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Abstract

Falling events are the leading cause of fatal and non-fatal injuries among elderly
[1], and without timely medical care people unable to recover by themselves, it
may mean suffering from serious consequences. Designing reliable fall detection
systems may help reduce the time for a person to receive an opportune medical
care. Falls are events which might be described using multiple sensors, this is
because the problem itself involves many features, such as the sudden change
in human’s body position which can be sensed by tracking acceleration changes
in the three orthogonal directions, or while monitoring activities of daily living
of elderly people. This project is aimed to compare the performance of a fall
detection system based on a multimodal dataset using common deep learning
algorithms, such as Convolutional Neural Networks and Multi-Layer models
and feeding them with image data only (RGB and Depth Data), versus when
adding signal data from an accelerometer sensor.
Keywords: multimodal-fall detection system, Convolutional Neural Network,
Multi-Layer Perceptron, RGB and Depth data, accelerometer sensor.
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1 Introduction

A fall is defined as an event which results in a person to, inadvertently, rest on the
floor or other lower level. Injuries from a fall may be fatal or non-fatal [1]. Having
a fall is an unfortunate but also common event that can happen to anyone, but it
usually becomes recurrent as people get older.

Causes of falls are multiple as they are the result of many risk factors involved, such
as age, visual impairment, poor balance, unsafe environmental conditions, underlying
medical conditions, side effects of medication [2, 1]. People aged 60 or 65 years or
over, are at major high risk of suffering fatal falls or serious falls which may require
subsequent long-term care and institutionalization. This is because sensory, and
cognitive changes associated with aging and most environments are not well adapted
for an aging population [1].

Elderly people is a growing demographic group, for example the United Nations [3]
reported in 2019 that older people accounted for more than one fifth of the population
in 17 countries, and its projections indicate this condition will be the same at the
end of this century for 155 countries, which roughly represents the 61% of the world’s
population. Researchers have reported that around 69.5% of falls occurred at home
[5] and in regions like Europe and Northern American where elderly individuals tend
to live alone or with spouse only [4], this mean they are more prone to suffer a
"long-lie", which is staying on the floor for an hour or more following a fall [6] and
its consequences of a late medical care may lead to severe trauma or even lead to
person dies.

Clearly, this is the reason why the development of health-care related hardware and
software for fall detection devoted to this sector has been increasing during the last
decades. The number of methods that have been proposed to detect falls can be
classified into two broad categories ,wearable systems and non-wearable systems [7],
or into main three categories by some other authors [8, 9]: wearable device-based,
ambience sensor-based and vision or camera-based.

Wearable systems are as their name suggests, devices or sensors which are suitable
to be attached to the human body for data collection. Examples of this kind of
sensors are accelerometers, gyroscopes, magnetometers, Inertial Measurement Unit
(IMU), Surface Electromyography (sEMG), among others. The three main motion
sensors, accelerometer, gyroscope, and magnetometer, embedded in smartphones
or smartwatches as micro-electromechanical systems (MEMS), have eased the data
collection to assist researchers in developing systems to detect falls.

Vision-based devices comprehend systems able to identify a fall occurrence through
artificial vision. Here, we can find conventional cameras (RGB or web cameras),
motion capture devices, depth cameras such as Kinect, Laser Range Scanners (LRS),
which take optical measurements to use them in image processing for later analysis
[7]. The use of RGB cameras for human motion tracking, besides it has high privacy
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concerns, it also has challenges in illumination changes, deformation, occlusion and
background clutter [11].

Finally, ambience sensor-based systems or also known as context-aware systems con-
sider all the sensors deployed in a surveillance environment. Examples of these
sensors are infrared (IR), pressure, acoustic, radio-frequency sensors, floor sensors
like Ground Reaction Floor (GRF).

Over the last years, computer vision has been evolving, mainly because of the im-
plementation of machine learning algorithms in classifying falls and not falls while
recognizing human actions in activities of daily living (ADLs).

Multisensor or multimodal approach detection systems assisted by Machine Learning
algorithms for the data analysis, combine data collected from various sensors, wear-
able and non wearable, to detect falls in real time. In the attempt to enhance the
reliability of fall prediction systems, this multimodal detection approach promises to
compensate for the limitations of single-sensor based detection systems.

The document is organized as follows: firstly, in the Section 2 we present the general
working flow, a fall detection system, and other common concepts found in deep
learning models implementation. Section 3 we present an overview of the previous
findings and studies using multimodal datasets and machine learning algorithms for
fall detection. Limitations and challenges of the current problem are also discussed
here. Section 4 and outlines the main objective and scope of this paper. Hypothesis
is exposed in the Section 5. The Section 6 presents the methodology followed and
a brief description of the dataset used. The results and discussion are shown in the
Section 7, where performance comparisons between the two deep learning algorithms
implemented, CNN and MLP, and the previous studies are done. Finally in the Sec-
tion 8 and, Section 9, we discuss the conclusions extracted from the results retrieved
and the future work projected for this research respectively.

