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| ‘ J‘ REX ‘} ’ T ‘,:-
“ ,‘ ‘Tb,e: objective of thts thesls 'was to . evalugte . the ’performance Jnd P
'“recomﬂ‘texid‘ 'atrat'egies‘ for ‘commissioning qu‘,, tumng adaptive Generalized
o . Predxctxve dontrol (GP;.‘:) Bxpepmental a'ngi analytncal studtes demohatrated
ﬂ " that - GPC ‘can - be _successfully apphed to processes rangjng from sxmple

K low-order 'stdble plants to- compivx- opon l'obp: unstable, nonmmxmum phase

A.,-:.\

plarxts with * unknﬂwn, vanable 'hme delays and nonstatxonary dnsturbances.. N

. Gl’C is a flexible algonthm whnch for particular settmgs of +the dengn

| ] .parameters, reduc to most of the well known adaptxve algorithms mcludmg
Geheralxzed anmum Vartance and Pole Placement..

*

I The, key analytical»' development -ﬂwas the transformat‘xon 'of - the standard <
GPC ' control law  into an equivalent linear form _which" made it” possible to
derive the' closed-loop transfer "’functi‘al t Thfs provided Q means ' of ‘
‘-comparmg dxfl‘erent GPC desxgn alternatives and- allowed the effect of the
various tuning parameters to .be determme&. It was demeonstrated that | the
majority 'of tlle. controller parameters can be assxgned‘ appropriate fixed

~ values and the spti of \respon‘se varied by adjusting either the maximum

output horizon, contr§ weighting or reference model'pole‘ location.

- . .
L . . . . .

The closed-lbop output respons¢ was shown to -be invariant to cl{anges in

‘process gain and  insensitive to D‘chanlges in dynamics or ‘dead-time, given an .

r,l accurate * process model. Far practical applications, where model-plant
mismatch is inevitable, a design ° polynoinial*.introduced _into the feedback
path is critical for improving _robustness to modelling' errors. and tailoring
- the, rejection of disturbances. Th'is‘_ polynomial has “little effect on., the
setpoint- tracking propertles of the closed loop and therefore - allows GPC to -
“"\eetq%pendent servo and regulatory control objecttves A bandpass filter
should also bé -used to focus parameter estxmatxon on frequenc:es around the
close\d‘loop bandwxdth and reduce the deletenous xmpact of unmodeled
‘dynamr's and measuremeht noise. In adclition it was demonstrated that- a
simple supervnsory system could be nsed to adjust tuning parameters suchv

that the actual servo and regulatory . pert'ormance - approaches

."t

user- specxf ications.

o
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L 1. INTR_ODU(";TION o

‘.automatrc control due to the presence of nonlmeantres, large time-‘ lays,‘

a ' wide range of unmeasurable disturbances ., and mteractrons from other

control- loops. - Measurements "are typxcally ,' corrupted by  noise
quantizatign errors; actuators _are ~ nonlinear and’ reach saturation limits
during ’;al_'.operation.‘ " Furthermore, the. plant itself’ may be unstable
and/or exhibit unusual dyna’mics such as an inverse response. ‘

chemical process ‘industry .as, a result of its. simplicity and robustness.

"Ther,e ) are, however‘ fundamental limitations of the fixed perameter PID
structure' the controller tuning procedure maybe time cons8ming and must be
. repeated if there are s:gnrl*npent changes in’the process. In = addition, . time
~delays can only be handled by detuning the loop whxch leads to more sluggish

behavior. - : S

&

Adaptive controllers, ‘wh_ich adjust their parameters 'automatically to

compensate for. variations in the - characteristics ' of the process, could -

theoretically compensate - for actual time variations in .the process (e.g. as

~a result of catalyst decay, or heat exchanger l‘ouling) and/or cl_ranges in

operating -conditions  for nonlinear  plants. “ Early. efforts at adaptive
control (Kalman, 1958) were - hampered by lack of theory and . suitable
equipment for implementation .of the more sdphisticated control laws. The

unprecedented advances in micrbprocessor “technology in ‘the 1970's sparked

renewed interest in adaptive control theory which in turn led to a large

A

number of reported experimental applications (Seborg et al., 1986).'
Despite a large- diversity in approaches to adaptrve control,  the
vanious desrgns may be classrfxed into two principal categones 0 '

1) "Model-ba’s’ed techniques where th‘@rameters of a process model are
. identified (directly‘ or indirectly) and wused to derive a suitable control

law.

