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Abstract

In this thesis we are interested in fixed point properties of represen-

tations of semi-topological semigroups of non-expansive mappings on

weak and weak* compact convex sets in Banach or dual spaces. More

particularly, we study the following problems :

Problem 1 : Let F be any commuting family of non-expansive mappings

on a non-empty weakly compact convex subset of a Banach space such

that for each f ∈ F there is an x whose f -orbit has a cluster point (in

the norm topology). Does F possess a common fixed point ?

Problem 2 : What amenability properties of a semi-topological semi-

group do ensure the existence of a common fixed point for any jointly

weakly continuous non-expansive representation on a non-empty weakly

compact convex subset of a Banach space ?

Problem 3 : Does any left amenable semi-topological semigroup S pos-

sess the following fixed point property :

(F ∗) : Whenever S defines a weak* jointly continuous non-expansive

representation on a non-void weak* compact convex set in the dual of

a Banach space E, there is a common fixed point for S ?

Problem 4 : Is there a fixed point proof of the existence of a left Haar

measure for locally compact groups ?

Our approach is essentially based on the use of the axiom of choice

through Zorn’s lemma, amenability techniques and the concept of an
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asymptotic center in geometry of Banach spaces. Some positive an-

swers are obtained for problem 1; however, problem 2 is settled affir-

matively for three classes of semi-topological semigroups. These classes

of semigroups together with left amenable and all left reversible semi-

topological semigroups possess a fixed point property which is a weak

version of (F ∗). We show that n-extremely left amenable discrete semi-

groups satisfy a fixed point property much more stronger than (F ∗);

whereas, n-extremely left amenable semi-topological semigroups pos-

sess the fixed point property (F ∗).

Among other things, results in Browder [10], Belluce and Kirk [3,4],

and Kirk [37] are generalized to non-commutative families. A result of

Hsu [32, theorem 4] is extended to semi-topological semigroups. Fur-

thermore, some results related to the work of Lim (cf. [47],[49]) are

obtained. A positive answer to question 4 is established for amenable

locally compact groups.
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CHAPTER 1

Introduction and Preliminaries

1.1 Introduction

In non-linear functional analysis, the study of existence of a fixed point

for non-expansive mappings (i.e., constant one Lipschitzian mappings)

have been investigated since the 60’s; and appears as an extension of

the Banach fixed point theorem in the setting of Banach spaces. But

in this new situation, even on bounded closed convex sets, existence of

a fixed point is not guaranteed (of course in infinite dimension). Ac-

cording to the Schauder fixed point theorem [58], any non-expansive

mapping on non-void norm compact convex set has a non-empty fixed

point set; therefore this theory has a real interest only when we consider

weak topologies in infinite dimension. A natural question is therefore

the following : Do non-empty weakly compact convex sets in Banach

spaces have the fixed point property for non-expansive mappings ? In

other words, does every non-expansive mapping on a non-void weakly

compact convex set into itself possess at least one fixed point ?
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In the middle of the 60’s, two surprising results in this direction appeared

independently; in fact, Kirk [37] showed that in a reflexive Banach space,

weakly compact convex sets with normal structure have the fixed point

property for non-expansive mappings; and in the same period, Browder

[10] proved that the same conclusion holds for non-void bounded closed

convex sets in uniformly convex spaces. Whether Kirk’s condition could

be removed had been a quite long-standing open question which was

answered negatively in 1981 by Alspach [1]. Kirk and Browder’s results

had a significant impact in the development of this theory; indeed, most

of the results which appeared later are more or less their generalization.

Kirk in a joint work with Belluce [3], improved [37] by considering fi-

nite commuting families of non-expansive mappings; and again under

the same collaboration, in [4], they proved that their previous result

still holds even for arbitrary commutative families if we replace “normal

structure” by a stronger condition called “complete normal structure”.

Lim [48], showed that [4] holds even under a normal structure setting

and proved later in [47] that both complete and normal structure are

actually equivalent on weak compact convex sets; which is quite a sur-

prising result. On the other hand, Bruck [8] gave a generalization of the

above results by proving that on a closed convex subset C of a Banach

space E with the fixed point property and together with the conditional

fixed point property for non-expansive mappings, if C is either weakly

compact or bounded and separable, then any commuting family of non-

expansive mappings of C possess a common fixed point.
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We know that a commuting family generates an amenable semigroup,

and it is clear that a point is fixed by such a family if and only if, the

semigroup generated by it does. On the other hand, amenability of

certain function spaces of a semigroup can be characterized using fixed

point properties. These observations show that amenability and fixed

point theory are related. Day characterized left amenable semigroups in

terms of a linear fixed point property in his famous result “Day’s fixed

point theorem”. This result was extended to semi-topological semi-

groups by Mitchell in [53]. A non-expansive version of the Markov-

Kakutani fixed point theorem was proved by DeMarr [17] and it was

extended by Takahashi [59] to left amenable discrete semigroups. The

topological version was done by Lau [42], where he characterized left

amenability of a certain function space of semi-topological semigroups

in terms of a fixed point property of non-expansive mappings in locally

convex spaces.

In this thesis, we are interested in the study of fixed point properties

of semi-topological semigroups of non-expansive mappings on compact

convex subsets of Banach spaces in weak topologies. This work is ba-

sically motivated by the work of Belluce and Kirk, an interesting hard

question raised by Lau [45],[46], a result of Izzo [34], and Lim [47],[49].

In Chapter 2, we are interested in the study of the first two prob-

lems. We point out that problem 1 was posted by Belluce and Kirk

in [3], where they provided an affirmative answer within the framework
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of strictly convex spaces. We adopt a more general setting by looking

at non-expansive representations of left amenable semigroups on weakly

compact convex subsets of Banach spaces. We prove that left reversible

discrete semigroups satisfy problem 1 if the underlying space is uni-

formly convex; the geometrical property “uniform convexity” being re-

movable if we require instead a normal structure condition, generalizing

[3,theorem 3],[4,theorem 2.1],[10,theorem 1 and 2] and [37,main theo-

rem]. For Problem 2, some class of semi-topological semigroups which

answer the question are introduced.

In chapter 3, we study the fixed point property (F ∗), which is a very

long-standing open question raised by A. T. -M. Lau (1976 in a Halifax

conference). Until now, in our best knowledge, only a few special cases

have been answered positively, e.g., Lau and Takahashi in [46], proved

that the answer is positive for weak* compact convex sets which are

separable in the norm topology; in [6] the question was settled affirma-

tively for commutative semigroups. We introduce two classes of semi-

topological semigroups that satisfy a weak version of (F ∗) obtained by

requiring a relative compactness of some orbits with respect to some

suitable locally convex Hausdorff topology; and also left amenable semi-

topological semigroups possess a weak version of (F ∗) using a result in

`1. As a consequence, a version of Lim’s fixed point theorem [47, theo-

rem 3], in the Banach space setting, is obtained for weak* compact sets

in dual spaces without requiring a normal structure condition. A result
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of Hsu [32, theorem 4] is extended to semi-topological semigroups. Fur-

thermore, we show that discrete semigroups with a left invariant mean

which can be written as a convex combination of multiplicative means,

have a fixed point property much more stronger than (F ∗), whereas

semi-topological semigroups with a left invariant mean of this type pos-

sess (F ∗).

Chapter 4 is motivated by a nice proof of Izzo on the existence of a

left Haar measure for abelian groups, see [34]. Based on it, we are

able to extend his result to a class of topological groups which contains

abelian groups and compact groups.

Finally, in chapter 5, we make some remarks on the results obtained,

and we derive some natural questions related to them.

1.2 Preliminaries

Let S be a semi-topological semigroup; i.e., a semigroup together with

a Hausdorff topology such that for all a ∈ S, the mappings s 7→ a.s and

s 7→ s.a are continuous from S into itself. When (a, b) 7→ ab : S×S → S

is jointly continuous, then S is said to be a topological semigroup.

Let Cb(S) denote the Banach space of all continuous bounded real-valued

functions on S with the sup norm topology. Given s ∈ S we consider the

left translation operator `s : Cb(S)→ Cb(S) defined by `sf(t) := f(st).
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1.2.1 Amenability

If Φ ⊂ Cb(S) is a closed subspace containing the constant function e

(where e(t) = 1 for all t ∈ S), we say that Φ is left translation invariant

if, `s(Φ) ⊂ Φ, for all s ∈ S. If we fix such a subspace Φ, an element m

of the dual Φ∗ is called a mean on Φ if

m(e) = 1 and for all f ∈ Φ we have, f ≥ 0⇒ m(f) ≥ 0.

A mean m is called left invariant if m(`sf) = m(f) for all s ∈ S and f

in Φ. The subspace Φ is said to be left amenable if it has a left invariant

mean. For short, we shall write sometimes “Φ has a LIM” to stand for

the statement “Φ has a left invariant mean”.

If in addition Φ is an algebra, then a mean m on Φ is called a multi-

plicative mean if it satisfies

m(f.g) = m(f).m(g), for all f, g ∈ Φ.

If Φ has a left invariant mean which is a convex combination of multi-

plicative means on Φ, then we say that Φ is n-extremely left amenable

and then we write “Φ is n-ELA” for short. The class of n-ELA semi-

groups was introduced and studied in [40] and [41]. It contains the class

of extremely left amenable semigroups studied first by Mitchell in [51],

and after by Granirer in [27] and [28].

When S is discrete (i.e., its topology is discrete) then Cb(S) = `∞(S).

In this case if Φ = `∞(S) has a left invariant mean, then S is said to be

a left amenable semigroup.
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Example 1.2.1.1 (left invariant mean) Let S = Z the group of in-

tegers. It is well-known, see [56], if U is a free ultra-filter on S then,

f 7→ m(f) := limU
1

2n+1

∑n
i=−n f(i) is an invariant mean on `∞(S).

Example 1.2.1.2 (Amenable semigroups) The class of amenable semi-

groups contains commutative semigroups [14], finite groups, the bicyclic

semigroup S1 = 〈e, a, b〉 generated by a unit e and two elements a, b

subject to the condition ab = e, see [44].

Note that not all semigroups are amenable; in fact, as known, any

group containing a free subgroup of two generators is not amenable,

see [14] and [15]; the partially bicyclic semigroups, S2 := 〈e, a, b, c〉 gen-

erated by a unit e and three elements a, b, c such that ab = ac = e and

S1,1 := 〈e, a, b, c, d〉 generated by a unit e and four elements a, b, c, d sub-

ject to the conditions ac = bd = e are also examples of non-amenable

semigroups, see [44] for more details.

A semi-topological semigroup S is said to be left reversible if :

a.S ∩ b.S 6= ∅, for all a, b ∈ S.

That is any two closed right ideals in S have a non-void intersection.

The collection of all left reversible semi-topological semigroups includes

all topological groups, commutative semi-topological semigroups, dis-

crete left amenable semigroups, normal semi-topological semigroups S

for which Cb(S) has a left invariant mean, see [31].
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Remark 1.2.1.3 Note that a semi-topological semigroup S need not be

left reversible even when Cb(S) has a left invariant mean; indeed, Hewitt

[30] has constructed a regular Hausdorff topological space S such that

the only continuous real-valued function on it are constant functions; in

[26], Granirer defined a semi-topological semigroup structure on S by

letting a.b = a for all a, b ∈ S; moreover for all a ∈ S, f 7→ δa(f) = f(a)

defines a left invariant mean on Cb(S). However, S is not left reversible.

1.2.2 Function spaces

• The space of left uniformly continuous functions on S denoted by

LUC(S) is the subspace of Cb(S) of those mappings f such that the

mapping s 7→ `sf : S → Cb(S) is continuous, i.e., limt→s ‖`tf−`sf‖ = 0.

This space was introduced jointly by Mitchell and Itzkowitz, see [33]. As

known, see [53], LUC(S) is a translation invariant closed sub-algebra of

Cb(S) containing e and therefore the constant functions on S. We shall

say that a semi-topological semigroup S is left amenable, if LUC(S) has

a LIM.

• The space of left multiplicatively continuous uniformly continuous

functions on S, introduced by Mitchell [53], is the subspace of Cb(S)

of those f with the property that the mapping s 7→ `sf : S → Cb(S) is

continuous when Cb(S) is given the weak topology induced by the set of

multiplicative means on Cb(S); i.e., f ∈ LMC(S) if for all multiplicative

mean m on Cb(S) and all s ∈ S, we have limt→s |m(`tf)−m(`sf)| = 0.
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As LUC(S), see [53], the space LMC(S) is a translation invariant closed

sub-algebra of Cb(S) with the constant functions in it.

If S is a semi-topological semigroup, then the following hold, cf. [53].

• LUC(S)⊂ LMC(S) (immediate from the definition);

• LMC(S) = Cb(S) if S is compact;

• LUC(S) = LMC(S) = Cb(S) if S is compact and topological;

• LUC(S) = LMC(S) if S is discrete or a locally compact group.

Remark 1.2.2.1. It may happen for the above inclusion to be strict.

In fact, we have the following example :

Example 1.2.2.2. In [50], P. Milnes and J. S. Pym, have constructed

a semi-topological semigroup S such that LMC(S) = Cb(S) and a func-

tion f ∈ Cb(S)\LUC(S). Therefore the first inclusion is strict for S.

Let S be a discrete semigroup. A finite mean on `∞(S) is defined as any

element of the convex hull of all point measures of S; i.e., the convex

hull of all mappings δs, s ∈ S with δs(f) = f(s) for all f ∈ `∞(S). A

net (mα)α of finite means is said to be left strongly regular, if it satisfies

the following property :

For all s ∈ S, we have limα ‖`∗smα −mα‖ = 0.

The limit is taken with respect to the norm of the dual `∞(S)∗; where the

mappings `∗smα are defined by `∗smα(f) := mα(`sf), for all f ∈ `∞(S).

For more details about this concept please refer to [14].
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1.2.3 Representations of semi-topological semigroups

Let S be a semi-topological semigroup and (Y, τ) be a Hausdorff topo-

logical space. A representation of S on Y is a family S = {ŝ ; s ∈ S} of

mappings from Y into itself subject to the following condition :

For all s, t ∈ S, ŝ.t = ŝ ◦ t̂.

