to the observations.

Following Elliott [4], a particular trick used is to exploit the idempotent prop-
erty of X; instead of estimating H, which would involve H X, we estimate HX. This
introduces HX ¢ X but this can be expressed in terms of HX itself and so, unlike
H, HX has a recursive estimate. Taking the inner product with 1 = (1,1,...,1)
then gives an estimate for H. From these estimates new optimal values for the
parameters p;; and dj; in the matrices P and D can be obtained. Our model is,
therefore, adaptive or ‘self tuning’ to the observations. Using the new parame-

ters and perhaps new observations a sequence of increasingly better models can be

obtained.

2. Discrete Time Martingale Representation

Processes and random variables considered in the sequel are supposed defined
on a complete probability space ({2, F, P). The discrete time parameter will take
values in Z+ = {1,2,...}. A filtration {F;}, £ € Z*, is given; that is the Fy are an
increasing family F} C F> C ... of sub-o fields of F, and F; is complete. Fj is the
trivial o-field (€2, ¢).

Suppose for each £ € Z*, y},...,yf are random variables each of which takes
either the value 0 or 1, and for each time ¢ one and only one of the y} = 1. That is
yiyl =0ifi # j and

Y yi=1. (2.1)
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Write y¢ = (y3,-..,y5) € RF. (As we wish to consider column vectors the prime '

denotes the transpose.) With 1 < j < k write fi =(0,...,1,0,...,0) for the set

of standard unit vectors of R¥; then we see y; = f; for som¢ j.

Write
n n
-k k
Y} =Zy;,...,§n = ny
=1 £=1

Yo=Y, Y0 = ue
=1

We take ¥y = 0 € R*.
DEFINITION 2.1. a} = E[yi|Fe—1), €2 1.
Write

ac=(a},...,a§)',

From (2.1) we see that

k k
ag=) Eli| Fe] = 1.
=1 i=1

If pj := yi — a} then Efu} | Fp—y] = 0 so p} is a martingale difference.

Write pe = (p3,...,pf)". From (2.1) and (2.2)

k
> up=0
i=1

(2.2)

(2.3)

so the dimension of the space spanned by the martingale differences pi, 1 <i <k,

is at most k — 1. For n € Z% write YV, = o{¥, : ¢ < n} = o{y, : £ < n} so that

Vn C Fa.

NOTATION 2.2. For any vector a = (ay,...,ax) € R write a for the (k—1) vector

(@1,...,0k-1) € RF7L



38
REMARK 2.3. Note in the sequel that the particular role played by the kth compo-
nent could be taken by any other component.

From (2.1) we see that
Yo=0{ye: £ <n}=0{fe:£<n}
Write

&Z = E[yi ] yf—l]’ £21,

Also, denote
vp=yp—a, 1<i<k,

and vp = (v},...,vf).

The following martingale representation results are similar to those of Boel [3].

THEOREM 2.4. Suppose M, n € Z7, is a d-dimensional vector (P,Y,) martingale

with My = 0. Then there is a Y-predictable d X k matrix process H, such that

n n
M, = [X:Hg(yg ~a)) =Y He v
=1 =1

(Y-predictable means that for each £ € Z* H, is Y;..; measurable.)

Proof. Because M, is YV, measurable there is a d-vector function f such that

A{[n = f(y].’y?s' "ay‘n-—lyyn)'
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Write H, for the d x k, Yp—1 measurable matrix with columns f(y1, ... ¥n=1.F),
1 <tk

RemArg 2.5. From (2.1) and (2.2) we see

5Q there is redundancy in the representation (2.4). For any component, say compo-

Nnt k,

ay( if we define h, to be the d x (k — 1) Y-predictable matrix process with columns
Fs)~ f(Fi),1<i<k~1,for £=1,and f(y1,...,9e=1:fi) = f(y1o -1 Ye=1, fi),
1 <4< k~1,for £> 1, we have the following result:

QoroLLARY 2.6,

1 ~1
n Ye —ay n
M, = th . : = Zh( - Ug.
=1 k-1 ~k—1 =1
Ye — G

3, A girsanov Theorem.
Suppose Ui, 1 < i < k, £ € Z*, and aj are as defined in Section 2. In this

SQction we further require that
a;>0, 1<i<k, tez*

Suppose be = (B},...,b5) is a second sequence of random vectors which are F-
Predictable and satisfy b > 0, Z:;l b, = 1. In the sequel { , ) will denote the inner
Product of vectors in Euclidean space. Write

k : i
b\ ¥

P — £
/E‘H(a;) .

i=1
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Then

k i '
Epre | Feesl = 3 ()P =11 Fie) = 1.

i=1 £

Consequently, if A, = [J5—; 7¢ then {An} is a positive {F,} martingale. Define a
new probability measure P, on F, by putting

dP,
dP

= A,.

For m > n we have F,, C Fy, and for C € F,

Pon(C) = /C ApdP = /c E{Am | Fu]dP

= / AdP =P,(C),
C

so the restriction of P,, to Fy, coincides with P,. Consequently, by Kolmogorov’s
existence theorem there is a probability measure P on (Q, Ue Fg) which restricted

to F, coincides with P,. Write E for expectation under P.
LEMMA 3.1. Efye | Fe—1] = be.
Proof.

Elye | Fe-1] = E{Agye | Fe—1]/E[A¢ | Fo-1]

= Elyeye | Fe—1] = be.
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4. Hidden Markov Models

Consider a system whose state is described by a discrete time, homogeneous,
finite state space Markov chain Xy, ¢ € Z7, defined on (Q, F, P). We suppose that
X, is given, or its distribution known. Without loss of generality the state space of
X, can be taken to be the set S = {e;,...,en} for a suitable N € Z?%, where the
e; =(0,...,1,...,0)', 1 < ¢ < N, are the standard unit vectors of RY.

Suppose {F,}, n € Z7, is the complete filtration generated by X. That is,
for each n € Z*, F, is the completion of the o-field generated by X¢, ¢ < n.
From the Markov property P(X, = e; | Foo1) = P(Xn = ¢; | Xn-1). Write
pji = P(X, = e; | Xn_y = e;). P will denote the N x N matrix (pji). Note
iLipi=1
LEMMA 4.1. Forn € ZT,

.Xn = PXn.—.l + mn (4.1)
where m, is a martingale increment.
Proof.

= E[X, | Xn-1] - PXn-1 =0.
COROLLARY 4.2. Write Q = P — I. The semimartingale representation of X is:

Xn=Xo+ ) QXey+ M, (4.2)

£=1
Here M, = ) y_,m¢ is a (P, F,) martingale.

We now wish to calculate the predictable quadratic variation (m¢) = E[mn 3
my | Fp—1] of m. Recall X, is one of the vectors e; € S. & will denote the tensor

product.
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LEMMA 4.3.

Mp@m, = diag(PX,-,)+diagm, —PX, 1@PXn1~PX,10m,-m,@PX,

(4.3)

and

(mn) = E[mn ® mq | Fn—l] = E[mn ® mnp ' Xn—]]

= diag(PXn-1) —~ PXn-1® PXn_1.
(4.4)

Proof. From (4.1) X, @ Xp = PX,1 @ PXn1 + PXa1 @My + mp ©

PX,_, + mp @ m,. However, X, @ X, = diagX, = diagPX,_, + diagm,.
Equation (4.3) follows. The terms on the right side of (4.3) involving m, are
martingale increments; conditioning on X,_; we see (m,) = E[m, ® my, | Xn-1] =
diag(PX,-;) — PX,_ @ PX, ;.
NOTATION 4.4. Recall {F,}, n € Z*, is the filtration generated by X, and, as in
Section 2, {Y,} is the filtration generated by y. We shall take yo =0 € Rk, Write
{G,} for the filtration generated by X and y. A process {Z;}, £ € Z™, is adapted
to the filtration {G(} if Z; is G¢ measurable for each £. A process {Z;} is a (P,G¢)
martingale if Z; is integrable and for m > ¢, E[Zn, | G| = Z,.

Following Rabiner [5] we shall make the following definition:

DEFINITION 4.5. A Hidden Markov Model, HMM, consists of a Markov chain
{X,}, n € Z*, and a random, finite state space function f of X, whose values are
observed.

We shall suppose our X process is not observed directly. Rather, asin Astrom [1)

or Rabiner [3]. there is a function f with a finite range and we observe the values
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ye = f(Xe—1,k¢). € € ZT, where x¢ is a sequence of independent random variables.
We have assumed f is independent of the iime parameter {, that is, the y obser-
vation process is time homogeneous. If the range of f consists of k points we can,

without loss of generality, identify the range of f with the unit vectors fy,..., fi of

Rk, where f; = (0,...,1,...,0). Write dj; = P(y¢ = fj | Xe—1 = ¢;). Note again

k

z dji =1 (4.5)
j=1
and dj; 20,1 <j<k,1<i<N. D will denote the k¥ x N matrix (d};).
Similarly to Lemma 4.1 we have the following representation.
LEMMA 4.6. Forne Z*
Yn = DXn-y + Kn (4.6)
where K, is a (P, G,) martingale increment.
Proof.
E[Kn | Gn-1] = E[yn — DXno1 | Xn—i]
=DX,.y-DX,, =0
NOTATION 4.7. For each £ € Z*, y; is one of the unit vectors fi,..., fr. Writing
yi=(ye, fi), 1 <i < k, wesee ye = (y},...,y5)', £ € Z*. Therefore, exactly one
component of y; is equal to 1 for each £ € Z*; the remainder are 0. Consequently,

the process y; is of the form discussed in Section 2. As in (2.1) Z;;, yg =1 and
Vo=o0{ye: £ <n}=0{ge: L <n}.