2 Theoretical framework

2.1 General pipeline for fall detection system

All the existing fall detection systems have a sensing unit for data acquisition, then
the data processing phase where the raw data collected feeds a traditional algorithm
or a deep learning model to finally detect whether a fall happened or not. The
Figure. 1 shows the generalized working principle of Fall Detection Systems (FDS).

The overall pipeline for any fall detection system can be broken down into five major
steps as shown in the Figure. 2. Collecting data is the first step to solving any machine
learning problem, this is because gathering relevant and reliable data is crucial to
get good predictions. Depending on the nature of the problem to solve, open-source
datasets might be a good free and accessible source of information. Because real-
world data is often inconsistent and noisy, a data preprocessing phase is needed to
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Figure 1: Generalized working principle of fall detection systems

clean this data and eliminate null and duplicate values, irrelevant features, etc.

The third step is feature engineering, where the preprocessed data is now selected
and transformed into features that better represent the problem. Statistical tools
are extensively implemented for feature extraction because it prevents redundant
information. Based on given data input, various feature extraction methods may be
applied.

Before starting to build a learning model, firstly our dataset has to be divided into a
training set and a test set, although the ratio of each set depends on the application,
it is common to use a ratio of 70 or 80 for training over 30 or 20 for testing. In
the training phase the learning algorithm tries to "understand" how all the inputs
contribute to form the target variable. Whereas the test set is used to validate the
performance of the learning model.

Discriminative machine learning models, such as decision tree, evolutionary algo-
rithms, K-nearest neighbors (KNN), Support Vector Machine (SVM), fuzzy logic,
regression, and neural networks, are typically implemented for human fall detection
[37].

Finally, for judging the performance of our model, we use function metrics, which
are similar to loss functions, except that the results are not used when training the
model. Selecting the right metric to evaluate our model will depend on the nature
of the problem to solve.
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Figure 2: General architecture of Fall Detection Systems.

2.1.1 Data preprocessing

There are various basic techniques to make data ready to be processed by the next
steps in the ML pipeline. Overall data preprocessing can be done in four different
ways. Data cleaning, data integration, transformation and data reduction.

1. Data cleaning: Methods devised to fill in missing values, fix data discrepancies,
identify outliers and reduce the noise.

2. Data integration: This technique combines multiple sources into a coherent
data set.

3. Data transformation: It consists of three different processes, data normaliza-
tion, aggregation and generalization

• Normalization: It aims to change the values of numeric columns in a
database to a common scale, without losing differences in the range of
values.

• Aggregation: It creates a summary of the raw data, identifying high cor-
relations among features and then applying aggregation operations. It
helps in decreasing high dimensionality

• Generalization: Process to summarize data by replacing particular fea-
tures with high level concepts.

4. Data reduction: It involves making smaller large sets of data into meaningful
fragments.

2.1.1.1 Image preprocessing

Image preprocessing is devised to improve image data by enhancing specific vi-
sual features that may be meaningful for a certain application. It also helps in
reducing undesired distortions.

There are 4 different techniques commonly used in image preprocessing, and they
are listed as follows:
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• Pixel brightness transformations or corrections : Among the most common
operations we can find sigmoid stretching, histogram equation and gamma
correction.

• Geometric transformations: It eliminates geometric distortion through opera-
tions like rotation, scaling, translation and shearing.

• Image filtering and segmentation:

– Image filtering: It uses filters (also known as kernels) to modify, improve
image properties or extract meaningful information, such as corners or
edges. Low pass filtering, edge detection, directional filtering and Lapla-
cian filtering are some of the common techniques.

– Image segmentation: Technique used to break down into various image
segments or subgroups a digital image to simplify its complexity.

• Fourier transform and image restoration: It decomposes the image into its sine
and cosine components.

