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Abstract

This thesis is dedicated to the study of quantum phase transitions in 2D Dirac semimet-

als. In Chapter 1, we first briefly review how Dirac fermions emerge in condensed matter

systems and then briefly review the physics of quantum phase transitions. Chapter 2 is

devoted to the field-theoretic study of the isotropic-nematic phase transition on the surface

of a 3D topological insulator with a single Dirac cone in its band structure. Unlike spin-

degenerate Fermi liquids, due to the spin-orbit-coupled nature of topological insulators, the

nematic order parameter necessarily mixes spin and spatial degrees of freedom. First, using

mean-field theory, we find that the system undergoes a first-order phase transition at zero

temperature in the undoped limit, which then becomes continuous at a finite-temperature

tricritical point. In the doped limit, the phase transition is continuous at zero temperature.

We discuss several signatures of the nematic order, among which is the partial breakdown of

spin-momentum locking. In many regards, the effects of fluctuations about the mean-field

solution are qualitatively the same as for spin-degenerate Fermi liquids. However, we show

that nematic fluctuations may induce spin fluctuations. In Chapter 3, we use the double

epsilon expansion method of renormalization group theory to study the interplay of inter-

actions and weak uncorrelated disorder on the superconducting phase transition in a 2D

Dirac semimetal described by the chiral XY Gross-Neveu-Yukawa model. When the num-
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ber of fermion flavors in the system is greater than one, we find new disordered quantum

critical points, some of which are of stable-focus type. In Chapter 4, we extend this study to

the Ising and Heisenberg Gross-Neveu-Yukawa models, appropriate to charge-density-wave

and spin-density-wave transitions, and include long-range correlated disorder. A controlled

treatment of the latter requires the introduction of another small parameter; the double

epsilon expansion method is thus generalized into the triple epsilon expansion method. We

find new short- and long-range disordered fixed points and show that for some regions of

physical parameters, the critical behavior is controlled by a stable limit cycle.
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Preface

The thesis is based on three papers:

[1] R. Lundgren, H. Yerzhakov, and J. Maciejko. Nematic order on the surface of a

three-dimensional topological insulator. Phys. Rev. B, 96(23):235140, 2017;

[2] H. Yerzhakov and J. Maciejko. Disordered fermionic quantum critical points.

Phys. Rev. B, 98(19):195142, 2018;

[3] H. Yerzhakov and J. Maciejko. Random-mass disorder in the critical Gross-Neveu-

Yukawa models, Nucl. Phys. B, 962:115241, 2021,

which are presented with a few changes in Chapters 2, 3, and 4. The motivation and models

for the projects are proposed, and all three projects are supervised by Joseph Maciejko.

The first paper is coauthored with Rex Lundgren, who is the first author. Some of the

calculations were performed by Rex and Joseph first. A portion of these calculations was

later recalculated by me after a refinement of the model. Such is the “Fluctuation effects”

section in the paper except for the self-energy subsection. The self-energy calculations for

a generic angle and mean-field calculations for the undoped case were performed in parallel

by me and Rex. The self-energy for special angles was calculated by me after the refinement

of the model.
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Chapter 1

Introduction

Condensed matter physics deals with assemblies of a macroscopically large number (typi-

cally on the order of 1023) of particles distributed on macroscopic length scales (typically

on the order of 1 cm). Interactions between these particles may produce phenomena not

observable on microscopic scales, such as superfluidity and superconductivity. Such a situ-

ation is captured by the notion of emergence, which more broadly encompasses concepts,

phenomena, and laws that make sense or manifest only on macroscopic scales. Another

facet of the concept of emergence in condensed matter physics is the notion of emergent

massless Dirac fermions, which have a relativistic-like linear spectrum as opposed to the

ordinary quadratic energy-momentum dispersion of electrons in conventional metals. Un-

like superfluidity and superconductivity given as examples above, Dirac fermions do not

necessarily rely on the presence of interactions. They already emerge in the electronic band

structure of certain materials in the low-energy, long-distance limit. Such is the case for

graphene and the boundaries of 3D topological insulators. However, Dirac fermions may

also emerge as a result of interactions, e.g., in unconventional superconductors and spin

liquids. An important direction in current condensed matter research is to understand the

effect of interactions in materials which exhibit such emergent Dirac fermions. In partic-

ular, we will be interested in situations where interactions lead to a qualitative change in

the 2D Dirac fermion system — quantum phase transitions (QPTs). In general, these are
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strongly-correlated problems that are not well described by conventional perturbation ex-

pansions about mean-field theories. Another difficult but important research question is

to understand the effect on such QPTs of disorder, ubiquitously present in real condensed

matter systems and which may drastically affect the physics of the clean systems.

In the rest of this chapter, we first review in more detail how the relativistic Dirac

dispersion emerges in nonrelativistic condensed matter systems. We then summarize the

basic physics of QPTs. Throughout this thesis, we use natural units (~ = c = kB = 1).

1.1 Dirac fermions in condensed matter physics

Perhaps the best known example of Dirac fermion system in condensed matter physics

is graphene [8] — a single layer of carbon atoms forming a 2D honeycomb lattice, see

Fig. 1.1(a). Its triangular Bravais lattice unit cell includes two atoms, A and B, and the

primitive Bravais lattice vectors may be chosen to be a1 = a(3
2 ,
√

3
2 ) and a2 = a(3

2 ,−
√

3
2 ),

where a is the nearest-neighbor distance (see Fig. 1.1(a)), which we may set to 1. The

simplest tight-binding model describing fermions hopping on this lattice has the following

form in second quantization,

Ĥ =
∑
k

(
c†A,k c†B,k

) 0 −tf(k)

−tf∗(k) 0


 cA,k

cB,k

 , (1.1)

where −t is a nearest-neighbor hopping matrix element, f(k) may be written as f(k) =

1 + eik·a1 + eik·a2 (there are other physically equivalent expressions related by gauge trans-

formations), and c
(†)
A/B,k is the annihilation (creation) operator for a fermion on sublattice

A/B with crystal momentum k. After diagonalizing this Hamiltonian, one finds the energy

dispersion εk±, plotted in Fig. 1.1(b) in units of t,

εk± = ±t|f(k)| = ±t

√√√√3 + 4 cos

(
3kx
2

)
cos

(√
3ky
2

)
+ 2 cos

(√
3ky

)
. (1.2)

The energy gap εk+ − εk− vanishes at the six corners of the first Brillouin zone, but
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only two of these corners are inequivalent, and we may choose them to be at K = 2π
3 (1, 1√

3
)

and K ′ = 2π
3 (1,− 1√

3
).

(a) (b)

Figure 1.1: a) Honeycomb lattice of graphene. b) Energy-momentum dispersion in
graphene. The gap closes at the six corners of the hexagonal first Brillouin zone.

If one is interested in physics at energies much less than the bandwidth, which

is about 8.4 eV (t ≈ 2.8 eV) in graphene [9], then it is acceptable to Taylor expand the

Hamiltonian in momentum in the vicinity of these points and retain only the leading order

terms. In this way one obtains a massless Dirac-like expression for the Hamiltonian matrix

Hk: Hk = vFσ · k, where k is now a deviation in momentum space from the Dirac points

K,K ′, σ is a vector of Pauli matrices acting in “pseudospin” (sublattice) space, and vF is

the Fermi velocity, which is on the order of 106 m/s in graphene [9].

In fact, this degeneracy of energy levels at K andK ′, which leads to a massless Dirac

dispersion in the vicinity of these points, is due to inversion and time-reversal T symmetries

present in graphene. Focusing on the region of a possible touching of two bands, we may
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write down a generic two-band Hamiltonian:

Hk = d0(k)σ0 + d(k) · σ, (1.3)

where σ0 is a 2 × 2 identity matrix. The eigenenergies of this Hamiltonian are given by

Ek± = d0(k) ±
√
d(k)2. Thus, the eigenenergy corresponding to momentum k is degen-

erate if d(k) = 0, which, according to the von Neumann-Wigner theorem [10], generically

happens only in 3D. Indeed, this condition requires us to satisfy three equations di(k) = 0,

i = x, y, z, which in 3D corresponds to a point of intersection of three surfaces given by

di(kx, ky, kz) = 0. In the absence of specific constraints, this generically happens at some

point in 3D momentum space. In 2D, to satisfy such a condition, one has to find a point

of intersection of three curves. In graphene, a combination of inversion and T symmetries

provides a specific condition for this to happen. In graphene, inversion symmetry requires

H(k) = σxH(−k)σx, and T symmetry (for simplicity, we consider spinless electrons) re-

quires H(k) = H(−k)∗, where H(k) is the two-band tight-binding Hamiltonian appearing

in Eq. (1.1). The combination of this gives H(k) = σxH(k)∗σx. Thus, a generic two-band

Hamiltonian must satisfy

d0(k)σ0 + d(k) · σ = σx (d0(k)σ0 + d(k) · σ)∗ σx = d0(k)σ0 + dx(k)σx + dy(k)σy − dz(k)σz,

(1.4)

which means that dz(k) = 0. Only two equations must now be satisfied to have a degeneracy,

di(kx, ky) = 0, i = x, y, which will generically happen at specific points. However, in fact, a

weak spin-orbit coupling present in graphene creates a tiny gap (on the order of 10−3 meV)

at the Dirac points [11]. In 3D, where energy degeneracies generically occur at specific

momentum points called Weyl nodes, the material is called a Weyl semimetal if the Fermi

surface additionally consists exclusively of such nodes (unless terms linear in (k−K) vanish

in the low-energy Hamiltonian) [12, 13]. At 3D Weyl nodes, the dispersion is also linear,

however, the corresponding particles have a definite chirality and are known in high-energy
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physics as Weyl fermions (in 3D, a Dirac fermion is a pair of right- and left-handed Weyl

fermions).

Another class of condensed matter systems, where massless Dirac fermions dwell, are

edges and surfaces of topological materials. With the discovery of the integer quantum Hall

effect (IQHE) in 1980 [14], it was realized that the Landau paradigm of classifying states

of matter according to the symmetries they break [15,16] is insufficient. The symmetries of

two quantum Hall states might be the same, but the two states are still separated by a sharp

phase transition. In the IQHE, the transition is accompanied by a jump in the quantized

Hall conductivity σxy, which is a topological property. Topology deals with properties of

systems that remain unchanged under smooth deformations. In mathematics, the number

of holes in surfaces remains unchanged under smooth deformations of their shapes. This

number is called the genus, g. The insensitivity of the genus to smooth changes in the

geometry of a surface is captured by the Gauss-Bonnet theorem, which states that the

integral of the Gaussian curvature, K, over a closed surface S is a topological invariant:

1

2π

∫
S
KdS = χ, (1.5)

where χ = 2 − 2g is called the Euler characteristic. In physics, topology concerns itself

with quantized macroscopic properties that are unchanged under smooth deformations of

the Hamiltonian.

Many topological properties are captured in noninteracting Hamiltonians. In 1D, an

example of topologically nontrivial phase is the Su-Schrieffer-Heeger model of polyacety-

lene [17]; in 2D, one may name the IQHE, the Chern insulator [18], and the quantum spin

Hall (QSH) effect [11]. An important quantity to understand how topology can arise in con-

densed matter systems is the Berry phase [19] — a quantum mechanical phase accumulated

as a system’s Hamiltonian undergoes slow changes via variation of an external parameter.

Let us denote by H(R) a Hamiltonian with nondegenerate levels, where R = R(t) is a

vector of external parameters slowly changing with time t such that it traces a closed path
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C after time T , and let us also denote by |ψ(R)〉 an energy eigenstate. Then, after time

T , one finds that the state evolves into |ψ(R(T ))〉 = eiγC |ψ(R(0))〉, where the Berry phase

γC =
∮
C a(R) · dR. Here a(R) = i 〈ψ(R)|∇R|ψ(R)〉 is called the Berry connection. One

may also use Stokes’ theorem and express the Berry phase through the Berry curvature,

γC =
∫
SB(R) · dS, where B(R) = ∇R × a(R), and S is an arbitrary surface bounded by

C. In crystalline matter with a finite energy gap, the role of the parameter R is played

by the momentum k in the first Brillouin zone. For the IQHE, the integral of the Berry

curvature over the first Brillouin zone, C1 = 1
2π

∫
1BZ B(R) · dS, called the first Chern

number, is an integer topological invariant conceptually similar to the Euler characteristic

of Eq. (1.5), but in momentum space rather than real space. It determines the off-diagonal

component of the conductivity tensor σxy = e2

h ν, where ν is the sum of Chern numbers

of the occupied bands. It is essential for the quantum Hall effect that the T symmetry is

broken in the presence of magnetic field: the first Chern number for a T -invariant system

is zero. Haldane [18] showed that a topologically nontrivial state analogous to the IQHE,

the Chern insulator, may exist in the absence of net magnetic flux. As implied by its name,

the Chern insulator is characterized by a nonzero Chern number. It was later realized by

Kane and Mele [11] that nontrivial topological states may also exist in T -invariant systems

in the presence of spin-orbit coupling, which leads to the phenomenon of band inversion,

whereby conduction and valence bands cross and exchange roles. In 2D, this is the QSH

state (2D topological insulator), which may be considered as two copies of Chern insulators

with opposite spins and Chern numbers. As was mentioned above, due to T -invariance

the net Chern number of the QSH state is zero, and its topological state is characterized

by a Z2 invariant, which may only take two values corresponding to trivial and nontrivial

topological states [20, 21]. What is common among these topological states is that there

are edge modes on the boundary, and the topological invariant determines the number (or

the number modulo 2, for a Z2 invariant) of such edge modes. A heuristic argument for

their existence is as follows. Topological properties remain unchanged unless a non-smooth

change in the band structure happens, namely gap closure and reopening. Let us consider
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a topological insulator in contact with a trivial insulator. Then, somewhere across the in-

terface, the gap should close, leading to a gapless edge mode. In the vicinity of the Fermi

level, which lies in the bulk gap for an insulator, these edge states are also characterized

by a 1D massless Dirac (for QSH insulators) or Weyl (for the IQHE and Chern insulators)

dispersion.

So far, we have briefly discussed 2D topological states, which can have 1D massless

Dirac modes on their boundary. However, in this thesis we focus on 2D Dirac fermions. In

fact, there are also 3D versions of T -invariant topological insulators hosting 2D massless

Dirac fermions on their surfaces [22]. As in the 2D QSH topological insulator, a topologically

nontrivial state in 3D T -invariant band insulators occurs due to the presence of strong

spin-orbit coupling leading to band inversion. 3D topological insulators (3D TIs) are also

characterized by a Z2 invariant, which in the noninteracting case may be represented using

an integral over the Brillouin zone. In 3D, the integrand is not the Berry curvature, but the

Chern-Simons form of the Berry connection [23]. There are two classes of 3D TIs: weak and

strong. Weak 3D TIs may be considered as a stack of 2D QSH states; they exhibit surface

states only on surfaces made by the edges of 2D QSH systems. In contrast, strong 3D TIs

can not be reduced to 2D QSH states. As suggested by their name, strong 3D TIs are

more robust than their weak counterparts, in which surface states might be gapped without

breaking T symmetry. Henceforth, we will concentrate on strong 3D TIs and omit the word

“strong” while referring to them. The first 3D TI was theoretically predicted in the bismuth

antimony alloy Bi1−xSbx [24], and shortly thereafter experimentally confirmed [25]. This

material is not easily described by a simple model Hamiltonian due to its alloy structure,

but the observed behavior of its electronic structure conveniently illustrates the effect of

spin-orbit coupling, see Fig. 1.2(a). As the Sb concentration increases, the effective spin-

orbit coupling strength increases as well, and, as a consequence, the gap between Ls and

La bands closes and reopens, which is accompanied by band inversion. A class of materials

with a simpler theoretical description and exhibiting a nontrivial topological state are the

stoichiometric crystals Bi2Se3, Bi2Te3, Sb2Te3 [6,7] with a single Dirac cone in their surface
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electronic structure. From the definition of the Z2 invariant it may be deduced that a

3D TI can support only an odd number of surface Dirac fermions [22]. For example, the

aforementioned alloy Bi1−xSbx supports N = 5 Dirac cones.

(a) (b)

Figure 1.2: a) Evolution of band edges in Bi1−xSbx alloy as a function of Sb concentration x,
as measured by magnetoreflection and cyclotron resonance techniques [4]. As x increases,
the gap between Ls and La bands closes and reopens, which is accompanied by band
inversion. For intermediate values of x the insulating state is topologically nontrivial. The
figure is taken with permission from Ref. [5]. b) Schematic evolution of the atomic p orbitals
of Be and Se atoms into the conduction and valence bands of Bi2Se3. Stages (I), (II), and
(III) denote turning on the chemical bonding, crystal field splitting, and spin-orbit coupling,
respectively. The dashed blue line is the Fermi level. The figure is taken with permission
from Ref. [6].

The minimal model describing a 3D TI should contain four bands, since due to T

invariance, Kramers’ theorem guarantees that both the conduction and valence bands must

be doubly degenerate at T -invariant points. For a T and inversion invariant insulator such

as Bi2Se3, at the Γ point the minimal four-band Hamiltonian up to O(k2) has the form [6,26]

H(k) = ε0(k)I4×4 +



M(k) A1kz 0 A2k−

A1kz −M(k) A2k− 0

0 A2k+ M(k) −A1kz

A2k+ 0 −A1kz −M(k)


+ O

(
k2
)
, (1.6)
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where k± = kx ± iky, ε0(k) = C + D1k
2
z + D2k

2
⊥, M(k) = M − B1k

2
z − B2k

2
⊥, and k2

⊥ =

k2
x + k2

y. This is essentially a 3D Dirac equation with unidirectionally anisotropic velocity

v = (A2, A2, A1) and anisotropic k-dependent mass M(k).

The band inversion for Bi2Se3 is schematically illustrated in Fig. 1.2(b). If one would

imagine gradually increasing the strength of spin-orbit coupling, one would observe closure

and reopening of the bulk gap accompanied by the band inversion process. In the effective

Hamiltonian (1.6), this corresponds to the parameter M crossing through zero and changing

sign.

From the bulk Hamiltonian (1.6) one may find an effective surface Hamiltonian by

projection to the surface and truncation of the spectrum to exclude gapped bulk states.

In the presence of a surface perpendicular to the z axis, only kx and ky are good quan-

tum numbers. One may then find analytically surface states |Ψ1〉 , |Ψ2〉 for open boundary

conditions at kx = ky = 0; such states are degenerate by Kramers’ theorem. Then one

may project H(kx, ky,−i ∂∂z ) onto the subspace spanned by |Ψ1〉 , |Ψ2〉. This approximation

is adequate as long as the bulk gap is large. In this way, one finds the effective surface

Hamiltonian [26]:

Hsurface = C +
D1M

B1
+

(
D2 −B2

D1

B1

)
k2 +A2

√
1−

(
D1

B1

)2

(σxky − σykx) , (1.7)

which to first order in momentum (or in the isotropic case D1 = D2, B1 = B2) and

neglecting the constant offset is

Heff = vF(p× σ)z, (1.8)

the massless 2D Dirac Hamiltonian, which can be used for studying the properties of sur-

face states. This is unitarily equivalent to the massless Dirac Hamiltonian in graphene,

but here the Pauli matrices correspond to the physical electron spin (as opposed to the

pseudospin/sublattice degree of freedom in graphene).

A peculiar feature of this Hamiltonian is spin-momentum locking: spin is always
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perpendicular to the momentum, see Fig. 1.3 (a); thus, the surface states are helical with

dispersion linear in momentum near the Dirac point, Ep± = ±vF p, which is confirmed via

ARPES measurements, e.g. in Bi2Se3 [7] (see Fig. 1.3(b)). The corresponding eigenstates

are |Ψ±〉 = 1√
2

 ±e−iφp
i

, where “±” denotes upper/lower helicity branches, and φp =

arctan (py/px) is the direction of in-plane (surface) momentum.

(a) (b)

Figure 1.3: a) Spin-momentum locking in a 3D TI with a single surface Dirac cone. Red
circle – the FS, blue vectors – the expectation value of spin on the FS. b) High-resolution
ARPES measurements of the surface band dispersion in Bi2Se3. The figure is taken with
permission from Ref. [7].

In this thesis, we will be working primarily with the systems described above, known

collectively as 2D Dirac semimetals, where Dirac fermions emerge already in the absence of

electron-electron interactions. However, we note that Dirac fermions also arise as low-energy

excitations as a consequence of interactions in other condensed matter systems. These

include algebraic spin liquids, which may be described as a system of electrically neutral

Dirac spin-1
2 fermions coupled to a fluctuating U(1) gauge field [27], and unconventional d-
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wave superconductors, in which Bogoliubov quasiparticles exhibit a Dirac spectrum [28,29].

1.2 Quantum phase transitions

Inevitably, interactions are present in all systems, including the 2D Dirac semimetals dis-

cussed thus far at the single-particle level. Here we will be focusing on the spontaneous

symmetry-breaking QPTs, which may be induced by these interactions. Unlike ordinary

thermal phase transitions, QPTs happen at zero temperature and the associated critical

phenomena, in the case of continuous QPTs, are driven by quantum fluctuations [30]. In

a QPT, the role of temperature is played by an interaction strength g in the interacting

Hamiltonian H = H0 + gV , where H0 is the Hamiltonian of the noninteracting system

(here the unperturbed Dirac semimetal) and V is an interaction term. Essentially, quan-

tum phases are equivalence classes of many-body ground states. In the thermodynamic

limit, as g varies, an excited state and the ground state may cross in the coupling-energy

plane. If the transition is continuous, the point gc at which this happens is called a quan-

tum critical point (QCP) and is also a point of nonanalyticity in the partition function Z.

For the symmetry-breaking QPTs we will be studying, the disordered phase at g < gc is

adiabatically connected to a noninteracting Dirac semimetal and respects all its symme-

tries, while the ordered phase at g > gc develops a nonzero order parameter, bilinear in

fermion operators, that breaks one or more of those symmetries. If the ordered phase is

gapped, the energy gap ∆ behaves near the QCP as ∆ ∼ (g − gc)νz. Here ν and z are the

correlation length and dynamic critical exponents, respectively. The correlation length is a

characteristic length beyond which the two-point correlation function for the fluctuations

of the order parameter effectively decays to zero. It usually diverges at the QCP as a power

law, ξ ∼ |g − gc|−ν . In many cases, a QPT in d spatial dimensions might be considered

as a classical phase transition in d + 1 dimensions, via the so-called quantum-to-classical

mapping [30]. Indeed, at a QCP, fluctuations are long-ranged in both spatial and temporal

(imaginary time) directions, and the latter acts as an additional “spatial” dimension. In
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turn, temporal and spatial coordinates may enter into the action in a different way, thus

the spatial ξ and temporal ξτ ∼ 1/∆ correlation lengths may also have different scaling

exponents. This anisotropy is reflected by the dynamic critical exponent ξτ ∼ ξz. Other

thermodynamic quantities of interest, such as the order parameter and its susceptibility,

also exhibit power-law behavior with corresponding exponents. Other quantities, in prin-

ciple measurable, are the order parameter spectral function χ(p, ω) and the Dirac fermion

spectral function A(k, ω):

χ(p, ω) ∼ Θ(ω2 − p2) sgnω

|ω2 − p2|1−ηφ/2
, (1.9)

A(p, ω) ∼ (ω − α · p)Θ(ω2 − p2) sgnω

(ω2 − p2)1−ηψ/2
, (1.10)

where ηφ and ηψ are the boson (order parameter) and fermion anomalous dimensions,

αi = iγ0γi, i = 1, 2, and Θ(x) is the Heaviside step function. Equations (1.9) and (1.10)

are written for z = 1, which applies when the emergent Lorentz invariance of the free Dirac

semimetal persists at the QCP. For z 6= 1, one should replace ω → |ω|1/z sgnω. At a

fermionic QCP, ηψ is typically greater than zero. As such, instead of quasiparticle poles,

the fermion Green’s function has branch points, and at the QCP the fermionic liquid is

a non-Fermi liquid. Even though there might be many critical exponents, only a few of

them are independent. For example, for a classical ferromagnetic transition there are six

critical exponents, but only two should be measured to find the others. As a matter of fact,

(very) different physical systems may display the same set of critical exponents forming a

universality class. In general, the set of critical exponents depends on the dimensionality,

symmetries, and the range of interactions of physical systems. Additionally, as discussed

below, the presence of itinerant fermions can give rise to new universality classes even with

the same dimensionality and symmetries.

The critical behavior of condensed matter systems is dominated by long-range fluc-

tuations. Thus, to study this critical behavior, we may coarse-grain the system and study

the continuous quantum field theory (QFT) models that result from such coarse-graining.
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For the interaction-driven QPTs we are interested in, these are interacting QFTs. However,

regular perturbation theory in the interaction strength is not suitable for studying critical

phenomena. To see this, let us consider the action of a classical φ4 theory in d dimensions,

where φ is the coarse-grained order parameter: S =
∫
ddx[(∂φ)2 + rφ2 + λ2φ4]. Since the

action is dimensionless (we use ~ = 1), the dimension of the interaction strength λ2 is

[λ2] = [L]d−4, where [L] is a unit of length. The only scale in the continuous model we

have is the correlation length ξ. This allows us to switch to dimensionless quantities via

scaling. In particular, setting x′ = x/ξ, we obtain
∫
ddx′[(∂′φ′)2 + r′φ′2 + λ′2φ′4], where

φ′ = ξ(d−2)/2φ and λ′2 = ξ4−dλ2. We see that in physical d = 3 dimensions, applicable to

QPTs in two spatial dimensions via the quantum-to-classical mapping, the dimensionless

interaction strength is λ′2 = ξλ2. Recalling that ξ diverges as the system approaches the

critical point, we see that the dimensionless coupling λ′2 diverges as well, which makes

ordinary perturbation theory inapplicable.

The proper method to study critical phenomena was introduced by K. Wilson [31],

based on the renormalization group (RG). The Wilsonian renormalization group method

is based on the idea of scale invariance at the critical point. Consider an action S[φ] =

S0[φ] +
∫
ddx

∑
giOi[φ], where the second term is a general interaction term with couplings

gi. In condensed matter, there is a natural cutoff lengthscale Λ−1 on the order of the lattice

constant a. Then, assuming translational invariance, the integration in momentum space

is restricted to values of |k| < Λ. In Wilson’s momentum-shell scheme, one represents the

order parameter field φ as a sum of slow and fast modes (i.e. Fourier modes with small

and large momentum) and integrates out fast modes for Λ
b < |k| < Λ, where b is slightly

larger than one. Then, after rescaling the new cutoff Λ
b to the previous one Λ, the action

acquires the same form (up to irrelevant new operators) with new, renormalized couplings

g′i. Iterating the same steps and defining b = e`, where ` is called the RG parameter or

RG time, one obtains the Gell-Mann-Low equations dg
d` = β(g), which define the flow of

running couplings gi(`) in coupling space. Due to scale invariance, QCPs correspond to fixed

points of the Gell-Mann-Low equations, i.e. they are determined by β(g) = 0. Couplings
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which flow to zero in the limit of infinite RG time are irrelevant to the physics of critical

phenomena. This circumstance explains universality phenomena, as in typical condensed

matter systems only finitely many couplings are relevant. At this point, it is still not clear

how to practically perform the averaging over fast modes in an interacting QFT as there

is still no small parameter one can use for an expansion. One way to introduce it is to

consider a system close to its upper critical dimension Dc, which is 4 in the φ4 theory

discussed above. For D > Dc all the couplings are irrelevant and the long-range physics is

described by the noninteracting action, which has a single Gaussian fixed point (FP) g = 0.

Analytically continuing to real D, one expects that for D = Dc− ε just below Dc new fixed

points will appear close to the Gaussian FP at couplings gi ε-small in amplitude. Thus, one

may implement a perturbative expansion using ε as a small parameter [32].

In the preceding brief discussion of the RG, we did not explicitly talk about itinerant

fermion systems, our prime concern. The important difference from bosonic systems is that

fermionic systems have Fermi surfaces. For the Fermi surfaces, as in conventional metals,

an early approach to quantum criticality by Hertz [33] and Millis [34] was to integrate out

fermionic modes completely to obtain a pure bosonic theory. However, by doing this we

lose the information about the Fermi surface. This is just a handwaving argument to stress

the importance of keeping low-lying fermionic excitations. More precisely, it can be shown

that Hertz-Millis theory is applicable in d ≥ 3 dimensions, but fails otherwise [30]. Several

approaches to address the d = 2 problem were developed, such as the patch RG approach

by Metlitski and Sachdev [35]. For the point-like Fermi surfaces we will deal with in this

thesis, the situation is technically simpler. However, it is still important to keep gapless

fermionic modes at all steps in the RG procedure. In particular, even for point-like Fermi

surfaces a complete integration of fermionic modes à la Hertz-Millis gives rise to problematic

infrared divergences in the remaining bosonic action [36]. In Chaps. 3 and 4 we will apply

RG techniques to coupled boson-fermion field theories of the chiral Gross-Neveu-Yukawa

type.

Initially, the RG originated in high-energy physics as a calculational tool with no
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obvious relation to the Wilsonian approach, which provided the former with a transpar-

ent physical interpretation (in high-energy physics one has to assume the existence of a

fundamental cutoff Λ). Though physically obscure from a condensed matter standpoint,

methods developed in high-energy physics are of great practical use, and in this thesis we

are going to exploit the modified minimal subtraction (MS) RG scheme [37] instead of the

Wilsonian momentum-shell approach. At the order at which we perform our calculations,

the Gell-Mann-Low equations, and the physical conclusions drawn thereof, are independent

of the chosen RG scheme.

Another aspect this thesis investigates is the effect of quenched disorder, unavoidable

in real condensed matter systems, on QPTs. We postpone a discussion of disorder until

Chap. 3, where we will discuss some results of the short-range correlated disorder on the

superconducting quantum phase transition in 2D Dirac electron semimetals.

1.3 Structure of the thesis

The thesis is organized as follows. In Chap. 2, we build a field-theoretic description of the

nematic phase transition on the surface of a 3D TI, details of calculations for which are

placed in Appendix A. Chaps. 3 and 4 are devoted to studies of the effects of quenched

disorder on different QPTs in 2D Dirac semimetals described in the clean limit by the

family of chiral Gross-Neveu-Yukawa models. In particular, Chap. 3 considers how weak

short-range correlated disorder affects the superconducting phase transition. This study is

extended to other QPTs in Chap. 4, which also considers long-range correlated disorder.
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Chapter 2

Nematic phase transition on the

surface of a 3D topological

insulator

Nature allows for the electronic liquid to exist in many phases, including electronic liquid

crystals [38]. These are phases whose set of symmetries lies somewhere between the sym-

metries of liquids and crystals. Since at this point we talk about symmetries only, we may

introduce the subject using classical counterparts – classical liquid crystals [39]. Liquids are

characterized by the absence of any kind of long-range order whatsoever, thus having (on

average) the highest degree of symmetry. In contrast, crystals have long-range positional

and rotational orders, having only a set of discrete translational and point group symmetries

forming a space group. The nematic phase is an example of phase with an intermediate

degree of symmetry: it breaks rotational symmetry to C2, the group of two-fold rotations,

but has full translational symmetry. The hexatic phase [40] breaks rotational symmetry to

C6, the group of six-fold rotations. In smectic (or stripe) phases, in addition to the breaking

of rotational symmetry the translational symmetry is also broken, leading to a positional

order in one direction. For classical liquids, these phases originate from the elongated rod-
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like shape of the constituting molecules (see Fig. 2.1). While we cannot think of electrons as

elongated objects, electronic liquid crystalline phases indeed are observed in experiments.

Observations of spontaneous anisotropy in transport in the GaAs/GaAlAs heterostructures

in high magnetic fields [41,42] and the strongly correlated material Sr3Ru2O7 [43] strongly

suggest the existence of the nematic phase in these materials. There is also evidence for

nematic phases in cuprate- [44, 45] and iron-based [46–48] superconductors.

(a) (b) (c)

Figure 2.1: Examples of classical liquid crystal phases: a) Nematic; b) Smectic A - molecules are

normal to the layers; c) Smectic C - molecules are tilted inside the layers. For parts b) and c), the

original image is taken from Wikipedia and split into two. For part a), the image is also taken from

Wikipedia. Both images used for parts a), b), and c) are created by Kebes and are licensed under

CC BY-SA 3.0.

One way for the formation of the nematic state is the quantum melting of stripe

electronic phases [49]. In this strong-coupling perspective, the nematic phase is formed via

the proliferation of dislocations in the stripe phase. An alternative weak-coupling perspec-

tive considers the emergence of the nematic phase out of the isotropic Fermi liquid (FL) via

the Pomeranchuk instability [50]. In the Landau theory of the Fermi liquid [51], interact-

ing fermionic systems are described as a collection of quasiparticles (QPs) over the sharply

defined Fermi surface (FS) with the momentum distribution function np. For a conven-
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tional spin-degenerate FL in three dimensions, interactions between these quasiparticles are

parametrized by two Landau parameters, and the energy functional may be written in the

following form:

δE[δn(p)] =
∑
σ

∫
ε(p)δnσ(p)

d3p

(2π)3
+

1

2

∑
σ

∑
σ′

∫
fσσ′

(
p,p′

)
δnσ(p)δnσ′

(
p′
) d3pd3p′

(2π)6
,

(2.1)

where fσσ′(p,p
′) = fS(p,p′) + σσ′fA(p,p′) characterizes an effective interaction between

QPs, σ, σ′ = ±1 are spin indices, and δnσ(p) = nσ(p) − n
(0)
σ (p) is the deviation of the

momentum distribution function from its form in the ground state. At low energies, the

most important contribution to the integral in Eq. (2.1) comes from momenta close to pF ,

and we may approximate f(p,p′) with its values on the FS p = pF , where it becomes a

function of an angle θ between the vectors p,p′. Pomeranchuk argued that the isotropic FS

will be stable against distortions δn(p) if the change in energy δE[δn(p)] > 0. He showed

that this is satisfied if 1 +
FS,Al
2l+1 ≥ 0, where FS,Al are proportional to the coefficients of

the expansion in angular harmonics of fS,A(θ) — the Landau parameters for each angular

momentum channel. Violation of this condition in the l = 2 channel leads to a spontaneous

quadrupolar distortion of the FS. In 2D, the FS acquires an elliptical shape.

In contrast, the FL theory for the helical surface states in a 3D TI with a single Dirac

cone needs ten Landau parameters: one in the charge-charge interaction channel, four in the

spin-charge channel, and five in the spin-spin channel [52]. This is because of the strong spin-

orbit coupling present in the system, which reduces the amount of symmetries compared

to the conventional FL. Unless the FS is exactly at the Dirac point, and at sufficiently

low temperatures, one may project this theory onto the FS, leaving only a branch of one

helicity (see Fig. 1.3). Due to spin-momentum locking, this resulting projected theory looks

effectively spinless:

δĒ [δn̄p] =

∫
d2p

(2π)2
ε0pδn̄p +

1

2

∞∑
l=0

∫
d2p

(2π)2

d2p′

(2π)2
f̄l cos lθpp′δn̄pδn̄p′ , (2.2)

18



where n̄p =
〈
ψ†p+ψp+

〉
is the momentum distribution for a single helicity branch and

f̄l = f cc
l − f sc,3

l − 1
4f

ss,5
l + 1

8

(
f ss,1
l−1 − f

ss,3
l−1 + f ss,1

l+1 + f ss,3
l+1

)
— the Landau parameter per

angular momentum channel of the projected theory. The terms fl with superscripts stand

for the Landau parameters per momentum channel of the unprojected theory, where cc,

sc, and ss refer to the charge-charge, spin-charge, and spin-spin channels, respectively.

The last formula means that the interaction in the l-th angular momentum channel of the

unprojected theory may produce interactions in the (l±1)-th channel, a direct consequence

of spin-momentum locking on the FS. It is not hard to notice that Pomeranchuk’s ideas

apply for this case as well.

In the following sections, to provide a more microscopic basis for these phenomeno-

logical ideas, we build the field-theoretic description of the nematic phase transition on

the surface of a 3D TI with a single, rotationally invariant Dirac cone. We give details of

calculations in Appendix A.

2.1 Model and Nematic Order Parameter

In this section, we introduce our field-theoretic model for the isotropic-nematic transition on

the surface of a 3D topological insulator. We follow largely the approach of Ref. [53], with

important caveats due to the presence of strong spin-orbit coupling, as will be seen below.

While nematic order in 2D electron gases with Rashba spin-orbit coupling has been studied

before [54,55], such systems have two degenerate concentric FSs and are thus qualitatively

distinct from the single, nondegenerate helical FS considered here.

The Hamiltonian that describes the noninteracting gapless surface state of a topo-

logical insulator with a single Dirac cone is given by [56,57] (in units where ~ = kB = 1)

H0 =

∫
d2k

(2π)2
ψ†k(h(k)− µ)ψk, (2.3)

where ψk = (ψk↑, ψk↓) is a two-component Dirac spinor, vF is the Fermi velocity, µ is the
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chemical potential, and

h(k) = vF ẑ · (σ × k) = vF

 0 ike−iθk

−ikeiθk 0

 , (2.4)

where σ is a vector of Pauli matrices, θk = tan−1(ky/kx) and k =
√
k2
x + k2

y. The Hamil-

tonian (2.3) has a continuous spatial SO(2) rotation symmetry, [Jz, h(k)− µ] = 0, where

Jz = −i ∂
∂θk

+
1

2
σz, (2.5)

is the z component of total angular momentum.

In order to study the isotropic-nematic transition we need a suitable microscopic

definition of the nematic order parameter in terms of the fermionic fields ψ,ψ†. In general,

nematic order is described by a quadrupolar order parameter Qab which transforms as a real,

traceless symmetric rank-two tensor under rotations [58]. Because of spin-orbit coupling,

here the relevant rotations are simultaneous rotations in real space and spin space, generated

by the total angular momentum (2.5). Therefore, unlike for spin rotationally invariant

Fermi liquids [53] the nematic order parameter can involve both the spatial (charge) and

spin degrees of freedom of the electron. To lowest order in the electron momentum, the

appropriate generalization of the nematic order parameter considered in Ref. [53] for spin

rotationally invariant Fermi liquids to the surface state of 3D topological insulators is

Q̂ab(r) = − i

kA
ψ†(r)(σa

↔
∂b + σb

↔
∂a − δabσ ·

↔
∂)ψ(r), (2.6)

where a, b = 1, 2, and
↔
∂ = (

↔
∂x,

↔
∂y) is a vector of symmetrized derivatives whose action is

defined as ψ†
↔
∂aψ ≡ 1

2(ψ†∂aψ + (∂aψ
†)ψ). This ensures Q̂ab(r) is a Hermitian operator.

Finally, for technical purposes it is convenient to define the parameter kA differently de-

pending on whether one is in the doped or undoped limit. We consider that four-fermion

interactions, to be written out explicitly below, only act within a high-energy cutoff that
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can be converted to a momentum cutoff Λ by dividing by vF . In the undoped limit µ = 0,

we define kA ≡ Λ and the order parameter is local in space. This order parameter was first

introduced in the context of nematic instabilities of the Majorana surface state of super-

fluid 3He-B [59], and its 3D analog was proposed as an order parameter for parity-breaking

phases of spin-orbit coupled bulk metals [60, 61]. In the doped limit, defined as µ � vFΛ,

only (angular) degrees of freedom on the FS are relevant and we define kA ≡ |∂| [62]. As

discussed below, this should be understood from a momentum space perspective, and is

equivalent to projecting the order parameter onto the Fermi surface.

In the spirit of Ref. [53], we consider an attractive four-fermion interaction in the

quadrupolar (l = 2) channel,

Hint = −f2

4

∫
d2r tr

(
Q̂(r)2

)
, (2.7)

where tr denotes a trace over the spatial (nematic) indices a, b. The action in imaginary

time is then

S[ψ†, ψ] =

∫ 1/T

0
dτ

∫
d2r

[
ψ†(∂τ − ivF ẑ · (σ × ∂)− µ)ψ − f2

4
tr
(
Q̂(r)2

)]
, (2.8)

where T is temperature. As our focus is the vicinity of the isotropic-nematic transition,

interactions in other angular momentum channels have been ignored. Indeed, in the doped

limit, as long as such interactions are less than the critical value for a l 6= 2 Pomeranchuk

instability, they will simply lead to a finite renormalization of physical quantities such as

the Fermi velocity [52]. While the phenomenological Landau Fermi liquid description does

not strictly apply to the undoped case, we will assume in this case that interactions in l 6= 2

channels are sufficiently weak so there are no competing instabilities.
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2.2 Mean-Field Theory

To investigate a possible isotropic-nematic phase transition in the action (2.8), we first

analyze it in the mean-field approximation. Introducing a real auxiliary scalar field Qab(τ, r)

to decouple the four-fermion term via the Hubbard-Stratonovich transformation, we have

S[ψ†, ψ,Qab] =

∫ 1/T

0
dτ

∫
d2r

[
ψ†(∂τ − ivF ẑ · (σ × ∂)− µ)ψ

− iQab
kA

ψ†(σa
↔
∂b + σb

↔
∂a − δabσ ·

↔
∂)ψ +

1

f2
tr
(
Q̂2
)]
. (2.9)

Assuming a uniform and static order parameter Qab(τ, r) = Q̄ab, and integrating out the

fermions, we obtain the following saddle-point free energy density,

F(Q̄) =
2

f2
Q̄2 − T

V

∑
ikn

∑
k

ln
[
(kn − iµ)2 + εk(Q̄)2

]
, (2.10)

where kn = (2n + 1)πT , n ∈ Z is a fermionic Matsubara frequency. We have rotated

the order parameter such that Q̄11 = −Q̄22 = 0, Q̄12 = Q̄21 = Q̄ without loss of generality

(corresponding to the principal axes of the distorted FS being parallel to the x and y axes1),

and

εk(Q̄) =

√
(ε0k)2 − 4Q̄ε0k

k

kA
cos 2θk + 4Q̄2

(
k

kA

)2

, (2.11)

is the mean-field dispersion relation of fermionic quasiparticles in the nematic phase (for

Q̄ 6= 0), where ε0k = vFk is the dispersion relation in the isotropic phase. This corresponds to

an anisotropic Dirac cone (in the doped limit, εk(Q̄) is only meant to model the dispersion of

quasiparticles on the FS, with k ≈ kF ≡ µ/vF ). Here kA is to be understood in momentum

space, i.e., kA = Λ in the undoped limit and kA = k in the doped limit. Performing the

1There is a π/4 angle difference between the naive orientation of Q̂ab in Eq. (2.6) and the principal axes
of the distorted FS, or equivalently, the orientation of the effective spinless nematic order parameter that
results from projection to the FS [52].
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sum over Matsubara frequencies, and ignoring constant terms, we obtain

F(Q̄) =
2

f2
Q̄2 − T

∑
s

∫
d2k

(2π)2
ln
(

1 + e−(sεk(Q̄)−µ)/T
)
, (2.12)

where s = ±1 corresponds to the upper and lower branches of the Dirac cone, respectively,

and we have taken the infinite volume limit V → ∞. At zero temperature, Eq. (2.12)

becomes the ground state energy density,

E(Q̄) =
2

f2
Q̄2 − 1

2

∑
s

∫
d2k

(2π)2
|sεk(Q̄)− µ|. (2.13)

In the following our analysis is performed at constant µ.

2.2.1 Undoped limit

We first evaluate the free energy density in the undoped limit (µ = 0). At zero temperature,

we have

E(Q̄) =
2

f2
Q̄2 −

∫
|k|<Λ

d2k

(2π)2
εk(Q̄), (2.14)

where we have imposed the momentum cutoff Λ. The integral over momentum can be

performed exactly, and we obtain

E(∆) =
vFΛ3

3π2

[
∆2

λ
− |∆− 1|E

(
− 4∆

(∆− 1)2

)]
, (2.15)

where E(m) is the complete elliptic integral of the second kind, and we define a dimen-

sionless nematic order parameter ∆ = 2Q̄/vFΛ and a dimensionless interaction strength

λ = 2f2Λ/3π2vF . A strongly first-order isotropic-nematic transition is found at a critical

value λc ≈ 2.13, with a jump of order one in the order parameter ∆ at the transition,

corresponding to a value of Q̄ on the order of the high-energy cutoff vFΛ. This is to be

expected since Q̄ has units of energy, and in the undoped limit the only energy scale in the
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problem is the cutoff (the critical value of the interaction strength f2 is also determined

by the cutoff, since the interaction (2.7) is perturbatively irrelevant at the Dirac point).

Expanding (2.15) in powers of ∆ in the limit |∆| � 1, we find

E(∆)− E(0) =
vFΛ2

3π2

[(
1

λ
− π

8

)
∆2 + . . .

]
, (2.16)

hence the limit of metastability of the isotropic phase (corresponding to the divergence of

the nematic susceptibility) is λ∗ = 8/π ≈ 2.55, but this is preempted by the first-order

transition at λc ≈ 2.13. The limit of metastability of the nematic phase can be found

numerically, and is λ∗∗ ≈ 1.90.
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Figure 2.2: First-order isotropic-nematic quantum phase transition in the undoped limit (µ = 0).

Plots of the mean-field ground state energy density E(∆) in units of vF Λ3/3π2 are given as a function

of the dimensionless nematic order parameter ∆, for λ < λc (blue curve), λ = λc (black curve), and

λ > λc (red curve), where λ is the dimensionless interaction strength with critical value λc ≈ 1.31

at the transition. The leading correction to linear dispersion is given by α = −0.61.

The magnitude of the order parameter jump at the transition can be reduced some-
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what by considering the effects of nonzero band curvature at the Dirac point, i.e., deviations

from a perfectly linear dispersion (which are present anyway in real topological insulator ma-

terials). In other words, we replace vF in the noninteracting dispersion ε0k by a k-dependent

Fermi velocity

vF (k) = vF

[
1 + α

(
k

Λ

)2

+ . . .

]
, (2.17)

with the dimensionless parameter α representing the leading correction. Such corrections

are formally irrelevant in the low-energy limit k � Λ but affect the free energy [53, 63],

which depends on the noninteracting dispersion at all wavevectors up to the cutoff. In the

presence of such terms the energy density cannot be evaluated analytically and one must

resort to numerical integration. A typical plot of the ground state energy density in the

vicinity of the transition for nonzero α is given in Fig. 2.2. We have found that negative

values of α reduce both the critical interaction strength and order parameter jump at the

transition below their values for a strictly linear dispersion.

The appearance of a first-order transition is somewhat surprising, since Landau the-

ory predicts a continuous isotropic-nematic transition in 2D (unlike in 3D, there are no

cubic invariants). Expanding the quasiparticle dispersion relation εk(Q̄) in powers of Q̄ in

Eq. (2.14), and performing the integral over k, we obtain the Landau theory

E(∆)− E(0)
?
=
vFΛ2

3π2

[(
1

λ
− π

8

)
∆2 +

∞∑
n=2

c2n∆2n

]
, (2.18)

where c2n < 0 for all n ≥ 2. We have checked that the only way to get a quartic term ∝ ∆4

with positive coefficient is to consider a k-dependent Fermi velocity vF (k) that becomes

negative at a certain value of k below the cutoff Λ, in clear contradiction with the assumption

of a single Dirac point in the low-energy spectrum. Therefore, the Landau theory (2.18) is

unbounded from below for sufficiently large ∆, in disagreement with the exact energy density

(2.15) which behaves qualitatively like in Fig. 2.2. As a result, there must be nonanalytic

terms in Eq. (2.15), but missed by the Landau expansion around ∆ = 0, that stabilize
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the energy density. Such nonanalytic terms are ultimately responsible for the first-order

character of the phase transition. In fact, for |∆| � 1 the energy density (2.15) becomes

E(∆)− E(0) ≈ vFΛ2

3π2

(
∆2

λ
− π

2
|∆|
)
, |∆| � 1. (2.19)

Thus the energy density is stabilized at large ∆ by the “bare” (tree-level) mass term ∆2/λ,

which grows faster than the negative |∆| term coming from the one-loop fermion deter-

minant, i.e., the integral over quasiparticle energies in Eq. (2.14). The latter is in fact

negative for all ∆. We note that a first-order Ising nematic transition at zero temperature

was also found for a model of interacting electrons on the square lattice [64]. In this case

van Hove singularities in the quasiparticle density of states, corresponding to Lifshitz tran-

sitions tuned by the value of Q̄, are responsible for nonanalyticities in the energy density

and the first-order character of the transition.

At finite temperature the free energy density in the undoped limit is given by

F(Q̄) =
2

f2
Q̄2 − T

∑
s

∫
|k|<Λ

d2k

(2π)2
ln
(

1 + e−sεk(Q̄)/T
)
. (2.20)

In the remainder of this section we focus on the limit of strict linear dispersion

vF (k) = vF . The integral over the magnitude of k can be evaluated analytically in terms

of dilogarithms Li2(x) and trilogarithms Li3(x) (see Appendix A); the remaining angular

integral must be performed numerically. In Fig. 2.3a we plot the jump ∆c in the order

parameter at the transition as a function of temperature T . The jump decreases smoothly

from its value at zero temperature, eventually vanishing above a certain temperature TTCP

corresponding to a tricritical point; for T > TTCP the transition is continuous (a similar

behavior was found in Ref. [64]). Since ∆ vanishes at the tricritical point, to find TTCP we

expand the free energy density (2.12) in powers of ∆. To describe the tricritical point we

must expand to sixth order,

F(∆, T )−F(0, T ) =
vFΛ3

3π2

(
a2∆2 + a4∆4 + a6∆6

)
, (2.21)
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Figure 2.3: Finite-temperature isotropic-nematic transition in the undoped limit (µ = 0): (a)

Jump in the dimensionless nematic order parameter at the first-order phase transition as a function

of temperature; (b) Mean-field phase diagram in the plane of temperature T and dimensionless

interaction strength λ. A first-order transition (red line) at low temperature turns into a continuous

transition (blue line) above a tricritical point (black dot). Dotted lines correspond to limits of

metastability of the isotropic (T ∗) and nematic (T ∗∗) phases.

where a2, a4, a6 are functions of T . We find that a6 > 0 for 0.2 . T/vFΛ . 0.6, which

comprises the tricritical point (Fig. 2.3a). The tricritical point (TTCP, λTCP) is found from

the condition a2 = a4 = 0, from which we find TTCP ≈ 0.35 and λTCP ≈ 2.23. The

finite-temperature phase diagram is shown in Fig. 2.3b, in which we also plot the limits of

metastability of the isotropic (T ∗) and nematic (T ∗∗) phases. Note that the first-order phase

boundary and limits of metastability are obtained from the numerically evaluated, exact

free energy density (2.12) rather than from the Landau expansion (2.21), which is accurate

only in the vicinity of the continuous transition. Strictly speaking, the finite-temperature

phase transition for T > TTCP is a Kosterlitz-Thouless transition and the nematic phase

only exhibits quasi-long-range order at finite T (but is truly long-range ordered at T = 0).

At the mean-field level, the nematic phase is a theory of noninteracting Dirac quasi-

particles with anisotropic dispersion, with Hamiltonian HMF =
∑
k ψ
†
kHkψk where

Hk = vF ẑ · (σ × k) +
Q̄ab
Λ

(σakb + σbka − δabσ · k). (2.22)
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Without loss of generality we choose Q̄12 = Q̄21 = Q̄, Q̄11 = −Q̄22 = 0, and thus

Hk = vF ẑ · (σ × k) +
2Q̄

Λ
(σxky + σykx). (2.23)

The velocities in the x and y directions (i.e., parallel to the principal axes of the nematic

order parameter) at the Dirac point are

vx = vF |1−∆|, vy = vF |1 + ∆|. (2.24)

Away from ∆ = ±1, the density of states remains linear near the Dirac point, N (ε) ∝

|ε|. In the limit of strict linear dispersion vF (k) = vF , the value ∆ = 1 (∆ = −1) thus

corresponds to a Lifshitz transition where the quasiparticle dispersion vanishes along x

(y) and degenerates into the intersection of two planes, i.e., a quasi-1D Dirac dispersion

with formally infinite density of states. In the presence of nonzero band curvature however

[Eq. (2.17)], this degeneracy is lifted, and the flat direction acquires a cubic dispersion at

small momenta,

εk(∆ = 1) ≈ vF
√

4k2
y +

α2

Λ4
k6
x, k→ 0, (2.25)

with kx and ky interchanged for ∆ = −1. This corresponds to a density of states of the

form N (ε) ∝ |ε|1/3 near the Dirac point ε = 0.

An interesting signature of the unusual type of nematic order described here is

anisotropy in the in-plane spin susceptibility in the absence of any time-reversal symme-

try breaking. To compute the spin susceptibility we augment the mean-field Hamiltonian

matrix (2.35) with a Zeeman term,

δHZk = −1

2
gµBB · σ, (2.26)

where g is the g-factor, µB is the Bohr magneton, and B is an in-plane magnetic field. To
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linear order in ∆, we find

χxx(T )− χyy(T ) = −g
2µ2

BΛ

32πvF
F

(
T

vFΛ

)
∆(T ), (2.27)

where χij(T ) is the spin susceptibility tensor at temperature T , ∆(T ) is the dimensionless

nematic order parameter at temperature T , and F is a smooth function of temperature

(Fig. 2.4) defined as

F (x) = x

∫ 1/x

0
dy
[
sinh y + y

(
y tanh

y

2
− 1
)]

sech2 y

2
. (2.28)

Thus anisotropy in the in-plane susceptibility is a direct measure of nematic order. For

T > TTCP, the transition is continuous (blue curve in Fig. 2.3b) thus ∆(T ) is small near Tc

and the expression (2.27) can be used in the vicinity of the transition. We thus expect

χxx(T )− χyy(T ) ∝ F
(
Tc
vFΛ

)
∆(T ) ∝ (Tc − T )β , (2.29)

on the nematic side of the transition, for (Tc−T )/Tc � 1. Thus the susceptibility anisotropy

can give a direct measure of the order parameter critical exponent β, which is 1/2 in mean-

field theory. In the first-order region, since ∆ may not be small Eq. (2.27) cannot be directly

used, but we nonetheless expect the anisotropy to be nonzero everywhere in the nematic

phase and to vanish in the isotropic phase.