NOTATION 4.8. For any process ¢¢, £ € ZT, write ¢e = Elde | V| for its Y-
optional projection, and, consistently with Section 2, write ¢¢=E [¢¢ | Ve—1] for its

Y-predictable projection.



LEMMA 4.9.

Yn = DXn—l + vn (4.7)
where the innovations v, = D(X -1 —Xne1 )+ K is a (P, Y)-martingale increment.

Proof. From Lemma 4.6 y, = DXp—1 + Ky = DX,_1+ vn. Now
Elvn | Yam1] = E[D(Xn-1 = Xn-1) | Yam1] + E[Kn | Vo]
=0+ E[E[R, | Gr=1]Yn-1] = 0.
NOTATION 4.10. In the sequel we shall write:
a; = Ely; | Ge—1] = (DXe-r, fi),  15i<k

ét = Ely} | Ve—1] = (DXe=1, fi)y  15i< k.

Note
k
Z ap=1 (4.8)
=1
and
k
) ap=1. (4.9)
=1

Because of the redundancy noted in equation (2.3) we shall use only (k¥ — 1) com-
ponents of the observation vector y¢, { € Z¥; without loss of generality we shall use
the first (k —1).

Note if ai = 0 for some 7 and £ then y} = 1 with zero probability. The range
space of the observation process at that time ¢ can, therefore, be reduced by one

dimension for each a} which is 0. We shall suppose a}>0,1<i<k,le zZ+.
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Write D for the (k — 1) x N matrix (dji)» 1 £j£(k=-1,1<i< N. The

analogs of (4.6) and (4.7) are
Jn=DXn1 + K, (4.10)
gn = DXny + ¥y (4.11)

Consequently @, = DX,—; and &, = DX,_;. At most one component of §, is 1;

otherwise they are 0.

LEMMA 4.11.
E[Dn ® Un I yn-—l] = an

= diag(DXn_1) — (DXn-1) @ (DX 1)

. N 2152 o1 k]
a;l't(l - a;;) —ail n —apa,
2. . X 22 k1
= _agzasl af,(l - (131) ~apa,
: : ; (4.12)
—a,"la,  —aklal ay1-ayt)

Proof.
Un ® In = (fn —~ DXn-1) ® (§n — DXn-1)
= diagfin — Jn ® DXn-1 — DXy @ Gn + (DXn-1) @ (DX ,oy)
= diagJn = Jn B Gn ~ Gn @ Jn + @n @ Gn.
Conditioning on Y, .; we see

E[ﬁn ® 1712 l yn—I] = diagan - an @ an.
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REMARKS 4.12. A simple calculation gives

k
det &, = H &il
i==1

and ok
(&7 1 . 1)
n
~k
1 1 =5 +1 1
3 = n (4.13)
1 1 G 41
\ o

It is clear from (4.13) why we require &} > 0, 1 < i < k. Note a similar calculation

shows the k x k matrix E[v, ® vn | Yn-1] is singular; this is why we use only (k —1)

components of the observation process.

Finally, we note the following product formula.
LEMMA 4.13. Suppose W, = Wy + Sp_,a¢ and Vo, = Vo + 3 ;- Be are N and k

dimensional processes, respectively. Then

n n n
Wa®Va=Wo@Vot > Wer1 ®Be+ Y e®Vicr + Y e ® e
=1 £=1 =1

Proof. By induction.

5. A General Filter
Suppose H,, n € Z™, is a d-dimensional (P,G,) process of the form

Ho=Ho+ Y e+ Beme+ ) bebe
=1 £=1

£=1

+ ZAgm[ X me + Zagge R me. (51)

£=1 £=1
Here a, 3, 8, ), o are (P,G,,) predictable processes of appropriate dimensions, that

is. a is d-dimensional, 8 is d X N matrix valued, and so on.
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THEOREM 5.1.

Hy=E[Hq | Yol =Ho+ Y (e +8cae + EDe(me) | Yeor]) + D hete.  (5.2)
=1 =1

where
he = {E[He—1®c'le | Vie1]—He-1080+E[ae®ac | Ve-1]—aeQaet+E[6¢ diag @ | Y1)

~ Bt ® e + Ehe{me) © e | Yees] = EDdelm) | Veer] © e} 877

Proof. First note that because the random variables x; in the observations
ye = f(X¢—1,k¢) are independent the martingale increments in the signal X and
the observation y are independent, so the terms oy, ®m; are martingale increments,

as is the difference mg ® m¢ — (m¢). Consequently, from (5.1)

Hy = E[Hn | Yal = Ho + (E[Ho | Ya] = Ho) + ) b
=1

+ Y (Blae | Y] = &) + E[Y_Beme | Y|
=1

£=1

=1

+E [anée(ﬂe —ae) | V| + Y (Elbeae | Ya) - Gcae) + )_deae
£=1 =1
+ (E [Zn:/\zmc ® my | yn] - ZE[/\emc @ me | yl—l])
=1 £=1

+ (X EDeme @ me | Vees] = Y Eldelme) | Vel
£=1

=1

+ > Ee(me) | Yer] + E[D oege @ me | Vn]-
£=1

=1
That is,

Ho=Ho+ Y (G + beae + Ee(me) | Yees])
=1
+ a term which is a (P, Vn) martingale.
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From Corollary 2.6 we can, therefore, write

Hy=Ho+ Y (6 + 8t + EDe(me) | Veca]) + Y he - e. (5.3)

=1 =1

Here he is a d x (k — 1) dimensional Y-predictable process which we now proceed

to find by calculating ¥, ® Hy, in two ways.

Recall
?n = Zg[ (5.4)

and Yy = 0. From (5.1) and (5.4), using Lemma 4.13,
Y. ©H,= i{?l—l Qar+Ye; @Bime+ Y1 ® e
=1
+Y 1@ (Aeme ®me) + Y o1 ® (0efie @ )
+(Je—a) @He1 + 0 @ He—1 + 50 @ e
+ U @ Bemne + Fe ® Sefie + Fe ® (Aemg ® my)
+ 5 Q(0e§e ® mz)}-
Therefore,
EY . QHn| Y, =Y0a ®Han
= i{ftq ® G + Yoy ® beag + Vemy ® E[Ae(ma) | Ye1]
=1
+E[a @ He-y | Vo1l + Elae @ g | Ve-1]

+ Eldioga, - 8 | Yeui) + Elae ® Ae(me) | Y]}

+ a term which is a (P, ),) martingale. (5.5)
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However, from (5.3) and (5.4), using Lemma 4.13,

Yn®Hn= zn:{?i—l © b+ Ty ® beae + Yo © E[Ae(me) | Ve-r]
=1
50 ® Heoy + ¢ ® Ge + Je © beae + §e © ENe(me) | Yer]
+ G @heg+Y o1 © hfl'/e}
= zn:{?eq ® e+ Tee1 ® bear + Yea1 ® EQe(me) | Ve
=1
+ 8 QHi 1 +a @b+ @ ® §eae + e ® E[Ae(me) | Vo)

+ Elg ® vy | yt—l]h'e}

+ a term which is a (P, Y,) martingale. (5.6)

Equating the increments in (5.5) and (5.6) and conditioning on V-1 we have

-~

&;-hy=E[ae @ Hp—y | Ye—1] — @ ® Hoy + Elae @ ar | Vo] — 0e @ b
+ diag Elar - 6) | Yi-1] — & ® beae
+ Ela; ® Ae(me) | Ve—1] — & @ E[Ae(me) | YVe-1]-
Therefore,
he = {E[He-—1 ®ae | Ve-1] — He-1 ® e

+ Elog ® @ | Ye—1] — 6¢ ® G¢ + E[6¢ - diag @ | Ve-1] - byite B e

+ E[ha(me) @ e | Yeet] — E{re(mi) | Yeo] @ 60} 877
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REMARKS 5.2. Suppose H, is a scalar process of the form

n
Ho=Ho+ Y (0t + Beme + 6efie)-
¢=1

Then

HoXp=HoXo+ Y (aeXeo1 + BrmeXe-1 + 6eGeXe-1)
£=1

+ ) (HeerQXeoy + Hexme) + Y (ee + Beme + 865} (QXe-1 + me)

(=1 =1

= HoXo+ » _(aeXem1 + He-1QXe-1 + @eQX¢-1)
=1

n
+ Y (BemeXeoy + He-1mg + agme + BemeQXe—1)
=1

n n n
+ 3 (6eeXeor + 6e5eQXe1) + )_me @ me- B + > “Seye - me.
=1 =1 £=1

Recalling I + @ = P we can, therefore, apply Theorem 5.1 with o replaced by
arPXe—y + He—1QXe_1, 6¢ replaced by (PX)¢—1 ® 8¢ and ), replaced by B; to

obtain:

THEOREM 35.3.