1

2} Expert system or pattern recognition methods where the - perameters .

in a control law' are adjusted based on’ measured closed loop performance
(i.e. overshoot measured once per underdamped transrent response) combmed
with heurrftlc rules obtained from. experience or process knowledge

o

- ’ . ' o

The three-term PID controller has gamed strong acceptance in the

Y



ih  thé Titerature since they were orlglnally concerved for systemé with
canstant but unknown parameters (Clarke and = Gawthrop, l975) . The term
: parameter-adaptrve also used (Isermann and Lachmann, 1985) to emphasrze
that the model parameters are adjusted on-line. In this thesis the terms
self—tumng and "adaptive" are used mterchangeably. A block dxagram of  a
typical self-tumng control ' ‘system s shown m Figure 1.1. (The figures
throughout the thesxs are located at the end of each chapter) |

1.1 Self-'l?unlng‘_Co‘ntrol ~

Trme delays are@frequently encountered in chemical process _control as a ‘
result of, for . example, transportatron of products over long distances or
the finite amount of time required. to. sample and complete the analysis of a
stream. In the former case, if the flowrate of material through the process
is not constant, the - time delay (or dead-time) wrll vary. Large trme delays
are the, main source of dxffrculty for PID controllers | (Stephanopoulos
1984). - Consrderatron of this problem led to the development of predlctrve
-control strategles control is based not on the current output but rather a
value of the output predicted at some time in “the future based on knowl 3

of past control actions and a process model.  The original Smith L
(Smith, 1957) provided time-delay compensatron for a. co‘nventional
'_fixed—parameter controller. Two early “self-tuning algorithms, the Minimum
‘Variance (Astrdm and ittenmark, 1973) and Generalized Minumum Variance
(Clarke and Gawthrop, 1975) controllers are based on k-step ahead predi'ction.
- of the output (where k is the known time delay of the process, mcludmg the
unit sampling ~ delay). The certainty- equrvalence principle is envoked
whereby ’parameter estimates are. used in the desrgn of the control law .
assummg they are the true parameters of the process. These algorithms are |
"‘known to be sensitive to- an incorrect specrfrcatron of the time delay as
. well as nonmrmmum phase process characteristics. ' ' i
Two alternatrve “strategies  for - model- hased adaptive  control  of
industrial chemical proéesses with (variable) dead- trme appear pro'miSing;

long-range prediction and pole placement

?adaptrve controllers are' 0 ten referred to es "self—tuning



. ; ' 4 . S ‘ v . ;

"Il 1.1 Long-rnnge Multmep Predlctlve Control

The essentral idea in mlong-ranse m}\utep predictive control is to
consxder a trajectory of future predrcuons be?bnd ‘the largest expected pure*
time-delay. ~~ * Making the predxctnon horizon significantly. greater than the '
" time delay normally yxelds a . detuned controller which is more robust to
modellmg errors and, poof measurements. Early long-range predxctlve control -
algorithms . such as IDCOM (Richalet et al., 1978) and DMC (Cutler and
Ramaker,' 1980)\were based on determin-istic impulse or step response models,
respectively. _ As a c‘onsequerlce“ of the large number of parameters in the
" process model representation, these . controllers are not suitable for
adaptive implementation. « ' - 3

Long- rarxge predictive - controllers ». based on autoregressive;
moving-average - (ARMA) models have the potential to become self—tumng if
combined with a recursive parameter - estimation routme l{eterka's'
infinite-stage predictive controllen "(1984~), the EPSAC algorithm (DeKeyser-
and Van Cauwenberghe, 1982) and the MUSMAR approach-(Mosca et al., 1984)
fall in 'this category. All  of - these algorlthms require ex_-tensive
computations; 'nthe former reliess on matrix factorization and decomposition
while the latter two involve a benk of }‘self-tuning predictors for each
pr_ediction forizon. Generalized Predicriv‘e Control (Clarke et al, l987a,b)
is a recent generalization of the previous multistep. predictive algorithms
as well as being tlxe netural long-range e)rtension of GMV. It involves
“explicit identification of a process model and the minimization of a
multistep quadratic cost function of future 'predicted errors .and projected
control increments. The algorithm represents a very .flex_ible_ approach- to
self-tuning control as a- consequence of the slgnifiéant number of design
parameters which may be specified by the user. -