2.1.2 Feature extraction

This phase is devised to transform the preprocessed data into an optimal set of
features that better represent the problem to learning models. The selected features
are intended to be relevant and non-redundant. Dataset with a large number of
features may cause overfitting in ML models. The common dimensionality reduction
techniques are:

• Independent Component Analysis (ICA)

• Linear Discriminant Analysis (LDA)

• Principle Components Analysis (PCA)

• Locally Linear Embedding (LLE)

• t-distributed Stochastic Neighbor Embedding (t-SNE)

• Autoencoders

2.1.3 Supervised deep learning algorithms

Deep learning algorithms have rapidly become a common approach for fall detection,
especially Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) which also have demonstrated to have good performance. Their use in
this field is not a coincidence, because image processing itself is a high dimensional
challenge to solve, and CNNs have proved to be very effective in reducing the number
of parameters through filters or kernels which assign importance, learnable weights
and biases, to objects or features in the image we do not want to lose. CNNs’
filters are optimized through automated learning, whereas in traditional classification
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algorithms these filters are hand-engineered. This means that pre-processing required
in CNNs is much lower as compared to those traditional algorithms [38].

2.1.3.1 Convolutional Neural Network (ConvNet/CNN)

Convolutional Neural Networks are a class of Artificial Neural Networks (ANN),
most commonly used in many image processing tasks. They are devised to automat-
ically and adaptively learn spatial hierarchies of features through a backpropagation
algorithm [32].

A ConvNet can be usually composed by:

1. Convolutional layer (Conv) : It is a type of linear operation for feature ex-
traction. For image processing it gets as input a matrix of dimensions [height,
width, depth] as shown in the Figure. 3. This layer contains filters also called
kernels, that perform convolution operations to create an activation map or
feature map. Kernel is aimed to scan the input image with respect to its
dimension. Filter size and stride are its hyperparameters.

Figure 3: Confusion matrix

2. Nonlinear activation function: The Rectified Linear Unit (ReLu) is the most
common nonlinear activation function used. ReLu computes the value provided
as input directly, or the value 0.0 if the input is 0.0 or less.We can describe this
function mathematically as f(x) = max(0, x).
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3. Pooling Layer (Pool): It is a down sampling operation, which summarizes the
presence of features in the patches of the activation map, which does some
spatial invariance.

• Max pooling: Selects the maximum value of the feature map

• Average pooling: Calculates the average for each patch on the activation
map.

4. Fully Connected Layer (FC) / Hidden Connected Layer: It is a feed forward
neural network which operates on a flatten input (array of number of 1D). Each
input is connected to all the neurons. This layer is the combination of affine
function and nonlinear function.

• Affine function: f(x) = Wx+ b where W is the weight and b the bias.

• Non-linear functions: Sigmoid, TanH, and ReLu

5. Output Layer: Here is where the desired outputs are obtained. Linear, Sigmoid,
and Softmax, are the most common activation functions implemented.

2.1.3.2 Traditional Machine Learning approach vs Deep Learning ap-
proach

Usually a typical deep learning work flow to analyze a dataset follows these four
sequential stages: data understanding and pre-processing, feature-engineering, and
deep learning model building, training and finally performance evaluation.

Before feeding a traditional machine learning model or a deep learning algorithm,
the raw data is preprocessed or transformed to speed up the training process and
improve the overall performance. There are many

preprocessing techniques which can be applied, for instance data cleaning, dimen-
sionality reduction, sampling data, data transformation, imbalanced data, and so
forth.

Although, pre-processing phase is required in a Convolutional Neural Networks, this
is much lower as compared to other classification algorithms.

The Table 1 summarizes the differences between a traditional machine learning and
a deep learning approach on featuring-engineering and learning process.

Recurrent Neural Networks architectures, and particularly LSTMs have feedback
connections, exploit time series data, such as a sequence of images, to exhibit tem-
poral dynamic behaviour. LSTMs process entire sequences of information, keeping
significant information of previous data in the sequence to support the processing of
new data points [39].
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Table 1: Comparison of machine learning-based Human Activity Recognition (HAR)
and deep learning-based HAR [22]

Process Machine learning Deep learning

Feature engineering

• Relies on manually ex-
tracted features.

• Depends on applications.
• Fails to deal with compli-

cated activities.
• Requires feature selec-

tion, and dimensionality
reduction approaches.

• Fails to handle the inter-
class variability and inter-
class similarity.

• Learns abstract features
from raw input data au-
tomatically.

• Discovers spatial, tem-
poral dependencies and
scale invariant features
from the input data auto-
matically.

Learning process

• Works well on small
training data.

• Requires limited compu-
tation time and memory
usage.

• Requires large dataset to
prevent overfitting.

• High computational com-
plexity.

• Requires specialized
hardware to accelerate
the training process.

2.1.4 Performance evaluation

Performance evaluation is the last step in the pipeline of any machine learning project
implementation. This phase tells us how effective our trained learning model is
classifying or predicting.

The common practice to assess the performance of this classification task come from
the the confusion matrix, as shown in the Figure. 4, and also listed as follows:

Where TP: True Positive, FP: False Positive, and FN: False Negative.

