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Abstract

Recurrent Neural Networks (RNNs) are typically used to learn representations in partially observable

environments. Unfortunately, training RNNs is known to be di�cult, and the di�culty increases for

agents who learn online and continually interact with the environment. Two common strategies to

overcome this di�culty are to approximate gradient-based algorithms for learning the recurrent

state or to find a recurrent architecture for which a computationally cheap gradient-based learning

algorithm exists. Methods in the second category often limit representational capacity, just as

using linear activations or diagonal weight matrices. In this work, we propose a novel recurrent

architecture called Recurrent Trace Units (RTUs). RTUs expand representation capacity, but remain

inexpensive to train. We derive RT2, a real-time recurrent learning algorithm for RTUs that is

tractable, exact and has linear compute and memory complexities. We investigate performance on a

diagnostic benchmark inspired by animal learning and across several partially observable control

environments. We show the agents that use RT2 achieve overall better performance when faced

with long-term prediction tasks, and reach their goals faster in control tasks.
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Chapter 1

Introduction

Animals perceive their surrounding environment through imperfect sensory observations. These

observations reflect only partial information about the environment and determine the limits of the

knowledge about the surrounding environment. For example, an animal can not perceive an object

outside their field of view, which is a limitation of their vision.

Predicting and controlling the surrounding environment under partial observability is a salient

feature of all natural intelligent agents. For example, imagine driving on a highway. You see a

sign Sharp Curve in 10 km. You keep driving, and for the next 10 km, there is no information

about that sharp curve. Still, your brain compensates for this partial observability by remembering

important information about the world and signaling you to slow down in anticipation of the sharp

curve. Moreover, empirical experiments on animal learning confirm that animals can make long-term

predictions under partial observability. In classical conditioning, after a series of trials conditioning

food to a cue signal, animals learn to predict food arrival based on the cue signal, usually a sound,

which is observed many steps before food arrival (Pavlov, 1927).

Predicting and controlling the world is not innate to animals; they learn this ability by interacting

with the world. The interaction with the world happens over the animal’s lifetime, and through this

continual interaction, animals learn some of the underlying regularities in the observations allowing

them to accurately predict and control di↵erent aspects of the world around them.

Interacting with the world under partial observability is not limited to natural intelligent agents.

A self-driving car, for example, also interacts with the world under partial observability; the sensors

attached to the self-driving car limit the perceived information about its surrounding environment.

Thus, to successfully deploy artificial agents in the real world, we need to equip them with the

ability to predict and control aspects of the environment under partial observability.

In this work, we tackle the computational aspects of learning under partial observability. We
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study this problem within the Reinforcement Learning (RL) framework. RL agents learn from

experience by interacting with their environment, similar to how animals learn. We also focus on

the continual online learning setting where agents learn and are evaluated as they interact with the

environment, which resembles the setting faced in the real world.

1.1 Problem Statement

When the state of the environment is partially observable, agents are responsible for constructing

and maintaining their sense of state using the stream of observations. The constructed agent state

summarizes all past environment-agent interactions that are useful to predict and control future

interactions (Sutton, 2020b) and helps the agent mitigate partial observability.

Recurrent Neural Networks (RNNs) provide a possible solution for the agent state construction

problem ( Kapturowski et al., 2019; Li et al., 2015; Hausknecht and Stone, 2015; Espeholt et al.,

2018; Gruslys et al., 2018). An RNN can learn to summarize and abstract a long trajectory of

interactions in one vector, its recurrent state. This concise summary of all interactions helps the

agent predict aspects of the environment and take better actions. Unfortunately, training RNNs is

di�cult (Pascanu, Mikolov, and Bengio, 2013), and the di�culty increases when we use RNNs in

the online continual learning setting, which is the focus of this work.

Training RNNs typically uses Truncated-BackPropagation Through Time (T-BPTT), a gradient-

based learning algorithm that unrolls the recurrent dynamics through time up to a specific time

step, defined by the truncation length (Williams and Peng, 1990). T-BPTT requires saving the

inputs to the RNN from all the previous time steps to perform one update to the RNN’s learnable

parameters. As a result, the computation and memory complexities of T-BPTT are functions of the

truncation length. Learning with T-BPTT involves a trade-o↵ between the network’s ability to look

further in time and its compute and memory requirements; to look further back in time, we need to

increase the truncation length, increasing both the memory and the compute required per update.

An alternative to T-BPTT is Real-Time Recurrent Learning (RTRL), a gradient-based learn-

ing algorithm that uses the gradient’s recurrent nature and carries forward the needed gradient

information instead of unrolling the recurrent dynamics back in time (Williams and Zipser, 1989).

In theory, the RTRL algorithm allows the network to look back arbitrarily many steps, and the

computation and memory complexities per update are fixed, albeit expensive. While the motivation

behind RTRL is appealing for online learning, its expensive computational and memory complexities

render it intractable even for moderately sized networks.

We can divide the literature on overcoming the expensive training of RNNs into two categories.

In the first category, we have methods for finding an approximate gradient-based algorithm for

learning the recurrent dynamics. In the second category, we have attempts to find a recurrent
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architecture for which a computationally cheap gradient-based learning algorithm exists. Each

category has advantages and flaws, which we touch upon next.

Methods in the first category typically start with a widely used RNN architecture such as

Vanilla RNN, Gated Recurrent Units (GRUs) (Cho et al., 2014), and Long-Short Term Memory

(LSTM) (Hochreiter and Schmidhuber, 1997) and attempt to approximate the gradient while

maintaining a good performance. Examples of these methods include the NoBackTrack algorithm,

which avoids propagating the gradient through time by maintaining a vector in the parameter

space corresponding to a stochastic gradient estimation (Ollivier, Tallec, and Charpiat, 2015). The

NoBackTrack algorithm requires that the RNN is sparse. Moreover, due to the randomness in

estimating the gradient direction, it su↵ers from high variance. Improving on the NoBackTrack

algorithm is the Unbiased Online Recurrent Optimization (UORO) algorithm (Tallec and Ollivier,

2017), which removed the need for sparsity. However, the high variance issue is still unresolved

(Cooijmans and Martens, 2019). Another method in this category is Sparse N-Step Approximation

(SnAp) (Menick et al., 2021), which uses a sparse approximation of the gradient to build a tractable

RTRL algorithm. However, the tractability of the SnAp algorithm is tied to having a highly sparse

gradient approximation, which leads to a biased gradient update.

To find an RNN for which exact gradient estimation is cheap, methods in the second category

usually restrict the RNN architecture to reduce the number of learnable parameters and, as a

result, the complexity of calculating the gradient. Restricting the RNN architecture leads to losing

its full representational powers, which can result in poor performance. For example, Javed et al.

(2023) showed that Columnar Networks, a diagonal RNN architecture, often performed poorly.

To overcome the loss of representational power in Columnar Networks, they proposed combining

them with a constructive approach that iteratively learns new columnar features. Recent work

suggests overcoming the poor performance of diagonal RNNs by having a complex-valued recurrent

state instead of restricting it to real values (Orvieto et al., 2023). However, this new recurrent

architecture, namely Linear Recurrent Units (LRUs), was only applied in the o✏ine learning setting

with T-BPTT as the learning algorithm. Hence, it has the same tradeo↵ between looking further

back in time and the computational complexity.

The self-attention mechanism ( Vaswani et al., 2017) has been widely used for modeling long

sequences, making it another potential solution for the agent state construction problem ( Parisotto

et al.). However, recent work suggests that the self-attention mechanism is unsuitable for modeling

sequences with temporal correlation( Zeng et al., 2022), which is the case in RL. Additionally, we

breifly explain in 2.3 why the sequence processing, as done in the self-attention mechanism, is

unsuitable for our problem setting.

We can think of an online learner as mostly doing three things:

1. Defining a parametrized function that map the observations to an internal state. A naive
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algorithm could store all observations and define an internal state as the history of all observa-

tions. On the other hand, a plausible algorithm learns to construct a concise representation of

that history.

2. Making predictions (or taking actions) with the help of the function defined in the previous

step.

3. Updating the functions’ learnable parameters when given an error signal to minimize the

overall error signals.

Algorithm 1 shows an example of an online learner for a prediction task. In this algorithm, we

assumed that step (1) happens before learning starts since this step specifies how many layers and

parameters we want in the neural network and the connections between the layers. The learner

continually repeat step (2), making predictions, and step (3), updating the learnable parameters.1

Algorithm 1 Online perdiction

Input: a di↵erentiable parametrization of the recurrent function f : Rn
⇥Rd

! Rn.
. f is a vector-valued function that maps the previous recurrent state and the current input to a
new recurrent state.
Input: a di↵erentiable parametrization mapping the recurrent state to a prediction g : Rn

! R.
. g is a scalar-valued function that maps the recurrent state to a prediction.

Initialize: the set of parameters defining f(·) and g(·).
Initialize: the initial recurrent state h0

.
= 0.

for each input xt do

Forward Pass: update the recurrent state: ht = f(ht�1,xt)
and make a prediction: ŷt = g(ht).
Evaluate: recieve a loss: Lt(ŷt, yt). . yt is the ground truth at time t.
Backward Pass: update f(·) and g(·) parameters to minimze the loss.

. The Backward Pass may not happen every time step.

The setting of continual online learning imposes a constraint on the learning algorithm that

arguably does not exist when learning o✏ine. The constraint is that the algorithm’s computation

and memory complexities per time step should be constant, i.e., independent of the current time

step. An agent continually interacting with the environment makes a prediction or takes an action

at each time step. Hence, if the learning algorithm’s complexity depends on time, the memory

and the computation resources required by the algorithm will keep growing indefinitely, which is

impractical. This constraint restricts both the class of parametrized functions and the learning

algorithm; a function that takes as input the whole history of interactions, for example, violates this

1
To my knowledge no algorithm is yet able to construct the function on the fly so we assume that this phase is

done prior to interacting with the environment.

4



constraint, and a learning algorithm that requires saving all previous inputs to perform gradient

updates also violates this constraint.

1.2 Contributions

This work introduces a novel recurrent architecture, Recurrent Trace Units (RTUs). RTUs belong

to the second category: it is a recurrent architecture for which calculating the exact gradient is

cheap. We derive an RTRL learning algorithm for RTUs with linear computation and memory

complexities while still calculating the exact gradient. We call the combination of RTUs and RTRL

the RT2 algorithm: Real-Time RTUs. Unlike T-BPTT, RT2 calculates the exact gradient and can

retain information from arbitrary long sequences without truncation. Additionally, RT2 is suitable

for online learning even under constrained computational resources as it has linear complexity.