From a qualitative standpoint, the observation of in-plane spin susceptibility anisotropy

in the absence of time-reversal symmetry breaking distinguishes the unusual type of nematic

order discussed here from other types of order. For conventional nematic order in spin ro-

tationally invariant systems [53], the breaking of rotation symmetry is in the charge sector

and does not cause anisotropy in the spin sector. In-plane ferromagnetic order would lead

to anisotropy in the spin response, but requires time-reversal symmetry breaking.
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Figure 2.4: Plot of the dimensionless function F (x) defined in Eq. (2.28).

2.2.2 Doped limit

In the doped limit µ� vFΛ, the cutoff is imposed around the FS,

∫
|k−kF |<Λ

d2k

(2π)2
≡
∫ kF+Λ

kF−Λ

dk k

2π

∫ 2π

0

dθk
2π

, (2.30)

where kF ≡ µ/vF is the (isotropic) Fermi momentum of noninteracting electrons. We obtain

the ground state energy density (2.13) to leading order in Λ/kF as

E(Q̄)− E(0) =

(
2

f2
−N (µ)

)
Q̄2 +

N (µ)

4µ2
Q̄4 +O(Q̄6), (2.31)

where N (µ) = µ/(2πv2
F ) is the noninteracting density of states at the FS. Since the coef-

ficient of the Q̄4 term is positive, we therefore find a continuous quantum phase transition

at a critical value of the interaction strength f2 given by

N (µ)f2 = 2. (2.32)

From general considerations we expect a line of finite-T Kosterlitz-Thouless phase transi-

tions that terminates at this quantum critical point. We note also that Eq. (2.32) corre-
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sponds precisely to the l = 2 Pomeranchuk criterion

F̄2 = −1, (2.33)

derived from the phenomenological Landau helical Fermi liquid theory discussed in the

introduction to this chapter [52]. In this context the dimensionless “projected” Landau

parameters F̄l are defined as F̄l = 1
2N (µ)fl for l ≥ 1, where fl is the quasiparticle interaction

strength in angular momentum channel l. The difference in sign arises simply from the fact

that in Eq. (2.7) an attractive interaction corresponds to f2 > 0, while in Ref. [52] it

corresponds to f2 < 0.

A first observable signature of nematic order of the type we have described in the

doped limit is the partial breakdown of spin-momentum locking. In the doped limit, the

mean-field Hamiltonian for fermionic quasiparticles is HMF =
∑
k ψ
†
kHkψk where

Hk = vF ẑ · (σ × k)− µ+ Q̄ab(σak̂b + σbk̂a − δabσ · k̂), (2.34)

and k̂a = ka/k. Without loss of generality we choose Q̄12 = Q̄21 = Q̄, Q̄11 = −Q̄22 = 0,

and thus

Hk = vF ẑ · (σ × k)− µ+ 2Q̄(σxk̂y + σyk̂x). (2.35)

Eq. (2.35) describes an anisotropic FS. Near the FS, the eigenstates have positive helicity

(assuming µ > 0, thus above the Dirac point) and are given by

|ψ+(k)〉 =
1√
2

 ieiθk f(θk,∆F )

e2iθk−∆F

1

 , (2.36)

where we define

f(θk,∆F ) ≡
√

1 + ∆2
F − 2∆F cos 2θk. (2.37)
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We introduce a new dimensionless order parameter ∆F ≡ 2Q̄/µ for the doped limit. The

expectation value sk ≡ 〈ψ+(k)|σ|ψ+(k)〉 of the spin operator on the FS is in plane, with

components

sxk =
(1 + ∆F ) sin θk
f(θk,∆F )

, syk = −(1−∆F ) cos θk
f(θk,∆F )

, (2.38)

thus nematic order affects the spin polarization on the FS. To leading order in ∆F , the

angle δ(θk) between the spin vectors in the presence and absence of nematic order is

δ(θk) ≈ ∆F | sin 2θk|. (2.39)

Thus except for four points on the FS θk = 0, π/2, π, 3π/2, spin and momentum are no longer

orthogonal (Fig. 2.5). However, one might naively think that spin-momentum locking is

preserved in the sense that the spin vector remains tangent to the FS even if the latter

is distorted. This is not true: defining a unit vector t̂k tangent to the distorted FS (that

winds around the FS clockwise), we have

ẑ · (sk × t̂k) ≈ ∆F sin 2θk, (2.40)

to leading order in ∆F , thus the spin vector is tangent to the FS only at four points,

θk = 0, π/2, π, 3π/2 (Fig. 2.5). This partial breakdown of spin-momentum locking except at

high-symmetry points could be detected experimentally using spin-resolved angle-resolved

photoemission spectroscopy (ARPES), using for instance the setups described in Ref. [7].

As in the undoped case, nematic order of the type considered here would lead to

anisotropy in the in-plane spin susceptibility. Here the transition is continuous already at

zero temperature, and in the vicinity of the zero temperature quantum critical point we

find

χxx − χyy =
1

4
g2µ2

BN (µ)
Λ

kF
∆F , (2.41)
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Figure 2.5: Partial breakdown of spin-momentum locking in the nematic phase. Blue dashed line:

FS in the isotropic phase (∆F = 0); orange dashed line: FS in the nematic phase (here shown

for ∆F = 0.18). The red (black) vectors represent the expectation value of spin on the FS in the

isotropic (nematic) phase. Except at four special momenta (green dots), spin in the nematic phase

is no longer perpendicular to momentum, nor is it tangential to the (distorted) FS.
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to leading order in ∆F . More conventional measures of nematicity, such as anisotropy in

the in-plane resistivity [53, 65], apply here as well. Considering scattering on nonmagnetic

impurities modelled by a collision time τ , a calculation of the conductivity using the Kubo

formula and impurity-averaged Green’s functions in the first Born approximation gives2

ρxx − ρyy
ρxx + ρyy

≈ ∆F , (2.42)

to leading order in ∆F and assuming weak disorder 1/(µτ)� 1. By symmetry we anticipate

an analogous result in the undoped case.

2.3 Fluctuation effects

We now go beyond the mean-field level and investigate the effect of fluctuations in the

vicinity of the quantum critical point in the doped limit kF � Λ. Following Ref. [53], we

rewrite the order parameter in terms of the Pauli matrices τz and τx,

Q̂ = ψ†∆1ψτz + ψ†∆2ψτx, (2.43)

where

∆1 = −i(σx∂̂x − σy∂̂y), ∆2 = −i(σx∂̂y + σy∂̂x), (2.44)

and we define ∂̂ ≡
↔
∂/|∂| in the sense of Fourier transforms (see Eq. (2.6)). We can now

rewrite the imaginary-time action in a vectorial form,

S[ψ†, ψ] =

∫ 1/T

0
dτ

∫
d2r

[
ψ†Ĝ−1

0 ψ − f2

2
(ψ†∆ψ)2

]
, (2.45)

where ∆ = (∆1,∆2) and

Ĝ−1
0 = ∂τ − ivF ẑ · (σ × ∂)− µ, (2.46)

2This calculation was performed by R. Lundgren.
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is the noninteracting Green’s operator. Introducing a bosonic auxiliary field n = (n1, n2)

to decouple the four-fermion term, we have

S[ψ†, ψ,n] =

∫ 1/T

0
dτ

∫
d2r

[
ψ†(Ĝ−1

0 − n ·∆)ψ +
1

2f2
n2

]
. (2.47)

After integrating out the fermions to second order in n, we find the effective action

Seff [n] =
1

2

∑
iqn,q

n(q, iqn)Tχ−1(q, iqn)n(−q,−iqn), (2.48)

where the inverse propagator for the auxiliary field is given to lowest order in momentum

q and Matsubara frequency qn by

χ−1
ij (q, iqn) = δij(r + κq2) +Mij(q, iqn). (2.49)

Here r = f−1
2 −N (µ)/2 is the distance from criticality which gives a mass to the auxiliary

field, κ = N (µ)/(8k2
F ) gives it a finite stiffness, and

M(q, iqn) = isN (µ)

∫ 2π

0

dφ

2π

1

is− cos(φ− θq)

 sin2 2φ − sin 2φ cos 2φ

− sin 2φ cos 2φ cos2 2φ

 , (2.50)

is a dynamical term, where s ≡ qn/(vF q) and θq is the angle between q and the x axis.

Performing the integral over φ, we have

M(q, iqn) =
N (µ)

2

|s|√
s2 + 1

[
1−

(√
s2 + 1− |s|

)4
(σz cos 4θq + σx sin 4θq)

]
, (2.51)

which, after a rotation of θq by π/4, gives the same inverse propagator as for the spinless

nematic Fermi fluid [53]. The effective action (2.48) can be diagonalized by a rotation
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n→ n′, χ−1 → χ′−1, where

n′(q, iqn) = R(4θq)
Tn(q, iqn) =

 d̂q · n(q, iqn)

ẑ ·
(
d̂q × n(q, iqn)

)
 . (2.52)

Here R(φ) = e−iσyφ/2 is an orthogonal rotation matrix and d̂q ≡ (cos 2θq, sin 2θq). Thus n′1

and n′2 correspond to the longitudinal and transverse components of n, respectively. The

transformed inverse propagator is

χ′−1(q, iqn) = R(4θq)
Tχ−1(q, iqn)R(4θq) =

 χ′−1
1 (q, iqn) 0

0 χ′−1
2 (q, iqn)

 . (2.53)

For small s, we have

χ′−1
1 (q, iqn) = r + κq2 + 2N (µ)s2 + . . . , (2.54)

χ′−1
2 (q, iqn) = r + κq2 +N (µ)|s|+ . . . (2.55)

2.3.1 Collective modes

Since the inverse propagator of nematic fluctuations is the same as in the spinless case, the

number and dispersion of collective modes, given by the condition

detχ−1(q, iqn) = 0, (2.56)

is also the same. Analytically continuing Eq. (2.54)-(2.55) to real frequencies iqn → ω+ iδ,

we find

χ′−1
1 (q, ω) = r + κq2 − 2N (µ)

(
ω

vF q

)2

, (2.57)

χ′−1
2 (q, ω) = r + κq2 −N (µ)

iω

vF q
, (2.58)
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to leading order in ω/(vF q). At criticality r → 0+, the collective mode dispersions are

ω1(q) ≈
√

κ

2N (µ)
vF q

2, ω2(q) ≈ − ivFκN (µ)
q3, (2.59)

thus ω1 is an undamped z = 2 mode and ω2 is an overdamped z = 3 mode. Since ω2 � ω1

in the long-wavelength limit q → 0, the overdamped mode dominates the long-wavelength

response and the dynamic critical exponent at the transition is z = 3 [53].

We note that although ω1 corresponds to longitudinal fluctuations of n, when pro-

jecting to the FS the longitudinal (11 and 22) components of the order parameter (2.6) map

to the transverse (12 and 21) components of the usual spinless nematic order parameter

ψ†(∂a∂b −
1

2
δab∂

2)ψ, (2.60)

where the effectively spinless field ψ† creates electrons of the appropriate helicity on the

FS, i.e., in the single-particle state Eq. (2.36) or its negative-helicity counterpart. Like-

wise, under projection the transverse components of (2.6) are mapped to the longitudinal

components of (2.60). Thus in this sense ω1 (ω2) is the transverse (longitudinal) mode, in

accordance with the terminology of Ref. [53].

In the nematic phase (r < 0), we consider Gaussian fluctuations about the classical

saddle point, which we take to be n̄ = (n̄, 0) without loss of generality. Near the critical

point where n̄ is small, the leading change in the effective action for fluctuations compared

to the isotropic phase is to the uniform and static part (q = iqn = 0) of the inverse

propagator [53],

χ−1(q, iqn) =

 2|r|+ κq2 +M11(q, iqn) M12(q, iqn)

M21(q, iqn) κq2 +M22(q, iqn)

 , (2.61)

i.e., the longitudinal (amplitude) mode δn1 acquires a mass 2|r| and the transverse (Gold-

stone) mode δn2 is massless. Deep in the nematic phase (i.e., n̄ not small), the q2 part
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and the dynamical part Mij will be modified from their form at n̄ = 0, but our conclusions

drawn from the small n̄ limit will not be affected in a major way (for instance, a finite n̄

would lead to a difference κ⊥ 6= κ‖ in stiffness for the amplitude and Goldstone modes).

The two eigenvalues χ−1
⊥ and χ−1

‖ of the inverse propagator (2.61) give the spectrum of

collective modes in the nematic phase. The inverse transverse propagator, given by

χ−1
⊥ (q, iqn) = κq2 +N (µ)|s| cos2 2θq −N (µ)

(
cos 4θq +

N (µ)

16|r| sin2 4θq

)
2s2 +O(s3),

(2.62)

corresponds to the gapless nematic Goldstone mode, which is overdamped due to Lan-

dau damping except along the principal axes of the distorted FS (θq = ±π/4,±3π/4 for

the saddle point considered, corresponding to Q̄11 = −Q̄22 6= 0). Along those directions

the inverse transverse propagator reduces to Eq. (2.54) and the Goldstone mode disperses

quadratically according to ω1(q) in Eq. (2.59). Those undamped directions also correspond

to the FS momenta where spin-momentum locking is preserved (green dots in Fig. 2.5).

The inverse longitudinal propagator is given by

χ−1
|| (q, iqn) = 2|r|+ κq2 +N (µ)|s| sin2 2θq +N (µ)

(
cos 4θq +

N (µ)

16|r| sin2 4θq

)
2s2 +O(s3),

(2.63)

and describes gapped amplitude fluctuations, as expected.

Despite the number and dispersion of collective modes being formally the same as in

the spinless nematic Fermi fluid, their physical nature is very different: in the latter case only

charge degrees of freedom fluctuate, while fluctuations of the spin-orbit-coupled nematic

order parameter (2.6) strongly mix charge and spin. An important observable consequence

of this difference is that nematic fluctuations in the helical liquid considered here should

strongly couple to the spin sector. While static nematic order does not break time-reversal

symmetry and thus cannot induce a static spin polarization, nematic fluctuations can in

principle induce spin fluctuations. To quantify this effect, one can use linear response:
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a nematic fluctuation δn(q, ω) with momentum q and frequency ω should induce a spin

fluctuation δ〈s(q, ω)〉 with the same momentum and frequency,

δ〈si(q, ω)〉 ∝ ΠR
ij(q, ω)δnj(q, ω), (2.64)

if a suitably defined retarded spin-nematic susceptibility ΠR
ij(q, ω) is nonzero. An appropri-

ate definition is

ΠR
ij(r, t) = −iθ(t)

〈[
(ψ†σiψ)(r,t), (ψ

†∆jψ)(0,0)

]〉
, (2.65)

in real space and time, where ψ†σψ is the spin operator and ψ†∆ψ is the operator that

couples to nematic fluctuations in Eq. (2.47). Eq. (2.65) will differ in the isotropic and

nematic phases; here we compute ΠR
ij in the isotropic phase and find a nonzero result, but

we expect a nonzero result in the nematic phase as well.

p+ q, ipn + iqn

p, ipn

q, iqn q, iqn

�i �j
�j�i

k � q,
ikn � iqn

q, iqn

k, ikn k, ikn

(b)(a)

Figure 2.6: One-loop diagrams for (a) the spin-nematic susceptibility [Eq. (2.66)]; (b) the electron

self-energy [Eq. (2.71)].

In the Matsubara frequency domain, the spin-nematic susceptibility is given by the

bubble diagram in Fig. 2.6(a),

Πij(q, iqn) =
T

V

∑
p,ipn

trσiG0(p+ q, ipn + iqn)∆j(p,p+ q)G0(p, ipn), (2.66)
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where

∆1(k,k′) ≡ σx
(
k̂x + k̂′x

2

)
− σy

(
k̂y + k̂′y

2

)
, (2.67)

∆2(k,k′) ≡ σx
(
k̂y + k̂′y

2

)
+ σy

(
k̂x + k̂′x

2

)
, (2.68)

are the Fourier transform of the nematic vertices (2.44) and G0 is the unperturbed electron

Green’s function, given by

G0(p, ipn) =
ipn + µ+ vF ẑ · (σ × p)

(ipn + µ)2 − v2
Fp

2
. (2.69)

The retarded spin-nematic susceptibility ΠR
ij(q, ω) is obtained from (2.66) by analytic con-

tinuation iqn → ω + iδ. We evaluate its imaginary part Π′′ij(q, ω) at zero temperature and

in the long-wavelength q � kF , low-energy |ω| � µ limits. To leading order in ω/vF q, we

find

Π′′ij(q, ω) ∼ ω

µ

 cos θq sin θq

− sin θq cos θq

− 3
ω

µ

 cos 3θq sin 3θq

sin 3θq − cos 3θq

 . (2.70)

ignoring an overall constant prefactor (we are only interested in showing that the response

does not vanish). From time-reversal symmetry one can show that Π′′ij(q, ω) = Π′′ij(−q,−ω),

which is obeyed since all components in the matrices of Eq. (2.70) are odd in both q and

ω. Kramers-Kronig relations imply that the real part Π′ij(q, ω) approaches a constant at

low frequencies and has the same structure in momentum space. By virtue of Eq. (2.64),

nematic fluctuations can thus induce spin fluctuations, by contrast with the spinless (or

spin degenerate) nematic Fermi fluid.
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2.3.2 Helical non-Fermi liquid behavior

We now turn to the fermion self-energy on the FS. In the random phase approximation

(RPA), i.e., at the one-loop level, the self-energy is given by the diagram in Fig. 2.6(b),

Σ(k, ikn) =
T

V

∑
q,iqn

∑
ij

∆i(k,k − q)G0(k − q, ikn − iqn)∆j(k − q,k)χij(q, iqn), (2.71)

where χij is the propagator of nematic fluctuations given in Eq. (2.49). Here we only

consider the effect of longitudinal fluctuations (i.e., the z = 3 overdamped mode) which are

expected to dominate at low energies. At the critical point r = 0, we find

Σ(k, ikn) =
(

1 + ẑ · (σ × k̂)
)

Σ0(k, ikn), (2.72)

for |k − kF | � kF and |kn| � µ, where

Σ0(k, ikn) = −iω1/3
0 |kn|2/3 sgn kn, (2.73)

and ω0 ∼ N (µ)−1(vFκ)−2, ignoring factors of order one. Near the FS, we can ignore

the lower helicity branch (assuming µ > 0) and the electron Green’s function G(k, ikn) =

[G0(k, ikn)− Σ(k, ikn)]−1 is given approximately by

G(k, ikn) ≈ 1

2

1 + ẑ · (σ × k̂)

2iω
1/3
0 |kn|2/3 sgn kn − ξk

, (2.74)

where ξk = vF |k| − µ. Thus to a first approximation the critical Green’s function retains

the same helicity structure as in the noninteracting limit,

G0(k, ikn) ≈ 1

2

1 + ẑ · (σ × k̂)

ikn − ξk
, (2.75)
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but exhibits non-Fermi liquid behavior with vanishing quasiparticle residue as ω → 0. The

spectral function is of the form

A(k, ω) ∼ 1

2

(
1 + ẑ · (σ × k̂)

) ω1/3
0 |ω|2/3
ξ2
k

, (2.76)

in the limit ω
1/2
0 |ω|2/3 � |ξk| � µ. Apart from the helicity structure, this is fully analogous

to the spinless case [53]. In analogy with Ref. [66], we conjecture that the transverse (z = 2)

fluctuations will give a finite anomalous dimension ηψ to the electron propagator, replacing

the denominator ξ2
k in Eq. (2.76) by |ξk|2−ηψ .

In the nematic phase, the longitudinal modes are gapped [see Eq. (2.63)] and one must

look at the effect of the transverse Goldstone modes described by the inverse propagator

(2.62). Because the symmetry generator Jz that is broken in the nematic phase does not

commute with translations, on general grounds one expects non-Fermi liquid behavior in

the nematic phase as well [67]. By contrast with the electron self-energy at the critical point

(2.72)-(2.73) however, we expect the self-energy in the nematic phase to reflect the broken

rotational symmetry.

To estimate the self-energy in the nematic phase, we observe that on the FS |k| = kF ,

the electron Green’s function appearing in Eq. (2.71) can be approximated by

G0(k − q, ikn − iqn) ≈ 1

2

1 + ẑ · (σ × k̂)

ikn − iqn + vF k̂ · q
, (2.77)

since the momentum q of the collective mode is much smaller than the Fermi momentum.

Here we assume we are close to the quantum critical point such that the distortion of the

FS is small and can be neglected in the calculation of the self-energy; this is an O(n̄) effect,

and can be understood in mean-field theory (Sec. 2.2.2), whereas the breakdown of Fermi

liquid theory in the nematic phase appears at “zeroth” order in n̄ as will be seen. In the

low-energy limit (i.e., on the FS kn → 0) Eq. (2.77) is peaked at θq = θk ± π/2, thus in
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Eq. (2.71) one can replace θq in the Goldstone mode propagator (2.62) by θk±π/2 [68,69],

χ−1
⊥ (q, iqn) ≈ κq2 +N (µ)|s| cos2 2θk. (2.78)

We obtain

Σ(k, ikn) = (1− σy cos 3θk − σx sin 3θk) | cos 2θk|−2/3

× Σ0(k, ikn), (2.79)

where Σ0 is defined in Eq. (2.73). Ignoring the lower helicity branch, we obtain the Green’s

function

G(k, ikn) ≈ 1

2

1 + ẑ · (σ × k̂)

2iω
1/3
0 | cos 2θk|4/3|kn|2/3 sgn kn − ξk

, (2.80)

and the spectral function

A(k, ω) ∼ 1

2

(
1 + ẑ · (σ × k̂)

) ω1/3
0 | cos 2θk|4/3|ω|2/3

ξ2
k

, (2.81)

which are analogous to the spinless results [53] apart from the helicity structure. Equa-

tions (2.79)-(2.81) hold for generic angles θk 6= ±π/4,±3π/4 on the FS away from the

principal axes of the nematic. Along the principal axes θk = ±π/4,±3π/4, we find that af-

ter projection to the upper helicity branch the self-energy scales as ∼ |ω|3/2, as in Ref. [53],

corresponding to long-lived quasiparticles along those directions. Equations (2.76) and

(2.81) correspond to a “helical non-Fermi liquid” in which the destruction of long-lived

quasiparticles over most (in the nematic phase) or all (at the quantum critical point) of the

FS coexists with a Berry phase of π in spin space.
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2.4 Conclusion

In this chapter, we have developed a field-theoretic description of nematic order for a single

Dirac cone on the surface of a 3D topological insulator. Due to spin-orbit coupling present

in topological insulators, the nematic order parameter for helical Fermi liquids involves both

spin and momentum, in contrast to the case of regular Fermi liquids which just involves mo-

mentum. In the undoped limit at zero temperature, we found a first-order isotropic-nematic

transition at the mean-field level, in contrast with the expectation of a continuous transi-

tion based on Landau theory. The transition becomes continuous at a finite-temperature

tricritical point. In the doped limit the transition was found to be continuous even at zero

temperature. The spin-orbit coupled nature of nematic order was shown to lead to the

partial breakdown of spin-momentum locking on the distorted FS and anisotropy in the in-

plane spin susceptibility in both the doped and undoped limits. The number and dispersion

of collective modes in the doped limit, as well as the prediction of non-Fermi liquid behavior

at the quantum critical point and in the nematic phase, were seen to be the same as for

spin rotationally invariant nematic Fermi fluids. However, in the helical case it was shown

that nematic fluctuations can induce spin fluctuations, owing once again to the spin-orbit

coupled nature of nematic order in these systems.
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Chapter 3

Short-range correlated disorder

and Dirac semimetal-

superconductor transition

3.1 Introduction

In this and the following chapter, we study the effects of disorder on quantum phase tran-

sitions in Dirac fermion systems.

Disorder is ubiquitous in real physical systems, and almost inevitable in engineered

ones. It may come as point-like defects (vacancies and interstitials), line defects (edge and

screw dislocations), or volume defects (e.g., grain boundaries and voids). In many cases,

disorder can be considered stationary. In this case, it is called quenched disorder, on which

we focus in this thesis. The study of the effects of disorder is a broad topic. In particular,

it may lead to spatial localization of the single-particle wavefunctions in noninteracting sys-

tems [70]. Localization also may happen in interacting systems and is dubbed many-body

localization [71]. Disorder may lead to unique random phases of matter [72–76], destabi-

lize phases and transitions of pure systems, or round sharp features of phase transitions.

While other cases are possible (e.g., disorder in the phase of a complex order parameter
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or directions of easy axes in magnets), disorder often enters into a system’s effective La-

grangian in the form of random-field or random-mass terms. The former has the form

−h(r) · φ(r), where φ(r) is an order parameter field, and h(r) is a spatially random field.

This term usually emerges when disorder locally breaks the internal symmetry of the or-

der parameter field [77]. The second type of disorder, random-mass disorder, also called

random-Tc disorder, does not break the symmetry of the order parameter, and introduces a

spatially random correction to the mass term δr(r)φ(r)2 into the Lagrangian. It has been

shown that random-field disorder prevents spontaneous symmetry breaking in d ≤ 2 and

d ≤ 4 spatial dimensions for discrete and continuous symmetries of the order parameter,

respectively [78–81].

Random-mass disorder does not destabilize phases but may destabilize phase tran-

sitions. The Harris criterion [82] characterizes the stability of clean critical points, both

classical and quantum: if dν > 2, where ν is the correlation length exponent, the clean

critical point is stable. If it is stable, the disorder strength flows (in the RG sense) to

zero in the long-wavelength limit, and the system is self-averaging, i.e., the width of the

distribution of physical observables across different realizations of disorder is zero in the

thermodynamic limit. If the clean critical point is unstable, there are two alternatives. In

the first, the disorder strength flows to infinity, and in the second, the disorder strength is

finite in the long-wavelength limit corresponding to a finite-disorder random critical point.

The Chayes inequality [83] states that the correlation length exponent at such a random

critical point should itself obey the Harris criterion.

With the discovery of materials with a pseudo-relativistic spectrum, much research

has been done on the effects of disorder in such materials, both for Weyl [84–99] and

Dirac [100–105] semimetals. However, most studies focused on noninteracting systems.

The interplay of disorder and interactions has been considered, in particular, in Refs. [106–

108] and Refs. [109–111] for the surface of 3D topological insulators and superconductors,

respectively; in Ref. [112] for the integer quantum Hall plateau transition; in Refs. [113–

118] for graphene. Recent work has also demonstrated the possibility of novel critical
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phases in massless (2+1)D relativistic quantum electrodynamics in the presence of quenched

disorder [119–121], with possible applications to disordered spin liquids. However, with a

few exceptions discussed below, none of the above studies considered the effect of disorder

on symmetry-breaking quantum phase transitions, such as those focused on in this thesis.

In this Chapter, we consider the interplay of disorder and interactions on the semimetal-

superconductor quantum phase transition in a system of 2D Dirac fermions at charge

neutrality. In the BCS theory of superconductivity, the transition temperature Tc ∼

exp
(
− 1
N (µ)g

)
, where N (µ) is the density of states at the Fermi level and g is the BCS

coupling. Thus, at zero temperature, one expects that the system is always in the su-

perconducting state, eliminating the possibility of a quantum phase transition. However,

naively, from the given formula, for a vanishing density of states at the Fermi level, one

concludes that Tc approaches zero, and a quantum phase transition is possible.

The effect of quenched disorder on the semimetal-superconductor quantum phase

transition of 2D Dirac fermions at charge neutrality has already been partially addressed

using mean-field [106, 118] and standard epsilon expansion [106] methods. Here we revisit

this problem using the double epsilon expansion [122–124] which is better suited to the study

of quantum critical phenomena in disordered systems. While the double epsilon expansion

has traditionally been applied to purely bosonic systems, e.g., the O(n) vector model with

random-Tc disorder [122–124], here we show that it can be applied to fermionic quantum crit-

ical points (QCPs) described by quantum field theories of the Gross-Neveu-Yukawa (GNY)

type [125, 126], exploiting the fact that, like the O(n) vector model, such theories have an

upper critical dimension of four absent quenched disorder. We consider a model of 2D Dirac

semimetal with N flavors of two-component Dirac fermions, and show that at leading (one-

loop) order in the double epsilon expansion, a Harris-stable clean QCP gives way beyond a

certain critical disorder strength to a finite-disorder QCP [127] with non-Gaussian critical

exponents and noninteger dynamic critical exponent z > 1. Furthermore, Dirac fermions

and bosonic order parameter fluctuations are strongly coupled at this QCP. The latter is

therefore a first example of disordered fermionic QCP, which combines the phenomenology
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of finite-disorder bosonic QCPs [128] with that of (clean) fermionic QCPs, where coupling

between bosonic order parameter fluctuations and gapless fermionic modes leads to new

universality classes beyond those of the purely bosonic Landau-Ginzburg-Wilson paradigm.

We do not discuss the possibility of Griffiths phases due to rare regions effects [77]. How-

ever, according to the classification developed in Refs. [129–131], the problem we consider

belongs to class A, in which the effective rare region dimensionality dRR is less than the

lower critical dimension d−c . In our case, we have dRR = 1 (disorder is completely correlated

in time dimension) and d−c = 2. In this class, Griffiths singularities [132–134] are essential

singularities, and rare region effects are exponentially weak.

The rest of this chapter is structured as follows. In Sec. 3.2 we present our model for

the semimetal-superconductor transition in the presence of quenched disorder. In Sec. 3.3

we outline the basic steps of the renormalization group (RG) approach in the double ep-

silon expansion and present the beta functions describing the flow under renormalization

of various coupling constants in the theory. In Sec. 3.4 we find RG fixed points, analyze

their stability, and determine how they are connected under the RG flow. In Sec. 3.5 we

determine the critical exponents at the various fixed points and derive implications of the

RG flow analysis for the phase diagram of the system. A brief conclusion follows in Sec. 3.6,

and the details of derivations are contained in Appendix B.

3.2 Model

We consider a model of N flavors of two-component Dirac fermions ψ1, ψ2, . . . , ψN in 2+1

dimensions, which in the absence of interactions are described by the low-energy imaginary-

time Lagrangian

Lψ =

N∑
i=1

iψ̄i(γ0∂τ + cfγ · ∇)ψi, (3.1)

where γ0 and γ = (γ1, γ2) denote Euclidean 2×2 Dirac matrices in 2+1 dimensions, obeying

the SO(3) Clifford algebra {γµ, γν} = 2δµνI2×2, µ, ν = 0, 1, 2, with I2×2 the 2 × 2 identity
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matrix, and ψ̄i = −iψi†γ0 is the Dirac conjugate. In a condensed matter system on a lattice

the N flavors would correspond to N symmetry-related linear band crossings in the Brillouin

zone, with a common Dirac velocity cf . We also assume the underlying microscopic model

is particle-hole symmetric, which excludes any possible tilt of the Dirac cones. For a 3D

topological insulator the two components of the spinor ψi correspond to physical spin; for a

2D Dirac semimetal like graphene an equivalent four-component formulation is more natural

(see Appendix B.9).

We will be interested in superconducting instabilities, and consider subjecting the

Dirac fermions to sufficiently short-range attractive interactions. At low energies, the vari-

ous possible superconducting order parameters will transform according to irreducible rep-

resentations of the symmetry group of (3.1). We will assume the microscopic interactions

are such that in a certain range of couplings they favor pairing in the flavor-symmetric,

s-wave, spin-singlet channel, with an order parameter

N∑
i=1

〈ψiT iσ2ψ
i〉, (3.2)

where T denotes the transpose and σ1, σ2, σ3 are the Pauli spin matrices, which act on the

physical spin degrees of freedom. We consider first the clean limit, and assume that the

chemical potential is exactly at the Dirac point. The transition from Dirac semimetal to

superconductor at zero temperature proceeds via a QCP at finite attraction strength, since

the density of states of the Dirac semimetal vanishes at the Fermi energy [106, 135–139].

The critical behavior at the QCP is governed by the so-called chiral XY GNY model [126],

Lclean = Lψ + Lφ + Lφψψ, (3.3)
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where

Lφ = |∂τφ|2 + c2
b |∇φ|2 + r|φ|2 + λ2|φ|4, (3.4)

Lφψψ = hφ∗
N∑
i=1

ψiT iσ2ψ
i + H.c. (3.5)

The Lagrangian (3.3) describes gapless Dirac fermions interacting with bosonic order pa-

rameter fluctuations φ with velocity cb; r is a tuning parameter for the transition (r > 0 in

the semimetal phase, r < 0 in the superconducting phase, and r = 0 at criticality), and the

coupling constants λ2 and h obey λ2 > 0 and h2 > 0. The absence of a term φ∗∂τφ linear in

time derivatives is a consequence of the assumed particle-hole symmetry of the underlying

microscopic model. The effective low-energy Lagrangian (3.3) exhibits an emergent O(N)

flavor symmetry under ψi → Wijψ
j , with W an arbitrary orthogonal N × N matrix, and

its critical properties for any N can be accessed via an RG analysis in D = 4 − ε space-

time dimensions [126,139–141]. For N = 1, the model is applicable to the superconducting

transition on the surface of a 3D topological insulator with a single Dirac cone, and fea-

tures a QCP with emergent N = 2 supersymmetry [140, 142–149]. For N = 4, the model

describes the superconducting transition in graphene [139]. Also, for N = 4 and N = 2, the

model describes a quantum phase transition from a Dirac semimetal (spinful or spinless,

respectively) to an insulator with Kekulé valence-bond-solid (VBS) order on the honey-

comb lattice [139, 150], or to an insulator with columnar VBS order on the π-flux square

lattice [151]. The spontaneously broken symmetries in those examples are discrete Z3 and

Z4 point group symmetries, respectively, but those anisotropies are irrelevant perturbations

at the O(2)-symmetric GNY fixed point, at least in the large-N limit [152, 153]. How-

ever, in those VBS realizations of chiral XY GNY criticality, spatial randomness necessarily

couples linearly to the VBS order parameter: it thus acts as random-field disorder, which

destroys the d = 2 critical point. In Appendix B.9 we establish an equivalence between the

two-component formulation with Yukawa coupling to the Majorana mass used here and in

Ref. [147], and a four-component formulation with normal and axial Dirac masses typically
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used in discussions of graphene [139,140], where the U(1) symmetry is realized as an axial

symmetry.

Focusing on the superconducting transition, we now consider the effect of quenched

disorder on this transition. We assume a random spin-independent perturbation that is

smooth on the scale of the microscopic lattice constant, i.e., that is sufficiently long-range so

as to not scatter Dirac fermions between different valleys (see, e.g., Ref. [154]). Furthermore,

we assume exact particle-hole symmetry at the microscopic level. An example type of

microscopic disorder in graphene that preserves that symmetry is random-bond disorder,

i.e., randomness in the nearest-neighbor fermion hopping [155]. The perturbation then

couples identically to all fermion flavors,

Ldis = V (x)
N∑
i=1

ψ̄iMψi, (3.6)

where the matrix M depends on the precise type of disorder, and V (x) is a random variable.

Proceeding as in Ref. [106], we assume a Gaussian disorder distribution with zero mean and

variance ∆V ,

P [V (x)] ∝ e−
∫
d2xV (x)2/2∆V , (3.7)

and perform the quenched disorder average using the replica trick (see Appendix B.1 and

Refs. [30, 156,157]). This generates a four-fermion interaction nonlocal in time,

Sdis,f = −∆V

2

m∑
a,b=1

N∑
i,j=1

∫
d2x dτ dτ ′ (ψ̄iaMψia)(x, τ)(ψ̄jbMψjb)(x, τ

′), (3.8)

where the replica limit m → 0 is to be taken at the end of the calculation. This effective

interaction preserves all the symmetries of the clean limit, including translation symmetry

and O(N) flavor symmetry. As will be explained in greater detail in Sec. 3.3, in the context

of an RG analysis near four dimensions the four-fermion interaction term (3.8) is strongly

irrelevant in perturbation theory, and thus would not appear to affect critical behavior in the
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scaling limit. However, at two-loop order this interaction generates an effective four-boson

interaction,

Sdis,b = −∆

2

m∑
a,b=1

∫
d2x dτ dτ ′ |φa|2(x, τ)|φb|2(x, τ ′), (3.9)

where ∆ ∝ h4∆V at leading order in perturbation theory (Fig. 3.1). The four-boson inter-

action (3.9) is identical to one generated by Gaussian disorder in the coefficient of the |φ|2

term in Eq. (4.2), i.e., random-Tc disorder. By contrast with Eq. (3.8), this interaction is

relevant below four dimensions [158] and must be included in an RG analysis of the critical

behavior, to which we now turn.

�a �b

�⇤
b�⇤

a

�V

h h

hh

Figure 3.1: Random-Tc disorder is generated from random potential disorder at two-loop
order (dotted lines: order parameter fluctuations, solid lines: fermions, box: disorder-
induced four-fermion coupling).

3.3 RG in the double epsilon expansion

In the limit of a unique fermion flavor N = 1, the problem so far described has been studied

in Ref. [106] using the ε expansion in D = 4 − ε spacetime dimensions. In this expansion

the four-fermion coupling ∆V in Eq. (3.8) has an engineering dimension −1 + ε, and is thus

strongly irrelevant at the Gaussian fixed point for small ε, while the induced four-boson

coupling ∆ in Eq. (3.9) has an engineering dimension 1+ ε, which is strongly relevant at the

Gaussian fixed point. In the ε expansion one thus finds that disorder is relevant at the clean
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QCP also [106], since dimensions of operators at this QCP only receive O(ε) corrections

relative to their engineering dimensions. In fact, the conventional ε expansion below four

dimensions generally predicts runaway flows near QCPs with random-Tc disorder [30]. While

such runaway flows are often interpreted as an indication that critical behavior is destroyed,

they really only signal the breakdown of the conventional ε expansion as well as the need

for another small parameter with which to tame RG flows generated by disorder. Here

we will follow one particular approach to fulfill this need, which consists in working in

d = 4 − ε spatial and ετ time dimensions [122–124]. In d = 4 − ε spatial and ετ imaginary

time dimensions, the order parameter field φ and the fermion field ψ have engineering

dimensions ∆φ = (2− ε+ ετ )/2 and ∆ψ = (3− ε+ ετ )/2, respectively. Thus, the couplings

λ2 and ∆ have mass dimensions ε−ετ and ε; and the Yukawa coupling h has mass dimension

(ε − ετ )/2. Treating ε and ετ as small parameters, a controlled perturbative RG analysis

can be performed. In the present case, to access the physical problem in 2+1 dimensions

one extrapolates ε → 2 and ετ → 1. The four-fermion disorder-induced coupling ∆V in

Eq. (3.8) has dimension d+ 2ετ − [ψ†ψψ†ψ] = −2 + ε, which is strongly irrelevant for small

ε, ετ , and thus we may exclude ∆V from the consideration. (For a study of quantum critical

phenomena in disordered 3D Dirac semimetals using a different type of double epsilon

expansion, see Ref. [159].)

For an O(n) generalization of scalar φ4 theory with n > 1, a stable DFP with

λ2
∗ ∼ O(ε, ετ ), ∆∗ ∼ O(ε, ετ ) on the critical hypersurface r = 0 is found at one-loop order,

with critical exponents 1:

ν =
1

2
+

3nε+ (2n+ 4)ετ
32(n− 1)

, (3.10)

z = 1 +
(4− n)ε+ (2n+ 4)ετ

16(n− 1)
. (3.11)

For n = 2, and extrapolating ετ to 1 and ε to 2 or 1, relevant to the boson superfluid-Mott

1The one-loop exponents (3.10-3.11) correspond to those given in Refs. [160] and [124], and we have also
independently reproduced those results. Note that the result for ν quoted in Eq. (21.22) of Ref. [30] is the
incorrect result for ν⊥ = (2− γ∗ϕ2)−1 given in the original paper by Boyanovsky and Cardy [123], which was
later corrected in Refs. [124,160].
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glass transition in (2+1)D and (3+1)D, respectively, one obtains exponents in reasonable

agreement with those found in numerical Monte Carlo (MC) simulations (Table 3.1).

MC [161,162] O(ε, ετ )

ν, (2+1)D 1.16(5) 1.125

z, (2+1)D 1.52(3) 1.75

ν, (3+1)D 0.90(5) 0.9375

z, (3+1)D 1.67(6) 1.625

Table 3.1: Critical exponents for the boson superfluid-Mott glass transition.

3.3.1 Bare vs renormalized actions

Focusing first on the critical theory r = 0, we thus study the replicated action

S =
∑
a

∫
ddx dετ τ

(
iψ̄a(/∂τ + cf /∇)ψa + |∂τφa|2 + c2

b |∇φa|2 + λ2|φa|4 + h(φ∗aψ
T
a iσ2ψa + H.c.)

)
− ∆

2

∑
ab

∫
ddx dετ τ dετ τ ′|φa|2(x, τ)|φb|2(x, τ ′), (3.12)

where a, b = 1, . . . ,m are replica indices, we denote /∂τ ≡ γ0∂τ and /∇ ≡ γ · ∇ for

simplicity, and we group the N fermion flavors for each replica a into an O(N) vector,

ψa ≡ (ψ1
a, ψ

2
a, . . . , ψ

N
a ). By rescaling the fermion and boson fields as well as the time co-

ordinate, and redefining the couplings in the Lagrangian, one can eliminate the velocities

cf and cb from the Lagrangian at the expense of multiplying |∂τφa|2 by the ratio (cf/cb)
2,

which we will denote c2.

To carry out an RG analysis of the above theory, we compare the bare action

SB =
∑
a

∫
ddxB d

ετ τB

(
iψ̄a,B(/∂τB + /∇B)ψa,B + c2

B|∂τBφa,B|2 + |∇Bφa,B|2 + λ2
B|φa,B|4

+ hB(φ∗a,Bψ
T
a,Biσ2ψa,B + H.c.)

)
− ∆B

2

∑
ab

∫
ddxB d

ετ τB d
ετ τ ′B|φa,B|2(xB, τB)|φb,B|2(xB, τ

′
B),

(3.13)
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to the renormalized action

S =
∑
a

∫
ddx dετ τ

(
Z1iψ̄a/∂τψa + Z2iψ̄a /∇ψa + Z3c

2|∂τφa|2 + Z4|∇φa|2 + Z5λ
2µε−ετ |φa|4

+ Z6hµ
(ε−ετ )/2(φ∗aψ

T
a iσ2ψa + H.c.)

)
− Z7

∆

2
µε
∑
ab

∫
ddx dετ τ dετ τ ′ |φa|2(x, τ)|φb|2(x, τ ′),

(3.14)

where the renormalized couplings c2, λ2, h, ∆ are dimensionless, and we have introduced a

renormalization scale µ. The renormalization constants Z1, . . . , Z7 are to be calculated in

perturbation theory. The bare and renormalized kinetic terms for the fermion match if one

takes xB = x, τB = ητ , and

√
Z1ψa(x, τ) = η(ετ−1)/2ψa,B(xB, τB), (3.15)√
Z2ψa(x, τ) = ηετ/2ψa,B(xB, τB), (3.16)

which implies η = Z2/Z1. The dynamic critical exponent z describes the relative scaling of

space and time, which in dimensionless units reads µτ ∼ (µ|x|)z. Defining the anomalous

dimensions

γi =
d lnZi
d lnµ

, i = 1, . . . , 7, (3.17)

this implies [120]

z = 1 + γ1 − γ2, (3.18)

since the bare coordinate xB and time τB do not depend on µ. Likewise, the |∇φ|2 terms

match if one requires

√
Z4φa(x, τ) = ηετ/2φa,B(xB, τB). (3.19)
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From Eq. (3.15)-(3.16) and (3.19) we find that the bare and renormalized coupling

constants are related by

c2 = Z−1
3 Z4

(
Z1

Z2

)2

c2
B, (3.20)

λ2 = µ−(ε−ετ )

(
Z1

Z2

)ετ
Z2

4Z
−1
5 λ2

B, (3.21)

h2 = µ−(ε−ετ )

(
Z1

Z2

)ετ
Z2

2Z4Z
−2
6 h2

B, (3.22)

∆ = µ−εZ2
4Z
−1
7 ∆B, (3.23)

from which we obtain the RG beta functions βg ≡ dg/d lnµ, g ∈ {c2, λ2, h2,∆},

βc2 = (2γ1 − 2γ2 − γ3 + γ4)c2, (3.24)

βλ2 =
(
−(ε− ετ ) + ετ (γ1 − γ2) + 2γ4 − γ5

)
λ2, (3.25)

βh2 =
(
−(ε− ετ ) + ετ (γ1 − γ2) + 2γ2 + γ4 − 2γ6

)
h2, (3.26)

β∆ = (−ε+ 2γ4 − γ7)∆, (3.27)

using the fact that the bare couplings c2
B, λ2

B, h2
B, and ∆B are independent of µ. For

ε > ετ > 0, the couplings λ2, h2, and ∆ are relevant at the Gaussian fixed point, and one

may hope to find a controlled fixed point in perturbation theory for small ε, ετ .

To determine the correlation length exponent ν one needs to compute the RG eigen-

value of the scalar field mass term |φ|2 at the QCP, which is done by adding the term∑
a rB|φa,B|2 to the bare Lagrangian and

∑
a Zrrµ

2|φa|2 to its renormalized counterpart.

Equating the two gives the relation

r = µ−2Z4Z
−1
r rB, (3.28)
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which yields the usual expression for the inverse correlation length exponent [163],

ν−1 = 2− γ4 + γr, (3.29)

defining γr = d lnZr/d lnµ as for the other renormalization constants. Finally, the fermion

γψ and boson γφ anomalous dimensions are obtained from γψ,φ = d lnZψ,φ/d lnµ where we

define Zψ and Zφ via

ψa,B(xB, τB) =
√
Zψψa(x, τ), (3.30)

φa,B(xB, τB) =
√
Zφφa(x, τ). (3.31)

Using Eq. (3.15)-(3.16) and (3.19) we find

γψ = γ2 + ετ (z − 1), (3.32)

γφ = γ4 + ετ (z − 1). (3.33)

3.3.2 Renormalization constants

To derive the beta functions (3.24)-(3.27) one must first compute the renormalization con-

stants Z1, . . . , Z7, and to determine the correlation length exponent one must calculate Zr.

Here we adopt the field-theoretic approach, with renormalization constants calculated at

one-loop order in the modified minimal subtraction (MS) scheme with dimensional regu-

larization. As is customary for these types of problems (see, e.g., Ref. [140]), we adopt a

naive dimensional-regularization prescription according to which all Dirac matrices anti-

commute [164] and spinor traces over products of an odd number of Dirac matrices vanish2.

With the dimensional-regularization prescription just mentioned, perturbative results only

depend on the total number of (complex) fermionic degrees of freedom, i.e., the dimension of

2In Ref. [140], a modified prescription that includes tr γµγνγλ ∝ εµνλ, which holds in three dimensions
with a 2D representation of the Clifford algebra, was shown to give results at variance with those obtained
with the naive prescription used here, but only starting at four-loop order. Since we perform calculations at
one-loop order only, the naive prescription is sufficient for our purposes.
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the chosen representation of the Dirac algebra, times the number of flavors. The Feynman

rules associated with the massive replicated action are illustrated schematically in Fig. 3.2;

the fermion and boson propagators are given by

Gijab(p) = 〈ψia(p)ψ̄jb(p)〉 = δabδ
ij /p

p2
, (3.34)

Dab(p) = 〈φa(p)φ∗b(p)〉 =
δab

c2p2
0 + p2 + µ2r

, (3.35)

denoting the spacetime momentum by p = (p0,p) and /p = γµpµ.
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1

c2p20 + p2 + rµ2

Figure 3.2: Schematic Feynman rules associated with the replicated action; a, b are replica
indices, i is a fermion flavor index, and q0, q denotes the frequency-momentum transfer from
top to bottom. The extra δ(q0) factor prevents frequency/energy transfer between replicas
which is a direct consequence of the elastic scattering off the random perturbation.

In the MS scheme, the renormalization constants are computed order by order in

the loop expansion by writing Zi = 1 + δZi, i = 1, . . . , 7, r and demanding that the δZi

cancel the ultraviolet divergences of the one-particle irreducible (1PI) effective action. In

dimensional regularization, this means that at one-loop order the δZi, which are computed

from the Feynman diagrams in Fig. 3.3, contain simple poles in ε and ε − ετ . We present
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the details of the calculation in Appendix B; here we simply quote the results (after taking

the replica limit m→ 0):

Z1 = 1− 8h2

ε− ετ
f(c2), (3.36)

Z2 = 1− 4h2

ε− ετ
, (3.37)

Z3 = 1− 2∆

ε
− 4Nh2c−2

ε− ετ
, (3.38)

Z4 = 1− 4Nh2

ε− ετ
, (3.39)

Z5 = 1 +
20λ2

ε− ετ
− 16Nh4λ−2

ε− ετ
− 12∆

ε
, (3.40)

Z6 = 1, (3.41)

Z7 = 1 +
16λ2

ε− ετ
− 8∆

ε
, (3.42)

Zr = 1 +
8λ2

ε− ετ
− 2∆

ε
, (3.43)

where we have rescaled the coupling constants according to g/(4π)2 → g, g ∈ {λ2, h2,∆},

and we define the dimensionless function (see Fig. 3.4),

f(c2) =
c2(c2 − 1− ln c2)

(c2 − 1)2
. (3.44)

3.3.3 Beta functions and anomalous dimensions

To calculate the beta functions, we first use the chain rule to write

γi =
1

Zi

dZi
d lnµ

=
1

Zi

∑
g

∂Zi
∂g

βg, (3.45)

for i = 1, . . . , 7 and g ∈ {c2, λ2, h2,∆}, which when substituted into the expressions (3.24)-

(3.27) gives a linear system of equations for the beta functions. Expanding the beta functions
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(a) (b) (c)

(d)

(e) (f) (g)

(h) (i)

Figure 3.3: One-loop diagrams for the renormalization of (a,b,c) the boson two-point func-
tion; (d) the fermion two-point function; (e,f,g) the boson self-interaction λ2; (h,i) the
disorder strength ∆. At this order there is no renormalization of the Yukawa coupling h.
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to quadratic order in the couplings, we find that all poles in ε and ε− ετ cancel, and obtain

βc2 = −2c2∆ + 4h2
[
c2
(
4f(c2) +N − 2

)
−N

]
, (3.46)

βλ2 = −(ε− ετ )λ2 − 12∆λ2 + 20λ4 + 8Nh2λ2 − 16Nh4, (3.47)

βh2 = −(ε− ετ )h2 + 4(N + 2)h4, (3.48)

β∆ = −ε∆− 8∆2 + 16∆λ2 + 8N∆h2. (3.49)

Setting ετ = 0 and ∆ = 0, Eq. (3.48) and (3.47) reduce to the one-loop beta functions of

the chiral XY GNY model in the ordinary 4− ε expansion (e.g., Eq. (19)-(20) in Ref. [141]

in the e2 = 0 limit). Note that the above beta functions are perturbative in λ2, h2, and ∆,

but exact in the relative velocity parameter c2.

Using Eq. (3.45), from the renormalization constants (3.36)-(3.42) and the beta func-

tions (3.46)-(3.49) we can calculate the anomalous dimensions γi, and from those the critical

exponents ν−1, z, γψ, and γφ. We obtain

ν−1 = 2− 4Nh2 − 8λ2 + 2∆, (3.50)

z = 1 + 4h2
(
2f(c2)− 1

)
, (3.51)

γψ = 4h2
[
1 +

(
2f(c2)− 1

)
ετ
]
, (3.52)

γφ = 4Nh2
[
1 +

(
2f(c2)− 1

) ετ
N

]
, (3.53)

which are meant to be evaluated at the RG fixed points (c2
∗, λ

2
∗, h

2
∗,∆∗) discussed in the fol-

lowing section. At one-loop order h2
∗ ∼ O(ε, ετ ), thus the subleading correction proportional

to ετ in the fermion (3.52) and boson (3.53) anomalous dimensions should be discarded.

In other words, at one-loop order the correction z − 1 to the dynamic critical exponent is

O(ε, ετ ), which gives a term quadratic in ε, ετ in Eq. (3.32)-(3.33) that should be treated

on par with two-loop corrections to γ2, γ4, and thus eliminated when working at one-loop

order.
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3.4 RG flow analysis

We now search for fixed points of the flow equations (3.46)-(3.49), i.e., common zeros

(c2
∗, λ

2
∗, h

2
∗,∆∗) of the beta functions, which correspond to possible (multi)critical points

for the semimetal-superconductor transition. In the double epsilon expansion, the nature

of the fixed points and their stability depend sensitively on the ratio ε/ετ (especially for

disordered fixed points with ∆∗ 6= 0) [122–124]. Since we are interested in the limit ε → 2

and ετ → 1, corresponding to 2+1 dimensions, we set ε = 2ετ and expand to leading order

in ετ .

3.4.1 Fixed points

First considering possible clean fixed points with ∆∗ = 0, we find the Gaussian fixed point

(c2
∗, 0, 0, 0) and O(2) Wilson-Fisher fixed point (c2

∗,
ετ
20 , 0, 0), where c2

∗ is arbitrary since the

velocity parameter flows under RG only in the presence of disorder or a nonzero Yukawa

coupling [Eq. (3.46)]. We also find a GNY fixed point for all N ,

(
1,

2−N +
√
N2 + 76N + 4

40(N + 2)
ετ ,

ετ
4(N + 2)

, 0

)
, (3.54)

corresponding to the semimetal-superconductor QCP in the clean limit, and in agreement

with earlier studies [126, 139–141]. Note that λ2
∗ > 0 for all N ≥ 1. Since f(1) = 1

2

(see Fig. 3.4), from Eq. (3.51) one finds z = 1, and the clean QCP has emergent Lorentz

invariance.