The Generalized Predictive Controller and its closed-loop ) transferb
function are derived in Chapter 2.  The theoretical analysis in Chapter 4
indicates that desplte the large number of desrgn parameters, the algorrthm
is easy to commission and tune. Based on  the srmulated and experimental
-applications m Chapters 5 and 7, it is concluded that - GPC normally provides

- excelleat control of chemical processes.

D

.



°

'\i

Pole Placement approaches to model-based ;k:edaptive ~ control do not

. involve cancellation of ‘open-loop zeros and are ‘therefore  inherently
suitable for nonmrmmum phase plants It is important to note that pole

placement controllers. althoug_h not. base‘d on prediction, do take into
account process dead-time. Compensation for variable time delays .is
.achieved - simply by overparametenzmg the numerator of - the estimated model.
A discrete-time self—tunmg ' pole placement regulator with  explicit
Ubntrfrcatron of the prodess model is described by Wellstead et al. ~(1979).
bﬁs its - roots in- classrcal control methods, wherein the control objecnve
is to move ‘the closed-loop poles to prespeclfned posrtrons which define the
~ desired “transient response “Astrom and . Wrttenmark (1980) derive several
alternntiv'e pole/zero placement controllers which deal strictly. with the
servo problem. Extensions of the pole placement 'iconcept to include both
setpoint following and regulation, were produced mdependently by Wellstead )

‘and Sanoff (1981) and Clarke (l9/£2) These algorrthms are based on a model

which assumes zero-mean noise - and hence thé resulting controllers do not

N4 .. .
have integral " action. More recently, natural integral action has been

introduced mto th_e pole placement approach through the assumption of a
model in which the noise term is nonstationary (discussed in the next
section)- so that offsét between the ‘"output and setpoint approaches zero even
for persistent load disturbances (Tuffs and Clarke, l985i. r .o )

The derivation of a 'Pole Placement controller with integral action is
presented in Chapter 3. In the absence of nenr‘common factors in the model
polynomials, - the performance of this Pole Placement controller presented in
Chapters 6 and 8 is comparable to that achieved usmg Generalized Predxctxve :

Control. . CN

1.1.3 Process Models

Until recently, the .'most frequently assumed model structure for
derivation of  self-tuning - controllers was . the CARMA  (Controlled
Autoregressive Moving Average) model (Astrdm and Wittenmark, 1973): \

- A = B e + g (1.11)



i “vﬂwhere A, -Band’ C are polynomlals in ;he backward shift opentor. B

AqQ? ) O alq' tota q'"' :
=1y -1 -nb"
B@") - by+ba #..+b q ) |
-1 ’ -1 ‘ -nc’ T
C(q )=14 ca +.. '+ Gocd
u(t) is the control input, y(t) is the measured process output and £(t) ] is
an uncorrelated random sequence with zero mean. If the process has physical
dead-time. (not mcludmg the unit sampling *delay) the leading elements of
B(q” ) are - zero.  Although this model has been commonly utilized, it would
stem to be inappropriate. for industrial chemical processes for .which
d:stu:bances are nonstationary. Removal of offset for controllers baséd on
the CARMA model_ns frequently accomplished by the. ad hoc insertion of an
integrator. The CARMA model may be reformulated to include a DC “offs:n\
term: ' 2 4

Y

ATy = B@ (-1 + Cahew +d (1.12)

which takes .into account nonzero mgan values of the input and output,
However, estimation of d _using - the "l in the data vector" method s
reported . to be unsuccessful. (Tuffs, 1984) due to a)‘ lack of persistent

excitation.