Similar to LRUs, RTUs use a complex-valued diagonal recurrence. However, RTUs use di↵erent

representations of complex numbers that facilitate RTRL updates. We show that RT2 outperforms

other recurrent-based approaches in the online learning setting, first on a prediction benchmark

inspired by animal learning and then on several partially observable classical control tasks.
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Chapter 2

Background

In this chapter, we briefly describe Markov Decision Processes (MDPs), a formalization of the

sequential decision-making problem with an underlying assumption of Markovian states. We then

introduce the partially observable setting where the Markovian assumption is invalid and describe

the agent state construction problem that arises in this setting. We then briefly touch on the

self-attention mechanism and why it is unsuitable for our problem setting. Finally, we describe

using Recurrent Neural Networks (RNNs) as a solution method for the agent state construction

problem and discuss their limitations when the agent is learning online.

2.1 Markov Decision Processes

Markov Decision Processes (MDPs) are a classical framework for modeling the sequential decision-

making problem. In the MDP formalization, an agent and an environment interact over discrete

time steps t = 0, 1, 2, · · · . At each time step t, the agent perceives a state st 2 S and takes an

action At 2 A(st). Depending on the action taken, the agent finds itself in a new state st+1 2 S

and it gets a reward signal from the environment Rt+1 2 R. The agent’s goal is to maximize the

received rewards. Towards this goal, the agent learns a policy ⇡ : S ! A specifying the probability

of selecting each action in the current state. The better the learned policy, the more rewards the

agent collects. Formally, the agent aims to maximize the expected cumulative sum of the rewards,

the return: Gt
.
= E⇡[Rt + �Rt+1 + �

2
Rt+2 + · · · ], where � 2 [0, 1] is a discount factor determining

how much the agent cares about immediate and future rewards (Sutton and Barto, 2018).

The MDP formalization assumes that the states have a Markov property. The Markovian

assumption means that the perceived state at time t contains all the information about the

environment and past agent-environment interactions. However, in many applications, the agent

only perceives its sensory observations, which reflect only partial information about the environment.
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Figure 2.1: Agent-environment interaction step at time t. ot is a sensory observation reflecting
incomplete information about the environment.

Figure 2.1 shows one step of the agent-environment interactions at time t in such cases. An

observation at time t, ot, does not capture all the aspects of the environment and past agent-

environment interactions. Hence, the observations lack the Markov property. We call the setting

where the agent perceives ot rather than st as the partially observable setting.

2.2 Agent State Construction

We can view the Markovian assumption as a limitation on the agent rather than the MDP framework

(Sutton and Barto, 2018). The agent is responsible for maintaining its sense of state. Hence, when

interacting with a partially observable environment, the agent should learn to use the stream of

observations to construct its state, the agent state. The agent state summarizes information from

the history of the agent-environment interactions that are useful for prediction and control (Sutton,

2020b).

We can think of the state at time t as a concatenation of the whole interaction history up to t:

st
.
= o0, A1, R1,o1, A2, R2, . . .ot.

However, as we saw in section 1.1, storing the whole history is not plausible; we want the agent to

have constant memory and computational requirements per time step and storing the whole history

causes the memory and the computation to grow with time. Alternatively, the agent should learn

a concise representation of the history and update that representation at every time step using

the new observation. We refer to the agent’s internal representation of the history at time t as its
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hidden state ht, ht approximates st. The agent constructs its current hidden state ht 2 Rn from its

previous hidden state ht�1 2 Rn and the recent observation ot 2 Rd using a state-update function

f : Rn
⇥Rd

! Rn:

ht = f(ht�1,ot).

Agent state construction is essential to any RL agent under partial observability; the state is

the input to the value function, the policy, and both an input and an output of the environment

model for model-based RL agents. Thus, the quality of the constructed states heavily a↵ects the

agent’s performance.

2.3 The Self-Attention Mechanism

This section briefly describes the self-attention mechanism and why it is unsuitable for the continual

online learning setting.

Vaswani et al.( 2017) introduced the self-attention mechanism for machine translation, and

since then, this mechanism resulted in many advances in the field of language modelling ( Dai et al.,

2019; Radford et al., 2019; Yang et al., 2019). Roughly speaking, the core idea behind self-attention

is that for a sequence of data points, we can find the similarity between each pair in this sequence,

and based on this similarity measure, we generate a suitable output. Figure 2.2 illustrates this

idea. The self-attention mechanism has been the key to the recent success of transformer-based

architecture ( Vaswani et al., 2017).

Figure 2.2: A rough schematic of the self-attention mechanism. The self-attention mechanism
calculates the similarity between each input, such as xt, and all the other input elements in the
sequence.

Two main issues limit the use of self-attention mechanisms in online learning. First, we need

to have the whole sequence of observations before taking an action or updating the learnable
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parameters, which is impractical in continual learning. Second, calculating the similarity between

each pair of points results in a computational complexity that is a function of k2, where k is the

sequence length. Moreover, calculating the similarity between all pairs ignores the temporal order of

the data points, which limits the usefulness of self-attention when the data is temporally correlated

( Zeng et al., 2022).

Recent work, such as the Gated Transformer-XL (GTrXL), tried to overcome the first issue

by keeping a moving window of previous observations. As Figure 2.3 shows, keeping a moving

window of past observations allows taking actions at each time step. However, we still have the

computational complexity of operating on the saved history. We also lose all information from the

history before the truncation length.

Figure 2.3: Using a moving window of past observations in GTrXL.

We end this section with a final remark on recent advances in language modeling. Recent

advances in Large Language Models (LLMs) could give the impression that the problem of modeling

long sequences is solved. However, all these advances were only limited to the o✏ine learning

setting, where training happens once using a large amount of o✏ine data. Then, the model is frozen

and deployed. This setting di↵ers from how animals continually learn; success in this setting is

rarely extendable to the continual online learning setting where observation occurs one at a time.

Additionally, only a handful of institutions can benefit from and contribute to the recent advances

in LLMs, as these models are expensive to train and use. In contrast, this thesis focuses on scalable,

cheap algorithms for learning long temporal relations.

2.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) provide a solution method to learn the state-update function

and the agent state.1 This section describes two common ways to learn RNN’s parameters online.

We start with an overview of some mathematical notations and then describe online learning with

RNNs.
1
In the rest of the thesis, we use state, agent state, recurrent state, and hidden state interchangeably depending on

the context. But in all cases, we mean the agent state. In the context of RNNs, we usually use recurrent state or

hidden state to align with RNNs literature. While in the context of RL, we use agent state or simply state.
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2.4.1 Mathematical Notation

Before we dive into learning with RNNs, we first describe the mathematical notations we use in the

analysis and in the following chapters.2

Scalar-Vector Derivatives

Let h 2 Rn be a vector, we denote the element of h at index i as hi. Let l 2 R be a scalar and f be

a scalar-valued function. i.e, f : Rn
! R. Assume that l = f(h), then the derivative of l w.r.t h is

defined as:

@l

@h

.
=


@l

@h1
,
@l

@h2
, . . . ,

@l

@hn

�>
. (2.1)

Vector-Vector Derivatives

Let g be a vector-valued function. i.e, g : Rn
! Rn. Assume that g can be represented by a vector

of scalar-valued functions where gi : Rn
! R. Let v 2 Rn be a vector where v = g(h), then each

element in v is a function of all elements in h. i.e, vi = gi(h). The derivative of v w.r.t h is defined

as:

@v

@h

.
=

2

6666664

@v1
@h1

@v2
@h1

· · ·
@vn
@h1

@v1
@h2

@v2
@h2

· · ·
@v2
@hn

·

·

@v1
@hn

@v2
@hn

· · ·
@vn
@hn

3

7777775
. (2.2)

Let u be a vector-valued function. i.e, u : Rn
! Rn. Assume that u can be represented by a

vector of element-wise scalar-valued functions where ui : R ! R. Let x 2 Rn be a vector where

x = u(h), then each element in x is a function of the corresponding elements in h. i.e, xi = ui(hi).

The derivative of x w.r.t h is defined as:

@x

@h

.
=


@x1

@h1
,
@x2

@h2
, . . . ,

@xn

@hn

�>
. (2.3)

2
This section is practically a summary of the relevant parts of this complete review on Matrix Calculus:

https://www.cs.cmu.edu/ mgormley/courses/10601/slides/10601-matrix-calculus.pdf
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Scalar-Matrix Derivatives

Let W 2 Rn⇥n be a matrix, we denote the element of W at row i and column j as wi,j . Let l 2 R

be a scalar and f be a function that maps W to l. i.e, f : Rn⇥n
! R. Then the derivative of l w.r.t

W is defined as:

@l

@W

.
=

2

66666664

@l
@w1,1

@l
@w1,2

· · ·
@l

@w1,n

@l
@w2,1

@l
@w2,2

· · ·
@l

@w2,n

·

·

@l
@wn,1

@l
@wn,2

· · ·
@l

@wn,n

3

77777775

(2.4)

Vector-Matrix Derivatives

Let v 2 R
n be a vector and f be a function that maps W to v. i.e, f : Rn⇥n

! Rn. Then the

derivative of v w.r.t W is 3-dimentional matrix with shape n⇥ n⇥ n, a matrix at index i is defined

as:

@vi

@W

.
=

2

66666664

@vi
@w1,1

@vi
@w1,2

· · ·
@vi
@w1,n

@vi
@w2,1

@vi
@w2,2

· · ·
@vi
@w2,n

·

·

@vi
@wn,1

@vi
@wn,2

· · ·
@vi
@wn,n

3

77777775

(2.5)

2.4.2 Learning Recurrent Neural Networks Online

For describing RNNs, we use xt as the input to the recurrent function. xt can simply be the

observation at time t or a pre-processed observation. For example, pixel-based observations

are usually processed with convolutional layers before passing them to the recurrent function

(Kapturowski et al., 2019), in such cases, the input to the RNN is a pre-processed observation.

Consider an RNN with dynamics written as ht = f(ht�1,xt,   ), where ht 2 Rn is the recurrent

state, xt 2 Rd is the input,    is a set of the network’s learnable parameters, and the subscript t

denotes the time step. The agent maps the recurrent state to an output ŷt to make a prediction

or take an action: ŷt = g(ht,���), where ��� is another set of learnable parameters. Later, the agent

receives a loss Lt
.
= L(ŷt, yt) indicating how far the output is from a target yt. Finally, the agent

updates    and ��� to minimize the prediction loss overall the interactions so far, i.e., minimize

L = 1
t

Pt
i=1 Li, where t is the current time step.

Gradient-based learning algorithms minimize L by updating    and ��� to follow the opposite
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direction of the gradient r   L and r���L, respectively. In this work, we focus on updating    since it

includes the recurrent parameters used to update the agent state. There are two main gradient-based

algorithms widely used to train RNNs: BackPropagation Through Time (BPTT) and Real-Time

Recurrent Learning (RTRL).