Such a representation is said to be separately continuous if for all so ∈ S

and yo ∈ Y , the mappings : s 7→ ŝ(yo) : S → K, y 7→ ŝo(y) : Y → Y are

both continuous. The representation is jointly continuous if the map-

ping (s, y) 7→ ŝ(y) : S × Y → Y is continuous when S × Y is endowed

with the product topology. Given y ∈ Y , the orbit of y is denoted and

defined by Oy := {ŝ(y) ; s ∈ S}. A point y ∈ Y is called a common

fixed point for S (or a fixed point for S), if it satisfies ŝ(y) = y for all

s ∈ S. We shall denote by F (S) the set of all such y and call it the fixed

point set of S in Y . A subset M of Y is said to be S-invariant if for all

s ∈ S, we have ŝ(M) ⊂ M . We shall adopt the following notations :

Given y ∈ Y then the symbol ”s.y” stands for ŝ(y) and ”s.M” for ŝ(M).

• If Y is a compact Hausdorff space, then given a left translation invari-

ant subspace Φ of Cb(S), we say that S is an A-representation of S,Φ

on Y if for all f ∈ C(Y ) and y ∈ Y , the mapping s 7→ f(s.y) : S → R

belongs to Φ, cf. [52].

• If Y is a Banach space and M ⊂ Y is a non-empty subset, then

a mapping T : M → M is said to be non-expansive if it satisfies the

10



following inequality :

‖T (x)− T (y)‖ ≤ ‖x− y‖, for all x, y ∈M .

In this case, a representation of S on M is said to be a non-expansive

representation, if for all s ∈ S the mapping ŝ : M →M is non-expansive.

Example 1.2.3.1 (Non-expansive mappings) (cf. [38])

• Let B be the unit ball of c0, then the mapping T : B → B given

by T (x) = (x1, 1− |x1|, x2, x3, · · · ) is non-expansive with fixed point set

F (T ) = {−(1, 0, 0, · · · ), (1, 0, 0, · · · )}.

• If K := {x ∈ `1 ;xi ≥ 0, ‖x‖ = 1} then the map T : K → K defined

by T (x) = (0, x1, x2, · · · ), is non-expansive and fixed point free.

Remark 1.2.3.2. In infinite dimension, a non-expansive mapping on

a bounded closed convex set may or may not possess a fixed point. The

second example shows that in the Schauder fixed point theorem (see

[58]) the compactness condition is crucial and cannot be dropped in

general. On the other hand, the first example shows that uniqueness of

a fixed point is not guaranteed.

Example 1.2.3.3 (Non-expansive representation) Let S be a semi-

topological semigroup, let M(S) denote the set of all means on LUC(S)

with the weak* topology; then S = {`∗s ; s ∈ S} is a jointly continuous

non-expansive representation of S on M(S).
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1.2.4 Some geometric properties of Banach spaces

• Normal structure. Let K be a non-void bounded closed convex subset

of a Banach space E. We say that K has normal structure if for all

closed convex subset M of K whose diameter δ(M) is positive, then

there is x ∈M such that :

supy∈M ‖x− y‖ < δ(M)

This notion was introduced in 1948 by Brodskii and Milman in [9]. In

general, a normal structure condition is necessary in order to ensure

the existence of a fixed point for a non-expansive mapping, by virtue of

Alspach’s remarkable counter-example in [1] answering an open problem

for 15 years. An application of this concept yields the following result

due to Kirk and which can be reformulated as follows : Bounded closed

convex subsets with normal structure of reflexive spaces have the fixed

point property for non-expansive mappings; and actually, this theorem

still holds even for non-reflexive Banach spaces, see [38].

Example 1.2.4.1 Norm compact convex subsets of Banach spaces al-

ways possess normal structure, this fact was proved by DeMarr in [17].

Note that this fails in infinite dimension when dealing with weak topolo-

gies. In fact, Alspach [1] constructed a fixed point free isometry on the

following non-empty weakly compact convex set

K = {f ∈ L1[0, 1] ; 0 ≤ f ≤ 2 a.e and
∫

[0,1] fdλ = 1}.
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Note that K cannot have a normal structure according to Kirk’s result.

Let us fix K be a non-empty bounded subset of a Banach space E.

• Asymptotic center. Given a decreasing net (Wγ)γ of non-void subsets

of K, its asymptotic center in K is denoted and defined by :

AC((Wγ)γ, K) = {x ∈ K ; infγ supy∈Wγ
‖x− y‖ = r((Wγ)γ, K)},

where r((Wγ)γ, K) := infy∈K infγ supz∈Wγ
‖y − z‖ is the asymptotic ra-

dius of (Wγ)γ. If K is weakly compact and convex, then its asymptotic

center is non-void with the same properties as K (cf. [47]).

The concept of an asymptotic center was introduced by Edelstein [21]

in 1972 for bounded sequences in uniformly convex spaces allowing him

to derive a fixed point theorem generalizing a result of Browder cf.

[10]. Lim [47] proposed the above definition as an extension of Edel-

stein’s. The asymptotic center of a bounded sequence (xn)n in K de-

noted AC((xn)n, K), was defined as the set :

{x ∈ K ; lim supn ‖x− xn‖ = infy∈K lim supn ‖y − xn‖}.

Note that if we let Wn := {xi ; i ≥ n} for all n ∈ N, then both defi-

nitions coincide. For related results about this concept cf. [18] and [19].

• Asymptotic normal structure. A convex set K is said to have asymp-

totic normal structure, if the asymptotic center of any decreasing net

(Wγ)γ of non-empty subsets of any bounded closed convex subset W of

K with δ(W ) > 0 is a proper subset of W .
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By definition, asymptotic normal structure ⇒ normal structure (just

by fixing any direct set Γ, and define Wγ = W for all γ ∈ Γ). Actually,

the converse holds and it was proved by Lim in [47]. This surprising

result was the key for proving that any left reversible semi-topological

semigroup S possesses the following fixed point property :

Any separately continuous non-expansive representation of a left re-

versible semi-topological semigroup on a non-void weakly compact con-

vex subset with normal structure of a Hausdorff locally convex space

possesses a common fixed point. This result generalizes a fixed point

theorem of Mitchell [54] for left reversible (discrete) semigroups acting

non-expansively on a compact convex subset of Banach space.

1.2.5 Some Notations

Throughout this thesis, given a non-void subset A of Banach space E

or its dual, or a subset of a topological space (E, τ), we shall adopt the

following notations depending on the context :

|A| : cardinality of A;

δ(A) : diameter of A;
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A : closure of A with respect to the norm topology;

A
wk

: closure of A in the weak topology σ(E,E∗) on E;

A
wk∗

: closure of A in the weak* topology σ(E∗, E);

A
τ

: closure of A with respect to a topology τ ;

co(A) : convex hull of A;

co(A) : normed closed convex hull of A.
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CHAPTER 2

Amenable semigroups and non-linear fixed point

properties on weakly compact convex subsets of

Banach spaces

2.1 A characterization of left amenability

Given a semigroup S, from the definition of a mean, the set M(S) of

all means on `∞(S) sits inside the unit sphere of the dual space `∞(S)∗.

On the other hand, using the Hahn-Banach separation theorem (locally

convex spaces version), one can show that the convex hull of all finite

means is dense in M(S) in the weak* topology, and therefore every mean

in M(S) is a weak* limit of net of finite means. Since in infinite dimen-

sion the weak* topology is not first countable, a mean need not be the

limit of a sequence of finite means. However, we have the following :

Theorem 2.1.1. Let S be a countable left amenable discrete semi-

group. Then, S is left amenable if and only if, there is a sequence of

finite means converging weak* to a left invariant mean m on `∞(S).
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Proof. Clearly, one direction is obvious. For the converse, let us

fix S := {s1, s2, · · · , sn, · · · } be a countable left amenable discrete semi-

group. From [43, theorem 5.1], there is a sequence (mn)n of finite means

that is left strongly regular (cf. [35] for a proof). Since the unit ball of

`∞(S)∗ is weak* compact, (mn)n possesses a subnet (mnα)α∈(A,R) that

is weak* convergent. Let us set m be the weak*-limit of (mnα)α. Using

the fact that (mn)n is left strongly regular then by induction, we have :

• For n = 1, there is n1 ≥ 1 such that n ≥ n1 ⇒ ‖`∗s1mn − mn‖ ≤ 1
2 .

Then we choose an index α1 ∈ A such that α1Rα⇒ nα ≥ n1.

• For n = 2 then, we fix n2 ≥ max(2, n1 + 1) such that : for n ≥ n2, we

have ‖`∗simn −mn‖ ≤ 1
22 for all i ∈ {1, 2}; and an index α2 ∈ A subject

to the properties :

α1Rα2 and α2Rα⇒ nα ≥ n2.

• By induction, if n = p, let us fix np ≥ max(p, np−1 + 1) with the

following property : n ≥ np ⇒ ‖`∗simn−mn‖ ≤ 1
2p for all i ∈ {1, · · · , p}.

Next we pick αp ∈ A with the following properties :

αp−1Rαp and for all α ∈ A, αpRα⇒ nα ≥ np.

Then by induction we have constructed three sequences : (αk)k, (nk)k

and (mnαk
)k such that, given k ∈ N the following facts hold :

αkRαk+1, nk ≥ k, nk+1 > nk, αkRα⇒ nα ≥ nk and moreover

‖`∗simn −mn‖ ≤ 1
2k

for all n ≥ nk, for all i ∈ {1, · · · , k}.
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Note that (mnαk
)k is a subnet of (mnα)α∈A). Indeed, given α̃ in A, since

nk → +∞, we can choose k̃ ∈ N such that nk̃ > nα̃. Given k ≥ k̃, if

we have αkRα̃ then we would have nα̃ ≥ nk ≥ nk̃ ⇒ nα̃ > nα̃ which is

not possible. So we have necessarily α̃Rαk. Therefore it follows that for

all k ≥ k̃, α̃Rαk, which shows that our assertion is true. On the other

hand, since m is a pointwise limit of (mnα)α, then a fortiori it is for the

subnet (mnαk
)k. Now we show that m is left invariant. Let f ∈ `∞(S)

and s = sj ∈ S fixed. Given ε > 0, let us choose ks,ε ∈ N such that

ks,ε ≥ j and 1
2ks,ε
≤ ε
‖f‖∞+1 . Then for all k ≥ ks,ε, we have :

|`∗sm(f)−m(f)| ≤ |`∗smnαk
(f)− `∗sm(f)|+ |`∗smnαk

(f)−mnαk
(f)|

+ |mnαk
(f)−m(f)|

≤ |mnαk
(`sf)−m(`sf)|+ ‖`∗smnαk

−mnαk
‖‖f‖∞

+ |mnαk
(f)−m(f)|

≤ ‖f‖∞
2ks,ε

+ |mnαk
(`sf)−m(`sf)|+ |mnαk

(f)−m(f)|

≤ ε+ |mnαk
(`sf)−m(`sf)|+ |mnαk

(f)−m(f)|

Using the fact that m = weak*-limkmnαk
, we get for k large enough

|`∗sm(f)−m(f)| ≤ 2ε.

As ε is arbitrary, then we have

`∗sm(f) = m(`sf) = m(f), for all f ∈ `∞(S) and for all s ∈ S

. This means that m is a left invariant mean and to finish the proof, we

let mk := mnαk
for all k ∈ N. �
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Example 2.1.2. Semigroups with this property includes all metriz-

able compact left amenable semi-topological semigroups. In fact, if S is

such a semigroup, then LUC(S) = C(S) is (norm) separable and there-

fore, the unit ball of LUC(S)∗ is a compact metric space in the weak*

topology (e.g. the unit sphere S1). Such semigroups includes also all

compact topological groups (e.g. finite groups, the unit circle).

Now we look fixed point properties. In [3], Belluce and Kirk proved

that commutative families of non-expansive mappings are solutions to

problem 1 if the underlying Banach space is strictly convex. This result

was proved earlier for a single map by Edelstein (cf. [20]), and later

extended by induction by Belluce and Kirk. We point out that in Edel-

stein’s proof, the geometric property “strict convexity” has played an

essential role. We are able to show that for uniformly convex spaces,

Belluce and Kirk’s result holds for left amenable semigroups of non-

expansive mappings. If the underlying space is no longer uniformly

convex, then if we require that the compact space on which the semi-

group is acting has normal structure, then our conclusion still holds in

this setting. We shall also prove that there is a class of semi-topological

semigroups (including left amenable semigroups) for which one can re-

move both conditions “uniform convexity” and “normal structure” if we

assume that representations are weakly continuous.
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2.2 A non-linear common fixed point theorem for

bounded closed convex sets in uniformly con-

vex spaces

Theorem 2.2.1. Let S be a discrete semigroup. If S is left reversible,

then it possesses the following fixed point property :

(Fuc) : Whenever S = {ŝ; s ∈ S} is a non-expansive representation of

S on a non-void bounded closed convex subset K of a uniformly convex

Banach space E, then K contains a common fixed point for S.

Proof. Let us fix xo ∈ Kτ . Since S is left reversible, one can make S

into a filtered set by letting :

a ≤ b ⇔ b.S ⊂ a.S for all a, b ∈ S.

Then (s.xo)s∈S becomes a net of elements of K. Since the underlying

space is uniformly convex, as known (see [2]), the asymptotic center

AC((s.xo)s∈S, K
τ) := {x ∈ Kτ ; lim sup

s
‖x−s.xo‖ = inf

y∈Kτ
lim sup

s
‖y−s.xo‖}

is a singleton. Let AC((s.xo)s∈S, K
τ) = {x̄}. Now we show that the

asymptotic center is S-invariant.

• Step 1 : We assume that S is unital. Let x ∈ AC((s.xo)s∈S, K
τ) and

s ∈ S fixed. Given ε > 0, there is sε ∈ S such that

sups≥sε ‖x− s.xo‖ ≤ infy∈Kτ lim sups ‖x− s.xo‖+ ε (1).
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Let us pick tsε ∈ S such that

tsε ≥ s and tsε ≥ ssε.

If t ≥ tsε, then t = ssεu for some u ∈ S. Then using the non-

expansiveness of the representation, we get :

‖s.x− t.xo‖ = ‖s.x− ssεu.xo‖ ≤ ‖x− sεu.xo‖ ≤ sups≥sε ‖x− s.xo‖

because sεu ≥ sε. Since t ≥ tsε is arbitrary, then together with (1) we

obtain

lim sup
t
‖s.x− t.xo‖ ≤ sup

s≥sε
‖x− s.xo‖ ≤ inf

y∈Kτ
lim sup

s
‖x− s.xo‖+ ε

It follows that s.x ∈ AC((s.xo)s∈S, K
τ). Hence, s.x̄ = x̄ for all s ∈ S.

