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DESIGN STRENGTHS OF STEEL BEAM-COLUMNS

SUMMARY
Many of the deficiencies of the present Canadian rules for
designing steel beam—columns can be removed if different formulations
are used for designing against in-plane failure and out-of-plane

buckling.

An extension of the present use of non-linear elastic analysis
methods allows a common formulation for the in-plane strengths of braced
and unbraced beam-columns, and generally leads to more accurate

predictions than the present forms.

Two alternative methods are developed for improving the design
rules for estimating the out—-of-plane strengths of beam-columns. The
first of these retains the present familiar form, while the second uses

a new form which will lead to significant economies in some cases.

A method is also proposed for combining the separate formulations
for the in-plane and out-of-plane strengths so as to estimate the

biaxial bending resistances of beam-columns.

KEYWORDS: Beams, buckling, columns, flexure, steel, structural design,

structural engineering, torsion.



1. INTRODUCTION

Recent research (1,2,3,5) into the inelastic flexural-torsional
buckling of steel beam-columns has shown that the present design
interaction equation used in the Canadian Standard CAN-S16.1 (4) is
unnecessarily conservative in many cases. This conservatism arises from
compromises made to ensure that a single equation will safely model both
in-plane failure by bending and buckling, and out-of-plane flexural-
torsional buckling. In addition, difficulties arise when interpreting
the individual terms of the interaction equation, which may have
different meanings in eacﬁJfailure mode. If separate design criteria

were provided, then each could be improved and clarified independently

so as to model its failure mode more accurately.

The purpose of this paper is to review the methods given in the
present Canadian Standard for designing steel beam-columns against in-
plane failure and out-of-plane buckling, and to suggest improvements and
clarifications. For this purpose, the discussion will be confined to
compact I-section beam-columns which are bent only in the planes of
their webs. For simplicity, the resistance factor will be omitted, that

is¢ = 1.



2. REVIEW OF PRESENT DESIGN RULES

2.1 Structural Analysis for Member Actions

The Canadian Standard (4) generally permits the use of elastic
analysis to determine the member actions in frames. It is desirable
that the elastic analysis should incorporate any non-linear stability
effects which significantly modify the member actions from those

predicted by a linear elastic analysis.

For frames which may sway ( Fig. 1(a)) as a result of horizontal
forces, initial out-of-plumb, or asymmetry in the structure or its
gravity loading, the Standard permits two types of elastic analysis. 1In
the first, the non-linear stability effects on the member end moments
M *, Mz* and forces C* ( Fig. 2) are included, either as a result of an
exact analysis or by means of an approximation. In the second, the
Standard implies that the linear elastic end moments Ml’ M2 and forces C

may be used in conjunction with an estimate Cex of the member force at

s

elastic frame sway buckling to approximate the non-linear actions by
[1] Ck ~ C

* = M -
[2] M, /(1 -cic )
These methods are generally satisfactory for predicting the elastic
member end actions, although Eq. [2] may be unnecessarily conservative

when the linear elastic deflected shape of the frame is markedly

dissimilar from its elastic buckled shape. However, they do not always



predict the maximum moment in the member length.

A similar result occurs for the members of frames which are
effectively rigidly braced against sway ( Fig. 1( b)), for which the
Standard permits a linear elastic analysis to be used to determine the
member actions Mp, Ms, and C. The non-linear effects of stability on
the moment distributions of the members of sway and braced frames are
allowed for approximately in the member resistance rules discussed in

the following sub-sections.

Finally, it should be pointed out that elastic analyses can at best
only give close approximations to the member behaviour at failure, since
yielding may change the stiffnesses of the members, and alter the moment
and force distributions (16,17,18). However the use of an inelastic
non-linear method of structural analysis is not yet a practical design

procedure.