We now look for possible disordered fixed points with ∆∗ 6= 0. Since at one-loop

order βh2 depends on h2 alone [Eq. (3.48)], we can separately consider the cases with h2
∗ zero

and nonzero. For h2
∗ = 0, we find the fixed point (0, ετ2 , 0,

3ετ
4 ) for all N 3, which corresponds

3Note that naively substituting h2
∗ = 0 into Eq. (3.51) would imply that this fixed point has z = 1,

which is incorrect. The issue is that this fixed point has c2∗ = 0, but the renormalization constants (3.36)-
(3.43) are calculated assuming c2 6= 0. To calculate z at the bosonic disordered fixed point one should
rescale fields and redefine couplings in Eq. (3.12) in such a way as to eliminate the parameter c2 in front
of |∂τφa|2 at the expense of multiplying iψ̄a /∂τψa by 1/c. The dynamic critical exponent is then given by
z = 1 + 1

2
(γ3 − γ4) = 1 + 3ετ

4
, in agreement with known results (see Eq. (3.11) with n = 2).
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Figure 3.4: Plot of f(c2) in Eq. (3.44), with c2 = (cf/cb)
2 the velocity ratio squared;

f(0) = 0, f(1) = 1
2 , and f(∞) = 1.

to the disordered fixed point of the purely bosonic O(2) model [122–124] and describes the

superfluid-Mott glass transition in the presence of exact particle-hole symmetry [165]. For

h2
∗ 6= 0, as already mentioned one necessarily has h2

∗ = ετ/[4(N + 2)] like at the clean fixed

point (CFP) in Eq. (3.54), regardless of the values of λ2
∗ and ∆∗. Solving for a common

zero of βλ2 and β∆, we find two nontrivial disordered fixed points (DFP),

DFP 1:

(
c2
∗,DFP1,

ετ
N + 2

,
ετ

4(N + 2)
,

3ετ
2(N + 2)

)
, (3.55)

DFP 2:

(
c2
∗,DFP2,

Nετ
4(N + 2)

,
ετ

4(N + 2)
,

(N − 1)ετ
2(N + 2)

)
. (3.56)

As they occur at finite Yukawa coupling, and thus involve strongly coupled bosonic and

fermionic critical fluctuations, we will term these fixed points fermionic disordered fixed

points. The critical couplings λ2
∗, h

2
∗, and ∆∗ are strictly positive, and thus physical, for all

N ≥ 2. Inserting (3.55) and (3.56) into βc2 , one numerically finds that in both cases βc2

has a unique zero at a positive value of c2 for all N ≥ 2 (Fig. 3.5). For DFP 1, one can

derive the lower bound c2
∗,DFP1 ≥ N/(N − 1), and c2

∗,DFP1 tends to one as N increases. For

DFP 2, c2
∗,DFP2 increases without bound as N increases, and we have c2

∗,DFP2 ≥ N/3.

The cases N = 1 and N = 4 are special. As N approaches one from above, DFP
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Figure 3.5: Critical velocity parameters c2
∗ at the first disordered fixed point (DFP 1),

the second disordered fixed point (DFP 2), and the clean fixed point (CFP, c2
∗ = 1), as a

function of N ≥ 2.

2 merges with the clean fixed point, with c2
∗,DFP2 → c2

∗,CFP = 1, while DFP 1 moves off

to infinite coupling (c2
∗,DFP1 →∞). As can be gleaned by looking at Eq. (3.55)-(3.56) and

Fig. 3.5, as N → 4 DFP 1 and DFP 2 also merge. In accordance with the general scenario

governing the pairwise merging of fixed points [166, 167], and as will be elaborated upon

below, in the presence of disorder we expect to find marginal scaling at the clean fixed point

for N = 1 and at the (unique) fermionic disordered fixed point for N = 4.

3.4.2 Linear stability analysis

We now perform a linear stability analysis for the fixed points found in the previous section,

within the critical hypersurface r = 0. In the absence of disorder, as found previously [126,

139–141] the Gaussian and O(2) Wilson-Fisher fixed points have at least one unstable

direction, while the CFP is stable and describes the critical behavior at the transition. In

the presence of disorder, both the Gaussian and O(2) Wilson-Fisher fixed points acquire an

additional unstable direction. At the CFP, the RG eigenvalue (defined as the negative of
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the slope of the ultraviolet beta functions) corresponding to disorder is

−2

5

(√
N2 + 76N + 4−N − 8

N + 2

)
ετ , (3.57)

which is strictly negative for all N ≥ 2. Thus disorder is perturbatively irrelevant at the

CFP for all N ≥ 2. For N = 1, the eigenvalue (3.57) vanishes and one has marginal

scaling, as expected from the discussion at the end of the last section. Expanding the

beta functions to quadratic order in the couplings near the CFP, we find that disorder is

marginally relevant.

Turning now to the disordered fixed points, we find that the disordered O(2) Wilson-

Fisher fixed point is destabilized by a nonzero Yukawa coupling for all N . By contrast,

the stability of DFP 1 and DFP 2 depends on N . For N = 2, 3, DFP 1 is stable while

DFP 2 has one unstable direction; for N = 4, DFP 1 and DFP 2 merge into a single

fermionic disordered fixed point with marginal flow; for N ≥ 5, DFP 1 and DFP 2 exchange

their stability properties, i.e., DFP 2 is stable and DFP 1 has one unstable direction. As

previously mentioned, for N = 1 no finite-disorder fixed points remain.

3.4.3 RG flows

Having investigated the linearized RG flow near the fixed points, we now analyze the full

flow in the four-dimensional space of couplings, as given by the solution of the coupled

differential equations (3.46)-(3.49). Since the beta function for the Yukawa coupling (3.48)

is independent of c2, λ2, and ∆, the CFP, DFP 1, and DFP 2 share a common fixed-point

value of h2
∗ = ετ/[4(N+2)]. Furthermore, we find that the scaling field corresponding to the

relative velocity parameter c2 is irrelevant at each of those fixed points (except for N = 1,

which is discussed separately below). Therefore we will plot the projection of the RG flow

in the λ2-∆ plane at fixed h2 = h2
∗.

In Fig. 3.6 we plot the projected RG flows for N = 1. There is marginal flow away

from the CFP, with nonzero projections along the λ2, ∆, and c2 directions. The point
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Figure 3.6: RG flows for N = 1, with marginal flow (brown line) away from the CFP.
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(λ2,∆) = (ετ/3, ετ/2) towards which the marginal flow leads in Fig. 3.6 is a remnant of

DFP 1 [see Eq. (3.55)], but is not a fixed point as it is impossible to make βc2 vanish there

for N = 1. The marginal flow at the CFP implies the existence of a Landau pole that

can be interpreted as a crossover temperature scale T ∗ ∼ Λe−1/α∆0 above which scaling in

the quantum critical fan is controlled by the CFP, where Λ is a high-energy cutoff, ∆0 is a

dimensionless measure of the bare disorder strength, and α is a numerical factor of order

unity. Below T ∗ the runaway flow suggests the existence of a new fixed point, not accessible

at one-loop order, or a first-order transition.

In Fig. 3.7a we plot the flow diagram for N = 2. As found in the linear stability

analysis, the CFP and DFP 1 are stable fixed points while DFP 2 has one unstable direction,

and controls a separatrix surface (appearing as a line in the λ2-∆ plane) that separates the

basins of attraction of the CFP and DFP 1. For N = 3, the flow diagram is qualitatively

similar but DFP 1 and DFP 2 approach each other; at N = 4 they merge into a single DFP

with marginal flow towards the CFP (Fig. 3.7b).

For N = 5 (Fig. 3.7c) and N = 6, the flow diagram is qualitatively similar as that

for N = 2 and N = 3, but the stability properties of DFP 1 and DFP 2 are interchanged.

DFP 1 now controls the separatrix, and DFP 2 is the stable fixed point. For N ≥ 7,

this state of affairs remains, but two irrelevant eigenvalues of the stability matrix acquire

a nonzero imaginary part. Since the stability matrix is real, they are complex conjugates

ω± = ω′ ± iω′′, but their real part ω′ (defining ω± to be the eigenvalues of the Jacobian

matrix of the ultraviolet beta functions) remains positive, since they correspond to irrelevant

directions. We obtain

ω± =
N + 8± i

√
3N(5N − 32)

2(N + 2)
ετ . (3.58)

As a consequence of the nonzero imaginary part, RG trajectories spiral around DFP 2,

and the latter becomes a fixed point of stable-focus type. Such fixed points have been

found before in disordered O(n) magnets [122,168], and an unstable-focus point was found
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(a) RG flows for N = 2, with separatrix (green line)
controlled by DFP 2 between the CFP and DFP 1.
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(b) RG flows for N = 4: DFP 1 and DFP 2 merge into
a single DFP with marginal flow towards the CFP.
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(c) RG flows for N = 5.
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(d) RG flows for N = 20; DFP 2 is a fixed point of
stable-focus type for all N ≥ 7.

Figure 3.7: RG flows for different N .
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in Ref. [169]. As an illustrative example, we plot the RG flows for N = 20 in Fig. 3.7d

(stable-focus behavior is obtained for all N ≥ 7, but ω′′ is larger — and thus the spiraling

trajectories more easily seen — for larger N .)

3.5 Critical exponents and phase diagram

From Eq. (3.50)-(3.53) and the fixed point couplings (3.54), (3.55), (3.56) we can now

determine the critical exponents at the various fixed points (Table 3.2), where ηψ, ηφ denote

the anomalous dimensions γψ, γφ evaluated at the fixed point.

Fixed point ν−1 z − 1 ηψ ηφ

CFP 2−
(

4N + 2 +
√
N2 + 76N + 4

5(N + 2)

)
ετ 0

ετ
N + 2

Nετ
N + 2

DFP 1 2−
(
N + 5

N + 2

)
ετ

3 +
(

1−c2∗
c2∗

)
N

2(N + 2)
ετ

ετ
N + 2

Nετ
N + 2

DFP 2 2−
(

2N + 1

N + 2

)
ετ

N
c2∗
− 1

2(N + 2)
ετ

ετ
N + 2

Nετ
N + 2

Table 3.2: Critical exponents at the CFP, DFP 1, and DFP 2.

For N = 1, the CFP becomes the supersymmetric fixed point with ηψ = ηφ =

ετ/3 [140,142–148]. At the present one-loop order, the fermion/boson anomalous dimensions

ηφ and ηψ only depend on the Yukawa coupling h2, which is the same at each fixed point

as observed earlier. This state of affairs will change at higher loop orders, and we expect

the anomalous dimensions to differ at different fixed points in general.

We plot the inverse correlation length exponent ν−1 extrapolated to ετ = 1 as a

function of N ≥ 2 in Fig. 3.8. In accordance with the linear stability analysis in Sec. 3.4.2,

the CFP obeys the Harris criterion [82], according to which clean critical behavior is stable
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against random-Tc disorder if

ν−1 < d/2, (3.59)

where d = 2 is the (physical) spatial dimension and ν−1 is the inverse correlation length

exponent in the clean limit. At the CFP, ν−1 is strictly less than one for all 1 < N < ∞

and reaches one at both N = 1 and N = ∞; thus for N = 1 the CFP is Harris marginal,

as found in Sec. 3.4. Note that in the context of a perturbative RG analysis, it is more

appropriate to use the Harris criterion in the form (3.59), rather than in the usual form

ν > 2/d, as (3.59) simply expresses the condition of perturbative irrelevance of the disorder-

induced interaction (3.9), namely that its scaling dimension 2(d+ ετ − ν−1) be larger than

the effective spacetime dimensionality d + 2ετ appropriate for this interaction. However,

this makes clear the fact that the Harris criterion is one of perturbative stability, and

does not preclude the existence of disordered critical points occurring past a certain finite

critical disorder strength, as found here. At the DFP 1 (DFP 2), ν−1 increases (decreases)

monotonically as N increases, asymptotically reaching 1 (0) at N = ∞. Thus at all fixed

points ν−1 ≤ 1, in agreement with the Chayes inequality ν−1 ≤ d/2 for critical points in

disordered systems [83].

We also plot the deviation of the dynamic critical exponent z from unity at DFP 1

and DFP 2 in Fig. 3.9, as a function of N ≥ 2, and extrapolated to ετ = 1 (or equivalently,

in units of ετ ). The dynamic critical exponent depends on the fixed-point value of the

relative velocity parameter c2
∗, itself plotted in Fig. 3.5.

Finally, by contrast with standard RG fixed points of source/sink type where RG

trajectories approach the fixed point monotonically, fixed points of stable-focus type, such

as the DFP 2 for N ≥ 7, are known to lead to oscillatory corrections to scaling laws [168].

In particular, the uniform, static order parameter susceptibility χ, which obeys the usual
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Figure 3.8: Inverse correlation length exponent ν−1 for ετ = 1, as a function of N ≥ 2.
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Figure 3.9: Correction z−1 to the dynamic critical exponent for ετ = 1 at the two disordered
fixed points, as a function of N .
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scaling law χ ∼ |r|−γ with γ the susceptibility exponent, develops corrections of the form

χ ∼ |r|−γ
[

1 + C

∣∣∣∣ rr0

∣∣∣∣νω′ cos

(
νω′′ ln

∣∣∣∣ rr0

∣∣∣∣+ φ

)
+ . . .

]
, (3.60)

where r0, C, and φ are nonuniversal constants that depend on the initial distance to the

fixed point within the critical hypersurface r = 0, but the exponents ω′ and ω′′, given

in Eq. (3.58) and plotted in Fig. 3.10, are universal properties of the fixed point. [See

Appendix B.7 for a derivation of Eq. (3.60).]
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Figure 3.10: Exponents ω′ and ω′′ appearing in oscillatory corrections to scaling at DFP 2
for N ≥ 7, for ετ = 1.

The separatrix surface for N ≥ 2 mentioned in Sec. 3.4.3 has interesting nonmono-

tonicity properties. As the direction corresponding to the relative velocity parameter c2 is

always irrelevant at the CFP, DFP 1, and DFP 2 for N ≥ 2, it is sufficient to consider the

separatrix as a 2D surface in the 3D reduced parameter space (λ2, h2,∆). In Fig. 3.11 we

plot three cuts through this surface at constant λ2 that are representative of the qualita-

tive behavior we have observed numerically for all N ≥ 2, and which can be summarized

as follows. Let ∆ = gλ2(h2) be an equation describing the separatrix curve in the h2-∆
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plane for a given λ2. Then there always exists an interval [h2
1, h

2
2], dependent on λ2, and a

value λ2
1 such that for λ2 < λ2

1, the function gλ2(h2) is double valued. Conversely, consider

describing the same separatrix curve by the equation h2 = g−1
λ2 (∆) where g−1 is the inverse

function. Then likewise there always exists an interval [∆1,∆2], dependent on λ2, and a

value λ2
2 < λ2

1 such that for λ2 < λ2
2 the function g−1

λ2 (∆) is double valued. This double-

valued/nonmonotonic behavior of the separatrix surface has potential consequences for the

phase diagram of the system as will be discussed below.
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Figure 3.11: Cuts of the separatrix surface at constant λ2 for N = 8.

By following the RG trajectories from a set of initial conditions for the coupling

constants (c2, λ2, h2,∆) one can deduce the following implications for the phase diagram of

the system. The N = 1 case has already been discussed previously: the one-loop analysis

does not allow one to determine the ultimate fate of the quantum critical point, which can

either fall in a new universality class or become a first-order transition. For N ≥ 2, consider

as tuning variables the critical tuning parameter for the transition, r, and the disorder

strength ∆, assuming that λ2 and h2 are held fixed. For ∆ = 0 the transition is between a

clean Dirac semimetal and a superconductor, and is in the universality class of the CFP. For

sufficiently small nonzero ∆, the initial conditions in parameter space remain in the basin
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of attraction of the CFP and the universality class of the transition is still controlled by the

latter. For ∆ > 0, the transition is between a disordered semimetal and a superconductor.

Rare-region effects will likely lead to the formation of quantum Griffiths phases on both

sides of the transition [128], characterized by essential Griffiths-McCoy singularities, but

are expected to produce exponentially small corrections to thermodynamic observables at

the critical point [129].

As ∆ increases, it eventually crosses the separatrix surface at a certain critical value

∆c,1, and for ∆ > ∆c,1 enters the basin of attraction of a disordered fixed point. Thus

for N = 2 and N = 3, the universality class of the transition is controlled by the CFP

for ∆ < ∆c,1, by DFP 2 for ∆ = ∆c,1, which is a multicritical point, and by DFP 1 for

∆ > ∆c,1 [see Fig. 3.12(a)]. For N = 4, for ∆ > ∆c,1 the RG trajectories flow back to the

(unique) DFP, such that the universality class of the transition is controlled by the DFP

for ∆ ≥ ∆c,1 [Fig. 3.12(b)]. For N ≥ 5, the scenario is the same as for N = 2 and N = 3

but the roles of DFP 1 and DFP 2 are exchanged, with DFP 1 acting as multicritical point

at ∆ = ∆c,1 and DFP 2 controlling the critical behavior for ∆ > ∆c,1 [Fig. 3.12(c)].

As mentioned earlier and illustrated in Fig. 3.11, for sufficiently small λ2 there is

always an interval of values of h2 for which the separatrix curve is a double-valued function

of h2. As a result, if the initial value of h2 is contained in this interval, as the disorder

strength ∆ increases from zero the universality class of the transition will be first controlled

by the CFP, then by one of the disordered fixed points (depending on the value of N), and

then again by the CFP [Fig. 3.12(d)]. However, this counterintuitive behavior may be an

artefact of the one-loop approximation.

3.6 Conclusion

In conclusion, we have studied the critical properties of the semimetal-superconductor quan-

tum phase transition in a model of 2D Dirac semimetal with N flavors of two-component

Dirac fermions, in the presence of quenched disorder assumed to be uncorrelated, but suf-

74



r
<latexit sha1_base64="KO9ECDOcx0D5JvRqmRtaDEJNbGo=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJKKoN6KXjy2YGyhDWWzmbRLN5uwuxFK6C/wquBJvPqT9Ne4bXPQ1gcLjzfzZmdekAqujet+OSura+sbm6Wt8vbO7t5+5eDwUSeZYuixRCSqE1CNgkv0DDcCO6lCGgcC28HoblpvP6HSPJEPZpyiH9OB5BFn1FippfqVqltzZyDLpF6QKhRo9ivfvTBhWYzSMEG17tbd1Pg5VYYzgZNyL9OYUjaiA+xaKmmM2s9ni07IqVVCEiXKPmnITP3tyGms9TgOzrUdPcTQOmJqhnqxZyr+V+tmJrr2cy7TzKBk8w+jTBCTkOn1JOQKmRFjSyhT3O5M2JAqyozNqGzDqC+evky8i9pNzW1dVhu3RSolOIYTOIM6XEED7qEJHjBAeIYXeHWU8+a8Ox/z1hWn8BzBHzifP8oykAk=</latexit><latexit sha1_base64="KO9ECDOcx0D5JvRqmRtaDEJNbGo=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJKKoN6KXjy2YGyhDWWzmbRLN5uwuxFK6C/wquBJvPqT9Ne4bXPQ1gcLjzfzZmdekAqujet+OSura+sbm6Wt8vbO7t5+5eDwUSeZYuixRCSqE1CNgkv0DDcCO6lCGgcC28HoblpvP6HSPJEPZpyiH9OB5BFn1FippfqVqltzZyDLpF6QKhRo9ivfvTBhWYzSMEG17tbd1Pg5VYYzgZNyL9OYUjaiA+xaKmmM2s9ni07IqVVCEiXKPmnITP3tyGms9TgOzrUdPcTQOmJqhnqxZyr+V+tmJrr2cy7TzKBk8w+jTBCTkOn1JOQKmRFjSyhT3O5M2JAqyozNqGzDqC+evky8i9pNzW1dVhu3RSolOIYTOIM6XEED7qEJHjBAeIYXeHWU8+a8Ox/z1hWn8BzBHzifP8oykAk=</latexit><latexit sha1_base64="KO9ECDOcx0D5JvRqmRtaDEJNbGo=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJKKoN6KXjy2YGyhDWWzmbRLN5uwuxFK6C/wquBJvPqT9Ne4bXPQ1gcLjzfzZmdekAqujet+OSura+sbm6Wt8vbO7t5+5eDwUSeZYuixRCSqE1CNgkv0DDcCO6lCGgcC28HoblpvP6HSPJEPZpyiH9OB5BFn1FippfqVqltzZyDLpF6QKhRo9ivfvTBhWYzSMEG17tbd1Pg5VYYzgZNyL9OYUjaiA+xaKmmM2s9ni07IqVVCEiXKPmnITP3tyGms9TgOzrUdPcTQOmJqhnqxZyr+V+tmJrr2cy7TzKBk8w+jTBCTkOn1JOQKmRFjSyhT3O5M2JAqyozNqGzDqC+evky8i9pNzW1dVhu3RSolOIYTOIM6XEED7qEJHjBAeIYXeHWU8+a8Ox/z1hWn8BzBHzifP8oykAk=</latexit>

�
<latexit sha1_base64="LVNd3gkgDXMb6DETeXOrDIs82gI=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCOotqAePEdwkkCxhdrY3GTP7YGZWCUv+wauCJ/Hq/+jXOHkcNLGgoajumukuPxVcadv+sgpLyyura8X10sbm1vZOeXevoZJMMnRZIhLZ8qlCwWN0NdcCW6lEGvkCm/7getxvPqJUPInv9TBFL6K9mIecUW2kRucGhabdcsWu2hOQReLMSAVmqHfL350gYVmEsWaCKtV27FR7OZWaM4GjUidTmFI2oD1sGxrTCJWXT7YdkSOjBCRMpKlYk4n625HTSKlh5J8o83QfA+OIqO6r+Zmx+F+vnenwwst5nGYaYzb9MMwE0QkZR0ACLpFpMTSEMsnNzoT1qaRMm6BKJgxn/vRF4p5WL6v23VmldjVLpQgHcAjH4MA51OAW6uACgwd4hhd4tZ6sN+vd+piOFqyZZx/+wPr8AVqMkg8=</latexit><latexit sha1_base64="LVNd3gkgDXMb6DETeXOrDIs82gI=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCOotqAePEdwkkCxhdrY3GTP7YGZWCUv+wauCJ/Hq/+jXOHkcNLGgoajumukuPxVcadv+sgpLyyura8X10sbm1vZOeXevoZJMMnRZIhLZ8qlCwWN0NdcCW6lEGvkCm/7getxvPqJUPInv9TBFL6K9mIecUW2kRucGhabdcsWu2hOQReLMSAVmqHfL350gYVmEsWaCKtV27FR7OZWaM4GjUidTmFI2oD1sGxrTCJWXT7YdkSOjBCRMpKlYk4n625HTSKlh5J8o83QfA+OIqO6r+Zmx+F+vnenwwst5nGYaYzb9MMwE0QkZR0ACLpFpMTSEMsnNzoT1qaRMm6BKJgxn/vRF4p5WL6v23VmldjVLpQgHcAjH4MA51OAW6uACgwd4hhd4tZ6sN+vd+piOFqyZZx/+wPr8AVqMkg8=</latexit><latexit sha1_base64="LVNd3gkgDXMb6DETeXOrDIs82gI=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCOotqAePEdwkkCxhdrY3GTP7YGZWCUv+wauCJ/Hq/+jXOHkcNLGgoajumukuPxVcadv+sgpLyyura8X10sbm1vZOeXevoZJMMnRZIhLZ8qlCwWN0NdcCW6lEGvkCm/7getxvPqJUPInv9TBFL6K9mIecUW2kRucGhabdcsWu2hOQReLMSAVmqHfL350gYVmEsWaCKtV27FR7OZWaM4GjUidTmFI2oD1sGxrTCJWXT7YdkSOjBCRMpKlYk4n625HTSKlh5J8o83QfA+OIqO6r+Zmx+F+vnenwwst5nGYaYzb9MMwE0QkZR0ACLpFpMTSEMsnNzoT1qaRMm6BKJgxn/vRF4p5WL6v23VmldjVLpQgHcAjH4MA51OAW6uACgwd4hhd4tZ6sN+vd+piOFqyZZx/+wPr8AVqMkg8=</latexit>

SC
<latexit sha1_base64="gpxkDBmKD6NUBKPX3WpG+f0fybc=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8SNjNRb0Fc/EYH2sCyRJmZ3uTIbMPZmaFsOQPvCp4Eq/+kX6Nk2QPmlgwUFR39XSXnwqutG1/WSura+sbm6Wt8vbO7t5+5eDwUSWZZOiyRCSy41OFgsfoaq4FdlKJNPIFtv1Rc1pvP6FUPIkf9DhFL6KDmIecUW2ku/tmv1K1a/YMZJk4BalCgVa/8t0LEpZFGGsmqFJdx061l1OpORM4KfcyhSllIzrArqExjVB5+WzTCTk1SkDCRJoXazJTfztyGik1jvxzZUYPMTCOiOqhWuyZiv/VupkOL72cx2mmMWbzD8NMEJ2Q6fkk4BKZFmNDKJPc7EzYkErKtAmpbMJwFk9fJm69dlWzb+vVxnWRSgmO4QTOwIELaMANtMAFBiE8wwu8Wsp6s96tj3nrilV4juAPrM8fJmuQNQ==</latexit><latexit sha1_base64="gpxkDBmKD6NUBKPX3WpG+f0fybc=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8SNjNRb0Fc/EYH2sCyRJmZ3uTIbMPZmaFsOQPvCp4Eq/+kX6Nk2QPmlgwUFR39XSXnwqutG1/WSura+sbm6Wt8vbO7t5+5eDwUSWZZOiyRCSy41OFgsfoaq4FdlKJNPIFtv1Rc1pvP6FUPIkf9DhFL6KDmIecUW2ku/tmv1K1a/YMZJk4BalCgVa/8t0LEpZFGGsmqFJdx061l1OpORM4KfcyhSllIzrArqExjVB5+WzTCTk1SkDCRJoXazJTfztyGik1jvxzZUYPMTCOiOqhWuyZiv/VupkOL72cx2mmMWbzD8NMEJ2Q6fkk4BKZFmNDKJPc7EzYkErKtAmpbMJwFk9fJm69dlWzb+vVxnWRSgmO4QTOwIELaMANtMAFBiE8wwu8Wsp6s96tj3nrilV4juAPrM8fJmuQNQ==</latexit><latexit sha1_base64="gpxkDBmKD6NUBKPX3WpG+f0fybc=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8SNjNRb0Fc/EYH2sCyRJmZ3uTIbMPZmaFsOQPvCp4Eq/+kX6Nk2QPmlgwUFR39XSXnwqutG1/WSura+sbm6Wt8vbO7t5+5eDwUSWZZOiyRCSy41OFgsfoaq4FdlKJNPIFtv1Rc1pvP6FUPIkf9DhFL6KDmIecUW2ku/tmv1K1a/YMZJk4BalCgVa/8t0LEpZFGGsmqFJdx061l1OpORM4KfcyhSllIzrArqExjVB5+WzTCTk1SkDCRJoXazJTfztyGik1jvxzZUYPMTCOiOqhWuyZiv/VupkOL72cx2mmMWbzD8NMEJ2Q6fkk4BKZFmNDKJPc7EzYkErKtAmpbMJwFk9fJm69dlWzb+vVxnWRSgmO4QTOwIELaMANtMAFBiE8wwu8Wsp6s96tj3nrilV4juAPrM8fJmuQNQ==</latexit>

DFP 2<latexit sha1_base64="AQ060ZZA2xCTOuMdu2BDF0eDhr8=">AAAB83icdVDNSgMxGMzWv1r/qh69BIvgQUqyB9veiop4rODaQruUbJptQ7PZJckWytJn8KrgSbz6QPo0ZtsKKjoQGGa+Sb5MkAiuDULvTmFldW19o7hZ2tre2d0r7x/c6zhVlHk0FrHqBEQzwSXzDDeCdRLFSBQI1g7Gl7nfnjCleSzvzDRhfkSGkoecEmMl7+q6Bd1+uYKqCCGMMcwJrp0jSxqNuovrEOeWRQUs0eqXP3qDmKYRk4YKonUXo8T4GVGGU8FmpV6qWULomAxZ11JJIqb9bL7sDJ5YZQDDWNkjDZyr3xMZibSeRsGZtleP2MAmImJG+vdMLv7ldVMT1v2MyyQ1TNLFg2EqoIlh3gAccMWoEVNLCFXc7gzpiChCje2pZMv4+jH8n3hutVFFt26lebFspQiOwDE4BRjUQBPcgBbwAAUcPIBH8ORMnGfnxXldjBacZeYQ/IDz9gnNeJEf</latexit><latexit sha1_base64="AQ060ZZA2xCTOuMdu2BDF0eDhr8=">AAAB83icdVDNSgMxGMzWv1r/qh69BIvgQUqyB9veiop4rODaQruUbJptQ7PZJckWytJn8KrgSbz6QPo0ZtsKKjoQGGa+Sb5MkAiuDULvTmFldW19o7hZ2tre2d0r7x/c6zhVlHk0FrHqBEQzwSXzDDeCdRLFSBQI1g7Gl7nfnjCleSzvzDRhfkSGkoecEmMl7+q6Bd1+uYKqCCGMMcwJrp0jSxqNuovrEOeWRQUs0eqXP3qDmKYRk4YKonUXo8T4GVGGU8FmpV6qWULomAxZ11JJIqb9bL7sDJ5YZQDDWNkjDZyr3xMZibSeRsGZtleP2MAmImJG+vdMLv7ldVMT1v2MyyQ1TNLFg2EqoIlh3gAccMWoEVNLCFXc7gzpiChCje2pZMv4+jH8n3hutVFFt26lebFspQiOwDE4BRjUQBPcgBbwAAUcPIBH8ORMnGfnxXldjBacZeYQ/IDz9gnNeJEf</latexit><latexit sha1_base64="AQ060ZZA2xCTOuMdu2BDF0eDhr8=">AAAB83icdVDNSgMxGMzWv1r/qh69BIvgQUqyB9veiop4rODaQruUbJptQ7PZJckWytJn8KrgSbz6QPo0ZtsKKjoQGGa+Sb5MkAiuDULvTmFldW19o7hZ2tre2d0r7x/c6zhVlHk0FrHqBEQzwSXzDDeCdRLFSBQI1g7Gl7nfnjCleSzvzDRhfkSGkoecEmMl7+q6Bd1+uYKqCCGMMcwJrp0jSxqNuovrEOeWRQUs0eqXP3qDmKYRk4YKonUXo8T4GVGGU8FmpV6qWULomAxZ11JJIqb9bL7sDJ5YZQDDWNkjDZyr3xMZibSeRsGZtleP2MAmImJG+vdMLv7ldVMT1v2MyyQ1TNLFg2EqoIlh3gAccMWoEVNLCFXc7gzpiChCje2pZMv4+jH8n3hutVFFt26lebFspQiOwDE4BRjUQBPcgBbwAAUcPIBH8ORMnGfnxXldjBacZeYQ/IDz9gnNeJEf</latexit>

DFP 1<latexit sha1_base64="+mM3Cdarr5HKHl7E4VIF66XyhJU=">AAAB83icdVDLSsNAFJ3UV62vqks3g0VwISGJpY9dURGXFYwttKFMJpN26GQSZiaFEvoNbhVciVs/SL/GSVtBRQ9cOJx7z8y9x08Ylcqy3o3Cyura+kZxs7S1vbO7V94/uJdxKjBxccxi0fWRJIxy4iqqGOkmgqDIZ6Tjjy/zfmdChKQxv1PThHgRGnIaUoyUltyr6za0B+WKZTYbNadag5ZpWXXbsXPi1KvnVWhrJUcFLNEelD/6QYzTiHCFGZKyZ1uJ8jIkFMWMzEr9VJIE4TEakp6mHEVEetl82Rk80UoAw1jo4grO1e+ODEVSTiP/TOqnRyTQjgipkfw9k4t/9XqpChteRnmSKsLx4sMwZVDFME8ABlQQrNhUE4QF1TtDPEICYaVzKukwvi6G/xPXMZumdetUWhfLVIrgCByDU2CDOmiBG9AGLsCAggfwCJ6MifFsvBivi9GCsfQcgh8w3j4B31qRKg==</latexit><latexit sha1_base64="+mM3Cdarr5HKHl7E4VIF66XyhJU=">AAAB83icdVDLSsNAFJ3UV62vqks3g0VwISGJpY9dURGXFYwttKFMJpN26GQSZiaFEvoNbhVciVs/SL/GSVtBRQ9cOJx7z8y9x08Ylcqy3o3Cyura+kZxs7S1vbO7V94/uJdxKjBxccxi0fWRJIxy4iqqGOkmgqDIZ6Tjjy/zfmdChKQxv1PThHgRGnIaUoyUltyr6za0B+WKZTYbNadag5ZpWXXbsXPi1KvnVWhrJUcFLNEelD/6QYzTiHCFGZKyZ1uJ8jIkFMWMzEr9VJIE4TEakp6mHEVEetl82Rk80UoAw1jo4grO1e+ODEVSTiP/TOqnRyTQjgipkfw9k4t/9XqpChteRnmSKsLx4sMwZVDFME8ABlQQrNhUE4QF1TtDPEICYaVzKukwvi6G/xPXMZumdetUWhfLVIrgCByDU2CDOmiBG9AGLsCAggfwCJ6MifFsvBivi9GCsfQcgh8w3j4B31qRKg==</latexit><latexit sha1_base64="+mM3Cdarr5HKHl7E4VIF66XyhJU=">AAAB83icdVDLSsNAFJ3UV62vqks3g0VwISGJpY9dURGXFYwttKFMJpN26GQSZiaFEvoNbhVciVs/SL/GSVtBRQ9cOJx7z8y9x08Ylcqy3o3Cyura+kZxs7S1vbO7V94/uJdxKjBxccxi0fWRJIxy4iqqGOkmgqDIZ6Tjjy/zfmdChKQxv1PThHgRGnIaUoyUltyr6za0B+WKZTYbNadag5ZpWXXbsXPi1KvnVWhrJUcFLNEelD/6QYzTiHCFGZKyZ1uJ8jIkFMWMzEr9VJIE4TEakp6mHEVEetl82Rk80UoAw1jo4grO1e+ODEVSTiP/TOqnRyTQjgipkfw9k4t/9XqpChteRnmSKsLx4sMwZVDFME8ABlQQrNhUE4QF1TtDPEICYaVzKukwvi6G/xPXMZumdetUWhfLVIrgCByDU2CDOmiBG9AGLsCAggfwCJ6MifFsvBivi9GCsfQcgh8w3j4B31qRKg==</latexit>CFP
<latexit sha1_base64="RWAdcKmQaIok+TEY8iw1pw39j80=">AAAB8XicbVBNS8NAEN3Ur1q/qh69BIvgQUrSi3orFsRjRWMLbZDNZtIu3WzC7kQooT/Bq4In8eov0l/jts1BWx8sPN68mZ15QSq4Rsf5skorq2vrG+XNytb2zu5edf/gQSeZYuCxRCSqG1ANgkvwkKOAbqqAxoGATjBqTeudJ1CaJ/Iexyn4MR1IHnFG0Uh3rev2Y7Xm1J0Z7GXiFqRGChj/dz9MWBaDRCao1j3XSdHPqULOBEwq/UxDStmIDqBnqKQxaD+frTqxT4wS2lGizJNoz9TfHTmNtR7HwZk2o4cQmo6Y4lAveqbif7VehtGFn3OZZgiSzT+MMmFjYk/vt0OugKEYG0KZ4mZnmw2pogxNShUThrt4+jLxGvXLunPbqDWvilTK5Igck1PiknPSJDekTTzCyIA8kxfyaqH1Zr1bH3NrySp6DskfWJ8/szKQgg==</latexit><latexit sha1_base64="RWAdcKmQaIok+TEY8iw1pw39j80=">AAAB8XicbVBNS8NAEN3Ur1q/qh69BIvgQUrSi3orFsRjRWMLbZDNZtIu3WzC7kQooT/Bq4In8eov0l/jts1BWx8sPN68mZ15QSq4Rsf5skorq2vrG+XNytb2zu5edf/gQSeZYuCxRCSqG1ANgkvwkKOAbqqAxoGATjBqTeudJ1CaJ/Iexyn4MR1IHnFG0Uh3rev2Y7Xm1J0Z7GXiFqRGChj/dz9MWBaDRCao1j3XSdHPqULOBEwq/UxDStmIDqBnqKQxaD+frTqxT4wS2lGizJNoz9TfHTmNtR7HwZk2o4cQmo6Y4lAveqbif7VehtGFn3OZZgiSzT+MMmFjYk/vt0OugKEYG0KZ4mZnmw2pogxNShUThrt4+jLxGvXLunPbqDWvilTK5Igck1PiknPSJDekTTzCyIA8kxfyaqH1Zr1bH3NrySp6DskfWJ8/szKQgg==</latexit><latexit sha1_base64="RWAdcKmQaIok+TEY8iw1pw39j80=">AAAB8XicbVBNS8NAEN3Ur1q/qh69BIvgQUrSi3orFsRjRWMLbZDNZtIu3WzC7kQooT/Bq4In8eov0l/jts1BWx8sPN68mZ15QSq4Rsf5skorq2vrG+XNytb2zu5edf/gQSeZYuCxRCSqG1ANgkvwkKOAbqqAxoGATjBqTeudJ1CaJ/Iexyn4MR1IHnFG0Uh3rev2Y7Xm1J0Z7GXiFqRGChj/dz9MWBaDRCao1j3XSdHPqULOBEwq/UxDStmIDqBnqKQxaD+frTqxT4wS2lGizJNoz9TfHTmNtR7HwZk2o4cQmo6Y4lAveqbif7VehtGFn3OZZgiSzT+MMmFjYk/vt0OugKEYG0KZ4mZnmw2pogxNShUThrt4+jLxGvXLunPbqDWvilTK5Igck1PiknPSJDekTTzCyIA8kxfyaqH1Zr1bH3NrySp6DskfWJ8/szKQgg==</latexit>

SM
<latexit sha1_base64="gfABEpWuqrhw9CyWR2/bPcPS4/U=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQXMmRa+phd0Y0boT7GFtqhZDKZNjTzIMkIZegfuFVwJW79I/0aM20FFT0QOJx7z829x0s4kwqhd2NpeWV1bb2wUdzc2t7ZLe3t38k4FYQ6JOax6HpYUs4i6iimOO0mguLQ47Tjjc/zeueeCsni6FZNEuqGeBixgBGstHR9czkolZGJ6jW7iiAya8hq2LYmCNWb1Qq0NMlRBgu0B6WPvh+TNKSRIhxL2bNQotwMC8UIp9NiP5U0wWSMh7SnaYRDKt1stukUHmvFh0Es9IsUnKnfHRkOpZyE3qnUo0fU144Qq5H83ZOLf9V6qQqabsaiJFU0IvMPg5RDFcP8fOgzQYniE00wEUzvDMkIC0yUDqmow/i6GP5PnIppm+iqUm6dLVIpgENwBE6ABRqgBS5AGziAgAA8gEfwZEjj2XgxXuetS8bCcwB+wHj7BKGAkIg=</latexit><latexit sha1_base64="gfABEpWuqrhw9CyWR2/bPcPS4/U=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQXMmRa+phd0Y0boT7GFtqhZDKZNjTzIMkIZegfuFVwJW79I/0aM20FFT0QOJx7z829x0s4kwqhd2NpeWV1bb2wUdzc2t7ZLe3t38k4FYQ6JOax6HpYUs4i6iimOO0mguLQ47Tjjc/zeueeCsni6FZNEuqGeBixgBGstHR9czkolZGJ6jW7iiAya8hq2LYmCNWb1Qq0NMlRBgu0B6WPvh+TNKSRIhxL2bNQotwMC8UIp9NiP5U0wWSMh7SnaYRDKt1stukUHmvFh0Es9IsUnKnfHRkOpZyE3qnUo0fU144Qq5H83ZOLf9V6qQqabsaiJFU0IvMPg5RDFcP8fOgzQYniE00wEUzvDMkIC0yUDqmow/i6GP5PnIppm+iqUm6dLVIpgENwBE6ABRqgBS5AGziAgAA8gEfwZEjj2XgxXuetS8bCcwB+wHj7BKGAkIg=</latexit><latexit sha1_base64="gfABEpWuqrhw9CyWR2/bPcPS4/U=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQXMmRa+phd0Y0boT7GFtqhZDKZNjTzIMkIZegfuFVwJW79I/0aM20FFT0QOJx7z829x0s4kwqhd2NpeWV1bb2wUdzc2t7ZLe3t38k4FYQ6JOax6HpYUs4i6iimOO0mguLQ47Tjjc/zeueeCsni6FZNEuqGeBixgBGstHR9czkolZGJ6jW7iiAya8hq2LYmCNWb1Qq0NMlRBgu0B6WPvh+TNKSRIhxL2bNQotwMC8UIp9NiP5U0wWSMh7SnaYRDKt1stukUHmvFh0Es9IsUnKnfHRkOpZyE3qnUo0fU144Qq5H83ZOLf9V6qQqabsaiJFU0IvMPg5RDFcP8fOgzQYniE00wEUzvDMkIC0yUDqmow/i6GP5PnIppm+iqUm6dLVIpgENwBE6ABRqgBS5AGziAgAA8gEfwZEjj2XgxXuetS8bCcwB+wHj7BKGAkIg=</latexit>

r
<latexit sha1_base64="KO9ECDOcx0D5JvRqmRtaDEJNbGo=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJKKoN6KXjy2YGyhDWWzmbRLN5uwuxFK6C/wquBJvPqT9Ne4bXPQ1gcLjzfzZmdekAqujet+OSura+sbm6Wt8vbO7t5+5eDwUSeZYuixRCSqE1CNgkv0DDcCO6lCGgcC28HoblpvP6HSPJEPZpyiH9OB5BFn1FippfqVqltzZyDLpF6QKhRo9ivfvTBhWYzSMEG17tbd1Pg5VYYzgZNyL9OYUjaiA+xaKmmM2s9ni07IqVVCEiXKPmnITP3tyGms9TgOzrUdPcTQOmJqhnqxZyr+V+tmJrr2cy7TzKBk8w+jTBCTkOn1JOQKmRFjSyhT3O5M2JAqyozNqGzDqC+evky8i9pNzW1dVhu3RSolOIYTOIM6XEED7qEJHjBAeIYXeHWU8+a8Ox/z1hWn8BzBHzifP8oykAk=</latexit><latexit sha1_base64="KO9ECDOcx0D5JvRqmRtaDEJNbGo=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJKKoN6KXjy2YGyhDWWzmbRLN5uwuxFK6C/wquBJvPqT9Ne4bXPQ1gcLjzfzZmdekAqujet+OSura+sbm6Wt8vbO7t5+5eDwUSeZYuixRCSqE1CNgkv0DDcCO6lCGgcC28HoblpvP6HSPJEPZpyiH9OB5BFn1FippfqVqltzZyDLpF6QKhRo9ivfvTBhWYzSMEG17tbd1Pg5VYYzgZNyL9OYUjaiA+xaKmmM2s9ni07IqVVCEiXKPmnITP3tyGms9TgOzrUdPcTQOmJqhnqxZyr+V+tmJrr2cy7TzKBk8w+jTBCTkOn1JOQKmRFjSyhT3O5M2JAqyozNqGzDqC+evky8i9pNzW1dVhu3RSolOIYTOIM6XEED7qEJHjBAeIYXeHWU8+a8Ox/z1hWn8BzBHzifP8oykAk=</latexit><latexit sha1_base64="KO9ECDOcx0D5JvRqmRtaDEJNbGo=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJKKoN6KXjy2YGyhDWWzmbRLN5uwuxFK6C/wquBJvPqT9Ne4bXPQ1gcLjzfzZmdekAqujet+OSura+sbm6Wt8vbO7t5+5eDwUSeZYuixRCSqE1CNgkv0DDcCO6lCGgcC28HoblpvP6HSPJEPZpyiH9OB5BFn1FippfqVqltzZyDLpF6QKhRo9ivfvTBhWYzSMEG17tbd1Pg5VYYzgZNyL9OYUjaiA+xaKmmM2s9ni07IqVVCEiXKPmnITP3tyGms9TgOzrUdPcTQOmJqhnqxZyr+V+tmJrr2cy7TzKBk8w+jTBCTkOn1JOQKmRFjSyhT3O5M2JAqyozNqGzDqC+evky8i9pNzW1dVhu3RSolOIYTOIM6XEED7qEJHjBAeIYXeHWU8+a8Ox/z1hWn8BzBHzifP8oykAk=</latexit>

�
<latexit sha1_base64="LVNd3gkgDXMb6DETeXOrDIs82gI=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCOotqAePEdwkkCxhdrY3GTP7YGZWCUv+wauCJ/Hq/+jXOHkcNLGgoajumukuPxVcadv+sgpLyyura8X10sbm1vZOeXevoZJMMnRZIhLZ8qlCwWN0NdcCW6lEGvkCm/7getxvPqJUPInv9TBFL6K9mIecUW2kRucGhabdcsWu2hOQReLMSAVmqHfL350gYVmEsWaCKtV27FR7OZWaM4GjUidTmFI2oD1sGxrTCJWXT7YdkSOjBCRMpKlYk4n625HTSKlh5J8o83QfA+OIqO6r+Zmx+F+vnenwwst5nGYaYzb9MMwE0QkZR0ACLpFpMTSEMsnNzoT1qaRMm6BKJgxn/vRF4p5WL6v23VmldjVLpQgHcAjH4MA51OAW6uACgwd4hhd4tZ6sN+vd+piOFqyZZx/+wPr8AVqMkg8=</latexit><latexit sha1_base64="LVNd3gkgDXMb6DETeXOrDIs82gI=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCOotqAePEdwkkCxhdrY3GTP7YGZWCUv+wauCJ/Hq/+jXOHkcNLGgoajumukuPxVcadv+sgpLyyura8X10sbm1vZOeXevoZJMMnRZIhLZ8qlCwWN0NdcCW6lEGvkCm/7getxvPqJUPInv9TBFL6K9mIecUW2kRucGhabdcsWu2hOQReLMSAVmqHfL350gYVmEsWaCKtV27FR7OZWaM4GjUidTmFI2oD1sGxrTCJWXT7YdkSOjBCRMpKlYk4n625HTSKlh5J8o83QfA+OIqO6r+Zmx+F+vnenwwst5nGYaYzb9MMwE0QkZR0ACLpFpMTSEMsnNzoT1qaRMm6BKJgxn/vRF4p5WL6v23VmldjVLpQgHcAjH4MA51OAW6uACgwd4hhd4tZ6sN+vd+piOFqyZZx/+wPr8AVqMkg8=</latexit><latexit sha1_base64="LVNd3gkgDXMb6DETeXOrDIs82gI=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCOotqAePEdwkkCxhdrY3GTP7YGZWCUv+wauCJ/Hq/+jXOHkcNLGgoajumukuPxVcadv+sgpLyyura8X10sbm1vZOeXevoZJMMnRZIhLZ8qlCwWN0NdcCW6lEGvkCm/7getxvPqJUPInv9TBFL6K9mIecUW2kRucGhabdcsWu2hOQReLMSAVmqHfL350gYVmEsWaCKtV27FR7OZWaM4GjUidTmFI2oD1sGxrTCJWXT7YdkSOjBCRMpKlYk4n625HTSKlh5J8o83QfA+OIqO6r+Zmx+F+vnenwwst5nGYaYzb9MMwE0QkZR0ACLpFpMTSEMsnNzoT1qaRMm6BKJgxn/vRF4p5WL6v23VmldjVLpQgHcAjH4MA51OAW6uACgwd4hhd4tZ6sN+vd+piOFqyZZx/+wPr8AVqMkg8=</latexit>
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<latexit sha1_base64="gpxkDBmKD6NUBKPX3WpG+f0fybc=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8SNjNRb0Fc/EYH2sCyRJmZ3uTIbMPZmaFsOQPvCp4Eq/+kX6Nk2QPmlgwUFR39XSXnwqutG1/WSura+sbm6Wt8vbO7t5+5eDwUSWZZOiyRCSy41OFgsfoaq4FdlKJNPIFtv1Rc1pvP6FUPIkf9DhFL6KDmIecUW2ku/tmv1K1a/YMZJk4BalCgVa/8t0LEpZFGGsmqFJdx061l1OpORM4KfcyhSllIzrArqExjVB5+WzTCTk1SkDCRJoXazJTfztyGik1jvxzZUYPMTCOiOqhWuyZiv/VupkOL72cx2mmMWbzD8NMEJ2Q6fkk4BKZFmNDKJPc7EzYkErKtAmpbMJwFk9fJm69dlWzb+vVxnWRSgmO4QTOwIELaMANtMAFBiE8wwu8Wsp6s96tj3nrilV4juAPrM8fJmuQNQ==</latexit><latexit sha1_base64="gpxkDBmKD6NUBKPX3WpG+f0fybc=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8SNjNRb0Fc/EYH2sCyRJmZ3uTIbMPZmaFsOQPvCp4Eq/+kX6Nk2QPmlgwUFR39XSXnwqutG1/WSura+sbm6Wt8vbO7t5+5eDwUSWZZOiyRCSy41OFgsfoaq4FdlKJNPIFtv1Rc1pvP6FUPIkf9DhFL6KDmIecUW2ku/tmv1K1a/YMZJk4BalCgVa/8t0LEpZFGGsmqFJdx061l1OpORM4KfcyhSllIzrArqExjVB5+WzTCTk1SkDCRJoXazJTfztyGik1jvxzZUYPMTCOiOqhWuyZiv/VupkOL72cx2mmMWbzD8NMEJ2Q6fkk4BKZFmNDKJPc7EzYkErKtAmpbMJwFk9fJm69dlWzb+vVxnWRSgmO4QTOwIELaMANtMAFBiE8wwu8Wsp6s96tj3nrilV4juAPrM8fJmuQNQ==</latexit><latexit sha1_base64="gpxkDBmKD6NUBKPX3WpG+f0fybc=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8SNjNRb0Fc/EYH2sCyRJmZ3uTIbMPZmaFsOQPvCp4Eq/+kX6Nk2QPmlgwUFR39XSXnwqutG1/WSura+sbm6Wt8vbO7t5+5eDwUSWZZOiyRCSy41OFgsfoaq4FdlKJNPIFtv1Rc1pvP6FUPIkf9DhFL6KDmIecUW2ku/tmv1K1a/YMZJk4BalCgVa/8t0LEpZFGGsmqFJdx061l1OpORM4KfcyhSllIzrArqExjVB5+WzTCTk1SkDCRJoXazJTfztyGik1jvxzZUYPMTCOiOqhWuyZiv/VupkOL72cx2mmMWbzD8NMEJ2Q6fkk4BKZFmNDKJPc7EzYkErKtAmpbMJwFk9fJm69dlWzb+vVxnWRSgmO4QTOwIELaMANtMAFBiE8wwu8Wsp6s96tj3nrilV4juAPrM8fJmuQNQ==</latexit>
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<latexit sha1_base64="RWAdcKmQaIok+TEY8iw1pw39j80=">AAAB8XicbVBNS8NAEN3Ur1q/qh69BIvgQUrSi3orFsRjRWMLbZDNZtIu3WzC7kQooT/Bq4In8eov0l/jts1BWx8sPN68mZ15QSq4Rsf5skorq2vrG+XNytb2zu5edf/gQSeZYuCxRCSqG1ANgkvwkKOAbqqAxoGATjBqTeudJ1CaJ/Iexyn4MR1IHnFG0Uh3rev2Y7Xm1J0Z7GXiFqRGChj/dz9MWBaDRCao1j3XSdHPqULOBEwq/UxDStmIDqBnqKQxaD+frTqxT4wS2lGizJNoz9TfHTmNtR7HwZk2o4cQmo6Y4lAveqbif7VehtGFn3OZZgiSzT+MMmFjYk/vt0OugKEYG0KZ4mZnmw2pogxNShUThrt4+jLxGvXLunPbqDWvilTK5Igck1PiknPSJDekTTzCyIA8kxfyaqH1Zr1bH3NrySp6DskfWJ8/szKQgg==</latexit><latexit sha1_base64="RWAdcKmQaIok+TEY8iw1pw39j80=">AAAB8XicbVBNS8NAEN3Ur1q/qh69BIvgQUrSi3orFsRjRWMLbZDNZtIu3WzC7kQooT/Bq4In8eov0l/jts1BWx8sPN68mZ15QSq4Rsf5skorq2vrG+XNytb2zu5edf/gQSeZYuCxRCSqG1ANgkvwkKOAbqqAxoGATjBqTeudJ1CaJ/Iexyn4MR1IHnFG0Uh3rev2Y7Xm1J0Z7GXiFqRGChj/dz9MWBaDRCao1j3XSdHPqULOBEwq/UxDStmIDqBnqKQxaD+frTqxT4wS2lGizJNoz9TfHTmNtR7HwZk2o4cQmo6Y4lAveqbif7VehtGFn3OZZgiSzT+MMmFjYk/vt0OugKEYG0KZ4mZnmw2pogxNShUThrt4+jLxGvXLunPbqDWvilTK5Igck1PiknPSJDekTTzCyIA8kxfyaqH1Zr1bH3NrySp6DskfWJ8/szKQgg==</latexit><latexit sha1_base64="RWAdcKmQaIok+TEY8iw1pw39j80=">AAAB8XicbVBNS8NAEN3Ur1q/qh69BIvgQUrSi3orFsRjRWMLbZDNZtIu3WzC7kQooT/Bq4In8eov0l/jts1BWx8sPN68mZ15QSq4Rsf5skorq2vrG+XNytb2zu5edf/gQSeZYuCxRCSqG1ANgkvwkKOAbqqAxoGATjBqTeudJ1CaJ/Iexyn4MR1IHnFG0Uh3rev2Y7Xm1J0Z7GXiFqRGChj/dz9MWBaDRCao1j3XSdHPqULOBEwq/UxDStmIDqBnqKQxaD+frTqxT4wS2lGizJNoz9TfHTmNtR7HwZk2o4cQmo6Y4lAveqbif7VehtGFn3OZZgiSzT+MMmFjYk/vt0OugKEYG0KZ4mZnmw2pogxNShUThrt4+jLxGvXLunPbqDWvilTK5Igck1PiknPSJDekTTzCyIA8kxfyaqH1Zr1bH3NrySp6DskfWJ8/szKQgg==</latexit>
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<latexit sha1_base64="gfABEpWuqrhw9CyWR2/bPcPS4/U=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQXMmRa+phd0Y0boT7GFtqhZDKZNjTzIMkIZegfuFVwJW79I/0aM20FFT0QOJx7z829x0s4kwqhd2NpeWV1bb2wUdzc2t7ZLe3t38k4FYQ6JOax6HpYUs4i6iimOO0mguLQ47Tjjc/zeueeCsni6FZNEuqGeBixgBGstHR9czkolZGJ6jW7iiAya8hq2LYmCNWb1Qq0NMlRBgu0B6WPvh+TNKSRIhxL2bNQotwMC8UIp9NiP5U0wWSMh7SnaYRDKt1stukUHmvFh0Es9IsUnKnfHRkOpZyE3qnUo0fU144Qq5H83ZOLf9V6qQqabsaiJFU0IvMPg5RDFcP8fOgzQYniE00wEUzvDMkIC0yUDqmow/i6GP5PnIppm+iqUm6dLVIpgENwBE6ABRqgBS5AGziAgAA8gEfwZEjj2XgxXuetS8bCcwB+wHj7BKGAkIg=</latexit><latexit sha1_base64="gfABEpWuqrhw9CyWR2/bPcPS4/U=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQXMmRa+phd0Y0boT7GFtqhZDKZNjTzIMkIZegfuFVwJW79I/0aM20FFT0QOJx7z829x0s4kwqhd2NpeWV1bb2wUdzc2t7ZLe3t38k4FYQ6JOax6HpYUs4i6iimOO0mguLQ47Tjjc/zeueeCsni6FZNEuqGeBixgBGstHR9czkolZGJ6jW7iiAya8hq2LYmCNWb1Qq0NMlRBgu0B6WPvh+TNKSRIhxL2bNQotwMC8UIp9NiP5U0wWSMh7SnaYRDKt1stukUHmvFh0Es9IsUnKnfHRkOpZyE3qnUo0fU144Qq5H83ZOLf9V6qQqabsaiJFU0IvMPg5RDFcP8fOgzQYniE00wEUzvDMkIC0yUDqmow/i6GP5PnIppm+iqUm6dLVIpgENwBE6ABRqgBS5AGziAgAA8gEfwZEjj2XgxXuetS8bCcwB+wHj7BKGAkIg=</latexit><latexit sha1_base64="gfABEpWuqrhw9CyWR2/bPcPS4/U=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQXMmRa+phd0Y0boT7GFtqhZDKZNjTzIMkIZegfuFVwJW79I/0aM20FFT0QOJx7z829x0s4kwqhd2NpeWV1bb2wUdzc2t7ZLe3t38k4FYQ6JOax6HpYUs4i6iimOO0mguLQ47Tjjc/zeueeCsni6FZNEuqGeBixgBGstHR9czkolZGJ6jW7iiAya8hq2LYmCNWb1Qq0NMlRBgu0B6WPvh+TNKSRIhxL2bNQotwMC8UIp9NiP5U0wWSMh7SnaYRDKt1stukUHmvFh0Es9IsUnKnfHRkOpZyE3qnUo0fU144Qq5H83ZOLf9V6qQqabsaiJFU0IvMPg5RDFcP8fOgzQYniE00wEUzvDMkIC0yUDqmow/i6GP5PnIppm+iqUm6dLVIpgENwBE6ABRqgBS5AGziAgAA8gEfwZEjj2XgxXuetS8bCcwB+wHj7BKGAkIg=</latexit>
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<latexit sha1_base64="KO9ECDOcx0D5JvRqmRtaDEJNbGo=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJKKoN6KXjy2YGyhDWWzmbRLN5uwuxFK6C/wquBJvPqT9Ne4bXPQ1gcLjzfzZmdekAqujet+OSura+sbm6Wt8vbO7t5+5eDwUSeZYuixRCSqE1CNgkv0DDcCO6lCGgcC28HoblpvP6HSPJEPZpyiH9OB5BFn1FippfqVqltzZyDLpF6QKhRo9ivfvTBhWYzSMEG17tbd1Pg5VYYzgZNyL9OYUjaiA+xaKmmM2s9ni07IqVVCEiXKPmnITP3tyGms9TgOzrUdPcTQOmJqhnqxZyr+V+tmJrr2cy7TzKBk8w+jTBCTkOn1JOQKmRFjSyhT3O5M2JAqyozNqGzDqC+evky8i9pNzW1dVhu3RSolOIYTOIM6XEED7qEJHjBAeIYXeHWU8+a8Ox/z1hWn8BzBHzifP8oykAk=</latexit><latexit sha1_base64="KO9ECDOcx0D5JvRqmRtaDEJNbGo=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJKKoN6KXjy2YGyhDWWzmbRLN5uwuxFK6C/wquBJvPqT9Ne4bXPQ1gcLjzfzZmdekAqujet+OSura+sbm6Wt8vbO7t5+5eDwUSeZYuixRCSqE1CNgkv0DDcCO6lCGgcC28HoblpvP6HSPJEPZpyiH9OB5BFn1FippfqVqltzZyDLpF6QKhRo9ivfvTBhWYzSMEG17tbd1Pg5VYYzgZNyL9OYUjaiA+xaKmmM2s9ni07IqVVCEiXKPmnITP3tyGms9TgOzrUdPcTQOmJqhnqxZyr+V+tmJrr2cy7TzKBk8w+jTBCTkOn1JOQKmRFjSyhT3O5M2JAqyozNqGzDqC+evky8i9pNzW1dVhu3RSolOIYTOIM6XEED7qEJHjBAeIYXeHWU8+a8Ox/z1hWn8BzBHzifP8oykAk=</latexit><latexit sha1_base64="KO9ECDOcx0D5JvRqmRtaDEJNbGo=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJKKoN6KXjy2YGyhDWWzmbRLN5uwuxFK6C/wquBJvPqT9Ne4bXPQ1gcLjzfzZmdekAqujet+OSura+sbm6Wt8vbO7t5+5eDwUSeZYuixRCSqE1CNgkv0DDcCO6lCGgcC28HoblpvP6HSPJEPZpyiH9OB5BFn1FippfqVqltzZyDLpF6QKhRo9ivfvTBhWYzSMEG17tbd1Pg5VYYzgZNyL9OYUjaiA+xaKmmM2s9ni07IqVVCEiXKPmnITP3tyGms9TgOzrUdPcTQOmJqhnqxZyr+V+tmJrr2cy7TzKBk8w+jTBCTkOn1JOQKmRFjSyhT3O5M2JAqyozNqGzDqC+evky8i9pNzW1dVhu3RSolOIYTOIM6XEED7qEJHjBAeIYXeHWU8+a8Ox/z1hWn8BzBHzifP8oykAk=</latexit>

