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Summary14

15

1. Although ecological models used to make predictions from underlying covariates have a16

record of success, they also suffer from limitations. They are typically unable to make17

predictions when the value of one or more covariates is missing during the testing.18

Missing values can be estimated but methods are often unreliable and can result in19

poor accuracy. Similarly, missing values during the training can hinder parameter20

estimation of many ecological models. Bayesian networks can handle these and other21

limiting issues, such as having highly correlated covariates. However, they are rarely22

used to their full potential.23

2. Indeed, Bayesian networks are commonly used to evaluate the knowledge of experts by24

constructing the network manually and often (incorrectly) interpreting the resulting25

network causally. We provide an approach to learn a Bayesian network fully from26

observed data, without relying on experts and show how to appropriately interpret27

the resulting network, both to identify how the variables (covariates and target) are28

interrelated and to answer probabilistic queries.29

3. We apply this method to the case-study of a mountain pine beetle infestation and find30

that the trained Bayesian network has a predictive accuracy of 0.88 AUC. We classify31

the covariates as primary and secondary in terms of contributing to the prediction and32

show that the predictive accuracy does not deteriorate when the secondary covariates33

are missing and degrades to only 0.76 when one of the primary covariates is missing.34

4. As a complement to the previous work on constructing Bayesian networks by hand, we35

show that if instead, both the structure and parameters are learned only from data,36

we can achieve more accurate predictions as well as generate new insights about the37

underlying processes.38

Keywords: Bayesian network, structure learning, automatic learning, pest, mountain pine39

beetle, invasive species, machine learning, risk modeling40
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1 Introduction41

Predictions are essential in aquatic and terrestrial ecology, whether the focus lies in changes42

in ecosystem composition, structure, and richness to preserve the biodiversity and ecosystem43

function, or in the spatial distribution of individuals and species to inform conservation and44

invasive species policies. The field of predictive ecology focuses on how to make such predictions,45

particularly in the context of climate change, and has grown exponentially since the 1990s,46

given the quality and quantity of available ecological data (Purves et al., 2013; Mouquet et al.,47

2015). Simple and advanced statistical and machine-learning approaches have been used to48

this end, and some have reported great success. Commonly applied models include mechanistic49

equations, individual-based models, generalized linear models (Aukema et al., 2008; Preisler50

et al., 2012), generalized additive models, MaxEnt (Merow et al., 2013), decision trees, support51

vector machines, and artificial neural networks, (Marmion et al., 2009; Youssef et al., 2016).52

These standard models, however, lack some practical features, which questions their use as53

predictors. They are unable to make predictions when the value of a covariate is missing, a typical54

issue because some covariates are expensive or logistically impossible to collect. To impute the55

missing values can be unreliable as modelling assumptions are needed so as to “guess” them.56

The assumptions may even conflict with those posed by the original model using the imputed57

values. Another approach is to produce a model that does not involve any covariate that is ever58

missing. This can be problematic as well, because (i) those covariates are not fixed in the area59

of interest: the value of a covariate may be missing at location A, but present at location B,60

and the opposite may hold for another covariate; and (ii) even if a covariate is only measured61

in the lab and never on the field, incorporating it in the model can still reveal its effect on the62

response variable. Most models also cannot reveal the co-effect of more than one covariate on63

the response variable, and some do not allow for statistical inference. Moreover, those that are64

used for statistical inference cannot handle correlated covariates.65

Bayesian networks (BNs) can deal with these issues. They are directed acyclic graphs, whose66
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nodes are the response variable and covariates, and the links between the nodes show how these67

nodes are related to each other. Both links from covariate to response and from covariate to68

covariate are allowed in the network. BNs are graphical, and hence often simpler to understand69

than complex systems of equations (e.g., Bode et al., 2017; Eklöf et al., 2013; Troyanskaya et al.,70

2003; Rish et al., 2009), deepening our understanding of natural phenomena as well as allowing71

for accurate predictions. However, there are two main issues with how BNs are typically applied72

in practice: (i) they are rarely used to their full potential, and (ii) they are misinterpreted as73

causal networks. The common practice of applying BNs is to manually construct the structure74

(network), based on the knowledge of experts, then either set the parameters manually or learn75

them from data, and finally, read the links as causal relationships in the resulting BN. Although76

useful in assessing the qualitative descriptions of an ecological process, this approach relies heavily77

on our prior understanding of the process, and hence, is only as good as our understanding. If,78

instead, both the structure and parameters of the BN are learned only from the data, there will79

be room for more accurate predictions as well as new insights about the process. Moreover, BNs80

are not causal networks, but essentially a set of conditional (in)dependencies that factorize the81

joint probability distribution of all of the variables. Causal deductions, hence, may not be made,82

although some hypotheses may be tested.83

We complement previous studies on BNs that used the knowledge of experts (Marcot et al.,84

2006; Chen & Pollino, 2012) by focusing on learning the structure, and proper model interpret-85

ation in the form of conditional probabilistic inferences rather than causal deductions. The goal86

of this paper is (i) to discuss the advantages of different ecological modeling approaches, and87

highlight what BNs can offer in this context; (ii) to provide a systematic approach for training88

a BN completely from data, without incorporating the prior knowledge of experts, and then89

evaluating and interpreting the resulting BN; and (iii) to apply this method to the case study90

of a mountain pine beetle (MPB) outbreak.91
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2 Materials and Methods92

2.1 Advantages of Bayesian networks93

In what follows, we first briefly introduce BNs and then compare them with other modeling94

approaches in predictive ecology (Table 1). Here, we focus on the “typical” situation with each95

model; for example, the prediction accuracy of a properly trained BN being typically high does96

not imply that it is always higher or even as high as other highly accurate models.97

Table 1 Comparison of models in predictive ecology. See Sections 2.1.2 to 2.1.9 for explana-
tions of the model characteristics.
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Mechanistic equation • • • • •

Individual-based model • • •
Generalized linear model • • • •

Generalized additive model • • • •

MaxEnt • • •
Decision tree • • • •
Support vector machine (linear) • • •

Neural network • • •
Bayesian network • • • • • • • • • • •

(empty) typically low • typically medium • typically high

2.1.1 Introduction to Bayesian networks98

Given a set of n random variables Z = {Zi}ni=1 (consisting of the response variable and n − 1

covariates), a BN factorizes the joint probability P (Z) according to a specified directed acyclic
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graph whose nodes are the variables Z, following the equation