E[H,X, | Ya] = E{HoXo] + 3 E [(aepr_1 + He1QXeen

=1

+ PXe 1 (86, DXecr) + (m)By) | Ves | + D _hiie, (5.7)
=1



51

where

B = { B[He-1 Xem1 8 DXems | Yeus] = E[Hees Xeer | Veer] © DX
+ El(a¢PXe—1 + Heo1QXe-1) © DX¢o1 | Vet
— ElasPX¢-1 | Ye1] @DXey — E[He1QXey | Ve-1] ® DXy
+ E[(PXp-1) ® 6¢diag DXy | Ye—1] — E[(PXe=1) ® 6¢ | Yer] ® DXy

+ E((me)8 8 DXeot | Yot - Ellme)fy | Yees] 0 DXeca [E7. (58)

Note h} is Ve—1 measurable.

REMARK 5.4. Taking H, = Hy =1, oy = 0, B¢ = 0, 6, = 0, we obtain the following

filter for Xn:

Xa=Xo+ iQXeq +i{E[PX1-1 ®DXe_1 | Yeor] - PXe-y @ DX oy } 87 .
£=1 =1 (59)

The product term PX,—1® DX, can be written Z:\;] (Xe-1,€i)Pei@De;. There-

fore, E[PX;_; ® DX¢—1 | Ye—1] = Z,A_i.l (X¢-1,€;)Pe; @ De; and so, recalling the

forms of 7y = (§¢ — DX¢-1) and 6[1 from (4.13), equation (5.9) gives a closed,

recursive, finite dimensional filter for X .. However, we shall see in the next section

that the unnormalized Zakai filters have much simpler forms, so we shall not pursue

normalized filters any further.
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6. The Zakai Equation
As in Section 4 a, = DX,-; and a, = DX,_i, so that @, = DXn-, and
bn = DXpoy. X @i = 1and 3,4, = 1forn € Z*. We shall suppose
ai >0,1<i<k ne€Zt. Againb, = (bL,...,b%) will be a second sequence

of F-predictable random vectors such that b, > 0 and Zf___l bi = 1. Following

Section 3 take

k i i
Ye = I-_II1 (%) yl, and
n
Ap = H‘Ye.
£=1

= A,; the existence
Gn

Define P, by putting the Radon-Nikodym derivative %}%‘1
of a measure P such that P| . = P, follows from Kolmogorov’s theorem as in
Section 3.

NOTATION 6.1. Suppose from now on that

!

—_ 11 L — . +
bl_(kak""sk)— .]_~a eeza

el

where 1 = (1,1,..., 1) € Rk

If P is constructed for this by sequence then, with E denoting expectation under

il

. . 1 _
Ely; | Ge=1] = Elyg | Ye-1] = ™ 1<igk, €eZ™.

We now wish to take P as the “reference probability” and, starting with P,

construct the measure P on (Q,U>., G.) such that under P: E[y} | Ge—1] = aj.
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The roles of a; and b, are, therefore, interchanged, so we define
k

e = H (Z—g)y: and

=1
n

AL = H e
=1

P, is then defined on G, by putting its Radon-Nikodym derivative with respect
to P equal to A}; the existence of P again follows from Kolmogorov's theorem. For

this b; the analog of the (k¥ — 1) x (k — 1) matrix 3., (equation (4.12)) is

(k-1 -1 ... -1
1 -1 (k-1) ... -1
Ue=¥=45 : : : (6.1)
-1 -1 (k-1)
so that
2 1 1
1 2 ... 1
=k . . R (6.2)
11 2

NOTATION 6.2. If ¢p, £ € Z*, is a G-adapted integrable process a version of Bayes'’

theorem states that

E[A;0¢ | Vil

— 6.3
EA; | ] (63

¢¢ = El¢pe | V] =
= 0¢(¢e)/0e(1), say,

where o¢(¢s) = E[Aj¢e ' V:] is an unnormalized conditional expectation of ¢¢
under P.

Form <n we "0 -~

Un(¢m) = E[A;g(pm l yn]
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LEMMA 6.3.

on(1) =1+ Y_oe-1(1){Fe (¢ = be))- (6.4)

=1

Proof. By definition

An =1+ Aj_1(7e Ge — be)
=1

and under P §; — b¢ is a martingale increment. We wish to calculate the optional

projection under P:

on(l) = E[A; | yn]

This is, therefore, a filtering problem under measure P and the result is a special
case of Theorem 5.1 with H, = A%, a; =0, 8¢ =0, Ay =0, 0, = 0 and §; = Aj_;7¢.

Consequently, recalling @, is replaced by b and P by P,
he = {8 diagbe — 8¢be © b} T
=800 =8 = E[A}_7¢ | Ve-1]
and by the Bayes’ rule, (6.3), this is
= E[A}_; | Ye-1)E[Fe | Ye-1]-

That is

he = ae-1(1)7,,

and the result follows from Theorem 3.1.

We shall also need the following identity which is verified by calculation:
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LEMMA 6.4, Forfe Z%,

&7 (Je — &e) (5, Gt — be) = U (Fe — be) — B7 (§e — &) (6.5)

NOTATION 6.5. As in Remarks 5.2 suppose H, is a scalar process of the form

n

Hy, =) (as+Be-me+ 8efe).
=1

Here a4, B¢, 6; are G-predictable processes of appropriate dimensions, that is ay,
Be, 6¢ are Gy_; measurable, a, is scalar, 8, is N dimensional and §; is (k-1

dimensional. Write
Ze=0agPXp 1+ Hp1QXe— + PXe-1<5e,—D_Xe—1) + (me)Be.

When compared with the filtering result, Theorem 5.3, the following recursive, Zakai

equation for the unnormalized estimate
o'n(Han) = E[A:Han I yﬂ]

is remarkable for its simplicity. Of course, o, (H,X ) could be computed by evaluat-
ing the product A} H, X, and then taking its Y-optional projection. The martingale
representation result under P would be used. However, we have preferred to develop

the normalized filter first.

THEOREM 6.6. For 1 < j < k write dj = De; = (dy;,. .., dx;j) for the jth column

of D = (d;;). Then
On(HnXn) = E[ALH, Xy | Yn)

N
=kY 0n-1{(Hn1Xn-1 + Za){Xno1,€) }{ds,ym).  (6.6)

=1
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REMARKS 6.7. Note equation (6.6) involves all components of the observation
process y,. With 1 = (1,1,...,1)" € RN we have (X,,1) = 1 for all n € Z%,
Formula (6.6) provides a recursive way of determining 0,(H,X,); taking the inner
product with 1 we, therefore, obtain an expression for on(Hy) = on(Hp(Xs,1)).
The expression for o,(Hy) itself is not recursive because, in particular, it involves
a term of the form o,-1(QHp—1X,-1). Roughly speaking, conditioning H involves
a product with X. By starting with HX the conditioning involves a term of the
form HX @ X. However, this can be written Zil (HX,€;)e; @e; and so no ‘higher
powers’ of X are introduced.
Finally, we note that 0,{{Xn,1)) = 0.(1) = E[A} | Vx] and we can obtain the

normalized estimate of H, from Baves’ rule, (6.3), as
Hn = E[Hp | Vo] = 0n(Hp)/on(1). (6.7)

We now proceed with the proof of Theorem 6.6.