�
<latexit sha1_base64="LVNd3gkgDXMb6DETeXOrDIs82gI=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCOotqAePEdwkkCxhdrY3GTP7YGZWCUv+wauCJ/Hq/+jXOHkcNLGgoajumukuPxVcadv+sgpLyyura8X10sbm1vZOeXevoZJMMnRZIhLZ8qlCwWN0NdcCW6lEGvkCm/7getxvPqJUPInv9TBFL6K9mIecUW2kRucGhabdcsWu2hOQReLMSAVmqHfL350gYVmEsWaCKtV27FR7OZWaM4GjUidTmFI2oD1sGxrTCJWXT7YdkSOjBCRMpKlYk4n625HTSKlh5J8o83QfA+OIqO6r+Zmx+F+vnenwwst5nGYaYzb9MMwE0QkZR0ACLpFpMTSEMsnNzoT1qaRMm6BKJgxn/vRF4p5WL6v23VmldjVLpQgHcAjH4MA51OAW6uACgwd4hhd4tZ6sN+vd+piOFqyZZx/+wPr8AVqMkg8=</latexit><latexit sha1_base64="LVNd3gkgDXMb6DETeXOrDIs82gI=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCOotqAePEdwkkCxhdrY3GTP7YGZWCUv+wauCJ/Hq/+jXOHkcNLGgoajumukuPxVcadv+sgpLyyura8X10sbm1vZOeXevoZJMMnRZIhLZ8qlCwWN0NdcCW6lEGvkCm/7getxvPqJUPInv9TBFL6K9mIecUW2kRucGhabdcsWu2hOQReLMSAVmqHfL350gYVmEsWaCKtV27FR7OZWaM4GjUidTmFI2oD1sGxrTCJWXT7YdkSOjBCRMpKlYk4n625HTSKlh5J8o83QfA+OIqO6r+Zmx+F+vnenwwst5nGYaYzb9MMwE0QkZR0ACLpFpMTSEMsnNzoT1qaRMm6BKJgxn/vRF4p5WL6v23VmldjVLpQgHcAjH4MA51OAW6uACgwd4hhd4tZ6sN+vd+piOFqyZZx/+wPr8AVqMkg8=</latexit><latexit sha1_base64="LVNd3gkgDXMb6DETeXOrDIs82gI=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCOotqAePEdwkkCxhdrY3GTP7YGZWCUv+wauCJ/Hq/+jXOHkcNLGgoajumukuPxVcadv+sgpLyyura8X10sbm1vZOeXevoZJMMnRZIhLZ8qlCwWN0NdcCW6lEGvkCm/7getxvPqJUPInv9TBFL6K9mIecUW2kRucGhabdcsWu2hOQReLMSAVmqHfL350gYVmEsWaCKtV27FR7OZWaM4GjUidTmFI2oD1sGxrTCJWXT7YdkSOjBCRMpKlYk4n625HTSKlh5J8o83QfA+OIqO6r+Zmx+F+vnenwwst5nGYaYzb9MMwE0QkZR0ACLpFpMTSEMsnNzoT1qaRMm6BKJgxn/vRF4p5WL6v23VmldjVLpQgHcAjH4MA51OAW6uACgwd4hhd4tZ6sN+vd+piOFqyZZx/+wPr8AVqMkg8=</latexit>

SC
<latexit sha1_base64="gpxkDBmKD6NUBKPX3WpG+f0fybc=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8SNjNRb0Fc/EYH2sCyRJmZ3uTIbMPZmaFsOQPvCp4Eq/+kX6Nk2QPmlgwUFR39XSXnwqutG1/WSura+sbm6Wt8vbO7t5+5eDwUSWZZOiyRCSy41OFgsfoaq4FdlKJNPIFtv1Rc1pvP6FUPIkf9DhFL6KDmIecUW2ku/tmv1K1a/YMZJk4BalCgVa/8t0LEpZFGGsmqFJdx061l1OpORM4KfcyhSllIzrArqExjVB5+WzTCTk1SkDCRJoXazJTfztyGik1jvxzZUYPMTCOiOqhWuyZiv/VupkOL72cx2mmMWbzD8NMEJ2Q6fkk4BKZFmNDKJPc7EzYkErKtAmpbMJwFk9fJm69dlWzb+vVxnWRSgmO4QTOwIELaMANtMAFBiE8wwu8Wsp6s96tj3nrilV4juAPrM8fJmuQNQ==</latexit><latexit sha1_base64="gpxkDBmKD6NUBKPX3WpG+f0fybc=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8SNjNRb0Fc/EYH2sCyRJmZ3uTIbMPZmaFsOQPvCp4Eq/+kX6Nk2QPmlgwUFR39XSXnwqutG1/WSura+sbm6Wt8vbO7t5+5eDwUSWZZOiyRCSy41OFgsfoaq4FdlKJNPIFtv1Rc1pvP6FUPIkf9DhFL6KDmIecUW2ku/tmv1K1a/YMZJk4BalCgVa/8t0LEpZFGGsmqFJdx061l1OpORM4KfcyhSllIzrArqExjVB5+WzTCTk1SkDCRJoXazJTfztyGik1jvxzZUYPMTCOiOqhWuyZiv/VupkOL72cx2mmMWbzD8NMEJ2Q6fkk4BKZFmNDKJPc7EzYkErKtAmpbMJwFk9fJm69dlWzb+vVxnWRSgmO4QTOwIELaMANtMAFBiE8wwu8Wsp6s96tj3nrilV4juAPrM8fJmuQNQ==</latexit><latexit sha1_base64="gpxkDBmKD6NUBKPX3WpG+f0fybc=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8SNjNRb0Fc/EYH2sCyRJmZ3uTIbMPZmaFsOQPvCp4Eq/+kX6Nk2QPmlgwUFR39XSXnwqutG1/WSura+sbm6Wt8vbO7t5+5eDwUSWZZOiyRCSy41OFgsfoaq4FdlKJNPIFtv1Rc1pvP6FUPIkf9DhFL6KDmIecUW2ku/tmv1K1a/YMZJk4BalCgVa/8t0LEpZFGGsmqFJdx061l1OpORM4KfcyhSllIzrArqExjVB5+WzTCTk1SkDCRJoXazJTfztyGik1jvxzZUYPMTCOiOqhWuyZiv/VupkOL72cx2mmMWbzD8NMEJ2Q6fkk4BKZFmNDKJPc7EzYkErKtAmpbMJwFk9fJm69dlWzb+vVxnWRSgmO4QTOwIELaMANtMAFBiE8wwu8Wsp6s96tj3nrilV4juAPrM8fJmuQNQ==</latexit>

DFP 2<latexit sha1_base64="AQ060ZZA2xCTOuMdu2BDF0eDhr8=">AAAB83icdVDNSgMxGMzWv1r/qh69BIvgQUqyB9veiop4rODaQruUbJptQ7PZJckWytJn8KrgSbz6QPo0ZtsKKjoQGGa+Sb5MkAiuDULvTmFldW19o7hZ2tre2d0r7x/c6zhVlHk0FrHqBEQzwSXzDDeCdRLFSBQI1g7Gl7nfnjCleSzvzDRhfkSGkoecEmMl7+q6Bd1+uYKqCCGMMcwJrp0jSxqNuovrEOeWRQUs0eqXP3qDmKYRk4YKonUXo8T4GVGGU8FmpV6qWULomAxZ11JJIqb9bL7sDJ5YZQDDWNkjDZyr3xMZibSeRsGZtleP2MAmImJG+vdMLv7ldVMT1v2MyyQ1TNLFg2EqoIlh3gAccMWoEVNLCFXc7gzpiChCje2pZMv4+jH8n3hutVFFt26lebFspQiOwDE4BRjUQBPcgBbwAAUcPIBH8ORMnGfnxXldjBacZeYQ/IDz9gnNeJEf</latexit><latexit sha1_base64="AQ060ZZA2xCTOuMdu2BDF0eDhr8=">AAAB83icdVDNSgMxGMzWv1r/qh69BIvgQUqyB9veiop4rODaQruUbJptQ7PZJckWytJn8KrgSbz6QPo0ZtsKKjoQGGa+Sb5MkAiuDULvTmFldW19o7hZ2tre2d0r7x/c6zhVlHk0FrHqBEQzwSXzDDeCdRLFSBQI1g7Gl7nfnjCleSzvzDRhfkSGkoecEmMl7+q6Bd1+uYKqCCGMMcwJrp0jSxqNuovrEOeWRQUs0eqXP3qDmKYRk4YKonUXo8T4GVGGU8FmpV6qWULomAxZ11JJIqb9bL7sDJ5YZQDDWNkjDZyr3xMZibSeRsGZtleP2MAmImJG+vdMLv7ldVMT1v2MyyQ1TNLFg2EqoIlh3gAccMWoEVNLCFXc7gzpiChCje2pZMv4+jH8n3hutVFFt26lebFspQiOwDE4BRjUQBPcgBbwAAUcPIBH8ORMnGfnxXldjBacZeYQ/IDz9gnNeJEf</latexit><latexit sha1_base64="AQ060ZZA2xCTOuMdu2BDF0eDhr8=">AAAB83icdVDNSgMxGMzWv1r/qh69BIvgQUqyB9veiop4rODaQruUbJptQ7PZJckWytJn8KrgSbz6QPo0ZtsKKjoQGGa+Sb5MkAiuDULvTmFldW19o7hZ2tre2d0r7x/c6zhVlHk0FrHqBEQzwSXzDDeCdRLFSBQI1g7Gl7nfnjCleSzvzDRhfkSGkoecEmMl7+q6Bd1+uYKqCCGMMcwJrp0jSxqNuovrEOeWRQUs0eqXP3qDmKYRk4YKonUXo8T4GVGGU8FmpV6qWULomAxZ11JJIqb9bL7sDJ5YZQDDWNkjDZyr3xMZibSeRsGZtleP2MAmImJG+vdMLv7ldVMT1v2MyyQ1TNLFg2EqoIlh3gAccMWoEVNLCFXc7gzpiChCje2pZMv4+jH8n3hutVFFt26lebFspQiOwDE4BRjUQBPcgBbwAAUcPIBH8ORMnGfnxXldjBacZeYQ/IDz9gnNeJEf</latexit>

DFP 1<latexit sha1_base64="+mM3Cdarr5HKHl7E4VIF66XyhJU=">AAAB83icdVDLSsNAFJ3UV62vqks3g0VwISGJpY9dURGXFYwttKFMJpN26GQSZiaFEvoNbhVciVs/SL/GSVtBRQ9cOJx7z8y9x08Ylcqy3o3Cyura+kZxs7S1vbO7V94/uJdxKjBxccxi0fWRJIxy4iqqGOkmgqDIZ6Tjjy/zfmdChKQxv1PThHgRGnIaUoyUltyr6za0B+WKZTYbNadag5ZpWXXbsXPi1KvnVWhrJUcFLNEelD/6QYzTiHCFGZKyZ1uJ8jIkFMWMzEr9VJIE4TEakp6mHEVEetl82Rk80UoAw1jo4grO1e+ODEVSTiP/TOqnRyTQjgipkfw9k4t/9XqpChteRnmSKsLx4sMwZVDFME8ABlQQrNhUE4QF1TtDPEICYaVzKukwvi6G/xPXMZumdetUWhfLVIrgCByDU2CDOmiBG9AGLsCAggfwCJ6MifFsvBivi9GCsfQcgh8w3j4B31qRKg==</latexit><latexit sha1_base64="+mM3Cdarr5HKHl7E4VIF66XyhJU=">AAAB83icdVDLSsNAFJ3UV62vqks3g0VwISGJpY9dURGXFYwttKFMJpN26GQSZiaFEvoNbhVciVs/SL/GSVtBRQ9cOJx7z8y9x08Ylcqy3o3Cyura+kZxs7S1vbO7V94/uJdxKjBxccxi0fWRJIxy4iqqGOkmgqDIZ6Tjjy/zfmdChKQxv1PThHgRGnIaUoyUltyr6za0B+WKZTYbNadag5ZpWXXbsXPi1KvnVWhrJUcFLNEelD/6QYzTiHCFGZKyZ1uJ8jIkFMWMzEr9VJIE4TEakp6mHEVEetl82Rk80UoAw1jo4grO1e+ODEVSTiP/TOqnRyTQjgipkfw9k4t/9XqpChteRnmSKsLx4sMwZVDFME8ABlQQrNhUE4QF1TtDPEICYaVzKukwvi6G/xPXMZumdetUWhfLVIrgCByDU2CDOmiBG9AGLsCAggfwCJ6MifFsvBivi9GCsfQcgh8w3j4B31qRKg==</latexit><latexit sha1_base64="+mM3Cdarr5HKHl7E4VIF66XyhJU=">AAAB83icdVDLSsNAFJ3UV62vqks3g0VwISGJpY9dURGXFYwttKFMJpN26GQSZiaFEvoNbhVciVs/SL/GSVtBRQ9cOJx7z8y9x08Ylcqy3o3Cyura+kZxs7S1vbO7V94/uJdxKjBxccxi0fWRJIxy4iqqGOkmgqDIZ6Tjjy/zfmdChKQxv1PThHgRGnIaUoyUltyr6za0B+WKZTYbNadag5ZpWXXbsXPi1KvnVWhrJUcFLNEelD/6QYzTiHCFGZKyZ1uJ8jIkFMWMzEr9VJIE4TEakp6mHEVEetl82Rk80UoAw1jo4grO1e+ODEVSTiP/TOqnRyTQjgipkfw9k4t/9XqpChteRnmSKsLx4sMwZVDFME8ABlQQrNhUE4QF1TtDPEICYaVzKukwvi6G/xPXMZumdetUWhfLVIrgCByDU2CDOmiBG9AGLsCAggfwCJ6MifFsvBivi9GCsfQcgh8w3j4B31qRKg==</latexit>

CFP
<latexit sha1_base64="RWAdcKmQaIok+TEY8iw1pw39j80=">AAAB8XicbVBNS8NAEN3Ur1q/qh69BIvgQUrSi3orFsRjRWMLbZDNZtIu3WzC7kQooT/Bq4In8eov0l/jts1BWx8sPN68mZ15QSq4Rsf5skorq2vrG+XNytb2zu5edf/gQSeZYuCxRCSqG1ANgkvwkKOAbqqAxoGATjBqTeudJ1CaJ/Iexyn4MR1IHnFG0Uh3rev2Y7Xm1J0Z7GXiFqRGChj/dz9MWBaDRCao1j3XSdHPqULOBEwq/UxDStmIDqBnqKQxaD+frTqxT4wS2lGizJNoz9TfHTmNtR7HwZk2o4cQmo6Y4lAveqbif7VehtGFn3OZZgiSzT+MMmFjYk/vt0OugKEYG0KZ4mZnmw2pogxNShUThrt4+jLxGvXLunPbqDWvilTK5Igck1PiknPSJDekTTzCyIA8kxfyaqH1Zr1bH3NrySp6DskfWJ8/szKQgg==</latexit><latexit sha1_base64="RWAdcKmQaIok+TEY8iw1pw39j80=">AAAB8XicbVBNS8NAEN3Ur1q/qh69BIvgQUrSi3orFsRjRWMLbZDNZtIu3WzC7kQooT/Bq4In8eov0l/jts1BWx8sPN68mZ15QSq4Rsf5skorq2vrG+XNytb2zu5edf/gQSeZYuCxRCSqG1ANgkvwkKOAbqqAxoGATjBqTeudJ1CaJ/Iexyn4MR1IHnFG0Uh3rev2Y7Xm1J0Z7GXiFqRGChj/dz9MWBaDRCao1j3XSdHPqULOBEwq/UxDStmIDqBnqKQxaD+frTqxT4wS2lGizJNoz9TfHTmNtR7HwZk2o4cQmo6Y4lAveqbif7VehtGFn3OZZgiSzT+MMmFjYk/vt0OugKEYG0KZ4mZnmw2pogxNShUThrt4+jLxGvXLunPbqDWvilTK5Igck1PiknPSJDekTTzCyIA8kxfyaqH1Zr1bH3NrySp6DskfWJ8/szKQgg==</latexit><latexit sha1_base64="RWAdcKmQaIok+TEY8iw1pw39j80=">AAAB8XicbVBNS8NAEN3Ur1q/qh69BIvgQUrSi3orFsRjRWMLbZDNZtIu3WzC7kQooT/Bq4In8eov0l/jts1BWx8sPN68mZ15QSq4Rsf5skorq2vrG+XNytb2zu5edf/gQSeZYuCxRCSqG1ANgkvwkKOAbqqAxoGATjBqTeudJ1CaJ/Iexyn4MR1IHnFG0Uh3rev2Y7Xm1J0Z7GXiFqRGChj/dz9MWBaDRCao1j3XSdHPqULOBEwq/UxDStmIDqBnqKQxaD+frTqxT4wS2lGizJNoz9TfHTmNtR7HwZk2o4cQmo6Y4lAveqbif7VehtGFn3OZZgiSzT+MMmFjYk/vt0OugKEYG0KZ4mZnmw2pogxNShUThrt4+jLxGvXLunPbqDWvilTK5Igck1PiknPSJDekTTzCyIA8kxfyaqH1Zr1bH3NrySp6DskfWJ8/szKQgg==</latexit>

SM
<latexit sha1_base64="gfABEpWuqrhw9CyWR2/bPcPS4/U=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQXMmRa+phd0Y0boT7GFtqhZDKZNjTzIMkIZegfuFVwJW79I/0aM20FFT0QOJx7z829x0s4kwqhd2NpeWV1bb2wUdzc2t7ZLe3t38k4FYQ6JOax6HpYUs4i6iimOO0mguLQ47Tjjc/zeueeCsni6FZNEuqGeBixgBGstHR9czkolZGJ6jW7iiAya8hq2LYmCNWb1Qq0NMlRBgu0B6WPvh+TNKSRIhxL2bNQotwMC8UIp9NiP5U0wWSMh7SnaYRDKt1stukUHmvFh0Es9IsUnKnfHRkOpZyE3qnUo0fU144Qq5H83ZOLf9V6qQqabsaiJFU0IvMPg5RDFcP8fOgzQYniE00wEUzvDMkIC0yUDqmow/i6GP5PnIppm+iqUm6dLVIpgENwBE6ABRqgBS5AGziAgAA8gEfwZEjj2XgxXuetS8bCcwB+wHj7BKGAkIg=</latexit><latexit sha1_base64="gfABEpWuqrhw9CyWR2/bPcPS4/U=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQXMmRa+phd0Y0boT7GFtqhZDKZNjTzIMkIZegfuFVwJW79I/0aM20FFT0QOJx7z829x0s4kwqhd2NpeWV1bb2wUdzc2t7ZLe3t38k4FYQ6JOax6HpYUs4i6iimOO0mguLQ47Tjjc/zeueeCsni6FZNEuqGeBixgBGstHR9czkolZGJ6jW7iiAya8hq2LYmCNWb1Qq0NMlRBgu0B6WPvh+TNKSRIhxL2bNQotwMC8UIp9NiP5U0wWSMh7SnaYRDKt1stukUHmvFh0Es9IsUnKnfHRkOpZyE3qnUo0fU144Qq5H83ZOLf9V6qQqabsaiJFU0IvMPg5RDFcP8fOgzQYniE00wEUzvDMkIC0yUDqmow/i6GP5PnIppm+iqUm6dLVIpgENwBE6ABRqgBS5AGziAgAA8gEfwZEjj2XgxXuetS8bCcwB+wHj7BKGAkIg=</latexit><latexit sha1_base64="gfABEpWuqrhw9CyWR2/bPcPS4/U=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQXMmRa+phd0Y0boT7GFtqhZDKZNjTzIMkIZegfuFVwJW79I/0aM20FFT0QOJx7z829x0s4kwqhd2NpeWV1bb2wUdzc2t7ZLe3t38k4FYQ6JOax6HpYUs4i6iimOO0mguLQ47Tjjc/zeueeCsni6FZNEuqGeBixgBGstHR9czkolZGJ6jW7iiAya8hq2LYmCNWb1Qq0NMlRBgu0B6WPvh+TNKSRIhxL2bNQotwMC8UIp9NiP5U0wWSMh7SnaYRDKt1stukUHmvFh0Es9IsUnKnfHRkOpZyE3qnUo0fU144Qq5H83ZOLf9V6qQqabsaiJFU0IvMPg5RDFcP8fOgzQYniE00wEUzvDMkIC0yUDqmow/i6GP5PnIppm+iqUm6dLVIpgENwBE6ABRqgBS5AGziAgAA8gEfwZEjj2XgxXuetS8bCcwB+wHj7BKGAkIg=</latexit>

DFP<latexit sha1_base64="uO6Xqeo702I1UKKowQwV00QBRBc=">AAAB8XicdVDLSgMxFM34rPVVdekmWAQXMmTG0seuqIjLio4ttINkMmkbmskMSUYoQz/BrYIrcesX6deYaSuo6IHA4dxzb+49QcKZ0gi9WwuLS8srq4W14vrG5tZ2aWf3VsWpJNQjMY9lJ8CKciaop5nmtJNIiqOA03YwOsvr7XsqFYvFjR4n1I/wQLA+I1gb6fr8onVXKiO7Ua+6lSpENkI1x3Vy4tYqJxXoGCVHGcxh/B+9MCZpRIUmHCvVdVCi/QxLzQink2IvVTTBZIQHtGuowBFVfjZddQIPjRLCfizNExpO1e8dGY6UGkfBsTKjhzQ0HRHWQ/Xbk4t/1bqp7tf9jIkk1VSQ2Yf9lEMdw/x+GDJJieZjQzCRzOwMyRBLTLRJqWjC+LoY/k88127Y6MotN0/nqRTAPjgAR8ABNdAEl6AFPEDAADyAR/BkaevZerFeZ9YFa96zB37AevsEFquQxQ==</latexit><latexit sha1_base64="uO6Xqeo702I1UKKowQwV00QBRBc=">AAAB8XicdVDLSgMxFM34rPVVdekmWAQXMmTG0seuqIjLio4ttINkMmkbmskMSUYoQz/BrYIrcesX6deYaSuo6IHA4dxzb+49QcKZ0gi9WwuLS8srq4W14vrG5tZ2aWf3VsWpJNQjMY9lJ8CKciaop5nmtJNIiqOA03YwOsvr7XsqFYvFjR4n1I/wQLA+I1gb6fr8onVXKiO7Ua+6lSpENkI1x3Vy4tYqJxXoGCVHGcxh/B+9MCZpRIUmHCvVdVCi/QxLzQink2IvVTTBZIQHtGuowBFVfjZddQIPjRLCfizNExpO1e8dGY6UGkfBsTKjhzQ0HRHWQ/Xbk4t/1bqp7tf9jIkk1VSQ2Yf9lEMdw/x+GDJJieZjQzCRzOwMyRBLTLRJqWjC+LoY/k88127Y6MotN0/nqRTAPjgAR8ABNdAEl6AFPEDAADyAR/BkaevZerFeZ9YFa96zB37AevsEFquQxQ==</latexit><latexit sha1_base64="uO6Xqeo702I1UKKowQwV00QBRBc=">AAAB8XicdVDLSgMxFM34rPVVdekmWAQXMmTG0seuqIjLio4ttINkMmkbmskMSUYoQz/BrYIrcesX6deYaSuo6IHA4dxzb+49QcKZ0gi9WwuLS8srq4W14vrG5tZ2aWf3VsWpJNQjMY9lJ8CKciaop5nmtJNIiqOA03YwOsvr7XsqFYvFjR4n1I/wQLA+I1gb6fr8onVXKiO7Ua+6lSpENkI1x3Vy4tYqJxXoGCVHGcxh/B+9MCZpRIUmHCvVdVCi/QxLzQink2IvVTTBZIQHtGuowBFVfjZddQIPjRLCfizNExpO1e8dGY6UGkfBsTKjhzQ0HRHWQ/Xbk4t/1bqp7tf9jIkk1VSQ2Yf9lEMdw/x+GDJJieZjQzCRzOwMyRBLTLRJqWjC+LoY/k88127Y6MotN0/nqRTAPjgAR8ABNdAEl6AFPEDAADyAR/BkaevZerFeZ9YFa96zB37AevsEFquQxQ==</latexit>

r
<latexit sha1_base64="KO9ECDOcx0D5JvRqmRtaDEJNbGo=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJKKoN6KXjy2YGyhDWWzmbRLN5uwuxFK6C/wquBJvPqT9Ne4bXPQ1gcLjzfzZmdekAqujet+OSura+sbm6Wt8vbO7t5+5eDwUSeZYuixRCSqE1CNgkv0DDcCO6lCGgcC28HoblpvP6HSPJEPZpyiH9OB5BFn1FippfqVqltzZyDLpF6QKhRo9ivfvTBhWYzSMEG17tbd1Pg5VYYzgZNyL9OYUjaiA+xaKmmM2s9ni07IqVVCEiXKPmnITP3tyGms9TgOzrUdPcTQOmJqhnqxZyr+V+tmJrr2cy7TzKBk8w+jTBCTkOn1JOQKmRFjSyhT3O5M2JAqyozNqGzDqC+evky8i9pNzW1dVhu3RSolOIYTOIM6XEED7qEJHjBAeIYXeHWU8+a8Ox/z1hWn8BzBHzifP8oykAk=</latexit><latexit sha1_base64="KO9ECDOcx0D5JvRqmRtaDEJNbGo=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJKKoN6KXjy2YGyhDWWzmbRLN5uwuxFK6C/wquBJvPqT9Ne4bXPQ1gcLjzfzZmdekAqujet+OSura+sbm6Wt8vbO7t5+5eDwUSeZYuixRCSqE1CNgkv0DDcCO6lCGgcC28HoblpvP6HSPJEPZpyiH9OB5BFn1FippfqVqltzZyDLpF6QKhRo9ivfvTBhWYzSMEG17tbd1Pg5VYYzgZNyL9OYUjaiA+xaKmmM2s9ni07IqVVCEiXKPmnITP3tyGms9TgOzrUdPcTQOmJqhnqxZyr+V+tmJrr2cy7TzKBk8w+jTBCTkOn1JOQKmRFjSyhT3O5M2JAqyozNqGzDqC+evky8i9pNzW1dVhu3RSolOIYTOIM6XEED7qEJHjBAeIYXeHWU8+a8Ox/z1hWn8BzBHzifP8oykAk=</latexit><latexit sha1_base64="KO9ECDOcx0D5JvRqmRtaDEJNbGo=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJKKoN6KXjy2YGyhDWWzmbRLN5uwuxFK6C/wquBJvPqT9Ne4bXPQ1gcLjzfzZmdekAqujet+OSura+sbm6Wt8vbO7t5+5eDwUSeZYuixRCSqE1CNgkv0DDcCO6lCGgcC28HoblpvP6HSPJEPZpyiH9OB5BFn1FippfqVqltzZyDLpF6QKhRo9ivfvTBhWYzSMEG17tbd1Pg5VYYzgZNyL9OYUjaiA+xaKmmM2s9ni07IqVVCEiXKPmnITP3tyGms9TgOzrUdPcTQOmJqhnqxZyr+V+tmJrr2cy7TzKBk8w+jTBCTkOn1JOQKmRFjSyhT3O5M2JAqyozNqGzDqC+evky8i9pNzW1dVhu3RSolOIYTOIM6XEED7qEJHjBAeIYXeHWU8+a8Ox/z1hWn8BzBHzifP8oykAk=</latexit>

�
<latexit sha1_base64="LVNd3gkgDXMb6DETeXOrDIs82gI=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCOotqAePEdwkkCxhdrY3GTP7YGZWCUv+wauCJ/Hq/+jXOHkcNLGgoajumukuPxVcadv+sgpLyyura8X10sbm1vZOeXevoZJMMnRZIhLZ8qlCwWN0NdcCW6lEGvkCm/7getxvPqJUPInv9TBFL6K9mIecUW2kRucGhabdcsWu2hOQReLMSAVmqHfL350gYVmEsWaCKtV27FR7OZWaM4GjUidTmFI2oD1sGxrTCJWXT7YdkSOjBCRMpKlYk4n625HTSKlh5J8o83QfA+OIqO6r+Zmx+F+vnenwwst5nGYaYzb9MMwE0QkZR0ACLpFpMTSEMsnNzoT1qaRMm6BKJgxn/vRF4p5WL6v23VmldjVLpQgHcAjH4MA51OAW6uACgwd4hhd4tZ6sN+vd+piOFqyZZx/+wPr8AVqMkg8=</latexit><latexit sha1_base64="LVNd3gkgDXMb6DETeXOrDIs82gI=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCOotqAePEdwkkCxhdrY3GTP7YGZWCUv+wauCJ/Hq/+jXOHkcNLGgoajumukuPxVcadv+sgpLyyura8X10sbm1vZOeXevoZJMMnRZIhLZ8qlCwWN0NdcCW6lEGvkCm/7getxvPqJUPInv9TBFL6K9mIecUW2kRucGhabdcsWu2hOQReLMSAVmqHfL350gYVmEsWaCKtV27FR7OZWaM4GjUidTmFI2oD1sGxrTCJWXT7YdkSOjBCRMpKlYk4n625HTSKlh5J8o83QfA+OIqO6r+Zmx+F+vnenwwst5nGYaYzb9MMwE0QkZR0ACLpFpMTSEMsnNzoT1qaRMm6BKJgxn/vRF4p5WL6v23VmldjVLpQgHcAjH4MA51OAW6uACgwd4hhd4tZ6sN+vd+piOFqyZZx/+wPr8AVqMkg8=</latexit><latexit sha1_base64="LVNd3gkgDXMb6DETeXOrDIs82gI=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuCOotqAePEdwkkCxhdrY3GTP7YGZWCUv+wauCJ/Hq/+jXOHkcNLGgoajumukuPxVcadv+sgpLyyura8X10sbm1vZOeXevoZJMMnRZIhLZ8qlCwWN0NdcCW6lEGvkCm/7getxvPqJUPInv9TBFL6K9mIecUW2kRucGhabdcsWu2hOQReLMSAVmqHfL350gYVmEsWaCKtV27FR7OZWaM4GjUidTmFI2oD1sGxrTCJWXT7YdkSOjBCRMpKlYk4n625HTSKlh5J8o83QfA+OIqO6r+Zmx+F+vnenwwst5nGYaYzb9MMwE0QkZR0ACLpFpMTSEMsnNzoT1qaRMm6BKJgxn/vRF4p5WL6v23VmldjVLpQgHcAjH4MA51OAW6uACgwd4hhd4tZ6sN+vd+piOFqyZZx/+wPr8AVqMkg8=</latexit>

SC
<latexit sha1_base64="gpxkDBmKD6NUBKPX3WpG+f0fybc=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8SNjNRb0Fc/EYH2sCyRJmZ3uTIbMPZmaFsOQPvCp4Eq/+kX6Nk2QPmlgwUFR39XSXnwqutG1/WSura+sbm6Wt8vbO7t5+5eDwUSWZZOiyRCSy41OFgsfoaq4FdlKJNPIFtv1Rc1pvP6FUPIkf9DhFL6KDmIecUW2ku/tmv1K1a/YMZJk4BalCgVa/8t0LEpZFGGsmqFJdx061l1OpORM4KfcyhSllIzrArqExjVB5+WzTCTk1SkDCRJoXazJTfztyGik1jvxzZUYPMTCOiOqhWuyZiv/VupkOL72cx2mmMWbzD8NMEJ2Q6fkk4BKZFmNDKJPc7EzYkErKtAmpbMJwFk9fJm69dlWzb+vVxnWRSgmO4QTOwIELaMANtMAFBiE8wwu8Wsp6s96tj3nrilV4juAPrM8fJmuQNQ==</latexit><latexit sha1_base64="gpxkDBmKD6NUBKPX3WpG+f0fybc=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8SNjNRb0Fc/EYH2sCyRJmZ3uTIbMPZmaFsOQPvCp4Eq/+kX6Nk2QPmlgwUFR39XSXnwqutG1/WSura+sbm6Wt8vbO7t5+5eDwUSWZZOiyRCSy41OFgsfoaq4FdlKJNPIFtv1Rc1pvP6FUPIkf9DhFL6KDmIecUW2ku/tmv1K1a/YMZJk4BalCgVa/8t0LEpZFGGsmqFJdx061l1OpORM4KfcyhSllIzrArqExjVB5+WzTCTk1SkDCRJoXazJTfztyGik1jvxzZUYPMTCOiOqhWuyZiv/VupkOL72cx2mmMWbzD8NMEJ2Q6fkk4BKZFmNDKJPc7EzYkErKtAmpbMJwFk9fJm69dlWzb+vVxnWRSgmO4QTOwIELaMANtMAFBiE8wwu8Wsp6s96tj3nrilV4juAPrM8fJmuQNQ==</latexit><latexit sha1_base64="gpxkDBmKD6NUBKPX3WpG+f0fybc=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8SNjNRb0Fc/EYH2sCyRJmZ3uTIbMPZmaFsOQPvCp4Eq/+kX6Nk2QPmlgwUFR39XSXnwqutG1/WSura+sbm6Wt8vbO7t5+5eDwUSWZZOiyRCSy41OFgsfoaq4FdlKJNPIFtv1Rc1pvP6FUPIkf9DhFL6KDmIecUW2ku/tmv1K1a/YMZJk4BalCgVa/8t0LEpZFGGsmqFJdx061l1OpORM4KfcyhSllIzrArqExjVB5+WzTCTk1SkDCRJoXazJTfztyGik1jvxzZUYPMTCOiOqhWuyZiv/VupkOL72cx2mmMWbzD8NMEJ2Q6fkk4BKZFmNDKJPc7EzYkErKtAmpbMJwFk9fJm69dlWzb+vVxnWRSgmO4QTOwIELaMANtMAFBiE8wwu8Wsp6s96tj3nrilV4juAPrM8fJmuQNQ==</latexit>

DFP 2<latexit sha1_base64="AQ060ZZA2xCTOuMdu2BDF0eDhr8=">AAAB83icdVDNSgMxGMzWv1r/qh69BIvgQUqyB9veiop4rODaQruUbJptQ7PZJckWytJn8KrgSbz6QPo0ZtsKKjoQGGa+Sb5MkAiuDULvTmFldW19o7hZ2tre2d0r7x/c6zhVlHk0FrHqBEQzwSXzDDeCdRLFSBQI1g7Gl7nfnjCleSzvzDRhfkSGkoecEmMl7+q6Bd1+uYKqCCGMMcwJrp0jSxqNuovrEOeWRQUs0eqXP3qDmKYRk4YKonUXo8T4GVGGU8FmpV6qWULomAxZ11JJIqb9bL7sDJ5YZQDDWNkjDZyr3xMZibSeRsGZtleP2MAmImJG+vdMLv7ldVMT1v2MyyQ1TNLFg2EqoIlh3gAccMWoEVNLCFXc7gzpiChCje2pZMv4+jH8n3hutVFFt26lebFspQiOwDE4BRjUQBPcgBbwAAUcPIBH8ORMnGfnxXldjBacZeYQ/IDz9gnNeJEf</latexit><latexit sha1_base64="AQ060ZZA2xCTOuMdu2BDF0eDhr8=">AAAB83icdVDNSgMxGMzWv1r/qh69BIvgQUqyB9veiop4rODaQruUbJptQ7PZJckWytJn8KrgSbz6QPo0ZtsKKjoQGGa+Sb5MkAiuDULvTmFldW19o7hZ2tre2d0r7x/c6zhVlHk0FrHqBEQzwSXzDDeCdRLFSBQI1g7Gl7nfnjCleSzvzDRhfkSGkoecEmMl7+q6Bd1+uYKqCCGMMcwJrp0jSxqNuovrEOeWRQUs0eqXP3qDmKYRk4YKonUXo8T4GVGGU8FmpV6qWULomAxZ11JJIqb9bL7sDJ5YZQDDWNkjDZyr3xMZibSeRsGZtleP2MAmImJG+vdMLv7ldVMT1v2MyyQ1TNLFg2EqoIlh3gAccMWoEVNLCFXc7gzpiChCje2pZMv4+jH8n3hutVFFt26lebFspQiOwDE4BRjUQBPcgBbwAAUcPIBH8ORMnGfnxXldjBacZeYQ/IDz9gnNeJEf</latexit><latexit sha1_base64="AQ060ZZA2xCTOuMdu2BDF0eDhr8=">AAAB83icdVDNSgMxGMzWv1r/qh69BIvgQUqyB9veiop4rODaQruUbJptQ7PZJckWytJn8KrgSbz6QPo0ZtsKKjoQGGa+Sb5MkAiuDULvTmFldW19o7hZ2tre2d0r7x/c6zhVlHk0FrHqBEQzwSXzDDeCdRLFSBQI1g7Gl7nfnjCleSzvzDRhfkSGkoecEmMl7+q6Bd1+uYKqCCGMMcwJrp0jSxqNuovrEOeWRQUs0eqXP3qDmKYRk4YKonUXo8T4GVGGU8FmpV6qWULomAxZ11JJIqb9bL7sDJ5YZQDDWNkjDZyr3xMZibSeRsGZtleP2MAmImJG+vdMLv7ldVMT1v2MyyQ1TNLFg2EqoIlh3gAccMWoEVNLCFXc7gzpiChCje2pZMv4+jH8n3hutVFFt26lebFspQiOwDE4BRjUQBPcgBbwAAUcPIBH8ORMnGfnxXldjBacZeYQ/IDz9gnNeJEf</latexit>

DFP 1<latexit sha1_base64="+mM3Cdarr5HKHl7E4VIF66XyhJU=">AAAB83icdVDLSsNAFJ3UV62vqks3g0VwISGJpY9dURGXFYwttKFMJpN26GQSZiaFEvoNbhVciVs/SL/GSVtBRQ9cOJx7z8y9x08Ylcqy3o3Cyura+kZxs7S1vbO7V94/uJdxKjBxccxi0fWRJIxy4iqqGOkmgqDIZ6Tjjy/zfmdChKQxv1PThHgRGnIaUoyUltyr6za0B+WKZTYbNadag5ZpWXXbsXPi1KvnVWhrJUcFLNEelD/6QYzTiHCFGZKyZ1uJ8jIkFMWMzEr9VJIE4TEakp6mHEVEetl82Rk80UoAw1jo4grO1e+ODEVSTiP/TOqnRyTQjgipkfw9k4t/9XqpChteRnmSKsLx4sMwZVDFME8ABlQQrNhUE4QF1TtDPEICYaVzKukwvi6G/xPXMZumdetUWhfLVIrgCByDU2CDOmiBG9AGLsCAggfwCJ6MifFsvBivi9GCsfQcgh8w3j4B31qRKg==</latexit><latexit sha1_base64="+mM3Cdarr5HKHl7E4VIF66XyhJU=">AAAB83icdVDLSsNAFJ3UV62vqks3g0VwISGJpY9dURGXFYwttKFMJpN26GQSZiaFEvoNbhVciVs/SL/GSVtBRQ9cOJx7z8y9x08Ylcqy3o3Cyura+kZxs7S1vbO7V94/uJdxKjBxccxi0fWRJIxy4iqqGOkmgqDIZ6Tjjy/zfmdChKQxv1PThHgRGnIaUoyUltyr6za0B+WKZTYbNadag5ZpWXXbsXPi1KvnVWhrJUcFLNEelD/6QYzTiHCFGZKyZ1uJ8jIkFMWMzEr9VJIE4TEakp6mHEVEetl82Rk80UoAw1jo4grO1e+ODEVSTiP/TOqnRyTQjgipkfw9k4t/9XqpChteRnmSKsLx4sMwZVDFME8ABlQQrNhUE4QF1TtDPEICYaVzKukwvi6G/xPXMZumdetUWhfLVIrgCByDU2CDOmiBG9AGLsCAggfwCJ6MifFsvBivi9GCsfQcgh8w3j4B31qRKg==</latexit><latexit sha1_base64="+mM3Cdarr5HKHl7E4VIF66XyhJU=">AAAB83icdVDLSsNAFJ3UV62vqks3g0VwISGJpY9dURGXFYwttKFMJpN26GQSZiaFEvoNbhVciVs/SL/GSVtBRQ9cOJx7z8y9x08Ylcqy3o3Cyura+kZxs7S1vbO7V94/uJdxKjBxccxi0fWRJIxy4iqqGOkmgqDIZ6Tjjy/zfmdChKQxv1PThHgRGnIaUoyUltyr6za0B+WKZTYbNadag5ZpWXXbsXPi1KvnVWhrJUcFLNEelD/6QYzTiHCFGZKyZ1uJ8jIkFMWMzEr9VJIE4TEakp6mHEVEetl82Rk80UoAw1jo4grO1e+ODEVSTiP/TOqnRyTQjgipkfw9k4t/9XqpChteRnmSKsLx4sMwZVDFME8ABlQQrNhUE4QF1TtDPEICYaVzKukwvi6G/xPXMZumdetUWhfLVIrgCByDU2CDOmiBG9AGLsCAggfwCJ6MifFsvBivi9GCsfQcgh8w3j4B31qRKg==</latexit>

CFP
<latexit sha1_base64="RWAdcKmQaIok+TEY8iw1pw39j80=">AAAB8XicbVBNS8NAEN3Ur1q/qh69BIvgQUrSi3orFsRjRWMLbZDNZtIu3WzC7kQooT/Bq4In8eov0l/jts1BWx8sPN68mZ15QSq4Rsf5skorq2vrG+XNytb2zu5edf/gQSeZYuCxRCSqG1ANgkvwkKOAbqqAxoGATjBqTeudJ1CaJ/Iexyn4MR1IHnFG0Uh3rev2Y7Xm1J0Z7GXiFqRGChj/dz9MWBaDRCao1j3XSdHPqULOBEwq/UxDStmIDqBnqKQxaD+frTqxT4wS2lGizJNoz9TfHTmNtR7HwZk2o4cQmo6Y4lAveqbif7VehtGFn3OZZgiSzT+MMmFjYk/vt0OugKEYG0KZ4mZnmw2pogxNShUThrt4+jLxGvXLunPbqDWvilTK5Igck1PiknPSJDekTTzCyIA8kxfyaqH1Zr1bH3NrySp6DskfWJ8/szKQgg==</latexit><latexit sha1_base64="RWAdcKmQaIok+TEY8iw1pw39j80=">AAAB8XicbVBNS8NAEN3Ur1q/qh69BIvgQUrSi3orFsRjRWMLbZDNZtIu3WzC7kQooT/Bq4In8eov0l/jts1BWx8sPN68mZ15QSq4Rsf5skorq2vrG+XNytb2zu5edf/gQSeZYuCxRCSqG1ANgkvwkKOAbqqAxoGATjBqTeudJ1CaJ/Iexyn4MR1IHnFG0Uh3rev2Y7Xm1J0Z7GXiFqRGChj/dz9MWBaDRCao1j3XSdHPqULOBEwq/UxDStmIDqBnqKQxaD+frTqxT4wS2lGizJNoz9TfHTmNtR7HwZk2o4cQmo6Y4lAveqbif7VehtGFn3OZZgiSzT+MMmFjYk/vt0OugKEYG0KZ4mZnmw2pogxNShUThrt4+jLxGvXLunPbqDWvilTK5Igck1PiknPSJDekTTzCyIA8kxfyaqH1Zr1bH3NrySp6DskfWJ8/szKQgg==</latexit><latexit sha1_base64="RWAdcKmQaIok+TEY8iw1pw39j80=">AAAB8XicbVBNS8NAEN3Ur1q/qh69BIvgQUrSi3orFsRjRWMLbZDNZtIu3WzC7kQooT/Bq4In8eov0l/jts1BWx8sPN68mZ15QSq4Rsf5skorq2vrG+XNytb2zu5edf/gQSeZYuCxRCSqG1ANgkvwkKOAbqqAxoGATjBqTeudJ1CaJ/Iexyn4MR1IHnFG0Uh3rev2Y7Xm1J0Z7GXiFqRGChj/dz9MWBaDRCao1j3XSdHPqULOBEwq/UxDStmIDqBnqKQxaD+frTqxT4wS2lGizJNoz9TfHTmNtR7HwZk2o4cQmo6Y4lAveqbif7VehtGFn3OZZgiSzT+MMmFjYk/vt0OugKEYG0KZ4mZnmw2pogxNShUThrt4+jLxGvXLunPbqDWvilTK5Igck1PiknPSJDekTTzCyIA8kxfyaqH1Zr1bH3NrySp6DskfWJ8/szKQgg==</latexit>

SM
<latexit sha1_base64="gfABEpWuqrhw9CyWR2/bPcPS4/U=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQXMmRa+phd0Y0boT7GFtqhZDKZNjTzIMkIZegfuFVwJW79I/0aM20FFT0QOJx7z829x0s4kwqhd2NpeWV1bb2wUdzc2t7ZLe3t38k4FYQ6JOax6HpYUs4i6iimOO0mguLQ47Tjjc/zeueeCsni6FZNEuqGeBixgBGstHR9czkolZGJ6jW7iiAya8hq2LYmCNWb1Qq0NMlRBgu0B6WPvh+TNKSRIhxL2bNQotwMC8UIp9NiP5U0wWSMh7SnaYRDKt1stukUHmvFh0Es9IsUnKnfHRkOpZyE3qnUo0fU144Qq5H83ZOLf9V6qQqabsaiJFU0IvMPg5RDFcP8fOgzQYniE00wEUzvDMkIC0yUDqmow/i6GP5PnIppm+iqUm6dLVIpgENwBE6ABRqgBS5AGziAgAA8gEfwZEjj2XgxXuetS8bCcwB+wHj7BKGAkIg=</latexit><latexit sha1_base64="gfABEpWuqrhw9CyWR2/bPcPS4/U=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQXMmRa+phd0Y0boT7GFtqhZDKZNjTzIMkIZegfuFVwJW79I/0aM20FFT0QOJx7z829x0s4kwqhd2NpeWV1bb2wUdzc2t7ZLe3t38k4FYQ6JOax6HpYUs4i6iimOO0mguLQ47Tjjc/zeueeCsni6FZNEuqGeBixgBGstHR9czkolZGJ6jW7iiAya8hq2LYmCNWb1Qq0NMlRBgu0B6WPvh+TNKSRIhxL2bNQotwMC8UIp9NiP5U0wWSMh7SnaYRDKt1stukUHmvFh0Es9IsUnKnfHRkOpZyE3qnUo0fU144Qq5H83ZOLf9V6qQqabsaiJFU0IvMPg5RDFcP8fOgzQYniE00wEUzvDMkIC0yUDqmow/i6GP5PnIppm+iqUm6dLVIpgENwBE6ABRqgBS5AGziAgAA8gEfwZEjj2XgxXuetS8bCcwB+wHj7BKGAkIg=</latexit><latexit sha1_base64="gfABEpWuqrhw9CyWR2/bPcPS4/U=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQXMmRa+phd0Y0boT7GFtqhZDKZNjTzIMkIZegfuFVwJW79I/0aM20FFT0QOJx7z829x0s4kwqhd2NpeWV1bb2wUdzc2t7ZLe3t38k4FYQ6JOax6HpYUs4i6iimOO0mguLQ47Tjjc/zeueeCsni6FZNEuqGeBixgBGstHR9czkolZGJ6jW7iiAya8hq2LYmCNWb1Qq0NMlRBgu0B6WPvh+TNKSRIhxL2bNQotwMC8UIp9NiP5U0wWSMh7SnaYRDKt1stukUHmvFh0Es9IsUnKnfHRkOpZyE3qnUo0fU144Qq5H83ZOLf9V6qQqabsaiJFU0IvMPg5RDFcP8fOgzQYniE00wEUzvDMkIC0yUDqmow/i6GP5PnIppm+iqUm6dLVIpgENwBE6ABRqgBS5AGziAgAA8gEfwZEjj2XgxXuetS8bCcwB+wHj7BKGAkIg=</latexit>
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Figure 3.12: Schematic phase diagrams in the plane of tuning parameter r and disorder
strength ∆ for N ≥ 2. SM: Dirac semimetal; DSM: disordered semimetal; SC: super-
conductor. For sufficiently small initial values of λ2 and h2, the universality class of the
transition changes beyond a critical disorder strength from that of the CFP to that of one
of the two disordered fixed points: (a) N = 2 and N = 3; (b) N = 4; (c) N ≥ 5. For suf-
ficiently large λ2 and/or h2, beyond a second critical disorder strength there is a reentrant
critical regime controlled by the CFP [plotted in (d) for N ≥ 5, but an analogous effect
occurs for 2 ≤ N ≤ 4].
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ficiently smooth so as to make the probability of scattering between different Dirac cones

negligible. Our one-loop analysis demonstrated the possibility of a general scenario for

critical phenomena in disordered systems, to our knowledge not explicitly discussed in the

literature so far: a clean critical point may be stable against disorder according to the Harris

criterion, but yet may be replaced by a finite-disorder critical point beyond a certain finite,

critical disorder strength. In the model studied here such finite-disorder critical points were

characterized by finite fixed-point values of both the boson-boson and fermion-boson cou-

plings, and thus were dubbed disordered fermionic QCPs. Other notable features of the

disordered critical points found included a noninteger dynamic critical exponent z > 1, as

well as oscillatory corrections to scaling for sufficiently large N .