P (Z) =
n∏

i=1

P (Zi |PaZi), (1)

where PaZi denotes the parents of Zi in the graph, i.e., those nodes that have an outgoing edge99

that leads to Zi (Fig. 1 in SI). The individual factors P (Zi |PaZi) are known as conditional100

probability distributions (CPDs) (Koller & Friedman, 2009). A BN encodes the claim that given101

the Markov blanket MB(Zi) of a node Zi – which is the set of its parents, children and the other102

parents of its children – the node becomes independent from the remaining of the nodes, written103

Zi⊥(Z−Zi−MB(Zi)) |MB(Zi). This provides the essentials for understanding how the variables104

relate to each other. We, therefore, refer to the nodes in the Markov blanket of the target node105

Yi as primary covariates and to others as secondary. The estimation of the target node based106

on the values of the primary covariates does not change if the values of the secondary covariates107

are additionally known. The conditional independencies also reduce the number of parameters108

needed to represent the joint distribution P (Z). It is possible to learn from data, both the graph109

and the CPDs, known as the structure and parameters of the BN (Section 2.2).110

The factorization in Eq. (1) is sufficient to define BNs and draws a clear line between BNs and

causal networks. To explain, assume that we are modeling the co-occurrence of two competitive

species, with densities denoted by X1 and X2, each corresponding to a node in a BN. We could

link these two distributions using either a directed edge from X1 to X2, decomposing the joint

density distribution of the two species as P (X1, X2) = P (X1)P (X2 |X1), or a directed edge

from X2 to X1, resulting in P (X1, X2) = P (X2)P (X1 |X2). The first relies on the distribution

of X1 and the conditional distribution of X2 given X1, and the reverse holds for the second.

Both of these models can be used to make acceptable predictions if one can estimate parameters

P (X2 |X1) and P (X1 |X2) effectively. However, none of the models are causal: neither of X1

or X2 is causing the other. The edge simply means probabilistic dependence and dictates the

5



factorization of the joint distribution. Now, assume that the species distributions are each partly

“caused” by a third variable vegetation, denoted by V . Should we construct a BN based on

this “causal understanding”, we would add the node V and link it to both X1 and X2 without

connecting the two. This results in the joint probability distribution of the two species and

vegetation

P (X1, X2, V ) = P (V )P (X1 |V )P (X2 |V ).

However, this is not the only way to model the joint distribution. Depending on the training

data, one may obtain a more accurate model in terms of data fitting by also linking X1 to X2

(or vice versa), resulting in

P (X1, X2, V ) = P (V )P (X1 |V )P (X2 |X1, V ).

This might be because vegetation is not the only cause of the two, and another factor, say

temperature, also plays a role, which is not included in our variable list but is highly correlated

with X1, and hence, provides a better estimation of X2 by linking the two. One may yet use a

different model, where X1 and X2 are not linked to each other but both linked to V , resulting in

P (X1, X2, V ) = P (V |X1, X2)P (X1)P (X2).

This is particularly useful if we know the distributions of the species densities, i.e., P (X1) and111

P (X2), but not that of vegetation P (V ), and we know how vegetation can be estimated based112

on the distribution of the two species, i.e., P (V |X1, X2). None of the links in this model are113

causal.114
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2.1.2 Generative vs discriminative learning115

Consider the response variable Y and set of covariates (features) X that are used to estimate116

Y . One may pursue either of the two learning tasks with respect to these variables: generative,117

that is to learn the joint probability distribution P (Y,X ), or discriminative, that is to learn118

the conditional probability P (Y | X ). The joint probability distribution P (Y,X ) represents the119

probability of any given assignment to all of the variables Y and X in the data, or loosely120

speaking, how all the variables are related to each other. On the other hand, the conditional121

probability P (Y | X ) represents the probability of Y happening given X , or in other words, in122

which cases does Y happen. So discriminative learning focuses only on the probability of the123

response variable whereas generative learning also reveals the probability of the covariates. For124

example, an ecologist may be interested in two species’ co-occurrence, which is a generative125

question given by the distribution P (X1, X2), were X1 and X2 are the density of the species.126

On the other hand, the same ecologist may be interested in whether the density of species X1127

(as a response variable) can be estimated using that of species X2 (as the covariate), which is a128

discriminative question, given by P (X1 |X2).129

Note that knowing the “true” joint distribution P (Y,X ) allows knowing the conditional distri-130

bution P (Y | X ). However, because small errors in estimating P (Y,X ), which typically happen131

in practice, might lead to large errors in the associated values of P (Y | X ) (Ng & Jordan, 2002),132

each learning task deserves its own treatment. Although potentially capable of modelling the133

joint probability distribution, mechanistic models are not commonly used for this purpose as it134

would require a great deal of prior knowledge of the process. Roughly speaking, none of the135

models in Table 1, except for BNs, are effective at generative learning.136

2.1.3 Missing data137

Datasets often have many instances (observations) where the value of one or more of the covariates138

and/or response variables are missing. Missing values can occur both at the time of training and139
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testing of a model.140

Should the training dataset contain missing values, most traditional statistical methods such141

as regressions would use casewise deletion, that is, to remove the entire instance (observation)142

from the dataset if the value of one or more variable is missing (Harrell, 2015). Casewise deletions143

can lead to bias in the estimated parameters if the degree to which the variable’s value is likely144

to be missing is correlated with the actual range of values, e.g., when a temperature sensor fails145

to record values below −10◦C. Casewise deletions also result in losing the information provided146

by the remaining variables in the instance with missing values. Therefore, imputation is often147

used to estimate the missing values, which can be as simple as using the variable’s mean or148

the variable’s value from a similar instance, or can be more complex, such as using the chained149

equation method (Harrell, 2015). However, in essence, imputation is presuming a model for the150

variables with missing values, which may conflict the actual model that is going to be trained on151

the imputed dataset, resulting in a poor predictor. As with BNs, methods such as expectation152

maximization (EM) and structural EM can be used to learn the parameters and structure,153

without imputation or casewise deletion (Koller & Friedman, 2009).154

Should the testing dataset contain missing values, almost all models fail to make predictions155

as each covariate has to take some value, i.e., they cannot be left with “NA”s (not available).156