Accuracy =
TP + TN

TN + FP + TP + FN
(1)

Precision =
TP

TP + FP
=

TP

TotalPredictedPositive
(2)

Recall =
TP

TP + FN
=

TP

TotalActualPositive
(3)

Recall = 2X
Precision ∗Recall

Precision+Recall
(4)
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Figure 4: Confusion matrix

3 Literature review

Existing studies for human fall detection can be divided into three main categories,
based on the type of the database used.

The first category is visual-based dataset which may contain images retrieved from
RGB, and depth cameras, data from motion capture devices, or other optical de-
vices. Sensor-based dataset where data from wearable and ambient sensors might
be gathered. The third category is a multimodal-based dataset where the two first
categories are combined.

The graph, Figure 5, shows the most implemented machine learning algorithms.
Overall, SVM and KNN have been the most implemented for fall detection and
prevention [7], however, during the last years there has been a trend towards exploring
deep learning algorithms specially for image-based fall detection systems. A deep
learning approach can provide unseen input data from the example of images.

The main learning outcomes of SVM and KNN, a traditional ML approach, have been
that SVM algorithms can manage high-dimensional data and set a wide boundary
between a standing and falling person; it is also memory-efficient in nature that is
optimal for wearable devices. KNN works well on making real time predictions but
the systems based on it, might require a lot of memory to store the training data.
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Figure 5: Percentage of the most implemented ML algorithms for fall detection and
prevention from 2010 to 2021 [7].

3.1 Vision-based systems

Human activity recognition has been a topic of interest for several fields, going from
industrial to healthcare applications. This is because awareness of human motion is
crucial for people’s assisted living with underlying medical conditions and those in-
dustrial environments where there is a close interaction between humans and robots.

Although it has been argued that visual sensors, and particularly RGB cameras, may
lead to exposing older people’s private life when monitoring activities of daily living.
Usage of depth cameras in most of the published articles is considered protective and
private because individuals’ faces are hidden [19]. Some other approaches to avoid
these privacy concerns have been proposed such as instead of directly using the raw
images, but extracting numerical information from them [20].

From the thirty-four vision-based fall detection systems, published in articles from
2015 to 2020, studied by Gutiérrez’s, J. et al.[12], we can see that the most popular
databases used for fall detection were: UR fall detection, LE2I, and Fall detection
datasets. Table. 2 shows the main characteristics of those datasets.

The UR Fall Detection dataset was used in at least twenty-eight of the thirty-four
articles summarized in [12]. Although this dataset includes depth, RGB and ac-
celerometer information, researchers only used RGB or Depth information to feed
their learning models.

Using only RGB information, K. Sehairi et al. [33] implemented foreground extrac-
tion and feature extraction associated with each silhouette, then they used SVM,
KNN and a fully connected ANN, which demonstrated to have the best accuracy of
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Table 2: Characteristics of the most popular visual-based datasets from 2017 to 2020

Signal Type Dataset Name Characteristics
Depth and
Accelerometer
data

UR fall detection [21] 30 falls and 40 ADLs recorded
by RGB-D and accelerometer sys-
tems

RGB LE2I [29] 191 different activities including
ADLs and 143 falls

Depth Fall detection dataset [30] 5 volunteers execute 5 different
types of fall

99.61%.

A. Abobakr et al. [34], extracted silhouette information by using depth information.
Random decision forest for pose recognition and SVM for movement identification,
using UR Fall Detection and CMU Graphics Laba motion capture library, they got
an accuracy 96%, precision 91% and Sensitivity 100%.

In 2020, Qi Feng et al. [35], using RGB features maps from CNN and LSTM and then
for classification they used a softmax based features vector from ANN implemented
in its last layer. Using the Multicam Fall Dataset, they got a specificity 93.5%, and
a precision of 94.8% on the UR Fall Detection dataset.

3.1.1 RGB information versus Depth information

Depth images have been used to detect, identify and localize human body parts in
real time [13] and have demonstrated to have high reliability on real time gaming
systems. Some studies have underlined the benefits of not using RGB images in some
visual-sensor-based systems to track human motion, where color invariance has been
convenient. This is because for some classification tasks, depth images can actually
encode enough relevant information. Sangheon Park et al.[14] in Figure. 6 shows a set
of RGB and depth images under different lighting conditions. Frames (a) and (b) are
images under normal illumination conditions. In contrast, frame (c) shows the same
man posing as in the previous image, but because of the poor lighting conditions it
is tougher to appreciate it, whereas the depth camera seems to be resilient to this
lighting variation. On the other hand, most of the previous color-based works were
based on shape features extracted from human region candidates, e.g. real-time hand
tracking where skin color and motion information were broadly used [17].