2.4.3 BackPropagation Through Time

BPTT calculates the gradient, r   L, by unfolding the recurrent dynamics through time and

incorporating the impact of the parameters on the loss from all observed time steps. Formally, we

can write r   L as:

r   L =
1

t

t�1X

i=0

r   Li

=
1

t

t�1X

i=0

@Li

@hi

@hi

@   
.

(2.6)

When calculating @hi
@   , we need to consider the e↵ect of    from all the time steps. To illustrate

this e↵ect, consider unrolling the last 2 steps of the RNN dynamics:

ht = f(ht�1,xt,   )

Re-write ht�1 as f(ht�2,xt�1,   )

= f(f(ht�2,xt�1,   ),xt,   )

Re-write ht�2 as f(ht�3,xt�2,   )

= f(f(f(ht�3,xt�2,   ),xt�1,   ),xt,   ).

(2.7)

Equation 2.7 shows that the network parameters    a↵ect the construction of the recurrent state ht

through two pathways: a direct pathway, i.e., using    to evaluate f(ht�1,xt,   ), and an implicit

pathway, i.e.,    a↵ected constructing all previous recurrent states, ht�1, . . . ,h1, and all those

recurrent states a↵ected ht construction. Thus, to calculate @ht
@   , we need to consider those two

pathways:
@ht

@   
=
@f(ht�1,xt,   )

@   
+
@f(ht�1,xt,   )

@ht�1

@ht�1

@   
. (2.8)

Once again, we need to consider the two pathways when evaluating @ht�1

@   in 2.8. For simplicity, let

12



Jt
.
= @ht

@   , Bt =
@f(ht�1,xt,   )

@   , Ct =
@f(ht�1,xt,   )

@ht�1
, and re-write 2.8:

Jt = Bt +CtJt�1

Unrolling Jt�1

= Bt +Ct (Bt�1 +Ct�1Jt�2)

= Bt +CtBt�1 +CtCt�1Jt�2

Unrolling Jt�2

= Bt +CtBt�1 +CtCt�1 (Bt�2 +Ct�2Jt�3)

= Bt +CtBt�1 +CtCt�1Bt�2 +CtCt�1Ct�2Jt�3

Keep unrolling

= Bt +CtBt�1 +CtCt�1Bt�2 +CtCt�1Ct�2 . . .

= Bt +
t�1X

k=1

 
tY

i=k+1

Ci

!
Bk,

(2.9)

where J0 = 0, assuming we initialize h0 = 0. Using the results from 2.9, we can now write the

expanded @ht
@   :

@ht

@   
=
@f(ht�1,xt,   )

@   
+
@f(ht�1,xt,   )

@ht�1

@ht�1

@   

=
@f(ht�1,xt,   )

@   
+

t�1X

k=1

 
tY

i=k+1

@f(hi�1,xi,   )

@hi�1

!
@f(hk�1,xk,   )

@   
.

(2.10)

As we can see from 2.10, the agent needs to store all the previous inputs and hidden states to

evaluate @ht
@   which is impractical; the computation and memory complexity will be increasing as t

increases.

Truncated-BackPropagation Through Time

Williams and Peng (1990) introduced Truncated-BackPropagation Through Time (T-BPTT) which

solves the issue of increasing memory and computational complexities of BPTT. In T-BPTT, we

specify a truncation length T which controls the number of steps taken into consideration when

calculating the gradient in 2.10. Hence, the computation and memory complexities for learning the

parameters are fixed for all the time steps and depend on T .

T-BPTT restricts what the agent can remember, and T controls this restriction. The agent can

only retain information from previous time steps up to T steps back as the gradient information from
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steps further than T is assumed to be zero. In problems where we have some domain knowledge,

we can select a suitable T to solve the task, and T-BPTT is recommended. However, in many

applications, we do not know beforehand which T is suitable. Thus, specifying T can be limiting

and a cause for inadequate performance.

We now write the truncated version of 2.9 which takes into consideration the gradient from the

last T steps only:

Jt = Bt +
t�1X

k=t�T

 
tY

i=k+1

Ci

!
Bk. (2.11)

Using results from 2.11, we then write the approximated gradient of the loss w.r.t the learnable

parameters:

r   L =
tX

i=t�T

@Li

@hi

@hi

@   

=
tX

i=t�T

@Li

@hi

0

@@f(hi�1,xi,   )

@   
+

i�1X

k=i�T

0

@
iY

j=k+1

@f(hj�1,xj ,   )

@hj�1

1

A @f(hk�1,xk,   )

@   

1

A .

(2.12)

Algorithm 2 Online prediction with T-BPTT

Inputs: a di↵erentiable parametrization of the recurrent function f : Rn
⇥Rd

! Rn

Inputs: a di↵erentiable parametrization mapping the recurrent state to a prediction g : Rn
! R

Initialize: the set of parameters    and ���.
Initialize: O(j), for all j 2 {t� T, . . . , t}. . A list to save the inputs.

for each input xt do

Forward Pass: update the recurrent state, ht = f(ht�1,xt)
and make a prediction, ŷt = g(ht).
Evaluate: recieve a loss Lt(ŷt, yt).
Append to Memory: O(t) xt.
Backward Pass: LEARN(O) . This call may not happen every time step.

function LEARN(O) . Taking last T observations.
for i = t� T ! t do

Calculate and save @Li
@hi

, @f(hi�1,xi,   )
@   , and @f(hi�1,xi,   )

@hi�1
.

for i = t� T ! t do

Calculate and save @hi
@   . From 2.12.

Calculate r   L =
Pt

i=t�T
@Li
@hi

@hi
@   .

Update    to follow the opposite direction of r   L.
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In algorithm 2, we show an example for using T-BPTT in online predction. At each time step t,

the agent gets an input xt, updates its recurrent state ht and makes a prediction ŷt. The agent

then receives a loss Lt, and finally calls the LEARN function. The LEARN function calculates

the gradient of the loss w.r.t the learnable parameters    using 2.12. The agent then updates

its parameters    to follow the opposite direction of that gradient. Both the memory and the

computational complexities of this algorithm are propotional to the truncation length specified, T .

In section 2.5, we will dive into the exact memory and computational complexities of T-BPTT.

2.4.4 Real-Time Recurrent Learning

Williams and Zipser (1989) introduced the Real-time Recurrent Learning algorithm (RTRL) as a

learning algorithm for continual recurrent learning. RTRL employs the recurrent formulation of the

gradient in 2.8; instead of unrolling @ht�1

@   further back in time, RTRL saves its calculated value

from the previous time step and use it later when needed. It is worth emphasizing that after the

agent updates its parameters, the gradient information saved from previous time steps would be

stale, i.e., calculated w.r.t old parameters, however, under the assumption of small learning rates,

RTRL is known to converge. The gradient formulation of RTRL can be written as:

r   L =
tX

i=0

@Li

@hi

@hi

@   

=
tX

i=0

@Li

@hi

✓
@f(hi�1,xi,   )

@   
+
@f(hi�1,xi,   )

@hi�1

@hi�1

@   

◆ (2.13)

Algorithm 3 shows an online learner using RTRL to update its learnable parameters.

2.5 Complexity of Training RNNs Online

In this section, we describe the recurrent learning algorithms’ memory and computational complexi-

ties.

2.5.1 Complexity analysis

Now, we move to analyzing the computational and memory complexity of RNNs. Widely used

RNNs such as Gated Recurrent Units (GRUs) (Cho et al., 2014) and Long-Short Term Memory

(LSTM)(Hochreiter and Schmidhuber, 1997) boil down to the following formulation:
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Algorithm 3 Online prediction with RTRL

Inputs: a di↵erentiable parametrization of the recurrent function f : Rn
⇥Rd

! Rn

Inputs: a di↵erentiable parametrization mapping the recurrent state to a prediction g : Rn
! R

Initialize: the set of parameters    and ���.
Initialize: an empty matrix to store the gradient from previous time step, J�1.

for each input xt do

Forward Pass: update the recurrent state, ht = f(ht�1,xt)
and make a prediction, ŷt = g(ht).
Evaluate: recieve a loss Lt(ŷt, yt).
Backward Pass: LEARN(xt,Lt,ht�1).

function LEARN(xt,Lt,ht�1)

Calculate @Lt
@ht

,@f(ht�1,xt,   )
@   , and @f(ht�1,xt,   )

@ht�1

Calculate Jt =
@f(ht�1,xt,   )

@   + @f(ht�1,xt,   )
@ht�1

Jt�1 . Jt =
@ht
@   

Calculate r   Lt =
@Lt
@ht

Jt

Update    to follow the opposite direction of r   Lt

ht
.
= f(Wxxt +Whht�1). (2.14)

Where ht 2 Rn is the recurrent state at time t, ht�1 2 Rn is the recurrent state at the previous time

step t� 1, xt 2 Rd is the input at time t, and both Wx 2 Rn⇥d and Wh 2 Rn⇥n are the learnable

paramters.

In the following subsections, we analyze the computation and memory complexity for training

RNNs. The computation complexity is measured in terms of the number of Floating-Point Operations

(FLOPs). However, our estimates might di↵er from the actual number of FLOPs due to other

factors such as the hardware and the actual implementation.

Forward Pass in RNNs

Table 2.1 shows the operations and the FLOPs required for doing a forward pass, i.e., passing an

input through the recurrent function and evaluating its output. We can see that the number of

FLOPs for doing a forward pass is 2nd+ 2n2 + 2n, where n is the hidden state dimension and d is

the input dimension. In a moderate-sized architecture n� d. Thus, we can write the computational

complexity of doing a forward pass in RNN as O(n2). The memory complexity for the forward pass

is also O(n2), which is the memory required to save the learnable parameters.
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Operation FLOPs

Wxxt 2nd
Whht�1 2n2

Wxxt +Whht�1 n

f(·) n

Table 2.1: The operations performed in a forward pass of an RNN and their computational
requirements.

Backward Pass in RNNs

The computation and memory complexity of the backward pass, i.e., updating the learnable

parameters, depend on the learning algorithm. We look at the computation and memory for both

T-BPTT and RTRL learning algorithms introduced earlier in sections 2.4.3 and 2.4.4, respectively.

T-BPTT

T-BPTT, as shown in algorithm 2, unrolls the RNN dynamics for T steps, resulting in a complexity

T⇥ the complexity of doing a single forward pass. i.e., O(Tn2), and also requires and an additional

memory that is O(Td) to store previous inputs. Thus, an RNN that uses T-BPTT to learn its

parameters requires a total computation of O((T + 1)n2) and total memory of O(n2 + Td + nd)

for doing (1 forward pass + 1 backward pass) each time step. Depending on the number of

learnable parameters, the memory bottleneck for T-BPTT can either be the memory required to

store the previous inputs or the memory required to store the learnable parameters. However,

the computational bottleneck is always dependent on the truncation length. Figure 2.4 shows an

example of the computational complexity of T-BPTT as a function of the truncation length T and

the hidden state dimension.