The use” of a ‘CARIMA (Controlled Autoregressxve Integrated Moving

Average) model

“ A@ () = B@@ Yu(t-1) + C(q“)e(t)/(s (1.13)

where A is the differencing operator, l-q'l, has been suggested or
recommended by 'many' authors (Harris et al., 1982; Belanger, ) 1983; Péterka,
1984, McDermott and Mellichamp, 1984; Ydstie et al, 1985; Lelic and
-Wellstead, 1987). By variods assumptions relative to the form of C(th) and
£(t) ghe disturbance rPodel can be interpreted as either stochastic Brownian

'motion or repre’senting random - steps at random times. Tuffs and Clar

odel contain inherent integral action.

A(q")Ay(t) - B(q”)A_u(t-l) + C@™e (1.14)
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" where the deslrable zoro-mesn nature of the data vector uwed in ‘parameter
- estimfation is apparent .

The CARIMA pr model is used exclusively in this shesis. .

2 Performance Adaptive Control

% Industrial application of adaptive control has been limited pnmanly
because the benefit of lmproved control is outweighed by the risk of poor
behavior. Self-tuning controllers are susceptable to_ instabxhty if there
exists a. large amount of model-plant mnsmatch or the design parameters are
selected improperly. S’nce the actual (as apposed to predicted) performance
is not monitored directly, under  these cn'cumstances, . unacceptable
closed-loop behavior may persist until an operator identifies and rectifies
the srt_uatxon. A - suggested alternative ‘approach to adaptive control
involves  evaluating the actual performance and adjusting controller
parameters to insure that the actual closed- -loop performance approaches user

specif i@ions.
1.2.1 Pattern Recognition Approach

Foxboro's Expert _Adaptive Controller Tuning (EXACT) aoproa‘ch represents
the most‘ successful,” commercially available, pattern  recognition  based
adaptive controller The algonthm momtors the closed-loop response
following a load drsturbance or setpomt change and automatically calculates
P, 1 and D constants to minimize recovery time subject to user- specxfxed
dampma and overshoot constraints (Kraus and Myron, 1984; Myron, l986)
Wlxlﬁ Mhe EXACT controller 1is reported to work well in many applications,
since it rs based on .a PID control structure, there is no compensation for
time-delays _(Mmter “and Fnsher, 1988). © The potential exists to achieve
better control by combining the pattern recognitioh approach with a
self-tuning controller. )

)

X

1.2.2 Suberﬁsor for Performance Adaptive Conrrol
N

A performance supervisor would monitor ' the closed-loor/ behavior and

adjust tuning parameters of the underlying self-tuning controller in order
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to achieve and maintain debited performance. The proposed.-"performance

adaptive" control strategy removes the need for the user to specify the
controller tunmg parameters directly. . The performance -supervisor 'could not
be expected #o tune the closed-loop system if the controller is beyond its
range of capabilities or if there existed gross modelling errors.

Therefore, it represents only one elemeat of a complete supervisory shell ,

for a self-tunintg controller.

In Chapter lO a prototype performance supervrsor is presented whrch
adjusts GPC or PP controller tumng parameters in order to meet user
specifications on actual servo and regulatory performance. ' ‘

1.3 Objectives of Study

e .
This  thesis is concerned with single-input single-output (SISO)
adaptive control of chemical processes. The objectives of the study, as

originally conceived, were as follows:

.

» a) theoretically analyze and interpret the Generalized Predictive and
Pole Placement algorithms in order to provide practical guidelines on the
selection of their design and tuning parameters

b) rdentxfy conditions under which ' closed-loop performance is Or.lj not

mamtamed when there are changes in process gain or dynamics

¢) experimentally evaluate and compare ‘s’evlf-tuning Generalized
Predictive and Pole Placement control of chemical processes involvin_g

nonlinearities, measurement noise, variable time delays, etc.

d) develop a prototype performance supervisor which  monitors
closed-loop behavior and adjusts controller btuning parameters to meet  user

specifications on both servo and regulatory performance. -

1.3.1 Structure of Thesis’ o/

The structure of the thesis is outlined below with emphasis on the
contributions of this. work.» A more detailed introduction is given at the
start of each individual chapter.

b
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Cpapter 2 feviews the development of the bulc Gmnlized Predlctive
Control (GPC) allorithm and existing extensions which" incorporate several
design polynomiele. The closed- lepp transfer function is derived by
expreuing the control law in & general linear form. This serves as a basis
for the design of self-tuning PID controllers based on bPC For particular
settings of the costroller tuning parameters, it is shown that GPC reduces
to many well-known control techniques.