2.2 Cross-Section Resistance

The cross—-section resistance of a compact beam—column is reached
when the cross-section becomes fully plastic (7,10,12,14). For an I-
section beam-column bent in the plane yz of the web, this condition is

approximated in the Standard by

M *
[3] %_ +0.85 £~ < 1, and
y Px
M *
(4] M—x— < 1, in which

Px



[

(5] C.=FA

is the "squash” load,

[ 6 ] MPX = Fny

is the plastic moment of the section, A and Zx are the area and the
plastic modulus of the cross—section, and Fy is the yield stress. These
approximations are of reasonable accuracy (7,10,12,14). However, the
Standard allows Mx to be used instead of Mx* when the linear elastic

method is used to analyse the structure. This is unconservative.

2.3 In-Plane Stability

2.3.1 Beam—-Columns Prevented From Swaying

Beam-columns which are prevented from swaying may fail in-plane by
a combination of in-plane buckling and bending effects (7,10,12,14).

The Standard approximates this condition by

c Y x

[7] + = <1, and
Crb MPx(1 C/Cexb)

[8] Wy = 0.6 - 0.48 £ 0.4

in which Crb is the column resistance of the braced member, C,,4 is the
axial force at elastic buckling of the braced member, and § is the ratio
of the lesser and greater end moments (B = -1 for uniform bending, and f

= +1 for double curvature bending).



The term wxMx/(l - C/Cexb) provides an approximation for the
elastic effects of in-plane stability on beam-columns with unequal end
moments (9). It is known to lead to reasonably accurate strength
estimates for single curvature bending (8 < 0). However, its
predictions for double curvature bending (B > 0.5) are somewhat erratic
(7,10,12,14), being rather conservative for moderate moments, and
optimistic for high moments, although this latter problem is avoided
when the cross-section resistance limit given by Eq. [4] and [5] is
satisfied. The conservatism is due in part to the cut-off value of Wt

= 0.4, which is based on the out-of-plane buckling behaviour of beams.

Although it is clear from the in-plane nature of the derivation
(7,10,12,14) of Eq. [7] and [8] that the value used for Crb should be

the in-plane value C this is not made clear in the Standard, and a

rxb’

common practice is to use the lower of Crxb and the out-of plane value
Cry’ When Cry is the lower, then this practice is unnecessarily

conservative.

2.3.2 Sway Beam—-Columns

2.3.2.1 Linear Elastic Analysis

When the end moments on a sway beam—-column are determined by linear
elastic analysis, then the Standard requires its resistance to in-plane

stability failure to be approximated by modifying Eq. [7] and [8] to

C wstx
[91] + = =1, and
C MPX(I c/cex;)

rs



[10a] =1.0 for -1 < <0, or

€
i

Xs

0.85 for 0 < B < 1

[10b] o

Comparisons with more precise analyses (16,17,19) indicate that
these equations are generally satisfactory, except for some conservatism

for double curvature bending under moderate moments.

2.3.2.2 Non-Linear Elastic Analysis

When the end moments Mx* in a sway beam~column are obtained by non-
linear analysis, then the Standard permits the use of Eq. [7,8] for a
braced beam-column with M_* substituted for My, instead of Eq. [9,10]

for a sway beam—column, so that

w M *

C xb 'x
{11] + —~ < 1
Crb MPx (1 C/Cebe

An attempt might be made to justify this by the argument that since
the effects of sway buckling are included in the non-linear analysis for
Mx*’ only the effects of braced mode buckling need be incorporated into

the design interaction equation.

However, there are a number of difficulties created by the use of
Eq. [11]. First of all, the allowance for sway buckling is indirect,
and appears to disappear when M, o= 0. It is often not recognised that

the second term of Eq. [11] does not disappear when M, = 0, but

approaches a non-zero value so that the apparent limiting solution of



Eq. [11] for Mx =0 is C = Cexs’ and not C = Crb'

Because the apparent limit of Eq. [11] of C = C for My = 0 is

exs
greater than the design strength CrXS of a sway column, it appears that
the effects of residual stresses and geometrical imperfections which

reduce Coxs to C are omitted from Eq. [l1]. Thus the beam-column

rxs

rule at its limit appears to be inconsistent with the column rule, and
there appears to be an overestimate of strength which is significant for

intermediate length members with small bending actions.