RTRL

RTRL, as shown in algorithm 3 does not unroll the RNN back in time, altenatively, it stores

the relevant gradient information, i.e, @ht�1

@   , from the previous time step. From the definition of

RNN 2.14:

@ht�1

@   
=

⇢
@ht�1

@Wx
,
@ht�1

@Wh

�
(2.15)

Each of the two components is a derivative of a vector w.r.t a matrix and according to 2.5 has the

dimensions of n ⇥ d ⇥ n and n ⇥ n ⇥ n, respectively. Thus, RTRL has a memory complexity of

O(n3), if we assume that the number of hidden units is greater than the input dimension.
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Figure 2.4: The computational complexity of T-BPTT as the truncation length T increases. The
horizontal axis shows the number of features in the RNN and the vertical axis shows the number of
FLOPs required per update.
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(b) Memory complexity of RTRL.

Figure 2.5: The computational and memory complexities of RTRL against a linear complexity as a
function of the hidden state dimension.

Calculating the gradient according to 2.13 requires calculating the product @f(ht�1,xt,   )
@ht�1

@ht�1

@   ,

where @f(ht�1,xt,   )
@ht�1

2 Rn⇥n is the derivative of a vector w.r.t a vector as in 2.2 and @ht�1

@   2

{Rn⇥d⇥n
,Rn⇥n⇥n

} is a derivative of a vector w.r.t a matrix as in 2.5. This product has a com-

putational complexity of O(n4). Figure 2.5 shows an example of the memory and computational

complexities of RTRL as a function of the hidden state dimension compared to linear complexity,

which would be ideal for an algorithm. We can see that even for a small hidden dimension, RTRL’s

memory and computational complexities grow exponentially.

The ability to learn from arbitrary long sequences without truncating the history and with a

constant cost per update is appealing. However, the memory and computational complexities of
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RTRL render it impractical. On the other hand, T-BPTT has a more plausible complexity, but it

su↵ers from the truncation bias. In the next chapter, we introduce a novel architecture for which

the exact RTRL updates have a linear complexity. We also discuss the di↵erences between our

proposed architecture and other RNN approximations from the literature.
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Chapter 3

Recurrent Trace Units

This chapter motivates and introduces Recurrent Trace Units (RTUs), the main contribution of

this thesis. We first discuss a diagonal formulation for the linear recurrence. Then, we introduce

a couple of illustrative examples highlighting two fundamental properties of RNNs. Finally, we

introduce RTUs and derive an exact RTRL update for RTUs with linear computational and memory

complexities.

3.1 Linear Diagonal Recurrent Dynamics

A linear recurrent layer has an equivalent diagonal form with fewer learnable parameters and the

same representational powers. The idea behind deriving this diagonal form is simple; instead of

learning a dense matrix, a learner can learn the eigenvalues of that matrix. Formally, a linear dense

recurrent layer has the form:

ht
.
= Whht�1 +Wxxt. (3.1)

The only di↵erence between 3.1 and the RNN dynamics in 2.14 is dropping the non-linear function

f . For a matrix Wh with n linearly independent eigenvectors, we can re-write Wh in terms of its

eigenvectors as:

Wh = P ⇤ P
�1

, (3.2)

where P contains the n linearly independent eigenvectors and ⇤ is a diagonal matrix with the

diagonal elements being the corresponding eigenvalues. Substituting 3.2 in 3.1 and multiplying both
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sides by P
�1, we get:

ht = P⇤P
�1

ht�1 + Wx xt.

P
�1

ht = ⇤P
�1

ht�1 + P
�1

Wx xt. (3.3)

Finally, by defining ht
.
= P

�1
ht and Wx

.
= P

�1
Wx, then substituting in 3.3, we get:

ht = ⇤ht�1 +Wx xt. (3.4)

Using the recurrent formulation from 3.4, the learner only needs to learn the n eigenvalues instead

of the full Wh matrix.

Learning a diagonal RNN has been previously explored in the literature. Columnar Networks

(Javed et al., 2023) and element-wise LSTM (eLSTM) (Irie, Gopalakrishnan, and Schmidhuber,

2023) both proposed using a diagonal form of the recurrent dynamics. The appeal of diagonal

RNNs for online learning is due to having fewer learnable parameters in the recurrence. i.e., n

instead of n⇥ n, which leads to a scalable RTRL algorithm for online learning. However, as noted

by Javed et al. (2023), Columnar Networks had poor performance when used alone, and they moved

to combine them with a constructive approach to achieve better performance.

Both Columnar Networks and eLSTM had real-valued diagonal elements in their recurrent

formulation. However, from the derivation we did in 3.3 and 3.4, we notice that having only

real-valued diagonals could be limiting; there is no guarantee that all eigenvalues are real. Orvieto

et al. (2023) and Huang et al. (2023) re-explored the idea of diagonal RNNs; they showed that

having complex-valued diagonal elements performed better compared to only real-valued elements.

3.2 Illustrative Examples

In this section, we discuss two follow-up questions on learning a diagonal RNN:

1. Do complex eigenvalues naturally emerge when learning under partial observability? This

question should help in understanding whether or not it is necessary to have complex-valued

diagonal elements.

2. If complex eigenvalues emerge, how do di↵erent representations for complex numbers a↵ect

learning? A complex number can be represented mathematically in three ways that are all

equivalent and describe the same number. It is unclear if di↵erent complex representations

have di↵erent learning properties.
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To answer the first question, we use an MDP introduced by Sutton ( 2020a), we call it Three

States World. As the name suggests, this MDP has only 3 states and no actions. The states are

s1, s2, and s3. If the agent is in either s1 or s2, it transitions to any of the three states with equal

probabilities. However, if the agent is in s3, it transitions to the state preceded by s3. A sequence of

observations would look like 1, 3, 1, 2, 2, 3, 2, · · · , and we ask the agent to predict the next observation

(Sutton, 2020a). Figure 3.1 shows an illustration of this task. To succeed in this task, the agent

needs to remember one cue that happened one step back and only use this memory in state 3.

Figure 3.1: Illustration of the Three States World MDP. We used dashed lines for the transitions
starting in s3 to distinguish them.

We trained an agent with a standard RNN to solve the Three State World. The RNN had 3

hidden states. We used T-BPTT to learn the network parameters with truncation length 2; that is

the whole history needed to predict the next observation. We swept over multiple learning rates

for the RNN in this setting and chose the learning rate that achieved the best performance. Then,

we calculated the number of complex eigenvalues of the matrix Wh after each parameter update

and recorded it. Since we have 3 hidden states, we know that the matrix Wh in 2.14 is 2 R3⇥3 and

could have at most 2 complex eigenvalues.

Figure 3.2 shows the percentage of correct predictions the agent achieves over time. As we can

see, this agent can completely solve the problem and achieves 100% correct predictions. Figure 3.3

shows the number of complex eigenvalues we recorded during training, and we can see that complex

eigenvalues appear frequently while learning. These results suggest that a standard RNN could have

complex eigenvalues even in this simple task, which answers our first question. From this experiment,

we conclude that to represent RNNs in the diagonal form, we need to have complex-valued diagonal

elements.

We now move to the second question: How do we represent complex numbers, and how do

di↵erent representations a↵ect learning? A complex number can be represented in three ways: a+ bi

(the real representation), r exp(i✓) (the exponential representation), and r(cos(✓) + i sin(✓)) (the

cosine representation). Mathematically, these three representations are equivalent, but do they

a↵ect learning di↵erently? Orvieto et al. ( 2023) partially addressed this question empirically on a

simple task. They showed that using the exponential representation resulted in a better-behaved
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Figure 3.2: The percentage of correct predictions when training an RNN in the Three States World.
The solid green line is the average over 30 runs and the shaded area is the standard error.

0 10000 20000 30000
steps

0.0

0.5

1.0

1.5

2.0
Number 

of 
Complex 

EigenValues

Figure 3.3: Number of complex eigenvalues when training an RNN in the Three States World. The
red line represents the mean averaged over 30 runs, the shaded red area represents the standard
error, and the rest of the lines represent individual runs.

loss function than the real parametrization.

We take a di↵erent approach to address the second question. A known issue when training

RNNs is the vanishing/exploding gradient (Pascanu, Mikolov, and Bengio, 2013), which happens

when the gradient components of the loss w.r.t the parameters either grow to large numbers and

explode or shrink and vanish. In the following example, we reason about the vanishing/exploding

gradient issue in a single recurrent unit using the three complex representations. For a recurrent
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unit with no inputs:

ht = �ht�1

= �
t
h0,

(3.5)

where h0 is the initial hidden state, consider a case where we want ht to reach a specific state h
⇤

after k time steps. The error at time k is:

"k = (hk � h
⇤)2. (3.6)

Assuming � is complex-valued, we now consider the gradient from each of the three representations.

Real Representation a+ bi

Substituting � in 3.5 with the real representation, we get:

ht = (a+ bi)ht�1

= (a+ bi)th0

= h0

tX

k=0

✓
t

k

◆
a
t�k(bi)k

= h0

tX

k=0

✓
t

k

◆
a
t�k

b
k
i
k
.

(3.7)

Then it follows that the gradient w.r.t the learnable parameters i.e, a and b is:

@ht

@a
= h0

tX

k=0

✓
t

k

◆
(t� k)at�k�1

b
k
i
k

@ht

@b
= h0

tX

k=0

✓
t

k

◆
ka

t�k
b
k�1

i
k
.

(3.8)

Based on 3.8, to prevent the gradient from vanishing/exploding, we need to restrict both |a| and

|b| to be 2 (0, 1]. This restricts both the magnitude and the phase of the complex number to be

2 (0, 1] and 2 (0, ⇡2 ], respectively.
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Exponential Representation r exp(i✓)

Substituting � in 3.5 with the exponential representation, we get:

ht = r exp(i✓)ht�1

= (r exp(i✓))th0

= (r)texp(it✓)h0.

(3.9)

Then the gradient w.r.t the learnable parameters i.e., r and ✓ is:

@ht

@r
= tr

t�1exp(it✓)h0

@ht

@✓
= r

texp(it✓) ⇤ ith0.
(3.10)

Based on 3.10, to prevent the gradient from vanishing/exploding, we need to restrict r 2 (0, 1].

Cosine Representation r(cos(✓) + i sin(✓))

Substituting � in 3.5 with the cosine representation, we get:

ht = r(cos(✓) + i sin(✓))ht�1

= (r(cos(✓) + i sin(✓)))th0

= (r)t(cos(t✓) + i sin(t✓))h0.