• Step 2 : S is an arbitrary left reversible semigroup. Consider an

unitization Se of S obtained by adjoining a unit (i.e. we extend the

product of S by letting se = es := s and e.e := e). Then we have

sSe ∩ eSe = (sS ∪ {s}) ∩ Se = sS ∪ {s} 6= ∅ for any s ∈ S.

Next, we extend the representation of S on K to Se by letting ê(x) := x

for all x ∈ K. Then by Step 1, Se possesses a common fixed point in K

which is a fortiori a common fixed point for S. �

Corollary 2.2.2. Theorem 2.2.1 extends Browder [10, theorem 1,2].

Proof. A commuting family generates an abelian semigroup which is

clearly left reversible. �
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Let S be a semigroup and (Sα)α∈J be a collection of sub-semigroups

of it. Then S is said to be a direct union of the Sα’s if :

1. S =
⋃
α Sα;

2. For all α, β ∈ J , there is γ ∈ J such that Sα ∪ Sβ ⊂ Sγ.

Example 2.2.3. Let S be left amenable discrete semigroup. Then S

is the direct union of a net of countable left amenable sub-semigroups.

In fact, we know that each countable sub-semigroup of S is contained

in some countable left amenable one, cf. [25]. Define

S := {Z ⊂ S ; Z is a left amenable countable sub-semigroup}.

Note that S is non-void because if we fix s ∈ S, the commutative semi-

group 〈s〉 is countable and left amenable. Let us order S by letting

Z ≤ Z ′ ⇔ Z ⊂ Z ′. Then it is clear that S =
⋃
Z∈S Z and given

Z,Z ′ ∈ S, there is Z” ∈ S such that Z ∪ Z ′ ⊂ Z”. Because Z and Z ′

being countable, it follows that 〈Z∪Z ′〉 is countable too, and we choose

Z” ∈ S such that Z” ⊃ 〈Z ∪ Z ′〉 using [25, theorem E1].

Corollary 2.2.4. Let S =
⋃
α∈J Sα be a direct union. If each Sα

is left amenable, then S possesses the fixed point property (Fns).

Proof. Indeed, any semigroup which is a direct union of a sub-collection

of its left amenable sub-semigroups is left amenable (see [14]). �
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Remark 2.2.5. We point out that the asymptotic center of a sequence

is extendable to nets, (cf. [48]). On the other hand, it is known that

uniformly convex spaces possess normal structure (combine [4],[47]), so

it is natural to look at whether theorem 2.2.1 is extendable to weakly

compact convex sets with normal structure in general Banach spaces.

2.3 Some non-linear fixed point theorems on weakly

compact convex subsets of Banach spaces

In this section, we first give a sufficient condition such that the fixed

point theorem 2.2.1 is partially extendable to general Banach spaces.

Afterwards, we give a positive answer to problem 2 for a class of semi-

topological semigroups including left amenable discrete semigroups and

amenable locally compact groups. An extension will be established in

chapter 3.

Definition 2.3.1. Given a representation S = {ŝ ; s ∈ S} of a semi-

topological semigroup S on a compact Hausdorff space (K, τ), we say

that S is C(K)+-continuous, if for all f ∈ C(K) we have :

f ≥ 0⇒ f ◦ ŝ : K → R is continuous.

Note that any separately continuous representation of a semigroup S on

a separated compact space K is automatically C(K)+-continuous.
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Example 2.3.2. LetK = [0,1] with the usual topology, f : [0,1]→ [0,1],

x 7→ sin(x), and S = (N,+). Then the representation n̂(x) := fn(x)

(where fn denotes the nth iterate of f) is C(K)+-continuous.

Theorem 2.3.3. Let S be a countable semi-topological semigroup.

If LMC(S) is left amenable, then S has the following fixed point prop-

erty :

(Fns) : Whenever K is a non-void weakly compact convex set with

normal structure in a Banach space E, and S = {ŝ ; s ∈ S} is a non-

expansive representation of S on K such that for all x ∈ K, the mapping

s 7→ s.x is continuous when K is given the weak topology, then there is

in K a common fixed point for S.

The following lemmas will be needed for proving this result.

Lemma 2.3.4. Let S be a semi-topological semigroup and S be a

representation of S on a non-void compact Hausdorff space M . If for

all x ∈ M, s 7→ s.x is continuous, then S is an A-representation of S,

LMC(S) on M .

Proof. Let x ∈ K and f ∈ C(M) fixed. Consider θfx : S → R given

by θfx(t) = f(t.x). Then sups∈S |θfx(s)| ≤ supy∈M |f(y)| = ‖f‖∞ < ∞.

Therefore θfx ∈ Cb(S). Now let sα → s be a convergent net in S and

pick m ∈ βS (where βS denotes the spectrum of Cb(S)). Consider
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θx : C(M) → R

h 7→ m(θhx)

Then θx defines a non-zero (because m ◦ θx(1) = m(e) = 1), multiplica-

tive linear functional on C(M). Therefore there is a unique zx ∈ M

such that m ◦ θx = δzx, (the evaluation map at zx). We have `zθ
f
x = θf◦ẑx

for all z ∈ S. It follows :

|m(`sαθ
f
x)−m(`sθ

f
x)| = |m(θf◦ŝαx )−m(θf◦ŝx )|

= |m ◦ θx(f ◦ ŝα)−m ◦ θx(f ◦ ŝ)|

= |δzx(f ◦ ŝα)− δzx(f ◦ ŝ)|

= |f(sα.zx)− f(s.zx)| → 0

Therefore, `tαθx(f)→ `tθx(f) with respect to σ(Cb(S), βS) which shows

that θfx ∈LMC(S). �

For the proof of this result, we shall need the following general lemma :

Lemma 2.3.5. Let S be a semi-topological semigroup and Φ be a

left translation invariant closed subspace of Cb(S) containing constant

functions. If Φ has a left invariant mean, then for any A-representation

S = {ŝ ; s ∈ S} of S,Φ on a compact Hausdorff topological space (K, τ),

the following facts hold :

1. If S is C(K)+-continuous, any non-empty S-invariant closed subset
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Ω of K contains a non-void closed set ωτ such that :

ωτ ⊂ s.ωτ
τ , for all s ∈ S.

2. If in addition, the mapping ŝ is continuous for all s ∈ S, then ωτ

satisfies the following property

s.ωτ = ωτ for all s ∈ S.

3. If there is a completely regular second countable topology τ̃ on K

such that τ̃ ⊃ τ and for all s ∈ S the mapping ŝ is τ̃ -continuous, then

in part 1 the C(K)+-continuity condition can be dropped.

4. If S is countable, K is a subset of a Banach space E, τ = σ(E,E∗),

then in part 3 one can remove the second countability condition if we

assume that each mapping ŝ is norm continuous.

Proof. Let m be a left invariant mean on Φ, and let (mγ)γ∈J be a

net of finite means converging weak* to m. Let

mγ :=
∑nγ

i=1 t
γ
i δsγi for all index γ ∈ J .

Where for all γ fixed,
∑

i t
γ
i = 1, tγi ≥ 0. Let us pick xo ∈ Ωτ . Fix a

non-void, S-invariant closed subset Ω of K. Then the mapping

Θxo : C(Ω) → R

f 7→ m(θfxo)
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where θfxo : S → R is given by θfxo(s) := f(s.xo) for all f ∈ `∞(Ω). Then

Θxo is a nonzero non-negative linear functional on C(Ω), and therefore,

by the Riesz representation theorem, there is a regular Borel measure µ

on the Borel σ-algebra of Ω (which is here a probability measure since

µ(Ω) = m(1)=1) such that Θxo(f) =
∫

Ω f dµ, for all f ∈ C(Ω). Let ωτ

denote the support of µ. Recall that the support is defined by

ωτ :=
⋂
{F ⊂ Ωτ ;F is τ -closed and µ(F ) = 1}.

From the outer regularity of µ, for all n ≥ 1, there is an open set On in

Ω such that

ωτ ⊂ On and µ(On \ ωτ) ≤ 1
n (1).

Given an open set O of Ω containing ωτ , then by compactness we have

Ω =
⋃n
i=1(Ω \ Fi) ∪O

where each Fi is closed and µ(Fi)=1. Then it follows that µ(O)=1 (2).

Now let G :=
⋂
nOn and Õn = O1 ∩ · · · ∩ On, for all n. Then by using

(1) and (2) it follows that

µ(ωτ) = µ(G)

= lim
n
µ(Õn)

= 1.

Now let s ∈ S. Given ε > 0, by outer regularity let Oε ⊂ Ω be a τ -open

set with the properties :

s.ωτ
τ ⊂ Oε and µ(Oε \ s.ωτ τ) ≤ ε.
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By using Urysohn’s lemma, let us pick f ∈ C(Ω) such that 0 ≤ f ≤ 1,

supp(f)⊂ Oε and f ≡ 1 on s.ωτ
τ . Then we have :

1 =

∫
Ω

dµ =

∫
ωτ

dµ

≤
∫

Ω

f ◦ ŝ dµ

= m(θf◦ŝxo
) = m(`sθ

f
xo

) = m(θfxo)

=

∫
Oε\s.ωτ τ

f dµ+

∫
s.ωτ

τ

f dµ

≤ ε+ µ(s.ωτ
τ)

ε being arbitrary, it follows that µ(s.ωτ
τ)=1, and therefore from the

definition of ωτ , it follows that ωτ ⊂ s.ωτ
τ which proves the first part.

For the second part, we first note that if each mapping ŝ is continuous,

then by the forgoing, we have :

ωτ ⊂ s.ωτ for all s ∈ S

since each . So it remains to show the reverse inclusion. Given s ∈ S,

since ŝ−1(ωτ) is closed, then it is enough to show that it contains ωτ . As

before given ε > 0, from the outer regularity, there is Oε ⊂ Ω̃ a τ -open

subset such that :

ωτ ⊂ Oε and µ(Oε \ ωτ) ≤ ε.

Let us choose f ∈ C(Ω) with the properties : 0 ≤ f ≤ 1, supp(f)⊂ Oε

and f ≡ 1 on ωτ . Then we have :
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1 =

∫
Ω

dµ =

∫
Ω

f dµ

= m(θfxo) = m(`sθ
f
xo

)

=

∫
ωτ

f(s.x) dµ(x)

=

∫
ŝ−1(ωτ )

dµ(x) +

∫
Oε\ŝ−1(ωτ )

f(s.x) dµ(x)

≤ µ(ŝ−1(ωτ)) +

∫
Oε\ŝ−1(ωτ )

dµ(x)

≤ µ(ŝ−1(ωτ)) + ε

Therefore, as ε is arbitrary, it follows that ωτ ⊂ ŝ−1(ωτ); which implies

s.ωτ ⊂ ωτ . Hence, s.ωτ = ωτ for all s ∈ S. Finally for the last part, let

τ̃ be a completely regular topology on K finer than τ . Let Cb(Ω) be the

Banach algebra of all bounded τ̃ -continuous real-valued functions on Ω,

and βΩ be the Stone-Cěch compactification of Ω. Fix h : Ω → βΩ be

an homeomorphism from Ω onto a dense subspace of βΩ, and define

ψ : Cb(βΩ) → R

f 7→ m(θf◦hxo
)

Note that using the Hahn-Banach extension theorem if necessary, we

may assume that m is a mean on `∞(S) such that `∗sm = m on Φ.

Then ψ is a well-defined non-zero non-negative linear functional, and

βΩ being a compact Hausdorff space, there is a regular Borel measure

µ̃ on the Borel σ-algebra B(βΩ) of βΩ such that : ψ(f) =
∫
βΩ f dµ̃,
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for all f ∈ Cb(βΩ). Given f ∈ Cb(Ω) we shall denote by fβ its unique

continuous extension to βΩ. We claim that for all τ -open set O in Ω

containing ωτ we have µ̃(h(O)) =1. Indeed, since (Ω, τ) is normal, pick

a τ -open set U with O ⊃ U
τ ⊃ U ⊃ ωτ . Let f ∈ C(Ω) such that :

f ≡1 on ωτ , 0 ≤ f ≤ 1, supp(f) ⊂ U .

Note that C(Ω, τ) =: C(Ω) ⊂ Cb(Ω) := Cb(Ω, τ̃) (since τ ⊂ τ̃). Then

we have

µ̃(h(O)) =

∫
h(O)

dµ̃

≥
∫
βΩ

fβ dµ̃

= m(θfxo) =

∫
Ω

f dµ

=

∫
O

f dµ ≥ µ(ωτ) = 1

Hence, µ̃(h(O)) =1 for all such an open set O (3). Now we show that

µ̃(h(ωτ)) =1. Since Ω is τ -normal and τ is second countable, then

ωτ =
⋂∞
i=1{Oi

τ
; Oi τ -open, Oi ⊃ ωτ}.

Let Õn :=
⋂n
i=1Oi

τ
for all n ∈ N. Then using relation (3) it follows that

µ̃(h(ωτ)) = µ̃(h(
∞⋂
i=1

Oi
τ
))

= lim
n
µ̃(
∞⋂
i=1

h(Oi
τ
))

= lim
n
µ̃(h(

n⋂
i=1

Oi
τ
)) = 1
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Now let s ∈ S fixed. Given ε > 0, we choose an open set Oε containing

s.ωτ
τ such that µ(Oε \ s.ωτ τ) ≤ ε. Fix a mapping f ∈ C(Ω) such that

supp(f) ⊂ Oε, 0 ≤ f ≤ 1 and f ≡ 1 on s.ωτ
τ . Then we have

1 = µ̃(h(ωτ)) =

∫
h(ωτ )

dµ̃

≤
∫
βΩ

(f ◦ ŝ)βdµ̃

= m(θf◦ŝxo
) = m(`sθ

f
xo

) = m(θfxo)

=

∫
Ω

f dµ

=

∫
Oε\s.ωτ τ

f dµ+

∫
s.ωτ

τ

f dµ

≤ ε+ µ(s.ωτ
τ)

Thus, using the arbitrariness of ε, it follows that µ(s.ωτ
τ) =1. Hence,

we deduce the desired result ωτ ⊂ s.ωτ
τ , for all s ∈ S. Finally, for the

last part we first construct a norm separable space containing ωτ . Let

S := {si ; i ∈ N}. From the definition of ωτ , it is easy to see that it is

characterized by the property :

x ∈ ωτ iff µ(V ∩ ωτ) > 0 whenever V is a τ -neighborhood of x.