It is not obvious that these difficulties are avoided by the
incorporation of an initial out-of-plumb into the calculation of the
non-linear MX*. It is the initial out-of-plumb which leaves a non-zero
Mx* effect even when My = 0, and which is amplified to very high values

as the sway buckling load Cox is approached. Even so, the beam—column

s

strength for Mx = 0 is not generally equal to the column strength Crxs’
because the out—-of-plumb value given in the Standard is inconsistent

with the reduction from Cexs to Cryg-

Finally, Eq. [l1] appears to suggest that the braced axial load

capacity C.., can be approached for beam-columns at low values of M,*.

This is misleading, because amplification of the out-of-plumb effects
induces substantial moments M _*, so that the strength values indicated

at low values of Mx* are fictitious.



P

2.4 Qut-of-Plane Buckling

The out-of-plane strength of a beam-column bent in the plane of its
web 1s closely related to its resistance to flexural-torsional buckling
(13,14). The Standard provides a method of designing against out-of-
plane failure by modifying the in-plane stability equations to

w M
X X

c
[12] A
Cr er(1 - C/Cex)

<1

in which er is the beam resistance of the member, which may be reduced
below the full plastic moment Mp by beam flexural-torsional buckling

effects.

This equation is unsatisfactory for a number of reasons. First of
all, it is clear from its derivation (14) that the out-of-plane value
Cry should be used for C,.. However, when C,., is less than Cry’ as it

often is for unbraced frames which have out-of-plane end restraints,

then the use of the lower value is unnecessarily conservative.

Secondly, the value used for Wy is a compromise between the effects
of in~-plane beam-column stability and out-of-plane beam buckling.
Recent research (6) has shown that the value of w, for the flexural-
torsional buckling of beam—columns should vary with the axial load C,
and that the general form of Eq. [12] is unsatisfactory. Further, there
is no evidence to support the use of the in-plane sway values of W

given by Eq. [10] for the out-of-plane buckling of beam—columns which

have out-of-plane end restraints.



Finally, the value of w is used twice in Eq.v[12], once by its
explicit use, and once by its implicit use in the determination of

M Thus Eq. [12] does not reduce to the correct end point My = M.,

rx* 3

when C = 0. In this respect it is of interest to note that a proposal

has been made (15) to determine the inelastic beam strength (C = 0) from

M
rxXu
[13] My = 0 } My
X
in which M gy 18 the strength of a beam in uniform bending (B = ~1).

3. RECENT RESEARCH ON OUT-OF-PLANE BUCKLING

The out-of-plane beam-column design rule of the Canadian Standard

is based on the commonly used "linear” approximation (14) for elastic

buckling
w, M
C b x =
[14] ¢ *u (i-cic ) land
ey eu ex
[15] ljw, = 1.75 + 1.058 + 0.3{52 } 2.3

in which M, 6 is the elastic buckling resistance of a beam in uniform

bending

r/(c ¢ )

[16] M
eu 0 ' ey ez

and C,, is the elastic torsional buckling load of a column



2 2y, 2
[17] C,, = (63 +n EL_/L )/ro

A recent study (6) has indicated that Eq. [14,15] are sometimes
unnecessarily conservative, especially for high moment gradients (B8 >

0.5). Instead, a return to the “"parabolic” approximation

wbch 2
[18] ng;;—-) =(1 - c/cey)(1 - c/cez)

has been suggested, with the moment gradient factor changed to

3 3
[19] wy. = (1-)/2 + {(148)7/8}{0.22(c/c_ )

2
- o.103(c/cey) - 0.138(C/Cey) + 0.378}

or more simply to

3
L 1B (148 -
[20] ot ( 5 ) {o0.4 0.23(c/cey)}

A series of studies of the inelastic buckling of beam—columns

(1,2,3,5) has led to an adaptation of this recommendation to

2
wbch
(21} f*jg——) = (1 - C/CI)(l - c/cez) and
I
3
[22] 0, = l§§-+ (lgﬁ) {0.4 - 0.23 (c/c)))

in which MI and C; are inelastic buckling resistances given by



"px

|,.F

[23] = 1.008 - 0.245 =— * 1.0, and
M M
Px eu
c, c c
[24] g = 1.035 - 0.181 ¥ (g&) - 0.128 &= » 1.0
y ey ey