(3.11)

Then the gradient w.r.t the learnable parameters i.e., r and ✓ is:

@ht

@r
= tr

t�1(cos(t✓) + i sin(t✓))h0

@ht

@✓
= r

t(it cos(t✓)� t sin t✓)h0.
(3.12)

Based on 3.12, to prevent the gradient from vanishing/exploding, we need to restrict r 2 (0, 1].

From the above analysis, we conclude that the real representation is the most restrictive since it

restricts both the magnitude and the phase of the complex number. These results align with the

empirical experiments presented by Orvieto et al.( 2023), where they showed that the exponential

representation outperformed the real representation on a simple task. However, it is still unclear

whether there is an advantage to using exponential representation over the cosine representation

and vice versa.
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3.3 Recurrent Trace Units

We have established in the previous section that having complex-valued diagonal elements is

fundamental when using the diagonal recurrent formulation. In this section, we discuss a few issues

that arise when using complex-valued diagonal elements. Then, we introduce Recurrent Trace Units

(RTUs), a new complex-valued diagonal RNN that addresses these issues.

We use Linear Recurrent Units (LRUs, Orvieto et al., 2023) as an example of complex-valued

diagonal RNNs since they have shown promising results. Despite their good performance on o✏ine

tasks, LRUs are still unsuitable for continual online learning for a few reasons. Firstly, LRUs learn

their parameters using T-BPTT, which presents some issues when agents continually learn online;

as discussed in 2.4.3, T-BPTT has an inherent trade-o↵ between computational complexity and

retaining history. Secondly, as the name suggests, LRUs have linear recurrent dynamics, restricting

the class of function they could represent ( El-Naggar, Madhyastha, and Weyde, 2023). Finally,

since the recurrent states are now complex-valued, and most of the desired outputs are real numbers

when feeding the recurrent state to the following layers of the network, LRUs consider only the real

part of the recurrent state, which means that we might lose some of the representations encoded by

the complex part.

We illustrate the implications of the last point, considering only the real part of the recurrent

state, with an example of a single complex-valued recurrent unit. For simplicity, assume ht is a

complex-valued recurrent unit with no inputs:

ht = �ht�1, (3.13)

where � = r(cos(✓) + i sin(✓)), and both r and ✓ are learnable parameters. Then, to generate an

output yt, we consider only the real part of ht:

yt = wRe{ht}, (3.14)

where w is a learnable parameter. This formalization leads to a gradient of the form:

@yt

@r
= w cos(✓)ht�1 + wr cos(✓)

@ht�1

@r

@yt

@✓
= �wr sin(✓)ht�1 + wr cos(✓)

@ht�1

@✓
.

(3.15)

To show the missing gradient information in 3.15, we first consider a fundamental property of

complex numbers: multiplying by a complex number z is equivalent to a rotation by the matrix"
Re{z} �Img{z}

Img{z} Re{z}

#
and a scale by

q
Re{z}

2 + Img{z}
2. We use this property to re-write 3.13
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and 3.14 as:

h
c1
t = r cos(✓)hc1t�1 � r sin(✓)hc2t�1

h
c2
t = r cos(✓)hc2t�1 + r sin(✓)hc1t�1

yt = w1h
c1
t + w2h

c2
t .

(3.16)

We now write the gradient using this new formulation:

@yt

@r
= w1 cos(✓)h

c1
t�1 + w1r cos(✓)

@h
c1
t�1

@r
� w1 sin(✓)h

c2
t�1 � w1r sin(✓)

@h
c2
t�1

@r
+

w2 cos(✓)h
c2
t�1 + w2r cos(✓)

@h
c2
t�1

@r
+ w2 sin(✓)h

c1
t�1 + w2r sin(✓)

@h
c1
t�1

@r

@yt

@✓
= �w1r sin(✓)h

c1
t�1 + w1r cos(✓)

@h
c1
t�1

@✓
� w1r cos(✓)h

c2
t�1 � w1r sin(✓)

@h
c2
t�1

@✓
�

w2r sin(✓)h
c2
t�1 + w2r cos(✓)

@h
c2
t�1

@✓
+ w2 cos(✓)h

c1
t�1 + w2r sin(✓)

@h
c1
t�1

@✓
.

(3.17)

Comparing 3.17 and 3.15, we can see that using only the real part of the recurrent state as in 3.14

leads to a loss of information in the gradient which could a↵ect learning.

We now introduce Recurrent Trace Units (RTUs) addressing previous issues with complex-valued

diagonal RNNs. First, it is safe to assume that the matrix ⇤ in 3.4 has only complex eigenvalues; a

complex eigenvalue can be easily turned into a real one by setting the imaginary component to 0.

Since all eigenvalues are now learnable parameters, the learner can choose which ones to convert

to real and which remain complex. Secondly, we use the rotational representations of complex

numbers as it allows for generating real-valued outputs without losing gradient information. To

use this representation, we need a complex representation of the form: Real + iImaginary, which

restricts us to either the real or the cosine representation. As we previously discussed in 3.2, the

real representation is the most restrictive, so it is natural to use the cosine representation here. We

can now write the matrix ⇤ as blocks of rotation matrices instead of explicit complex numbers:

⇤ =

2

64
c1

· · ·

cn

3

75 , (3.18)

where

ck =
q
a2k + b2k

"
ak �bk

bk ak

#

= ⌫⌫⌫k

"
cos(✓k) � sin(✓k)

sin(✓k) cos(✓k)

#
.

(3.19)
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We re-write 3.4 as:

h
c1
t = ⌫⌫⌫⌫⌫⌫⌫⌫⌫ cos(✓✓✓)� h

c1
t�1 �⌫⌫⌫⌫⌫⌫⌫⌫⌫ sin(✓✓✓)� h

c2
t�1 +W

c1
x xt,

h
c2
t = ⌫⌫⌫⌫⌫⌫⌫⌫⌫ cos(✓✓✓)� h

c2
t�1 +⌫⌫⌫⌫⌫⌫⌫⌫⌫ sin(✓✓✓)� h

c1
t�1 +W

c2
x xt.

(3.20)

Then, we non-linearly combine the new recurrent states into one state:

ht = [f(hc1
t ); f(hc2

t )]. (3.21)

Besides having complex-valued diagonals, there were two additional contributors to the improved

performance of LRUs. The first was learning logarithmic representations of the learnable parameters

rather than learning them directly. i.e., instead of learning ⌫ and ✓, the network learns ⌫log
.
= log(⌫)

and ✓log
.
= log(✓). We then exponentiate these parameters before using them to get our ⌫ = exp(⌫log)

and ✓ = exp(✓log). The second was normalizing the mapped input representations. Orvieto et

al.( 2023) empirically showed that these modifications improve LRUs’ performance. We similarly

noted that these modifications improve the performance when applied to our recurrent formulation.

We now write the final formulation of RTUs:

h
c1
t = g(⌫⌫⌫⌫⌫⌫⌫⌫⌫,✓✓✓)� h

c1
t�1 � ���(⌫⌫⌫⌫⌫⌫⌫⌫⌫,✓✓✓)� h

c2
t�1 + ��� �W

c1
x xt.

h
c2
t = g(⌫⌫⌫⌫⌫⌫⌫⌫⌫,✓✓✓)� h

c2
t�1 + ���(⌫⌫⌫⌫⌫⌫⌫⌫⌫,✓✓✓)� h

c1
t�1 + ��� �W

c2
x xt.

ht = [f(hc1
t ); f(hc2

t )].

(3.22)

where

g(⌫j , ✓j) = exp(⌫ logj ) cos(exp(✓logj )),

�(⌫j , ✓j) = exp(⌫ logj ) sin(exp(✓logj )),
(3.23)

and � is a normalization factor, �j = (1 � (exp(�⌫j))2)
1
2 These modifications do not a↵ect our

previous analysis; ��� can be absorbed by W, and we exponentiate the parameters before using them

in the formulation. Finally, the name RTUs comes from the fact that each element in the recurrent

state in 3.22 is a decaying trace of two elements from the previous time step.

3.4 Real-Time Recurrent Learning for RTUs

In this section, we derive Real-Time Recurrent Learning rules for RTUs. We call the combination of

RTRL and RTUs, the RT2 algorithm.

The set of learnable parameters for RTUs is    
.
= {⌫⌫⌫

log
,✓✓✓

log
,W

c1
x ,W

c2
x }. At each time step t,

the learner receives a loss Lt(ŷt, yt;   ) where yt is the network output at time t, then the gradient of
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the loss w.r.t the parameters is:

@Lt

@   
=

@Lt

@h
c1
t

@h
c1
t

@   
+

@Lt

@h
c2
t

@h
c2
t

@   
, (3.24)

where @h
c1
t

@   =
n
@h

c1
t

@⌫⌫⌫log
,
@h

c1
t

@✓✓✓log
,
@h

c1
t

@WWW
c1
x
,
@h

c1
t

@WWW
c1
x

o
and @h

c2
t

@   =
n
@h

c2
t

@⌫⌫⌫log
,
@h

c2
t

@✓✓✓log
,
@h

c2
t

@WWW
c2
x
,
@h

c2
t

@WWW
c2
x

o
.

From equation 3.22, we can derive the following gradients:

@Lt

@h
c1
t

=
@Lt

@ht

@ht

@h
c1
t

@Lt

@h
c2
t

=
@Lt

@ht

@ht

@h
c2
t

(3.25)

@h
c1
t

@⌫⌫⌫log
=
@g(⌫⌫⌫,✓✓✓)

@⌫⌫⌫log
� h

c1
t�1 + g(⌫⌫⌫,✓✓✓)

@h
c1
t�1

@⌫⌫⌫log
�
@���(⌫⌫⌫,✓✓✓)

@⌫⌫⌫ log
� h

c2
t�1 � ���(⌫⌫⌫,✓✓✓)

@h
c1
t�1

@⌫⌫⌫log

@h
c2
t

@⌫⌫⌫log
=
@g(⌫⌫⌫,✓✓✓)

@⌫⌫⌫log
� h

c2
t�1 + g(⌫⌫⌫,✓✓✓)

@h
c2
t�1

@⌫⌫⌫log
+
@���(⌫⌫⌫,✓✓✓)

@⌫⌫⌫ log
� h

c1
t�1 + ���(⌫⌫⌫,✓✓✓)

@h
c1
t�1

@⌫⌫⌫log

(3.26)

@h
c1
t

@✓✓✓log
=
@g(⌫⌫⌫,✓✓✓)

@✓✓✓
log

� h
c1
t�1 + g(⌫⌫⌫,✓✓✓)

@h
c1
t�1

@✓✓✓log
�
@���(⌫⌫⌫,✓✓✓)

@✓✓✓log
� h

c2
t�1 � ���(⌫⌫⌫,✓✓✓)

@h
c1
t�1

@✓✓✓log

@h
c2
t

@✓✓✓log
=
@g(⌫⌫⌫,✓✓✓)

@✓✓✓
log

� h
c2
t�1 + g(⌫⌫⌫,✓✓✓)

@h
c2
t�1

@✓✓✓log
+
@���(⌫⌫⌫,✓✓✓)

@✓✓✓log
� h

c1
t�1 + ���(⌫⌫⌫,✓✓✓)

@h
c1
t�1

@✓✓✓log

(3.27)

where

@g(⌫⌫⌫,✓✓✓)

@⌫⌫⌫log
= g(⌫⌫⌫,✓✓✓)

@g(⌫⌫⌫,✓✓✓)

@✓✓✓log
= ����(⌫⌫⌫,✓✓✓) exp(✓✓✓log)

@���(⌫⌫⌫,✓✓✓)

@⌫⌫⌫ log
= ���(⌫⌫⌫,✓✓✓)

@���(⌫⌫⌫,✓✓✓)

@✓✓✓log
= g(⌫⌫⌫,✓✓✓) exp(✓✓✓log).