Proof. From Bayes' rule. (6.3),
On(HpnXp) = E[Hy X0 | Vu] - 0n(1).
Using equations (5.7). (6.4) and Lemma 4.13

o(HnXy) = E[HoXo)+ > _Zeoe-1(1) + 3 _hioey(1)(Fe — &)

=1 =1

+ Za[_l(l)E[Hg_1X£—1 | Ve-1)(¥e: (Fe — be))

=1

+ Y o1 (1){Fe G — b){Ze + hi(Fe — &)} (6.8)
=1
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From (5.8) we see h} involves the factor ;I;;'l and from Lemma 6.4
@7 (5e — &) (R e Fe = be) = ¥ (Fe — be) — 87 (Ge - o).
Substituting in the last term of (6.8) and using Bayes’ rule (6.3):

on(HnXn) = oo(HoXo) + D _0c-1(Ze) + Y _oe—1(He—1 Xeon (U™ (&c — b). e — br)
£=1 £=1

+ ng_l(Z[)(q’_l(ac - 5[’)7 Ye — I_’[)

£=1
+ ) oe-1(Dh @ ¥ (ge = be). (6.9)
£=1

From (5.8) e final summation in (6.9) is

n

Z{Ge—l(Ht—1Xt—1 @ DXeoy) — 0omr(Eeo1 Xemy) @ @

=1

+oe—1((0ePXeo1 + He-1QX=1) @ DXo1) — 0r—1(ae PXey + Hec1QXem1) @ ag
+ 061 ((PXe—1) ® bediag DX (1) — 001 (« PX¢_1) @ 6¢) @ @
+0e-1{{me)Br @ DX¢—1) — 0e-1({me)Bp) & C:te}‘l’_' (e — be).
The terms involving & cancel in (6.9) 2and we have

on(HnXn) = 0o(HoXo) + ) _oe-1(Ze)

=1

n

= > vemr(Heor Xemr (0™ b0, 5e = be) = Y _0e—1(Ze){( ™" be, 5o — be)
=1 =1

+ Zaz-l {He—1Me—1 @ DXy +(aePXeo1 + Hem1 QX1 ) % DX
=1

+ (PX¢—1) 2 b¢diag DXeoy + (me) By 2 DXy } Y™ (s — be). (6.10)
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Note the term in braces is (Hy—1X¢—1 + Z¢) @ DX¢—;. Writing (6.10) recursively

we have

”rn(Hn-Xn) = Un—l(.Hn—IXn—l) + Un-—l(Zn)
— o1 (Hn-1Xn-1 )(Bn: \I’_l('gn - Bn)) - an—l(Zn)(Zna \I’—l(gn - Bn))

+ 0nct {(Hno1Xno1 + Z3) @ DX o1} (G — bs). (6.11)
Recall ¥~! is given in (6.2). If §, # 0, so y) = 1 for some j, 1 < j < k —1 then
U~ (§r — bn) = kijn and (bn, U~} (gn — b)) = 1. In this case, substituting in (6.11)

o'n(Hn-Xn) = kan—-]{(Hn—l-X'n—l + Zn)(—D--Xn-—lv gn)}

N
=k Z Un—l{(Hn—len—l + Zn)(Xn—h ej)}<Jj’17n>

ij=1

N
=k Z Un—l{(Hn—l-X‘n—l + Zn)(-Xn—la ej)}(djs yn)-
j=1 (6.12)
If go = 0, so that y* =1, then
U (G — bn) = ~¥ 710, = —k1 € R*!
and (by, ¥~ 1(§n — bn)) = 1 — k. Substituting in (6.11) in this case we have

O'n(Hn-X—n) = an—l(Hn—IXn—l) + O'n—l(Zn) + (k- l)an—l(Hn-—l-Xn—l)

+ (L - 1)0'n—1(Zn) - kan—l{(Hn-an—l + Zn)(—D—Xn—lfl)}-

Now

k—1 N
(DXpo 1) =) ah=1~ak =1-> (Xu_1.¢;)(d), yn)-

=1 Jj=1

Therefore. if y% = 1,
N

an(Hn‘Yn} = kzo'n—l {(Hn—l-Y'n-—l + Zn)(-Xn—la ej)}(djyyn>

j=1

and the formula is proved in all cases.
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7. Special Cases
We now obtain particular forms of the Zakai equation
7.1. Estimates and Smoothers for the State
Take H, = Hy =1, a¢ = 0. 8¢ = 0 and §; = 0. Applying Theorem 6.6 we have

the following recursive estimate for o,(X;,) = EALX, | Vn)

N
O'n(-x-n) = kzan—l{(P-\-n-—lx-\’n—bej)}(dja1 n)-

i=1

Writing ¢, = 0n(X,) and p; = Pe; = (pyj,....pnj) for the jth column of P =
I+ @, this is

N
9n = kZ(qn—lsC‘j)(djvyn)Pj- (7.1)

j=1

. . 7 . . y . - me v 1
gn is a vector in RY with non-negative components ¢;, 1 < ¢ < V. W~ have noted

in Remarks 6.7 that
N

on((Xn.1)) = (gn,1) = D _ gk = 0a(1) = E[A}, | Yul- (7.2)

=1

Consequently, the normalized estimate is
Xn =qn(9nal>-l- (7.3)

This form is similar to that given by Astrém [1] and Stratonovich (7.
We can also obtain a recursive form for the unnormalized conditional expecta-
tion of (X m, e;) given Yy, m < n. For this we take H, = Hp, = (Xm,e:), 1 <1 <N,

ag =0, Bp =0 and 6; = 0. Applying Theorem 6.6 we have

Un((‘Xma ei)‘Xn) = —E[-An(/\-m ei)Xn I yn]

N
=Y on1({Xm, €:) PXno1(Xn-1,€;))(ds, Yn)

j=1

N
=k Y Onc1({Xm,€:)(Xn-1,€;))(d}, ya)p;- (7.4)
j=1
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Writing (Xm.€,)Xn = ¢r we see the right hand side of (7.4) involves @,—;; this is
why we consider H,X, to obtain a recursive equation. Having obtained a recursive
estimate for

E[A}(Xm, i) Xn | Vn)

taking the inner product with 1 gives the smoothed, unnormalized estimate
EA X m €} | Vnl.
Dividing by 6,(1) from (7.2) gives the smoothed normalized estimate
EAL(Xm.€i) | Yaloa(1)7! = E[(Xm, &) | Vn)-

7.2. Estimates and Smoothers for the Number of Jumps

Recall from Lemma 4.1
Xe=PXeo1 + my. (7.5)

Now the Markov chain X jumps from state e, at time ¢ — 1 to state e, at time ¢,
1<r7r,s <N,if (X¢_1,e,)(X¢,e5) = 1. Note we can have e, = e,. The number of

jumps from e, to e, in time n is, therefore,

n

NI* = (Xeoy,er)(Xe,es)
=1
and from (7.5) this is

=Y (Xpmreer)(PXeor.e0) + O _(Xeosser) (me,e,)
€=1

£=1

= Z(Xt’—h er)?sr + Z(-X[—lver) (m& es)-

=1 £=1
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Applying Theorem 6.6 with H, = NT*, Ho = 0, a¢ = (X¢-1.€;)par. Bt = (X¢o1.6r) €4,

é; = 0 we have
N
on(NPXn) = kY onos [{ (V72 PXnot + (oo er)por PXnos
+ (X.n—lyer)(diagpx‘n—l - (P-Yn—-l) & (P-\’n-l))53}(—Yn-h€j>(d_j-.‘/n)

—-kZan 1 Xno1. 51))(dj-,yn)pi

+k(0'n—1(-xn l) er) rvyn {psrpr +psr(ea Pr)}

—kZan o Xno1,€)){dj, yn)P;

+ k(Un—l(.Xn—l), 6r>(dre yn)psrea- (7.6)

Together with the recursive equation (7.1) for g, = 0n(X,) we have in (7.6) a re-
cursive estimator for o,(N*X,). Taking its inner product with 1, that is summing

its components, we obtain g,(N;*). Finally dividing by ¢,(1) we obtain
E[N:* | Yol = 0n(Ny%)on(1)”

Taking H, = Hp, = NI¥, ¢ =0, B¢ = 0, é¢ = 0, and applying Theorem 6.6 we

obtain forn > m

(N Xn) = E[ALNZ Xn | Vol

Ar
= kY oo {NIPXn 1 ){Xno1,¢5)Hds yn)
j=1
AY
=k o1 {{NE X1, ¢5) Hdjs yn)ps- (7.7)
Jj=1
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Again, by considering the product N’ X, a recursive form is obtained. Taking the

inner product with 1 gives the smoothed unnormalized estimate
E[ALNT | Ynl
and dividing by on(1) gives the smoothed estimate
E[NZ | Yal.

7.3. Estimates and Smoothers for the Occupation Time

The number of occasions up to time n for which the Markov chain X has been

in statee,, 1 <7 < N, is

n

Jo =3 (Xeoa,er).

=1
Taking Hn = JI, Hy = 0, a¢ = (X;-1.€,), Be = 0, 6, = 0 and applying Theorem 6.6

we have:
N

On(JpXn) = kzan—l{(J,';_IPXn-l +{Xn-1. e,.)PXn_l)(Xn_l,ej)}(dj,yn)
j=1

AY
=k Z (Un-l(J:;_l-Xn—-l )7 ej)(dja yn)pj + k(”n—l(){n—l), er)(dra ynzpr-)
i=1 7.8

Together with (7.1) for op,(Xp—1) this equation gives a recursive expression for

0n(J7X,). Taking the inner product with 1 gives o,(J5) and dividing by ox(1)

gives E[J} | Yu] = 0a(J5)on(1)71. For the related smoother take n > m, Hy =
m=Jh.ar=0,3=0, 6 =0 and apply Theorem 6.6 to obtain:

N
O'n(J;,.Yn) = kZUn;-l{(J;P-Xn—l)(Xn—laej)}(dj’yn>

Jj=1

N
=k Y (0n1(J5Xno1),€)(d)>Yn)Pj. (7.9)
j=1
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Again this is recursive in ¢,(J],X;). The normalized smoother is again obtained
as

E[Jr | Ya] = {0a(JmXa) 1)on(1) 7.