Imputation comes with the above mentioned shortcomings. Another alternative is to use expert157

knowledge to obtain probable limits for the covariates with missing values, and run the model on158

those limits to get a probable range for the prediction. For example, in climate change models,159

the exact concentration of the pathway of a covariate such as greenhouse gas emission that will be160

followed in the future is unknown. Therefore, models use a series of scenarios ranging from best161

to worst case scenario in order to predict changes in CO2 emissions and temperatures (Pachauri162

et al., 2015). There is, however, no need of these rough approximations when applying BNs. By163

marginalizing over the unobserved covariates, BNs can predict the target variable based on any164

observed subset of the covariates.165
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2.1.4 Nonlinearity of the relationship between the covariates and response variable166

In many real-world situations, the response variable may be related to the covariates in a highly167

nonlinear manner. Simple models such as linear regressions, however, assume a linear relation-168

ship. To capture some levels of non-linearity, generalized linear models extend the regressions by169

applying functions such as log(·) and logit(·) to the covariates. Other extensions, such as general-170

ized additive models, fit a smooth curve to the data for each covariate, thereby allowing complex171

nonlinear relationships (Guisan et al., 2002). Another extension is the machine-learning method172

MaxEnt (Phillips et al., 2006) that is able to link highly non-linear response curves and estimate173

the probability distribution of the response variable using maximum entropy. Likewise, support174

vector machines classify the covariate space using hyper-planes, and hence, are linear, yet can175

allow for some nonlinearity by first transforming the space using nonlinear kernels (Scholkopf &176

Smola, 2001). Process-based models can also build in highly complex nonlinear relationships. In177

all of these cases, the relationships between the response variable and covariates must be entirely178

described, based on a priori model, a constraint that is relaxed in some other machine learn-179

ing models. For example, classification trees can represent any function over the set of discrete180

covariates, but does not need to be defined beforehand. Note, this may require a very deep181

classification tree. Moreover, the fact that a classification tree can represent a complex function182

does not mean it can be learned effectively. Likewise, BNs are flexible in dealing with nonlinear183

relationships. Over a set of discrete variables, BNs can represent an arbitrary joint probability184

distribution P (Y,X ), which can represent any arbitrary conditional distribution P (Y |X ).185

2.1.5 Hypothesis testing, statistical inference and model selection186

The objective of hypothesis testing is to make inference through deduction. It consists of devising187

one or more working hypotheses and challenging them with data for corroboration (Hilborn &188

Mangel, 1997; Stephens et al., 2005). The hypothesis to test is translated into a mathematical189

equation and is verified using methods such as least squares and maximum likelihood. So to test190
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a hypothesis, one needs (i) a mathematical equation representing a biological hypothesis and191

(ii) a test statistic with a distribution that can be determined, representing the model accuracy192

when confronted to data. The complexity of machine-learning models usually prevents us from193

obtaining a simple equation representing the hypothesis, but this is not the case for BNs.194

For example, consider a process with the response variable Y and covariates X1 and X2.195

One may hypothesize that the response variable Y depends on both X1 and X2 but becomes196

independent of X2, given X1. Namely, the response variable depends directly only on covariate197

X1, and that X1 itself depends only on X2. This can be modelled by a BN with three nodes for198

the variables and two links: one from X1 to Y and another from X2 to X1. The BN assigns the199

following likelihood to each observation of the above process:200

P (Y,X1, X2) = P (Y |X1)P (X1 |X2)P (X2). (2)

The null hypothesis in this case is that there is no dependence among the variables: they are201

mutually independent. This results in a BN without any links between the nodes, yielding the202

following likelihood:203

P (Y,X1, X2) = P (Y )P (X1)P (X2). (3)

Given an observation, each of the probabilistic terms on the right hand-side of the above equations204

is simply a parameter provided that the BNs are discrete. Hence, the likelihood of a specified205

dataset for each of the BNs will be a polynomial in the parameters, the maximum of which is206

straightforward to derive. This allows for classical hypothesis testing, e.g., by employing the207

likelihood ratio test, to reject the null hypothesis. Alternatively, among all BNs with the nodes208

Y , X1 and X2, one may find ‘the best’ using multiple working hypotheses, based on the Akaike209

information criterion (AIC; Akaike, 1974) or Bayesian information criterion (BIC; Schwarz,210

1978). Therefore, with BNs, we are able to make inferences and obtain insights on the ecologically211

relevant covariates (e.g. Cooper & Herskovits, 1992; Pollino et al., 2007a; Milns et al., 2010).212
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2.1.6 Prior knowledge of the processes213

Unlike mechanistic models that typically need a comprehensive knowledge of the involved pro-214

cesses to make accurate predictions, phenomenological methods such as traditional statistics and215

especially machine learning have more leeway. One does not need to have any knowledge about216

the ecological process to train and test a support vector machine, or neural network, for example.217

Although one may argue that the functions used in a neural network or the number of nodes218

and layers are parameters to be determined beforehand, yet these too can be selected automat-219

ically based on the training data or general rules of thumb. The level of autonomous learning is220

even higher with BNs. The whole structure and parameters of a discrete BN can be completely221

learned from data (McCann et al., 2006a). The same goes for decision trees.222

Although they can be trained autonomously, BNs allow experts to incorporate their know-223

ledge into the network by forcing or preventing links between the nodes and additionally adding224

latent variables that are unobservable and often abstract variables, such as habitat quality. In-225

deed, the spectrum of autonomous learning for BNs ranges from neither to both structure and226

parameters learned based on experts’ knowledge.227

2.1.7 Correlations228

Often two or more of the covariates in a process are highly correlated. This hinders statistical229

inference as the effects of the correlated covariates on the response variable are difficult to separate230