(3.28)

To e�ciently compute the gradient w.r.t Wc1
x and W

c2
x , we look at the influence of each when
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considering a single element from each recurrent state, hc1
t and h

c2
t :

h
c1
t,i = g(⌫i, ✓i)h

c1
t�1,i � �(⌫i, ✓i)h

c2
t�1,i + �i

dX

j=0

w
c1
x,(i,j)xt,j

h
c2
t,i = g(⌫i, ✓i)h

c2
t�1,i + �(⌫i, ✓i)h

c1
t�1,i + �i

dX

j=0

w
c2
x,(i,j)xt,j .

(3.29)

We then get:

@h
c1
t,i

@W
c1
x,(i,j)

= g(⌫i, ✓i)
@h

c1
t�1,i

@W
c1
x,(i,j)

� �(⌫i, ✓i)
@h

c2
t�1,i

@W
c1
x,(i,j)

+ �ixt,j

@h
c2
t,i

@W
c1
x,(i,j)

= g(⌫i, ✓i)
@h

c2
t�1,i

@W
c1
x,(i,j)

+ �(⌫i, ✓i)
@h

c1
t�1,i

@W
c1
x,(i,j)

@h
c1
t,i

@W
c2
x,(i,j)

= g(⌫i, ✓i)
@h

c1
t�1,i

@W
c2
x,(i,j)

� �(⌫i, ✓i)
@h

c2
t�1,i

@W
c2
x,(i,j)

@h
c2
t,i

@W
c2
x,(i,j)

= g(⌫i, ✓i)
@h

c2
t�1,i

@W
c2
x,(i,j)

+ �(⌫i, ✓i)
@h

c1
t�1,i

@W
c2
x,(i,j)

+ �ixt,j .

(3.30)

We see that each h
c1
t,i gets a↵ected by weights from only one row of Wc1

x , thus, @h
c1
t

W
c1
x

can be written

as a matrix of the same dimension as Wc1
x . The same is true for @h

c2
t

W
c2
x
,@h

c1
t

W
c2
x
, and @h

c2
t

W
c1
x
.

3.4.1 Complexity Analysis of RT2

We now move to calculate the computation and memory complexity of RTUs when learning using

the RTRL rules introduced in the previous section.

For an input xt 2 Rd and hidden states ht = [f(hc1
t ); f(hc2

t )] 2 R2n,we have g(⌫⌫⌫,✓✓✓),���(⌫⌫⌫,✓✓✓),��� 2

Rn and W
c1
x ,W

c2
x 2 Rd⇥n. An agent using the RT2 algorithm needs to store the gradient

information,
@h

c1
t�1

@   and
@h

c2
t�1

@   , from one step to the next. We denote the set of saved gradient

information as:

r⌫⌫⌫t�1
.
=

⇢
@h

c1
t�1

@⌫⌫⌫log
,
@h

c2
t�1

@⌫⌫⌫ log

�

r✓✓✓t�1
.
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⇢
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t�1

@✓✓✓log
,
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c2
t�1

@✓✓✓log
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rWWW t�1
x

.
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⇢
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c1
t�1

@W
c1
x
,
@h

c2
t�1

@WWW
c1
x
,
@h

c1
t�1

@W
c2
x
,
@h

c2
t�1

@WWW
c2
x

�
.

(3.31)
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The saved gradient information has the following dimensions:

r⌫⌫⌫t�1 2 R2n

r✓✓✓t�1 2 R2n

rWWW t�1
x
2 R4(d⇥n)

.

(3.32)

Then, it follows that memory complexity for RT2 is O(n + nd). i.e., linear in the number of

parameters.

For the computational complexity, a forward pass according to 3.22 has a computational

complexity of O(n+ nd). Additionally, after doing the forward pass, the learner needs to update

the saved gradient information according to equations 3.26 through 3.30 which has a computational

complexity of O(n+ nd). To summarize, using Real-Time Recurrent Learning with RTUs (RT2)

has linear computational and memory complexities.
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Chapter 4

Animal Learning

This chapter presents multiple experiments with RT2 and GRUs on online multi-step prediction

problems inspired by animal learning. All the experiments are on continuing problems, i.e., the

agent-environment interactions go on continually. At each time step, we evaluate the agents on the

prediction error at that step. Then the agents update their learnable parameters to minimize the

prediction error.

All agents have one recurrent layer, either an RTU or a GRU, and one linear layer. At each time

step t, the agent passes the observation ot to the recurrent layer, which outputs the recurrent state,

the agent state. The recurrent state is then passed to the linear layer generating the prediction.

For each agent, we swept over the learning rate ↵ used to update the network parameters,

↵ 2 {10�1
, 10�2

, 10�3
, 10�4

, 10�5
, 10�6

}, and averaged the performance for each learning rate over

5 independent runs. We then selected the best-performing learning rate for each agent and ran 30

independent runs using it. For all the experiments, we ran the agents for 2 million steps, and the

performance was the mean squared prediction error averaged over the 2 million steps.

4.1 Animal Learning Benchmark

Trace conditioning is the type of experiment where animals predict when a specific stimulus will

occur, typically food, based on the occurrence of another stimulus, usually a tone. There is no prior

connection between the two stimuli. However, after enough repetitions of pairing them together,

i.e., playing the tone and then serving the food, the animal learns to predict food arrival when it

hears the tone (Pavlov, 1927).

Rafiee et al.,( 2020) introduced a multi-step prediction benchmark inspired by experiments in

animal learning. The first benchmarking task simulates the trace conditioning experiments; two

32



signals appear in a sequence, the Conditional Stimulus (CS) followed by the Unconditional Stimulus

(US). The CS is the trigger signal, similar to the tone, and the US is the signal of interest which

appears several time steps after the CS, similar to the food. Figure 4.1 shows an example of the CS

and the US in a sequence, the interval between the occurrence of the CS and the US is called the

Inter-Stimulus Interval (ISI). The longer the ISI, the harder it is for the agent to predict when the

US will occur. The interval between two CS signals is called Inter-Trial Interval (ITI) since a CS

signal marks the beginning of a new conditioning trial.

Figure 4.1: A trial in the trace conditioning task.

The trace conditioning task can be made harder by introducing distractor signals: signals that

are not correlated to either the CS or the US. When introducing distractor signals, the agent needs

to filter out these signals and focus only on the CS signals, then it needs to remember when the CS

happened to predict the US. Figure 4.2 shows the observations when distractor signals are part of

the observation stream.

Figure 4.2: Examples of observations in trace conditioning.

We designed the experiments to match the hardest setting for the trace conditioning task as

introduced by Rafiee et al.,(2020). In all the experiments, we specified the activation length of

the CS signals to 4 and the US to 2 time steps. We also added 10 distractors, each distractor has

a di↵erent activation probability modeled as a Poisson distribution, and all the distractors have

an activation length of 4 time steps. At the beginning of each trial, we select ITI uniformly from

[80, 120] and ISI uniformly from [20, 40].

The agent’s objective is to predict when the US signal will occur which we model as a prediction
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of the discounted sum of the future US signal, the return Gt:

Gt
.
=

1X

k=0

�
k
USt+k+1, (4.1)

where � is a discount factor determining the prediction horizon, and set equal to 1� 1/E[ISI].

4.2 Experimental Analysis

In this section, we empirically examine the properties of RT2, and how it compares to other existing

methods, specifically GRUs with T-BPTT. We chose GRU as our baseline here since it was shown

to have superior performance in partially observable RL problems (Morad et al., 2023). We did an

ablation study to investigate the performance of RT2 and GRUs along several axes of comparison.

4.2.1 Learning Under Computational Constraints

The first experiment attempts to answer the question: how well do di↵erent agents exploit the

available computation? The hypothesis behind this question is: under limited computational

resources, agents that depend on T-BPTT to update their parameters have a trade-o↵ between

the truncation length T and the number of parameters in their recurrent architectures since the

computational complexity of T-BPTT is O(Tn2), where n is hidden state dimension in the recurrent

architecture. However, agents using RT2 do not have this trade-o↵ and can use all the available

computation to have more parameters and more features in their recurrent state, leading to better

performance.

To verify our first hypothesis, we specified the same computational budget for the two agents to

be around 15000 FLOPs. The first agent used RT2 and we selected the number of parameters to fit

the computational budget. The second agent used GRUs, and we tested several configurations of T

and n such that, the overall computations fit the computational constraints. Figure 4.3 shows the

results of this experiment. As we move along the horizontal axis, the number of parameters for GRU

decreases as T increases to fit the computational constraints. However, the RT2 agent does not

depend on T , so it only has one configuration. Additionally, we show an example of the predictions

generated by the two agents over the last 600 timesteps in figure 4.4. The RT2 agent exploited all

the available computations to have more features and achieved a lower error than the GRU agent. 1

1
It is quite hard to give the exact same computation to the two agents. When this is the case, we err on the side of

giving GRU more computation than RT2.
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Figure 4.3: Learning under computational constraints. For RT2, the network has 500 hidden units.
For GRU, we start with 13 hidden units for T = 15, then decrease it to 8 units when T = 30, and
finally decrease it to 5 units when T = 60. These numbers were selected to satisfy the computational
constraints. In this task, E[ISI] = 30 which means that GRU agent with T � 30 has a su�ciently
large history to learn the prediction.
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Figure 4.4: Example of predictions generated by RT2 and GRU agents from the last 600 timesteps
of experiment 1. For GRU, these predictions were generated by the agent with T = 60.

4.2.2 Scaling With Computation

A natural follow-up question to our first hypothesis is: what if more computational resources are

available? Agents using T-BPTT have two choices when more computational resources are available.