Consider the weakly separable (therefore norm separable) set given by

{si.xo ; i ∈ N}τ . If x is a point outside this set, then by Urysohn’s lemma,

there is f ∈ C(Ω), f ≥ 0 such that f(si.xo) = 0 for all i ∈ N. Then by

continuity, V := {f > 0} is a τ -neighborhood of x and we have :
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µ(V ∩ ωτ) =

∫
V ∩ωτ

dµ ≤
∫

Ω

f dµ

= m(θfxo) = lim
γ
mγ(θ

f
xo

)

= lim
γ

nγ∑
i=1

tγi δsγi (θ
f
xo

) = lim
γ

nγ∑
i=1

tγi f(sγi .xo)

= 0

Thus µ(V ∩ωτ) = 0 which implies that x cannot be in ωτ and therefore,

ωτ ⊂ {si.xo ; i ∈ N}τ . Hence ωτ is norm separable. Fix D ⊂ ωτ be a

countable (norm) dense subset and define

X := {si.d ; i ∈ N, d ∈ D} ∪ {si.xo ; i ∈ N}τ .

X is a norm separable (therefore second countable) subspace of Ω con-

taining ωτ . Now let Cb(X) be the Banach space of all bounded norm

continuous real-valued functions on X and δ : X → βX be an homeo-

morphism onto a dense subset of βX. As in the previous part, there is a

Borel measure µ̃ on βX such m(θf◦δxo
) =

∫
βX f dµ̃, for all f ∈ Cb(βX).

Then a similar argument as in the proof of part 3 shows that ωτ ⊂ s.ωτ
τ

for all s ∈ S. �

Proof of Theorem 2.3.3. Define

Ξ := {C ⊂ K ; C 6= ∅, τ -compact, convex and S-invariant}. Then Ξ is

non-void as it contains at least K. We order Ξ backwards by inclusion,

i.e. for all C,C ′ ∈ Ξ, we let C ≤ C ′ if and only if C ⊃ C ′.
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Then it is easy to see that (Ξ,≤) is inductive; and by Zorn’s lemma, it

must contain a maximal element (with respect to “≤”) or equivalently

a minimal element Kwk (for “⊂”). By combining the lemmas 2.3.4 and

2.3.5, there is a non-empty weakly compact subset Ωwk of Kwk such that

Ωwk ⊂ s.Ωwk
wk

for all s ∈ S (1).

If Kwk is a singleton then we are done; otherwise, AC(Ωwk;K
wk) (of

the constant net Ωwk) would be a non-empty weakly compact convex

and proper subset of Kwk. Furthermore, it is easy to see that it can be

written as
⋂∞
j=1Kj, where each Kj is defined by

Kj := {x ∈ Kwk ; supy∈Ωwk ‖x− y‖ ≤ r(Ωwk; K
wk) + 1

j}.

In order to prove that it is S-invariant, it is enough to show that each

each Kj has this property. Let j ∈ N, x ∈ Kj and s ∈ S. We know

that Ωwk ⊂ s.Ωwk
wk

; so given y ∈ Ωwk, let y = limα s.yα; (weak limit)

for some net (yα)α in Ωwk. From the non-expansiveness we get :

‖s.x− y‖ ≤ lim inf
α
‖s.x− s.yα‖

≤ lim inf
α
‖x− yα‖

≤ sup
z∈Ωwk

‖x− z‖

≤ r(Ωwk; K
wk) +

1

j

Since y and ε are arbitrary, then it follows that s.x ∈ Kj. Hence, Kj

is S-invariant for all j and so is AC(Ωwk;K
wk). Thus by minimality,

AC(Ωwk;K
wk) = Kwk which leads to a contradiction. �
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Remark 2.3.6. The above theorem extends Belluce and Kirk [3, theo-

rem 3], and Kirk [37, main result] because commuting families generate

amenable semigroups and on the other hand, the continuity of s 7→ s.x

is automatically satisfied for discrete semigroups.

Remark 2.3.7. If S is discrete, then in theorem 2.3.3 one can re-

move the countability condition. Indeed, when S is discrete and left

amenable, S is a direct union of countable left amenable sub-semigroups

(see example 2.2.3). So let S =
⋃
γ∈J Sγ. Let Kwk be as in the proof of

theorem 2.3.3. From the same theorem, each sub-semigroup Sγ possesses

a common fixed point xγ ∈ Kwk. Define an order on J by letting

γ ≤ γ′ if and only if Sγ ⊂ Sγ′.

Then given γo ∈ J , we let

Wγo := {xγ ; γ ≥ γo}.

Then (Wγ)γ is a decreasing net of non-void subsets of Kwk. Assume that

Kwk has a positive diameter then the asymptotic center AC((Wγ)γ, K
wk)

is a non-empty weakly compact convex and proper subset of Kwk. On

the other hand, we know that it coincides with
⋂∞
j=1Kj where

Kj := {x ∈ Kwk ; lim supz ‖x− xγ‖ ≤ r((Wγ)γ, K
wk) + 1

j}.

In order to prove that AC((Wγ)γ, K
wk) is S-invariant, it is enough to

show that that each Kj is. Let j ∈ N, x ∈ Kj and s ∈ S. Fix γs ∈ J
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such that s ∈ Sγs and pick γs,ε with the properties

γs,ε ≥ γs and γs,ε ≥ γε.

Then for all γ ≥ γs,ε, we have s.xγ = xγ, and moreover, using the

non-expansiveness we get :

sup
γ≥γs,ε

‖s.x− xγ‖ = sup
γ≥γs,ε

‖s.x− s.xγ‖

≤ sup
γ≥γs,ε

‖x− xγ‖

≤ r((Wγ)γ, K
wk) +

1

j

Therefore s.x ∈ Kj and it follows that the asymptotic center is S-

invariant. Then by minimality we have AC((Wγ)γ;K
wk) = Kwk which

is absurd. �

Remark. 2.3.8. The above result in remark 2.3.7 follows from Lim

[47] if we make use of the fact that discrete left amenable semigroups

are left reversible. On the other hand, remark 2.3.7 extends Belluce and

Kirk [3, theorem 3],[4, theorem 2.1] and Kirk [37, main result].

Remark 2.3.9. Our next result shows that a normal structure con-

dition can be avoided if we put more “regularity” on representations.

Before, we need to introduce a new class of semi-topological semigroups.

Definition 2.3.10. A semi-topological semigroup is σ-left amenable,

if it is a direct union of separable left amenable sub-semigroups.
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Remark 2.3.11. If a semi-topological semigroup S is σ-left amenable,

then for short we shall write simply “S is σ-LA”. On the other hand,

the class of all such semi-topological semigroups includes left amenable

discrete semigroups (see example 2.2.3), all separable semi-topological

semigroups, and all amenable locally compact topological groups (be-

cause of the fact that each closed subgroup is also amenable).

Theorem 2.3.12. Let S be a semi-topological semigroup. If S is

σ-LA, then it possesses the following fixed point property :

(Fwk) : Whenever S = {ŝ ; s ∈ S} is a jointly weakly continuous non-

expansive representation on a non-void weakly compact convex subset

K of a Banach space E, then there is in K a common fixed point for S.

In order to prove this result, we shall need the following lemmas :

Lemma 2.3.13. Let S be a semi-topological semigroup. Then any

jointly continuous representation of S on a non-empty compact Haus-

dorff space M defines an A-representation of S, LUC(S) on M .

Proof. See [41, lemma 2.1] (for direct proof); or [53, theorem 1]. �

Lemma 2.3.14. Let S∗ be a sub-semigroup of S. Let Ωwk be a non-

void, S∗-invariant and weakly compact subset of K. If Ωwk is minimal

(i.e., any of its subsets with the same properties coincides with Ωwk)
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then, the following facts hold :

1. For all x ∈ Ωwk, Ox := {s.x ; s ∈ S∗} is weakly dense in Ωwk.

2. If S∗ is left amenable, then s.Ωwk = Ωwk for all s ∈ S∗. If in addition

S∗ is separable, then Ωwk is compact in the norm topology.

Proof. For part 1, it is clear that S∗-orbits are S∗-invariant and their

weak closures too by the weak continuity. Therefore, the minimality

yields the desired result. For part 2, the first property follows by com-

bining lemma 2.3.5 and lemma 2.3.13. For the second part, we first need

to justify that the separability of S∗ can be transferred to Ωwk in the

weak topology. In fact, let D ⊂ S∗ be a dense subset. If we fix x ∈ Ωwk,

then by continuity of s 7→ s.x : S∗ → Ωwk, it follows that

Ωwk = Ox
wk ⊂ {s.x s ∈ D}wk ⊂ Ox

wk
= Ωwk.

In order to prove the norm compactness of Ωwk, it is enough to show that

it is totally bounded in the norm topology since its already norm closed.

For that we adapt an argument used in [45] in locally convex spaces or

in [32] to this context. So let us fix ε > 0. From the separability, let

Ωwk = ς (countable dense subset). Then Ωwk ⊂
⋃
σ∈ς B[σ, ε2 ]. Since each

B[σ, ε2 ] is weakly closed, {B[σ, ε2 ] ∩ Ωwk;σ ∈ ς} is a countable weakly

closed covering of Ωwk which is weakly compact; and therefore a Baire

space. So there is σ̃ ∈ ς such that B[σ̃, ε2 ] ∩ Ωwk has a non-void interior

in the relative weak topology. Let xε ∈ Ωwk and Vε be a neighborhood of

the origin (in the weak topology) such that (xε+Vε)∩Ωwk ⊂ B[σ̃, ε2 ]∩Ωwk.

Then (xε + Vε) ∩ Ωwk ⊂ B[xε, ε]. Indeed, if z ∈ (xε + Vε) ∩ Ωwk then
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we have ‖xε − z‖ ≤ ‖xε − σ̃‖ + ‖σ̃ − z‖ ≤ ε. Now we pick a weak

neighborhood V ′ε of the origin such that V ′ε + V ′ε ⊂ Vε. Then let δε > 0

such that B[0, δε] ⊂ V ′ε (this can be done because the norm topology

is finer than the weak topology). We have Ωwk ⊂
⋃
σ∈ς B[σ, δε]. The

subset ς ⊂ Ωwk being countable, let ς := {σj ; j = 1, 2, · · · }. Then by

induction we have :

• For n=1, since xε ∈ Oσ1
wk

then, there is an element s1 ∈ S∗ such that

ŝ1(σ1)− xε ∈ V ′ε .

• For n=2, since xε ∈ Os1.σ1
wk

then, there is an element s2 ∈ S∗ with

ŝ1(σ2)− xε ∈ V ′ε .

• For n=3, since xε ∈ Os2s1.σ3
wk

then, there exists s3 ∈ S∗ such that

ŝ3s2s1(σ3)− xε ∈ V ′ε .

• If n=p, since xε ∈ Osp−1···s1.σp
wk

, we pick sp ∈ S∗ subject to the property

̂sp · · · s1(σp)− xε ∈ V ′ε .

Given n ∈ N, if x ∈ ̂sn · · · s1(B[σn, δε]∩Ω), let x := ̂sn · · · s1(σn + zx) for

some zx ∈ B[0, δε]. Then using the non-expansiveness, we obtain :

‖ ̂sn · · · s1(σn)− x‖ = ‖ ̂sn · · · s1(σn)− ̂sn · · · s1(σn + zx)‖

≤ ‖σn − (σn + zx)‖ = ‖zx‖

≤ δε.
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The above inequality yields the following inclusions :

̂sn · · · s1(B[σn, δε] ∩ Ωwk) ⊂ B[ ̂sn · · · s1(σn), δε] ∩ Ωwk

⊂ xε + V ′ε + V ′ε

⊂ xε + Vε.

Hence for all n ∈ N, we have ̂sn · · · s1(B[σn, δε] ∩ Ωwk) ⊂ xε + Vε. Thus

Ωwk =
⋃∞
j=1B[σj, δε] ∩ Ωwk ⊂

⋃∞
j=1 ̂sj · · · s1

−1
(xε + Vε).

Then { ̂sj · · · s1
−1

(xε + Vε) ∩ Ωwk ; j = 1, 2, · · · } is a weak open covering

of the weakly compact set Ωwk. Therefore there is m ∈ N such that

Ωwk =
⋃m
i=1 ŝi · · · s1

−1
(xε + Vε) ∩ Ωwk. Since ̂sm · · · s1(Ω

wk) = Ωwk then

Ωwk =
m⋃
j=1

̂sj · · · s1
−1

(xε + Vε) ∩ Ωwk ⊂
m⋃
j=1

̂sm · · · sj+1((xε + Vε) ∩ Ωwk)

⊂
m⋃
j=1

̂sm · · · sj+1(B[xε, ε] ∩ Ωwk)

By non-expansiveness, we have ‖ ̂sm · · · si+1(y)− ̂sm · · · si+1(xε)‖ ≤ ε for

all y ∈ B[xε, ε] and this shows that

Ωwk ⊂
m⋃
i=1

B[ ̂sm · · · si+1(xε), ε].

Which shows the norm total boundedness of Ωwk and therefore, its com-

pactness in the norm topology. �

We are now ready to prove the theorem.
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Proof. Let S =
⋃
γ Sγ where each sub-semigroup Sγ is left amenable.

• Step 1 : Each Sγ has a non-empty fixed point set. In fact, let us

fix γ. By a Zorn’s lemma argument, let Kwk be a minimal non-empty

weakly compact convex and Sγ-invariant subset of K. If we consider the

restriction of the representation of S on K to Sγ × Kwk, then the left

amenability of Sγ implies, via lemma 2.3.14, the existence of non-void

norm compact subset Ωwk of Kwk such that s.Ωwk = Ωwk for all s ∈ Sγ.

On the other hand, if Ωwk is not a singleton then from [17], there is

xo ∈ co(Ωwk) such that :

supx∈Ωwk ‖x− xo‖ < δ(Ωwk).

Then it is easy to see that
⋂
x∈Ωwk B[x, supz∈Ωwk ‖xo − z‖] ∩ Kwk is a

proper, non-void, weakly compact, convex and Sγ-invariant subset of

Kwk; contradicting the minimality of Kwk. So, necessarily Ωwk is a

singleton; the desired point we are looking for.

• Step 2 : Now we assume that S is an arbitrary σ-LA semigroup.

Let us set γi ≤ γj if and only if Sγi ⊂ Sγj .