7.4. Estimates and Smoothers Related to the Observations
In estimating the parameters of our model in the next section we shall require
estimates and smoothers of the process
n
G =) (Xe-1,er){(foFe)
é=1
which counts the number of times up to time n that the observation process is in
state f, given the Markov chain at the preceding time is in state e,, 1 < r < N,
1<s<k-1
Taking H, = GI*, Hy = 0, ag = 0, B¢ = 0, 8¢ = (X¢—1,¢,)fs and applying
Theorem 6.6 we obtain
N

on(GrXn) = kY 001 (GRL1 PXno1)(dj, yn)(Xnot )

j=1
+ Op-1 {(Xn—ls er) (f.h yn)PXn—ldsr}
N
=k (0n-1(Gr2 1 Xn—1),€;){dj, ya)P;
j=1

+ k(an—l(Xn-l)s er)dsr(fsy yn)Pr- (710)

Together with equation (7.1) for 6,(X,) we have a recursive expression for

on(G7 Xn). Normalizing as before we have

E[GY’ | Yal = (0a(GF Xn), Doa(1)h.
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To obtain the related smoother take n > m, Hy, = Hp, = G}, a¢g = 0, R. = (,

6¢ = 0 and apply Theorem 6.6 to obtain

N
oG Xn) = kY _(0n-1(Gri Xn-1),€5)(d;,yn)p;. (7.11)

J=1

This is recursive in 0,(GL{ X, ). The normalized smoother is

E[G:: | Yn] = (Vn(G;an)vl)an(l)&l-

8. Parameter Estimation of a Hidden Markov Model
We now show how our normalized and unnormalized filters and smoothers can
be used to update the parameters of the model. Suppose as in Section4 X,,n € Z¥,

is a finite state Markov chain. Then from Lemma 4.1
X, =PXu1+my (8.1)

where P = (pj;), 1 < ¢,j £ N, is a probability transition matrix with entries

satisfying p;; > 0.
N
Y pi=1 (8.2)
=1

The observation process in the Hidden Markov Model is described in Lemma 4.6

by the equation

Y, = DXn_y + Kn. (8.3)

Here d;i = P(yn = f; | Xn—1 =€) 2 0 and

k

Y dii=1. (8.4)

i=1
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Our model is, therefore, determined by the set of parameters
9:=(pj,', ].S?:,js_“\r, dj,‘. ISJSk. ISIS‘V)

which are also subject to the constraints (8.2) and (8.4).
Suppose our model is determined by such a set 6§ and we wish to determine a

new set

§=(mji, 14,5 <N, 6. 1<j <k 1<i<N)

which maximizes the log-likelihoods defined below. Consider first the parameters
pji- From Section 7.2 the number of jumps of X from e, to e, in time 7 is

n

NI =Y ((Xeors€0)por + (Xeo1, ex)(me, e4))
£=1

= N;S—I + (Xn—17 er>psr + (-X.n—l» er)(mrh es)-
(Note e, can be the same as e,.) Therefore,

A r’;il = N:z-s - ,r’z.-s-l = (-Xn—lver)(psr + (mrue‘q))'

Now {ANI*},1 < r,s < N, is an N2-dimensional process just one component of

which is 1 for any n € Z*, the remaining components being 0. Further
E[AN;S I Fn-—l] = (Xn—lser)psr 2 0.

We are, therefore, in the situation of Section 3 with the process y, replaced by

{ANT*} and

TS

a, = (Xn—la er),p.«r- (85)
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Note
AY
z (Xn—la er)Psr = (Xn-h er)
g=1
and
AV
Z (Xn—-lver)psr = 1.
r.a=1

The dynamic form of the constraint (8.2) is then

n N
Z Z (Xe-1,€r)Psr = 1. (8.6)
1

=1 r,s=

If we wish to replace the parameters psr by mer, 1 < 5,7 < N, we are replacing
the a}? in (8.5) by

b:;s = ()(n—laer)n'sr-
That is, the vector b, of Section 3 is the N 2 dimensional vector with components
brs.
As in Section 3 the restriction of the required Radon—Nikodym derivative to
F, is
n N rs
Ton\ AN,
A=TT I1 (_”_) ‘<
Psr
Consequently,

N n
logAp = Z ZAN[’(logwsr — log psr)

r,g=1 £=1

N
= Z N7*log msr + R(p)

r,s=1

where R(p) is independent of 7. Therefore,

N
EllogAn | Yl = Y Ni’logmsr + R(p)- (8.7)

r,9=1
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Now the 7, must also satisfy the analog of (8.6), that is

Z Z (X1, €7)Tor = 1. (8.8)

€=1 r,s=1

Conditioning on ), the constraint (8.8) states that

Z Ty (8.9)

r,s=1

We wish, therefore, to choose the 7, to maximize the conditional log-likelihood

(8.7) subject to the constraint (8.9). Write A for the Lagrange multiplier and put

N N
L(m,A) = Z N log 7er + R(p) + /\( Z Ji Mgy — n).

9=l r,s=1

Differentiating in A and =,,, and equating the derivatives to 0, we have the optimum

choice of 7, is given by the equations

;l_N;;s +AT=0 (8.10)
sr

~

PR AC T 1} (8.11)
r,a=1

From (8.11) we see that A = —1 so the optimum choice of 7y, 1 < 5,7 < N, is

N7s  oa(NL?)
jﬁ Un(Jrr;') .

(8.12)

Tar =

Consider now the parameters d;; in the matrix D. From Section 7.4 the number
of times up to time n the observation process jumps to state f,, 1 < s < k ~1,

given the Markov chain X is in state e, 1 <r < N, at the preceding time, is

n

G = (Xe-1,e0)(fr G2) (8.13)

£=1

_Z Xe-1.€:)(fo» DX¢1) +Z Xeor,€){(far B0 = DXpoy)
=1

= Z(Xl—laer)dsr + Z(Xt—lverxfsﬂ;l)- (8.14)

£=1 £=1
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Here 1 < s <k—-1,1 < r < N. The reason we did not include s = k in
(8.13) was so that the inner product could be written in terms of §; and our general
Zakai equation of Theorem 6.6 used. However, we can write (8.14) in terms of
ve =y — ap = y¢— DXy as:
n n
Gy =Y (Xeor,er)der + ) _(Xo1, en)(fo, ve). (8.15)

=1 =1

This equation is valid for 1 < s <k, 1 <r < N, and
AG:;B = G” Gz;s_l = (Xn—h er)(dsr + <fs: Vn))-

Now {AG?°} is an Nk dimensional process, just one component of which is 1 for

any n € Z*, the remaining c.1nponents being 0. Further,
E[AG;;S I Gn—l] = <Xn—1,er)dsr > 0.

The procedure now is the same as that above, when we wished to replace in an
optimal way the p,, by 7sr.

Again

>

(Xn—ls er)dsr = (Xn—ly er)

s=1

SO
k

ZZ nle der = 1.

r=1 s=1

The dynamic form of the constraint (8.4) is

n N

k
D3N (Knorier)der =n. (8.16)

=1 r=1 s=1
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To replace the parameters d,, by 6, we must now consider the Radon-Nikodym

derivative
- n N k § . AGT?
L=TITIT1I (g_) ‘
£=1r=]1 s=1
Then
Ellog Ay | Y] =) Y Gr*logber + R(p) (8.17)
r=1 s=1

where E(p) is independent of §. Now the §,, must also satisfy the conditioned

version of (8.16), that is
k

N
YN Jrber—n=0. (8.18)

r=1 s=1

We wish, therefore, to choose the 6, to maximize the conditional log-likelihood
(8.17) subject to the constraint (8.18).
Writing A for the Lagrange multiplier we have that the optimum choice of é,,

is given by the equations

Again we must have A = —1 and

_Gr _ on(GR)
B j,’{ on(J5)

Ssr (8.19)

We have obtained in Section 7.4 the Zakai estimates for 0,(G7?) only when 1 <
s < k — 1. Together with the estimates for o,(J]) in Section 7.3 we can determine
the optimal choice for 65, 1 <5 < k—1,1<r < N. However, Zf=1 by = 1 for

each r, so the remaining éxr can also be found.
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Reuakks 8.1. As is known from the work of Baum and Petrie [2] and Rabiner [5]
the - vised parameters m,,, 0, determined by (8.12) and (8.19) give new probability
measure- for the model. The contribution of this paper is to give new, recursive,
discrete | e filters and smoothers for the quantities on(N)?), 0n(GF), 0(J)) which
are used to determine these parameters. The sequence of densities A, and Kn is
increasing by construction, and so the model is then adaptive, o1 “«If tuning’ to

the observations.
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Chapter Four

Estimation of the Diffusion Coefficient

1. Tntroduction

Given a diffusion process it is often easier to estimate the drift coefficient than
the diffusion coefficient. Log-normal diffusion processes are frequently used to model
asset prices in finance and, in a recent paper, [1], Chesney and Elliott have used the
Mihlstein approximation, [2], to estimate the diffusion coefficient, (known in finance
as the volatility). The application they had in mind was that of an exchange rate
between two currencies: if S represents the U.S. dollar to French Franc rate, then
1/S; represents the French Franc to U.S. dollar rate. The result of [1] follows by
using the It6 calculus and properties of a log-normal diffusion.