The first choice is to use the additional resources to increase the truncation length, and the second

is to use the additional resources to have more features in the recurrent state and more parameters.

On the other hand, agents using RT2 have one option: use additional resources to make the network
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bigger and have more features.
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(a) Scaling with computation (Part 1). For RT2, the network starts with 550 hidden
units, then 1110 units, and finally 2220 units. For GRU, the network has 13 hidden
units. At each point of comparison, both GRU and RT2 have the same computational
budget.
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(b) Scaling with computation (Part 2). For RT2, the network has hidden units
2 {80, 160, 300, 600, 1150, 2300, 4600}. For GRU, the network has hidden units
2 {2, 3, 5, 8, 13, 20, 30}.

Figure 4.5: Scaling with computation

We designed our second experiment to study T-BPTT with increasing T and a fixed number of

parameters. In this experiment, the computation increases for GRU as T increases. We compensated

for the computational increase by adding more features to the RT2 agent such that, each two

corresponding points from GRU and RT2 have the same overall computation. Figure 4.5a shows

the results of this experiment. Increasing the truncation length did help improve the GRU agent.

However, the RT2 agent is still achieving a lower error.

Our third experiment studies the case where a T-BPTT agent uses the computation to increase

the number of features. We fixed the truncation length to 45 which is greater than the ISI interval.

With a 45 truncation length, the GRU agent has the whole context needed to make a prediction.

Then, we increased the computational resources of both GRU and RT2 agents by increasing
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the number of learnable parameters. We used the estimated number of FLOPs for T-BPTT as

2n2 + 2nd+ 2n and for RT2 as n+ nd.2 Figure 4.5b shows the results of this experiment. As we

increase the computation available, the RT2 agent’s performance consistently improves. However, the

performance improvement for the GRU agent is inconsistent which also aligns with our hypothesis

on the trade-o↵ between the truncation length and the number of parameters: using most of the

computational resources for more parameters in the GRU agent does not guarantee improved

performance.

4.2.3 Scaling With Parameters

In the final experiment, we study the performance of RT2 and GRU when given the same number of

parameters and allow the GRU agent to use more computation. We fixed the truncation length to

45 as before and used the same number of parameters for both agents. Figure 4.6 shows the results

of this experiment. For RT2, we see the same consistent performance improvement as we increase

the number of parameters. For GRU, the performance improvement is also quite consistent though

degrades slightly towards the end. In this experiment, the RT2 agent outperforms the GRU agent

even though the GRU uses more computation.
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Figure 4.6: Scaling by increasing the number of parameters. For RT2, the number of hid-
den units is 2 {80, 160, 300, 600, 1150, 2300, 4600}. For GRU, the number of hidden units is
2 {20, 30, 48, 67, 97, 140, 200}.

All of the above experiments suggest that using real-time recurrent learning combined with a

scalable architecture, RT2, achieves a noticeable gain in performance on online continuing tasks.

Additionally, all RT2 agents have a noticeably lower variance than GRU agents. However, we leave

2
This just an estimation of the FLOPs, and while it probably di↵ers from the actual number of FLOPs, it gives us

an indication on the e↵ect of increasing the compute.
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examining the variance properties for future work.

4.2.4 Comparison to Diagonal RNNs

To complete the ablation study in this chapter, we performed an additional experiment where

we compared the performance of RT2 to two diagonal RNNs. The first is LRUs as introduced

in Orvieto et al., 2023, which has complex-valued diagonal elements. The second is a vanilla block

diagonal RNN, which has a recurrent formulation similar to RTU but ignores the relation between

the learnable parameters. i.e., replaces ck in 3.18 with

ck =

"
ak bk

ck dk

#
. (4.2)

This simple modification means that instead of only learning ⌫ and ✓, we are learning 4 independent

parameters. However, the memory and computational complexities are the same as RT2. Since

LRUs require the recurrent dynamics to be linear, we slightly modified the network used in this

experiment by adding a feedforward layer with a non-linearity before the recurrent layer. Hence,

allowing the LRU agent to have a non-linear function approximator.
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Figure 4.7: Comparison to diagonal RNNs. For RT2 and block diagonal RNN, the network has
330 hidden units. For LRU, the network starts with 22 hidden units for truncation length T = 15,
then decreases to 9 units when T = 30, and finally decreases to 8 units when T = 60. Besides the
recurrent layer, all agents have an additional feedforward layer with 10 hidden units. These results
are averaged over 5 independent runs.

Figure 4.7 shows the result of the last experiment. We notice that RT2 achieved a better

performance than both LRU and the block diagonal RNN. We can attribute the performance

improvement over LRU to both the non-linear recurrent dynamics of RTU and using the full gradient

information as discussed in 3.3. The main di↵erence between RTUs and the block diagonal RNN is
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that RTU leverages the relation between the learnable parameters as a result of using the rotational

representation of complex numbers. The results suggest that leveraging this relation might be

helpful for e�cient learning.

4.2.5 Learning Rate Sensitivity

Finally, we show the learning rate sensitivity plots for all GRU agents used in the above experiments

in figure 4.8, the learning rate sensitivity plots for all RT2 agents from experiments 1 to 4 in

figure 4.9, and the sensitivity plots for the LRU, the RT2, and the block diagonal agents in the last

experiment in 4.10.

For RT2 and the block diagonal RNN, we observed that high learning rate values usually lead

to divergence. This observation is consistent with the convergence conditions for RTRL ( Williams

and Zipser, 1989) and presents a future question on how to mitigate this issue.
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(a) GRUs used in learning under computa-
tional constraints experiment. The (H: T)
in the label refers to the (hidden dimension:
truncation length) for the GRU.

(b) GRUs used in scaling with computation
experiment (Part 1). The (H: T) in the label
refers to the (hidden dimension: truncation
length) for the GRU.
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(c) GRUs used in scaling with computation
experiment (Part 2) with truncation length
T = 45. The H in the label refers to the
hidden dimension.
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(d) GRUs used in scaling with parameters
experiment with truncation length T = 45.
The H in the label refers to the hidden di-
mension.

Figure 4.8: Learning rate sensitivity curves for GRU architectures used in the experiments. All
solid lines are the average of 5 independent runs, and the shaded regions are the standard error.
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(a) RTU architectures used in learning under
computational constraints experiment.
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(b) RTU architectures used in scaling with
computation (Part 1) experiment.
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(c) RTU architectures used in scaling with
computation (Part 2) and scaling with pa-
rameters experiments.

Figure 4.9: Learning rate sensitivity curves for RTU architectures used in the experiments. Each
curve corresponds to a di↵erent number of hidden units indicated in the corresponding label. All
solid lines are the average of 5 independent runs, and the shaded regions are the standard error.
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Figure 4.10: Learning rate sensitivity for both the RT2 and the LRU agents for the last experiment.
The (H: T) in the labels refers to the number of hidden units and the truncation length. All solid
lines are the average of 5 independent runs, and the shaded regions are the standard error.
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Chapter 5

Partial Observability in Classical

Control

In this chapter, we extend the experiments to the control setting, where the agent can take actions

and control aspects of the environment to achieve a specific goal. We briefly describe policy gradient

methods where the agent learns a parameterized policy and uses it to select actions. We then

introduce the two classical control environments that we use in our experiments and the modifications

we made to them to introduce partial observability. Finally, we look at the performance of two

agents learning in those two environments, an RT2 agent and a GRU agent.

5.1 Policy Gradient Methods

As the agent interacts with the environment, it learns how to behave in each state to maximize the

cumulative reward signal. This learned behavior is the agent’s policy. The policy is a stochastic

map from the states to actions ⇡ : S ! A, and it tells the agent the probability of taking each

action in the current state. Formally, the agent learns a parametrized policy, ⇡(a|s,Wp) = Pr{At =

a|St = s,Wpt=Wp}, that outputs the probability of taking action a at time t, given that the current

state of the environment is s, and the current policy parameters are Wp( Sutton and Barto, 2018).

The agent learns the policy parameters by maximizing an objective function J(Wp). For episodic

problems, i.e., where the agent-environmental interactions are divided into sequences of episodes,

the objective function is defined as the value of the start state of the episode( Sutton and Barto,

2018):

J(Wp)
.
= v⇡Wp

(s0).

The agent can then estimate the gradient of the objective function w.r.t the policy parameters and
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then update the parameters in the direction that maximizes this objective function. Methods that

use this approach are called policy gradient methods. In some policy gradient methods, the agent

also learns a parametrized state-value function v̂(s,Wv), which tells the agent the expected return

starting from state s and following the policy ⇡. In such cases, we refer to the component learning

the state-value function as the critic, and the component learning the policy as the actor. These

policy gradient methods are called actor-critic methods.

Proximal Policy Optimization (PPO) ( Schulman et al., 2017) is an online policy gradient

method, i.e., the agent learns the policy parameters online while interacting with the environment.

In PPO, the agent starts by collecting a trajectory of observations, actions, and rewards. From this

trajectory, we can calculate the truncated �-return ( Sutton and Barto, 2018):

G
�
t:k

.
= (1� �)

k�t�1X

n=1

�
n�1

Gt:t+n + �
k�t�1

Gt:k. (5.1)

Roughly speaking, the �-return is a weighted sum of the n-step returns, Gt:t+n, and � is the

parameter controlling this weighted sum. We can write the �-return more e�ciently to calculate it

online from our estimated value function( Sutton and Barto, 2018):

G
�
t:k

.
= v̂(st,Wv,t�1) +

t+k�1X

i=t

(��)i�t
Rt+1 + �v̂(si+1,Wv,t)� v̂(si,Wv,i�1).

The PPO algorithm uses a variation of the �-return, Generalized Advantage Estimate (GAE), which

subtracts the value function from the �-return to reduce the variance of the return estimate( Schulman

et al., 2015):

Â
(�,�)
t

.
=

t+k�1X

i=t

(��)i�t
Rt+1 + �v̂(si+1,Wv,t)� v̂(si,Wv,i�1). (5.2)

Using the GAE, the objective function of PPO is written as:

Lt(Wp,Wv)
.
= Et [Lactor,t � c1Lcritic,t + c2S(⇡(st,Wp))] , (5.3)

where Lactor,t is the policy loss and defined as:

Lactor,t(Wp,Wv)
.
= Et

h
min(rt(Wp)Ât, clip✏(rt(Wp))Ât)

i
, (5.4)

rt(Wp) =
⇡(at|st,Wpnew)

⇡(at|st,Wpold)
,

clip✏(rt(Wp)) = clip(rt(Wp), 1� ✏, 1 + ✏)

44



Lcritic,t is the value loss and defined as:

Lvalue,t(Wv)
.
= max((v̂(st,Wv,t)�G

�
t:k)

2
, (clip✏(v̂)�G

�
t:k)

2), (5.5)

clip✏(v̂) = clip(v̂(st,Wv,t), 1� ✏, 1 + ✏),

and S(⇡(st,Wp)) is the entropy of the policy. The coe�cients c1 and c2 are hyperparameters that

control the relative importance of the value loss and the entropy term in the objective function

( Schulman et al., 2017). Finally, the agent can update the policy and the value function parameters

by using the gradient information of the loss function in 5.3 w.r.t the parameters.