These recommendations ignore any non-linear in-plane effects, since
these were small for the beam—columns studied. However, when there are
likely to be significant in-plane prebuckling deflections, then it would

be appropriate to replace M_ by M /(1 - C/Cqy) so that

2
w, M
2] ey s (- -, or
eu ex ey ez
2
wbch C C
[26] { > b =0 -FH0 -39
MI(1 C/Cex) I CI cez

for elastic or inelastic buckling, respectively.

For design purposes, these equations need to be reduced for the
effects of initial imperfections. It 1s suggested that this can be

accomplished by using

w, M * 2
(271 (5%} (-0 -5, and
rxu ry ez
3
[28] o, =52+ (B8 {04 - 0.23 ;&

ry

This equation is significantly different from the single equation ( Eq.

[12]) often used for both in-plane stability and out-of-plane



buckling. It is therefore suggested that in-plane stability should be

checked separately.

4. PROPOSALS FOR NEW DESIGN RULES

4.1 General

The reviews in the preceding sections of the Canadian design rules
for the non-linear structural analysis, cross—section resistance, in-
plane stability, and out-of-plane buckling of beam-columns have
indicated a number of areas where improvements can be made. The
following sub-sections present and discuss proposals for these

improvements.

These proposals include a general application of the methods of
non-linear elastic frame analysis to estimate the maximum elastic moment
M* in a beam-column ( Fig. 2). The use of this maximum moment then
allows the in-plane strength rules for braced and unbraced members to be
unified in a new form. Separate rules based on recent research are
proposed for out-of-plane buckling, and a method is suggested for
combining the in-plane and out-of-plane rules to provide rules for

biaxial bending.

4.2 Non-Linear Structural Analysis

4.2.1 Sway Frames
The present design rules for sway frames include an approximate
cyclic method of non-linear elastic analysis in which artificial storey

shears are computed from the axial forces and the out—of-plumb and sway



deflections caused by transverse loads. These are then used to
approximate the non-linear elastic end moments, Ml* and Mz* (Fig. 2). A
more precise method of non-linear elastic analysis is also permitted

which formulates equilibrium for the deformed structure.

It is suggested that it should also be permissible to estimate the
end moments M;*, My* by using Eq. [2], since this method is well known,
widely used, and already implied in the present strength design rules.
This method is accurate when the linear elastic deflected shape is the

same as the elastic buckled shape, and is usually conservative.

It is also proposed that the maximum non-linear elastic moment M*
in the member ( Fig. 2) should be estimated. For many sway frames, this
will be the larger of the end moments Ml*’ M2*, but not always. For a
member with end moments M;¥*, BMl* and no transverse loads, the maximum

moment is given by

[29] M+ = Ml*' while p > -~ cos @« , and
[30] M* = Ml* /{1 + (B cosec a + cot a)2} otherwise, where
[31] a = /{CLZ/EIX}

These exact solutions are often approximated by

2,2
%k = % -
[32] Mr = o M, /(1 - ¢cL/n EIX)



where W is given by Eq. [8]. Note that these formulations are
consigtent with using an effective length factor of unity in the elastic
buckling load Cox® This is appropriate because the use of the non-
linear end moments Ml*, M2* allows the member to be analysed for M*

independently of the rest of the structure.

4.2.2 Frames Prevented From Swaying

No specific provision is made in the present design rules for using
a non-linear elastic analysis to estimate the maximum end moments Ml*’
MZ* in a frame prevented from swaying. This is because the application
of the cyclic non-linear analysis method would lead in this case to the
same result as a linear elastic analysis, and so it is appropriate to

use the linear end moments, M1 and MZ’
It is proposed that the maximum non-linear elastic moment M* in a
non-sway member should be determined in the same way as for sway

members, using Eq. [24-32] for members with no transverse loads.