(Stewart, 1987; Dormann et al., 2013). This would happen if we were building a model, say a231

logistic regression, with two covariates that are both relevant to the response variable, and also are232

highly correlated with each other. Thus, typically one of the variables is eliminated beforehand,233

either randomly, based on ecological relevance, measurement feasibility, and proximity to the234

mechanisms (Harrell, 2015; Dormann et al., 2013), or by using some autonomous technique235

such as minimum-redundancy maximum-relevance (Peng et al., 2005). However, this prevents236

understanding the impact of both of the correlated covariates together on the response variable.237
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Process-based models do not suffer from correlation (except for parameter estimability), yet they238

require the mechanisms to be a priori known (Dormann et al., 2013). Nevertheless, a BN whose239

structure is learned from data, does not require any prior knowledge, and reveals the differences240

of the correlated covariates in terms of their probabilistic dependence to other covariates as well241

as the response variable.242

2.1.8 Predictive accuracy243

Despite the complexity of ecological systems (Levin, 1992; Anand et al., 2010), some machine-244

learning models are reported to make accurate predictions. In contrast, process-based and tra-245

ditional statistical models are rarely able to reach the same level of accuracy (e.g. Elith et al.,246

2006). Particularly, process-based models are known for their inability to make good predictions,247

although this has been challenged by, for example, (Håkanson, 2004), who presented an accur-248

ate mechanistic model for aquatic systems. Within machine-learning models, neural networks249

are acknowledged for accurate performance in highly complex tasks such as image recognition250

(Egmont-Petersen et al., 2002). However, this does not mean that neural networks necessarily251

outperform simpler models in practice. Firstly, finding the optimal number of layers and nodes is252

not always practical due to limited computational resources. Secondly, proper estimation of the253

many parameters of a neural network often requires massive data. Hence, while asymptotically254

effective, neural networks may not be as successful as simple models when the available data is255

insufficient. Finally, if the system in question is actually simple, then neural networks, especially256

deep ones, can easily overfit the training data. Simpler models may be a better choice also in257

this case.258

2.1.9 Marginalizability259

The notion of marginalizability addresses the possibility of separately studying how a particular260

covariate or subset of the covariates informs us about the response variable. We call a model261
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marginalizable if it allows us to compute the probability of the response variable Y given any262

subset Z of the covariates X ; that is, P (Y | Z). Most predictive models allow us to compute263

P (Y | X ), that is, the likelihood of the response given all of the covariates. However, only those264

that perform a generative task, i.e., learning P (Y,X ), allow us to marginalize the likelihood265

over the variables X − Z, to obtain the likelihood conditioned on only those variables that we266

are interested in: P (Y | Z). Therefore, only BNs and those mechanistic models developed to267

formulate the joint probability P (Y,X ), are marginalizable.268

2.2 Learning Bayesian networks from data269

We explain, step by step, how to learn and then use a BN to make predictions and acquire270

biological insights. Most steps are general enough to be applied by any statistical/machine-271

learning method in the context of model selection or prediction making.272

2.2.1 Setup273

Ecological processes are typically modelled by a response variable Y and a set of covariates X . If274

the process is spatial and temporal, then each instance (observation) of the process has a unique275

pair of identities: (i) the time t of the instance, the unit of which indicates the frequency of276

the observations, e.g., a year, month, or day, and (ii) a general index g, roughly to distinguish277

the instances location-wise. For example, if the process of interest is Cyanobacteria bloom in278

lakes, then g indicates the label of the lakes. If the interest is in the spread of an infestation279

over a given area, then we may divide the area into r × r squares for say r = 1km, and label280

them by g = 1, 2, . . .. We may exclude time when modelling a stationary quantity, e.g., the281

joint distribution of several species in a specific area. Similarly, we may exclude the index g, if282

all instances are taken from the same location, e.g., from the same lake. Also, note that time283

and especially the index g are not necessarily two covariates of the process. Indeed, time must284

be excluded from the set of covariates if the goal is to obtain a model that can be applied to285
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times different from those in the available data, e.g., to predict the future (see SI). Similarly,286

the index g may be excluded; however, one must acknowledge the possible performance loss287

when applying the model to areas far-away from the training area, with dramatically different288

geographic features.289

For illustration purposes, in what follows, we consider a spatial and temporal process. For290

each index g and time t, let Xg,t denote the set of covariates and Yg,t denote the response291

variable (Table 2). Although the response variable can be continuous or integer, in order to use292

acknowledged performance measures such as AUC (Section 2.2.5), we restrict it to be binary. For293

example, given an index g and time t, the response variable Yg,t may represent the presence, Yg,t =294

1, or absence, Yg,t = 0, of infestation or a species of interest. The covariates can be correlated295

with each other and may include variables that are not known a priori to contribute to the296

response variable. Our goal is to estimate (learn) the joint probability distribution P (Yg,t,Xg,t)297

using available data.

Table 2 Variable notation.
Notation Variable

t time
g general index

Yg,t response variable
Xg,t set of covariates
P (·) probability function

298

2.2.2 Step 1: Data discretization299

The random variables in a BN can be either continuous or categorical. However, if they are300

continuous, we must predetermine their distributional forms, e.g., a Gaussian distribution. To301

avoid making such assumptions, we use discrete BNs where every variable is categorical. We302

discretize all continuous variables by considering various number of intervals or discretization303

levels (say 2, 3, . . . , 10) and using data to determine which number leads to a higher performance304

score. If a continuous variable’s range does not have evident thresholds in terms of the biological305
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context, we use Hartemink’s information-preserving algorithm (Hartemink, 2001) to quantify306

the values in a way that maximizes the mutual information shared by the variables (Cover &307

Thomas, 2012).308

2.2.3 Step 2: Partitioning the dataset into train and test309

The typical machine-learning approach to learn, then evaluate a model, is to randomly partition310

the dataset in two subsets, train and test, where the greater portion (train) is used to estimate311

the model, and the remaining portion (test) to evaluate the trained model. However, evaluation312

concerns are raised if the instances of the original data are randomly partitioned into train and313

test. Indeed, using this method, the train and the test datasets are extremely similar (see SI).314

For each instance of the test dataset, it is highly likely to have a matching instance in the train315

dataset due to correlations in time and space. The purpose of a test dataset is to simulate how316

the model performs when applied in practice to a new dataset. If the goal is to make predictions317

in the future, say next month, we set the train dataset to be the data from the final observations318