For all γ, let xγ ∈ K be a “partial” common fixed point for Sγ, i.e.,

s.xγ = xγ, for all s ∈ Sγ. By weak compactness of K, there is a weakly

convergent subnet (Sγt)t∈(T,R) of (Sγ)γ. Let x̄ be its limit. Then x̄ is a

common fixed point for S. In fact, let s ∈ S fixed. We choose an index

γs such that s ∈ Sγs and ts ∈ T with the property :

tsRt⇒ Sγs ⊂ Sγt.
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Then if t ∈ T and tsRt, we have s.xγt = xγt. Therefore by passing to

the limit with the continuity it follows that s.x̄ = x̄. Hence x̄ ∈ F (S). �

Corollary 2.3.15. Let F be a commuting family of weakly continuous

non-expansive mappings on a non-void weakly compact convex subset

K of a Banach space E. Then there is a common fixed point for F in K.

Proof. Let S := 〈F〉 be the semigroup generated by F . F is amenable.

If S = {f̂ ; f ∈ S} with f̂ ≡ f . Then we have F (F) = F (S) 6= ∅. �

Remark 2.3.16. From [32, theorem 4], the above corollary remains

true even if we replace F by a left amenable discrete semigroup of weakly

continuous non-expansive mappings.

We know already that left amenable semigroups possess the fixed point

property (Fwk). The next result shows that if we consider the discrete

case, then (Fwk) is extendable to a more general class of semigroups.

We need before to recall some well-known facts and fix some notations.

Given a semigroup S, we define a new semigroup Se obtained by adjoin-

ing a new element e to it and extend its product by letting s.e := s =: e.s

for all s ∈ S. This new structure is called an unitization of S; and S is

said to be a unital semigroup if it has an identity element. It is known

that S is left amenable if and only if Se is, this fact follows from the

proof [45, lemma 6.3] if we replace AP(S) by `∞(S) throughout.
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Let (Sα)α∈J be a family of unital semigroups with respective identities

eα . Their direct product S :=
∏

α Sα is a unital semigroup with iden-

tity e = (eα)α and operation defined coordinatewise, i.e., given s, t ∈ S,

their product is defined by s.t := (sα.tα)α. Next we endow S with the

product topology of the discrete topologies and put

ς := {σ ⊂ J ;σ is non-void and finite}

Then for all σ ∈ ς, define a sub-semigroup Sσ :=
∏

γ∈σ S
∗
γ of S, with :

S∗γ :=


Sγ, if γ ∈ σ

{eγ}, if γ /∈ σ

Theorem 2.3.17. Let S =
∏

α Sα be a direct product. If each Sα is

left amenable, then S possesses the following fixed point property :

(F ′wk) : Whenever S = {ŝ ; s ∈ S} is a jointly weakly continuous non-

expansive representation of S on a non-empty weakly compact convex

subset K of Banach space E then, there is a common fixed point for S.

Lemma 2.3.18. For all σ ∈ ς, the sub-semigroup Sσ is left amenable.

Proof. We shall proceed by induction on the cardinality |σ| of σ.

• If |σ| = 1 then nothing to prove since each Sα is left amenable.

• If |σ| = 2, let σ := {α1, α2}. Then Sσ ∼= S∗α1
× S∗α2

and we know that
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S∗α1
×S∗α2

is left amenable, see [39, proposition 3.4]. Therefore, Sσ as an

homomorphic image of S∗α1
× S∗α2

, is also left amenable (cf. [14]).

• Assume that the statement holds for |σ| = n. Let σ := {α1, · · · , αn+1}

be in ς. Sσ ∼= Sσ̃ × Sαn+1
, with σ̃ := {α1, · · · , αn} through the isomor-

phism s = (sα)α 7→ (πα1,··· ,αn(s), sαn+1
) : Sσ → Sσ̃×S∗αn+1

, where πα1,··· ,αn

is the projection of S onto Sσ̃. Then from the induction and the case

|σ| = 2, it follows that Sσ̃ × S∗αn+1
is left amenable; and therefore Sσ.

Therefore the statement holds also for |σ| = n+ 1. Hence for all σ ∈ ς,

which completes the proof. �

We are now ready to prove the theorem.

Proof. For α ∈ ς fixed, since Sσ is left amenable by the previous

lemma, then theorem 2.3.11 ensures the existence of a common fixed

point xσ in K for the sub-representation Sσ := {ŝ ; s ∈ Sσ}; i.e.,

s.xσ = xσ for all s ∈ Sσ. Now we define a pre-order on ς upwards by

inclusion, or more precisely,

∀ σ, σ′ ∈ ς, σ ≤ σ
′ ⇔ σ ⊂ σ

′
.

Then the family (xσ)σ∈ς becomes a net and from the weak compactness

on K, it follows that it has a convergent subnet (xσt)t∈(T,R). Then we

define x̄ := limt xσt ∈ K. Then we show next that x̄ is the element of K

we are looking for. For that, let s = (sα)α ∈ S fixed. For every t ∈ T ,

we define an element st of S by letting :
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st,α :=

 sα, if α ∈ σt

{eα}, otherwise

Then the net (st)t∈T converges to s. In fact, let U =
∏

α∈J Uα be an

elementary open neighborhood of s. From the definition of the product

topology, their is σs ∈ ς such that Uα ≡ Sα for all α ∈ J \ σs. Now we

pick ts ∈ T with the property : tsRt implies σs ≤ σt (note that a such

index does exist because (xσt)t is a subnet of (xσ)σ). Then it follows that

for all t ∈ T, tsRt ⇒ st ∈ U ; which proves our assertion, s = limt st.

On the other hand given t ∈ T , we have :

st ∈ Sσt and st.xσt = xσt (1).

So from relation (1) and the joint continuity of the representation of S

we obtain : s.x̄ = limt st.xσt = limt xσt = x̄. Hence, s.x̄ = x̄, ∀ s ∈ S. �

Remark 2.3.19. Note that a direct product of a family of amenable

semigroups need not be amenable in general; even for groups, cf. [14].

Remark 2.3.20. Fixed point property (F ′wk) is a generalization of

(Fwk) (discrete case); because on the one hand, a discrete semigroup S

is left amenable if and only if its unitization Se is (cf. [45]), and on

the other hand, any representation S = {ŝ ; s ∈ S} of S on a compact

space K can be extended to a representation Se = {ŝ ; s ∈ Se} of Se by

letting ê := idK (the identity map of K).
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1Some results of this chapter are contained in a paper accepted for publication in the Journal of
Fixed Point Theory and Applications, see [57].
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CHAPTER 3

Semi-topological semigroups and non-linear

common fixed point properties on weak* compact

convex sets

In this chapter, we shall be interested on non-expansive representa-

tions of semi-topological semigroups. Our attention is mainly concerned

with the study of problem 3, i.e., whether or not left amenable semi-

topological semigroups possess the fixed point property (F ∗).

We prove that, with a compactness condition of some orbits with respect

to a suitable locally convex topology on the dual, then a weak version of

(F ∗) holds respectively for : left amenable, σ-left amenable, sequen-

tially left amenable, and all strongly left reversible semi-topological

semigroups. Whereas, n-ELA semi-topological semigroups possess the

fixed point property (F ∗), and discrete n-ELA semigroups have a fixed

point property much stronger than (F ∗). We show that the classes of

semi-topological semigroups mentioned above possess (Fwk) and that

property (Fns) is extendable to locally convex spaces. Some results re-

lated to [47, theorem 3] and [49, theorem 4] are also established.
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3.1 Semi-topological semigroups and weak* fixed

point properties in dual spaces

Given a Banach space E, let BE∗∗ denote the unit closed ball of the sec-

ond dual E∗∗; and let Ext(BE∗∗) be the set of all extreme points of BE∗∗

(which is of course non-void by virtue of the Krein-Milman theorem).

Consider on the dual the locally convex topology τ defined by the family

of semi-norms Q := {pe ; e ∈ Ext(BE∗∗)} where, pe(f) = |e(f)|. Then

using the Krein-Milman theorem, it is easy to see that τ is separated.

On the other hand, by construction τ ⊂ σ(E∗, E∗∗) on E∗. If E∗∗ is

uniformly convex or more generally, if E is reflexive then τ is coarser

than the weak* topology.

Theorem 3.1.1. Let S be a semi-topological semigroup. If S is σ-

LA, then it possesses the following non-linear fixed point property :

(F ∗τ ) : Whenever S = {ŝ ; s ∈ S} is a weak* jointly continuous non-

expansive representation on a non-empty weak* compact convex subset

K of the dual E∗ of a Banach space E, such that for all non-void weak*

closed and S-invariant set B ⊂ K with the property s.B = B for all

s ∈ S, there is x ∈ B whose orbit Ox is relatively countably τ -compact,

then there is in K a common fixed point for S.

In order to prove this result, the following lemmas are essential :
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Lemma 3.1.2. Let S∗ be a separable sub-semigroup of S. If K ′ is a

non-empty weak* compact and S∗-invariant subset of K, then there is

non-void weak* compact S∗-invariant subset Ω∗ of K ′ which is minimal

(for having all these properties) such that s.Ω∗ = Ω∗ for all s ∈ S∗.

Proof. It follows by combining lemma 2.3.5 and lemma 2.3.13, by

just taking τ := wk* (i.e., σ(E∗, E)) and Φ=LUC(S). �

Lemma 3.1.3. Let Ω∗ be as in the previous lemma. Then the fol-

lowing facts hold :

1. For all x ∈ Ω∗, the orbit Ox of x, is weak* dense in Ω∗;

2. Ω∗ is σ(E∗, E∗∗)-compact.

For proving this lemma the following characterization is needed.

Lemma 3.1.4. Let B be a Banach space and C be a bounded subset

of B. C is relatively weakly compact if and only if, for all sequence

(xn)n in C there is a weakly convergent sequence (yn)n ∈ E such that

yn ∈ co(xi ; i ≥ n) for all n.

Proof of Lemma 3.1.3. For part 1, clearly orbits are S-invariant;

and since for all s in S, the mapping x 7→ s.x is weak*-weak* continu-

ous (due to the continuity of the action) then weak* closures of orbits are

also S-invariant. Hence, by minimality it follows that part 1 holds. For
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part 2, from lemma 3.1.2, we know that Ω∗ is non-void with s.Ω∗ = Ω∗

for all s ∈ S. Let us fix x ∈ Ω∗ with a relatively τ -compact orbit; and

let (zn)n be a sequence in Ox. Since the orbit Ox is bounded (as a subset

of K), then a fortiori so is (zn)n. Therefore by [55, corollary 0.2], there

is a subsequence (znk)k of (zn)n such that :

∞⋂
k=1

coτ(zni ; i ≥ k) ⊂
∞⋂
n=1

co(zi ; i ≥ n).

Define Fn := {zni ; i ≥ n}τ for all n. Then {Fn ;n ∈ N} is a decreasing

sequence of τ -closed non-empty subsets of the countably compact space

Ox
τ
. Therefore,

⋂∞
n=1 Fn 6= ∅; and this latter property allows us to be

able to find a point ξ ∈
⋂∞
n=1 co(zi ; i ≥ n) and therefore, a sequence

(ξn)n ∈ E∗ such that ξn ∈ co(zi ; i ≥ n) for all n, and ‖ξn − ξ‖ → 0.

Then by applying the lemma 3.1.4 it follows that Ox
wk

is weakly com-

pact; and a fortiori closed in the weak* topology. Hence, together with

the first part, it follows that Ω∗ = Ox
wk

is σ(E∗, E∗∗) compact. �

Lemma 3.1.5. Ω∗ is compact in the norm topology.

Proof. Since Ω∗ is weakly compact, see lemma 3.1.3, then weak and

weak* topologies coincide on Ω∗. Therefore it follows that the sub-

representation S∗ := {ŝ ; s ∈ S∗} is jointly weakly continuous. Hence,

the separability of S∗ together with a similar argument as in the proof

of lemma 2.3.13 yields the desired result. �
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Now we are ready to proceed to the proof of theorem 3.1.1.

Proof. Let S =
⋃
γ∈J S

∗
γ such that each space LUC(S∗γ) has a LIM. If we

fix γ ∈ J , let Kγ be a minimal non-empty weak* compact convex and S∗γ-

invariant subset of K. From lemma 3.1.2, there is Ω∗γ ⊂ Kγ norm com-

pact subset such that s.Ω∗γ = Ω∗γ for all s ∈ S∗γ. Then S∗γ := {ŝ ; s ∈ S∗γ}

being a jointly weakly continuous representation, a similar argument as

in Step 1 in the proof of theorem 2.3.12 shows that Ω∗γ must be a single

point {xγ}, which is a common fixed point for S∗γ. If we consider the

collection {xγ ; γ ∈ J} and pre-order the index set J by letting γ ≤ γ′

if and only if, S∗γ ⊂ S∗γ′, then an argument similar to that used in Step

2 in the proof of theorem 2.3.12 yields the existence of a common fixed

point for S. �

From the proof of the previous theorem, we deduce the following:

Corollary 3.1.6. Let S be a semigroup satisfying the conditions of

theorem 3.1.1. Then it has the following fixed point property :

(F ∗wk) : Whenever S = {ŝ ; s ∈ S} is a weak* jointly continuous non-

expansive representation on a non-empty weak* compact convex subset

K of the dual E∗ of a Banach space E such that for all non-void weak*

closed S-invariant subset B of K with s.B = B for all s ∈ S, we can

find x ∈ B whose orbit Ox is relatively weakly compact then, there is

in K a common fixed point for S.
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Proof. Indeed, τ ⊂ σ(E∗, E∗∗). �

Theorem 3.1.7. Let S be a semi-topological semigroup. If S is left

reversible as a discrete semigroup, or separable and left reversible, then

it possesses the fixed point property (F ∗τ ).