Depth data has been used in many research papers either solely or supplementing
RGB data, and has been verified to be resilient in changing illumination conditions.
Its broad use for fall detection is justified by the number of advantages in classification
tasks, and particularly in those with segmentation problems, such as human motion
recognition. Where the person needs to be detected and then subtracted from the
background to give us a far more granular understanding about the person’s shape
and posture in the image.
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Figure 6: RGB vs Depth images under different lighting conditions [14]. (a) RGB
img. in normal lighting condition; (b) Depth img. in normal lighting condition; (c)
RGB img. in low lighting condition; (d) Depth img. in low lighting condition

The Table 3 summarizes some of the advantages and disadvantages of depth and
RGB information in solving segmentation tasks, such as human pose recognition
and motion tracking.

Table 3: Advantages and disadvantages of color and depth data [15, 14, 16]

RGB data Depth data

Advantage Easy to find feature

Resilient to light variation
Getting real depth value

Remove or mitigate sources of ambiguity
Shorter time of processing

Disadvantage Sensitive to changing light conditions
Occlusion

Hard to find features
Noise in edges

Occlusion

3.2 Sensor-based database systems

The great availability, portability and relative invariability to environmental changes
of wearable sensors have enabled researchers to collect relevant information to help
to detect when a fall is happening. Among the most cited sensor-based datasets are
summarized in [18]. In light of the privacy concerns video surveillance may raise,
ambient and wearable sensors have been good allies in fall detection because they
keep individuals’ identity undisclosed. Some of the most cited public sensor-based
datasets for fall detection are summarized as follows:
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MobiFall [23] has been a popular dataset cited in many research papers created by
the Biomedical Informatics and eHealth Laboratory of Technological Educational
Institute of Crete. This dataset collects information from an inertial module (3D
accelerometer and gyroscope) of a smartphone located in a trouser pocket. Twenty-
four volunteers, men and women between 22 to 47 years old, performed 4 different
types of falls (Forward-lying, Front-knees-lying, Sideward-lying, Back-sitting-chair)
and 9 ADLs. ADLs were chosen based on real-life frequency and on their affinity to
actual falls, which might lead to false positive cases. K-nearest neighbours classifier,
10-fold cross-validation and subject-wise percentage split, were the methods used in
this paper.

Another publicly available dataset is the extended version of MobiAct [24] which is
based on MobiFall, and includes 4 different types of falls and 12 different ADLs from
a total of 66 volunteers with more than 3200 trials, all captured by a smartphone
located in a trouser pocket. Actually MobiAct is considered to be suitable for both
HAR or HFD research. The classifiers IBk (with 1 nearest neighbor), and J48 decision
tree had the best performance in classifying ADLs, getting an accuracy of 99.88%
and 99.3% respectively.

tFall dataset by Medrano et al.[25] uses the embedded accelerometer of two smart-
phones positioned in the person’s pocket and hand bag. It collects data from seven
male and 3 women with ages ranging between 20 to 42 years old. The activities were
differentiated as Fall and ADL. The samples were gotten every 0.02ms(50Hz). This
study implemented One-Class SVM and Neural Networks for learning models and for
evaluation, they implemented 10-fold cross-validation. SVM sensitivity 92.9%, 1NN
sensitivity 90.0%, SVM specificity 91.7%, geometric mean squ(SP*se) SVM 92.2%,
1NN 86.9% , SVM AUC 96.8%, 1NN 91.5%. The authors showed that when the
algorithms were tested with part of her or his own data, personalized, it boosted
their performance.

The UMAFall dataset [26] includes 531 files (322 ADLs and 209 falls), collected from
a smartphone located in the right thigh pocket, and other wearable sensors positioned
in the right wrist, ankle, hip, waist and chest. This paper analysed the relationship
between the sensing point location and the performance of threshold-based approach
for fall detection.

The SisFall [31] database used two self developed devices with two accelerometers
and one gyroscope positioned on subjects’ waist. They collected information from
15 types of falls and 19 ADLs, from 38 subjects ranging from age 19 to 75 years
old. The authors followed the common pipeline to process the data: pre-processing,
feature extraction, classification, and validation. Threshold-based classification and
10-fold cross-validation set-up to validate the robustness of the classification.

The DLR [27] dataset was generated by the German Aerospace Center which gathers
information from an IMU sensor worn on the belt by 16 participants. This research
paper designed and evaluated a system for activity recognition for seven ADLs. The
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authors showed that a Hidden Markov Model (HMM) based on Bayesian Network
achieved a precision of 80% and 100% for recall.