4.3 In-Plane Strength

The in-plane behaviour of compact beam—columns with end moments has
been investigated theoretically and experimentally (8,9,17,19). Their
predicted ultimate strengths are usually presented as interaction curves
which vary from the column strength C,. when there are no bending
actions to the beam strength MPx when there is no axial force, as shown

7/

in Fig. 3. These interaction curves are often (8,9) but not always



-

(16,17) presented using the greater linear elastic end moment M.
However, a more meaningful comparison can be made when the maximum non-
linear elastic moment M* is used, as shown in Fig. 3. The interaction
curves fall within the bounds of nominal first yield and full
plasticity, as shown in Fig. 3, and are terminated by the column
strength Crx and the beam strength Mp,. The shapes of the predicted
curves typically vary between extremes which depend on the ratio B of
the non-linear end moments Ml* and Mz*, but which are practically
independent of the bracing of the frame, except insofar as this
influences the column strength Cox+ For uniform bending (B = -1) the
curves are almost linear, but for double curvature bending (B = +1) the
curves are approximately parabolic, and approach or reach the full

plasticity limit.

The reasons for this dependence on the end moment ratio B are
illustrated in Fig. 4. For beam—columns in uniform bending (P = -1),
the maximum moment results from the combined effects of the end moments
and the moments caused by the axial force C and the initial crookedness
or out—of-plumb v, and deflection v. The maximum strength is reached
after first yield because of the plastic reserve of strength, but before

the full plasticity condition can be reached.

On the other hand, the maximum non~linear moment M* in a beam—
column in double curvature bending (B = +1) is virtually unaffected by
moments caused by axial force and deflection. Thus the maximum strength

of a member with moderate axial force is reached when M* approaches the



full plasticity condition. However, when the member has a high axial
force, the moments caused by initial crookedness or out-of-plumb v,
become important, especially as the axial force approaches the column

strength C__, which therefore forms an upper bound to its strength.

It is proposed herein that the member strength should be
approximated by a cubic interpolation between linear and parabolic

limits, and given by

M * 3 3 1/2
331 Fch-EH1a-H+E) -8 s
Px rx rx

but should not exceed the plasticity limits defined by
* <

[34] M /MPx 1, and
% < - .

[35] ME /M, (1 c/cy) /0.85

This leads to the set of curves shown in Fig. 5, which agree more
closely with the research predictions than do the present design

rules. Further, these curves may be used for all beam-columns with end
moments, because the use of Ml* and BMI*, to calculate M* allows the

member to be considered independently of the frame action.

It should be pointed out that some research predictions (16,17) are
significantly higher than those given by Eq. [33], especially for

members with low moments. These result principally from inelastic



member stiffness changes, which lead to higher end restraints in
indeterminate frames than those which can be predicted by non-linear
elastic analysis (18). Thus the proposed rules may be improved further,
provided a simple method can be found for non-linear inelastic

analysis. However, this is beyond the scope of the present paper, and

should be the subject of future research.

4.4 Qut-of-Plane Buckling

The proposed separation of the design rules for in-plane strength

and out-of-plane buckling allows the out-of-plane rule to be improved to

€y rxu
[36] MX*<(1-C ) —

ry X

} MPx

where w_ is given by Eq. [8], and M., is the beam strength (Cc=0) for
uniform bending (B8=-1), which includes any lateral buckling reductions
below M,.- This proposal satisfies the criticisms of the present rule

made in Section 2.4.

Alternatively, the results of recent research ( see Section 3) may
be used to further improve the out-of-plane strength formulation to that

of Eq. [27,28].

4.5 Biaxial Bending

For beam-columns which are bent biaxially about both principal
axes, it 1s expected that the strength may be approximated by the linear

interaction equation



(37]

in which M. o is the lower of the design strengths of the beam—column
bent about the x axis (My* = 0) determined from Sections 4.3 and 4.4 for

in-plane and out-of-plane behaviour, and M. , is correspondingly defined

yo

for the beam-column when bent about the y axis (MX* = 0).