Possible applications of our results include the semimetal-superconductor quantum

phase transition in graphene (N = 4) and on the surface of a 3D topological insulator

(N = 1); the experimental results reported in Ref. [170] are encouraging in regards to the

latter, although one would need to additionally tune the chemical potential to the Dirac

point and reach the quantum critical regime by the application of a nonthermal tuning

parameter such as pressure. With those caveats in mind, we also note that the surface

of 3D topological crystalline insulators [171, 172] such as SnTe [173], Pb1−xSnxSe [174],

and Pb1−xSnxTe [175] supports N = 4 two-component Dirac cones, as in graphene, and

that superconductivity has been observed in In-doped SnTe [176, 177], though presumably

of bulk origin. Larger values of N may be accessible in systems of ultracold large-spin

alkaline-earth fermions [178] loaded into optical honeycomb lattices, such as those studied

theoretically in Ref. [179], but with interactions tuned to be attractive.

To further elucidate the critical behavior at N = 1 in the present model, pertur-

bative calculations at two-loop order would be necessary. The conformal bootstrap [180],

perturbative RG studies of the clean chiral XY GNY model at four-loop order [140], as

well as quantum Monte Carlo simulations [149] suggest that ν−1 is slightly above one at

the CFP for N = 1, implying via the Harris criterion that disorder is in fact relevant (as

opposed to marginally relevant as found at one-loop order) at the CFP. (Interestingly, for
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N = 4 quantum Monte Carlo simulations of the Kekulé transition in graphene [152] and

naive extrapolation of the four-loop GNY ε-expansion results [140] predict ν−1 > 1 at the

CFP, while Padé extrapolation of the latter results [140] as well as functional RG studies

of the Kekulé transition [181] predict ν−1 < 1 in the clean limit, in agreement with our

one-loop result.) Beyond perturbative RG, it would be interesting to try to apply strong-

disorder RG methods [74, 75, 182] to this problem, as done recently for the 2D bosonic

superfluid-Mott insulator transition [183], or to incorporate the effect of quenched disorder

in the sign-problem-free quantum Monte Carlo simulations of Ref. [149], as done previously

for the disordered attractive Hubbard model [184].
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Chapter 4

Long range-correlated

random-mass disorder in GNY

models

4.1 Introduction

In the previous chapter, the effect of short-range correlated disorder in the chiral XY GNY

model was studied via the double epsilon expansion method. In this chapter we extend

this study to the chiral Ising and Heisenberg GNY models [126, 140]. As we briefly re-

view in Sec. 4.2, these chiral GNY models describe a variety of QCPs in condensed mat-

ter systems [185]. Unlike in the previous chapter, we also consider random-mass disorder

with correlations between two spatial points x,x′ that decay asymptotically as a power

law, ∼ |x − x′|−α, with α < d. (For α > d, the correlations are short range, as the

disorder correlation function in momentum space remains finite in the long-wavelength

limit.) According to the extended Harris criterion, a clean critical point with correlation

length exponent νCFP is perturbatively stable against such long-range correlated disorder if

νCFP > 2/min(d, α) [186]; this type of disorder thus generally has a stronger effect at phase

transitions than uncorrelated disorder.
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Our main results are summarized as follows. For the chiral Ising GNY model, we

find new disordered multicritical points, and for the chiral XY and Heisenberg GNY mod-

els, new disordered critical and multicritical points. As in Chap. 3, some of the disordered

QCPs found exhibit usual sink-type RG flows, while others are of stable-focus type. We

also explore how the structure of the RG flow on the critical hypersurface evolves upon

tuning RG-invariant system parameters, here the number N of fermion flavors and the ex-

ponent α describing disorder correlations. We are particularly interested in bifurcations

of these RG flows [167], where the number or stability properties of fixed points sud-

denly change as a function of N and α, called control parameters in bifurcation theory.

We find and analyze instances of the saddle-node bifurcation, also known as the fixed-

point annihilation scenario [166], at which a repulsive fixed point and an attractive fixed

point coalesce and disappear into the complex plane. This type of bifurcation appears

or has been argued to appear in RG flows in a variety of problems of current interest in

both high-energy physics [166, 187–193] and condensed matter physics/statistical mechan-

ics [194–202]. The characteristic phenomenology associated with it includes Berezinskii-

Kosterlitz-Thouless/Miransky scaling, walking/pseudo-critical behavior, and weakly first-

order transitions. In our particular problem, it manifests itself in the existence of an anoma-

lously (i.e., exponentially) large length scale L∗ that governs the crossover between two

distinct universality classes of critical behavior. In much previous work, the saddle-node

bifurcation is tuned by a parameter such as space(time) dimensionality d or the integer

number N of components of a fermionic or bosonic field, and thus cannot be approached

continuously in practice. Here, for fixed d and N the bifurcation can be approached by

continuously tuning the exponent α for disorder correlations.

Besides the saddle-node bifurcation, we also discover instances of more exotic bifur-

cations [167]: the transcritical bifurcation, at which two fixed points exchange their stability

properties without annihilating, and the supercritical Hopf (or Poincaré-Andronov-Hopf)

bifurcation [203]. The latter is a bifurcation at which a stable-focus QCP loses its stability

by giving birth to a stable limit cycle, which then controls the asymptotic critical behavior.
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A possibility first considered by Wilson [204], stable RG limit cycles lead to log-periodic

scaling behavior [205], i.e., discrete scale invariance (as opposed to log-periodic behavior of

corrections to scaling at stable-focus points). Hopf bifurcations in RG flows were found in

classical disordered O(n) models [186, 206], but only the subcritical Hopf bifurcation [203]

was found, where an unstable-focus fixed point becomes stable and gives birth to an unstable

limit cycle. As a result, the models studied in Refs. [186, 206] did not exhibit log-periodic

critical scaling behavior in the long-distance limit.

The rest of the chapter is structured as follows. In Sec. 4.2, we briefly describe

the chiral GNY models with long-range correlated random-mass quenched disorder. In

Sec. 4.3, we describe the perturbative RG scheme used to derive beta functions on the critical

hypersurface. By contrast with Chap. 3, where the double epsilon expansion [122–124,160]

was sufficient to tame RG flows in the presence of uncorrelated disorder, here we use a

controlled triple epsilon expansion [207] at one-loop order that allows us to tame the flow

of both interaction and correlated disorder strengths. In Sec. 4.4, we investigate the fixed

points of the RG beta functions derived in Sec. 4.3, focusing on DFPs and analyzing their

linear stability. We compute critical exponents and anomalous dimensions at all DFPs. In

Sec. 4.5, we discuss qualitative features of the RG flow, including various bifurcations that

occur under changes of the control parameters N and α, and their consequences for critical

properties. We conclude in Sec. 4.6 with a summary of our main results and a few directions

for further research. The details of calculations are placed in Appendix B.

4.2 The random-mass GNY models

Our starting point is the family of chiral O(n) GNY models in 2+1 dimensions at zero

temperature, described by the Euclidean action:

S =

∫
d2x dτ (Lφ + Lψ + Lψφ) , (4.1)

80



where x denotes spatial coordinates, and τ is imaginary time. The model consists of a real n-

component scalar field φ = (φ1, . . . , φn), the order parameter, governed by the Lagrangian:

Lφ = (∂τφ)2 + c2
b(∇φ)2 + rφ2 + λ2(φ2)2, (4.2)

where φ2 = φ · φ =
∑n

i=1(φi)2. It is coupled to a Dirac fermion field ψ, described by the

Lagrangian:

Lψ = iψ(γ0∂τ + cfγ · ∇)ψ. (4.3)

The scalar mass squared r in Eq. (4.2) tunes the model through criticality: r < 0 gives a

phase with spontaneously broken O(n) symmetry, r > 0 is the symmetric phase, and r = 0

is the critical point. (For n = 2, this is the model studied in the previous chapter.) The

parameter λ2 describes self-interactions of the order parameter. We define the Dirac adjoint

in Eq. (4.3) as ψ = −iψ†γ0. We denote γ = (γ1, γ2), and γµ, µ = 0, 1, 2 are Hermitian Dirac

matrices obeying the SO(3) Clifford algebra {γµ, γν} = 2δµν . In the ordinary GNY model,

Lorentz invariance (exact or emergent at criticality [208]) demands that the fermion cf and

boson cb velocities be equal, but in the presence of quenched disorder, to be introduced

below, the ratio c = cf/cb will flow under RG transformations.

We perform perturbative calculations near four dimensions at one-loop order via the

triple epsilon-expansion scheme to be explained below, but we are ultimately interested in

(2+1)D physics. We will present our results in terms of the number N of flavors of two-

component Dirac fermions (i.e., the number of linear band crossing points at the Fermi level

in a condensed matter system), but they can alternatively be interpreted as pertaining to

Nf = N/2 flavors of four-component Dirac fermions when N is even.

We consider the cases n = 1, 2, 3, corresponding to the chiral Ising, XY, and Heisen-

berg GNY models, respectively [126,140]. The form of the Yukawa coupling Lψφ in Eq. (4.1)

differs in each case. In the chiral Ising GNY model [125], a single real scalar φ couples to
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the fermion mass iψψ,

LIsing
ψφ = ihφψψ, (4.4)

with coupling strength h. The Yukawa coupling in the chiral XY GNY model can be for-

mulated in different but equivalent ways, depending on the choice of spinor representation.

In the four-component representation, the Yukawa coupling can be written as a coupling to

both the ordinary mass iψψ and an axial mass ψγ5ψ,

LXY
ψφ = ihψ(φ1 + iγ5φ

2)ψ, (4.5)

and is equivalent to the Nambu–Jona-Lasinio model [209]. Here, one utilizes a four-

dimensional representation γµ, µ = 0, 1, 2, 3 of the SO(4) Clifford algebra, and γ5 =

γ0γ1γ2γ3. In a different spinor representation1, the model can be written as a coupling

to a Majorana mass,

LXY
ψφ =

h

2
(φ∗ψT iγ2ψ + H.c.), (4.6)

where the O(2) order parameter φ = (φ1, φ2) is expressed as a complex scalar field φ =

φ1 + iφ2. This was the representation used in the previous chapter (upon substitution

h→ h/2). Finally, the Yukawa coupling in the chiral Heisenberg GNY model is:

LHeis
ψφ = ihφ · ψσψ, (4.7)

where σ = (σ1, σ2, σ3) forms a spin-1/2 representation of the SU(2) algebra.

For different values of N , the O(n) GNY models introduced above describe a variety

of quantum phase transitions in (2+1)D condensed matter systems [185]. For N = 4 (spinful

fermions) and N = 2 (spinless fermions), the chiral Ising GNY model (n = 1) describes a

transition from a Dirac semimetal to an insulator with charge-density-wave order on the

1See Appendix B.9 for the mapping between the two representations of the chiral XY GNY model.
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honeycomb lattice [210]. For N = 1, the model describes a ferromagnetic transition on

the surface of a 3D topological insulator [211]. For N = 1/2, which can be interpreted

as a model containing a single flavor of two-component Majorana fermions, the model

describes the time-reversal symmetry-breaking transition on the surface of a 3D topological

superconductor [145], which exhibits an emergent N = 1 supersymmetry [145, 148, 212].

The chiral XY GNY model (n = 2) has been considered in Chap. 3, but we recapitulate

its applications here for completeness. The cases N = 4 (spinful) and N = 2 (spinless) are

applicable to the Kekulé valence-bond-solid (VBS) transition on the honeycomb lattice [139,

150], or to the columnar VBS transition on the π-flux square lattice [151]. In these VBS

transitions, spatial randomness acts as random-field disorder destroying the d = 2 critical

point2. Alternatively, the chiral XY GNY model also describes a semimetal-superconductor

transition in a system with N two-component Dirac fermions (N = 4 for spinful fermions

on the honeycomb lattice [139]), in which case the U(1) ∼= SO(2) symmetry is exact and

random-field disorder is forbidden by conservation of particle number. For N = 1, the

model describes a superconducting transition on the surface of a 3D topological insulator,

and exhibits an emergent N = 2 supersymmetry [139,145–148,214]. Finally, for N = 4 the

chiral Heisenberg GNY model (n = 3) describes the transition from a Dirac semimetal to

an insulator with antiferromagnetic spin-density-wave order on the honeycomb lattice [210].

We model quenched random-mass disorder by randomness in the scalar mass squared,

r(x) = r0 + δr(x), where δr(x) is a Gaussian random variable of zero mean and correlation

function [186]:

δr(x)δr(x′) ∝ ∆δ(x− x′) +
v

|x− x′|α , (4.8)

where · · · denotes disorder averaging. The uniform part r0 is the tuning parameter for the

2The microscopic Ising/Heisenberg order parameters for charge-density-wave/spin-density-wave transi-
tions on the honeycomb lattice are odd under the Z2 symmetry of A-B sublattice exchange, which is explicitly
broken by generic disorder configurations. As mentioned in Sec. 3.2, a microscopic example of random-
mass disorder for those transitions is randomness in the nearest-neighbor (A-B) fermion hopping (see, e.g.,
Ref. [155,213]).
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transition, and ∆ and v are the short-range and long-range correlated disorder strengths,

respectively. Even when considering initial conditions for the RG with only long-range

correlated disorder, ∆ = 0, short-range correlated disorder is generated perturbatively

already at one-loop order, see Eq. (4.40), and should be kept in the space of couplings.

By contrast, long-range correlated disorder cannot be generated perturbatively from short-

range correlated disorder, see Eq. (4.41). We use the replica trick to average over disorder

(see Appendix B.1 and Refs. [30,156,157]), which induces an effective two-body interaction,

Sdis = −∆

2

∑
ab

∫
d2x dτ dτ ′φ2

a(x, τ)φ2
b(x, τ

′)− v

2

∑
ab

∫
d2x d2x′ dτ dτ ′

φ2
a(x, τ)φ2

b(x, τ
′)

|x− x′|α ,

(4.9)

where a, b = 1, . . . ,m are replica indices, and the replica limit m→ 0 is to be taken at the

end of the calculation. The local interaction term was already seen in Chap. 3, but now

there is an additional long-range interaction arising from correlated disorder. As in Chap. 3,

randomness in the scalar mass squared preserves the exact particle-hole symmetry of the

clean GNY action (4.1).

4.3 RG in the triple epsilon expansion

The double epsilon expansion method has been explained in Chap. 3. In the presence of

long-range correlated disorder, we see from Eq. (4.9) that the coupling constant v has mass

dimension 4 − α at the Gaussian fixed point. While for generic α < d < 4 this coupling is

strongly relevant, if we set α = 4−δ and treat δ as a small parameter, long-range correlated

disorder is only slightly relevant and can be treated perturbatively [186]. This forms the

basis of a triple expansion in ε, ετ , δ [207], which thus far has only been applied to bosonic

systems. Below we employ this triple epsilon expansion to study the GNY models with

both short-range and long-range correlated random-mass disorder. As in Chap. 3, fermion

disorder is strongly irrelevant in this expansion and does not explicitly appear in the action.

In the presence of three epsilon-like parameters, the nature of the RG fixed points
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and their stability depend on two ratios, e.g., ε/ετ and δ/ετ . As in Chap. 3, we restrict

our consideration to ε/ετ = 2, which in the limit ετ → 1 corresponds to (2+1)D systems.

Regarding the δ/ετ ratio, we consider the range 0 < δ/ετ < 4. For δ < 0, long-range

correlated disorder is irrelevant at the Gaussian fixed point, and for δ/ετ > 4, the long-

range disorder correlations (4.8) with α = 4 − δ would have the unphysical feature of

increasing rather than decaying with distance in the limit ετ → 1.

4.3.1 Bare vs renormalized actions

The basic steps of the RG procedure are the same as in the previous chapter. For the

convenience of the reader, we again outline them here using as example the chiral XY

GNY model studied in Chap. 3, but now with long-range correlated disorder (4.9). For the

chiral Ising and Heisenberg GNY models, the number of components of the order parameter

and the form of the Yukawa coupling change [see Eqs. (4.4-4.7)], but the relations (4.16)

between bare and renormalized couplings, and the formal expressions (4.17-4.22) for the

beta functions in terms of the anomalous dimensions (4.12), remain the same.

As in Refs. [215,216], we rescale the time coordinate as well as the fermion and boson

fields, and redefine the couplings in the action (4.1-4.9), to eliminate the velocities cf and

cb in favor of the dimensionless ratio c2 = (cf/cb)
2, which then appears in front of the time

derivative term for the boson field. The replicated bare action for the random-mass chiral

XY GNY model is then:

SB =
∑
a

∫
ddxB d

ετ τB

(
iψ̄a,B(γ0∂τB + γ · ∇B)ψa,B + φ∗a,B(−c2

B∂
2
τB
−∇2

B + r)φa,B

+ λ2
B|φa,B|4 +

hB
2

(φ∗a,Bψ
T
a,Biγ2ψa,B + H.c.)

)
− ∆B

2

∑
ab

∫
ddxB d

ετ τB d
ετ τ ′B|φa,B|2(xB, τB)|φb,B|2(xB, τ

′
B)

− vB
2

∑
ab

∫
ddxB d

dx′B d
ετ τB d

ετ τ ′B
|φa,B|2(xB, τB)|φb,B|2(x′B, τ

′
B)

|xB − x′B|α
, (4.10)
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where a, b = 1, . . . ,m are replica indices, and the corresponding renormalized action is:

S =
∑
a

∫
ddx dετ τ

(
iψ̄a(Z1γ0∂τ + Z2γ · ∇)ψa + φ∗a(−Z3c

2∂2
τ − Z4∇2 + Zrrµ

2)φa

+ Z5λ
2µε−ετ |φa|4 + Z6

h

2
µ(ε−ετ )/2(φ∗aψ

T
a iγ2ψa + H.c.)

)
− Z7

∆

2
µε
∑
ab

∫
ddx dετ τ dετ τ ′ |φa|2(x, τ)|φb|2(x, τ ′)

− Z8
v

2
µδ
∑
ab

∫
ddx ddx′ dετ τ dετ τ ′

|φa|2(x, τ)|φb|2(x′, τ ′)

|x− x′|α , (4.11)

where µ is a renormalization scale. Due to the anisotropy between space and time, we set

xB = x and τB = ητ , and matching the bare and renormalized kinetic terms for the fermion

we find that η = Z2/Z1. Defining the anomalous dimensions:

γi = µ
d lnZi
dµ

, i = 1, . . . , 8, r, (4.12)

we find that the dynamic critical exponent z = µ(d ln τ/dµ) [120] is given by:

z = 1 + γ1 − γ2. (4.13)

The fermion and boson fields are multiplicatively renormalized,

ψa,B(xB, τB) =
√
Zψψa(x, τ), φa,B(xB, τB) =

√
Zφφa(x, τ), (4.14)

and the fermion and boson anomalous dimensions, ηψ = µ(d lnZψ/dµ) and ηφ = µ(d lnZφ/dµ),

are given by:

ηψ = γ2 + ετ (z − 1), ηφ = γ4 + ετ (z − 1). (4.15)

Comparing Eqs. (4.10) and (4.11), we obtain relations between the bare and (dimensionless)
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renormalized couplings,

c2 = Z−1
3 Z4

(
Z1

Z2

)2

c2
B, λ

2 = µ−(ε−ετ )

(
Z1

Z2

)ετ
Z2

4Z
−1
5 λ2

B, h
2 = µ−(ε−ετ )

(
Z1

Z2

)ετ
Z2

2Z4Z
−2
6 h2

B,

∆ = µ−εZ2
4Z
−1
7 ∆B, v = µ−δZ2

4Z
−1
8 vB, r = µ−2Z4Z

−1
r rB. (4.16)

Using the fact that the bare couplings do not depend on the renormalization scale µ, we

find the RG beta functions βg ≡ µ(dg/dµ), g ∈ {c2, λ2, h2,∆, v}, to be:

βc2 = (2γ1 − 2γ2 − γ3 + γ4)c2, (4.17)

βλ2 =
(
−(ε− ετ ) + 2γ4 − γ5 + ετ (γ1 − γ2)

)
λ2, (4.18)

βh2 =
(
−(ε− ετ ) + 2(γ2 − γ6) + γ4 + ετ (γ1 − γ2)

)
h2, (4.19)

β∆ = (−ε+ 2γ4 − γ7)∆, (4.20)

βv = (−δ + 2γ4 − γ8)v, (4.21)

βr = (−2 + γ4 − γr)r. (4.22)

From Eq. (4.22), we find the inverse correlation length exponent [163],

ν−1 = 2− γ4 + γr. (4.23)

4.3.2 Renormalization constants

We calculate the renormalization constants Zi, i = 1, . . . , 8, r at one-loop order in the

modified minimal subtraction (MS) scheme with dimensional regularization in 4 − ε space

and ετ time dimensions. The relevant Feynman rules and diagrams are shown schematically

in Figs. 4.1 and 4.2, respectively. The fermion and boson propagators are given by:

GIJab (p) = 〈ψIa(p)ψ
J
b (p)〉 = δabδ

IJ /p

p2
, (4.24)

Dij
ab(p) = 〈φia(p)φjb(−p)〉 = δabδ

ij 1

c2p2
0 + p2 + rµ2

, (4.25)
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where I, J = 1, . . . , N and i, j = 1, . . . , n are fermion flavor and O(n) indices, respectively,

and /p = γµpµ.

h �2

/p

p2
1

c2p20 + p2 + rµ2

(2⇡)✏⌧ �(✏⌧ )(q0)� (2⇡)✏⌧ �(✏⌧ )(q0)|q|✏��v

Figure 4.1: Schematic momentum-space Feynman rules for the random-mass GNY models,
omitting fermion flavor, O(n), and replica indices. Solid line: fermion propagator, dashed
line: boson propagator. Here p = (p0,p) is the momentum of a propagator line, with

/p = γµpµ, and q = (q0, q) is the momentum transfer in a boson four-point vertex.

For the chiral XY GNY model (n = 2), the diagrams in the clean limit or containing

only short-range correlated disorder vertices were already computed in Chap. 3; these results

are also easily adapted to n = 1 and n = 3. The new diagrams containing long-range

correlated disorder vertices are evaluated explicitly in Appendix B.5 for n = 1, 2, 3. Unlike

the standard epsilon expansion in 4− ε dimensions, in the triple epsilon expansion one-loop

diagrams contain simple poles not only in ε, but also in ε− ετ , δ, and 2δ− ε. We obtain the
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(a) (b) (c) (d)

(e) (f)

(g) (h) (i) (j)

(k) (l) (m)

(n) (o) (p)

Figure 4.2: Schematic one-loop Feynman diagrams for the random-mass GNY models.
Renormalization of (a,b,c,d) the boson two-point function; (e) the fermion two-point func-
tion; (f) the Yukawa vertex h; (g,h,i,j) the boson self-interaction vertex λ2; (i,k,l,m) the
short-range correlated disorder vertex ∆; and (j,l,m) the long-range correlated disorder
vertex v.
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following renormalization constants:

Z1 = 1− nh2

ε− ετ
f(c2), (4.26)

Z2 = 1− nh2

2(ε− ετ )
, (4.27)

Z3 = 1− 2∆

ε
− 2v

δ
− Nh2c−2

ε− ετ
, (4.28)

Z4 = 1− Nh2

ε− ετ
, (4.29)

Z5 = 1 +
2(n+ 8)λ2

ε− ετ
− Nh4λ−2

ε− ετ
− 12∆

ε
− 12v

δ
, (4.30)

Z6 = 1 + (2− n)
h2

ε− ετ
, (4.31)

Z7 = 1 +
4(n+ 2)λ2

ε− ετ
− 8∆

ε
− 12v

δ
− 4v2∆−1

2δ − ε , (4.32)

Z8 = 1 +
4(n+ 2)λ2

ε− ετ
− 4∆

ε
− 4v

δ
, (4.33)

Zr = 1 +
2(n+ 2)λ2

ε− ετ
− 2∆

ε
− 2v

δ
. (4.34)

We have rescaled the couplings according to g/(4π)2 → g, g ∈ {λ2, h2,∆, v, r}, and, as in

Chap. 3, we define the dimensionless function,

f(c2) =
c2(c2 − 1− ln c2)

(c2 − 1)2
, (4.35)

plotted earlier in Fig. 3.4. At one-loop order there is no renormalization of the Yukawa

vertex for the chiral XY GNY model, i.e., the diagram in Fig. 4.2(f) vanishes for n = 2 [see

Eq. (4.31)], which is easily seen from the form (4.6) of the Yukawa coupling. We also see

from the last term in Eq. (4.32) that short-range correlated disorder is generated at one-loop

order from long-range correlated disorder, via the diagram in Fig. 4.2(m). By contrast, long-

range correlated disorder cannot be generated perturbatively from short-range correlated

disorder.
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4.3.3 Beta functions and anomalous dimensions

Using the chain rule,

γi =
µ

Zi

dZi
dµ

=
1

Zi

∑
g

∂Zi
∂g

βg, (4.36)

for i = 1, . . . , 8, r and g ∈ {c2, λ2, h2,∆, v, r} in Eqs. (4.17-4.22), and expanding the beta

functions to quadratic order in all couplings except c2, we obtain:

βc2 = −2(∆ + v)c2 + h2
[
N(c2 − 1) + nc2

(
2f(c2)− 1

) ]
, (4.37)

βλ2 = −(ε− ετ )λ2 + 2(n+ 8)λ4 + 2Nh2λ2 −Nh4 − 12(∆ + v)λ2, (4.38)

βh2 = −(ε− ετ )h2 + (N + 4− n)h4, (4.39)

β∆ = −ε∆ + 4(n+ 2)λ2∆ + 2Nh2∆− 8∆2 − 12∆v − 4v2, (4.40)

βv = −δv + 4(n+ 2)λ2v + 2Nh2v − 4∆v − 4v2. (4.41)

We note that all poles in linear combinations of the small parameters ε, ετ , δ properly cancel

in the beta functions. Setting ετ and the disorder couplings to zero, we find that Eqs. (4.38-

4.39) agree with the beta functions for the chiral O(n) GNY models in the clean limit [140].

When setting n = 2 and v = 0, Eqs. (4.37-4.40) reproduce our previous results for the chiral

XY GNY model with short-range correlated disorder in Chap. 3. Finally, when turning off

the Yukawa coupling, h2 = 0, the beta functions (4.38,4.40,4.41) with both short-range and

long-range correlated disorder agree with those given in Refs. [123, 124, 160, 186, 207]. We

also note that the above beta functions are perturbative in the couplings λ2, h2, ∆, and v,

but exact in the dimensionless velocity ratio c2.
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The critical exponents ν−1, z, ηψ, and ηφ are obtained by evaluating:

ν−1 = 2−Nh2 − 2(n+ 2)λ2 + 2(∆ + v), (4.42)

z = 1 +
(
f(c2)− 1

2

)
nh2, (4.43)

ηψ =
n

2
h2 + ετ (z − 1), (4.44)

ηφ = Nh2 + ετ (z − 1), (4.45)

at RG fixed points (c2
∗, λ

2
∗, h

2
∗,∆∗, v∗), i.e., common zeros of the set (4.37-4.41) of beta

functions. Since h2
∗ will be O(ε, ετ ) at one-loop order, as can already be seen from Eq. (4.39),

for a consistent treatment we have to discard the ετ (z − 1) terms in the fermion and boson

anomalous dimensions, as done in the previous chapter.

4.4 Fixed points and critical exponents

In Sec. 4.4.1, we discuss the fixed points of the flow equations (4.37-4.41). Depending on

their stability, which is analyzed in Sec. 4.4.2, these are bona fide critical points (no relevant

direction) or multicritical points (one or more relevant directions). Here, the number of

relevant directions refers to the number of such directions on the critical hypersurface,

since the tuning parameter r for the transition (see Sec. 4.2) is a relevant direction at all

fixed points. As mentioned in Sec. 4.3, we fix ε = 2ετ , with the extrapolation ετ → 1

corresponding to 2+1 dimensions. Throughout the chapter, we evaluate quantities such as

fixed-point couplings, RG eigenvalues, and critical exponents as a function of the control

parameters N > 1 and δ = 4 − α ∈ [0, 4], where the latter parameter is to be understood

as the ratio δ/ετ evaluated at ετ = 1.

4.4.1 Fixed points

We denote the RG fixed points as five-component vectors (c2
∗, λ

2
∗, h

2
∗,∆∗, v∗) in the space of

running couplings. Starting with the CFPs (∆∗ = v∗ = 0), these include Gaussian fixed
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points (c2
∗, 0, 0, 0, 0) and the O(n) Wilson-Fisher fixed points (c2

∗,
ετ

2(n+8) , 0, 0, 0), where c2
∗ is

arbitrary and can be set to unity by independent redefinitions of the fermion and boson

fields. We also have the GNY fixed points, for all n = 1, 2, 3 and N given by:

(
1,

4− n−N +
√
DC

4(n+ 8)(N + 4− n)
ετ ,

ετ
(N + 4− n)

, 0, 0

)
, (4.46)

where DC = N2 + 2(5n + 28)N + (4 − n)2, in agreement with earlier studies [140]. The

fixed-point couplings are positive for all N > 0. Since c2
∗ = 1 and f(1) = 1

2 (Fig. 3.4),

Eq. (4.43) implies that the CFPs are Lorentz invariant (z = 1), and are in fact conformally

invariant.

We next turn to DFPs, for which ∆∗ and/or v∗ are nonzero. To be physical, all fixed

points must obey the following conditions [186]:

c2
∗ > 0, λ2

∗ ≥ 0, h2
∗ ≥ 0, v∗ ≥ 0, ∆∗ + v∗ ≥ 0. (4.47)

At fermionic DFPs with h2
∗ > 0, the condition βc2 = 0 together with Eq. (4.47) further

implies that c2
∗ > 1. From Eq. (4.37), we find that at a fermionic fixed point,

N(c2
∗ − 1) + 2nc2

∗
(
f(c2
∗)− 1

2

)
=

2(∆∗ + v∗)c
2
∗

h2
∗

. (4.48)

Equation (4.47) implies that the right-hand side of this equation is positive. From Fig. 3.4

and Eq. (4.35), we see that f(c2
∗) >

1
2 only if c2

∗ > 1, and f(c2
∗) <

1
2 only if c2

∗ < 1. Thus

for the left-hand side of Eq. (4.48) to be positive also we must have c2
∗ > 1. (At a clean

fermionic fixed point, the left-hand side must vanish, which can only happen for c2
∗ = 1.)

4.4.1.1 Fixed points with short-range correlated disorder

We first focus on DFPs with ∆∗ 6= 0 and v∗ = 0, which we term short-range disordered

fixed points (SDFPs). From Eq. (4.39) we find that h2
∗ = 0 or h2

∗ = ετ/(N + 4 − n).

When the fixed-point value of the Yukawa coupling is zero, we reproduce the results of
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Refs. [123, 124, 160] for the purely bosonic O(n) vector model with random-mass disorder.

For n = 1, there is an accidental degeneracy in the system of equations βλ2 = 0, β∆ = 0.

The degeneracy is lifted at two-loop order, giving rise to a DFP with λ2
∗,∆∗ ∼ O(

√
ετ ), for

a finite ratio ε/ετ [123].

Our focus, however, is on fermionic DFPs with nonzero h2
∗. We find two fermionic

SDFPs for n = 2, 3:

(
c2
∗1,2,

N + 8− 2n±√DS

8(n− 1)(N + 4− n)
ετ ,

ετ
N + 4− n,

(n+ 2)(N ±√DS) + 2(4− n)2

16(n− 1)(N + 4− n)
ετ , 0

)
, (4.49)

where DS = N2 − 4(5n − 8)N + 4(4 − n)2, which we denote by SDFP1 (with +
√
DS ,

c2
∗ = c2

∗1) and SDFP2 (with −√DS , c2
∗ = c2

∗2). The chiral XY case (n = 2) was discussed in

Chap. 3: the fixed-point couplings λ2
∗, h

2
∗, and ∆∗ are nonnegative, and thus physical, for

all N ≥ 1. At N = 1, SDFP2 merges with the clean GNY fixed point (4.46), while SDFP1

runs off to infinity as it is impossible to satisfy βc2 = 0. (Note that for n = 2, SDFP1,2

here correspond to DFP1,2 in Chap. 3 and Ref. [2] for N < 4 and to DFP2,1 for N > 4.)

In the chiral Heisenberg case (n = 3), the discriminant DS ≥ 0 for N ≥ ND ≈ 27.856, and

the SDFPs (4.49) are physical only for N > ND.

In the chiral Ising case (n = 1), as previously mentioned, the RG equations for λ2

and ∆ become degenerate for zero Yukawa coupling, and we find only one solution at order

O(ε, ετ ) for h2
∗ 6= 0:

(
c2
∗,

Nετ
(N + 3)(N + 6)

,
ετ

N + 3
,

3(N − 6)ετ
4(N + 3)(N + 6)

, 0

)
. (4.50)

This SDFP is physical for N ≥ 6, and merges with the clean GNY fixed point at N =

6. There is in principle the possibility of an additional SDFP at two-loop order with

λ2
∗,∆∗ ∼ O(

√
ετ ), as in the bosonic case, and h2

∗ ∼ O(ετ ). We show in Appendix B.6

that this cannot happen, because it is impossible to satisfy the equation βc2 = 0. We

also note that this excludes the possibility of a physical SDFP for the N = 1/2 chiral

Ising GNY model, which in the clean limit flows to a conformal field theory with emergent
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supersymmetry [148, 212], the N = 1 Wess-Zumino model. (This theory describes the

time-reversal symmetry-breaking transition among the gapless Majorana surface states of

a three-dimensional topological superfluid, e.g., 3He-B [145].)

For the fermionic SDFPs found in Eqs. (4.49-4.50) above, despite the fact that the

equation βc2 = 0 is nonlinear in c2, one can show analytically that it admits a unique

solution c2
∗ > 1, except for N = 1 in the XY GNY model. The actual fixed-point values

of c2 are obtained by solving the equation numerically, and together with h2
∗ determine via

Eq. (4.43) the dynamic critical exponent z at those fixed points (see Sec. 4.4.3, Fig. 4.6).

4.4.1.2 Fixed points with long-range correlated disorder

We now turn to DFPs with v∗ 6= 0, which we dub long-range disordered fixed points

(LDFPs). For vanishing h2
∗, the purely bosonic random-mass O(n) vector model for n > 1

was studied in the triple epsilon expansion in Ref. [207], where LDFPs were found. For

n = 1, long-range correlated disorder lifts the previously mentioned degeneracy in the

system of fixed-point equations. For nonzero h2
∗ = ετ/(N + 4 − n), we find two fermionic

LDFPs in all three GNY universality classes, n = 1, 2, 3:

λ2
∗1,2 =

3(N + 4− n)δ − (5N + 4− n)ετ ±
√
DL

4(5n+ 4)(N + 4− n)
, (4.51)

(∆∗ + v∗)1,2 =
−2(n− 1)(N + 4− n)δ +

[
(5n− 2)N − 9 + (n− 1)2

]
ετ ± (2 + n)

√
DL

4(5n+ 4)(N + 4− n)
,

(4.52)

v∗1,2 =

(
1 +

4(∆∗ + v∗)1,2

2ετ − δ

)
(∆∗ + v∗)1,2, (4.53)

where DL = [(5N + 4− n)ετ − 3(N + 4− n)δ]2 − 8(5n + 4)Nε2τ . The discriminant DL is

nonnegative, and thus the fixed-point couplings real, for either:

δ ≥ δD ≡
(5N + 4− n) +

√
8(5n+ 4)N

3(N + 4− n)
ετ , (4.54)
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or:

δ ≤ δ′D ≡
(5N + 4− n)−

√
8(5n+ 4)N

3(N + 4− n)
ετ . (4.55)

In addition to being real, the fixed-point couplings (4.51-4.53) must obey the condi-

tions (4.47). By contrast with the SDFPs (4.49-4.50), which are physical above a certain

critical value of N that is independent of δ, the LDFPs are physical only in complicated

regions of theN -δ plane that possess several disconnected components and/or curved bound-

aries. Since the fixed-point couplings (4.51-4.53) do not depend explicitly on c2
∗, we first

assume a physical solution for c2
∗ exists, and discuss how the remaining conditions delimit

those nontrivial regions.

• λ2
∗ ≥ 0: This condition is satisfied for all n = 1, 2, 3 for both LDFPs provided that

δ ≥ δD. Since δD > δ′D for all N > 0, LDFPs in the region δ ≤ δ′D of Eq. (4.55) are

never physical.

• ∆∗ + v∗ ≥ 0: For LDFP1, i.e., Eqs. (4.51-4.53) with +
√
DL, the condition is satisfied

for different regions of the N -δ plane depending on n:

n = 1 : δ ∈


[0, δ2] ∪ [δ1, 4ετ ], N ≤ N2,

[0, δ′D] ∪ [δD, 4ετ ], N > N2;

(4.56)

n = 2, 3 : δ ∈ [0, δ′D] ∪


[δ1, 4ετ ], N ≤ N2,

[δD, 4ετ ], N > N2.

(4.57)
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For LDFP2, i.e., Eqs. (4.51-4.53) with −√DL, we have:

n = 1 : δ ∈ ∪


∅, N < N2,

[δ2, δ
′
D] ∪ [δD, δ1], N ≥ N2;

(4.58)

n = 2, 3 : δ ∈


[δ2, δ

′
D], N ≤ N2,

[δ2, δ
′
D] ∪ [δD, δ1], N ≥ N2.

(4.59)

Here,

δ1 ≡
[(n+ 14)N + 9− (n− 1)2] + (n+ 2)

√
DC

(n+ 8)(N + 4− n)
ετ , (4.60)

δ2 ≡
[(n+ 14)N + 9− (n− 1)2]− (n+ 2)

√
DC

(n+ 8)(N + 4− n)
ετ , (4.61)

and N2 is the value of N , which depends on n, at which δ1 = δD. For N < N ′ < N2,

δ′D < 0, in which case [0, δ′D] denotes the empty set. We use the same notational

convention whenever the left limit of the interval is greater than the right one.
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• v∗ ≥ 0: For LDFP1, we have the following constraints depending on the value of n:

n = 1 : δ ∈


[0, δ2] ∪ [δ1, 2ετ ), N ≤ N2,

[0, δ′D] ∪ [δD, 2ετ ), N > N2;

(4.62)

n = 2 : δ ∈ [0, δ′D] ∪ [δD, 2ετ ) ∪


[δ1, δ4) ∪ [δ3, 4ετ ], 1 ≤ N < N2,

[δD, δ4] ∪ [δ3, 4ετ ], N2 ≤ N ≤ N3,

[δ3, 4ετ ], N > N3;

(4.63)

n = 3 : δ ∈ [0, δ′D] ∪ [δD, 2ετ ) ∪



[δ1, 4ετ ], 1 ≤ N < N2,

[δD, 4ετ ], N2 ≤ N < ND,

[δD, δ4] ∪ [δ3, 4ετ ], ND ≤ N ≤ N3,

[δ3, 4ετ ], N > N3.

(4.64)

For LDFP2, we have:

n = 1 : δ ∈ [δ5,max(2ετ , δ1)] ∪


∅, 1 ≤ N < N2,

[δ2, δ
′
D] ∪ [δD,min(δ1, 2ετ )], N ≥ N2;

(4.65)

n = 2, 3 : δ ∈ [δ2, δ
′
D] ∪ [δD, 2ετ ) ∪


∅, 1 ≤ N < N2,

[δD, δ1], N2 ≤ N < N3,

[δ4, δ1], N ≥ N3.

(4.66)

We further define

δ3 ≡
3[N + 6 + (n− 1)(3N + 6− 2n)] + (n+ 2)

√
DS

4(n− 1)(N + 4− n)
ετ , (4.67)

δ4 ≡
3[N + 6 + (n− 1)(3N + 6− 2n)]− (n+ 2)

√
DS

4(n− 1)(N + 4− n)
ετ , (4.68)

δ5 ≡
2N2 + 21N + 18

(N + 3)(N + 6)
ετ , (4.69)
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and N3 is the n-dependent value of N at which δD = δ4.

For a given GNY symmetry class n, the intersection of all those conditions defines regions

in the N -δ plane in which the various fixed points discussed are physical, and over which

fixed-point properties are plotted throughout this chapter.

We now return to the question of whether a physical solution c2
∗ to the nonlinear

equation βc2 = 0 exists for the LDFPs (4.51-4.53). We solve this equation numerically. For

n = 1 and n = 3, we find a unique solution everywhere in the physical regions of the N -δ

plane. For n = 2, we likewise find a unique physical solution in the physical regions, but

for LDFP1 computations become increasingly difficult upon approach to the point N = 1,

δ = 4, where c2
∗ grows rapidly. Since exactly at this point LDFP1 coincides with SDFP2,

and SDFP2 does not admit a solution to βc2 = 0 for N = 1 (see Chap. 3 and Ref. [2]), we

conjecture that c2
∗ gradually runs off to infinity as the point N = 1, δ = 4 is approached.

Summarizing, we thus find that for all three GNY symmetry classes, a unique solution

c2
∗ > 1 exists for the LDFPs (4.51-4.53) everywhere inside the physical regions (4.47) of the

N -δ plane. As mentioned previously, h2
∗ and c2

∗ together determine the dynamic critical

exponent z at those fixed points (Sec. 4.4.3, Figs. 4.7-4.9).

4.4.2 Linear stability analysis

We now investigate the stability properties of the physical fixed points. All bosonic fixed

points (i.e., with h2
∗ = 0) are unstable with respect to the h2 direction. Additionally, for

all models, the Gaussian fixed points are unstable with respect to all other directions, and

the Wilson-Fisher fixed points are unstable with respect to both short-range and long-range

correlated disorder. The stability properties of the bosonic DFPs in the absence of Yukawa

coupling have been discussed previously in Refs. [123,124,160,207].

At all fermionic fixed points (i.e., with h2
∗ 6= 0), the h2 direction is irrelevant. Ad-

ditionally, we find that ∂βc2/∂c
2 is positive at all such fixed points. Since βc2 is the only

beta function in which c2 appears, this means c2 is also an irrelevant direction. We can thus

exclude h2 and c2 from RG flow considerations and investigate stability within the three-
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dimensional subspace with fixed h2
∗ and c2

∗ of the full five-dimensional space of couplings.

We compute the eigenvalues y of the stability matrix Mgg′ ≡ −∂βg/∂g′, g, g′ ∈ {λ2,∆, v},

defined such that y > 0 (y < 0) corresponds to a relevant (irrelevant) direction.

4.4.2.1 Stability of the clean fixed point

We first focus on the clean GNY fixed point (4.46), which for the rest of the chapter we

refer to as the CFP. The RG eigenvalues at the CFP are:

y1 = −
√
DC

N + 4− nετ , y2 =
(n+ 2)N + (n+ 14)(4− n)− (n+ 2)

√
DC

(n+ 8)(N + 4− n)
ετ , y3 = δ − δ1,

(4.70)

and are associated with eigenvectors with nonzero projections along the λ2, ∆, and v di-

rections, respectively. The eigenvalue y1 is negative and thus irrelevant for all n and N .

For the flow of short-range correlated disorder (y2), we discuss the three GNY symmetry

classes in turn.

• n = 1: Disorder is irrelevant for N > 6. At N = 6, the CFP merges with the SDFP

(4.50), and disorder becomes marginally relevant. For N < 6 (including N = 1/2),

the SDFP becomes unphysical, and disorder becomes relevant at the CFP.

• n = 2: This case was studied in Chap. 3. Disorder is irrelevant for N > 1. At

N = 1, SDFP2 [see Eq. (4.49)] merges with the CFP and disorder becomes marginally

relevant.

• n = 3: Disorder is irrelevant for all N > 2
15 ≈ 0.133.

Finally, long-range correlated disorder (y3) is irrelevant for δ less than δ1, which is

defined in Eq. (4.60). At generic points along the curve δ = δ1 in the N -δ plane, one of the

LDFPs merges with the CFP, and long-range correlated disorder crosses marginality. At

the special point N = N2 along this curve, the two LDFPs (4.51-4.53) coincide with one

another (and with the CFP).
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4.4.2.2 Stability of short-range disordered fixed points

We now consider the SDFPs of Sec. 4.4.1.1. We begin with the unique SDFP (4.50) in the

chiral Ising class (n = 1), which is physical only for N ≥ 6. Long-range correlated disorder

is irrelevant at this fixed point provided that δ is less than δ5, which is defined in Eq. (4.69).

Along the curve δ = δ5 in the N -δ plane, the SDFP merges with LDFP2. However, one

of the two other eigenvalues is always relevant for N > 6, thus the SDFP is a multicritical

point with at least one relevant direction on the critical hypersurface.

The chiral XY (n = 2) and Heisenberg (n = 3) classes admit two fermionic SDFPs,

Eq. (4.49). Similarly to the chiral Ising case, long-range correlated disorder is irrelevant at

SDFP1 (SDFP2) provided that δ < δ3 (δ < δ4), with δ3, δ4 defined in Eqs. (4.67-4.68). The

curves δ = δ3 and δ = δ4 correspond to the merger of the corresponding SDFP with one of

the LDFPs. When δ3 = δ4, the discriminant DS vanishes, and the two SDFPs merge with

one another. This happens at a critical value of N which in the XY case is N = 4, and in

the Heisenberg case is N = ND ≈ 27.856. Besides long-range correlated disorder, the other

two directions are irrelevant at SDFP1, thus it is a genuine critical point for δ < δ3. By

contrast, one of those two directions is relevant at SDFP2, thus the latter is a multicritical

point.

For the chiral XY and Heisenberg models, and for sufficiently large N , the two irrel-

evant eigenvalues at SDFP1 with eigenvectors in the λ2-∆ plane form a complex conjugate

pair. SDFP1 is then a fixed point of focus type, with spiraling flows near the fixed point.

In the XY case, this happens for N > 32
5 = 6.4, while for the Heisenberg case, this happens

for N > 28.087. Critical properties in this case are subject to oscillatory corrections to

scaling [2, 168].

4.4.2.3 Stability of long-range disordered fixed points

We finally turn to the stability of the LDFPs of Sec. 4.4.1.2. The eigenvalues of the stability

matrix depend on N and δ in a complicated way, and we compute them numerically. In

Figs. 4.3-4.5, we characterize the stability of the two LDFPs in terms of their number of
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Figure 4.3: Stability in the subspace (λ2,∆, v) of couplings of (a,b) LDFP1 and (c,d) LDFP2
in the chiral Ising GNY model (n = 1), as a function of N and δ. I: one relevant eigenvalue;
II: one relevant eigenvalue, two complex-conjugate irrelevant eigenvalues; III: two relevant
eigenvalues.
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Figure 4.4: Stability in the subspace (λ2,∆, v) of couplings of (a,b) LDFP1 and (c,d) LDFP2
in the chiral XY GNY model (n = 2), as a function of N and δ. Regions I-III are defined
as in Fig. 4.3. IV: two complex-conjugate relevant eigenvalues; V: no relevant eigenvalues;
VI: no relevant eigenvalues, two complex-conjugate irrelevant eigenvalues.
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Figure 4.5: Stability in the subspace (λ2,∆, v) of couplings of (a,b) LDFP1 and (c) LDFP2
in the chiral Heisenberg GNY model (n = 3), as a function of N and δ. Regions are labeled
as in Fig. 4.4.
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relevant/irrelevant eigenvalues, for each GNY symmetry class. Eigenvalues are real unless

otherwise specified; since the stability matrix is real, complex eigenvalues necessarily appear

in complex-conjugate pairs, and imply focus-type behavior as discussed above. For all

three GNY symmetry classes, the two LDFPs merge along the curve δ = δD in the N -

δ plane, where the discriminant DL vanishes. In the Ising case (Fig. 4.3), both LDFPs

have at least one relevant eigenvalue on the critical hypersurface and are thus multicritical

points (for N = 1/2, only LDFP1 is physical, for δ1 ≈ 1.143 < δ < 2). In the XY and

Heisenberg cases (Figs. 4.4-4.5), LDFP1 exists in regions (V and VI) in the N -δ plane with

no relevant eigenvalues, and is thus a bona fide critical point in those regions. LDFP2 is

always multicritical.

4.4.3 Critical exponents

Universal critical exponents at the newly found fermionic DFPs can be computed from

Eqs. (4.42-4.45) using the fixed-point couplings found in Sec. 4.4.1.1 and Sec. 4.4.1.2. At

the present one-loop order, the fermion ηψ and boson ηφ anomalous dimensions depend only

on h2
∗, which is the same at all fermionic fixed points. Thus their values at the DFPs are the

same as those for the clean chiral GNY universality classes [140]: ηψ = nετ/[2(N + 4− n)]

and ηφ = Nετ/(N + 4 − n). At higher loop order the anomalous dimensions are expected

to differ at the different fermionic fixed points.

Using Eq. (4.43), the dynamic critical exponent z at the fermionic DFPs is given by

z = 1 +
(
f(c2
∗)− 1

2

) nετ
N + 4− n, (4.71)

and thus depends on the fixed-point velocity parameter c2
∗. The latter is a universal function

of N and δ for a given DFP but must be computed numerically; we plot the resulting value

of z extrapolated to 2+1 dimensions (ετ → 1) in Fig. 4.6 for the SDFPs and in Figs. 4.7-4.9

for the LDFPs. Since c2
∗ > 1, and thus f(c2

∗) >
1
2 , at all fermionic DFPs (see Sec. 4.4.1),

such DFPs necessarily have z > 1. This is in agreement with the general expectation
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Figure 4.6: Dynamical critical exponent z at SDFPs for all three chiral GNY symmetry
classes, as a function of N .

that weak disorder increases z [217]; Refs. [218, 219] also derive the leading-order result

z − 1 ∝ ∆∗ > 0 at SDFPs obtained by perturbing a conformally invariant QCP with weak

short-range correlated disorder. Here we find z > 1 at LDFPs as well.

The inverse correlation length exponent ν−1, determined from Eq. (4.42), is the

RG eigenvalue associated with the relevant direction r which tunes across the symmetry-

breaking transition. For a bona fide critical point, ν controls the divergence of the correlation

length ξ at the transition r = 0 via ξ ∼ r−ν . For multicritical points with additional relevant

directions g1, g2, . . . on the critical hypersurface with real, positive eigenvalues y1, y2, . . ., the

correlation length behaves near the transition as ξ(r, g1, g2, . . .) = r−ν ξ̃(g1/r
νy1 , g2/r

νy2 , . . .),

where ξ̃(x1, x2, . . .) is a universal scaling function [220]. Complex-conjugate eigenvalues pro-

duce a scaling function with oscillatory behavior. At all LDFPs in all three GNY symmetry

classes, we find ν−1 = 2− 1
2δ, which alternatively can be written as ν = 2/α, with α = 4−δ

the exponent controlling long-range disorder correlations in Eq. (4.8). This superuniversal

behavior was also found at long-range correlated bosonic DFPs and explained by Weinrib

and Halperin [186]. Consider a LDFP with correlation length exponent ν(α) in a system

with disorder of the type (4.8). If one further perturbs this fixed point with disorder corre-
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Figure 4.7: Dynamical critical exponent z in the chiral Ising GNY model (n = 1) at (a,b)
LDFP1 and (c,d) LDFP2, as a function of N and δ.
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Figure 4.8: Dynamical critical exponent z in the chiral XY GNY model (n = 2) at (a,b)
LDFP1 and (c,d) LDFP2, as a function of N and δ.
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Figure 4.9: Dynamical critical exponent z in the chiral Heisenberg GNY model (n = 3) at
(a,b) LDFP1 and (c) LDFP2, as a function of N and δ.
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lated according to |x− x′|−α+ such that α+ > α, the original asymptotic critical behavior

should remain the same, as we expect it is controlled by the longest-range part of the dis-

order. Conversely, if the perturbation is of the form |x− x′|−α− with α− < α, this falls off

more slowly than the original disorder, and the original critical behavior should be unstable.

Assuming α, α± < d and applying the modified Harris criterion for long-range correlated

disorder, we find ν(α) > 2/α+ and ν(α) < 2/α−, for all α− < α < α+. Choosing α± = α±ε

and taking the limit ε→ 0+, we obtain ν(α) = 2/α.

The exponent ν for the SDFPs can likewise be calculated directly from Eq. (4.42),

and we obtain ν−1 = 2− 1
2δ5 for the chiral Ising SDFP, with δ5 defined in Eq. (4.69). In light

of the result above for ν−1 at LDFPs, this is consistent with the fact that the n = 1 SDFP

coalesces with one of the LDFPs at δ = δ5. Similarly, for both the chiral XY and Heisenberg

models we find that SDFP1 has ν−1 = 2 − 1
2δ3 and SDFP2 has ν−1 = 2 − 1

2δ4, with δ3,4

defined in Eqs. (4.67-4.68). As previously mentioned, the curves δ = δ3 (δ = δ4) correspond

to the merger of SDFP1 (SDFP2) with a LDFP. We plot ν−1 at SDFPs for all three GNY

models in Fig. 4.10, including ν−1 at the clean GNY critical point for comparison.
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Figure 4.10: Inverse correlation length exponent ν−1 for the CFP and SDFPs in all three
chiral GNY symmetry classes, as a function of N .
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4.5 RG flows and bifurcations

Having discussed RG fixed points and their local properties (stability and critical expo-

nents), we now discuss global properties of the RG flow: bifurcations of the flow as the

control parameters N, δ are varied (Secs. 4.5.1 and 4.5.2), and examples of global phase di-

agrams for fixed N, δ (Sec. 4.5.3). Although the original space of couplings (c2, λ2, h2,∆, v)

is five-dimensional, as already mentioned the c2 and h2 directions are irrelevant at fermionic

fixed points, which are the only stable ones. For practical purposes the RG flows thus live

in the three-dimensional space (λ2,∆, v), with c2 and h2 assuming their fixed-point values.

Since in the chiral Ising case all physical fixed points are multicritical, and for the sake

of simplicity, we restrict our attention to the chiral XY and Heisenberg symmetry classes,

which exhibit the most interesting phenomena.