In Vilarinho’s et al. [28] implemented a system based on threshold and pattern
recognition techniques for fall detection and daily activities recognition.

Finally, TST [36] Fall detection dataset contains depth frames, skeleton joints, and
acceleration samples collected during simulation of ADLs and falls.

3.2.1 Wearable sensors

The Table. 4 shows an overview of the functionality of the most common wearable
devices used in falls detection. MEMS wearable sensors have been widely used in
this field in part due to their affordability, global adoption of these smart devices,
and also because there are less privacy concerns compared to RGB cameras.

Although existing sensor-based methods have proved to have good results identifying
falls, the batteries of these wearable sensors need to be recharged or replaced, which
may lead to stop wearing them if there is not someone else who takes care of it.
Besides, some users may express some discomfort after wearing them for a long time,
which is most likely to happen among elderly because they are simply not accustomed
to it.

3.3 Multimodal-based database

Many existing methods are based on wearable devices with motion sensors, such
as accelerometers and gyroscopes, which have got reasonably good results in fall
detection. However, users could feel uncomfortable after wearing the device for a long
time, or sometimes forget to wear them. Besides, wearable devices consume batteries
that need to be replaced or recharged frequently. Visual monitoring hence has some
advantages, where users are freed from wearing devices with minimum disturbance to
their daily lives. The Table. 5 shows some of the relevant multimodal-based systems.

3.4 Limitations of existing datasets

From the literature review we can see that researchers still having some limitations
when developing automatic systems for Human Fall Detection. Overall the majority
of the published articles worked with data collected from lab conditions [7], and not
in day-living environment or from publically available datasets.

The availability of multimodal datasets is still being less compared to single-based
sensor modality. Around 88% [7] of the studies conducted for fall detection are
wearable-sensor-based, captured by either IMU sensors or embedded sensors in smart-
phone.

There is only one dataset [31] with more than eight fall styles. Finally, it is important
to stress that most of subjects of study were young healthy adults instructed to
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Table 4: Functionality of the most common motion sensors for fall detection

Sensor name Functionality Image

Accelerometer

Accelerometer is an electrome-
chanical device that detects
linear acceleration along an
axis. Its measure units are me-
ters per second squared (m/s2)
or in G-forces (g).

Gyroscope

A device used for measuring
rotational changes (angular ve-
locity along an axis) or main-
taining orientation. The units
of angular velocity are mea-
sured in degrees per second
(°/s) or revolutions per second
(RPS).

Magnetometer

A magnetometer measures the
power and direction of mag-
netic fields. Magnetometers
measure a magnetic field or
flux density in metric units of
gauss (G) or the international
system (IS) unit tesla (T).

IMU

An Inertial Measurement Unit
is essentially the three sensors
embedded in one system, that
is, Accelerometer + Gyroscope
+ Magnetometer sensor. It
has 2 to 6 degrees of freedom,
which describe the movements
of an object in 3D space

simulate falls. Moreover, there are few datasets that consider the impact of sensors
placement on the performance of whatever machine learning algorithm used.

4 Scope

This paper aims to provide a comparison of the performance of deep learning algo-
rithms (Convolutional Neural Network and Multi-Layer Perceptron) for fall detection
systems addressing two different approaches. Firstly, a system where its inputs are
only image data (RGB + Depth) and learning model is CNN. And secondly, a system
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Table 5: Comparison between multimodal datasets and their performance.
Dataset Type of sensors or Cameras Subjects No.Samples Learning model Performace

UR Fall Detection 1 IMU, 2 Depth cameras 5 70 sequences
SVM for depth
SVM for depth + acc
Threshold UFT and LFT

Depth:
accuracy 90.0%, precision 83.3%,
sensitivity 100%, specificity 91.25%.
Depth + cc:
accuracy 98.33%, precision 96.77%,
sensitivity 100%, specificity 96.67%

UP-Fall

5 IMU,
1 electroencephalograph (EEG) ,
6 infrared in grid
2 cameras

17 3 repetitions
Random Forest,
SVM, neural
networks, KNN

IR+IMU+EEG :
69.38% (RF) and 68.19% (MLP)

MHAD

6 accelerometers,
4 microphones,
1 motion capture system,
4 multiview cameras,
1 Depth camera

12 5 repetitions SVMs, KNN accuracy 98.24%

Dovgan et al [*25] Ubisense system,
1 Accelerometer 10

3 for ADL

2 for falling

SVM
C4.5

Ubsinse :
accuracy 95.58%
Accelerometer:
accuracy 57.96%

CMDFALL 7 overlapped Kinect sensors
2 accelerometers 50 400 Falls

600 ADLs

C3D convnet on RGB
DMM-KDES on Depth
Res-TCN on skeleton
2D ConvNet on Acceleration

RGB + Depth + Skeleton +Acc:
F1-Score: 98.29%
RGB +Skeleton: 98.29%

where accelerometer data is added implementing MLP model.