In this paper a general (scalar) diffusion «, is considered. By introducing the
process y; = expz, properties of the exponential can be exploited. In the paper
of Chesney and Elliott a point estimate for the diffusion coefficient is obtained by
comparing expressions derived from S; and S;!; in the present paper estimates for
the diffusion coefficient of z, are obtained by usirg the It6 calculus and Mihlstein
approximations, and comparing expressions for y; and y¢, (o real). The minimum
variance estimate gives a unique optimal value of a. A table illustrating optimal a

values is aiso presented.

A version of this chapter has been accepted for publication as part of the paper:
Diffurion Coefficient Estimation and Asset Pricing when Risk Premia and Sensiti -
ities are Time Varying. Marc Chesney, Robert J. Elliott, Dilip Madan and Hailiz«.x
Yang. Mathemaiical Finance.

i1
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The scalar diffusion estimation strategy is then extended to also allow esti-
mation of the instantaneous variation in the predictable quadratic covariation of
two diffusion processes. Such a point estimate may be used to accommodate time
varying risk sensitivities in asset pricing models that simultaneously permit time
variation in risk premia as well. Applications to the Capital Asset Pricing Model
illustrate the procedure.

Section 2 presents approximations for the increment in stochastic differential
equations for the scalar case. These approximations are used to develop a class of
diffusion coefficient estimates in section 3. Section 4 identifies a minimum variance
optimal estimate in this class. The results are extended to the covariation in sec-
tion 5. Section 6 applies the point estimates of section 5 to develop a p-.-~edure
for estimating asset pricing mod ls that permit simultaneous time variation in risk
sensitivities and piemia. Results of an application to the capit::. asset pricing model

are presented in section 7. Section 8 concludes.

2. Approximation for S.I.E. Increments
Suppese x¢, t > 0, is a (real) process defined as the solution of a s.ochastic
differential equa‘.

d(l?t = f(t, If)dt + g(t, zt)dw,. (21)

Here ., t > 0. is a real Brownian motion defined on a probability space (£, F, P).

If z; is known z,,4; is given by

t+At i+ At
Tieat =Ty + / fir,z;)dr + J/ g(r, z. }dw, 12.2)
t t



and a first approximation is to write
Tepar X 2o+ f(Er)A + g(t 1) Aw,

where Aw; = wypar — wy.

From Mihlstein, [2], a better approximation for r;4a; is given by

Topar & T4+ ft.x) At + g(t, 70)Awy

1 0g(t. 2
+ §g—%§ﬁg(t.rt)((:i-tt',)" - At). (2.4)

3. Dynamics and Estimation of Diffusion Coefficient

Suppose the state of the system is described by a stochastic differential equa-

tion:
dz = p(t,z)dt + o(t, z¢)dw,, r,€R, t>0, x¢given. (3.1)
Here w, is a real Brownian motion.
Consider the process
t t
Yt = €Xp Ty = €XP Tp * €Xp {/0 (s, zsjds + /0 a(s,z,)dw,}. (3.2)

By Ito6’s formula,

1
dye = ye((t 20) + 50(,21)° ) dt + yeo(t, m)duwe. (3.3)

Let f be a twice differentiable functios: and f" # 0. Then

' 1 . 1.
df (y:) = [f’(yt)yt‘\#(t: Tq) + Ea(t,x,r_; +=f (us)2o(t, 2, )2 | dt
+ fyoyeo(t,zo)dws.  (3.4)
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Using (2.4) we have

1 ,
Ye+at = Yy + Yy (ﬂ(tﬁl't) + ;;U(t- xt)z)At + yio(t. ) Awy

1 6a(t Tg) -
+ 3 {yta(t z)’ + i By a(t, $t)}((Awt)2—At) (3.5)

and

s 1 1 14
flyeran = Sy + (£ (ut.a0 + 50(t207) + 5 (wwio(t z.)?| At

+ f'(yyeo(t, 24) Aw,

+;{6f (yl f( t)yta(t -'Et)2+f y¢)2 (t,:l:g)gyt

A1 (ye)

f( t)
+ fye)’y ?aa)(f 5 otz J(Aw)? - At)

= )+ [Fue(ult,20 + 3a(t.20?) + 5" @yolt, o0 At
+ f'(y)yeo(t. z¢) Aw,
+ %{f”(yg)yfa(t,z,)z + f'(yr)olt, It)zyt

+ f'(y 2?—?—2—%—11200, :z:t)} ((Aw)? - At). (3.6)

From (3.5) we have

- , 1 |
&i.éy'___yi ~ (,“L(t. xt) + -‘;a(t’l‘t)z)At 1_ O’(f‘,l‘r‘f /‘Awt
t -
60'( :z;t)

+.;.(a(t,x,)2 + v ot,z)) (Aws) - At). (3.7)

From (3.6) we have

1 f"(ye)
2 f'ye)

a(t, ,)((Awt)z At). (3.8)

T yo(t, zy) 2 At

Flye+ar) = f(ye) a (p(i-,xt)+%a(t,xt) )At+or(t z¢)Awe+ =

F'(ye)ye
+3 (f (yt))yta(t ) +o(t,z¢) + ye 60( xt)




-1

(1]

So
Flyread) = flyo) _ Yrrar— Yt lf"(yr)y: 20 N )2
F'(yo)ye Yt ~ 9 (w0) o(t,re)*(Auwy)”.

Since Ef Awy)? = At, an estimate of o(t.x,)? is given by

o 200 [ fyad - fly)  Yaac—w) 1 (3.9)
F"(ye )y F'yye Y At :

Consider a power function f,y) = y'*®. We then have the following estimate

of a(t,z,)*:
V= 2 Yirar =Y _ yt+Ar—y¢]_l_ (3.10)
al (1+a)y*e Yt At '

4. Optimal Power «

We will consider the estimation of ¢(t,z,)? given by (3.10) and determine a

necessary condition for a to be optimal. In the following we write u(t,z¢) = p,

o(t,zy) =o.
Since
YiyAt = Yt €XP ((# - g;)At + C’Aw)v
ElV |z = %[1 :—a (E[exp ((1 +a)((,u - %Z—)At +0Aw)) | z,] - 1)
1

- E[exp ((;z - g;—)At + aAw) | xt] + 1] Y

[ ! (exp (1 + @)pAt + 0%(1 + a)alrt/2) — 1) — exp(uAt) + 1]

aAtll +
4 2 .4
~o? + (uz +po? +apo? + 2 4 af )At + o(At). (4.1)
&

Clearly this converges to o2 as At — 0.
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We wish to find a, such that the conditional variance of V given z, is minimized.

Var[V | 2] = E[V? | 2] - (E[V | 2.])%,

az(itﬂ E{ [1 _}_ - exp ((1 +0)<(# - g;)At+aAu:))

- 1_:1_.-_. — exp ((p - %Z)At+ko) -l-l]2 | :Ct}

—~ a'Z(Zt)z [(1 +1OI)QE{exp (2(1 + a)((y - %Z)At + aAw)) | zt}

E[V2 |z =

+5 fa)z + E{ exp (2( (1~ %;)AtwAw)) | 2¢}
b E{ e (040 (4 2 )at+onw)) |z}
- o B{ew (24 a)((u- %2)At+aAw)) |z}
- 2 gl (1= ot +onw) )]

= a2(4At)2 [(1 +1a)'-’ exp (21 + ) (e + (% +a)o?)at)

+(1—-32———+e p( (u+ 2)At)
_ 2 exp ((1 + a)(p + —2—02) At)
2

( + a)?
2 eXP(( +a )(#+a—+a—ai)At) 12+aaexp(#At)]-

14+ a

After some calculation, we have

4 89 3
E[V?| 2] = 30" + — ” [ 4+9‘u+

6
1+al2d® 2“"+°"”0

1 25 I
INELFENE L +3a;z + oz,ua += 4J'At+0(At)

12 3 24
_ 25 4 55 oo 17 4
30t + 402 [ 40 a? +24 a+120

-2
TUO S5uc?
2y N‘) + ll

4

-+

a|At + o( At). (4.2)

[ RG]
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-1

Therefore,

Var[V' | z,) = E[V? | x) = (E[V | 24])?