(instances) and let the train dataset be the remaining instances. Namely, we make the train and319

test datasets time-wise disjoint.320

2.2.4 Step 3: Learning321

Step 3.1. Learning the BN structure. For each of the k-level quantified training datasets,322

we find the structure that results in the lowest BIC or the lowest AIC. Although this can be done323

by performing an exhaustive search on all possible BN structures – i.e., directed acyclic graphs,324

with the response variable and covariates as the node-set – we instead use efficient algorithms,325

e.g., (Silander & Myllymaki, 2012), which is implemented in the R package bnstruct (Franzin326

et al., 2017). Both BIC and AIC criteria penalize having more parameters, which reduces the327

chance of over-fitting to the training dataset. The choice of BIC or AIC depends on the main328

goal of the study, the model complexity, and the number of instances relative to the number of329
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parameters (Aho et al., 2014).330

Note this approach is computationally infeasible if there are too many variables, e.g., more331

than 25, or too many discretization levels. Then one may, instead, either use a fixed (a priori332

known) BN structure, e.g., naive Bayes, or learn a ‘close-to-optimal’ (a priori unknown) BN333

on the training dataset using acknowledged searching-algorithms (Table 3, Fig. 1). We learn334

the structure of the a priori unknown networks by the bnlearn package in R (Scutari, 2009).335

The input to each algorithm is the variables and the corresponding training dataset, and the336

output is a BN structure whose nodes are the variables. In case the learned structure contains337

undirected links, we randomly assign directions as long as directed cycles and v-structures do338

not appear. This is because BNs must not contain cycles by definition, and the introduction of339

v-structures can change the performance of the resulting BN (Koller & Friedman, 2009). So for340

each discretization level k, we obtain a BN structure according to one of the algorithms or fixed341

structures in Table 3.342

Step 3.2. Learning the BN parameters. After finding the highest-scoring BN structure343

for each of the k-level quantified training datasets, we learn the associated CPD parameters on344

the same training dataset and denote the resulting BN by B∗k. We use the Bayesian parameter345

estimation approach (Koller & Friedman, 2009), implemented in bnlearn. To this end, for each346

quantization level k, we obtain a BN B∗k that best fits the training data in terms of BIC, AIC,347

or other constraints listed in Table 3.348

2.2.5 Step 4: Evaluation349

How to choose among the different B∗ks from the previous step? Namely, what number of discret-350

ization levels results in ‘the best’ BN? We cannot compare them directly using a performance351

measure that involves the likelihood of the data, e.g., log-likelihood, AIC and BIC, because the352

B∗ks do not use the same data but different discretized versions of it.353

However, all BNs use the same number of discretization levels for the response variable. So354
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CL NB

TAN OI

...

...

Fig. 1 Structure of different Bayesian networks CL: Chow-Liu, NB: naive Bayes,
TAN: tree-augmented naive Bayes, and OI: one-memory infestation (Section 3).
Grey and white circles represent the target Ig,t and its covariates. In the OI case, the covariates
are IMissed

g,t−1 and IManaged
g,t−1 .

we can compare them based on how well they predict the response variable on the test dataset.355

Each network allows us to compute P (Yg,t | Xg,t), that is, the chances of the observed response356

variable given the covariates, for every instance in the dataset. Correspondingly, we compare357

the area under receiver operating characteristic curve (AUROC or simply AUC)) (Metz, 1978;358

Bradley, 1997) score of the BNs on the test dataset (see SI). The choice of AUC is to make our359

results comparable with the huge body of literature using this performance score as the final360

performance of a classifier. For each discretization level k, we calculate the AUC score of B∗k361

and pick the highest-scoring one as our final BN. If there is a tie between the top BNs, we break362

it by looking at the area under precision-recall curve (AUPR) (Raghavan et al., 1989; Saito &363

Rehmsmeier, 2015) scores; that is, among the top BNs with a deficit of at most, say 0.01, from the364

top AUC, we pick the one with the highest AUPR. The AUPR score better handles unbalanced365

data by looking at precision rather than the false positive rate (Davis & Goadrich, 2006; Saito366

& Rehmsmeier, 2015).367

Given the temporal nature of our task, we evaluate the final model on a single test dataset,368
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Table 3 Bayesian networks to compare with the learned one.
Abbrevi-
ated
name

Based on the
algorithm/
structure

Type of
the
algorithm

Description

GS Grow shrink Constraint
based

Uses conditional independence tests on the
training dataset to detect the Markov
blankets of the variables (Margaritis &
Thrun, 1999)

IAMB
Incremental
association
Markov blanket

Constraint
based

Detects Markov blankets with an attempt to
avoid false positives, i.e., fault infestation
predictions (Tsamardinos et al., 2003)

IIAMB

Interleaved
incremental
association
Markov blanket

Constraint
based

A variant of IAMB to maintain the size of
the Markov blanket as small as possible
(Tsamardinos et al., 2003)

HC Hill climbing Local
search

Starts from a random directed graph and
adds or removes an edge only if it results in a
higher score (BIC in our case) on the train
dataset (Margaritis, 2003)

CL Chow-Liu Global
search

Finds the undirected spanning tree of the
variables to minimize the Kullback-Leibler
distance from the actual distribution (Chow
& Liu, 1968) (Fig. 1)

NB Naive Bayes -

The most basic yet often successful BN
formed by the response variable (Yg,t in our
case), linking to all of the covariates (Koller
& Friedman, 2009) (Fig. 1)

TAN Tree-augmented
naive Bayes -

A NB network with a spanning tree among
the covariates that can be learned from the
train dataset (Friedman et al., 1997) (Fig. 1)

as explained in Section 2.2.3. If instead, one divides the original dataset into several yearly-369

separated folds and uses cross-validation to obtain the AUC and AUPR values for each fold,370

then one could also provide confidence intervals for the reported AUC and AUPR values.371

2.2.6 Step 5: Interpretation372

Given an index g and year t, the final BN obtained from the above steps, determines the joint373

probability distribution of the response variable Yg,t and covariates Xg,t. Perhaps the most374

important implication of the obtained BN is the primary (X 1
g,t) and secondary (X 2

g,t) division of375

the covariates Xg,t with respect to the response variable. Namely, if we just know the primary376
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covariates, there is no need to know the secondary covariates, i.e.,377