5 Hypothesis

It is not possible to fully describe when a fall is happening using a single sensor, this
is because either wearable, ambient or visual sensors have their own limitations. De-
veloping a fall detection system based on multiple inputs and mixed data information
coming from different sensors improves the performance of deep learning algorithms
because it compensates for sensors disadvantages.

6 Methodology

6.1 Data Gathering

The our proposed FDS almost followed the general pipeline described in the Figure. 2.
For data gathering, this study used the public multimodal dataset, UR Fall Detection
Dataset. We selected this dataset because its availability and also because it has
been used by many research papers we can later compare the results of this proposed
approach.

6.1.1 Dataset

The UR Fall Detection Dataset was generated by the University of Rzeszow [21],
when studying traditional machine algorithms for a system which integrated depth
maps and accelerometer data to reduce false-alarm errors.

There are two types of falls: falling from standing position and falling from sitting
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on a chair, and common activities like walking, sitting down, crouching down and
lying. Motion data was synchronized with all RGB and depth sequences.

Activities of daily living were recorded using only the camera parallel to the floor,
front view, and x-IMU (256Hz) sensor. The 70 sequences were recorded in typical
indoor environments, like offices, classroom, rooms, etc. The Table. 6 summarizes
the main features of the UR Fall Detection dataset.

Table 6: UR dataset description

No.
subjects

No. of samples
(ADLs/Falls)

Types of
sequences

(ADLs / Fall)

Types of
sensors

Sensors
position

No. of
sensor
points

Views

5 males 40 / 30 4 /2
Depth camera
RGB camera

IMU
Waist 1 Front view

Top view

The extracted features from depth maps are stored in CSV format. Each record
contains the following information:

• sequence name

• frame number

• labels :

-1 : subject is not lying

1 : subject is lying on the ground

0 : is temporary pose, when subject "is falling"

And some other depth features for subject detection, such as bounding box height to
width ratio, major to minor axis ratio computed from blob segmentation of segmented
person, bounding box occupancy by person’s pixels,actual human height in [mm] and
distance of person center to the floor in [mm].

6.2 Data preprocessing

6.2.1 Pre-processing categorical data

The UR Fall dataset required minimal preprocessing. For labelling we change the
original labels described previously, and we considered the following categorical la-
bels:

0 : when subject is not lying

1 : when subject "is falling" or lying on the ground
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6.2.2 Pre-processing image data

1) Data selection

In total 2995 images were selected from the UR Fall Detection Dataset (URFD),
all of them part of the set of fall sequences. That is, we have 11,980 images in
total because of the four cameras (2 Depth and 2 RGB cameras).

2) Image resizing

Image resizing was performed to accelerate the training process of deep learning
models. Therefore, we reshaped our images, from 640x480 to 128x128 pixels.

3) Image normalization

Because the original range of values for depth and RGB images go from 0 to
1, it was not necessary to normalize them.

6.2.3 Pre-processing accelerometer data

1) Signal data normalization

Signal data was normalized into range [0,1] using MinMaxScaler sklearn func-
tion.

6.3 Convolutional Neural Network architecture

We selected Convolutional Neural Network as our learning model because it has
proved to be a power algorithm for image processing. The CNN implemented for
image processing was compiled using categorical cross entropy as loss function with
a batch size of 64 as optimizer we used "adam".

The CNN used when adding the signal data, was almost the same but here we did
not compile our model, using the parameter described previously, Figure. 11 .

The Table. 7 shows the name of the layer, type and the output shape of each layer.
The code implementation can be seen in the Section 12,

6.4 Multi-Layer Perceptron architecture

The Multi-Layer Perceptron model is based on Keras Sequential API. The MLP
architecture comprises one fully connected input layer and a hidden layer, using
ReLu as activation function for both layers. The Table. 8 illustrates the technical
specifications of the architecture implemented.