There are many implementation details to the PPO algorithm usually employed to improve its

performance (Andrychowicz et al., 2021, Engstrom et al., 2020, and Henderson et al., 2018). Here,

we opted for a minimal implementation of the PPO algorithm shown in Algorithm 4.

Algorithm 4 Online Control with minimal PPO

Inputs: a di↵erentiable policy parametrization ⇡(a|s,Wp).
Inputs: a di↵erentiable state-value function parametrization v̂(s,Wv).
Algorithm parameters: learning rate ↵, rollout length k, number of epochs n, value coe�ent c1,
entropy coefiient c2, and clip coe�ent ✏.
loop

Generate a trajectory O0, A0, R1, . . . ,Ok, Ak, Rk

Calculate GAE according to 5.2
for epoch = 1, . . . , n do

Re-run network to update hidden states for the trajectory.
Calculate the value loss according to 5.5.
Calculate the policy loss according to 5.4.
Calculate the entropy of the policy.
Optimize the learnable parameters for both the policy and the value function
using the gradient of the loss function in 5.3.

5.2 Classical Control Environment

We selected two classical control environments for our experiments: CartPole (Barto, Sutton, and

Anderson, 1983), and Acrobot (Sutton, 1995). The two environments are episodic which means that

the agent-environment interactions break into sequences of episodes. Each episode starts with a

state sampled from a uniform distribution of possible starting states and ends with a special state,

the terminal state. Both environments have continuous state space and discrete action spaces. We

show an illustration for both CartPole and Acrobot in Figure 5.1.

In CartPole, the agent tries to balance a pole attached to a cart through an un-actuated joint.
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The agent can apply force to the cart to move it in either the left or the right direction on a

frictionless track. In the fully observable version of CartPole, the observation consists of the cart’s

position, the cart’s velocity, the pole angle, and the pole’s angular velocity. Each episode of CartPole

starts with all observations sampled from a uniform distribution of values in the range [�0.05, 0.05],

in other words, the pole is balanced and the cart is in the middle of the track. The episode terminates

when the pole angle or the cart position is out of an allowed range, ±12� for the angle and ±2.4 for

the position, and we truncate the episode if the agent was able to balance the pole for 500 steps.

The agent receives a reward of +1 every time step until the episode terminates or is truncated.

Hence, the maximum sum of rewards the agent can achieve in CartPole is 500 (Towers et al., 2023).

Figure 5.1: The CartPole and the Acrobot environments used in our experiments.

In Acrobot, the agent applies torque to a joint of a double pendulum system and the goal is to

raise the free end of the pendulum above a specific height. The double pendulum has two joints and

two links. The first joint is fixed and the agent actuates the second joint. In the fully observable

version of Acrobot, the observation consists of cos(✓1), sin(✓1), cos(✓2), sin(✓2), angular velocity of

✓1, and angular velocity of ✓2. ✓1 is first joint’s angle, ✓1 = 0 denotes a downward position, and ✓2 is

the second joint’s angle measured relative to ✓1. Each episode of Acrobot starts with the pendulum

pointing downward and terminates when the free end of the pendulum reaches the target position

defined by � cos(✓1)� cos(✓1 + ✓2) > 0.1 or when the number of interaction steps exceeds 500 steps.

Since the goal is to reach a specific position, the agent receives a �1 reward for each step until it

reaches the target position where it receives a 0 reward and the episode terminates (Towers et al.,

2023).

CartPole and Acrobot are fully observable, meaning that the observation vectors contain all the

information needed to learn an optimal policy. We start our experiments by getting baseline results

for PPO in the fully observable setting, before introducing partial observability. We train an agent

with two feedforward layers for the actor network, two feedforward layers for the critic network,

and one shared layer for learning representation before feeding it to both the actor and the critic

networks. The agent is using PPO to learn the policy and the state-value function. We show the

performance of this agent in Figure 5.2. As expected, the agent was able to learn an optimal policy.
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Figure 5.2: Experimental results on the fully observable version of CartPole and Acrobot. Since the
environments here were fully observable, we used feedforward networks for both the actor and the
critic networks.

5.3 Partial Observability in Classical Control

To introduce partial observability, we modified the observation vector of the two environments to

contain only positional information. We started from the environments implementations by Lange,

2022 and created wrappers for the observations to mask out all the velocity information. The idea

of masking out the velocity information to introduce partial observability was previously explored

in the literature and was shown to give good diagnostic experiments (Morad et al., 2022, Duan

et al., 2016). Table 5.1 shows the di↵erence between the full and the partial observation vectors for

both CartPole and Acrobot. We also created an additional variation of the environments where we

added noise to the observation vector to increase the di�culty. The noise was randomly sampled

from a normal distribution with zero mean and 0.1 standard deviation.

Environment Full observation Partial Observation

CartPole

Cart Position.
Cart Velocity.
Pole Angle.
Pole Angular Velocity.

Cart Position.
Pole Angle.

Acrobot

cos(✓1).
sin(✓1).
cos(✓2).
sin(✓2).
✓1 Angular velocity.
✓2 Angular velocity.

cos(✓1).
sin(✓1).
cos(✓2).
sin(✓2).

Table 5.1: Di↵erences between the fully observable and the partially observable settings.
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We trained the previous agent on these new environments to confirm that our new environments

are partially observable. Figure 5.3 shows the agent’s performance when trained in the new partially

observable environments. We can see that the agent can no longer solve these problems when

the observation vector only contains positional information. These results confirm that these new

environments are partially observable and that we need to add a recurrent layer to the agent.
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Figure 5.3: Experimental results on the partially observable version of CartPole and Acrobot. We
can see that a feedforward architecture is unable to solve these problems.

In our final experiment, we compare two recurrent agents, the RT2 agent, and the GRU agent,

on the partially observable control tasks. Both agents have a recurrent representation layer that

processes the observation and feeds it to the actor and the critic networks. The actor and the

critic networks have two feedforward layers, each with 64 hidden units. For the GRU agent, the

recurrent layer has 64 recurrent units. For the RT2 agent, the recurrent layer has 110 recurrent units.

These configurations allow both agents to have the same number of learnable parameters. We did

not constrain the computational budget in this experiment, which means that since GRU is using

T-BPTT, it will be using more computational resources to train the same number of parameters.

Figure 5.4 shows the results on the partially observable Acrobot and CartPole environments. In

the partially observable Acrobot, the RT2 agent performed similarly to our first fully observable

experiment in 5.2, which means that the RT2 agent could overcome the partial observability

completely. The GRU agent was also able to reach a good policy compared to the feedforward

baseline 5.3. However, the performance was lower than that of RT2. In the partially observable

CartPole, both RT2 and GRU agents achieved similar performance that was also better than the

feedforward baseline in 5.3. However, both agents had lower performance than the fully observable

case 5.2, which suggests that this environment might still be too complex for the agents and needs

further investigation.

Finally, we show the learning rate sensitivity curves for both agents in Figure 5.5, and the rest

of the PPO hyper-parameters used in all the experiments in Table 5.2.

48



0 2 4
Steps 1e6

500

400

300

200

100

Episodic 
Rewards

GRU

RT2

(a) Partially Observable Acrobot (Without Noise).
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(b) Partially Observable Acrobot (With Noise).
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(c) Partially Observable CartPole (Without Noise)
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(d) Partially Observable CartPole (With Noise).

Figure 5.4: Results from the partially observable control experiments. For Acrobot, the solid lines
correspond to the mean of 20 runs. For CartPole, the solid lines correspond to the mean over 40
runs. The shaded areas are the standard error.
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Hyper-Parameter Value

Rollout length k 256
Discount factor � 0.99
� 0.9
✏ 0.2
c1 1
c2 0

Table 5.2: PPO hyper-parameters used in all the experiments.
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Figure 5.5: Learning rate sensitivity curves. The solid points correspond to the mean rewards from
the last 600k steps, averaged over 10 runs and the shaded areas are the standard error. The curves
used in the noisy environments are denoted with Noise in their labels.
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Chapter 6

Conclusion and Future Directions

In this thesis, we introduced the RT2 algorithm, a combination of a new recurrent architecture,

RTUs, and Real-Time Recurrent Learning, RTRL. RT2 was motivated by the idea of finding a

recurrent architecture for which RTRL updates are tractable and ideally have a linear complexity

without restricting the representability of the recurrent architecture. We based our new recurrent

architecture on a simple idea: Instead of learning a whole matrix, we can learn the eigenvalues

corresponding to this matrix. We then addressed the technical issues that arise when learning

eigenvalues, including how to represent complex eigenvalues and generate real-valued outputs from

complex representations. Resolving these questions led us to the formalization of RTUs. Finally, we

derived RTRL update rules for RTUs and showed that it has linear computational and memory

complexities.

We studied the performance of RT2-based agents through a set of empirical experiments in both

RL prediction and control domains. We conducted our first set of experiments on a benchmark

inspired by animal learning. In this benchmark, the agent needs to predict a stimulus occurrence

based on another stimulus. We asked several empirical questions in these experiments: 1) How

do di↵erent agents learn under limited computational resources? 2) How does the performance of

di↵erent agents change when given more computational resources? 3) How does the performance of

di↵erent agents change as a function of the number of learnable parameters when the computational

resources are not restricted? While answering these questions, we observed that RT2-based agents

always outperformed GRU-based agents even when GRU-based agents were using more computational

resources than RT2.

In the second set of experiments, we modified two classical control environments by masking out

all the velocity information from their observation vector. These modifications introduce a di↵erent

source of partial observability; instead of remembering the occurrence of a stimulus as in animal

learning, the agent here needs to accumulate information from several timesteps. We showed that
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the RT2-based agent outperformed the GRU-based agent in one environment, and both agents

performed the same in the other environment.

While this thesis presented a proof of concept for RT2, several future directions remain to explore.

Firstly, from the analysis in 3.2, the vanishing/exploding gradient problem is only partially solved in

RT2, and additional analysis is required to prevent it completely. Second, combining RTRL-based

updates with RL algorithms that use replay bu↵ers is still an under-explored area of research (Irie,

Gopalakrishnan, and Schmidhuber, 2023). Finally, it is clear that linear complex-valued diagonal

RNNs learn the eigenvalues of the dense RNN, but it is unclear whether or not this holds for

non-linear complex-valued diagonals, such as RTUs.
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