Proof. From [45, corollary 3.7], given a non-void, S-invariant, weak*

compact and convex subset K∗ of K, there is a non-empty weak* closed

set Ω∗ ⊂ K∗ such that s.Ω∗ = Ω∗ for all s ∈ S. If S is separable, then

by lemma 3.1.5 it follows that Ω∗ is norm compact. Therefore, a similar

argument as in the proof of the previous theorem shows that the asser-

tion is true. If S is discrete and left reversible, then it can be written

as a direct union of countable left reversible sub-semigroups, cf. [32,

lemma 1], then in this case if S =
⋃
γ Sγ where each Sγ is left reversible

and countable (a fortiori, separable), the forgoing shows that each Sγ

possesses a common fixed point in K. Hence, an argument as in Step 2

in the proof of theorem 2.3.12 yields the desired result. �

Remark 3.1.8. The fixed point theorem 3.1.7 shows that for sepa-

rable left reversible semi-topological semigroups and (discrete) left re-

versible semigroups, Lim’s result, cf. [47, theorem 3], in Banach spaces

is extendable to weak* compact convex sets, without requiring a nor-

mal structure condition if the representation is jointly continuous in the

weak* topology.
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3.2 Fixed point properties of n-ELA semigroups of

non-linear mappings

Let K be a non-empty convex subset of a vector space. A mapping

f : K → K is said to be affine if :

f(t.x+ (1− t).y) = tf(x) + (1− t)f(y), for all x, y ∈ K and t ∈[0,1].

S is said to be an affine representation, if each mapping in S is affine.

Theorem 3.2.1. If S is a n-ELA discrete semigroup, then it pos-

sesses the following fixed point property :

(Faffine) : Whenever S = {ŝ ; s ∈ S} is a C(K)+-continuous affine

representation of S on a non-empty weakly compact convex subset K

of a Hausdorff locally convex topological vector space (E,Q), then S

possesses a common fixed point in K.

Proof. Let m ∈ co(βS) be a LIM. Then m =
∑n

j=1 tjmj. Pick xo ∈ K

and consider as in the proof of lemma 2.3.5

Θxo : C(K) → R

f 7→ m(θfxo)

From the proof of lemma 2.3.5, Θxo(f) =
∫
K f dµ for some regular

Borel measure on K and ωwk := support(µ) satisfies :
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ωwk ⊂ s.ωwk
wk for all s ∈ S (1)

if we let τ = wk. Then ωwk is necessarily finite; indeed, from the

definition of the support, ωwk is characterized by :

x ∈ ωwk ⇔ ∀ V ∈ Vwk(x), µ(V ∩ ωwk) > 0.

Where Vwk(x) denotes the collection of all neighborhoods of x in E.

On the other hand, for all j, f 7→ mj(θ
f
xo

) : C(K) → R is a nonzero

multiplicative linear functional on C(K); therefore mj(θ
f
xo

) = f(xj) for

some unique xj ∈ K. If x /∈ {x1, · · · , xn}, then by Urysohn’s lemma,

there is f ∈ C(K) such that f ≥ 0, f(x)=1 and f(xj) = 0 for all j.

Then V := {f > 0} is a neighborhood of x and we have :

µ(V ∩ ωwk) ≤
∫
V

f dµ ≤
∫
K

f dµ = m(θfxo)

=
n∑
j=1

tjmj(θ
f
xo

) =
n∑
j=1

tjf(xj)

= 0

It follows that µ(V ∩ ωwk) = 0 which shows that x does not belong to

ωwk. Hence, ωwk ⊂ {x1, · · · , xn}. Thus, together with (1), we get

|ωwk| ≤ |s.ωwkwk| ≤ |ωwk| ⇒ s.ωwk = ωwk, for all s ∈ S (2).

Let us define x̂ := 1
|ωwk|

∑
x∈ωwk x. Then using (2) and the affineness of

S, we get :

s.x̂ =
1

|ωwk|
∑
x∈ωwk

s.x =
1

|ωwk|
∑

x∈s.ωwk

x = x̂

for all s ∈ S. Hence, x̂ is a common fixed point for S. �
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Next, we establish a non-linear version of theorem 3.2.1.

Theorem 3.2.2. If S is an n-ELA discrete semigroup, then it possesses

the following fixed point property :

(F ∗s ) : Whenever S = {ŝ ; s ∈ S} is a C(K)+-continuous non-expansive

representation of S on a non-empty weak* compact convex subset K of

the dual E∗ of a Banach space E, then S possesses a common fixed

point in K.

Proof. Clearly S defines an A-representation of S, `∞(S) on each

S-invariant weak* compact subset of K. Fix a minimal non-empty S-

invariant weak* compact convex subset K∗ of K. In lemma 2.3.5 if we

let τ = wk*, then using the n-ELA property (see the previous proof),

there is a non-void finite set ωwk∗ ⊂ K∗ such that s.ωwk∗ = ωwk∗ for

all s ∈ S. Since co(ωwk∗) possesses asymptotic normal structure (since

norm compact), the conclusion follows using an argument as in the proof

of theorem 2.3.12. �

Corollary 3.2.3. (F ∗s ) ⇒ (F ∗), i.e., if a semi-topological semigroup

possesses the fixed point property (F ∗s ), then a fortiori it does for (F ∗).

Therefore, n-ELA semi-topological semigroups do possess (F ∗).

However, for n-extremely left amenable semi-topological semigroups we

have the following result :
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Theorem 3.2.4. If S is an n-ELA semi-topological semigroup, then it

possesses the fixed point property (F ∗).

Proof. From lemma 2.3.12, S defines an A-representation of S,LUC(S)

on K. Therefore, if we fix a minimal non-empty weak* compact convex

and S-invariant set K∗ ⊂ K, it follows from lemma 2.3.5 together with

the fact that S is n-ELA, the existence of a non-empty finite subset ωwk∗

of K∗ such that s.ωwk∗ = ωwk∗ for all s ∈ S. Let ωwk∗ = {ω1, · · · , ωp}

for some p ∈ [1, n], and consider the Chebyshev center of ωwk∗ in K∗

WK∗(ωwk∗) := {x ∈ K∗ ; maxi ‖x− ωi‖ = infy∈K∗ maxi ‖y − ωi‖}.

Due to the weak* compactness and convexity of K∗, WK∗(ωwk∗) is a

non-empty weak* compact and convex set. On the other hand, a similar

argument as in the proof of theorem 2.2.1 together with the weak* lower

semi-continuity of the dual norm yield

s.WK∗(ωwk∗) ⊂ WK∗(ωwk∗) for all s ∈ S.

Therefore, by minimality it follows that WK∗(ωwk∗) = K∗ . Now assume

that ωwk∗ has at least two elements. By [17, lemma 1], there is x∗ in

co(ωwk∗) such that max1≤i≤p ‖x∗ − ωi‖ < maxi6=j ‖ωi − ωj‖ (1). Let

i 6= j ∈ {1, · · · , p}. Since ωi ∈ WK∗(ωwk∗), then we have

maxk ‖ωi − ωk‖ = infy∈K∗ maxk ‖y − ωk‖.

It follows using (1)
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‖ωi − ωj‖ ≤ max
k
‖ωi − ωk‖

= inf
y∈K∗

max
k
‖y − ωk‖

≤ max
k
‖x∗ − ωk‖

< max
p6=q
‖ωp − ωq‖

Thus, it follows that ‖ωi − ωj‖ < maxp6=q ‖ωp − ωq‖ for all i 6= j, which

is not possible. Hence ωwk∗ must be a singleton. �

3.3 A weak* fixed point property in conjugate Ba-

nach spaces via `1

In [49], Lim proved that any decreasing net of non-void bounded subsets

of `1 (considered as the dual space of c0) has a non-empty norm compact

convex asymptotic center with respect to any weak* closed convex set

containing them. Using this result, we establish a non-linear fixed point

theorem for semi-topological semigroups.

Theorem 3.3.1. Let S be a semi-topological semigroup. If LUC(S)

has a LIM, then S has the following fixed point property :

(F ∗isom): Whenever S × K → K is a jointly weak* continuous non-

expansive action of S on a non-empty weak* compact convex subset K

of a dual Banach space E∗ such that there is a weak* closed isometry

from K into `1, then there is in K a common fixed point for S.
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Remark 3.3.2. In the above theorem, we consider `1 as the dual

of c0 and point out that the isometry in the above theorem need not

be linear, but only closed in the weak* topology (i.e., the direct image

of a weak* closed subset of K is weak* closed in `1) or weak*-weak*

continuous.

Proof. Consider a non-void weak* compact subset ωwk∗ of K with

the property :

s.ωwk∗ = ωwk∗ for all s ∈ S. (*).

Let φ : K → `1 be the isometry whose existence is guaranteed by

assumption. Then by [49], the set

C := {x ∈ φ(K) ; sup
y∈φ(ωwk∗)

‖x− y‖ = r}

where r := infy∈φ(K) supz∈φ(ωwk∗) ‖y−z‖, is a non-void and norm compact

set. Therefore its preimage φ−1(C) is a non-empty norm compact subset

of E∗. Now define analogously as C the set

K̂ := {x ∈ K ; sup
y∈ωwk∗

‖x− y‖ = ρ}.

where ρ := infy∈K supz∈ωwk∗ ‖y − z‖. The set K̂ is non-void because one

the hand, it can be written as

⋂
j

{x ∈ K ; sup
y∈ωwk∗

‖x− y‖ ≤ ρ+
1

j
}
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and on the other hand, each set in the intersection is non-empty and

weak* closed due to the weak* lower-semi-continuity of the dual norm

on E∗. Hence, the weak* compactness of K forces K̂ to be non-void.

Next we show that K̂ is norm compact. For that, it is enough to prove

that it is a subset of φ−1(C). Fortunately, it does. In fact, given x ∈ K̂

we have φ(x) ∈ φ(K) and

sup
y∈φ(ωwk∗)

‖φ(x)− y‖ = sup
y∈ωwk∗

‖φ(x)− φ(y)‖

= sup
y∈ωwk∗

‖x− y‖ = ρ

= inf
y∈K

sup
z∈ωwk∗

‖y − z‖

= inf
y∈K

sup
z∈ωwk∗

‖φ(y)− φ(z)‖

= inf
y∈φ(K)

sup
z∈φ(ωwk∗)

‖y − z‖ = r

Therefore the inclusions holds and it follows that K̂ is a non-empty norm

compact convex subset of K. Moreover, a similar argument as in the

proof a theorem 2.3.3 shows that K̂ is also S-invariant. The restriction

S × K̂ → K̂ of the S-action on K becomes then a jointly norm con-

tinuous non-expansive action (since weak* and norm topologies agree).

Using a Zorn’s lemma argument if necessary, we may assume that K̂ is

minimal (i.e., there is no proper subset of K̂ with the same properties).

Then K̂ must be a singleton because otherwise, being norm compact

and convex, it has normal structure (see [17]) and therefore leads to a

contradiction. �
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When S is left reversible as a semi-topological semigroup, then (see

[31] or [47]) S becomes a directed set if we let :

a ≤ b iff {b} ∪ b.S ⊂ {a} ∪ a.S

Then if fix x ∈ K (i.e., whenever S defines an action as in theorem

3.3.1) we define Ωs := s.S.x for all s ∈ S, ten we obtain a decreasing

net of subsets of K. Hence, it follows :

Corollary 3.3.3. All left reversible semi-topological semigroups pos-

sess the fixed point property (F ∗isom).

3.4 Some topological extensions

Given a semi-topological semigroup S, let M(S) denote the collection of

all means on LUC(S) and let βS denote the subset of M(S) of all multi-

plicative means on LUC(S) (i.e., the spectrum of LUC(S)). Motivated

by theorem 2.1.1, we introduce the following subset of M(S) :

coseq(βS) := {m ∈M(S) ; m = wk*-limnmn, mn ∈ co(βS)}

We shall say that S is sequentially left amenable, or “seq-LA” for short, if

the Banach algebra LUC(S) possesses a left invariant mean in coseq(βS).
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Example 3.4.1. By virtue of theorem 2.1.1, the class of all sequentially

left amenable semigroups includes all countable left amenable discrete

semigroups (e.g., Z); it includes also the collection of all compact metriz-

able left amenable semi-topological semigroups (e.g., the unit circle S1).

With this definition, theorem 3.1.1 is extendable as follows :

Theorem 3.4.2. Let S be a semi-topological semigroup. If S is σ-LA

or seq-LA, then it possesses the fixed point property (F ∗τ ).

Proof. Each S-invariant, non-void weak* compact subset of K contains

a non-empty weakly compact (using lemma 3.1.3) subset ωwk∗ such that

s.ωwk∗ = ωwk∗, for all s ∈ S. Using the an argument as in the proof of

theorem 3.2.1 together with the sequential left amenability property and

lemma 2.3.5, ωwk∗ can be chosen to be separable in the weak topology.

Hence, we conclude by an argument as in the proof of theorem 3.1.1. �

Using the fixed point theorem 3.1.1, we derive the following dual

version :

Theorem 3.4.4. Let S be a semi-topological semigroup. If S is either

σ-LA or seq-LA, then it possesses the fixed point property (Fwk).

Proof.

• Step 1 : We first assume that S is separable or seq-LA. We embed E

in its second dual E∗∗ through the canonical injection j : E → E∗∗ which
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is an isomorphism from (E,wk) onto (j(E),wk*). Then K̂ := j(K) is a

non-void weak* compact convex subset of E∗∗. We carry the S-action

on K to K̂ by letting s ∗ j(x) := j(s.x), for all s ∈ S and x ∈ K.

As readily checked, the action S × K̂ → K̂ is jointly weak* continuous

and norm non-expansive. Let τ̂ be the locally convex topology on E∗∗

induced by the extreme points of BE∗∗∗[0,1] (the unit closed ball of the

dual of E∗∗). If B̂ ⊂ K̂ is a non-void weak* compact subset such that

s ∗ B̂ = B̂ for all s ∈ S. Using a Zorn’s lemma argument if necessary

together with lemma 2.3.5 if S is left amenable, or [45, corollary 3.7] if

S is left reversible, we may assume that B̃ is minimal (in the sense that,

if B̃ is a non-void weak* compact S-invariant set contained in B̂, then

B̃ = B̂). Then B := j−1(B̂) is a minimal non-empty weakly compact

S-invariant and separable subset of K with the property that s.B = B

for all s ∈ S. Therefore using lemma 2.3.14, it follows that B is norm

compact and therefore its image B̂ too. Thus, for all j(x) ∈ K̂, the

orbit Oj(x) is relatively τ̂ -compact (since norm and τ̂ topologies agree

on the norm closed orbit). Hence by theorem 1, there is x̂ ∈ K such

that s ∗ j(x̂) = j(x̂) for all s ∈ S. Hence, x̂ is a common fixed point for

S due to the injectivity of j.

• Step 2 : Now we assume that S is an arbitrary semi-topological semi-

group with either one of the properties in the theorem. From Step 1,

a similar argument as in the proof of theorem 3.1.1, shows that if we

consider the action of S carried on E∗∗, then
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F (S) := {x ∈ K; s ∗ j(x) = j(x) for all s ∈ S} 6= ∅.