P (Yg,t | X 1
g,t,X 2

g,t) = P (Yg,t | X 1
g,t). (4)

Moreover, other conditional independencies between the covariates themselves can be identified378

based on the d-separations of the BN (Koller & Friedman, 2009).379

Also, based on the CPDs, we can investigate knowing which covariates increases the prob-380

ability of the response variable most. For example, consider the covariate temperature Tg,t,381

discretized into the two ranges [20◦C, 30◦C) and [30◦C, 40◦C). We can see how the response382

variable Yg,t depends on this covariate by sweeping through these quantified levels, e.g.,383

P (Yg,t = 1 |Tg,t ∈ [20◦C, 30◦C)) = 0.3 and P (Yg,t = 1 |Tg,t ∈ [30◦C, 40◦C)) = 0.4. (5)

Hence, the response variable being equal to 1 is most likely when temperature is in the range384

[30◦C, 40◦C). Note that this is only if other covariates are unknown. Now, comparing this with385

the similar probability conditioned on a different covariate, clarifies which is more informative386

to the response variable.387

2.2.7 Step 6 (optional): Sensitivity analysis388

We examine the prediction accuracy (AUC and AUPR) of the best model when a primary co-389

variate becomes unobservable. This roughly shows the contribution of each covariate to the390

prediction, although it is, indeed, the co-effect of all the covariates that leads to accurate predic-391

tions.392

2.2.8 Step 7 (optional): Comparison with simple Bayesian networks393

To further assess the prediction performance of the final BN, we may compare its AUC (or394

AUPR) with that of simple BNs consisting of a single or two covariates linked to the response395
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variable. These BNs might be considered as the ‘null model’.396

Recall that our final BN is designed to perform a generative task, that is to reveal the397

relationships between the variables, not a discriminative task, that is to predict the response398

variable. However, if the BN performs well on the first, it is likely to also do well on the second.399

Yet, the opposite does not hold (Ng & Jordan, 2002). So even if any of these simple BNs400

predicts the response variable better than our final BN, it does not question the capability of401

our BN in explaining the probabilistic relationships between the variables. The same may hold402

in the previous optional step: the AUC score of the BN may increase after removing some of the403

covariates. This can also be explained by the fact that our final BN is the best fit to the data404

under the performance score that we used, which is BIC (or AIC) not AUC.405

Nevertheless, in such cases, we may train a BN with a different set of covariates for prediction406

purposes. For example, we may find that subset of the covariates that results in a BN scoring407

the highest AUC on the training dataset.408

3 The mountain pine beetle case study409

We illustrate the learning and interpretation of BNs via the data on the MPB infestation in the410

Cypress Hills park–an interprovincial park located in Alberta and Saskatchewan (Fig. 2 in SI).411

Endemic-level populations of MPB have existed in Cypress Hills since the 1980’s. However, a412

MPB outbreak started in 2006 and propagated in the park, where it continues until now.413

3.1 Biology and management414

MPB presents two main population phases: an endemic phase with small population size where415

beetles attack weak and stressed pines with the help of other bark beetles, and an epidemic416

phase where the number of individuals is large enough to overcome the defences of large and417

healthy pines (Safranyik & Carroll, 2006). In summer, beetles will emerge from a tree, mate,418

and attack new pines to lay eggs in galleries under the bark. New MPB infestations are reported419
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to frequently appear in south and west-facing slopes (Safranyik, 2004). During the tree growing420

season, water-stress negatively impacts the pine’s ability to build its defense against bark beetles421

(Safranyik, 1978; Lusebrink et al., 2016). Indeed, pines use water to make a toxic resin that422

is exuded during a beetle attack to prevent beetles from attracting conspecifics and inhibit the423

formation of galleries and oviposition (Raffa & Berryman, 1983; Erbilgin et al., 2017). MPB424

emergence and flights are reduced with high temperatures during the dispersal season (Safranyik425

& Carroll, 2006). MPB can disperse at short distances within a stand or, more rarely, fly above426

the canopy to use the wind to travel long distances of the order of tens to thousands of kilometers427

(Safranyik & Carroll, 2006; Robertson et al., 2007). Once the eggs are laid, the adults die. Over428

the fall, winter, and spring, eggs become larvae then pupae before finishing their transition to429

adult and emerging in the summer. Individuals need a minimum of 833 degree days to complete430

their transition to adult (Safranyik et al., 1975, 2010).431

The Forest Service Branch of the Saskatchewan Ministry of Environment follows a strict432

direct control approach. At the start of every fall, the park is surveyed aerially to collect geo-433

referenced data on red-top trees – i.e., trees that are dead or dying from a MPB infestation at434

the previous year. Then, on the ground, managers survey 50 meter-radius circular plots around435

each red-top tree to find recently infested trees during the summer. The newly-found infestations436

are later controlled in late fall/winter using a fell and burn method.437

Our goal is to provide a set of covariates that potentially impact the MBP infestation in438

Cypress Hills area, understand how they are related to each other and to the infestation, and439

find which covariates are sufficient for an accurate prediction. We also are interested to test440

some of the claims in the literature, e.g., lower humidity increases the chances of infestation441

(Lusebrink et al., 2016), and to find what values of the highly correlated covariates degree-days442

and maximum temperature, that are typically not included together in a model, makes infestation443

most likely. These objectives are well suited to BNs.444
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3.2 Methods445

We divide the studying area into 100m × 100m squares and label them by g = 1, 2, . . .. We446

choose one year as our time unite and define the response variable Ig,t as the presence or absence447

of infestation in pixel g at the fall of year t. We use the covariates listed in Table 4 and quantify448

them into k = 1, 2, . . . , 7 levels. Our data includes the values of Xg,t and Ig,t over the years449

t = 2006, 2007, . . . , 2018 and for 18 317 different pixels g in Cypress Hills, resulting in a total of450

238 121 instances (see SI for an instance of the data).451

We compare the AUC and AUPR scores of our final model with those of what we call the452

one-memory infestation (OI) Bayesian network, consisting of IManaged
g,t−1 and IMissed

g,t−1 , being linked453

to the target Ig,t, considered as the null model (Fig. 1).454

3.3 Resulting Bayesian network455

We find the BN with the best BIC score on the train dataset with 6 discrete levels, i.e., B∗6456