= 20 + 202 |24% + 6po? + 4ucta

+ -16—10402 + l3§o“‘a + }6—‘04 At + o( At)
= g(a) + o(At). (4.3)

A minimum value of this conditional variance will occur whea ¢'(a) = 0; that is,
when

11020+ 1302 +12u =0 (4.4)

i.e., when a = -—-%—% - %—%?‘%—
The table below gives these values of a for a variety of values of u. o, and also

reports the values of EV.

o 7 @ EV

0.5 0.2 -2.054544 0.2500463
0.5 04 -2927272 0.2501683
0.5 0.5 -3.363636 0.2502055
0.5 1.0 -5.545454 0.2506804
1.0 0.0 -1.181818 1.001331
1.0 0.5 -1.727272 1.00068
1.0 0.9 -2.163635 1.000911
2.0 0.0 -1.181818 4.001203
2.0 0.5 -1.318181 4.00394%
2.0 1.0 -1.454545 4.004741
3.0 0.0 -1.181818 9.012572
3.0 0.5 -1.242424 9.015

3.0 1.0 -1.303030 9.017202
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5. Estimates for the Covariation of Diffusion Processes

Suppose now that vy, t > 0, is a (vector) process defined as the solution of a

stochastic differential equation
dv, = a(t,vy)dt + (¢, vy)dW, (5.1)

where v, € R", a(t,v;) € R", t > 0, vy is given, 6(t,vy) is an n X m matrix with

#60' nonsingular for all ¢t and W} is a standard m-dimensional Brownian motion.
The Mihlstein approximation of section 2 may also be extended to the vec-

tor case for an arbitrary vector diffusion process X, defined as the solution of a

stochastic differential equation
dX, = F(t, X,)dt + G(t, X,)dW, i5.2)

where X, F(t,X,) are vector valued, G(¢,X;) is matrix v:lued with GG' nonsin-

gvlar and 1 is as above. The approxi:iution is given by

m
Xerar ™ Xe v F(E.X)A + G(t, X)AW, + Y ckjzk; (5.3)
kj=1

where
t+At ‘
2j = / W.k(s)dI'Vj(S'
t
is a zero mean scalar random variable for all pairs k,j (note that zxx = (AW)? —
At)) and cg; is a F; measurable vector defined by

0G;(t, Xy)

ckj(t, X¢) = ZiGiu(t, Xy) X

where G; is the jth column of the matrix G and has the dimension of X.



Following the construction of section 4. consider the processes

t t
Ujs = €XPUjr = €XP Uio - €XP { / ai(s,vs)ds + / Tkbik(s. l‘s)d“'k(s)} (9.4)
0 0

fori = 1,...,n. By Ito’s formula we have that
1. - .
duje = wir(@i(t ve) + 3Gt ve))dt + wiepBin(t, v )dWi(t) (5.5)

where Gi(t,v:) = (6(¢,v¢)6'(t,v¢))ii- Also for f a twice differentiable function of

scalar argument with f” # 0 we have that

df (uir) = [f,(uit)uit (Qi(t,vt) + %Ci(t,l’t)) + %f”(uz‘t)uiﬂ:i(t- ve)|dt

+ f'(ui,)u,-,EkGik(t, Ul)d"Vk(t). (56)

Applying Mihlstein’s approximation to the stochastic differential equations (5.5)

and (5.6) respectively we obtain that
1 .
Ui t+At N Uiy + u,-t(a,-(t,v,) + aci(t,v, )) At + terms in AW and zi;. (5.7)
and that

Flusarad) ~ flus) + [Fluicuic(as(t,00) + 3Gt 00)) + 3£ (sl o] At

+ terms in AW and z;. (5.8)

It follows on constructing percentage changes, subtracting the approximation (5.7}

from (5.8), and taking expectations conditional on F; that

E, [f(ui,t+At) — fluit) _ Wirrar— u“] ~ Mﬁﬁ(t,vz)At- (5.9)

f'(uit)u:'t Ujt 2

T2 fi(ui)
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Therefore defining

_ 2f'(ui) [fluigsar) = fluie)  Uigpar—uwa] 1
fe= F'(wie)uie [ F(uie)uie Uiy ] At (5.10)
we have that
Eq[T) = Gi(t, ve). (5.11)

Choosing for f the power function f(y) = y** yields the explicit estimate

1

1+a 1+a :
2 YAl T W Uigar — Ui
(14 a)ult® Uit

a
for (;(t,v,).
The instantaneous variation in the quadratic covariation between v; and v; is
given by
Cij(t,ve) = Tpbik(t, ve)05k(t, ve) = [06'];; (5.13)
and this may be obtained as one fourth of the difference between the instantaneous
variations in the quadratic variations of v; + v; and v; — v;. Specifically define the
variables

Vipj = Vi +j

Vimj = Vi = Vj

snd construct I';p; and 'y j, with respect to v;p; and vim; respectively, as described

above. It follows on analysis that

Et [________Fipj ;rimj] ~ C,'j.

Hence an estimate for Cj; is given by
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6. Covariation Estimates and the Merton Intemporal Capital Asset Pric-
ing Model

The Merton intertemporal capital asset pricing model (ICAPM) asserts that

the conditional drift in asset prices is linear across assets in the instantaneous beta’s

of the asset with respect to the market portfolio. Specifically suppose that for each

asset i = 1,...,n, the asset price process S;; is a diffusion given by the solution to

the stochastic differential equation
dSit = Siuu,'gdt + SigO’,‘gdW’r (61)

where u;; is the instantaneous scalar drift in the asset price or the instantaneous
rate of return, o;; is a row vector of diffusion coefficients and W is a standard m-
dimensional Brownian motion. Define by .2y, the process of the market value of the
market portfolio consisting of the total value of all assets in the economy. Suppose

that Sy satisfies the stochastic differential eqration
dSme = Smipmedt + SpopdW. (6.2)
Define the instantaneous asset beta’s by

!
010
Bit = — A:/“ (6'3)
O MO ppy

then the Merton ICAPM asserts that there exist a process <ot such that

pit = Yot + Bit(pme — Yot)

for all 2 and ¢. Define the process v3; by

TNt = 7
OMtO pyy



and rewrite the content of the Merton ICAPM as follows,

Bit = Yot + TitThe71e (6.5)
for all ¢ and t. Define
v = In Sy
fori=1,...,n and let
vme = In Sy

and observe that the diffusion coefficient of v;; is precisely the vector o;; for all i,
while the diffusion coefficient for vpg; is ope. Hence in terps of the notation of

section 5, the ICAPM asserts that
it = Yo + Cimreme (6.6)

for all ¢ and ¢.

In the absence of point estimates of Cjips, previous empirical research has
focased on supposing constancy through time of the covariations that define sys-
tematic risk sensitivities as well as constancy of the coefficients vp: and v;: that
are interpreted as the appropriate market risk premia. Recently Ferson (1991) has
relaxed the assumption of constant risk premia while Harvey (1991) has relaxed the
assumption of constant covariations or beta’s. Using the point estimates of section 5
we allow for simultaneous time variation in both risk sensitivities and risk premia.

Let R;; be the instantaneous rate of return in the asset price,
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let ®;ps¢ be as constructed in section 5 from v;; = In Sj; and vare = In Sy and

define

git = Rit = Yor — Pimimn

then the ICAPM asserts the existence of processes yg¢, 71¢ such that
Et [Eg‘t] =0

for all 7 and ¢. In particular for any variable Z;; in the information set at time ¢ we

have the orthogonality condition
EileinZj) =0 (6.8)

for all z, j and ¢.

Given the cross sectional variation in : and j these conditions provided a po-
tentially powerful basis with which to investigate time variation in the risk premia
using Generalized Moment Methods (GMM) for estimation of the coefficients of the
risk premia processes. Risk sensitivity variations are explicitly allowed for through

variations in ®;as¢, constructed as described in section 5.

7. Results for the ICAPM using Covariation Estimates

Stock return series are taken from the CRSP (Center for Research in Securities
Prices) tapes. Twelve stock port{e’ s are formed following the procedures outlined
in Breeden, Gi"bons and Litzenberger (1989). All the portfolios are value weighted
to closely simulate the return on a “buy and hold” strategy. Every return, except

firms with a SIC number 39 (i.e., miscellaneous manufacturing), ou the tape from
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1959 to 1986 is included. Returns on value weighted and equally weighted portfolios
of all stocks are also obtained. Let R, denote the return on the twelve portfolios
indexed by ¢ = 1,...,12. Let R,s and R be the series of returns on the value
weighted and equally weighted portfolios respectively. We use R,; and R, as proxies
for the market portfolio.

Let vy, 1 = 1,....12, varer and Viyzeq be the series of log portfolio prices for the
twelve stock portfolios and the value and equally weighted portfolios respectively.
These series are constructed by cummulating the natural logs of one plus the associ-
ated return. We then construct point estimates of covariations between the v;,'s and
the value weighted and equally weighted log portfolio prices, vary¢ and vage, respec-
tively. The corresponding series are ®;u,1 and ®;pser constructed using the power
function with power —1.1818 that is optimal for large volatilities. Figure 1 below
presents a sample (for Petroleum, Finance and Real Estate and Consumer Durables)
of covariation estimates covering the period June 1959 to December 1986. As may
be observed, there is cousiderable variation in the covariations and the assumption
of constant covariations employed in previous studies could be problematic. This is
particularly true for the years 1974, 1980, 1982 and 1984.