Hence, any x ∈ K with j(x) ∈ F (S) is a common fixed point for S. �

Remark 3.4.5. Theorem 3.4.4 shows that beyond the class of σ-left

amenable semi-topological semigroups, sequentially left amenable semi-

topological semigroups do have the fixed point property (Fwk).

Whether or not left reversible semi-topological semigroups possess the

fixed point property (Fwk), we have the following result in this direction:

We shall use the following concept introduced in [44]. A semi-topological

semigroup S is strongly left reversible, if it can written as a direct union

of countable left reversible sub-semigroups.

Example 3.4.6. The class of strongly left reversible semi-topological

semigroups includes discrete left reversible semigroups [32, lemma 1],

separable left reversible semi-topological semigroups, metrizable left re-

versible semi-topological semigroups [44, lemma 5.2].

Theorem 3.4.7. Strongly left reversible semi-topological semigroups

possess the fixed point properties (Fwk) and (F ∗τ ).

Proof. Indeed, if S =
⋃
α Sα, then using [45, corollary 3.7] and a

similar argument as in the proof of theorem 3.1.1, yield F (Sα) 6= ∅ for

all α. We conclude using part 2 in the proof of theorem 2.3.11. �

62



Corollary 3.4.8. [32, theorem 4].

Proof. In fact, a discrete left reversible semigroup is strongly left

reversible, cf. [32, lemma 1]. �

Remark 3.4.9. From theorem 3.4.6, one can say that in Banach

spaces, normal structure condition is unnecessary if we consider jointly

continuous non-expansive representations of separable semi-topological

semigroups in the weak topology.

Finally, we establish an extension of (Fns) (see theorem 2.3.3) to repre-

sentations in Hausdorff locally convex spaces setting.

Remark 3.4.10. Even if locally convex spaces are not in general

normable, using semi-norms, one can define a notion of non-expansive

mapping which coincides with what we know in a normed space.

We fix a locally convex Hausdorff space E with family Q of semi-norms

which induces its topology. Given a non-void set K ⊂ E, a mapping

T : K → K is said to be Q-non-expansive or simply non-expansive, if it

satisfies the following property : for all semi-norm q ∈ Q and x, y in K

we have :

q(T (x)− T (y)) ≤ q(x− y).
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Example 3.4.11. (Q-non-expansive map). Let S be a semi-topological

semigroup. Let AP(S) be the translation invariant subspace of Cb(S)

consisting of those functions whose left orbits are relatively compact in

the norm topology; more precisely, a function f belongs to AP(S) if,

{`sf ; s ∈ S} has a compact closure in Cb(S) in the supremum norm

topology. Let E := AP(S)∗ and K := M(AP(S)) (the set of all means on

AP(S)). Given f in AP(S), we define a semi-norm qf on E by letting

qf(m) = sups∈S |m(`sf)|. Consider the locally convex topology on E

induced by Q = {qf ; f ∈ AP(S)}. Then if we fix so ∈ S, the mapping

Tso : K → K

m 7→ `∗som

where, `∗som(f) := m ◦ `so(f) = m(`sof), is Q-non-expansive.

From now on, we will assume E to be Hausdorff in order to ensure

(via the Hahn-Banach separation theorem) that the topological dual is

“huge” enough to separate points. In fact, the topological dual of a lo-

cally convex space which is not separated may be trivial (cf. [13]).

Remark 3.4.12. When E is a Banach space, then Q reduces to one

semi-norm given by q = ‖.‖; and in this case, a Q-non-expansive map-

ping is just the usual notion of a non-expansive mapping in normed

spaces.
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Theorem 3.4.13. Let S be a countable semi-topological semigroup. If

LMC(S) has a LIM, then S has fixed the following fixed point property:

(Fns,loc) : Whenever S = {ŝ ; s ∈ S} is aQ-non-expansive representation

of S on a weakly compact convex subset K with normal structure in a

Frechet space E, such that for all x ∈ K, the mapping s 7→ s.x : S → K

is continuous in the relative weak topology, then K contains a common

fixed point for S.

Before the proof, let us point out that the notion of an asymptotic

center we used so far, remains valid in locally convex spaces; see [47].

Proof of Theorem 3.4.13. Let Kwk be a minimal, non-empty, weakly

compact, convex and S-invariant subset of K. By virtue of lemma 2.3.4,

S defines an A-representation of S,LMC(S) on Kwk. If τ := wk and

τ̃ = τQ, then from lemma 2.3.5, there is a non-empty subset ωwk ⊂ Kwk

such that ωwk ⊂ s.ωwk
wk for all s ∈ S (1). We assert that ωwk is

a singleton. Indeed, otherwise there would be a semi-norm q ∈ Q such

that supx,y∈ωwk q(x − y) > 0 (as E is Hausdorff). On the one hand,

since normal structure and asymptotic normal structure are equivalent

on Kwk, then the asymptotic center is properly contained in Kwk. More-

over, we know already that it is non-void, weakly compact and convex;

and it is easy to see that it can be written as
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∞⋂
j=1

Kj :=
∞⋂
j=1

{x ∈ Kwk ; sup
y∈ωwk

q(x− y) ≤ r(ωwk, K
wk) +

1

j
}.

Now we show that it is invariant under the semigroup S. It is enough

to show that each Kj is S-invariant. Let j ∈ N and s ∈ S fixed. Let

x ∈ Kj fixed. Given y ∈ ωwk, using (1), let y = limα s.yα with yα ∈ ωwk.

From the Q-non-expansiveness, the weak lower semi-continuity of the

semi-norm q, we get the following inequalities :

q(s.x− y) ≤ lim inf
α

q(s.x− s.yα)

≤ lim inf
α

q(x− yα)

≤ sup
z∈ωwk

q(x− z)

≤ r(ωwk, K
wk) +

1

j

Since y is arbitrarily, then it follows that

supz∈ωwk q(s.x− z) ≤ r(ωwk, K
wk) + 1

j

which shows that s.x ∈ Kj. Therefore, the asymptotic center is S-

invariant. However, this is not possible from the minimality of Kwk.

Hence, this forces Kwk to be a single point. �

Remark 3.4.14. (Fns,loc) ⇒ (Fns). This implication means that,

if a semi-topological semigroup S possesses the fixed point property

(Fns,loc) then it does possess (Fns).

66



Remark 3.4.15. The fact that discrete left amenable semigroups pos-

sess the fixed point property (Fns,loc) follows from [49]; because for a

discrete semigroup S, its left amenability implies its left reversibility

and LMC(S) = `∞(S). However, when S is semi-topological, the left

amenability of LMC(S) does not imply the left reversibility of S, even

if Cb(S) has a left invariant mean, see [31] for details.
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CHAPTER 4

A fixed point proof of the existence of a left Haar

measure for amenable locally compact topological

groups

Existence of a left Haar measure for locally compact groups has been

proven first by A. Haar in 1933 for second countable locally compact

groups, see [7]; later, in 1940, A. Weil, proved the existence and unique-

ness (up to a multiplicative positive constant) for general locally com-

pact groups. Since then, many methods have been developed for con-

structing a left Haar measure; e.g., by using compact sets, compactly

supported functions, fixed point techniques. In the latter approach, an

application of the Ryll-Nardzewski fixed point theorem ensures the ex-

istence of a left Haar measure for compact topological groups, see [36].

For the class of abelian groups, a beautiful proof was established by A.

Izzo [34] in 1992, using the Markov-Kakutani fixed point theorem. The

existence of a left Haar measure for amenable hypergroups satisfying

a positivity property for translations was proved by Wilson by a fixed

point theorem [60].
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In this chapter, we are able to extend Izzo’s proof to a wider class of

locally compact groups that includes abelian and compact groups; the

so-called amenable locally compact groups.

Definition 4.1. A topological group, is a group G together with a Haus-

dorff topology τ such that the mappings : (g, h) 7→ g.h : G × G → G

and h 7→ h−1 : G→ G are both continuous. We say that G is a locally

compact topological group (or simply a locally compact group) if there

is a base for the neighborhoods of the identity consisting of compact sets.

Example 4.2. Any group considered as a discrete space, is a locally

compact group; the unit circle S1 in the usual topology is a locally com-

pact abelian group.

Remark 4.3. Since topological groups form a sub-class of the semi-

topological semigroups, one can talk about amenability. Except for a

locally compact group G, its amenability is equivalent to that of Cb(G).

From now on, G is an amenable locally compact group. On the normed

space Cc(G) we define a topology τ as follows :

Given a net (fγ)γ∈J of elements of Cc(G) and f ∈ Cc(G), we say that

fγ → f if there is a compact subset K of G, and γo ∈ J such that :

1. supp(f) ⊂ K and
⋃
γ≥γosupp(fγ) ⊂ K.

2. supg∈K |fγ(g)− f(g)| → 0. i.e., fγ → f uniformly on K.
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Note that this is a well-defined Hausdorff topology. Because, once we

know the convergent nets, then closed sets are known, and therefore the

topology of the space is completely determined. On the other hand, τ

is Hausdorff since it is finer that the locally convex Hausdorff topology

generated by the semi-norms pK(f) := supg∈K |f(g)|, where K runs

over all the compact subsets of G.

As readily checked, (Cc(G), τ) is a topological vector space. We de-

note by (Cc(G), τ)∗ its topological dual (which is non-trivial as it con-

tains at least evaluation mappings on Cc(G)). On (Cc(G), τ)∗ we shall

use the weak* topology.

Lemma 4.4. (A. Izzo [34]) Let G be a topological group and N be a

symmetric neighborhood of e. Then there is a subset S of G such that

for all g ∈ G, (g.N.N) ∩ S 6= ∅ and |g.N ∩ S| ≤ 1.

Lemma 4.5. Let us fix N be a relatively compact symmetric open

neighborhood of e, and let K be the collection of all non-negative func-

tionals L ∈ (Cc(G), τ)∗ with the following properties :

1. 0≤ L(f) ≤ 1 if 0≤ f ≤1 and supp(f) ⊂ g.N for some g ∈ G.

2. L(f) ≥ 1 if f ≥ 0 and f ≡ 1 on g.N.N for some g ∈ G.

Then K is a non-void weak*-compact convex subset of the topological

dual (Cc(G), τ)∗.
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Before the proof, let us point out that if the non-emptiness of K is

proved, then a functional in K is necessarily nonzero. Indeed, N.N is

compact because N.N ⊂ N.N and the product (g, h) 7→ g.h is jointly

continuous; by Urysohn’s lemma, there is f ∈ Cc(G) such that f ≡ 1

on N.N (a fortiori on N.N) and 0 ≤ f ≤ 1; therefore, any element of

K do not vanish at f by property 2. On the other hand, the convexity

of K is immediate.

Proof. (lemma 4.5) We shall prove this lemma into two steps.

• Non-emptiness of K. Let S be as in lemma 4.4, and consider the map

L(f) :=
∑

s∈S f(s). L is a well-defined bounded linear functional on

Cc(G). For the linearity, it is enough to show that L(f) is a scalar for all

f ∈ Cc(G). So let f ∈ Cc(G) fixed; then supp(f) ⊂
⋃n
i=1(gi.N) for some

gi’s in G (because {g.N ; g ∈ G} is an open covering of supp(f) which

is compact). On the other hand by lemma 1, we have |(gi.N) ∩ S| ≤ 1

for each i; so |supp(f) ∩ S| ≤ n since supp(f) ∩ S ⊂
⋃n
i=1(gi.N ∩ S).

Therefore, supp(f) ∩ S = {s1, · · · , sq} and L(f) =
∑q

i=1 f(si) ∈ R;

moreover, from its definition, L is non-negative. Next, we shall prove

its continuity. Let fγ → f be a convergent net in CcG). Let C be a

fixed compact subset of G containing supp(f) and such that, for some

γo ∈ J,
⋃
γ≥γosupp(fγ) ⊂ C and supg∈C |fγ(g) − f(g| → 0. By lemma

4.4, we have C∩S = {s1, · · · , sp} for some p ∈ N. Therefore it follows

| L(fγ−f)| ≤
∑p

j=1 |fγ(sj)−f(sj)| ≤ p. supC |fγ(x)−f(x)| → 0. Hence,

L∈ (Cc(G), τ)∗. Finally we shall show that L lies in K.

71



i. Verification of property 1. Let f ∈ Cc(G) with 0 ≤ f ≤ 1 and

supp(f) ⊂ g.N for some g. By lemma 4.4, S ∩ g.N is either empty or

reduces to {s} for some s ∈ S; so L(f) lies in [0,1].

ii. Verification of property 2. Let f ∈ Cc(G) such that : f ≥ 0 and

f ≡ 1 on g.N.N for some g. By lemma 1, S ∩ g.N.N 6= ∅. Let us pick

s ∈ S ∩ g.N.N . Then L(f) ≥ f(s) = 1. Therefore L(f) ≥ 1. Hence L

belongs to K.

• Proof of the weak* compactness of K. Let f ∈ Cc(g), f 6= 0. Then

supp(f) ⊂
⋃n
i=1(gi.N) for some g′is ∈ G. Using a partition of unity sub-

ordinated to the gi.N
′s, there are some f ′is ∈ Cc(G) such that :

a. supp(fi) ⊂ gi.N , for i = 1, · · · , n;

b. 0 ≤ fi ≤ 1, for all i = 1, · · · , n;

c. and the sum
∑

j fi ≡ 1 on supp(f).

Since f = f+ − f−, |f | = f+ + f− and the fact that 0 ≤ |f |
‖f‖ ≤ 1,

where the mappings f+ and f− are defined by : f+ := max(f, 0) and

f− := min(−f, 0); then 0 ≤ f+

‖f‖ ≤ 1 and 0 ≤ f−

‖f‖ ≤ 1. On the other

hand, we have f+ =
∑

j f
+.fi with supp(f+.fi) subset of gi.N for all

i. The same equality holds with f− instead of f+. Thus, for all L∈ K,

{ L(f+),L(f−)} ⊂ [0, n.‖f‖]⇒ |L(f)| ≤ n.‖f‖ (1).

Therefore we conclude that δf := supL∈K |L(f)| < ∞, for all f in

Cc(G). On the other hand, we introduce the following Hausdorff space :

K :=
∏

f∈Cc(G)

[−δf , δf ]
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which is compact in the product topology by Tychonoff’s theorem. Now

we define a mapping

Ψ : K → K, ϕ 7→ Ψ(ϕ) := (ϕ(f))f∈Cc(G).