(Fig. 3), as our “best model” to explain the MPB infestation, with AUC = 0.88 and AUPR457

= 0.28. The OI model scores 0.75 for AUC and 0.19 for AUPR – both lower than our selected458

model. According to the structure of B∗6, the infestation Ig,t in location g at year t is directly459

connected to IMissed
g,t−1 , IManaged

g,t−1 , IMissed
Ng ,t−1, I

Managed
Ng ,t−1 , Bg, and Tmax

g,t−1. These together with Cg,t−1, form460

the Markov blanket of the infestation node, and hence, are the primary covariates and sufficient461

for estimating infestation with 0.88 AUC score. Other covariates are all indirectly linked to462

infestation and are secondary covariates. Given B∗6, one can obtain conditional independencies463

of the covariates to infestation using d-separations and plot the CPDs (see SI).464

3.4 Sensitivity to missing covariates465

The prediction accuracy of B∗6 does not deteriorate when the values of any of the secondary466

covariates are missing. Upon missing values for the primaries, the model can still accurately467

predict infestation as it can use some of the secondary covariates (Table 5).468
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Table 4 Description of the covariates Xg,t.
Name Symbol Description Unit

Aspect Ag
Compass direction that the slope at pixel g
faces

◦

Distance to
infested border Bg

Distance of the centre of pixel g to the border
of the whole area of interest that was initially
infested (Fig. 2 in SI)

km

Degree days Dg,t−1
Sum of daily temperatures above 5.5◦C from
fall of year t− 1 to summer of year t

Celsius
degree-day

Maximum
temperature Tmax

g,t−1
Highest maximum daily temperature in July
and August of year t

◦C

Wind speed Wg,t−1
Average daily wind speed in July and August of
year t km/h

Relative
humidity Rg,t−1

Average daily relative humidity in spring of
year t %

Cold tolerance Cg,t−1

An index in [0, 1] representing the ability of the
larvae to survive the cold season of year t− 1,
as defined in (Régnière & Bentz, 2007)

Pine cover Pg,t−1 Pine density in summer of year t %

Managed last
year infestation IManaged

g,t−1

Defined to be 1 if pixel g includes at least one
tree that was infested and managed (controlled)
at year t− 1, and 0 otherwise (Fig. 2)

–

Missed last
year infestation IMissed

g,t−1

Defined to be 1 if pixel g includes at least one
tree that was infested and missed (not
controlled) at year t− 1, and 0 otherwise

–

Missed
neighbors’ last
year infestation

IMissed
Ng ,t−1

MPB’s ability to disperse at short distances
within a stand, defined as

IMissed
Ng ,t−1 =

3∑
i=1

1

2i

∑
g′∈N i

g

IMissed
g′,t−1 , IMissed

Ng ,t−1 ∈ [0, 6],

where N i
g are those pixels that are essentially at

a distance of i× 100m from g (Fig. 3 in SI).

–

Managed
neighbors’ last
year infestation

IManaged
Ng ,t−1

Defined similarly to IMissed
Ng ,t−1, with the difference

that IMissed
g′,t−1 is replaced by IManaged

g′,t−1
–

3.5 Discussion469

The final model we have chosen to explain the MPB infestation in the Cypress Hills area is the470

BN B∗6 with 6 discretization levels, scoring 0.88 AUC on the test dataset. For a managed MPB471

outbreak in the Cypress Hills area, the model postulates the following covariates as primary (and472

hence sufficient for an 0.88 AUC prediction) at each location, at each time: (1,2) presence of473

infestation in last year, both managed and missed, (3,4) neighbors’ degree of infestation in last474
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a)

b)

t = 2010 t = 2011

1

2 3 32

1

4 4

5 5

3 3

Fig. 2 Infestation status. Gray and white are used to indicate the presence and absence of
infestation in a pixel. (a) None of the trees in pixel 3 were infested at year 2010 (I3,2010 = 0);
however, at least one tree was infested at year 2011 (I3,2011 = 1). (b) All infested trees in pixel 1
that were infested at year 2010 were managed at the same year (IManaged

1,2010 = 1, IMissed
1,2010 = 0),

there were no infested trees in pixel 2 at year 2010 (IManaged
2,2010 = 0, IMissed

2,2010 = 0), all infested trees
in pixel 4 that were infested at year 2010, were missed at the same year, and hence, turned red
in the following year (IManaged

4,2010 = 0, IMissed
4,2010 = 1), some infested trees were missed and some

were managed in pixel 5 (IManaged
5,2010 = 1, IMissed

5,2010 = 1). Missed and managed neighbors’ last year
infestation for pixel 3 at year 2010 are, thus, IMissed

N3,2010
= IManaged

N3,2010
= 1

2 + 1
2 , presuming that

N 2
3 = N 3

3 = ∅.

Table 5 AUC and AUPR scores of ‘the best’ BN B∗6, when one of the primary covariates is
missing.

Missing covariate AUC AUPR
Nothing missing 0.882 0.277
Maximum temperature 0.889 0.350
Cold tolerance 0.881 0.290
Distance to infested border 0.890 0.309
Missed neighbors’ past infestation 0.760 0.220
Managed neighbors’ Past infestation 0.879 0.284
Missed last year infestation 0.811 0.103
Managed last year infestation 0.869 0.206
Last year infestation (both missed and managed) 0.784 0.068

year, both managed and missed, (5) distance to the border where the infestation was initiated, (6)475

maximum temperature in July and August of that year, and (7) cold tolerance in the cold season476
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Aspect

MaxTemperature

WindSpeed

RelativeHumidity

ColdTolerance

DegreeDays

DistanceToInfestedBorder

PineCover

MissedNeighborsPastInfestation

ManagedNeighborsPastInfestation MissedLastYearInfestation

ManagedLastYearInfestation

Infestation

Fig. 3 The structure of ‘the Best’ Bayesian network (B∗6). We choose this structure as the
one to explain and predict MPB infestation. The response variable and its Markov blanket are
in red and Cyan.