In order to assess the content of Merton’s ICAPM we first proceeded on the
assumption of constant v coefficients in (6.6) and regressed returns defined in (6.7)
on our covariation estimates ®;p;. The first set of regressions does not impose con-
stancy of the 4 coefficients across the twelve portfolios and the results are reported
in Table 1. The second set imposes this restriction and uses the SUR (seemingly

unrelated regression) procedure. The SUR results are reported in Table 2. These
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results though instructive. could be biased through possible correlation between the
regression residuals and the explanatory variables ®;y;, employed. This problem
is avoided later when we employ GMM to investigate time variation in the risk
premia.

It may be observed from Table 1 that the estimated market risk premium is
significant in all cases exce portfolio 12 for the Leisure industry. Excluding the
case of Leisure, the variation of risk premia across portfolios is not that marked.
ranging from .24 to .41 with an average value of .30 in the case of the value weighted
index as the market portfolio proxy. This range, .20 to .27, is much smaller for the
equally weighted index as the market portfolio proxy, with an average value of .22.

The theoretical restriction of the ICAPM, of equality of v coefficients across
portfolios, is imposed in Table 2. We observe from Table 2 that the risk of the
market portfolio is highly significant in explaining the variation in portfolio returns
both cross-sectionally and cver time. This is because our results come from a
pooled cross-section and time series estimation conducted simultaneously in both
dimensions. The subperiod results are however indicative of considerable variation
in risk premia over time with a range of .1215 to 1.033 for the value weighted index
as the market portfolio proxy, and ~.1130 to .8178 for the equally weighted index
as the proxy.

Given point estimates for the covariations it is possible to estimate vime varying
risk premia using the GMM procedure applied to the pooled cross-section and time
series data as indicated in section 6. However, there are 331 months in the data set

and with two parameters for each month we have a total of 662 parameters to be
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estimated. This is a very large estimation problem. We restrict the time variation
in the parameters to a smaller dimensional entity by requiring the parameters to
lie on a natural cubic spline with knot points at 2.5 year intervals. We then have
a total of 24 parameters, 12 each for 79 and v;. The parameter values for each
month are a predetermined linear function of the values at these knot points. The
instruments used for the GMM procedure included the constant term, all portfolio
returns lagged for one and two months and their squares. The results are presented
in Table 3. Figure 2 presents graphs of the estimated time series of the risk premia
for both the value weighted and equally weighted proxies. The general pattern is
comparable for both market proxies and indicative of considerable variation in these
coefficients. There is a sharp drop from late 76 to late 79 early 80 indicated in both
graphs. A finer analysis with more knot points is probably necessary before we

comment further on the sources of these variations.

8. Conclusion

A point estimate for the diffusion coefficient, of a stochastic differential equa-
tion on a Brownian filtration, is developed in terms of the difference in percentage
changes in powers of the exponential function applied to solutions of the s.d.e. Re-
sults for the choice of an optimal power are presented. The method is then extended
to include point estimates of the instantaneous variation in the predictable quadratic
covariation. This leads to the possibility of investigating the Merton intertemporal
capital asset pricing model, allowing for simultaneous variation in risk sensitivities

across assets and time and in risk premia across time. Results on twelve industry



Results for Individual Portfolio Return Regressions on Covariations

over the Period June 1959 to December 1986

Table 1

Rit = ~voi + Piarer1i + <

Value Weighted Proxy

Equally Weighted Proxy

Portfolio Yoi i R? Yoi T R
(t-value) | (t-value) (t-value) | (t-value)

Petroleum 0034 3341 | .069 .0056 2201 1.033
(1.100) | (4.939) (1.790) | (3.352)

Finance and .0022 3287 | .073 0032 2385 | .063
Real Estate (0.755) | (5.085) (1.095) | (4.699)

Consumer Durables || .0016 2883 | .050 )| .0021 22192 | .058
(0.480) | (4.163) (.666) | (4.519)

Basic Industries .0010 2907 | .062 | .0011 2537 | .062
(.356) | (4.671) (.378) | (4.646)

Food and Tobacco .0060 22398 | .045 || .0060 2028 | .053
(2.302) | (3.929) (2.356) | (4.294)

Construction -.0001 2811 | .054 | -.0001 2224 | .071
(-0.16) | (4.334) (-.030) | (5.006)

Capital Goods .0029 2457 | .040 |} .0026 2266 | .052
(:933) | (3.704) (-837) | (4.239)

Transportation .0004 3163 | .059 | .0014 2170 | .050
(:113) | (4.5333) (.386) | (4.139)

Utilities .0026 4050 {.103| .0039 2694 | .088
(1.189) | (6.139) (1.858) | (5.637)

Textiles and Trade .0041 2559 | .040 .0038 2151 | .066
(1.233) | (3.724) (1.207) | (4.832)

Services 0025 22805 | .052 {1 .0031 1987 | .056
(.638) | (4.257) (.817) | (4.428)

Leisure 0108 0303 |.001( .0087 0784 | .009
(2.705) (.443) (2.290) | (1.757)

88
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specific portfolios for the period 1959 to 1986 illustrate the methods and indicate
considerable variation in both dimensions. A more detailed investigation of the

sources of these variations is the subject of further research.



Table 2
Results for SUR Imposing Parameter Constancy Across Portfolios
for the Period June 1959 to December 1986 and Subperiods
Rit = y0 + Pisren1 + i

Value Weighted Proxy || Equally Weighted Proxy
Yo ] 0 "N
Period {t-value) (t-value) (t-value) (t-value)
June 39 -~ Dec. 86 .0026 .5092 0034 4204
(1521) (18.861) (1.986) (18.954)
June 59 - Dec. 64 .0059 B 1.0330 0063 8103
(2.203) (12.540) (2.211) (10.246)
Jan. 65 - Dec. 69 -.0037 .9066 -.0036 8178
(-1.231) {10.106) (-1.215) (11.966)
Jan. 70 - Dec. 74 .0031 1215 0038 -.1130
(.6463) (2.119) (.7714) (-2.198)
Jan. 75 - Dec. 79 -.0011 .9815 0020 5744
(-.356) (19.971) (.6534) (18.192)
Jan. 80 - Dec. 86 .0050 .8209 0059 7371
(1.646) (15.294) (1.964) (15.248)




Table 3

Results for GMM Allowing Variation of Parameters

Across Time but Imposing Constancy Across Portfolios
Rit = 7ot + Pime1e + it

Time Period: June 1959 - December 1986

Parameters on Natural Cubic Spline at 2.5 year Knot Points

Value Weighted Proxy

Equally Weighted Proxy

Time Period for Yot At Yot e
Coefficient (t-value) (t-value) (t-value) (t-value)
June 59 -.0062 1.9884 -.0206 2.4746

(-.128) (2.165) (-.416) (2.380)
Dec. 61 .0289 .3887 .0294 .1285
(1.382) (1.148) (1.383) (.423)
June 64 -.0282 -.3261 -0.0254 0636
{-1.40) (-.389) (-1.246) (.095)
Dec. 66 -.0073 1.1372 -.0033 9411
(-.399) (3.106) (--175) (3.401)
June 69 .0085 -.0758 .0136 -.0998
(.521) (-.2978) (-820) (-.498)
Dec. 71 .0264 4307 .0309 .0659
(1.444) | (1.416) (1.651) (.300)
June 74 -.0202 1756 0.0210 2315
(-1.579) (2.552) (-1.602) (3.520)
Dec. 76 .0044 1.7700 .0176 1.172
(.258) (5.472) (1.019) (4.923)
June 79 .0039 .1536 -.0121 .2242
(.230) (.688) (-.696) (1.329)
Dec. 81 .0093 4190 0081 9277
(.650) (2.143) (.557) (5.302)
June 84 -.0002 .9867 -.0049 .5007
(-.0090) (2.868) (-.222) (1.907)
Dec. 86 .0085 1731 0170 4974
(:237) {.604) (.463) (1.425)

91



92

S8 08 G 0/ 59 09
,02 ‘0-

6¢°6ny

- b1°1

9L "AON

[4. 4

¥

|owwog pajyBlag Ajonb3

01

9<°930

\

B4°0 -

66°1

|DLILIDS pajyBiam enjpA

v



a3

References
[1] Breeden, D., M.R. Gibbons and R.H. Litzenberger, 1989. Empirical tests of
the consumption-oriented CAPM, Journal of Finance, 44, 231-262.

[2] Chesney, M. and R.J. Elliott, 1992. Estimating the volatility of an exchange
rate. Preprint. Dept. of Statistics and Applied Probability, University of Al-

berta.

[3] Ferson, Wayne E. and Campbell R. Harvey, 1991. The variation of economic
risk premiums, Journal of Political Economy. Forthcoming.

[4] Harvey, Campbell R., 1989. Time-varying conditional covariances in tests of
asset pricing models, Journal of Financial Economics, 24, 289-317.

[6] Merton, R.C., 1990. Continuous-Time Finance, Chap. 15, Basil Blackwell,
Cambridge, MA.

[6] Mihlstein, G.N., 1974. Approximate integration of stochastic differential equa-
tions. Theory of Probability and Applications 19, 557-562.