4.5.1 Transcritical and saddle-node bifurcations

We have already mentioned a number of instances in which two fixed points collide as N

or δ are varied. We observe two distinct kinds of bifurcations associated with a collision of

two fixed points: the transcritical bifurcation and the saddle-node bifurcation.

The transcritical bifurcation [Fig. 4.11(a)] is a bifurcation at which a stable fixed

point and an unstable fixed point pass through each other, exchanging their stability prop-

erties, but without annihilating [167]. An example of this bifurcation is the merging of the

two chiral XY SDFPs (4.49) as N is varied through N = 4. (There is “exchange” of fixed

points provided we track individual fixed points on smooth trajectories, as opposed to their

arbitrary definition as SDFP1 and SDFP2 in Eq. (4.49).) Unlike the saddle-node bifurcation

discussed below, the two fixed points remain real before and after the bifurcation. At the

transcritical bifurcation, the beta function (and associated RG flow) is not only marginal,

but its derivative with respect to the control parameter, here N , must vanish as well. Other

examples of this bifurcation include the collision of SDFPs with the CFP (at N = 1 for the

chiral XY SDFP2), of LDFPs with the CFP (along the curve δ = δ1 in the N -δ plane), or
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of SDFPs with LDFPs (curves δ = δ3 and δ = δ4). At these latter bifurcations, one of the

DFPs becomes unphysical, by either ∆∗, v∗, or ∆∗ + v∗ going through zero and becoming

negative. However, since the other fixed point remains physical and thus real, this unphys-

ical fixed point necessarily remains real also (for another RG example of this scenario, see

Ref. [141]). Thus the bifurcation is distinct from the saddle-node bifurcation, which we now

discuss.

(a) (b) (c)

Figure 4.11: Schematic bifurcation diagrams for (a) the transcritical bifurcation, (b) the
saddle-node bifurcation, and (c) the supercritical Hopf bifurcation. The horizontal axis
represents a direction in the N -δ plane, and the vertical axis, the space of running couplings
(critical hypersurface). Solid red symbolizes an RG attractor, dashed blue a repellor, and
schematic RG trajectories are shown in black.

The saddle-node bifurcation [Fig. 4.11(b)] is a bifurcation at which a stable fixed

point and an unstable fixed point merge, leading to marginal behavior as above, but sub-

sequently disappear into the complex plane. This typically happens for a pair of fixed

points with critical couplings g∗± ∝ A ±
√
D, such that the discriminant D continuously

goes through zero at the bifurcation and then becomes negative. Both pairs SDFP1,2

and LDFP1,2 are of this type. The two chiral Heisenberg SDFPs, with discriminant

D = DS(n = 3), annihilate with decreasing N at N ≈ 27.856. (For the chiral XY GNY

model, D = DS(n = 2) touches zero at N = 4 but remains positive elsewhere, which gives

the transcritical bifurcation at N = 4.) Likewise, the two LDFPs in both the XY and

Heisenberg cases annihilate on the curve δ = δD in the N -δ plane, where the discriminant

D = DL vanishes. Since δD in Eq. (4.54) is a nonmonotonic function of N , for fixed δ this
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fixed-point annihilation can occur for either increasing or decreasing N .

The saddle-node bifurcation is accompanied by the characteristic phenomenology of

walking RG or quasi-critical behavior [166]; we now explain how this manifests itself in

the current problem. Focusing on the example above of the annihilation of LDFPs in the

chiral XY and Heisenberg GNY models, we first consider a situation where δ is slightly

above δD. Small regions in the N -δ plane exist such that both LDFPs are physical, with

LDFP1 a stable sink-type fixed point (region V) and LDFP2 a multicritical point with one

relevant direction (region I). LDFP2 is only physical provided δ < δ1 [see Eq. (4.66)], which

implies that the CFP is stable (Sec. 4.4.2.1). For this type of region, numerical studies

of the RG flow show that RG trajectories with initial conditions near LDFP2 end up at

either LDFP1 or the CFP. We thus consider a curvilinear coordinate system such that one

of these coordinates, g, passes through all three fixed points [Fig. 4.12(a)]. In this section

only, we define the infrared (Wilsonian) beta function β(g) ≡ dg/d`, where ` grows towards

the infrared. Denoting by g∗ the common fixed-point coupling of LDFP1 and LDFP2 at

the bifurcation δ = δD, we assume that for δ near δD and g near g∗, β(g) can be well

approximated by a quadratic function, β(g) ≈ A(δ) + B(δ)(g − g∗) + C(δ)(g − g∗)2. Since

β(g∗) = ∂β(g∗)/∂g = 0 and ∂2β(g∗)/∂g
2 < 0 at δ = δD, we have A(δD) = B(δD) = 0

and C(δD) ≡ −κ < 0. For δ = δD + ε with ε small, β(g) should have two real zeros that

approach g∗ as ε→ 0+. Expanding A(δ), B(δ), and C(δ) in powers of ε, we find at leading

order a pair of zeros of the form g∗ ±
√
bε/κ with b ≡ A′(δD), which are real provided that

b > 0, and form a complex-conjugate pair when ε < 0 (δ < δD). The beta function thus

approximately assumes the form β(g) ≈ b(δ − δD)− κ(g − g∗)2, illustrated in Fig. 4.12(b),

and considered in Ref. [166].

We now take δ = δD − ε with ε > 0 small, and consider an RG trajectory with

initial coupling gUV > g∗ and “flow velocity” β(gUV), which is generically not small. As g

approaches g∗ from above, the flow velocity decreases considerably (i.e., the running coupling

“walks”), since β(g∗) ≈ −bε is small. This walking behavior persists until g∗ − g becomes

on the order of
√
bε/κ, after which the coupling starts “running” again. This determines a

113



CFP g

�(g)

g
g⇤

CFP

LDFP1LDFP2

g⇤

L
a L⇤

gCFP

g(`)

�=�D

�<�D

�>�D

(a) (b) (c)

Figure 4.12: Phenomenology of the saddle-node bifurcation at δ = δD. (a) Curvilinear coor-
dinate g along RG trajectories for δ > δD; (b) Wilsonian beta function near the bifurcation;
(c) crossover from disordered quasi-critical behavior to clean critical behavior for δ slightly
below δD.

characteristic RG time ∆` insensitive to the initial condition gUV of the flow. Approximating

β(g) ≈ β(g∗) ≈ −bε as constant during the walk, we have β(g∗) ≈ ∆g/∆` ∼
√
bε/κ/∆`,

and thus ∆` ∼ 1/
√
κbε. Alternatively, we may integrate the equation dg/d` = β(g) from

gUV at `UV to gIR < g∗ at `IR. Under the condition |gUV,IR − g∗| �
√
bε/κ, the result

of this integration is insensitive to the precise values of gUV and gIR, and we obtain ∆` ≡

`IR−`UV = π/
√
κbε. In turn, this RG time determines a characteristic infrared length scale

L∗ = LIR = LUVe
∆`, where we can take LUV ∼ a to be on the order of a microscopic lattice

constant a. We obtain:

L∗ ∼ a exp
(
π/
√
κb(δD − δ)

)
, (4.72)

as δ approaches δD from below. The exponential inverse-square-root divergence, reminis-

cent of the divergence of the correlation length at the Kosterlitz-Thouless transition [221],

is characteristic of the saddle-node bifurcation [166]. The existence of this exponentially

large length scale L∗ � a allows for a crossover between two distinct physical regimes

[Fig. 4.12(c)]. On intermediate length scales a � L � L∗, RG trajectories dwell for an

extended period of RG time near g = g∗, and we have quasi-critical behavior controlled by

a complex pair of LDFPs with real part near g∗. This quasi-critical regime is characterized

by approximate power-law scaling and drifting (i.e., scale-dependent) exponents [198]. On
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the largest length scales a� L∗ � L, the transition is controlled by the true infrared fixed

point, the CFP, with genuine scale invariance.

4.5.2 Supercritical Hopf bifurcation and limit-cycle fermionic quantum

criticality

The third type of bifurcation we observe is the supercritical Hopf bifurcation [Fig. 4.11(c)].

This bifurcation occurs as one passes from region VI (blue region) to region IV (purple

region) in both the chiral XY [Fig. 4.4(b)] and Heisenberg [Fig. 4.5(a)] models. For instance,

one can consider keeping N fixed and tuning δ (black arrow in those figures). In region

VI (δ < δc,1), LDFP1 is a stable-focus fixed point with two complex-conjugate irrelevant

eigenvalues, i.e., complex-conjugate eigenvalues with a negative real part [solid red line on

left part of Fig. 4.11(c)]. At the bifurcation (δ = δc,1), the real part of those eigenvalues

goes through zero and becomes positive for δ > δc,1. LDFP1 thus loses its stability and

becomes an unstable-focus fixed point [dashed blue line on the right part of Fig. 4.11(c)].

At the same type, a stable limit cycle is born [solid red line on the right part of Fig. 4.11(c)],

towards which the spiraling RG trajectories coming out of LDFP1 asymptote, and which

controls the critical behavior up to a second threshold value δc,2 to be discussed shortly.

(Trajectories outside the limit cycle also spiral and asymptote to it.)

To our knowledge, this is the first instance in the context of quantum phase transi-

tions where the supercritical Hopf bifurcation [203] appears. After Ref. [222], which studied

a holographic model of a critical scalar field perturbed by disorder, our result is the second

example of quantum phase transition governed by a stable limit cycle; to our knowledge,

it is the first example for fermionic systems. The subcritical Hopf bifurcation [203], where

an unstable-focus fixed point becomes stable by giving birth to an unstable limit cycle,

has been reported previously in RG studies of classical disordered systems [186, 206]. The

general phenomenology of critical behavior controlled by a stable limit cycle was explored

in Ref. [205]. For a stable-focus critical point, spiraling trajectories manifest themselves as

oscillatory corrections to scaling [2, 168]. By contrast, for a transition governed by a sta-
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ble limit cycle, thermodynamic quantities exhibit log-periodic scaling behavior at leading

order, i.e., discrete scale invariance. For instance, we show in Appendix B.8 that the order

parameter susceptibility χ obeys the approximate scaling form:

χ ∼ |r|−γLC

[
1 + γLCF

(
νLC ln

(r0

r

))]
, (4.73)

where F is a periodic function. Here νLC and γLC = (2 − ηφ)νLC are effective correlation-

length and susceptibility exponents for the limit cycle, r is the tuning parameter for the

transition, and r0 is a nonuniversal constant.

As δ is further increased past δc,1, the limit cycle eventually disappears at a second

critical value δc,2, but in different ways for the chiral XY and Heisenberg GNY models. In

the Heisenberg case, the Hopf bifurcation of Fig. 4.11(c) occurs again but in reverse: the

limit cycle shrinks to a point, which becomes the stable-focus LDFP1 of region VI. In the

XY case, our numerical studies suggest that at least for some values of N , the limit cycle

is destroyed at δ = δc,2 (still within region IV) by colliding with the CFP and SDFP2,

which are both saddle points in this regime [see Fig. 4.13(c)]. This is a possible example of

heteroclinic bifurcation [223], whose detailed study we reserve for future work.

4.5.3 Schematic phase diagrams

From the knowledge of the stability properties of the various fixed points and limit cycles,

and numerical investigation of the RG flow connecting those different critical manifolds,

schematic phase diagrams can be constructed analogously to those in Chap. 3. For given

values of N and δ, we focus on the critical hypersurface (r = 0) and ask how the universality

class of the transition depends on the bare couplings in the Lagrangian, which determine the

initial conditions for the infrared RG flow. We consider a scenario in which the interaction

parameters h and λ2 are fixed, and vary the two types of disorder, ∆ and v. Since the number

of possibilities is very large, given the complexity of the stability/physicality regions, we

focus on the two most interesting regions: those which contain the instances of limit-cycle
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quantum criticality discussed in the previous section.
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Figure 4.13: Schematic RG flow and critical (r = 0) phase diagrams for generic N and
δc,1 < δ < δc,2 in region IV (see Figs. 4.4-4.5), for (a,b) the chiral Heisenberg GNY model
and (c,d) the chiral XY model. In the Heisenberg case, the transition is controlled by a
stable limit cycle (LC) for generic bare values of the short-range correlated (∆) and long-
range correlated (v) disorder strengths. In the XY case, the transition is controlled by the
limit cycle for weak short-range disorder and by a disordered fixed point (SDFP1) for strong
short-range disorder.

We first focus on region IV in the chiral Heisenberg GNY model [see Fig. 4.5(a)].

For generic points in this region (e.g., for δc,1 < δ < δc,2), one has δ > δD and δ > δ1.

Furthermore, we assume N < ND ≈ 27.856. From Sec. 4.4.2.1, we conclude that the CFP

has two irrelevant directions in the λ2-∆ plane, but that long-range correlated disorder v

is relevant, since δ > δ1. SDFP1,2 are both unphysical, since N < ND, and LDFP2 is

unphysical as well. As seen in the previous section, LDFP1 is of unstable-focus type, with

spiraling flow towards a stable limit cycle. The resulting RG flow is illustrated schematically

in Fig. 4.13(a). Consequently, at least for sufficiently small bare values of the disorder, the
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transition is controlled by limit-cycle quantum criticality for generic disorder [Fig. 4.13(b)].

If long-range correlated disorder is turned off completely, the transition reverts back to the

clean chiral Heisenberg GNY universality class.

We now turn to region IV in the chiral XY GNY model [see Fig. 4.4(b)], assuming

δc,1 < δ < δc,2. As in the previous case, we generically have δ > δD, δ > δ1, and also

δ < δ4. As in the Heisenberg case, the CFP has two irrelevant directions in the λ2-∆

plane, but v is relevant. There are now nontrivial SDFPs, whose stability was discussed in

Sec. 4.4.2.2. For SDFP1, λ2 and ∆ are both irrelevant, and v is irrelevant as well, since

δ < δ4 < δ3. For SDFP2, v is irrelevant since δ < δ4, but there is one relevant direction

with nonzero ∆ projection. LDFP2 is unphysical, and LDFP1 is an unstable focus with

flow towards a stable limit cycle. The resulting RG flow is schematized in Fig. 4.13(c), and

the corresponding phase diagram in Fig. 4.13(d). For weak ∆, the transition is governed

by the limit cycle, but for sufficiently strong ∆, the transition is controlled by a disordered

fixed point, SDFP1. CFP and SDFP2 appear as multicritical points.

4.6 Conclusion

In summary, we have performed a comprehensive study of the three classes of chiral GNY

models most relevant for symmetry-breaking quantum phase transitions in (2+1)D gap-

less Dirac matter—the chiral Ising, XY, and Heisenberg GNY models—in the presence of

quenched short-range and long-range correlated random-mass disorder. Using a controlled

triple epsilon expansion below the upper critical dimension for these models, we have found

several disordered infrared fixed points characterized by finite short-range and/or long-range

correlated randomness, and for which we computed critical exponents. The Boyanovsky-

Cardy and quantum Weinrib-Halperin fixed points, while present, are destabilized by the

Yukawa interaction in favor of new disordered fermionic QCPs, at which the strength of

this interaction remains nonzero in the infrared. Besides local stability, using numerical and

analytical approaches we analyzed bifurcations of the RG flow. We found instances of the fa-
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miliar fixed-point annihilation scenario, which can here be tuned by a genuinely continuous

variable—the exponent controlling the algebraic decay of disorder correlations—and with

which is associated a parametrically large crossover length scale L∗ that separates a disor-

dered quasi-critical regime (L � L∗) from a clean regime in the deep infrared (L � L∗).

We also uncovered instances of the transcritical bifurcation, at which fixed points exchange

their stability, and the more exotic supercritical Hopf bifurcation. The latter was accom-

panied by the emergence of a stable limit cycle on the critical hypersurface, thus producing

the first instance of fermionic quantum criticality with discrete scale invariance.

Several avenues present themselves for future research. The relative paucity of dis-

ordered fixed points found in the chiral Ising class as compared to its continuous-symmetry

counterparts, and in fact, the complete absence of bona fide critical points in this class,

is in agreement with the conjecture by Motrunich et al. [127] that all discrete symmetry-

breaking transitions in (2+1)D disordered systems should fall in the infinite-randomness

universality class. Since infinite-randomness fixed points are not accessible to perturbative

RG methods, nonperturbative numerical studies of Ising transitions of interacting Dirac

fermions with quenched randomness are desirable, e.g., using quantum Monte Carlo meth-

ods [155] or, possibly, incorporating fermions into (2+1)-dimensional adaptations of the

strong-disorder RG method [183]. In the presence of gapless Dirac fermions strongly cou-

pled to bosonic order parameter fluctuations, rare-region effects [101,106]—which dominate

the low-energy physics at infinite-randomness fixed points—may however lead to a different

strong-disorder phenomenology than that found in local bosonic models [224].

Besides the pure GNY universality classes, relevant to symmetry-breaking transi-

tions in systems of itinerant Dirac electrons, our method of analysis may also provide a

point of entry to study the effect of quenched disorder on more exotic transitions, such

as those involving fractionalized phases. The algebraic or Dirac spin liquid [225–228],

a quantum-disordered paramagnet with fractionalized spinon excitations, is described at

low energies by (2+1)D quantum electrodynamics (QED3) with N = 4 flavors of two-

component gapless Dirac fermions. The effect of quenched disorder on QED3 itself was
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studied recently [119–121, 229, 230]; using the methods presented here, one could addition-

ally study the effect of quenched disorder on quantum phase transitions out of the algebraic

spin liquid3. Transitions towards conventional phases such as VBS states [153, 232, 233]

or antiferromagnets [234–236], or transitions towards gapped chiral [237–239] or Z2 spin

liquids [141], are described by GNY theories in all three (Ising, XY, Heisenberg) symmetry

classes, augmented by a coupling to fluctuating U(1) gauge fields. The effect of random-

mass disorder on the critical fixed points of such QED3-GNY theories is an interesting topic

for future research.

3As an experimental example of such transitions, Ref. [231] reports the possible observation of a field-
induced quantum phase transition between an algebraic spin liquid and a collinear magnetically ordered
state in the triangular-lattice frustrated magnet NaYbO2.
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Chapter 5

Conclusion

In this thesis, we theoretically studied the physics of quantum phase transitions in systems

of massless Dirac electrons. The latter emerge in certain condensed matter systems and

provide a framework for the description of the universal properties of these systems in the

low-energy, long-wavelength limit. In particular, massless Dirac fermions form a basis for

the description of the low-energy physics in graphene and on the boundaries of topologically

nontrivial phases such as 3D topological insulators. The overall finding of this thesis is that

the presence of Dirac fermions in the low-energy spectrum can lead to several qualitatively

new phenomena in the physics of quantum phase transitions, both in the absence and

presence of quenched disorder.

In Chapter 2, to provide a microscopic basis for the phenomenological idea of Pomer-

anchuk instability in the two-dimensional helical Fermi liquid, applicable to the surface of

a 3D topological insulator with a single rotationally invariant Dirac cone, we constructed

and analyzed a field-theoretic model of such an instability, which leads to the formation

of an unconventional type of nematic order. We found two qualitatively different regimes:

the doped one, in which one may neglect one of the helicity bands in the low-energy limit;

and the undoped one, in which the Fermi surface shrinks to the Dirac point, and one has

to account for both helicity bands. The mean-field solution was found, and the fluctua-

tions about it were considered. We found that, unexpectedly, the nematic transition in
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the undoped case is of the first-order kind at low temperature, but becomes continuous

above a finite-temperature tricritical point. The nematic transition in the doped case is

continuous at zero temperature. Our results predict observable signatures of the nematic

phase, such as the partial breakdown of spin-momentum locking and anisotropy in the spin

susceptibility. The number and dispersion of collective modes were found to be the same as

in spin-degenerate Fermi liquids. However, unlike the spin-degenerate case, we showed that

due to spin-orbit coupling, the nematic fluctuations can induce spin fluctuations. While the

nematic order in 3D TIs has not been observed to this date, searches for materials featuring

strongly correlated Dirac electrons continue not without success. For example, samarium

hexaboride (SmB6) and some other materials are identified as good candidates for being a

topological Kondo insulator, in which surface states form in the Kondo gap.

In Chapters 3 and 4, we focused on the interplay of interactions and quenched

random-mass disorder at quantum critical points described in the clean limit by the chi-

ral Ising, XY, and Heisenberg GNY models parametrized by the number of low-energy

Dirac fermion flavors N . While disorder couples microscopically to fermions, such a direct

coupling is naively irrelevant in the renormalization group sense near the upper critical

dimension of the chiral GNY models. However, if disorder does not break the symmetries

of the order parameter, at two-loop order, it generates an RG-relevant spatially random

boson mass term. To infer the effect of such disorder on universal critical properties, we

performed a one-loop perturbative renormalization group study. In the case of uncorrelated

disorder, we adopted a double epsilon expansion method introduced initially for purely

bosonic systems. For power-law correlated disorder, we introduced a third small “epsilon”

parameter – the deviation δ of the exponent in the power-law disorder correlation function

from the upper critical dimension. For the Ising GNY model, while we found several dis-

ordered fixed points, none of them was a bona fide quantum critical point. For the XY

and Heisenberg GNY models, the phase diagram in the N -δ plane is quite rich and com-

plicated in terms of the possible quantum critical points controlling the transition. There

are regions where clean, short-range disordered, and long-range disordered fixed points are
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quantum critical points. All those disordered quantum critical points are strongly interact-

ing with nonzero Yukawa coupling and characterized by non-Gaussian critical exponents

and a noninteger dynamic critical exponent z > 1. In certain regions in the N -δ plane,

some of these quantum critical points are of focus type, i.e., renormalization group flows

spiral around the fixed point. This spiraling manifests itself in oscillatory corrections to

scaling laws. In the XY GNY model, for the case N = 1 corresponding to the surface of

a 3D topological insulator, we did not find disordered fixed points, either short-range nor

long-range. In turn, disorder becomes marginally relevant at the clean fixed point, leading

to runaway flow. One may hope that pursuing the expansion to two-loop order may reveal

the fate of the system. Alternatively, one may resort to numerical methods such as quantum

Monte Carlo and functional renormalization group methods. As N and δ vary, renormaliza-

tion group flows undergo different bifurcations. In particular, we revealed instances of the

saddle-point bifurcation tuned by the genuinely continuous parameter δ. This bifurcation is

accompanied by Berezinskii-Kosterlitz-Thouless type scaling, which leads to the existence

of the exponentially large crossover length scale L∗ separating the quasi-critical regime,

controlled by a disordered fixed point, and the clean critical regime, controlled by the clean

fixed point. More exotically, for the XY and Heisenberg GNY models, we found instances

of the supercritical Hopf bifurcation, which is accompanied by the birth of a stable limit

cycle, controlling the transition and leading to discrete scale invariance. While this finding

is interesting, it may be merely an artefact of the triple epsilon expansion used here. The

same critique could be applied to the finding of quantum critical points of focus type. To

resolve this, the application of nonperturbative methods, such as the numerical methods

mentioned above as well as strong-disorder renormalization-group methods, is necessary.

The perturbative method we used here might be applicable to quantum phase transitions

in other systems featuring emergent massless Dirac fermions, e.g., d-wave superconductors

or algebraic spin liquids, with quenched random-mass disorder.
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[180] N. Bobev, S. El-Showk, D. Mazáč, and M. F. Paulos. Bootstrapping the three dimen-

sional supersymmetric Ising model. Phys. Rev. Lett., 115(5):051601, July 2015.

[181] L. Classen, I. F. Herbut, and M. M. Scherer. Fluctuation-induced continuous tran-

sition and quantum criticality in Dirac semimetals. Phys. Rev. B, 96(11):115132,

September 2017.

[182] R. N. Bhatt and P. A. Lee. Scaling studies of highly disordered spin- 1
2 antiferromag-

netic systems. Phys. Rev. Lett., 48(5):344–347, February 1982.

[183] S. Iyer, D. Pekker, and G. Refael. Mott glass to superfluid transition for random

bosons in two dimensions. Phys. Rev. B, 85(9):094202, March 2012.

[184] R. T. Scalettar, N. Trivedi, and C. Huscroft. Quantum Monte Carlo study of the

disordered attractive Hubbard model. Phys. Rev. B, 59(6):4364–4375, February 1999.

[185] R. Boyack, H. Yerzhakov, and J. Maciejko. Quantum phase transitions in Dirac

fermion systems. arXiv:2004.09414, April 2020.

[186] A. Weinrib and B. I. Halperin. Critical phenomena in systems with long-range-

correlated quenched disorder. Phys. Rev. B, 27(1):413–427, January 1983.

141



[187] K.-I. Kubota and H. Terao. Dynamical symmetry breaking in QED3 from the Wilson

RG point of view. Prog. Theor. Phys., 105(5):809–825, May 2001.

[188] K. Kaveh and I. F. Herbut. Chiral symmetry breaking in three-dimensional quantum

electrodynamics in the presence of irrelevant interactions: A renormalization group

study. Phys. Rev. B, 71(18):184519, May 2005.

[189] H. Gies and J. Jaeckel. Chiral phase structure of QCD with many flavors. Eur. Phys.

J. C, 46(2):433–438, May 2006.

[190] J. Braun, C. S. Fischer, and H. Gies. Beyond Miransky scaling. Phys. Rev. D,

84(3):034045, August 2011.

[191] I. F. Herbut. Chiral symmetry breaking in three-dimensional quantum electrodynam-

ics as fixed point annihilation. Phys. Rev. D, 94(2):025036, July 2016.

[192] J. A. Gracey, I. F. Herbut, and D. Roscher. Tensor O(N) model near six dimensions:

Fixed points and conformal windows from four loops. Phys. Rev. D, 98(9):096014,

November 2018.

[193] V. Gorbenko, S. Rychkov, and B. Zan. Walking, weak first-order transitions, and

complex CFTs. JHEP, 10(10):108, October 2018.

[194] I. F. Herbut and L. Janssen. Topological Mott insulator in three-dimensional systems

with quadratic band touching. Phys. Rev. Lett., 113(10):106401, September 2014.

[195] L. Janssen and I. F. Herbut. Nematic quantum criticality in three-dimensional Fermi

system with quadratic band touching. Phys. Rev. B, 92(4):045117, July 2015.

[196] A. Nahum, J. T. Chalker, P. Serna, M. Ortuño, and A. M. Somoza. Deconfined

quantum criticality, scaling violations, and classical loop models. Phys. Rev. X,

5(4):041048, 2015.

[197] C. Wang, A. Nahum, M. A. Metlitski, C. Xu, and T. Senthil. Deconfined quantum

critical points: Symmetries and dualities. Phys. Rev. X, 7(3):031051, September 2017.

142



[198] V. Gorbenko, S. Rychkov, and B. Zan. Walking, weak first-order transitions, and

complex CFTs II. Two-dimensional Potts model at Q > 4. SciPost Phys., 5(5):050,

November 2018.

[199] P. Serna and A. Nahum. Emergence and spontaneous breaking of approximate

O(4) symmetry at a weakly first-order deconfined phase transition. Phys. Rev. B,

99(19):195110, May 2019.

[200] B. Ihrig, N. Zerf, P. Marquard, I. F. Herbut, and M. M. Scherer. Abelian Higgs

model at four loops, fixed-point collision, and deconfined criticality. Phys. Rev. B,

100(13):134507, October 2019.

[201] R. Ma and C. Wang. Theory of deconfined pseudocriticality. Phys. Rev. B,

102(2):020407, July 2020.

[202] A. Nahum. Note on Wess-Zumino-Witten models and quasiuniversality in 2+1 di-

mensions. arXiv:1912.13468, December 2019.

[203] J. E. Marsden and M. McCracken. The Hopf Bifurcation and Its Applications. Applied

Mathematical Sciences. Springer-Verlag, New York, 1976.

[204] K. G. Wilson. Renormalization group and strong interactions. Phys. Rev. D,

3(8):1818–1846, April 1971.

[205] B. A. Veytsman. Limit cycles in renormalization group flows: thermodynamics con-

trols dances of space patterns. Phys. Lett. A, 183(4):315–318, December 1993.

[206] C. Athorne and I. D. Lawrie. Renormalization group structure of a double replica

model of superconductors, spin glasses and cubic ferromagnets. Nucl. Phys. B,

257:577–597, January 1985.

[207] L. De Cesare. Critical properties of systems with anisotropic long-range correlated

quenched disorder. Phys. Rev. B, 49(17):11742–11748, May 1994.

143



[208] B. Roy, V. Jurii, and I. F. Herbut. Emergent Lorentz symmetry near fermionic

quantum critical points in two and three dimensions. JHEP, 04(4):018, April 2016.

[209] Y. Nambu and G. Jona-Lasinio. Dynamical model of elementary particles based on

an analogy with superconductivity. I. Phys. Rev., 122(1):345–358, April 1961.

[210] I. F. Herbut. Interactions and phase transitions on graphene’s honeycomb lattice.

Phys. Rev. Lett., 97(14):146401, October 2006.

[211] C. Xu. Time-reversal symmetry breaking at the edge states of a three-dimensional

topological band insulator. Phys. Rev. B, 81(2):020411, January 2010.

[212] H. Sonoda. Phase structure of a three-dimensional Yukawa model. Prog. Theor. Phys.,

126(1):57–80, 2011.

[213] P. J. H. Denteneer, R. T. Scalettar, and N. Trivedi. Conducting phase in the two-

dimensional disordered hubbard model. Phys. Rev. Lett., 83(22):4610–4613, November

1999.

[214] W. Witczak-Krempa and J. Maciejko. Optical conductivity of topological surface

states with emergent supersymmetry. Phys. Rev. Lett., 116(10):100402, March 2016.

[215] I. Boettcher and I. F. Herbut. Superconducting quantum criticality in three-

dimensional Luttinger semimetals. Phys. Rev. B, 93(20):205138, May 2016.

[216] I. Mandal. Fate of superconductivity in three-dimensional disordered Luttinger

semimetals. Ann. Phys. (N.Y.), 392:179–195, May 2018.

[217] I. F. Herbut. Quantum critical points with the Coulomb interaction and the dynamical

exponent: When and why z = 1. Phys. Rev. Lett., 87(13):137004, September 2001.

[218] V. Narovlansky and O. Aharony. Renormalization group in field theories with quan-

tum quenched disorder. Phys. Rev. Lett., 121(7):071601, August 2018.

144



[219] O. Aharony and V. Narovlansky. Renormalization group flow in field theories with

quenched disorder. Phys. Rev. D, 98(4):045012, August 2018.

[220] N. Goldenfeld. Lectures on Phase Transitions and the Renormalization Group. West-

view Press, Boulder, 1992.

[221] J. M. Kosterlitz. The critical properties of the two-dimensional xy model. J. Phys.

C, 7(6):1046–1060, March 1974.

[222] S. A. Hartnoll, D. M. Ramirez, and J. E. Santos. Thermal conductivity at a disordered

quantum critical point. JHEP, 04(4):022, April 2016.

[223] L. Dingjun, W. Xian, Z. Deming, and H. Maoan. Bifurcation Theory and Methods

of Dynamical Systems, volume 15 of Advanced Series in Dynamical Systems. World

Scientific, Singapore, 1997.

[224] T. Vojta. Disorder-induced rounding of certain quantum phase transitions. Phys.

Rev. Lett., 90(10):107202, March 2003.

[225] I. Affleck and J. B. Marston. Large-n limit of the Heisenberg-Hubbard model: Impli-

cations for high-Tc superconductors. Phys. Rev. B, 37(7):3774–3777, March 1988.

[226] D. H. Kim and P. A. Lee. Theory of spin excitations in undoped and underdoped

cuprates. Ann. Phys. (N.Y.), 272(1):130–164, February 1999.

[227] W. Rantner and X.-G. Wen. Electron spectral function and algebraic spin liquid

for the normal state of underdoped high Tc superconductors. Phys. Rev. Lett.,

86(17):3871–3874, April 2001.

[228] M. Hermele, T. Senthil, and M. P. A. Fisher. Algebraic spin liquid as the mother of

many competing orders. Phys. Rev. B, 72(10):104404, September 2005.

[229] H. Goldman, M. Mulligan, S. Raghu, G. Torroba, and M. Zimet. Two-dimensional

conductors with interactions and disorder from particle-vortex duality. Phys. Rev. B,

96(24):245140, December 2017.

145



[230] S. Dey. Destabilization of the U(1) Dirac spin liquid phase on the triangular lattice

by quenched disorder. arXiv:2008.12307, August 2020.

[231] M. M. Bordelon, E. Kenney, C. Liu, T. Hogan, L. Posthuma, M. Kavand, Y. Lyu,

M. Sherwin, N. P. Butch, C. Brown, M. J. Graf, L. Balents, and S. D. Wilson. Field-

tunable quantum disordered ground state in the triangular-lattice antiferromagnet

NaYbO2. Nat. Phys., 15(10):1058–1064, October 2019.

[232] R. Boyack and J. Maciejko. Critical exponents for the valence-bond-solid transition

in lattice quantum electrodynamics. arXiv:1911.09768, November 2019.

[233] L. Janssen, W. Wang, M. M. Scherer, Z. Y. Meng, and X. Y. Xu. Confinement transi-

tion in the QED3-Gross-Neveu-XY universality class. Phys. Rev. B, 101(23):235118,

June 2020.
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Appendix A

Calculations for Chapter 2

A.1 Mean-field phase diagram

The action is

S[ψ†, ψ] =

∫ β

0
dτ

∫
d2r[ψ†(∂τ − ivF ẑ · (σ × ∂)− µ)ψ − f2

4
Tr
(
Q̂(r)2

)
] (A.1)

where Q̂ab(r) = − i
kA
ψ†(r)(σa

↔
∂ b+σb

↔
∂ a−δabσ ·

↔
∂)ψ(r), β = 1/T is the inverse temperature,

and we consider a dispersive Fermi velocity vF = v̄F (1 + F (k)). We impose a constraint

1 + F (k) > 0 for k < Λ to preserve a Dirac-like spectrum in the effective theory.

We introduce an auxiliary bosonic field via the Hubbard-Stratonovich transforma-

tion:∫
Dφ e−

1
2

∫
ddxddx′φ(x)A(x,x′)φ(x′)−

∫
ddxj(x)φ(x) ∝ (detA)

1
2 e

1
2

∫
ddxddx′j(x)A−1(x,x′)j(x′).

(A.2)

For the given case j(x) = (Q̂11(x), Q̂12(x), Q̂21(x), Q̂22(x))T , and

A−1 =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


δ(x− x′)f2

2
. (A.3)
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Then

A =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


δ(x− x′) 2

f2
. (A.4)

Thus, using Qab(r) for the components of the auxiliary field, the effective action

becomes:

S[ψ†, ψ,Qab(r)] =

∫ β

0
dτ

∫
d2r[ψ†(∂τ − ivF ẑ · (σ × ∂)− µ)ψ +

1

f2

∑
ab

Qab(r)Qba(r)−

i
∑
ab

Qab(r)

kA
(ψ†(r)(σa

↔
∂ b + σb

↔
∂ a − δabσ ·

↔
∂)ψ(r)). (A.5)

Partially going into (k, iνn)-space, assuming a constant order parameter Qab(q, iνn) =

(2π)2δνn,0δ(q)Q̄ab, and integrating out the fermion fields, we obtain for the partition func-

tion

Z =

∫
DQab e

−
(

1
f2

∫ β
0 dτ

∫
d2rTr(Q2)− 1

β

∑
iνn

∫
d2k

(2π)2
ln det

(
−iνn+vF ẑ·(σ×k)−µ+

Qab
kA

(σakb+σbka−δabσ·k)
))
.

(A.6)

By rotational invariance, we may set

Q̄ =

 0 Q̄

Q̄ 0

 . (A.7)

Then, calculating the determinant, we obtain

Z =

∫
DQ̄abe−

(
2
f2

∫ β
0 dτ

∫
d2rQ̄2− 1

βV

∑
iνn

∑
k ln((νn−iµ)2+ε2k(Q̄))

)
, (A.8)

where

εk(Q̄) = vFk
√

(1 + F (k))2 − 2∆(1 + F (k)) cos(2θ) + ∆2 (A.9)
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and ∆ = 2Q̄
vF kA

. To sum over Matsubara frequencies in the expression

I =
1

β

∑
iνn

ln
(
(νn − iµ)2 + ε2k(Q̄)

)
, (A.10)

we use the residue theorem:

S =
∑
n

h(νn) =
ξ

2πi

∮
dzg(z)h(−iz) = ξ

∑
n

Res(g(z)h(−iz))

∣∣∣∣
z=iνn

(A.11)

where g(z) = β
eβz−ξ , and ξ = ±1 for bosons and fermions, respectively. One may per-

form this calculation by directly applying the above formula to the sum I with h(νn) =

1
β ln

(
(νn − iµ)2 + ε2(Q̄)

)
. But it is technically easier to first take a partial derivative with

respect to εk,

∂I

∂εk(Q̄)
=

1

β

∑
iνn

2εk(Q̄)

(νn − iµ)2 + εk(Q̄)2
=

1

β

∑
iνn

(
1

iνn + εk(Q̄) + µ
− 1

iνn − (εk(Q̄)− µ)

)
,

(A.12)

then perform the Matsubara sum using the well known sums (see, e.g., Ref. [240]),

∂I

∂εk(Q̄)
= −

(
nF (εk(Q̄)−µ)−nF (−εk(Q̄)−µ)

)
=

(
−nF (εk(Q̄)−µ)−nF (εk(Q̄)+µ)+1

)
,

(A.13)

and integrate the obtained result:

I =

(
− εk(Q̄) +

1

β
ln
(

1 + eβ(εk(Q̄)−µ)
)

+
1

β
ln
(

1 + eβ(εk(Q̄)+µ)
))

, (A.14)

which up to an irrelevant constant shift in the free energy gives the value we are interested

in. Upon adjusting this constant, I may also be rewritten in a more symmetric form:

I =
1

β

∑
iνn

ln
(
(νn − iµ)2 + ε2k(Q̄)

)
=

1

β
ln
(

1 + e−β(εk(Q̄)−µ)
)

+
1

β
ln
(

1 + eβ(εk(Q̄)+µ)
)
.

(A.15)

We need to consider the undoped, µ = 0, and doped, µ 6= 0, cases separately.
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A.1.1 Undoped limit, zero temperature

In the T → 0 limit, for the free energy density, which at T = 0 is the ground state energy

per unit volume E , we have

E =
2Q̄2

f2
−
∫

d2k

(2π)2
εk(Q̄), (A.16)

where we switched from the discrete sum to an integral over k by working in the thermody-

namic limit V →∞. In the nodal (undoped) limit, we integrate to a cutoff Λ in momentum

space:
∫

d2k
(2π)2 =

∫ Λ
0

dkk
2π

∫ 2π
0

dθ
2π . Introducing dimensionless variables k = Λy, λ = 2f2

3π2v̄F
, the

expression for the ground state energy is

E =
vFΛ3

3π2

(
∆2

λ
− 3

∫ 1

0
dyy2

∫
dθ
√

(1 + F (Λy))2 − 2(1 + F (Λy))∆ cos 2θ + ∆2

)
=
vFΛ3

3π2

(
∆2

λ
− 3

∫ 1

0
dyy2(1 + F (Λy)−∆)

√
1 + 4

(1 + F (Λy))∆

(1 + F (Λy)−∆)2
sin2 θ

=
vFΛ3

3π2

(
∆2

λ
− 3

∫ 1

0
dyy2(1 + F (Λy)−∆)E

(
−4

(1 + F (Λy))∆

(1 + F (Λy)−∆)2

))
, (A.17)

where E(m) =
∫ π

2
0 dθ

√
1−m2 sin2 θ is the complete elliptic integral of the second kind.

For the constant Fermi velocity, the integral over k may be performed analytically, and the

ground state energy is as given in Eq. (2.15):

E(∆) =
vFΛ3

3π2

[
∆2

λ
− |∆− 1|E

(
− 4∆

(∆− 1)2

)]
. (A.18)

The ground state energy as a function of ∆ for F (k) = 1+αk2, α = −0.61, is plotted

in Fig. 2.2. As discussed in the main text, the zero temperature transition is first-order1.

In the next subsection we investigate the transition still in the nodal limit, µ = 0, but at

finite temperature.

1There is nothing special about the particular value of α above; we only want to show by example that
corrections to strict linearity in the dispersion affect the magnitude of the first-order jump in the order
parameter.
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A.1.2 Undoped limit, finite temperature

In dimensionless units (λ = 2f2Λ
3π2vF

;βvFΛ→ β; kΛ → k ) the free energy density becomes:

F (∆) =
vFΛ3

3π2

(
∆2

λ
− 3π2

β

∫ 1

0

dk

(2π)2

∫ 2π

0
dθk

{
ln
(

1 + e−βεk(Q̄)
)

+ ln
(

1 + eβεk(Q̄)
)})

.

(A.19)

Omitting lengthy algebra, after integration over k it acquires the following form:

F (∆) =
vFΛ3

3π2

(
∆2

λ
− 3π2

β

∫ 2π

0

dθ

(2π)2

{
1
2 ln
(

1 + e−βf(θ)
)

+ 1
2 ln
(

1 + eβf(θ)
)
− βf(θ)

6
−

2

(βf(θ))2
Li3(−1) + Li1(−e−βf(θ)) +

2

βf(θ)
Li2(−e−βf(θ)) +

2

(βf(θ))2
Li3(−e−βf(θ))

})
,

(A.20)

where

f(θ) =
√

1− 2∆ cos(2θ) + ∆2, and Lin(z) =
∞∑
k=1

zk

kn
is the polylogarithm. (A.21)

The integral over θ is not amenable to analytical evaluation, but numerical investigation

reveals that the first-order phase transition changes to a continuous one above a finite

temperature TTCP (see Fig. 2.3a), corresponding to a tricritical point, as discussed in the

main text. To complete the investigation, we expand the free energy around ∆ = 0.

We first expand the integrand up to sixth order in ∆. Denoting

f±(∆) = ln
(

1 + e±βkf(θ)
)
, (A.22)
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the derivatives at ∆ = 0 are (here ξ = ±):

∂fξ
∂∆

∣∣∣∣
∆=0

= −ξ βk

1 + e−ξβk
cos(2θ) = a1ξ,

∂2fξ
∂∆2

∣∣∣∣
∆=0

=
(βk)2

4 cosh2(βk2 )
cos2(2θ) + ξ

βk

1 + e−ξβk
sin2(2θ) = a2ξ,

∂3fξ
∂∆3

∣∣∣∣
∆=0

=
(βk)3 sinh

(
βk
2

)
4 cosh3(βk2 )

cos3(2θ)− 3(βk)2

4 cosh2(βk2 )
(cos(2θ)− cos3(2θ))+

ξ
3βk

1 + e−ξβk
(cos(2θ)− cos3(2θ)) = a3ξ, (A.23)

∂4fξ
∂∆4

∣∣∣∣
∆=0

=
(βk)4

8

(
4 tanh2

(
βk

2

)
− 3 tanh4

(
βk

2

)
− 1

)
cos4(2θ)−

3

2
(βk)3

sinh
(
βk
2

)
cosh3(βk2 )

cos2(2θ) sin2(2θ) +
3(βk)2

4 cosh2(βk2 )
(sin4(2θ)− 4 cos2(2θ) sin2(2θ))−

3ξ
βk

1 + e−ξβk
sin2(2θ)(1− 5 cos2(2θ)) = a4ξ. (A.24)

We do not show formulas for the fifth and sixth derivatives but note that analogically to the

second and third derivatives,
∂5fξ
∂∆5 |∆=0 contains only odd powers of cos(2θ), and

∂6fξ
∂∆6 |∆=0

contains only even powers. Then, after integration over θ, odd powers of ∆ in the expansion

of the free energy vanish, and we obtain

F (∆, T )− F (0, T ) =
vFΛ3

3π2
(a2∆2 + a4∆4 + a6∆6), (A.25)

where
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a2 =

(
1

λ
− 3π2

8β

∫ 1

0

dk

2π
k

{
(βk)2

cosh2(βk2 )
+ 2βk tanh

βk

2

})
,

a4 = −3π2

64β

∫ 1

0

dk

2π
k

{
(βk)4

(
− 1

cosh2(βk2 )
+ 3

tanh2(βk2 )

cosh2(βk2 )

)
− (βk)3

tanh
(
βk
2

)
cosh2(βk2 )

−

(βk)2

2 cosh2(βk2 )
+ βk tanh

(
βk

2

)}
,

a6 =
π

6144

∫ 1

0
dkk2

(
βksech2

(
βk

2

)(
−2β4k4 + 6β2k2 + 3βk

(
−5β3k3sech4

(
βk

2

)
+

2
(
β2k2 + 2

)
tanh

(
βk

2

)
+ βk

(
5β2k2 − 6βk tanh

(
βk

2

)
− 3

)
sech2

(
βk

2

))
+

18)− 36 tanh

(
βk

2

))
. (A.26)

In these expressions, it is possible to calculate the integrals analytically, and the

result will contain polylogarithms of
(
− exp

(
βk
2

))
. However, the final expression is rather

long and complicates further investigation. Therefore, a better strategy is to evaluate the

coefficients in the expansion numerically as a function of temperature. The temperature

dependence of the fourth- and sixth-order coefficients is depicted in Fig. (A.1).
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Figure A.1: Temperature dependence of a4 (a) and a6 (b) in Eq. (A.25).

The tricritical temperature TTCP, above which the order of the transition changes

from first to second and is determined from a4(T ) = 0, is approximately 0.353. Note that

a6 > 0 in the vicinity of T = TTCP, which stabilizes the free energy. The phase diagram in

154



the λ-T plane is given in Fig. 2.3b.

A.1.3 Doped limit, zero temperature

We now calculate the free energy density for the doped case at zero temperature. We

consider only a constant Fermi velocity. In the T → 0 limit, neglecting a constant term (see

Eq. (A.14)), we may write

F(Q̄) =
2Q̄2

f2
− 1

β

∑
k

ln
(

1 + eβ(εk(Q̄)−µ)
)
. (A.27)

We denoteGk = 1
β ln

(
1 + eβ(εk(Q̄)−µ)

)
. For the doped case, εk(Q̄) = vFk

√
1− 2∆ cos(2θk) + ∆2,

where ∆ = 2Q̄
vF k

= 2Q̄
εk(0) . In the following, whenever we write εk we mean εk(0); we also use

θ for θk. The first order term in the expansion of
∑
kGk is

∑
k

∂Gk(∆)

∂∆

∣∣∣∣
∆=0

∆ = (1− nF (εk(∆)))
∂εk(∆)

∂∆

∣∣∣∣
∆=0

= (1− nF (εk))(−vFk cos 2θ)

=
∑
k

(1− nF (εk))(−εk cos 2θ)∆ = 0, (A.28)

1
2

∑
k

∂2Gk
∂∆2

∣∣∣∣
∆=0

∆2 = 1
2

∑
k

(
∂2εk(∆)

∂2∆
(1− nF (εk(∆)))−

(
∂εk(∆)

∂∆

)
∂nF (εk)

∂εk

)
∆2

= 1
2

∑
k

(
εk(1− cos2 θ)(1− nF (εk))− cos2 θ

∂nF
∂εk

ε2k

)
∆2

=
Q2

2

∑
k

(
εk(1− cos2 θ)(1− nF (εk))− cos2 θ

∂nF
∂εk

ε2k

)
1

ε2k

=
Q2

2

∫ kF+Λ

kF−Λ

dkk

2π

(
εk(1− nF (εk))−

∂nF
∂εk

ε2k

)
1

ε2k

=
Q2

4

∫
dεN (ε)

(
ε(1− nF (ε))− ∂nF

∂ε
ε2
)

1

ε2

=
Q2

4

∫
dεN (ε)δ(ε− µ) =

N (µ)

4
Q̄2. (A.29)
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Here we introduced the density of states N (ε) and neglected the first term in the last

expression in the penultimate line as it produces a term linear in Λ, vanishing in the limit

Λ/kF � 1.

∂3Gk
∂∆3

∣∣∣∣
∆=0

=

(
∂3εk(∆)

∂∆3
(1− nF (εk))− 3

∂εk(∆)

∂∆

∂2εk(∆)

∂∆2

∂nF
∂εk

−
(
∂εk(∆)

∂∆

)3 ∂2nF
∂ε2k

)∣∣∣∣
∆=0

=

(
3(1− nF (εk))(cos 2θ − cos3 2θ)εk + 3εk cos 2θ(1− cos2 2θ)

∂nF
∂εk

+ ε3k cos3 2θ
∂2nF
∂ε2k

)
.

(A.30)

Therefore, integrating over θ, we conclude that 1
3!

∑
k
∂3Gk
∂∆3

∣∣∣∣
∆=0

∆3 = 0. For the

fourth order term we obtain

1

4!

∑
k

∂4Gk
∂∆4

∣∣∣∣
∆=0

∆4 =
1

4!

∑
k

(
∂4εk(∆)

∂∆4
(1− nF (εk))

−
(

4
∂εk(∆)

∂∆

∂3εk(∆)

∂∆3
+ 3

(
∂2εk(∆)

∂∆2

)2
)
∂nF
∂εk

−6

(
∂εk(∆)

∂∆

)2 ∂2εk(∆)

∂∆2

∂2nF
∂ε3k

−
(
∂εk(∆)

∂∆

)4 ∂3nF
∂ε3k

)∣∣∣∣
∆=0

∆4

=
Q̄4

4! · 8

∫
dεN (ε)

(
3ε−3(1− nF (ε)) + 3ε−2∂nF

∂ε
− 6ε−1∂

2nF
∂ε2

+ 3
∂3nF
∂ε3

)
(A.31)

=
Λ→0

Q̄4

4! · 8

(
−3
N (µ)

µ2
+ 6

d

dε

(N (ε)

ε

) ∣∣∣∣
ε=µ

+ 3
d2

dε2
(N (ε))

∣∣∣∣
ε=µ

)

= −Q̄
4

64

N (µ)

µ2
. (A.32)

Altogether, the free energy at zero temperature is

F(Q̄)−F(0) =

(
2

f2
− N (µ)

4

)
Q̄2 +

N (µ)

64µ2
Q̄4 +O(Q̄6). (A.33)

This expansion corresponds to a continuous phase transition.
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A.2 Spin susceptibility in the nematic phase

In this section, we derive formulas given in Eq. (2.27) and Eq. (2.41): the in-plane spin

susceptibility anisotropy in the nematic phase in the nodal and doped limits. In the presence

of an in-plane magnetic field, the mean-field quasiparticle Hamiltonian takes the form

H =
∑
k

ψ†k

(
vF ẑ · (σ × k)− µ+ 2

Q̄

kA
(σxky + σykx)− 1

2
gµBB · σ

)
ψk. (A.34)

For B = Bx̂ and B = Bŷ, the energy spectrum is given, respectively, by

Ex±(k, Q̄, B) = ±Ex = ±
√
εk(Q̄)2 +

g2µBB2

4
− gµBB(2Q̄

k

kA
+ vFk) sin θk,

Ey±(k, Q̄, B) = ±Ey = ±
√
εk(Q̄)2 +

g2µBB2

4
− gµBB(2Q̄

k

kA
− vFk) cos θk, (A.35)

and the corresponding normalized eigenstates are

|ψxχ(k, Q̄, B)〉 =
1√
2

 χ
ivF ke

−iθk−i2Q k
kA

eiθk− gµBB
2

Ex(k,Q̄,B)

1

 ,

|ψyχ(k, Q̄, B)〉 =
1√
2

 χ
ivF ke

−iθk−i2Q k
kA

eiθk+i
gµBB

2

Ex(k,Q̄,B)

1

 , (A.36)

where χ = ±1. Using these eigenstates, we find

〈ψxχ(k, Q̄, B)|σx|ψxχ(k, Q̄, B)〉 =
χ

Ex(k, Q̄, B)

(
−gµBB

2
+ (vFk + 2Q̄

k

kA
) sin θk

)
,

〈ψyχ(k, Q̄, B)|σy|ψyχ(k, Q̄, B)〉 =
χ

Ey(k, Q̄, B)

(
−gµBB

2
+ (−vFk + 2Q̄

k

kA
) cos θk

)
.

(A.37)

In the limit B → 0, for k = kF , these equations reproduce Eq. (2.38) in the main text. We

consider the undoped limit first.
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A.2.1 Undoped Limit

We will consider small Q̄ and B so that we will be able to expand χxx and χyy in these

parameters. In the undoped limit, the nematic transition is a first-order transition at zero

temperature and becomes continuous at T = TTCP. Thus, we work at finite temperature

where Q̄ can be small near the transition. The expectation value of the σx operator,

proportional to the x-component of spin, in an in-plane magnetic field parallel to the x-axis

is

〈σx(B, Q̄)〉 =
∑
χ

∫
d2k

(2π)2
〈ψxχ(k, Q̄, B)|σx|ψxχ(k, Q̄, B)〉nF (Exχ(k, Q̄, B)), (A.38)

where the sum is over both helicity branches. The expression for 〈σy〉 in an in-plane magnetic

field parallel to the y-axis is analogical:

〈σy(B, Q̄)〉 =
∑
χ

∫
d2k

(2π)2
〈ψyχ(k, Q̄, B)|σy|ψyχ(k, Q̄, B)〉nF (Eyχ(k, Q̄, B)); (A.39)

and the anisotropy in the in-plane spin susceptibility is given by

χxx(Q̄)− χyy(Q̄) =
gµB

2

∂

∂B

(
〈σx(B, Q̄)〉 − 〈σy(B, Q̄)〉

)
. (A.40)

Using that nF (−x) = 1 − nF (x) and 〈ψα−|σα|ψα−〉 = −〈ψα+|σα|ψα+〉, where α =

x, y, we may write

〈σx〉 − 〈σy〉 = −
∫ 2π

0

dθk
2π

∫ Λ

0

dkk

2π

(
〈ψx+|σx|ψx+〉 tanh

(
Ex+

2T

)
− 〈ψy+|σy|ψy+〉 tanh

(
Ey+

2T

))
.

(A.41)

Substituting Eq. (A.37) into the last equation, expanding to second order in Q̄ and B, and
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integrating over the angle θk, we find

〈σx〉 − 〈σy〉 = − gµBBQ̄

8πΛT 2v2
F

∫ Λ

0
dk sech2

(
kvF
2T

)(
T 2 sinh

(
kvF
T

)
+ k2v2

F tanh

(
kvF
2T

)
− kvFT

)
.