Linear interaction equations of this type are generally

conservative, and it may be advantageous to develop non-linear equations

of the form

Mx* X M * y
[38] G +GE) <1
rxo ryo

The powers n, and Ny in this equation will need to be determined in the

light of available research findings on the inelastic biaxial bending

strength of beam-columns.

5. CONCLUSIONS

A review of the design rules of the present Canadian Standard (4)
for steel beam—columns bent about the x axis reveals a number of
deficiencies. Many of these arise from compromises made to allow a
single equation to represent the two different failure modes of in-plane
stability and out-of-plane buckling. Recent research has indicated that
a significantly different formulation is desirable for members which

fail by out-of-plane buckling. Accordingly, it is proposed that



different methods should be used to represent the resistances to these

two failure modes.

An examination of research findings demonstrates that the in-plane
strengths of braced and unbraced beam-columns may be expressed in a
common form, provided that any differences in their column strengths are
accounted for. This common form requires an estimate to be made of the
maximum non-linear elastic moment in the beam—column, and it is proposed
that this could be made by a simple extension of the present explicit
and implicit methods of the standard. A simple computational procedure
is then developed for estimating the in-plane strength, which generally

leads to more accurate predictions than the present methods.

Two alternative methods are developed for improving the design
rules for estimating the out-of-plane strengths of beam-columns. The
first of these retains the present familiar form, while the second uses
a new form which will lead to significant economies for beam-columns
with high moment gradients and moderate axial loads. Finally, a method
is proposed for combining the separate formulations for the in-plane and
out-of-plane strengths so as to estimate the resistance of a beam—-column

to biaxial bending.
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APPENDIX IT - NOTATION

C*

ex’ ey

Cexb>Cexs

Crb’crs
Crx’cty

Crxb>Crxs

* *
Ml ,M2

eu

Cross—sectional area

Axial compression force

Value determined for C by non-linear elastic analysis

Elastic buckling loads for flexure about X,y axes

Values of C,, for braced and sway columns
Elastic torsional buckling load

Inelastic value of Cey
Resistance to axial compression

Values of Cr for braced and swéy columns
Values of Cr for failure about x,y axes
Values of C,, for braced and sway columns
Squash load

Reduced full plastic load

Young's modulus of elasticity

Yield stress

Shear modulus of elasticity

Warping section constant

Second moments of area about x,y axes

Torsion section constant

Member length

End moments determined by linear elastic analysis
End moments determined by non-linear elastic analysis

Elastic buckling moment for uniform bending

Inelastic value of Meu



X

rx

Ir'Xo

rXxu

ryo

Full plastic moment for bending about x axis
Resistance to bending about x axis
Beam-column moment resistance when My* =0
Resistance to uniform bending about x axis

Beam—column moment resistance when Mx* = 0

Moments about x,y axes determined by linear elastic analysis

Maximum non-linear elastic moments about x,y axes
Moment at nominal first yield for bending about x axis
Polar radius of gyration = /{(Ix + Iy)/A}

Deflection

Initial crookedness or out—of-plumb

Principal axes perpendicular to and in plane of web
Distance along centroidal axis

Plastic section modulus about x axis

2
= v{cL“/E1_}
X
Ratio of non-linear elastic end moments
Powers for biaxial bending interaction equation
Moment gradient factor for beams
Moment gradient factor for bending about x axis

Values of w  for braced and sway beam—columns

Moment gradient factor for flexural-torsional buckling of

beam-columns



(b) Rigidly Braced

Fig. 1. Beam-Columns
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Fig. 3. Analytical Predictions of Beam-Column Strength



.............. M effect
_________ Cv effect
M* effect
— M*+ CVO
Buckling
Actual

- -
“ e __———_———-——__

e First yield
o Strength

Deflection
Fig. 4. Load-Deflection Behaviour



Fig. 5. Proposed In-Plane Strengths