Given f in Cc(G), let πf : K → R denote the f th projection. Then

πf ◦Ψ (f th component of Ψ) is continuous; because, if ϕα → ϕ weakly*,

then πf ◦ ψ(ϕα) = ϕα(f) → ϕ(f) = πf ◦ Ψ(ϕ); hence the continu-

ity of Ψ follows. On the other hand, Ψ is one-to-one by construction;

which implies that Ψ : K → Ψ(K) is a bijective continuous map. The

continuity of its inverse Ψ−1 : Ψ(K) → K is straightforward because,

Ψ(ϕα) → Ψ(ϕ) iff πf ◦ Ψ(ϕα) → πf ◦ Ψ(ϕ) for all f ∈ Cc(G); and this

is equivalent to ϕα → ϕ weak*. Therefore, Ψ is a homeomorphism.

Finally, it remains to prove that the range Ψ(K) is closed in K. Let

(Ψ(ϕα))α be a net in Ψ(K) converging to (ϕf)f∈Cc(G) in K; and put

ϕ(f) := ϕf for all f ∈ Cc(G). Then ϕ is linear and ϕα → ϕ weak*;

moreover, the fact that ϕα → ϕ implies ϕ satisfies all the properties 1

and 2 of K and therefore, it remains to show that ϕ is continuous. For

the continuity, let f ∈ Cc(G) and (fγ)γ∈Γ be a net in Cc(G) converging

to f . Let C be the corresponding compact subset of G in the definition

of convergence of nets in Cc(G); and let N be a relatively compact and

symmetric neighborhood of e. Then C ⊂
⋃n
i=1 gi.N for some g′is ∈ G

(by compactness of C). Now we fix γo ∈ Γ such that supp(f) ⊂ C and

γ ≥ γo ⇒ supp(fγ) ⊂ C.
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Remember that ϕα → ϕ weakly* on Cc(G), and each ϕα lies in K. Thus

we have for all α and γ fixed

|ϕα(fγ − f)| ≤ ϕα(|fγ − f |) ≤ n. sup
g∈C
|fγ(g)− f(g)|, ∀ γ ≥ γo

The first inequality holds because each ϕα is a positive linear functional;

and the second one follows from relation (1). By passing to the limit in

α, we obtain then :

|ϕ(fγ − f)| ≤ ϕ(|fγ − f |) ≤ n. sup
g∈C
|fγ(g)− f(g)|, ∀ γ ≥ γo

Therefore ϕ(fγ) → ϕ(f); and this shows that ϕ ∈ K and we have

Ψ(ϕ) = (ϕf)f∈Cc(G). Hence, the limit (ϕf)f∈Cc(G) lies in the range Ψ(K)

which shows that the image of Ψ is a closed subset of the compact space

K. Hence, K is compact since homeomorphic to a compact space. �

Remark 4.6. By considering the algebraic dual of Cc(G) with its

weak* topology, lemma 4.5 was proved in [34].

For all g ∈ G, let us define  Lg : (Cc(G), τ)∗ → (Cc(G), τ)∗ by the

equation  Lg(ϕ)(f) := ϕ(`gf) for all g ∈ G. As readily checked, each

 Lg is a well-defined weak*-weak* continuous mapping. Consider K the

weak* compact convex set defined in lemma 4.5; then K is invariant

under each  Lg (i.e.,  Lg(K) ⊂ K for all g); in fact, let ϕ ∈ K and

h ∈ G fixed. For condition 1, let f ∈ Cc(G) such that f(G) ⊂[0,1]
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and for some g ∈ G, supp(f) ⊂ g.N ; then `hf ∈ Cc(G), `hf(G) ∈[0,1]

and supp(`hf) ⊂ h−1g.N ; therefore  Lh(ϕ)(f) = ϕ(`hf) ∈[0,1]. For con-

dition (2), let f ∈ Cc(G) such that f ≥ 0 and f ≡ 1 on g.N.N for

some g ∈ G; then `hf ∈ Cc(G), `hf ≥ 0 and `hf ≡ 1 on h−1g.N.N ;

thus,  Lh(ϕ)(f) = ϕ(`hf) ≥ 1. On the other hand, since non-negativity

property is preserved by translations, it follows that  Lh(ϕ) ≥ 0. Hence,

 Lh(ϕ) ∈ K. Finally for the weak* continuity, let g ∈ G and (ϕγ)γ ⊂ K

be a weak* convergent net with limit ϕ, then for all f ∈ Cc(G) we have:

| Lh(ϕγ)(f)−  Lh(ϕ)(f)| = |ϕγ(`gf)− ϕ(`gf)| → 0.

Therefore  Lh(ϕγ) →  Lh(ϕ) weakly* and the weak* continuity follows.

Now let us fix ϕ ∈ K; for all f ∈ Cc(G) let  Lfϕ : G → R defined

by  Lfϕ(g) =  Lg(ϕ)(f) := ϕ(`gf). Then one can define a mapping ξ :

G×K → K by letting ξ(g, ϕ) := g.ϕ, with g.ϕ(f) :=  Lfϕ(g). Then ξ is

a well-defined action of G on K; indeed

ξ(gh, ϕ)(f) = (gh).ϕ(f) = ϕ(`ghf)

= ϕ(`h ◦ `g(f)) =  L`gfϕ (h)

= h.ϕ(`gf) = g.(h.ϕ)(f)

= ξ(g, ξ(h, ϕ))(f)

Next step, we show that  Lfϕ lies in Cb(G) for all f in Cc(G) and ϕ ∈ K.

Let us fix f ∈ Cc(G) and ϕ ∈ K.

• Continuity of  Lfϕ. If gγ → g is a convergent net in G, by continuity of
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ϕ, it is enough to show that `gγf → `gf in (Cc(G), τ). Let No be a fix

compact neighborhood of e and let γo such that γ ≥ γo ⇒ g−1
γ ∈ g−1.No.

Next, we define Kf := g−1.No.supp(f) (note that Kf is a compact subset

of G by the joint continuity of (h, h′) 7→ h.h′ : G× → G). We have

[
⋃
γ≥γosupp(`gγf)]∪ supp(`gf) ⊂ Kf .

Therefore, suph∈Kf
|`gγf(h)−`gf(h)| ≤ ‖`gγf−`gf‖. On the other hand,

as Cc(G) ⊂ LUC(G) (cf. [23]), it follows that ‖`gγf − `gf‖ → 0; so a

fortiori `gγf → `gf uniformly on Kf . Thus, `gγf → `gf in (Cc(G), τ).

• Boundedness.  Lfϕ is bounded because supp(f) ⊂
⋃p
i=1 gi.No for some

g′is in G; and together with relation (1) (see the proof of lemma 4.5) we

get supg∈G
∣∣ Lfϕ(g)

∣∣ ≤ p. ‖f‖ <∞. Hence,  Lfϕ ∈ Cb(G).

In summary, we have shown that ξ : G × K → K, (g, ϕ) 7→ g.ϕ in-

duces a weak* separately continuous representation of G on K such

that for all ϕ ∈ K and f ∈ Cc(G) the mapping  Lfϕ lies in Cb(G).

Lemma 4.7. The representation S = {ξ(g, .) g ∈ G} of G on K

possesses a common fixed point in K. That is, there exists ϕ̃ ∈ K

such that g.ϕ̃ = ϕ̃ for all g ∈ G or equivalently, ϕ̃(`gf) = ϕ̃(f) for all

f ∈ Cc(G) and for all g ∈ G.

Proof. Let m be an invariant mean on Cb(G) (G is amenable). Let

(mγ)γ∈J be a net of finite means on Cb(G) converging pointwise to m;
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with mγ =
∑nγ

i=1 t
γ
i δgγi ; where tγi ∈[0,1],

∑nγ
i=1 t

γ
i = 1. Pick ϕ ∈ K and de-

fine ϕγ :=
∑nγ

i=1 t
γ
i  Lgγi (ϕ), for all γ ∈ J . Then we define a net (ϕγ)γ∈J of

elements of K due to its convexity. By compactness, (ϕγ) has a conver-

gent subnet (ϕγt)t∈T . So let ϕ̃ ∈ K be its weak*-limit. Given f ∈ Cc(G)

and g ∈ G, from a simple calculation, we get `g( Lfϕ̃) =  L
`gf
ϕ̃ . Therefore

g.ϕ̃(f) = lim
t
ϕγt(`gf) = lim

t
mγt( L`gfϕ )

= m( L`gfϕ ) = m(`g  L
f
ϕ)

= m( Lfϕ) = lim
t
mγt( Lfϕ)

= lim
t
ϕγt(f) = ϕ̃(f)

Hence, ϕ̃ ∈ K and satisfies g.ϕ̃ = ϕ̃ for all g ∈ G. �

Definition 4.8. A Haar measure on G is a non-negative nonzero Borel

measure µ on the Borel sets of G with the following properties :

1. µ is left invariant, i.e., µ(g.E) = µ(E), for all g and any Borel set E.

2. µ(K) <∞ for all compact set K ⊂ G.

3. µ is regular, i.e., both

inner regular : for all open set O ⊂ G,

µ(O) = sup{µ(K) ;K ⊂ O,K compact}.

outer regular : for all Borel set E ⊂ G,

µ(E) = inf{µ(O) ;O open and E ⊂ O}.
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Example 4.9. On the additive group Rn, a Haar measure is given by

the Lebesgue measure; if G is any countable group, then a Haar measure

is given by the counting measure.

Now we are ready to prove the existence of a left Haar measure for

amenable locally compact groups.

Proof. Let ϕ̃ ∈ K be as in lemma 4.7. From the properties of K, we

know that ϕ̃ is a nonnegative and nonzero linear functional on Cc(G); so

by the Riesz representation theorem, there is a unique regular nonzero

radon measure µ on the Borel sets of G such that : ϕ̃(f) =
∫
G f dµ for

all f ∈ Cc(G) and for all open set O in G, µ(O) = sup{ϕ̃(f) ; f ∈ Cc(G),

supp(f) ⊂ O}. To finish, we show into two steps that µ is left invariant.

• For open sets. Let O be open and g ∈ G. We fix f ∈ Cc(G) such

that supp(f) ⊂ g.O. Then supp(`gf) ⊂ O and ϕ̃(f) = ϕ̃(`gf) ≤ µ(O).

Therefore it follows µ(g.O) ≤ µ(O) by taking the supremum over all

such f . Thus, we have µ(hg.O) ≤ µ(g.O) for all h ∈ G and this implies

µ(O) ≤ µ(g.O). Hence µ(g.O) = µ(O) for all open set O and g ∈ G.

• For Borel sets. Let E be a Borel set and g ∈ G. From the outer regu-

larity, if O is an open set containing g.E then µ(E) ≤ µ(g−1O) = µ(O)

(because E ⊂ g−1.O which is open). Thus, µ(E) ≤ µ(g.E) by taking the

infimum over all such O. As before, by interchanging E with g.E and g

with g−1, we get µ(g.E) ≤ µ(g−1(g.E)) = µ(E)⇒ µ(g.E) = µ(E). �
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Remark 4.10. For the proof of the uniqueness of the Haar measure

on G refer to [22]. We note that, the word “uniqueness” has to be un-

derstood in the following way : if there are two Haar measures µ and ν

on G then, there is a multiplicative positive constant α ∈ (0,∞) such

that µ = α.ν.

Remark 4.11. Our proof includes both families of topological groups

namely, compact groups and commutative groups. In fact, it is well-

known that commutative semigroups are amenable [5], so a fortiori

abelian groups; for a compact topological group G, it is known that

Cb(G) = AP(G) the Banach subspace of Cb(G) of all almost periodic

functions on G; and an application of the Ryll-Nardzewski fixed point

theorem, see [11], ensures the existence of a invariant mean on AP(G)

and so on Cb(G).
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CHAPTER 5

Remarks and Open Problems

In this last chapter, we make some remarks on our work and also raise

some natural questions related to some results obtained in this thesis.

5.1 Remarks on chapter 2 and related problems

• Although uniformly convex spaces are strictly convex, the proof of

theorem 2.2.1 does not require this geometric property; but only the

fact that the characteristic of convexity of E is zero. Recall that the

characteristic of convexity is defined by ε(E) = sup{ε ≥ 0 ; δ(ε) = 0},

where δ : [0,2] → [0,1] given by

δ(ε) := inf{1− ‖x+y
2 ‖ ; ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε}

is the modulus of convexity of E. A natural question to raise is the

following :

Question 1 : Is theorem 2.2.1 still true if the underlying Banach space

is strictly convex ?
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• According to Alspach’s counter example, one cannot delete the normal

structure condition in theorem 2.3.3. However, we have the following :

Question 2 : Is theorem 2.3.3 still true (even for a single map) if

we replace normal structure by C(K)+-continuity ?

5.2 Remarks on chapter 3 and related problems

• We proved that theorem 3.1.1 holds for σ-LA, seq-LA and separable

left reversible semi-topological semigroups. So naturally we may ask :

Question 3 : Does theorem 3.1.1 still hold without a separability as-

sumption ?

• Theorem 3.1.1 is a contribution to a conjecture of Lau whether left

amenability of semi-topological semigroups can be characterized by the

fixed point property (F ∗). So far, the following partial answers have

been obtained in the literature :

• Commutative semigroups possess the property (F ∗), see [6].

• A weak version of (F ∗) obtained by assuming K to be norm sepa-

rable, is satisfied by left amenable semi-topological semigroups and

discrete left subamenable semigroups, cf. [46].
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• Left amenable semi-topological semigroups if K possesses normal

structure, see [45].

• Left reversible semi-topological semigroups if the predual is an M-

embedded Banach space, see [45].

Question 4 : Is the topology τ in theorem 3.1.1 minimal ? In other

words, is there a locally convex topology τ ′ ⊂ τ with the same property

as τ ?

5.3 Remarks on chapter 4 with an open question

• The approach we used for proving the existence of a left Haar measure

for amenable groups does not work for general locally compact groups

unfortunately; because, given a non-amenable group G, it is a well-

known fact that WAP(G) (the Banach subspace of Cb(G) consisting of

those functions whose left orbits are relatively compact in Cb(G) in the

weak topology) has a unique invariant mean m which vanishes at any

function in Cc(G), cf. [11]. For other details about almost periodicity

see [5] and [16]. With this observation, the following question is natural:

Question 5 : Is there a fixed point proof of a left Haar measure for any

locally compact groups ?
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