(A.42)

Introducing a dimensionless variable y = kvF
T and switching to ∆ = 2Q̄

vFΛ , we obtain

χxx(Q̄)− χyy(Q̄) = −g
2µ2

BΛ∆

32πv2
F

F (x), (A.43)

which is Eq. (2.27) in the main text, where

F (x) = x

∫ 1
x

0
dy sech2

(y
2

)(
sinh y + y

(
y tanh

(y
2

)
− 1
))

. (A.44)

A.2.2 Doped Limit

In the doped limit, the transition is continuous already at T = 0. Assuming µ > 0,

it is sufficient to retain only the positive helicity branch in calculations. Thus, at zero

temperature,

〈σx(B, Q̄)〉 =

∫
d2k

(2π)2
〈ψx+(k, Q̄, B)|σx|ψx+(k, Q̄, B)〉,

〈σy(B, Q̄)〉 =

∫
d2k

(2π)2
〈ψy+(k, Q̄, B)|σy|ψy+(k, Q̄, B)〉. (A.45)

The theory we work with assumes interaction within a small shell of thickness Λ around

the FS. Thus we approximate
∫

d2k
(2π)2 f(k, θk) ≈ kFΛ

π

∫ 2π
0

dθk
2π f(kF , θk). Then, expanding

integrands to second order in B and ∆F = 2Q
vF kF

, and integrating over θk, we find

〈σx(B, Q̄)〉 ≈ kFΛ

2π

gµBB

2vFkF
(−1 + 1

2∆F ),

〈σy(B, Q̄)〉 ≈ kFΛ

2π

gµBB

2vFkF
(−1− 1

2∆F ). (A.46)
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And thus

χxx(Q̄)− χyy(Q̄) =
kFΛ

8π

g2µ2
BB

vFkF
∆F =

ΛN (µ)

4

g2µ2
BB

kF
∆F , (A.47)

reproducing Eq. (2.41) in the main text.

A.3 Inverse propagator for the nematic field

In this section, we calculate the effects of fluctuations about mean field theory. For conve-

nience, we reproduce here the Hamiltonian

Ĥ =

∫
d2k

(2π)2
ψ†k(vF ẑ · (σ × k)− µ)ψk −

f2

4

∫
d2r tr

(
Q̂(r)2

)
, (A.48)

where

Q̂ab(r) = − i

kA
ψ†(r)(σa

←→
∂b + σb

←→
∂a − δabσ ·

←→
∂ )ψ(r), (A.49)

and

ψ†(r)
←→
∂b ψ(r) = 1

2

(
ψ†(r)∂bψ(r) + ∂bψ

†(r)ψ(r)
)
. (A.50)

The order parameter may be rewritten in the form

Q̂ = ψ†∆1ψτz + ψ†∆2ψτx, (A.51)

where for the doped limit

∆1 = −i(σx
←→̂
∂ x − σy

←→̂
∂ y), ∆2 = −i(σx

←→̂
∂ y + σy

←→̂
∂ x), (A.52)

with ∂̂α = ∂
|∂| , α = x, y.

Introducing an auxiliary field n via the Hubbard-Stratonovich transformation, the
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action takes the form

S[ψ†, ψ,n] =

∫ 1/T

0
dτ

∫
d2r

[
ψ†(Ĝ−1

0 − n ·∆)ψ +
1

2f2
n2

]
. (A.53)

Passing to the momentum-frequency domain for the fermionic terms, we may write

it as

S[ψ†, ψ,n] =

∫ β

0
dτ

∫
d2r

n2

2f2
+

1

βV

∑
~k1

ψ†~k1
(−iω1n + vF ẑ · (σ × k1)− µ)ψ~k1

− 1

β2V 2

∑
~k1,~k2

ψ†~k1

{
n1(~k1 − ~k2)

(
σx
k̂1x + k̂2x

2
− σy

k̂1y + k̂2y

2

)

+n2(~k1 − ~k2)

(
σx
k̂1y + k̂2y

2
+ σy

k̂1x + k̂2x

2

)}
ψ~k2

, (A.54)

where ~ki = (iωin,ki), i = 1, 2, is a 3-vector with Matsubara frequency and momentum

components, and k̂i is a unit vector in the direction of ki. Integrating out the fermionic

fields, we obtain

Seff [n] =

∫ β

0
dτ

∫
d2r

[
n2

2f2
− Tr ln

(
G−1

0 − n ·∆
)]

. (A.55)

In the isotropic phase close to the QCP (so that n is small), expanding the trace to

second order in n, we obtain

Seff [n] =

∫ β

0
dτ

∫
d2r

n2

2f2
+

1

2
Tr

(
G0n ·∆G0n ·∆

)
+O(

(
n2
)2

). (A.56)

Denoting ∆1
k1,k2

= σx
k̂1x+k̂2x

2 − σy k̂1y+k̂2y

2 and ∆2
k1,k2

= σx
k̂1y+k̂2y

2 + σy
k̂1x+k̂2x

2 , we

may write

1

2
Tr

(
G0n ·∆G0n ·∆

)
=

1

β2V 2

∑
ij

∑
~q

ni,~q

(
1
2 tr

∑
~k

G~k+~q
∆i
k,k+qGk∆

j
k+q,k

)
nj,−~q

=
1

β2V 2

∑
ij

∑
~q

ni,~qχ
−1
ij (q, iΩm)nj,−~q, (A.57)
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where ~q = (iΩm, q) and

χ−1
ij (q, iΩm) = 1

2

1

βV
tr
∑
~k

G~k+~q
∆i
k,k+qG~k∆

j
k+q,k. (A.58)

It is convenient to introduce

β1 = k̂x + ̂(k + q)x; β2 = k̂y + ̂(k + q)y, (A.59)

which appear in the nematic form factors ∆1
k,k+q and ∆2

k,k+q. After some algebra we find

χ−1
ij (q, iΩm) =

1

4

1

βV

∑
k,iωn

(iωn + iΩm + µ)(iωn + µ)αijk,q + γijk,q(
(iωn + iΩm + µ)2 − v2

F |k+ q|2
)(

(iωn + µ)2 − v2
F |k|

2

) ,
(A.60)

where

αijk,q = (β2
1 + β2

2)δij =

(
2 + 2 cos(θk − θk−q)

)
δij ,

γ11
k,q = −γ22

k,q = v2
Fk|k+ q|

(
− cos(θk + θk+q)(β

2
1 − β2

2) + 2 sin(θk + θk+q)β1β2)

)
= −v2

Fk|k+ q|
(

cos(3θk + θk+q) + cos(3θk+q + θk) + 2 cos(2θk+q + 2θk))

)
,

γ12
k,q = γ21

k,q = v2
Fk|k+ q|

(
− sin(θk + θk+q)(β

2
1 − β2

2)− 2 cos(θk + θk+q)β1β2)

)
= −v2

Fk|k+ q|
(

sin(3θk + θk+q) + sin(3θk+q + θk) + 2 sin(2θk+q + 2θk))

)
. (A.61)

Using partial fractions, we may represent the expression above as a sum over intra-

band (χ = χ′) and interband (χ 6= χ′) contributions to the pair bubble:

χ−1
ij (q, iΩm) =

1

16

1

βV

∑
k,iωn

∑
χ,χ′=±1

αijk,q + χχ′
γijk,q

v2
F k|k+q|

(iωn + iΩm + µ− χvF |k+ q|)(iωn + µ− χ′vFk)
,

(A.62)
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where we may keep only the term with χ = χ′ = 1 (positive helicity branch) as all other

terms are negligible in the low-frequency, long-wavelength limit. Thus

χ−1
ij (q, iΩm) ≈ 1

16

1

βV

∑
k,iωn

αijk,q +
γijk,q

v2
F k|k+q|

(iωn + iΩm + µ− vF |k+ q|)(iωn + µ− vFk)
. (A.63)

After carrying out a standard Matsubara frequency summation (see, e.g., Ref. [240]), we

obtain

χ−1
ij (q, iΩm) ≈ 1

16

1

V

∑
k

nF (vFk)− nF (vF |k+ q|)
iΩm + vFk − vF |k+ q|

(
αijk,q +

γijk,q
v2
Fk|k+ q|

)
. (A.64)

To proceed further, we use another approximation, representing the inverse propa-

gator as a sum of static and dynamical parts:

χ−1
ij (q, iΩm) ≈ χ−1

ij (0, iΩm) + χ−1
ij (q, 0). (A.65)

Let us first consider the static limit.

A.3.1 Static limit

In the static limit, iΩm → 0; and at T → 0, we have

nF (vFk) =
1

eβ(vF k−µ) + 1
→ θ(−(vFk − µ)). (A.66)

Let us denote ξk = vFk. Taylor expanding around ξk, for the first factor in the

summand of Eq. (A.64) we obtain

nF (ξk)− nF (ξk+q)

ξk − ξk+q
=

∂nF
∂ξk

∣∣
ξk

(ξk − ξk+q) + 1
2
∂2nF
∂ξ2

k

∣∣
ξk

(ξk − ξk+q)2 + 1
6
∂3nF
∂ξ3

k

∣∣
ξk

(ξk − ξk+q)3 + ...

ξk − ξk+q

=
∂nF (ξk)

∂ξk
+

1

2
cos(θk − θq)vF q

∂2nF (ξk)

∂ξ2
k

+

(
sin2(θk − θq)

4ξk

∂2nF (ξk)

∂ξ2
k

+
cos2(θk − θq)

6

∂3nF (ξk)

∂ξ3
k

)
(vF q)

2 +O(q3). (A.67)
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Then

χ−1
ij (q, 0) =

1

16

∫ kF+Λ

kF−Λ

kdk

(2π)2

∫ 2π

0
dθk

(
− δ(ξk)− 1

2
cos(θk − θq)vF qδ(ξk)

d

dξk
−(

sin2(θk − θq)
4ξk

δ(ξk)
d

dξk
+

cos2(θk − θq)
6

δ(ξk)
d2

dξ2
k

)
(vF q)

2

)((
2 + 2 cos(θk − θk−q)

)
δij−(

sin
(

3θk + θk+q + [
π

2
+ πδi,2]δi,j

)
+ sin

(
3θk+q + θk + [

π

2
+ πδi,2]δi,j

)
+

2 sin
(

2θk+q + 2θk + [
π

2
+ πδi,2]δi,j

)))
.

(A.68)

The γijk,q terms in Eq. (A.64), i.e., the last two lines of Eq. (A.68), contribute only at q4 and

higher orders. To first order in q, θk−q ≈ θk− q
kF

sin(θq − θk). Thus, αijk,q is approximately

(
2 + 2 cos(θk − θk−q)

)
δij ≈

(
4−

( q
k

)2
)
δij . (A.69)

Thus, to second order in q, the static part of the inverse propagator equals

χ−1
ij (q, 0) =

1

16

∫ kF+Λ

kF−Λ

kdk

2π

∫ 2π

0
dθk

(
− δ(ξk)− 1

2
cos(θk − θq)vF qδ(ξk)

d

dξk

)(
4−

( q
k

)2
)
δij

= −1

4
N (µ)

(
1− 1

8

(
q

kF

)2)
δij , (A.70)

where N (µ) = µ
2πv2

F
= kF

2πvF
is the density of states at the Fermi energy.

A.3.2 Dynamical Limit

In the dynamical limit, we evaluate Eq. (A.64) in the limit q → 0. We rewrite

nF (ξk)− nF (ξk+q)

iΩm + ξk − ξk+q
→
q→0

dnF
dξk

1

1− i Ωm
ξk−ξk+q

≈ δ(ξk − µ)
cos(θk − θq)

is− cos(θk − θq)
, (A.71)

where s = Ωm
vF q

.
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Then, using 1
V

∑
k =

∫
kdk

(2π)2

∫
dθk = 1

2π

∫
N (ξ)dξ

∫
dθk, we find

χ−1
ij,dyn =

1

16

∫
dξN (ξ)

∫ 2π

0

dθk
2π

δ(ξ − µ)
cos(θk − θq)

is− cos(θk − θq)

(
αijk,q=0 +

γijk,q=0

v2
Fk

2

)
. (A.72)

Using
cos(θk−θq)

is−cos(θk−θq) = is
is−cos(θk−θq) − 1, we rewrite the previous expression in the matrix

form as follows

χ−1
dyn =

N (µ)

4

∫ 2π

0

dθk
2π

is

is− cos(θk − θq)

(
1− cos(4θk) − sin 4θk

− sin 4θk 1 + cos 4θk

)
−

N (µ)

4

∫ 2π

0

dθk
2π

(
1− cos(4θk) − sin 4θk

− sin 4θk 1 + cos 4θk

)
. (A.73)

The last term is just −δij N (µ)
4 .

The angular integrals in Eq. (A.73) may be evaluated using the residue theorem. We

will also encounter a similar integral in the expression for the fermion self-energy; thus, we

devote some space to the derivation of these integrals. First of all, we notice

∫ 2π

0

dθ

2π

is

is− cos(θk − θq)
=

∫ 2π

0

dθ

2π

is

is− cos(θk)
,

is

∫ 2π

0

dθk
2π

cos(4θk)

is− cos(θk − θq)
= is

∫ 2π+θq

θq

dθk
2π

(cos(4θk) cos(4θq)− sin(4θk) sin(4θq))

is− cos θk

= is

∫ 2π

0

dθk
2π

cos(4θk) cos(4θq)

is− cos θk
= is cos(4θq)

∫ 2π

0

dθk
2π

2 cos2(2θk)− 1

is− cos θk
,

is

∫ 2π

0

dθk
2π

sin(4θk)

is− cos(θk − θq)
= is

∫ 2π

0

dθk
2π

cos(4θk) sin(4θq)

is− cos θk
. (A.74)

We start with the integral I1 =
∫ 2π

0
dθ
2π

cos2(2θ)
is+cos θ . Introducing a new variable z = eiφ,

we convert the integral over θ into a contour integral over the unit circle:

I1 =

∫ 2π

0

dθ

2π

cos2(2θ)

is+ cos θ
=

∮
dz

iz

z8 + 2z4 + 1

4z4(is+ z+z−1

2 )
=

∫
dz

2i

z8 + 2z4 + 1

z4(z2 + 2isz + 1)
(A.75)

The poles of the integrand are at z0 = 0 (4-fold) and z1,2 = −is ±
√

(is)2 − 1.
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Because z1z2 = 1, only one of these poles is inside the unit circle.

The corresponding residues are:

Res(f(z), z0) =
1

3!

1

2i
lim
z→z0

d3

(dz)3

(
z8 + 2z4 + 1

z2 + 2isz + 1)

)
= −2s(−1 + 2(is)2), (A.76)

Res(f(z), z1) =
1

2i

z8
1 + 2z4

1 + 1

z4
1(z1 − z2)

=
1

2i

(z2
1 + z2

2)2

(z1 − z2)
= −i(2(is)2 − 1)2√

(is)2 − 1
, (A.77)

Res(f(z), z2) = −Res(f(z), z1). (A.78)

When s > 0, z1 lies inside the unit circle, whereas for s < 0, z2 is inside. Combining

everything together, we find

I1 =

∫ 2π

0

dθ

2π

cos2(2θ)

is+ cos θ
= 2π

(
−is(2(is)2 − 1) +

(2(is)2 − 1)2√
(is)2 − 1

sgn(s)

)
(A.79)

Analogically, we obtain

I2 =

∫ 2π

0

dθ

2π

1

is+ cos θ
=

sgn(s)√
(is)2 − 1

. (A.80)

After a simple change of variables to reduce the integrals of Eq. (A.74) to I1 or I2, we finally

obtain:

∫ 2π

0

dθ

2π

is

is− cos(θk − θq)
=

|s|√
1 + s2

≈ |s|,

is

∫ 2π

0

dθk
2π

cos(4θk)

is− cos(θk − θq)
=

(−4s2
√

1 + s2(1 + 2s2) + (1 + 8(s2 + s4))|s|√
1 + s2

)
cos(4θq)

≈ cos(4θq)(|s| − 4s2),

is

∫ 2π

0

dθk
2π

sin(4θk)

is− cos(θk − θq)
=

(−4s2
√

1 + s2(1 + 2s2) + (1 + 8(s2 + s4))|s|√
1 + s2

)
sin(4θq)

≈ sin(4θq)(|s| − 4s2), (A.81)

where the approximation is done for small s2. Then, to lowest order in s, the dynamical

2Note that since z > 1, the approximation s� 1 remains consistent even in the small-q limit.
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part of the inverse propagator is:

χ−1
dyn = −δij

N (µ)

4
+
g(µ)

4

 |s| − cos(4θq)(|s| − 4s2) − sin(4θq)(|s| − 4s2)

− sin(4θq)(|s| − 4s2) |s|+ cos(4θq)(|s| − 4s2)

 . (A.82)

A.3.3 Inverse propagator in the nematic phase

In the nematic phase, n = n̄+ δn. Close to the QCP, so that n is still small, we may use

the same expansion about n = 0 as in the isotropic phase, but we have to include terms

of fourth order in n. Using rotational invariance of the action, we may write, up to fourth

order in n,

Seff [n] = 1
2

1

βV

∑
~q

(
nT~q χ

−1
is (q, iΩn)n−~q

)
+ λ

∫
d2rdτ

(
n(r, τ)2

)2
= 1

2

1

βV

∑
~q

(
δnT~q χ

−1(q, iΩn)δn−~q
)
, (A.83)

where χ−1
is,ij(q, iΩn) = δij(r + κq2) + Mij(q, iΩn) is the inverse propagator in the isotropic

phase. In the rest of this subsection, to simplify notation, we omit the 1
βV factor. Without

loss of generality, we may set n(r, τ) = (n0 + δn1(r, τ), δn2(r, τ))T , which in momentum

space is n~q =
(
n0δ~q,0 + δn1,~q, δn2,~q

)T
. Substituting this into Eq. (A.83), we obtain

Seff [n] = 1
2(n0 + δn1,~0, δn2,~0)χ−1

is (0, 0)(n0 + δn1,~0, δn2,~0)T + 1
2

′∑
~q

(
δnT~q χ

−1
is (q, iΩn)δn−~q

)
+ λ

∫
d2rdτ

(
n4

0 + 4n3
0δn1 + 6n2

0δn
2
1 + 2n2

0δn
2
2 + O((δn)2)

)
, (A.84)
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where the prime above the sum sign means that we omit the term corresponding to ~q = ~0.

In the nematic phase, r < 0, χ−1
is (0, 0)ij = rδij . Then, to second order in δn,

Seff [n] =
r

2
n2

0 + (rn0 + 4λn3
0)δn1,~0 +

∑
~q

(r
2

+ 6λn2
0

)
δn1,~qδn1,−~q

+
∑
~q

(r
2

+ 2λn2
0

)
δn2,~qδn2,−~q + 1

2

∑
~q

(
δnTi,~q

(
δijκq

2 +Mij(q, iΩn)
)
δnj,−~q

)
.

(A.85)

Because n̄ = (n0, 0)T minimizes the action, the linear in δn term must vanish. Thus,

λn2
0 = − r

4 , and we find that χ−1(q, iΩn) = δχ−1 + χ−1
is (q, iΩn), where

δχ−1 =

 −3r 0

0 −r

 . (A.86)

Thus, we obtain the expression Eq. (2.61) of the main text.

A.4 Electron self-energy

To compute the fermionic self-energy, we consider the Yukawa-like coupling of fermionic

quasiparticles to fluctuations of the nematic order parameter:

S =
1

2βV

∑
q,iqn

n(q, iqn)Tχ−1(q, iqn)n(−q,−iqn) +
1

βV

∑
k,ikn

ψ†(k, ikn)G−1
0 (k, ikn)ψ(k, ikn)

− 1

β2V 2

∑
k,ikn
q,iqn

n(q, iqn)Tψ†(k − q, ikn − iqn)∆(k)ψ(k, ikn). (A.87)

Then, at one loop order, the self-energy is given by

Σ(k, ikn) =
T

V

∑
q,iωm

∑
i,j

∆i
k,k−qG0(k − q, ikn − iωm)∆j

k−q,kχij(q, iωm), (A.88)
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where the nematic field propagator in the nematic phase is

χ(q, iωn) =
1

χ−1
⊥ (q, iωn)χ−1

|| (q, iωn)

(
κq2 +M22(q, iωn) −M12(q, iωn)

−M12(q, iωn) 2|r|+ κq2 +M11(q, iωn)

)
.

(A.89)

Here the dynamical matrix M is

M(q, iωn) = a(s) [σ0 − b(s) (σz cos 4θq + σx sin 4θq)] , (A.90)

where

a(s) =
N (µ)

2

|s|√
s2 + 1

; b(s) = (
√
s2 + 1− |s|)4. (A.91)

At r = 0, Eq. (A.89) reduces to the nematic propagator at the QCP.

After some algebra, we find the following expression for the self-energy

Σ(k, ikn) =
1

4

T

V

∑
q,iΩm

1

(ikn − iΩm + µ)2 − v2
F |k− q|

2

1

χ−1
⊥ (q, iΩm)χ−1

|| (q, iΩm)

 A11 A12

A∗12 A22

 .

(A.92)

where

A11 = (β2
1 + β2

2)(ikn − iΩm + µ)[2r + 2κq2 + 2a(s)], (A.93)

A12 = ivF |k− q|
[
(β2

1 − β2
2) + 2iβ1β2

]
eiθk−q [2r − 2a(s)b(s)e−i4θq ], (A.94)

A22 = (β2
1 + β2

2)(ikn − iΩm + µ)[2r + 2κq2 + 2a(s)], (A.95)
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and

χ−1
⊥ =

1

2

[
2κq2 + 2r + 2a(s)−

√
[2r + 2a(s)b(s)]2 − 16ra(s)b(s) cos2 2θq

]
,

χ−1
|| =

1

2

[
2κq2 + 2r + 2a(s) +

√
[2r + 2a(s)b(s)]2 − 16ra(s)b(s) cos2 2θq

]
. (A.96)

Note that

χ−1
⊥ + χ−1

|| = 2
[
κq2 + r + a(s)

]
,

χ−1
|| − χ

−1
⊥ = 2

√
[r + a(s)b(s)]2 − 4ra(s)b(s) cos2 2θq, (A.97)

which allows us to rewrite

1

χ−1
⊥ χ−1

||
=

1

2 [κq2 + r + a(s)]

(
1

χ−1
⊥

+
1

χ−1
||

)
,

1

χ−1
⊥ χ−1

||
=

1

χ−1
|| − χ

−1
⊥

(
1

χ−1
⊥
− 1

χ−1
||

)
. (A.98)

Also

ikn − iΩm + µ

(ikn − iΩm + µ)2 − v2
F |k− q|

2 =
1

2

1

ikn − iΩm + µ− vF |k− q|
+

1

2

1

ikn − iΩm + µ+ vF |k− q|
,

vF |k− q|
(ikn − iΩm + µ)2 − v2

F |k− q|
2 =

1

2

1

ikn − iΩm + µ− vF |k− q|
− 1

2

1

ikn − iΩm + µ+ vF |k− q|
.

(A.99)

Using the first expressions in Eqs. (A.98) and (A.99), for the diagonal components we have:

Σ11 = Σ22 =
1

8

T

V

∑
q,iΩm

(
1

ikn − iΩm + µ− vF |k− q|
+

1

ikn − iΩm + µ+ vF |k− q|

)

×
(

1

χ−1
⊥

+
1

χ−1
||

)
(β2

1 + β2
2). (A.100)

Analogically, but using the second expression in Eqs. (A.98) and (A.99), for the

off-diagonal components, we obtain
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Σ12 =
1

8

T

V

∑
q,iΩm

(
1

ikn − iΩm + µ− vF |k− q|
− 1

ikn − iΩm + µ+ vF |k− q|

)

×
(

1

χ−1
⊥
− 1

χ−1
||

)
i(β1 + iβ2)2eiθk−q [2r − 2a(s)b(s)e−i4θq ]

χ−1
|| − χ

−1
⊥

,

Σ21 =
1

8

T

V

∑
q,iΩm

(
1

ikn − iΩm + µ− vF |k− q|
− 1

ikn − iΩm + µ+ vF |k− q|

)

×
(

1

χ−1
⊥
− 1

χ−1
||

)[
i(β1 + iβ2)2eiθk−q [2r − 2a(s)b(s)e−i4θq ]

χ−1
|| − χ

−1
⊥

]∗
. (A.101)

In the following, we will neglect the interband scattering contribution, i.e. terms

containing the 1
ikn−iΩm+µ+vF |k−q| factor. Also, close to the FS, we may approximate

1

ikn − iΩm + µ− vF |k− q|
≈ 1

ikn − iΩm + vF q cos(θq − θk)
. (A.102)

A.4.1 Quantum Critical Point

At the QCP, r = 0, the longitudinal mode with dynamic critical exponent z = 3 is dominant,

and we neglect the contribution from the transverse z = 2 mode. Thus, we are interested

in calculating

Σ11 = Σ22 ≈
1

8

T

V

∑
q,iΩm

1

ikn − iΩm + vF q cos(θq − θk)

β2
1 + β2

2

χ−1
||

,

Σ12 ≈
1

8

T

V

∑
q,iΩm

1

ikn − iΩm + vF q cos(θq − θk)

1

χ−1
||

i(β1 + iβ2)2eiθk−q2a(s)b(s)e−i4θq

χ−1
|| − χ

−1
⊥

,

Σ21 ≈
1

8

T

V

∑
q,iΩm

1

ikn − iΩm + vF q cos(θq − θk)

1

χ−1
||

[
i(β1 + iβ2)2eiθk−q2a(s)b(s)e−i4θq

χ−1
|| − χ

−1
⊥

]∗

= −Σ∗12. (A.103)
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At the QCP, χ−1
|| = κq2 + a(s) + a(s)b(s), which to first order in s is χ−1

|| ≈ κq2 +N (µ)|s|.

Recall that3

β1 = k̂x + ̂(k − q)x; β2 = k̂y + ̂(k − q)y. (A.104)

So

β2
1 + β2

2 = 2 + 2 cos(θk − θk−q) ≈ 4−
( q
k

)2
≈ 4,

(β1 + iβ2)2 = e2iθk−q

(
1 + ei(θk−θk−q)

)2
≈ 4e2iθk . (A.105)

Combining everything together, we need to calculate

Σ11 = Σ22 ≈
1

2

T

V

∑
q,iΩm

1

ikn − iΩm + vF q cos(θq − θk)

1

κq2 +N (µ)|s| ,

Σ12 ≈
1

2

T

V

∑
q,iΩm

1

ikn − iΩm + vF q cos(θq − θk)

ie3iθke−i4θq

κq2 +N (µ)|s| = −Σ∗12. (A.106)

At zero temperature and in the thermodynamic limit, discrete sums over frequency

and momentum turn into integrals: T
V

∑
q,iΩm

→
∫
dΩ
2π

∫ d2q
(2π)2 =

∫
dΩ
2π

∫ dqq
(2π)2

∫ 2π
0 dθq. Us-

ing Eq. (A.80), we find that in the regime |kn−Ω
vF q
| � 1:∫ 2π

0
dϕ

1

ikn − iΩm + vF q cos(ϕ− ϕ0)
≈ − 2πi

vF q
sgn(kn − Ωm). (A.107)

Since χ‖ is even with respect to Ω, the expression for the self-energy may be simpli-

fied. Let us denote f(Ω) =
∫∞

0 dqχ‖(q, iΩ). If kn > 0:

∫ ∞
−∞

dΩ sgn(kn − Ω)f(Ω) =

∫ kn

−∞
dΩf(Ω)−

∫ ∞
kn

dΩf(Ω) (A.108)

=

∫ −kn
−∞

dΩf(Ω) +

∫ kn

−kn
dΩf(Ω)−

∫ ∞
kn

dΩf(Ω) = 2

∫ kn

0
dΩf(Ω).

3Note that we changed the sign of q in comparison to Eq. (A.59), which does not affect any physical
conclusions.
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If kn < 0:

∫ ∞
−∞

dΩ sgn(kn − Ωn)f(Ω) =

∫ −|kn|
−∞

dΩf(Ω)−
∫ ∞
−|kn|

dΩf(Ω) (A.109)

=

∫ −|kn|
−∞

dΩf(Ω)−
∫ |kn|
−|kn|

dΩf(Ω)−
∫ ∞
|kn|

dΩf(Ω) = −2

∫ |kn|
0

dΩf(Ω).

So, for the diagonal component, we may write

Σ11 = − i

vF
sgn(kn)

∫
dq

2π

∫ |kn|
0

dΩ

2π
χ‖ = − i

vF
sgn(kn)

∫
dq

2π

∫ |kn|
0

dΩ

2π

1

κq2 +N (µ)|s|

= − i

vFκ
sgn(kn)

∫
dq

2π

∫ |kn|
0

dΩ

2π

q

q3 + N (µ)
vF κ

Ω
. (A.110)

To evaluate the integral over q, we decompose it into the sum of simple fractions.

However, we will evaluate an integral with a more general integrand:
∫ dq

2π
q

q3+rq+Ω
, which

could be used for evaluating contributions from the gapped mode in the nematic phase

(which will not be done in this thesis). Using Cardano’s formula, solutions for the cubic

equation q3 + rq + Ω = 0 are:

q1 = α+ β, q2,3 = −α+ β

2
± iα− β

2

√
3, (A.111)

where α =
3

√
−Ω

2 +

√(
r
3

)3
+
(

Ω
2

)2
. For |ω|

2

r3 � 1, which is satisfied for r → 0, the solution

of the cubic equation simplifies to

q1 ≈ −Ω
1
3 , q2,3 ≈ Ω

1
3

(
1

2
± i
√

3

2

)
= Ω

1
3 e±iπ/3. (A.112)

In our theory, we have a cutoff Λ around the FS. But the integrand decays fast

enough, and we approximate the result by extending the range of integration over q to
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infinity. Then the integral over q becomes

∫ ∞
0

dq
q

q3 + rq + Ω
≈
∫ ∞

0
dq

q

(q + Ω
1
3 )((q − Ω

1
3

2 )2 + 3
4Ω

2
3 )

=

∫ ∞
0

dq

− 1

3Ω
1
3

1

q + Ω
1
3

+
1

2

1

(q − Ω
1
3

2 )2 + 3
4Ω

2
3

+
1

3Ω
1
3

q − Ω
1
3

2

(q − Ω
1
3

2 )2 + 3
4Ω

2
3


= − 1

3Ω
1
3

ln
(
q + Ω

1
3

)∣∣∣∣∞
0

+
1

√
3Ω

1
3

arctan
2(q − Ω

1
3

2 )
√

3Ω
1
3

∣∣∣∣∞
0

+
1

3Ω
1
3

ln

√
(q − Ω

1
3

2
)2 +

3

4
Ω

2
3

∣∣∣∣∞
0

=
1

3Ω
1
3���

���
���

���
���:0

ln


√

(q − Ω
1
3

2 )2 + 3
4Ω

2
3

q + Ω
1
3

∣∣∣∣∞

− 1

3Ω
1
3

�
��

�
��

�
��
�*0

ln


√

Ω
2
3

4 + 3
4Ω

2
3

Ω
1
3

+
1

√
3Ω

1
3

(π
2

+
π

6

)
=

2π

3
√

3
Ω−

1
3 . (A.113)

Using this result, and integrating over Ω, for the diagonal components of the self-energy,

we find

Σ11(k, ikn) ≈ − i

4
√

3π
sgn(kn)ω

1
3
0 |kn|

2
3 = Σ0(k, ikn), (A.114)

where ω0 =
(
v2
Fκ

2N (µ)
)−1

.

To calculate the off-diagonal components, we use another approximation: the

fermion Green’s function is peaked at θq = θk ± π
2 , and, therefore, we may substitute other

factors in the expression for the self-energy with their values at θq = θk ± π
2 [68,69]. Thus,

Σ12(k, ikn) ≈ 1

2

T

V

∑
q,iΩm

1

ikn − iΩm + vF q cos(θq − θk)

ie−iθk

κq2 +N (µ)|s|

≈ − i

4
√

3π
sgn(kn)ω

1
3
0 |kn|

2
3 ie−iθk . (A.115)
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Combining everything together, we find:

Σ(k, ikn) =

 1 i cos θk + sin θk

−i cos θk + sin θk 1

Σ0(k, ikn) =
(
I2 +

(
σ × k̂

)
z

)
Σ0(k, ikn).

(A.116)

A.4.2 Nematic phase

In the nematic phase, the longitudinal mode becomes gapped, and the transverse (Gold-

stone) mode is dominant. Thus, for the self-energy we have

Σ(k, ikn) =
1

2

T

V

∑
q,iΩm

1

ikn − iΩm + vF q cos(θq − θk)

1

χ−1
⊥

×

 β2
1+β2

2
4

i(β1+iβ2)2e
iθk−q [r−a(s)b(s)e−i4θq ]

2(χ−1
|| −χ

−1
⊥ )

−i(β1−iβ2)2e
−iθk−q [r−a(s)b(s)ei4θq ]

2(χ−1
|| −χ

−1
⊥ )

β2
1+β2

2
4

 .

(A.117)

To second order in |s|,

χ−1
⊥ (q, iΩm) = κq2 +N (µ)|s| cos2 2θq −N (µ)

(
cos 4θq +

N (µ)

16|r| sin2 4θq

)
2s2 +O

(
s3
)
,

χ−1
‖ − χ

−1
⊥ ≈ 2r −N (µ)|s| cos 4θq. (A.118)
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Thus,

Σ11 ≈
1

8

T

V

∑
q,iΩm

1

ikn − iΩm + vF q cos(θq − θk)

× 2 + 2 cos(θk − θk−q)
κq2 +N (µ)|s| cos2 2θq −N (µ)

(
cos 4θq + N (µ)

16|r| sin2 4θq

)
2s2

,

Σ12 ≈
1

8

T

V

∑
q,iΩm

1

ikn − iΩm + vF q cos(θq − θk)

× 1

κq2 +N (µ)|s| cos2 2θq −N (µ)
(

cos 4θq + N (µ)
16|r| sin2 4θq

)
2s2

× ie2iθk−q
(
1 + ei(θk−θk−q)

)2
eiθk−q(2r −N (µ)|s|e−i4θq)

2r −N (µ)|s| cos 4θq
= −Σ∗12. (A.119)

Again, we substitute θq = π
2 ±θk everywhere except in the fermion Green’s function. Then,

for a generic angle we may do calculations keeping terms up to first order in s in χ⊥, and

zeroth order term in s in the third factor of the off-diagonal components of the self-energy

in Eq. (A.119). However, for θk = π
4 + π

2m, m ∈ Z, the first order term in s in the inverse

propagator of the Goldstone mode vanishes, and we have to keep second order terms.

We first consider a generic angle. In this case, the calculation of the self-energy

proceeds in the same way as for the QCP, and we obtain

Σ11(k, ikn) ≈ (cos 2θk)−
2
3 Σ0(k, ikn),

Σ12(k, ikn) ≈ (cos 2θk)−
2
3 Σ0(k, ikn)iei3θk . (A.120)

In matrix form, the self-energy in the nematic phase is:

Σ (k, ikn) = (I2 − σy cos 3θk − σx sin 3θk) |cos 2θk|−2/3 Σ0 (k, ikn) . (A.121)

Now let us consider points on the FS along the principal axes of nematic order, i.e.,

θk = ±π
4 ,±3π

4 . We first project the self-energy onto the FS. Instead of the original field

operator ψkσ, which annihilates a fermion of definite spin σ, one may introduce operators

176



ψk±, which annihilate fermions of fixed helicity:

ψk± =
1√
2

(
ie−iθkψk↑ ± ψk↓

)
. (A.122)

Inverting this, we find that

ψk↑ =
ie−iθk√

2
(ψk+ + ψk−) , ψk↓ =

1√
2

(ψk+ − ψk−) . (A.123)

Assuming that the FS is above the Dirac point, projecting onto the FS, we may get rid

of states of negative helicity, i.e., abandon the operator ψk− in the above expressions.

Thus, effectively we may substitute ψk↑ → ie−iθk√
2
ψk+, ψk↓ → 1√

2
ψk+. Below we omit the

momentum label k in the helicity operators.

Considering only the matrix in brackets in Eq. (A.117) for convenience, in the s→ 0

limit, we obtain

ψ†k


1+cos(θk−θk−q)

2

ie
3iθk−q

(
1+e

i(θk−θk−q)
)2

4

−ie−3iθk−q
(

1+e
−i(θk−θk−q)

)2

4

1+cos(θk−θk−q)
2

ψk
=
ψ†+ψ+

2
(1 + cos(θk − θk−q))2 cos2(θk + θk−q). (A.124)

Shifting the angle, θk → θk + π
4 , we obtain

ψ†+ψ+(1 + cos(θk − θk−q)) cos2(θk + θk−q) = ψ†+ψ+(1 + cos(θk − θk−q)) sin2(θk + θk−q).

(A.125)

Thus, to first order in q
k , the projection of the self-energy onto the helical band

becomes

Σproj(k, ikn) =
1

2

T

V

∑
q,iΩm

1

ikn − iΩm + vF q cos(θq − θk)

1

χ−1
⊥

sin2

(
2θk −

q

kF
sin(θq − θk)

)
,

(A.126)
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which is the same as the expression for the self-energy to first order in q
kF

in Ref. [241].

Following the subsequent analysis in this reference, we conclude that at these points of high

symmetry the self-energy is proportional to k
3/2
n .

A.5 Spin-nematic susceptibility

In this section, we calculate the retarded correlation function Eq. (2.65),

ΠR
ij(r, t) = −iθ(t)

〈[
(ψ†σiψ)(r,t), (ψ

†∆jψ)(0,0)

]〉
, (A.127)

corresponding to a spin-nematic susceptibility, in the isotropic phase.

Switching to the momentum-Matsubara frequency domain, the corresponding time-

ordered correlator is

Πij(q, iqn) =
T

V

∑
p,ipn

trσiG0(p+ q, ipn + iqn)∆j(p,p+ q)G0(p, ipn). (A.128)

Our strategy is to compute first the imaginary part, and the real part might then be de-

termined via a Kramers-Kronig relation. Using the spectral representation for fermionic

Green’s functions and standard Matsubara summation formulae, then analytically contin-

uing iqn → ω + iη, we find

ΠR
ij(q, ω) = tr

∫
d2p

(2π)2

∫
dε

∫
dε′
A(p+ q, ε)∆jA(p, ε′)

ω + iη + ε′ − ε (nF (ε′)− nF (ε))σi, (A.129)

where η is a positive infinitesimal. Using the identity 1
ω+iη = P 1

ω−iπδ(ω), for the imaginary

part, we obtain

Im ΠR
ij(q, ω) = −π tr

∫
d2p

(2π)2

∫
dε

∫
dε′δ(ω + ε′ − ε)A(p+ q, ε)∆jA(p, ε′)(nF (ε′)− nF (ε))σi

= −π tr

∫
d2p

(2π)2

∫
dε′A(p+ q, ε)∆jA(p, ε′)(nF (ε′)− nF (ε′ + ω))σi. (A.130)
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For definiteness, let us consider ω > 0. Then
∫
dε(nF (ε′)− nF (ε′ + ω))→

∫ 0
−ω dε. Also, the

fermion spectral function is A(p, ε) = −π
(
σ0 + vF ẑ(σ×p)

µ+ε

)
δ(ε− vF p+ µ), where σ0 denotes

the 2× 2 identity matrix. Then

Im ΠR
ij(q, ω) = −π3 tr

∫
d2p

(2π)2

∫ 0

−ω
dεXij(p+ q, ε+ ω;p, ε)δ(ε+ ω − vF |p+ q|+ µ)δ(ε− vF p+ µ)

= −π3 tr

∫ ′ d2p

(2π)2
Xij(p+ q, vF p− µ+ ω;p, vF p− µ)δ(ω + vF p− vF |p+ q|),

(A.131)

where

Xij(p+ q, ε+ qn;p, ε) = tr

(
σ0 +

ẑ · (σ)× (p+ q)

|p+ q|

)
[σxβαj + (−1)jσyβαj+1 ]

×
(
σ0 +

ẑ · (σ)× p
p

)
[σxδ1,i + σyδ2,i]. (A.132)

Here α1 = α3 = 2, and α2 = 1. In the last equation in the (−1)i factor, i is an integer,

taking values 1 or 2. In Eq. (A.131), we integrated over ε using δ(ε − vF p + µ). Because

the limits in the integral over ε are −ω and 0, in
∫ ′ d2p

(2π)2 , the modulus of p lies in the range

[µ−ωvF , µvF ] ∩ [pF − Λ, pF + Λ]. Because we work in the limit ω
vF q
� 1 (therefore ω

vFΛ � 1),∫ ′ d2p
(2π)2 =

∫ µ
vF
µ−ω
vF

dkk
2π

dθp
2π . After some algebra, we find

Xij = αij + γij , (A.133)

where the matrices αij and γij are

α =

 β1 −β2

β2 β1

 =

 cos θp + cos θp+q − sin θp − sin θp+q

sin θp + sin θp+q cos θp + cos θp+q


γ =

 −(cos(2θp + θp+q) + (cos(θp + 2θp+q)) −(sin(2θp + θp+q) + (sin(θp + 2θp+q))

−(sin(2θp + θp+q) + (sin(θp + 2θp+q)) cos(2θp + θp+q) + (cos(θp + 2θp+q)

 .

(A.134)
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Integration over the angle θp in Eq. (A.131) picks a specific angle determined (up to
(
q
p

)2
)

by ω = vF q cos(θp − θq). The solution of this equation is θp;1,2 = θq ± arccos(s), where

s = ω
vF q

. Then, the delta function is

δ(ω + vF p− vF |p+ q|) ≈ δ(ω − vF q cos(θp − θq)) =
δ(θp − θp;1)

|vF q sin(θp − θq)|
+

δ(θp − θp;2)

|vF q sin(θp − θq)|

=
δ(θp − θp;1)

vF q
√

1− s2
+
δ(θp − θp;2)

vF q
√

1− s2
. (A.135)

Then, approximating θp+q ≈ θp − q
kF

sin(θp − θq) and performing integration over p, we

find

Im ΠR(q, ω) = −π
4

µ2 − (µ− ω)2

v2
F

1

vF q
√

1− s2


 a1 a2

−a2 a1

−
b1 b2

b2 −b1


 , (A.136)

where

a1 = cos θq cosφ+ cos θq cos

(
φ− q

kF
sinφ

)
,

a2 = sin θq cosφ+ sin θq cos

(
φ− q

kF
sinφ

)
,

b1 = cos 3θq cos

(
3φ− q

kF
sinφ

)
+ cos 3θq cos

(
3φ− 2

q

kF
sinφ

)
,

b2 = sin 3θq cos

(
3φ− q

kF
sinφ

)
+ sin 3θq cos

(
3φ− 2

q

kF
sinφ

)
, (A.137)
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and we denoted arccos(s) by φ. Also,

µ2 − (µ− ω)2

2πv2
F vF q

√
1− s2

≈ 2µω

2πv2
F vF q

= 2N (µ)s, cosφ = s,

cos

(
φ− a q

kF
sinφ

)
= cosφ cos

(
a
q

kF
sinφ

)
+ sinφ sin

(
a
q

kF
sinφ

)
≈ s(1− 1

2(a
q

kF

√
1− s2)2) +

√
1− s2a

q

kF

√
1− s2,

cos

(
3φ− a q

kF
sinφ

)
= cos 3φ cos

(
a
q

kF
sinφ

)
+ sin 3φ sin

(
a
q

kF
sinφ

)
≈ (4s3 − 3s)(1− 1

2(a
q

kF

√
1− s2)2) +

√
1− (4s3 − 3s)2a

q

kF

√
1− s2,

(A.138)

where a is a number (we are interested in a = 1, 3). Thus, to leading order in s, we find:

Im ΠR(q, ω) ∼ s q
kF

 cos θq sin θq

− sin θq cos θq

− 3s
q

kF

 cos 3θq sin 3θq

sin 3θq − cos 3θq

 . (A.139)

The structure in momentum space of Eq. (A.139) may be verified by symmetry.

Under rotations, the spin operator transforms like a vector, and the nematic operator,

correspond to angular momentum l = 2, rotates twice as fast as a vector (intuitively, a

headless vector returns to itself after rotation by π). Therefore, we expect:

ΠR
i′j′(R(θ)q, ω) = R(θ)i′iR(2θ)j′jΠ

R
ij(q, ω) =⇒ ΠR(R(θ)q, ω) = R(θ)ΠR(q, ω)RT (2θ),

(A.140)

where R(θ) is an SO(2) rotation matrix through angle θ counterclockwise.

One may check that both matrices in Eq. (A.139) satisfy Eq. (A.140). This is espe-

cially clear for the first matrix as it also corresponds directly to R(θ), and R(θ)2 = R(2θ).
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Appendix B

Calculations for Chapters 3 and 4

In this Appendix, we show details for the RG calculations done in Chaps. 3 and 4.

B.1 Replica trick: general idea

Let us suppose that our goal is to calculate the disorder averaged observable 〈O〉 in a

quantum many-body system described by the imaginary-time action S (the overline is used

to denote disorder averaging):

〈O〉 =

∫
Dφe−S[φ]Oφ

Zd
, (B.1)

where φ denotes an arbitrary collection of quantum fields, bosonic and/or fermionic. The

problem in averaging is due to the disorder dependent partition function Zd in the denom-

inator. Different theoretical approaches have been developed to circumvent this problem.

The most straightforward, but perhaps also most laborious, is local RG in real space [242].

An approach developed by Keldysh [243] assumes integration over a closed contour in real

time. This implies that Zd = 1, but at the expense of working with matrix-valued real-time

propagators. An approach by Efetov based on supersymmetry likewise forces Zd = 1, but

only applies to noninteracting systems [244]. Here we use the replica trick [30, 156, 157],

which applies to arbitrary interacting systems and is formulated directly in imaginary time.
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One introduces m replicas (copies) of the same system and at the end of the calculation

takes the m→ 0 limit:

lim
m→0

∫
Dφ1Dφ2 . . . Dφme−S[φ1]−S[φ2]−...−S[φm]Oφ1 = lim

m→0

∫
Dφ1e−S[φ1]Oφ1Z

m−1
d = 〈O〉.

(B.2)

The connection to the partition function of the disordered system is given by

logZd = lim
m→0

Zmd − 1

m
= lim

m→0

1

m
logZmd . (B.3)

As will be shown soon, averaging over quenched disorder via the replica trick in a

quantum system introduces a term nonlocal in time in the action of the replicated theory.

This may raise a question about the validity of application of RG techniques for studying

such systems. In Refs. [218,219] it has been shown via nonperturbative arguments that the

replicated theory in the m → 0 limit is equivalent to the local original disordered theory,

provided we are only interested in disorder-averaged observables.

B.1.1 Replica trick: application

We consider the action

S =

∫
d2xdτ (Lφ + Lψ + Lψφ) , (B.4)

where each term for the chiral Ising, XY, and Heisenberg GNY models is defined in the

main text.

To describe the random-mass quenched disorder r(x) = r0 + δr(x) it is sufficient

to specify the first two cumulants as other cumulants generate irrelevant terms near four

dimensions:

δr(x) = 0, (B.5)

δr(x)δr(y) = g(|x− y|) =
v

|x− y|a + ∆δ(x− y).
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The replicated action is

S =
n∑
a=1

∫
d2xdτ (Lφa + Lψa + Lψaφa) . (B.6)

Averaging over disorder, we use the cumulant expansion:

ef(x) = e
f(x)+

1
2

(
f(x)2−f(x)

2
)

+...
, (B.7)

where f(x) is a random variable. Specifically,

〈
e
∑
a

∫
ddxdτδr(x)φ2(x)

〉
disorder

= e
1
2

∫
ddxdτddx′dτ ′

∑
a,b φ

2
a(x,τ)δr(x)δr(x′)φ2

b(x
′,τ ′). (B.8)

Thus, averaging over disorder in the replicated theory introduces a term that is nonlocal in

time (and nonlocal in space for long-range correlated disorder):

S =

∫
ddxdτ (Lφ + Lψ + Lψφ)− 1

2

∫
ddxdτddx′dτ ′

∑
a,b

φ2
a(x, τ)δr(x)δr(x′)φ2

b(x, τ).

(B.9)

B.2 Field-theoretic RG

We use the field-theoretic RG method, which is built around three functionals [163]:

• the generating functional of correlation functions:

Z[J, η̄, η] =

∫
DφDψ̄Dψe−S[φ,ψ̄,ψ]+

∫
ddx(Jφ+η̄ψ+ψ̄η). (B.10)

• the generating functional of connected correlation functions:

W [J, η̄, η] = lnZ[J, η̄, η], (B.11)

• and the generating functional of proper vertices, also known as the one-particle irre-
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ducible (1PI) effective action:

Γ
[
φ′, ψ̄′, ψ′

]
= −W

[
φ′, ψ̄′, ψ′

]
+

∫
ddx

(
Jφ′ + η̄ψ′ + ψ̄′η

)
, (B.12)

which is the Legendre transform of W .

To calculate Γ to one-loop order, we expand the generating functional Z about the

classical (saddle point) solution to quadratic order in the fields:

Z[J, η̄, η] =

∫
DδφDδψ̄Dδψe(−S[φcl+δφ,ψ̄cl+δψ̄,ψcl+δψ]+

∫
ddx(Jφ+η̄ψ+ψ̄η))

=

∫
DδφDδψ̄Dδψe−Scl+

∫
ddx(Jφcl+η̄ψcl+ψ̄clη)−δ2S+..., (B.13)

where the classical solutions are determined from

δS

δφcl
= J,

δS

δψ̄cl
= η,

δS

δψcl
= −η̄. (B.14)

For the Ising model, we find

δ2S =
∑
a

∫
ddxdτ

(
iδψ̄a

(
/∂τ + /∇

)
δψa + δφa

(
−∂2

b + r
)
δφa + 6λ2φ2

aδφ
2
a

+ihφaδψ̄aδψa + ihψ̄aδφaδψa + ihδφaψ̄aδψa
)

− 1
2

∫
ddxdτddx′dτ ′

∑
a,b

δφa(x, τ)Mab(xτ ;x′τ ′)δφb(x
′, τ ′), (B.15)

where

Mab = 2δ(x− x′)δ(τ − τ ′)δab
∑
c

∫
ddx′′dτ ′′g(x− x′′)φ2

c(x
′′, τ ′′) + 4g(x− x′)φa(x, τ)φb(x

′, τ ′).

(B.16)

For the XY model, we first recast the theory in terms of Nambu spinors Ψ =(
ψ,Cψ̄T

)
, where C = iσ2 is a charge-conjugation matrix:
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S =
∑
a

∫
ddxdετ τ

(
1

2
ΨT
a C
(
G−1

0 +Xa

)
Ψa + |∂µφa|2 + r|φa|2 + λ2|φa|4

)
, (B.17)

where

C =

 C 0

0 C

 , G−1
0 =

 0 G−1
0

G−1
0 0

 , Xa =

 2hφ∗a 0

0 −2hφa

 , (B.18)

and G−1
0 is the inverse propagator of the original (not replicated) system. Then

δ2S =
∑
a

∫
ddxdετ τ

(
δφ∗a

(
−∂2 + r

)
δφa + λ2

(
φ2
aδφ
∗2
a + 4|φa|2δφ∗aδφa + φ∗2a δφ

2
a

)
+

1

2
δΨT

a C
(
G−1

0 +Xa

)
δΨa + ΨT

a CδXaδΨa

)
− 1

2

∫
ddxdτddx′dτ ′

∑
a,b

δφa(x, τ)Mab(xτ ;x′τ ′)δφb(x
′, τ ′), (B.19)

where Mab is a 2× 2 matrix with components

M11
ab =2g(x− x′)φa(x, τ)φb(x

′, τ ′),

M12
ab =2

∫
ddx′′dτ ′′g(x− x′′)

∑
c

φ2(x′′, τ ′′)δ(x− x′)δ(τ − τ ′)δabδij + 2g(x− x′)φa(x, τ)φ∗b(x
′, τ ′),

M21
ab =

(
M12
ab

)∗
, M22

ab =
(
M11
ab

)∗
. (B.20)

For the Heisenberg model,

δ2S =
∑
a

∫
ddxdτ

iδψ̄a (/∂τ + /∇
)
δψa + δφa

(
−∂2

b + r
)
δφa + λ2

∑
ij

δφia
(
4φiaφ

j
a + 2φ2

aδij
)
δφja

+ihδψ̄aφa · σδψa + ihδφa · δψ̄aσψa + ihδφa · ψ̄aσδψa
)

− 1
2

∫
ddxdτddx′dτ ′

∑
a,b

δφa(x, τ)Mab(xτ ;x′τ ′)δφb(x
′, τ ′), (B.21)
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where the Pauli matrices only act in spin space, and Mab is a 3×3 matrix with components

M ij
ab = 2δ(x− x′)δ(τ − τ ′)δab

∑
c

∫
ddx′′dτ ′′g(x− x′′)φ2(x′′, τ ′′) + 4φia(x, τ)φjb(x

′, τ ′).

(B.22)

One may see that for the Ising model the matrix Mab has the same form as the matrix

Mab in the Heisenberg case. For the XY model, in the vector representation of the bosonic

field, the corresponding matrix Mab would also have the same form as in the Heisenberg

case. Thus, for all three models, we expect the same contribution to beta functions from

the diagrams that include only disorder vertices.

Integrating out the fermionic fields, we obtain:

• for the Ising model:

∫ m∏
a=1

DδψaDδψ̄ae−
∑
a

∫
ddxdτ(iδψ̄a(/∂τ+ /∇)δψa+ihφaδψ̄aδψa+ihψ̄aδφaδψa+ihδφaψ̄aδψa) =

m∏
a=1

det
(
G−1

0 + ihφa
)
e−
∑
a

∫
ddxdτhψ̄aδφa(G−1

0 +ihφa)−1hψaδφa ;

(B.23)

• for the XY model:

∫ m∏
a=1

DδΨa exp

(
−
∑
a

∫
ddxdτ

(
1

2
δΨT

a C
(
G−1

0 +Xa

)
δΨa + ΨT

a CδXδΨa

))
=

m∏
a=1

(
det C

(
G−1

0 +Xa

))1
2 e
−
∑
a

∫
ddxdτ

(
1
2

ΨTaCδXa(G
−1
0 +Xa)

−1C−1δXT
a CTΨa

)
;

(B.24)

• for the Heisenberg model:
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∫ m∏
a=1

DδψaDδψ̄ae−
∑
a

∫
ddxdτ(iδψ̄a(/∂τ+ /∇)δψa+ihδψ̄aφa·σδψa+ihδφa·δψ̄aσψa+ihδφa·ψ̄aσδψa) =

m∏
a=1

det
(
G−1

0 + hφa · σ
)
e−
∑
a

∫
ddxdτhψ̄aδφa·σ(G−1

0 +hφa·σ)−1hδφa·σψa .