6.5 Combining deep learning models

In order to create a model able to accept multiple inputs, and also mixed data types
like numerical and image information, we define a Keras model capable to receive
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Table 7: CNN architecture specifications

Layer Type Output shape
input_1 (InputLayer) [(None, 128, 128, 3)]
conv 1 Conv2D (None, 128, 128, 32)
pool1 MaxPooling2D (None, 64, 64, 32)
norm1 BatchNormalization (None, 64, 64, 32)
drop1 Dropout (None, 64, 64, 32)
conv2 Conv2D (None, 64, 64, 32)
pool2 MaxPooling2D (None, 32, 32, 32)
norm2 BatchNormalization (None, 32, 32, 32)
drop2 Dropout (None, 32, 32, 32)
flat Flatten (None, 32768)

hidden1 Dense (None, 512)
norm3 BatchNormalization (None, 512)
drop3 Dropout (None, 512)

hidden2 Dense (None, 256)
norm4 BatchNormalization (None, 256)
drop4 Dropout (None, 256)
out (Dense) (None, 2)

Table 8: Multi-Layer Perceptron architecture specifications

Layer Type Output shape
dense_3 (Dense) (None, 8)
dense_4 Conv2D (None, 4)

numerical data (accelerometer data) and image data from RGB and Depth cameras
at the same time.

Multiple and mixed types of data refers to have multiple types of independent data.

The Figure. 7 shows the two branches of our model to handle each type of data. The
branch number one is the Muti-Layer Perceptron model, which is aimed to handle
numerical data whereas our second branch is the CNN model devised to process RGB
and depth image information. Both branches are concatenated together to build the
final model.

For the concatenation step we used the concatenate function of Keras, where we
passed the outputs of our two branches. Then added 4 dense layers to classify our
image. The output layer of our model is formed by a fully connected layer and a
linear activation function.
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Figure 7: Architecture of deep learning system with multiple and mixed types of
input data.

7 Results and discussion

The test experiments are described as follows:

1. System 1: Image data

• Inputs : RGB (3 channels) + Depth (3 channels)

• Learning model: CNN

2. System 2: Image data

• Inputs : RGB (3 channels) + Depth (1 channel)

• Learning model: CNN

3. System 3: Image data + Accelerometer data

• Inputs : RGB (3 channels) + Depth (3 channels)

• Learning model: CNN and MLP

4. System 4: Image data + Accelerometer data

• Inputs : RGB (3 channels) + Depth (1 channel)

• Learning model: CNN and MLP

The results showed that CNN model performed well when it was fed either with
RGB and depth data considering 3 channels and 1 channel, Figure. ??, respectively,
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or when we treated depth image as RGB image.

Figure 8: Confusion matrix using : (a) RGB and Depth (3 channels) and (b) RGB
and Depth depth data (1 channel)

Table 9: Comparison of fall detection performance between system 1 and system 2

Precision Recall F1-score Accuracy
System 1 0.88 0.94 0.91 0.9549
System 2 0.89 0.81 0.85 .9149

However, the overall performance of our model decreased dramatically when we
added the signal data of the accelerometer, going from 95.24% of accuracy to 71.79%
for our first test case. And from 91.49% to 68.20% for the second test case, which
after 5 to 6 epochs the improvement of the accuracy halted. We tried to solve this
issue changing some parameter in the definition of the MLP architecture but we did
not see positive impact on the final result.

The Figure. 9 and Figure. 10 show the accuracy value versus the number of epochs
of System 1 and System 2 respectively. Overall, it can be seen that the value of
accuracy for System1 in test phase fluctuated dramatically specially during the first
35 to 40 epochs, before started increased to just under 96%. On the other hand,
accuracy of System 2 became steady around epoch 26.

Although the loss value plot versus epoch for System 1 showed some important
peaks in two times, the loss value always seemed to decreased. In contrast, it was
not possible to visualize a decreasing trend of the loss value in System 2.
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Figure 9: CNN performance of System 1. Accuracy value vs number of epochs

Figure 10: CNN performance of System 2. Accuracy value vs number of epochs
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Table 10: Comparison of fall detection performance between all the systems

Accuracy
System 1 95.49
System 2 91.49
System 3 71.79
System 4 68.20

8 Conclusions

Things that have been learned as a result of the work you have done. You should
check once again how well the major components are linked: research questions,
literature review, choice of appropriate method and techniques, and findings.

Recommendations are usually found in reports. They include a set of actionable
steps with goals associated along with possible solutions.

9 Future work

In order to enhance the performance of the proposed FDS in this paper, we plan
to analyse and redefine the architecture of the Multi-Layer Perceptron model and
the process used to concatenate these two architectures, which may be the reason of
diminishing the performance.

We also want to implemented Long-Short Term Memory model to exploit tempo-
ral information from accelerometer data and image sequences contained in UR Fall
Detection dataset.

10 Recommendations

In the literature review, preprocess image data has proved to improved the overall
performance of whatever ML implemented for fall detection, then, we recommend
try to apply one of the image preprocessing techniques described in our theoretical
framework.
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12 Appendices

Figure 11: CNN architecture implementation in python code.
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