of that year; n.b., the remaining covariates are secondary and are used to predict infestation if477

one or more of the primary covariates are missing.478

Given this BN, we can provide a wide range of ceteris paribus claims revealing the co-effects479

of the covariates on the presence of infestation (see SI). For example, if we know maximum480

daily temperature is high (above 31.2◦C), the interval of relative humidity that results in the481

highest infestation risk sharply changes from medium to low. This is in line with the claim in482

(Safranyik, 1978; Lusebrink et al., 2016) that lower humidity increases the infestation probability.483

However, for maximum daily temperatures lower than 31.2◦C, the infestation likelihood is high484

for both low and high relative humidity. This inconsistency can be solved by looking at maximum485

temperature and relative humidity together. We find that humid areas require low maximum486
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daily temperature, while dry areas require high maximum daily temperature for a considerable487

risk of infestation (above 20%).488

As another example, a MPB needs 833 degree days to complete its transition to adults and489

the minimum number of degree-days in the data is 1054 (Safranyik et al., 1975, 2010). Therefore,490

degree-day never prevents infestation in our data and just reflects the negative impact of high491

summer temperatures. This, however, does not mean that degree day is useless in our model.492

First of all, as mentioned earlier, in the absence of some of the primary covariates, the model493

effectively estimates infestation via the information on degree day and other present covariates.494

Secondly, although highly correlated, degree day and maximum temperature are different, and495

the model reveals their coexistence effect on the infestation: for low (resp. high) degree-days,496

infestation becomes more likely as maximum temperature increases (resp. decreases; see SI).497

We emphasize that one may not make causal conclusions based on the structure of the498

model. Clearly, the edge from infestation to managed-last-year-infestation does not imply that499

this year’s infestation has caused last year’s (managed) infestation. It only means that the500

two are probabilistically dependent. The same holds for all other links, such as the one from501

maximum temperature to infestation: although temperature may be “causing” infestation, one502

may not conclude so just based on the BN. One may refer to the literature on causality and503

the corresponding tests in order to verify the causality of a link in a BN (Pearl, 2009; Pearl &504

Mackenzie, 2018). On the other hand, the absence of an edge between, for example, degree day505

and infestation does not necessarily mean that the two are independent. They may be dependent506

but become conditionally independent if some other covariates are known here.507

In summary, the learned BN contributes to the prediction and understanding of MPB infesta-508

tions by (1) accurately predicting MPB infestations, (2) identifying the primary set of covariates509

that are sufficient for making these predictions, (3) making acceptable predictions when data on510

some of the primary covariates are unavailable, (4) revealing the previously unknown co-effects511

of the covariates on infestation likelihood, (5) identifying the most informative covariate(s) to512
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infestation likelihood, and (6) proposing a BN structure that can serve as the basis for future513

causality tests between the variables. Points 1, 2, 3, and 5 are particularly useful to forest man-514

agers to plan ahead of time and know what data to collect. See SI for a more elaborate discussion515

on the MPB case study.516

Nevertheless, as with almost all other machine-learning models, BNs are generally constructed517

under the stationary assumption, implying fixed structure and parameters over time. This may518

result in poor performance when the model is used to make predictions at a time different from519

those in the training dataset, provided that the “true ecological process” is non-stationary. For520

example, a BN trained on data collected during the beginning of an outbreak may not accurately521

predict the declining phases of the outbreak. Similar concerns are raised when using the learned522

BN in environmental situations, where the ranges of the covariates are very different from those523

in the training dataset. We refer the reader to (Zhu & Wang, 2015; Zhou et al., 2008; Robinson524

et al., 2010) for relaxing the stationary assumption.525

4 Discussion526

Although traditional models used to make ecological predictions from underlying covariates have527

a record of success, they also suffer from limitations. They cannot make predictions when one or528

more covariates are missing; unless the missing values are imputed using other methods which can529

be unreliable and result in low prediction accuracy. They also do not allow for statistical inference530

when some of the covariates are highly correlated. BNs can handle these issues. Specifically,531

they provide a primary and secondary ordering of the covariates, where primary covariates are532

essential to predicting the target variable and secondary covariates, while not always essential,533

can be helpful in making predictions when the values of some covariates are missing.534

However, BNs are not used to their full potential in the literature as their structure is typically535

constructed based on the knowledge of experts. Moreover, the obtained BN is often read causally,536

a questionable practice as BNs are different from causal networks.537
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We have complemented previous work by providing a systematic approach to obtain a BN538

fully from data. We have demonstrated the approach via a MPB case study, where no knowledge539

of experts was involved in finding either the structure or CPDs. The resulting BN predicts540

infestations fairly accurately, even in the absence of any of the selected covariates that are541

involved in the model.542

Researchers have utilized BNs to visualize their understanding of the causal relationships543

between the variables involved in ecological processes (Borsuk et al., 2004; Amstrup et al., 2008;544

Johnson et al., 2010; Newton, 2010; Aps et al., 2009; Pollino et al., 2007b). The resulting545

networks have been often used as predictors and sometimes reported to be fairly successful on546

a test dataset. This is an acceptable approach to assess the a priori knowledge of the experts547

or when there is no data available to learn the BN structure. However, by means of the results548

for our MPB case study, we challenge claims that put forward this approach as “the (only) right549

one” for constructing a BN. Examples include synthesizing existing knowledge into the model is550

necessary and structural learning is only for modeling poorly understood systems or those difficult551

to characterize (Chen & Pollino, 2012), modellers must demonstrate causal relations (McCann552

et al., 2006b), models based on theories about causal relations are generally better (Uusitalo,553

2007), and network structure is a matter of judgement and should reflect expert knowledge and554

stakeholder needs (Gutierrez et al., 2011). Some researchers have looked into fixed (naive Bayes)555

and partially learnable (Tree-augmented naive Bayes) structures (Aguilera et al., 2010), yet this556

is different from learning fully based on data.557

In general, for modelling the joint probability distribution of the variables involved in an558

ecological process, i.e., a generative task, BNs seem to be the first and often best candidate,559

especially if the governing dynamics are yet unknown to be mechanistically modeled. However,560

if the sole purpose is to predict the response variable, i.e., a discriminative task, other models561

may show a higher prediction accuracy, although unlike BNs, they typically cannot deal with562

missing values in the covariates. We are currently exploring ways to use BNs as well as other563
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models, to predict infestation many years in the future (Ramazi et al., accepted).564
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