(B.25)

Finally, reexponentiating determinants using detM = exp(Tr lnM) and integrating

out bosonic fields, we obtain for the effective action at one-loop order:

Γ = Tr ln

(
G−1 +X

)
+ 1

2 Tr ln

(
D−1 + Ξ− M

2

)
, (B.26)

where G−1 and D−1 are the inverse of the propagators of the replicated system defined

in Eqs. (3.34), (3.35) and (4.25). We will also use propagators for an individual replica Ga

and Da such that G =
⊕m

a=1Ga and D =
⊕m

a=1Da, where
⊕

denotes the matrix direct

sum, and we also denote the operator which in momentum space has the form 1
c2p2

0+p2+µ2r

by D0. The form of the matrices X and Ξ depends on the model:

• for the Ising model we have

X =

m⊕
a=1

Xa =

m⊕
a=1

hφa, Ξ =

m⊕
a=1

Ξa =

m⊕
a=1

(
6λ2φ2

a + h2ψ̄a

(
G−1

0,a +Xa

)−1

ψa

)
.

(B.27)

• for the XY model we have

X =

m⊕
a=1

Xa, Ξ =

m⊕
a=1

Ξa =

m⊕
a=1

2λ2

 φ2
a 2|φa|2

2|φa|2 φ∗2a

− 4h2Y T
a C
(
G−1

0,a +Xa

)−1
Ya

 ,

(B.28)
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where

Ya =

 ψa 0

0 −CψTa

 , (B.29)

and we also explicitly write down the expression for D−1 in complex boson notation

D−1 =

m⊕
a=1

D−1
a =

m⊕
a=1

 0 −∂2 + r

−∂2 + r 0

 . (B.30)

• for the Heisenberg model

X =

m⊕
a=1

Xa =

m⊕
a=1

ihφa · σ, Ξ =

m⊕
a=1

Ξa, (B.31)

where Ξa is a 3× 3 matrix with components

Ξija = λ2(4φiaφ
j
a + 2φ2δij) + h2ψ̄aσi

(
G−1

0,a +Xa

)−1

σjψa. (B.32)

Expanding logarithms to quadratic order in the couplings h2, λ2, ∆, and v, which

are all of the same order in the epsilon expansion, we find for the divergent part of the

effective action:

Γdiv =− Tr

{
GX − 1

2 (GX)2 +
1

3
(GX)3 − 1

4
(GX)4

}
+ 1

2 Tr

{
DΞ−Π

M

2
− 1

2 (DΞ)2 +DΞD
M

2
− 1

2

(
D
M

2

)2
}
. (B.33)

UV divergences in the one-loop effective action appear as simple poles in linear com-

binations of the small epsilon parameters. The renormalization constants are then obtained

by demanding the cancellation of these divergences by appropriate infinite counterterms.
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B.2.1 Calculating traces

In this section we calculate traces. First, it is easy to notice that traces of odd powers of

GX vanish. For the trace of the second power of GX we have:

Tr (GXGX) = tr
∑

all indices

Gxτ,x′τ ′Xx′τ ′,x′′τ ′′Gx′′τ ′′,x′′′τ ′′′Xx′′′τ ′′′,xτ

= tr
∑

all indices

Gxτ,x′τ ′X(x′τ ′)Gx′τ ′,xτX(xτ), (B.34)

where going from the first to the second line we used the fact that Xxτ,x′τ ′ = X(xτ)δ(x−

x′)δ(τ −τ ′). Here by sum over continuous variables (spatial and time coordinates) we mean

integrals, and use this notation for convenience. By a lowercase tr we mean a trace over

the remaining discrete indices (field components, flavor, and replica indices). Analogically,

Tr (GXGX)2 = tr
∑

all indices

Gxτ,x′τ ′X(x′τ ′)Gx′τ ′,x′′τ ′′X(x′′τ ′′) (B.35)

×Gx′′τ ′′,x′′′τ ′′′X(x′′′τ ′′′)Gx′′′τ ′′′,xτX(xτ).

To pick out the divergent part in Tr (DΞ), it is sufficient to expand the second term in Ξa

to first order in GaXa. As a concrete example, we use the Ising model:

Ξa = 6λ2φ2
a + h2ψ̄a

(
G−1

0,a +Xa

)−1

ψa → 6λ2φ2
a + h2ψ̄aGaψa + h2ψ̄aG

2
aXaψa. (B.36)

Analogically, for other models, the first and second terms in Ξa include only φ and ψ fields,

respectively. The third term contains both φ and ψ fields. To keep calculations general, we

write

Ξ = Ξφ + Lψ
(
G−1
a +Xa

)−1
Rψ → Ξφ + LψGaRψ − LψG2

aXaRψ, (B.37)

where Lψ and Rψ for each model are identified by comparison with Eqs. (B.27), (B.28)

and (B.32).
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Thus, we have

Tr (DΞ) =
∑

all indices

Dxτ,xτΞ(xτ) +
∑

all indices

Dxτ,x′τ ′Lψ(x′τ ′)Gx′τ ′,xτRψ(xτ) (B.38)

−
∑

all indices

Dxτ,x′τ ′Lψ(x′τ ′)Gx′τ ′,x′′τ ′′Gx′′τ ′′,xτXa(xτ)Rψ(xτ).

To evaluate the divergent part in Tr (DΞ)2, it is sufficient to retain the first term in Ξ:

Tr (DΞ)2 → Tr (DΞφ)2 =
∑

all indices

Dxτ,x′τ ′Ξφ(x′τ ′)Dx′τ ′,xτΞφ(xτ). (B.39)

At one-loop order, traces that include disorder vertices induce corrections only to purely

bosonic vertices. As was mentioned before, the structure of the matrix M is the same for all

three models, and we write these traces using the vector representation of the O(n) bosonic

field. We have

Tr

(
D
M

2

)
=

∑
all indices

D0
xτ,x′τ ′δijδab

M ji
ba

2
=

∑
all indices

D0
xτ,x′τ ′

M ii
aa

2
(B.40)

=
∑
a

∫
dDxdDx′

dDp

(2π)D
1

c2p2
0 + p2 + µ2r

∑
c

∫
ddx′′dτ ′′g(x− x′′)φ2(x′′, τ ′′)

+ 2
∑
a,i

∫
dDxdDx′

dDp

(2π)D
e−ip·(x−x

′)

c2p2
0 + p2 + µ2r

g(x′ − x)φia(x, τ)φia(x
′, τ ′),

where D in the superscripts of the integration measures (not to be confused with the

propagator D) is the dimensionality of space-time.

To assess the divergent part in Tr
(
DΞDM

2

)
, we again may retain only the first term

191



in Ξ:

Tr

(
DΞD

M

2

)
→ Tr

(
DΞφD

M

2

)
=

∑
all indices

Dii
aa;xτ,x′τ ′Ξ

ij
φa(x

′, τ ′)Djj
aa;x′τ ′,x′′τ ′′

M ji
aa

2

(B.41)

= λ2
∑

all indices

Dii
aa;xτ,x′τ ′

(
4φiaφ

j
a + 2φ2δij

) ∣∣∣∣
(x′,τ ′)

Djj
aa;x′τ ′,x′′τ ′′

(
δ(x′′ − x)δ(τ ′′ − τ)

∑
c

∫
ddx′′′dτ ′′g(x′′ − x′′′)φ2(x′′′, τ ′′′) + 2φja(x

′′, τ ′′)φia(x, τ)
)
.

Expanding, we obtain

Tr

(
DΞD

M

2

)
= λ2

∑
a;xτ,x′τ ′,x′′τ ′′

8
∑
ij

Dii
aa;xτ,x′τ ′φ

i
aφ

j
a

∣∣∣∣
(x′,τ ′)

(B.42)

× Djj
aa;x′τ ′,x′′τ ′′φ

j
a(x
′′, τ ′′)φia(x, τ)g(x′′ − x)

+ 4
∑
i

Dii
aa;xτ,x′τ ′φ

2
a(x
′, τ ′)Dii

aa;x′τ ′,x′′τ ′′φ
i
a(x
′′, τ ′′)φia(x, τ)g(x′′ − x)

+ 4Dii
aa;xτ,x′τ ′φ

2
a(x
′, τ ′)Dii

aa;x′τ ′,xτ

∫
ddx′′dτ ′′g(x′′ − x)

∑
c

φic(x
′′, τ ′′)2

+2
∑
i

Dii
aa;xτ,x′τ ′φ

2
a(x
′, τ ′)Dii

aa;x′τ ′,xτ

∫
ddx′′dτ ′′g(x′′ − x)

∑
c

φic(x
′′, τ ′′)2

}
.

Grouping similar terms, we finally have

Tr

(
DΞD

M

2

)
= λ2

∑
a;xτ,x′τ ′,x′′τ ′′

8
∑
ij

Dii
aa;xτ,x′τ ′φ

i
aφ

j
a

∣∣∣∣
(x′,τ ′)

× Djj
aa;x′τ ′,x′′τ ′′φ

j
a(x
′′, τ ′′)φia(x, τ)g(x′′ − x) (B.43)

+ 4
∑
i

Dii
aa;xτ,x′τ ′φ

2
a(x
′, τ ′)Dii

aa;x′τ ′,x′′τ ′′φ
i
a(x
′′, τ ′′)φia(x, τ)g(x′′ − x)

+2(n+ 2)Dii
aa;xτ,x′τ ′φ

2
a(x
′, τ ′)Dii

aa;x′τ ′,xτ

∫
ddx′′dτ ′′g(x′′ − x)

∑
c

φic(x
′′, τ ′′)2

}
.
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Finally, for Tr
(
ΠM

2

)2
, we obtain

Tr

(
Π
M

2

)2

=
∑

a;xτ,x′τ ′,x′′τ ′′

{∑
i

Dii
aa;xτ,xτ

∫
ddx′dτ ′g(x′ − x)

∑
c

φic(x
′, τ ′)2 (B.44)

×Dii
aa;xτ,xτ

∫
ddx′′dτ ′′g(x′′ − x)

∑
c

φic(x
′′, τ ′′)2

+ 2
∑
i

Dii
aa;xτ,x′τ ′

∫
ddx′′′dτ ′′′g(x′′′ − x′)

∑
c

φic(x
′′′, τ ′′′)2Dii

aa;x′τ ′,x′′τ ′′g(x′′ − x)φia(x
′′, τ ′′)φia(x, τ)

+ 2Dii
aa;xτ,x′τ ′g(x′ − x′′)φia(x′, τ ′)φia(x′′, τ ′′)Dii

aa;x′′τ ′′,xτ

∫
ddx′′′dτ ′′′g(x′′′ − x)

∑
c

φic(x
′′′, τ ′′′)2

+4Dii
aa;xτ,x′τ ′g(x′ − x′′)φia(x′, τ ′)φja(x′′, τ ′′)Dii

aa;x′′τ ′′,x′′′τ ′′′g(x′′′ − x)φjb(x
′′′, τ ′′′)φia(x, τ)

}
.

B.3 Calculating Feynman diagrams

In this section we evaluate expressions obtained in the previous section. We focus on the

XY GNY model with short-range correlated disorder first, which is the focus of Chapter 3.

Contributions from long-range correlated disorder are considered in the next section.

B.3.1 Boson two-point function

The diagrams are given in Fig. 3.3(a,b,c). The diagram in Fig. 3.3(a) is produced by the

first term in the expression for Tr(DΞ) (Eq. (B.38)), for which we obtain

δΓ
(a)
div = 4λ2

∫
dετ p0

(2π)ετ

∫
ddp

(2π)d
1

c2p2
0 + p2 + rµ2

∑
a

∫
ddx

∫
dετ τ |φa|2. (B.45)

Here and in the rest of this Appendix momentum integrals are evaluated in the limit ε, ετ →

0, discarding all finite terms. We obtain

∫
dετ p0

(2π)ετ

∫
ddp

(2π)d
1

c2p2
0 + p2 + rµ2

= − rµ2

8π2(ε− ετ )
, (B.46)
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thus

δZ(a)
r =

λ2

2π2(ε− ετ )
. (B.47)

The diagram in Fig. 3.3(c) is produced by the second term in the expression for

Tr
(
DM

2

)
(Eq. (B.40)) (the first term vanishes in the replica limit m → 0), for which we

have

δΓ
(c)
div = −∆

∑
a

∫
dDk

(2π)D
|φa(k)|2

∫
ddp

(2π)d
1

c2k2
0 + p2 + rµ2

, (B.48)

where dDk = dετk0 d
dk. Using

∫
dbp

(2π)d
1

c2k2
0 + p2 + rµ2

= −c
2k2

0 + rµ2

8π2ε
, (B.49)

we find

δZ
(c)
3 = − ∆

8π2ε
, δZ(c)

r = − ∆

8π2ε
. (B.50)

The diagram in Fig. 3.3(b) is produced by Tr
(
(GX)2

)
(Eq. (B.34)), for which we

have

δΓ
(b)
div = −2Nh2

∑
a

∫
dDk

(2π)D
φ∗a(k)

∫
dDp

(2π)D
tr

/p(/p+ /k)

p2(p+ k)2
φa(k), (B.51)

where tr denotes a trace over spinor indices. Using Feynman parameters to express

1

p2(p+ k)2
=

∫ 1

0

dx

[xp2 + (1− x)(p+ k)2]2
, (B.52)

and shifting the integration variable p→ p− (1− x)k, we obtain

∫
dDp

(2π)D
tr

/p(/p+ /k)

p2(p+ k)2
= − k2

8π2(ε− ετ )
, (B.53)
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using the fact that the gamma matrices are two-dimensional, as well as the ’t Hooft-Veltman

prescription [245],

∫
dDp

(2π)D
1

p2
= 0. (B.54)

We thus obtain

δZ
(b)
3 = − Nh2c−2

4π2(ε− ετ )
, δZ

(b)
4 = − Nh2

4π2(ε− ετ )
. (B.55)

B.3.2 Fermion two-point function

A unique diagram, Fig. 3.3(d), contributes to the renormalization of the fermion two-point

function. It is produced by the second term in the expression for Tr(DΞ) (Eq. (B.38)), and

the corresponding divergent part of the effective action is

δΓ
(d)
div = 4h2

∑
a

∫
dDk

(2π)D
ψ̄a(k)

∫
dDp

(2π)D
/p+ /k

(c2p2
0 + p2)(p+ k)2

ψa(k). (B.56)

Using Feynman parameters as in Eq. (B.52), and shifting p→ p− (1− x)k to perform the

integral over p first, we have

I1 ≡
∫

dDp

(2π)D
/p+ /k

(c2p2
0 + p2)(p+ k)2

=
Γ(ε/2)

(4π)d/2

∫ 1

0
dx

∫
dετ p0

(2π)ετ
γ0(p0 + k0) + xγ · k

(M2)ε/2
, (B.57)

where

M2 =
(
1 + (c2 − 1)x

) [
`20 +

x(1− x)k2

1 + (c2 − 1)x
+

x(1− x)c2k2
0(

1 + (c2 − 1)x
)2
]
, (B.58)

with

`0 = p0 +
(1− x)k0

1 + (c2 − 1)x
. (B.59)
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Shifting the integral over p0 to one over `0, we have, in the limit ε, ετ → 0,

I1 =
1

8π2(ε− ετ )

∫ 1

0
dx

(
xc2

1 + (c2 − 1)x
γ0k0 + xγ · k

)
=

1

8π2(ε− ετ )

(
c2(c2 − 1− ln c2)

(c2 − 1)2
γ0k0 +

1

2
γ · k

)
. (B.60)

We thus obtain

δZ
(d)
1 = − h2f(c2)

2π2(ε− ετ )
, δZ

(d)
2 = − h2

4π2(ε− ετ )
, (B.61)

with f(c2) defined in Eq. (3.44).

B.3.3 Boson self-interaction

The relevant diagrams are given in Fig. 3.3(e,f,g), where (e) and (g) are meant to include

diagrams in all three (s, t, u) scattering channels.

The diagram in Fig. 3.3(e) is produced by Tr (DΞ)2 (Eq. (B.38)), for which we have

δΓ
(e)
div = −2λ4

∑
a

∫
dDk

(2π)D
(
4|φa|2−k|φa|2k + (φ∗2a )−k(φ

2
a)k
)

×
∫

dDp

(2π)D
1

(c2p2
0 + p2)(c2(p0 + k0)2 + (p+ k)2)

. (B.62)

As before, we use Feynman parameters to perform the integral over p first, shifting p →

p− (1− x)k,

I2 ≡
∫

dDp

(2π)D
1

(c2p2
0 + p2)(c2(p0 + k0)2 + (p+ k)2)

=
Γ(ε/2)

(4π)d/2

∫ 1

0
dx

∫
dετ `0
(2π)ετ

1

(c2`20 +Q2)ε/2
, (B.63)

with Q2 = x(1 − x)(c2k2
0 + k2), and we have shifted the integral over p0 to one over

`0 = p0 + (1− x)k0. Performing the integrals over `0 and x, we obtain I2 = 1/[8π2(ε− ετ )],
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and thus

δZ
(e)
5 =

5λ2

4π2(ε− ετ )
. (B.64)

The diagram in Fig. 3.3(f) is produced by Tr
(
(GX)4

)
(Eq. (B.35)), for which we

have

δΓ
(f)
div = 4Nh4

(
4∏
i=1

∫
dDki
(2π)D

)
(2π)Dδ

(
4∑
i=1

ki

)
φ∗a(−k1)φ(k2)φ∗a(−k3)φa(k4)

∫
dDp

(2π)D

× tr
/p(/p− /k1)(/p− /k1 − /k2)(/p+ /k4)

p2(p− k1)2(p− k1 − k2)2(p+ k4)2
. (B.65)

Using four Feynman parameters,

1

A1A2A3A4
= 3!

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz

∫ 1

0
dw

δ(x+ y + z + w − 1)

(xA1 + yA2 + zA3 + wA4)4
, (B.66)

as well as

tr γµγλγνγρ = 2(δµλδνρ + δλνδµρ − δµνδλρ), (B.67)

to perform the spinor trace, we find that after shifting p appropriately the denominator

can be expressed as (p2 + P 2)4 where P 2 is independent of p, and the numerator contains

powers of p ranging from one to four. For D = 4 − (ε − ετ ), only the term with (p2)2 will

give a pole in ε− ετ . Using

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz

∫ 1

0
dw δ(x+ y + z + w − 1) =

1

3!
, (B.68)

we find

δΓ
(f)
div =

Nh4

π2(ε− ετ )

∑
a

∫
dDx |φa|4, (B.69)
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and thus

δZ
(f)
5 = − Nh4λ−2

π2(ε− ετ )
. (B.70)

The diagrams with one disorder vertex and one boson self-interaction vertex con-

tribute to the renormalization of both λ2 [Fig. 3.3(g)] and ∆ [Fig. 3.3(h)]. Here we focus

only on those diagrams that contribute to the renormalization of λ2,which are produced by

the first two terms in Tr
(
DΞDM

2

)
(Eq. (B.43)). We have

δΓ
(g)
div = 2λ2∆

∑
a

∫
dDk

(2π)D

∫
dDq

(2π)D

(
|φa|2−kφαa (k + q)φαa (−q) + 2(φαaφ

β
a)−kφ

α
a (k + q)φβa(−q)

)
×
∫

ddp

(2π)d
1

(c2q2
0 + p2)(c2(q0 + k0)2 + (p+ k)2)

, (B.71)

denoting φ1
a = Reφa, φ

2
a = Imφa, and with sums over repeated indices α, β = 1, 2 under-

stood. Denoting m2
1 = c2q2

0 and m2
2 = c2(q0 + k0)2, the loop integral is

∫
ddp

(2π)d
1

(p2 +m2
1)((p+ k)2 +m2

2)
=

1

8π2ε
, (B.72)

using Feynman parameters and shifting p→ p− (1− x)k. We thus obtain

δΓ
(g)
div =

3λ2∆

4π2ε

∑
a

∫
dDx |φa|4, (B.73)

and

δZ
(g)
5 = − 3∆

4π2ε
. (B.74)

198



B.3.4 Disorder strength

The two diagrams are Fig. 3.3(h) and (i). The diagram in Fig. 3.3(h) is produced by the

third term in Tr
(
DΞDM

2

)
(Eq. (B.43)), for which we have

δΓ
(h)
div = 4λ2∆

∑
ab

∫
ddk

(2π)d

∫
dετ τ

∫
dετ τ ′|φa|2−k,τ |φb|2k,τ ′

∫
dDp

(2π)D
1

(c2p2
0 + p2)(c2p2

0 + (p+ k)2)
.

(B.75)

The loop integral is the same as I2 in Eq. (B.63), but with k0 = 0, which does not change

the result I2 = 1/[8π2(ε− ετ )] in the limit ε, ετ → 0. We thus have

δΓ
(h)
div =

λ2∆

2π2(ε− ετ )

∑
ab

∫
ddx dετ τ dετ τ ′ |φa|2x,τ |φb|2x,τ ′ , (B.76)

hence

δZ
(h)
7 =

λ2

π2(ε− ετ )
. (B.77)

The first term in Tr
(
DΞDM

2

)
(Eq. (B.43)) vanishes in the replica limit m→ 0, and

the rest of the terms produce nonvanishing contributions to the diagram in Fig. 3.3(i). The

second and third terms in Eq. (B.43) give:

δΓ
(i,1)
div = −∆2

∑
ab

∫
ddk

(2π)d

∫
dετ τ

∫
dDq

(2π)D
|φa|2−k,τφαb (k + q, q0)φαb (−q)

×
∫

ddp

(2π)d
1

(c2q2
0 + p2)(c2q2

0 + (p+ k)2)
, (B.78)

and the last term in Eq. (B.43) contribute

δΓ
(i,2)
div = −∆2

∑
ab

(
4∏
i=1

∫
ddki
(2π)d

)
(2π)dδ

(
4∑
i=1

ki

)∫
dετ p0

(2π)ετ

∫
dετ q0

(2π)ετ

× φαa (k1, p0)φαa (k4,−p0)φβb (k3, q0)φβb (k2,−q0)

∫
ddp

(2π)d
1

(c2p2
0 + p2)(c2q2

0 + (p+ k3 + k4)2)
.

(B.79)
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Both integrals over the loop momentum p are of the form (B.72), and thus evaluate to

1/(8π2ε). Performing the remaining integrals, we obtain

δΓ
(i,1)
div + δΓ

(i,2)
div = − ∆2

4π2ε

∑
ab

∫
ddx dετ τ dετ τ ′|φa|2(x, τ)|φb|2(x, τ ′), (B.80)

thus

δZ
(i)
7 = − ∆

2π2ε
. (B.81)

Adding up the various contributions and rescaling the couplings λ2, h2, and ∆ by

(4π)2, we obtain the renormalization constants in Eqs. (3.36)-(3.43).

B.4 Yukawa coupling

In this section we calculate the counter-term for the Yukawa coupling. The contribution to

δZ6 comes from the last term in the expression for Tr (ΠΞ) (Eq. (B.38)). In the XY model,

at one-loop order, there is no diagram consistent with the Feynman rules in Fig. 3.2 that

can renormalize the Yukawa vertex; thus δZ6 = 0 at this order. We perform calculations

for the Ising and Heisenberg models separately. Let us first consider the Ising model, for

which we have

δΓ
(f)
div = −ih

3

2

∫
dDk1

(2π)D

∫
dDk2

(2π)D
φa(k2)ψ̄a(k1)ψa(k1 − k2)

×
∫

dDp

(2π)D
1

c2p2
0 + p2

(/p+ /k1)(/p+ /k1 − /k2)

(p+ k1)2(p+ k1 − k2)2
(B.82)

= −i h3

(4π)2

1

ε− ετ

∫
dDk1

(2π)D

∫
dDk2

(2π)D
φa(k2)ψ̄a(k1)ψa(k1 − k2).

Here the superscipt (f) in δΓ
(f)
div refers to Fig. 4.2(f). The calculation of the integral over p is

performed similarly to the one done in Sec. (B.3.2). To simplify the calculation, we may set

the external momentum k2 to zero in the fermion propagator, since we are only interested

in corrections to the local Yukawa vertex, and the integral reduces to the one in Eq. (B.57)
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with
(
/p+ /k

)
→ 1 in the nominator. Rescaling h2 by (4π)2, for the Ising model we obtain

δZ
(f)
6 =

h2

ε− ετ
. (B.83)

For the Heisenberg model, we have

δΓ
(f)
div = −ih

3

2

∫
dDk1

(2π)D

∫
dDk2

(2π)D

∫
dDp

(2π)D

∑
i

ψ̄a(k1)
1

c2p2
0 + p2

σi

× (/p+ /k1)(/p+ /k1 − /k2)

(p+ k1)2(p+ k1 − k2)2
(φa(k2) · σ)σiψa(k1 − k2)

→ −ih
3

2

∫
dDk1

(2π)D

∫
dDk2

(2π)D
ψ̄a(k1) (φa(k2) · σ)ψa(k1 − k2)

∫
dDp

(2π)D
1

c2p2
0 + p2

1

(p+ k1)2

= i
h3

(4π)2

1

ε− ετ

∫
dDk1

(2π)D

∫
dDk2

(2π)D
ψ̄a(k1) (φa(k2) · σ)ψa(k1 − k2), (B.84)

where going from the second to the third line we simplified calculations by setting k2 = 0

in the fermion propagator as before, which does not change δZ6. Thus, in the Heisenberg

model, rescaling h2 by (4π)2, we obtain

δZ
(f)
6 = − h2

ε− ετ
. (B.85)

Combining these results altogether, we may compactly write a generic expression for all

three models considered:

δZ
(f)
6 = (2− n)

h2

ε− ετ
. (B.86)

B.5 Long-range correlated disorder contributions

In this section we detail the computation of diagrams involving long-range correlated dis-

order. All diagrams listed below refer to Fig. 4.2. Throughout the calculations we use the

vector representation of bosonic fields for all models.
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B.5.1 Boson two-point function

The diagram (d) in Fig. 4.2 contributes to δZ3 and δZr and is produced by the long-range

part of the second term in the expression for Tr
(
DM

2

)
(Eq. (B.40)). Its contribution to the

divergent part of the effective action is:

δΓ
(d)
div = −v

∑
a

∫
dDk

(2π)D
φa(−k) · φa(k)

∫
ddp

(2π)d
|p|ε−δ

c2k2
0 + (k + p)2 + rµ2

. (B.87)

Since we anticipate a renormalization of both the time-derivative term [218, 219] and the

scalar mass term, the latter being necessary to compute the correlation length exponent, we

must keep the “mass squared” c2k2
0 +r in the denominator. Such massive Feynman integrals

can be evaluated using the Mellin-Barnes representation of hypergeometric functions [246,

247]. We have:

I ≡
∫

ddp

(2π)d
|p|ε−δ

c2k2
0 + (k + p)2 + rµ2

= (c2k2
0 + rµ2)1−δ/2S4−ε

Γ
(
−1 + δ

2

)
Γ
(
2− δ

2

)
2Γ(1)

× 2F1

(
δ − ε

2
,−1 +

δ

2
; 2− ε

2
;− k2

c2k2
0 + rµ2

)
, (B.88)

where 2F1(a, b; c; z) is the Gauss hypergeometric function, and Sd = 2/[(4π)d/2Γ(d/2)]. Tak-

ing the limit δ, ε→ 0, the hypergeometric function evaluates to a constant: 2F1(0,−1; 2; z) =

1. The only divergent factor in this limit is Γ(−1 + δ
2)→ −2/δ, and we obtain:

I = −2(c2k2
0 + rµ2)

(4π)2δ
. (B.89)

After rescaling the couplings by (4π)2, we thus obtain:

δZ
(d)
3 = δZ(d)

r = −2v

δ
. (B.90)
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B.5.2 Boson self-interaction

The diagram (j) contributes to the boson self-interaction vertex and is produced by the

long-range part in the first two terms in Tr
(
DΞDM

2

)
(Eq. (B.43)):

δΓ
(j)
div = 6λ2v

∑
a

∫
dDk

(2π)D

∫
dDk′

(2π)D

∫
dDk′′

(2π)D
φia(−k)φja(−k′)φia(k′′)φja(k + k′ − k′′)

×
∫

ddp

(2π)d
|p|ε−δ

[c2(k0 + k′0 − k′′0)2 + (k + k′ − k′′ + p)2 + rµ2] [c2(k′′0)2 + (k′′ − p)2 + rµ2]
.

(B.91)

Since we are looking for the correction to a local four-point vertex, we can set the external

momenta k, k′, k′′ to zero in the integral over the loop momentum p. Using standard

Euclidean integrals,

∫
dd`

(2π)d
`m

(`2 + ∆2)n
=

1

(4π)d/2
Γ
(
d+m

2

)
Γ
(
n− d+m

2

)
Γ(d/2)Γ(n)

(
1

∆2

)n−(d+m)/2

, (B.92)

we then have, in the limit ε, δ → 0,

∫
ddp

(2π)d
|p|ε−δ

(p2 + rµ2)2
=

2

(4π)2δ
. (B.93)

Rescaling v by (4π)2, we obtain:

δZ
(j)
5 = −12v

δ
. (B.94)

B.5.3 Short-range correlated disorder strength

The diagrams (l) and (m), which involve long-range correlated disorder, both contribute to

the renormalization of the short-range disorder strength. Diagrams of the type (l) give two
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distinct contributions, of the form:

δΓ
(l;1,2)
div = −∆v

∑
ab

∫
dDk

(2π)D

∫
dDk′

(2π)D

∫
ddk′′

(2π)d
φia(−k)φjb(−k′)φia(k′′, k0)φjb(k + k′ − k′′, k′0)

× I1,2(k, k′,k′′), (B.95)

where

I1(k, k′,k′′) = 2

∫
ddp

(2π)d
|p|ε−δ[

c2k2
0 + (k + p)2 + rµ2

]
[c2(k′0)2 + (k′ − p)2 + rµ2]

, (B.96)

I2(k, k′,k′′) =

∫
ddp

(2π)d
|p|ε−δ

[c2(k′0)2 + (k + k′ − k′′ − p)2 + rµ2] [c2(k′0)2 + (k′ − p)2 + rµ2]
.

(B.97)

The first contribution (I1) comes from the fourth term in the expression for Tr
(
DM

2

)2
(Eq. (B.44)), and the second contribution (I2) is produced by the second and the third

terms in the same expression. As in the previous section, we can set k = k′ = 0, k′′ = 0 in

those loop integrals, which then simply reduce to Eq. (B.93). With v rescaled by (4π)2 as

before, we then obtain:

δZ
(l)
7 = −12v

δ
. (B.98)

The diagram (m) is produced by the fourth term in the expression for Tr
(
DM

2

)2
(Eq. (B.44)) and illustrates that long-range correlated disorder perturbatively generates

short-range correlated disorder. We obtain:

δΓ
(m)
div = −v2

∑
ab

∫
dDk

(2π)D

∫
dDk′

(2π)D

∫
ddk′′

(2π)d
φia(−k)φjb(−k′)φia(k′′, k0)φjb(k + k′ − k′′, k′0)

×
∫

ddp

(2π)d
|p|ε−δ|k − k′′ + p|ε−δ[

c2k2
0 + (k + p)2 + rµ2

]
[c2(k′0)2 + (k′ − p)2 + rµ2]

,

(B.99)

an expression analogous to Eqs. (B.95-B.96), but with an additional factor |k− k′′ + p|ε−δ
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in the loop integral. Again, the loop integral can be evaluated in the limit of vanishing

external momenta. Using Eq. (B.92), we obtain:

∫
ddp

(2π)d
|p|2(ε−δ)

(p2 + rµ2)2
=

2

(4π)2(2δ − ε) , (B.100)

in the limit ε, δ → 0, and the corresponding renormalization constant is:

δZ
(m)
7 = −4v2∆−1

2δ − ε . (B.101)

B.5.4 Long-range correlated disorder strength

The diagrams in Fig. 4.2(j,l,m) contribute to the long-range disorder coupling renormaliza-

tion. The diagram (j) is produced by the third term in the expression for the Tr
(
DΞDM

2

)
(Eq. (B.43)) and gives:

δΓ
(j)
div = (n+ 2)λ2v

∑
ab

∫
dDk

(2π)D

∫
dDk′

(2π)D

∫
ddk′′

(2π)d
φia(−k)φjb(−k′)φia(k′′, k0)φjb(k + k′ − k′′, k′0)

× |k − k′′|ε−δ
∫

dDp

(2π)D
1

(c2p2
0 + p2 + rµ2)

[
c2p2

0 + (k − k′′ − p)2 + rµ2
] .

(B.102)

The interaction term induced by long-range correlated disorder in Eq. (4.9) can be Fourier

transformed to momentum space:

∫
ddx ddx′ dετ τ dετ τ ′

φ2
a(x, τ)φ2

b(x, τ
′)

|x− x′|α =

∫
dDk

(2π)D

∫
dDk′

(2π)D

∫
ddk′′

(2π)d
φia(−k)φjb(−k′)φia(k′′, k0)

× φjb(k + k′ − k′′, k′0)|k − k′′|ε−δ, (B.103)

using d = 4−ε and α = 4−δ. Here, we include a constant prefactor arising during the Fourier

transformation of the disorder correlation function into a redefinition of v. Comparing with

Eq. (B.102), we see that we can evaluate the loop integral in the limit of zero external
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momenta:

∫
dDp

(2π)D
1

(c2p2
0 + p2 + rµ2)2

=
Γ(ε/2)

(4π)d/2

∫
dετ p0

(2π)ετ
1

(c2p2
0 + rµ2)ε/2

=
2

(4π)2(ε− ετ )
, (B.104)

in the limit ε, ετ → 0. We correspondingly have:

δZ
(j)
8 =

4(n+ 2)λ2

ε− ετ
. (B.105)

The diagram (l) is produced by the second and third terms in the expression for

Tr
(
DM

2

)2
(Eq. (B.44)) and gives:

δΓ
(l)
div = −∆v

∑
ab

∫
dDk

(2π)D

∫
dDk′

(2π)D

∫
ddk′′

(2π)d
φia(−k)φjb(−k′)φia(k′′, k0)φjb(k + k′ − k′′, k′0)

× |k − k′′|ε−δ
∫

ddp

(2π)d
1

[c2(k′0)2 + p2 + rµ2] [c2(k′0)2 + (k − k′′ − p)2 + rµ2]
.

(B.106)

Once again, the loop integral can performed setting to zero the external momenta:

∫
ddp

(2π)d
1

(p2 + rµ2)2
=

2

(4π)2ε
, (B.107)

in the limit ε→ 0, and we obtain:

δZ
(l)
8 = −4∆

ε
. (B.108)

Finally, the diagram (m), which is also produced by the fourth term in the expression

for Tr
(
DM

2

)2
(Eq. (B.44)), gives a contribution similar to the diagram (l), but with an extra
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p-dependent factor in the loop integrand:

δΓ
(m)
div = −v2

∑
ab

∫
dDk

(2π)D

∫
dDk′

(2π)D

∫
ddk′′

(2π)d
φia(−k)φjb(−k′)φia(k′′, k0)φjb(k + k′ − k′′, k′0)

× |k − k′′|ε−δ
∫

ddp

(2π)d
|k + k′ − k′′ − p|ε−δ

[c2(k′0)2 + p2 + rµ2] [c2(k′0)2 + (k − k′′ − p)2 + rµ2]
.

(B.109)

In the limit of vanishing external momenta, the loop integral reduces to Eq. (B.93), and we

have:

δZ
(m)
8 = −4v

δ
. (B.110)

B.6 Absence of fermionic short-range disordered fixed point

at O(√ετ) in the chiral Ising GNY model

In the random-mass chiral Ising GNY model (n = 1), we found a single SDFP at one-

loop order [Eq. (4.50)], by contrast with the chiral XY and Heisenberg models where we

found two SDFPs [Eq. (4.49)]. This is a consequence of the accidental degeneracy of the

system of equations βλ2/λ2 = 0, β∆/∆ = 0 in the bosonic limit h2 = 0. In the bosonic

theory, this accidental degeneracy is lifted at two-loop order, which leads to a SDFP with

λ2
∗,∆∗ ∼ O(

√
ετ ) for a fixed ratio ε/ετ [123, 124, 160]. Setting ε/ετ = 2, we investigate

the possibility of an additional fermionic SDFP with λ2
∗,∆∗ ∼ O(

√
ετ ) in the random-mass

chiral Ising GNY model.

At higher loop orders, for a reason that will become clearer towards the end of this

Appendix, it is technically more convenient [123, 124] to work with rescaled couplings λ̃2

and h̃2, defined via λ2 = cετ λ̃2 and h2 = cετ h̃2. Using Eqs. (4.17-4.19), the beta functions
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for those rescaled couplings are:

β
λ̃2 =

(
−ετ + 2γ4 − γ5 + ετ

2 (γ3 − γ4)
)
λ̃2, (B.111)

β
h̃2 =

(
−ετ + 2(γ2 − γ6) + γ4 + ετ

2 (γ3 − γ4)
)
h̃2. (B.112)

At one-loop order, those beta functions reduce to those previously found [Eqs. (4.38-4.39)]

with λ → λ̃ and h → h̃. Indeed, there is no change in the divergent part of the one-loop

effective action in the limit ετ → 0, and thus in the MS renormalization constants, and

the terms ετ
2 (γ3 − γ4) in Eqs. (B.111-B.112) are dropped at this order. At two-loop order,

ignoring these latter terms for now, the beta functions for λ̃2, ∆, and h̃2 read:

β
λ̃2 = −ετ λ̃2 + 6(3λ̃2 − 2∆)λ̃2 + 2Nh̃2λ̃2 −Nh̃4 + (cubic in h̃2, λ̃2,∆), (B.113)

β∆ = −2ετ∆ + 4(3λ̃2 − 2∆)∆ + 2Nh̃2∆ + (quadratic in h̃2, λ̃2,∆)×∆, (B.114)

β
h̃2 = −ετ h̃2 + (N + 3)h̃4 + (quadratic in h̃2, λ̃2,∆)× h̃2. (B.115)

where the form of the two-loop term in Eq. (B.114) follows from the fact that a disorder

vertex cannot be generated perturbatively from a clean theory. Similarly, Eq. (B.115)

follows from the fact that a Yukawa vertex cannot be generated from a theory of decoupled

bosons and fermions.

We expand the fixed-point couplings λ̃2
∗, ∆∗, and h̃2

∗ in increasing powers of ετ :

λ̃2
∗ = λ2

1 + λ2
2 + . . . , ∆∗ = ∆1 + ∆2 + . . . , h̃2

∗ = h2
1 + h2

2 + . . . , (B.116)

where the leading power for each coupling remains to be determined. The SDFP (4.50)

previously found was obtained assuming that 3λ2
1 − 2∆1 6= 0, which gives λ2

1,∆1, h
2
1 ∝ ετ .

Here we consider the possibility that 3λ2
1 − 2∆1 = 0, with λ2

1,∆1 ∝
√
ετ [123, 124, 160].

First, in Eq. (B.115), the two-loop term is at most ∝ ετ h̃
2, thus the equation β

h̃2 = 0 may

in general be solved to O(ε2τ ) to yield a nontrivial solution h2
1 ∝ ετ 6= 0. In fact, β

h̃2 also

contains the term ετ
2 (γ3 − γ4)h̃2 [see Eq. (B.112)], but at leading order this term is O(ε

5/2
τ )
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and does not affect h2
1.

At leading order, the equations β
λ̃2 = 0 and β∆ = 0 become:

0 = −ετλ2
1 + 6(3λ2

2 − 2∆2)λ2
1 + 2Nh2

1λ
2
1 −Nh4

1 + (cubic in h2
1, λ

2
1,∆1), (B.117)

0 = −2ετ∆1 + 4(3λ2
2 − 2∆2)∆1 + 2Nh2

1∆1 + (quadratic in h2
1, λ

2
1,∆1)×∆1. (B.118)

These equations may in general be solved to O(ε
3/2
τ ) to yield nontrivial solutions λ2

1,∆1 ∝
√
ετ , with λ2

2,∆2 ∝ ετ . As with β
h̃2 , Eq. (B.117) in fact contains the additional term

ετ
2 (γ3 − γ4)λ̃2 on the right-hand side [see Eq. (B.111)], but at leading order this term is

O(ε2τ ) and does not affect λ2
1,∆1.

Thus far we have seen that a common zero of β
λ̃2 , βh̃2 , β∆ with λ̃2

∗,∆∗ ∼ O(
√
ετ )

and h̃2
∗ ∼ O(ετ ) is in principle possible at two-loop order. We now turn to the remaining

equation, βc2 = 0. At two-loop order, the beta function for c2 reads:

βc2 = −2∆c2 + h̃2
[
N(c2 − 1) + c2(2f(c2)− 1)

]
+ β

(2L)
c2

, (B.119)

where the two-loop part,

β
(2L)
c2

=
(

2γ
(2L)
1 − 2γ

(2L)
2 − γ(2L)

3 + γ
(2L)
4

)
c2, (B.120)

depends on γ
(2L)
i , i = 1, . . . , 4, the two-loop contributions to the anomalous dimensions

γi = d lnZi/d lnµ. These contributions are quadratic in the couplings h̃2, λ̃2,∆, but may

have a nontrivial dependence on c2. We separate β
(2L)
c2

into a purely bosonic part and a

part depending on the Yukawa coupling:

β
(2L)
c2

= (quadratic in λ̃2,∆)× f1(c2)c2 + (linear in h̃2, λ̃2,∆)× h̃2f2(c2)c2, (B.121)

where f1 and f2 are potentially nontrivial functions of c2. We look for solutions c2
∗ to

the equation βc2 = 0, evaluated at λ̃2
∗,∆∗ ∼ O(

√
ετ ) and h̃2

∗ ∼ O(ετ ). Since c2 is not a
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perturbative coupling, we assume c2
∗ ∼ O(1), as in the DFPs studied in the rest of the

thesis. The first term in (B.119) is then O(
√
ετ ) while the remaining terms are O(ετ ), so

there is no consistent c2
∗ 6= 0 solution.

We can at last look for a fixed point with c2
∗ = 0, such that βc2 = −Nh̃2

∗ + β
(2L)
c2

.

If we can show that f1(c2) = const., this solution is again inconsistent at leading order

in ετ since, even if f2(c2)c2 remains finite in the limit c2
∗ → 0, the h̃2-dependent term in

Eq. (B.121) is then O(ε
3/2
τ ). We now proceed to show that f1(c2) is in fact independent of

c2. To do so, we can restrict ourselves to the purely bosonic theory with h̃2 = 0. In this

case one has γ1 = γ2 = 0 at all loop orders, since the fermions decouple and remain free

fields, and we need only consider the contributions of γ
(2L)
3 and γ

(2L)
4 to β

(2L)
c2

, i.e., two-loop

corrections to the boson two-point function in the bosonic theory. These are essentially

the standard double tadpole and sunset diagrams of two-loop φ4 theory, but with Vλ self-

interaction vertices and V∆ disorder vertices such that Vλ + V∆ = 2. Schematically, these

corrections are of the form:

δD(k0,k) ∝
(
cετ λ̃2

)Vλ
∆V∆

∫
dετ p0 d

ετ p′0 d
dp ddp′

[
δ(ετ )(k0, p0, p

′
0)
]V∆

I(ck0,k; cp0, cp
′
0,p,p

′),

(B.122)

where k = (k0,k) is the external momentum, p = (p0,p) and p′ = (p′0,p
′) are the two

independent loop momenta, and
[
δ(ετ )(k0, p0, p

′
0)
]V∆ symbolizes the fact that each disorder

vertex is accompanied by an ετ -dimensional delta function involving linear combinations of

the frequencies k0, p0, p
′
0 in the diagram (see Fig. 4.1). Performing the change of integration

variables p0 → p̃0 = cp0, p′0 → p̃′0 = cp′0, and using the property δ(ετ )(q0/c) = cετ δ(ετ )(q0),

Eq. (B.122) becomes:

δD(k0,k) ∝ c(Vλ+V∆−2)ετ
(
λ̃2
)Vλ

∆V∆

×
∫
dετ p̃0 d

ετ p̃′0 d
dp ddp′

[
δ(ετ )(ck0, p̃0, p̃

′
0)
]V∆

I(ck0,k; p̃0, p̃
′
0,p,p

′),

(B.123)
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which, since Vλ + V∆ = 2, depends on c only through c2k2
0. Since the latter appears in

the unperturbed propagator (4.25), γ
(2L)
3 and γ

(2L)
4 , and thus f1(c2) in Eq. (B.121), are

necessarily independent of c2. Similar reasoning shows that counter-term insertions in one-

loop diagrams do not generate a dependence on c2 either. According to the argument above,

a fixed point with c2
∗ = 0 is thus impossible.

B.7 Oscillatory corrections to scaling

We derive the existence of oscillatory corrections to scaling [168] at the DFPs due to the

presence of a pair of complex-conjugate eigenvalues of the stability matrix. Passing over to

a Wilsonian description, and ignoring corrections to the dynamic critical exponent, the two-

point function of the order parameter χ(q) = 〈φ(q)φ∗(q)〉 (for the XY model in the complex

boson representation) obeys the scaling relation χ(q, r(0)) = e(2−ηφ)`χ(e`q, r(`)), where ` is

an infrared scale parameter, r(0) is the bare relevant tuning parameter for the transition,

and r(`) is the renormalized tuning parameter, which obeys the differential equation

dr(`)

d`
= [2− γ4(g(`)) + γr(g(`))]r(`) = [2− γm2(g(`))]r(`). (B.124)

Similarly, g(`) =
(
c2, h2, λ2,∆, v) is a vector of renormalized couplings, which obeys the

differential equation

dg(`)

d`
= β(g(`)), (B.125)

where β = (βc2 , βh2 , βλ2 , β∆, βv) is a vector of beta functions given by Eq. (4.37)-(4.41),

but with a minus sign since d` = −d lnµ. Defining `r such that r(`r) = r0 for some

arbitrary constant r0, we find that the uniform thermodynamic susceptibility behaves as

χ(q = 0, r) ∼ e(2−ηφ)`r where we now denote r(0) by r for simplicity, and `r depends on r
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in a manner to be determined. Integrating Eq. (B.124) from ` = 0 to ` = `r, we find

ln
(r0

r

)
=

∫ `r

0
d` [2− γm2(g(`))]. (B.126)

Linearizing Eq. (B.125) near the fixed point g∗, we have

d

d`

(
g(`)− g∗

)
= M

(
g(`)− g∗

)
, (B.127)

which is solved by diagonalizing M = PDP−1 where D is a diagonal matrix. Now, γm2 in

Eq. (B.126) can be read off from Eq. (4.42), and is linear in the couplings:

γm2(g(`)) = a · g(`) = a · g∗ +
∑
i

ui(0)a · vie−ωi`, (B.128)

where the eigenvalues of M are denoted as −ωi, vi are the respective eigenvectors, and u(0)

is a vector of initial conditions,

u(0) = P−1
(
g(0)− g∗

)
. (B.129)

Substituting into Eq. (B.126), we obtain

ln
(r0

r

)
= ν−1`r +

∑
i

ui(0)

ωi
a · vi

(
e−ωi`r − 1

)
, (B.130)

where ν−1 = 2 − γm2(g∗). Assuming that the deviation (B.129) from the fixed point is

small, we can solve for `r to O
(
u(0)

)
,

`r = ν ln
(r0

r

)
−
∑
i

νui(0)

ωi
a · vi

[(
r

r0

)νωi
− 1

]
+O

(
u(0)2

)
. (B.131)

The susceptibility thus becomes

χ ∼ |r|−γ
[

1−
∑
i

γui(0)

ωi
a · vi

(
r

r0

)νωi
+O

(
u(0)2

)]
, (B.132)
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where γ = (2− ηφ)ν is the usual susceptibility exponent.

Real (positive) eigenvalues ω ∈ R produce the usual corrections to scaling χ ∼

|r|−γ(1 + C|r|νω + . . .) [220]. Since the stability matrix M in Eq. (B.127) is real, complex

eigenvalues ω = ω′+iω′′, if any, must come in complex-conjugate pairs ω, ω∗. The associated

eigenvectors v,v∗ are also complex conjugates since Mv = −ωv and M is real. Finally,

since the components ui obey the differential equation dui/d` = −ωiui, the component of

u(0) associated with ω∗ must also be the complex conjugate of the component associated

with ω. As a result the corrections to scaling due to a single pair of complex-conjugate

eigenvalues ω′ ± iω′′ are of the form

χ ∼ |r|−γ
[

1 +

(
1

2
Ceiφ

(
r

r0

)ν(ω′+iω′′)

+ c.c.

)
+ . . .

]

∼ |r|−γ
[

1 + C

∣∣∣∣ rr0

∣∣∣∣νω′ cos

(
νω′′ ln

∣∣∣∣ rr0

∣∣∣∣+ φ

)
+ . . .

]
, (B.133)

where C and φ are nonuniversal constants, but the exponents ω′ and ω′′ are universal.

B.8 Log-periodic scaling laws from limit-cycle criticality

In this section we derive the effects of limit-cycle criticality on scaling laws. As in the

previous section, we focus on the uniform static susceptibility χ, but the derivation can be

extended to other thermodynamic observables.

Again, the uniform thermodynamic susceptibility is χ(q = 0, r) ∼ e(2−ηφ)`r , and the

goal is to determine `r as a function of r. Note that at one-loop order, ηφ depends only on

h2
∗, and is thus constant everywhere on the limit cycle. From Eq. (B.124), we find

ln
(r0

r

)
=

∫ `r

0
d` [2− γm2(g(`))]. (B.134)

For initial values of couplings g(0) such that they are on the limit cycle, the integration of

Eq. (B.125) gives periodic functions g(l) with period `LC, which can then be expanded as
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a Fourier series:

g(`) =
∞∑

n=−∞
gn e

2πin`/`LC , (B.135)

with gn = g∗−n since g(`) is real. At one-loop order, γm2 is linear in the couplings,

γm2(g(`)) = a · g(`). Performing the integration over ` in Eq. (B.134), we obtain:

ln
(r0

r

)
= ν−1

LC`r −F(`r), (B.136)

where

ν−1
LC = 2− a · 〈g〉LC, (B.137)

is an effective inverse correlation-length exponent associated with the critical limit cycle,

and the function F defined as

F(`r) = a ·
∫ `r

0
d` [g(`)− 〈g〉LC] =

∑
n 6=0

a · gn
e2πin`/`LC − 1

2πin/`LC
, (B.138)

is periodic in `r with the period `LC of the limit cycle. In Eqs. (B.137-B.138), 〈g〉LC is the

“center” of the limit cycle, i.e., the average of g(`) over one period,

〈g〉LC =
1

`LC

∫ `LC

0
d` g(`), (B.139)

and coincides with the zeroth Fourier component g0. For limit cycles with inversion sym-

metry with respect to the enclosed unstable-focus fixed point g∗ (see Sec. 4.5.2), νLC would

coincide with the correlation-length exponent at this fixed point.

If the limit cycle is small, e.g., near the Hopf bifurcation, we see from Eq. (B.138)

that F is also small, in which case Eq. (B.136) can be solved perturbatively in the radius
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of the limit cycle. To first order in this radius, we thus obtain:

`r ≈ νLC ln
(r0

r

)
+ νLCF

(
νLC ln

(r0

r

))
. (B.140)

Substituting into χ ≡ χ(q = 0, r) ∼ e(2−ηφ)`r , and consistently working to first order in F ,

we obtain:

χ ∼ |r|−γLC

[
1 + γLCF

(
νLC ln

(r0

r

))]
, (B.141)

which is Eq. (4.73) in the main text, where we have defined γLC = (2− ηφ)νLC.

B.9 Relation between two-component and four-component

formulations of the chiral XY GNY model

In this section we prove the equivalence between the two-component formulation of the chiral

XY GNY model, used in this thesis and in Ref. [147], and its four-component formulation,

used in Ref. [139,140]. We are only concerned with the fermion part of the Lagrangian, and

will set cf = 1 for simplicity, without loss of generality. Consider an even number N = 2Nf

of flavors of two-component Dirac fermions ψα, α = 1, . . . , N . Combining those into Nf

four-component Dirac spinors,

Ψα =

 ψα

iψα+Nf

 , α = 1, . . . , Nf , (B.142)

the fermion Lagrangian can be written as

Lf =

Nf∑
α=1

Ψ̄α/∂Ψα + h

φ∗ Nf∑
α=1

ΨT
α iΓ2Ψα + H.c.

 , (B.143)
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where Ψ̄α = Ψ†αΓ0, /∂ = Γµ∂µ, and we define the 4× 4 gamma matrices

Γµ =

 γµ 0

0 −γµ

 , µ = 0, 1, 2. (B.144)

One can easily check that the Lagrangian of Sec. 3.2 is reproduced by a suitable choice of

2× 2 gamma matrices, such as γ0 = σ3, γ1 = σ1, and γ2 = σ2. One can further define the

two Hermitian matrices

Γ3 =

 0 −i

i 0

 , Γ5 = Γ0Γ1Γ2Γ3 =

 0 1

1 0

 , (B.145)

which square to the identity and anticommute with the gamma matrices (B.144). Defining

the charge conjugation matrix C = iΓ2, we now perform a change of variables to a new set

of Nf four-component spinors χα [248],

Ψα = P−χα + P+Cχ̄
T
α , (B.146)

where P± = 1
2(1± Γ5) are projectors obeying P 2

± = P± and P+P− = P−P+ = 0. Using the

properties CΓµC
−1 = −ΓTµ and P±Γµ = ΓµP∓, µ = 0, 1, 2, the conjugate spinor is given by

Ψ̄α = χ̄αP+ + χTαCP−. (B.147)

Inserting Eq. (B.146)-(B.147) into the Lagrangian (B.143), and using the properties CP±C
−1 =

P∓, P T± = P±, and CT = C−1 = C† = −C, we find

Lf =

Nf∑
α=1

χ̄α/∂χα + 2h

Nf∑
α=1

χ̄α(φ1 + iφ2Γ5)χα, (B.148)

where φ = φ1 + iφ2, which is the form of the chiral XY GNY model given in Ref. [139,140].

In graphene Nf = 2, thus in the notation of Chap. 3, for us N = 2Nf = 4.
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