Chapter 3 contgins/ the derivation of a Pole Placement (PP) controller
based on the CARIMA process model. The design of self-tuning PID
controllers based on PP is presenM.

Chapter 4 descnbes t’iree alummve strategies avallable to a control
engineer for ‘selecting design paumeu;s durmg the commissioning of GPC.
The key to each strategy - is the identmcatxon of a single active tuning
parameter which may be adjusted by‘ the user during -operation to vary the
overall speed of response. Requlrements for maintaining output performance
" in  spite of chﬁnges in process gain and dynamics are outlined. Finally,
alternatives are - discussed ‘for inciuding a noise model polynomial which, in
the ideal case wheré the précees model is exact, does ' not influence servo

control.

Chapter 5 reports the results of an extensive simulation study of GPC,
first with exact process models and then in the presence of model-plant
. mismatch. A root locus analysis provides insight into the _effect of the

. . . -
tuning parameters: The importance of using contro]ler (C) and estimator
(C) design polynomials (representing prior ‘knowledge of the noise model)
for tailoring the rejection of disturbances and achieving robustness to

modelling errors is emphasized.

Chapter 6 deals with the performance and tuning of Pole " Placement
controllers. ~A  simulation study,' which parallels that in Chapter 5, is

presented and discussed.

’

~ Chapter 7 includes the results of the - experimental appllcatxon of
self-tuning GPC to a stirred tank heater ahd to a set of interacting tanks.
Runs with the former pilot-scale plant demonstrate the necessity of using
the Cc and Ce polynomials so that GPC is robust to measurement- noise.

4 .

8
;ﬂr

~

4



h the nonlinear interacting tanks demonstrate mdntenmce of

i

performance for large changes in process dynamics.

¢

Chapter 8 contains experimental runs for self-tuning PP control which
ai{%nctly comparable to those in the previous chapter.

Chapter 9 is a comparison between Generalized Predictive and Pole
Placement control. The comparison is based on analytical and experimental
results presented ‘m the previous chapters,

kY

Chapter 10 begins with the description of a proposed hierarchical

1

supervisory system for a (self—tuning.) controller. Some of the functions .
which should be incorporated into such a system are listed. A significant
contribution of the chapter is the development of a performance supervisOry'
loop which gives sélffuning controllers the ability to acheive and maintain
user-specified servo amd  regulatory closed-loop  performance. The
performance supervisor yields excellent results for GPC and PP control of
the stirred tank heater.

Chapter 11 draws conclusions from the results presented in earlier

chapters and provides suggestions for future work.

s
. Sy
9 [ .
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"2, GENERALIZED PREDICTIVE CONTROL

Generalized" Predictivé Control (Clarke et al, 19873,b) ' represents o
‘unification of many earlier long-range, multistep predictive control
techniques.  Compared with these earlier approaches, GPC is more flexible
and requires less computational effort. The ability of the strategy to
overcome many of the problems in fixed gain or self-tuning control depends
upon the integration of fiye key ideas: '

1) the use of long-range predictio.n over a finite multistep horizon
which extends beyond the dead-time of the process enables compensation for
variable and unknown time delays

2) the assumption of a CARIMA process model and

3) the (optional) weighting of control increments in the cost function
ensures offset-free rejection of nonstationary disturbances as a result of
inherent integral action V

[+ 4

4) recursion of the Diophantine equation is a computationally efficient
approach which allows for the inclusion of weighting polynomials to modify
the predicted output trajectory

oy

5) the choice of a control horizon (first "introduced by Cutler and
Ramaker, 1980) after which projected control increments are set to zero
rnificantly reduces computational * effort and simplifies control of

nonminimum phase plants (since control weighting is no longer necessary).

.

GPC is capable of stable control of processes which are simultaneously
nonminimum phase and open-doop unstable and whose models may be
overparameterized by the identification scheme (Clarke et al., 1985).

rFl »

The basic Generalized Prediotive Control algorithm (Clarke et al.,
1987a) is derived in Seetion 2.1 and extended to incorporate polynomial
weightings for modifying. the closed-loop response (Clarke et al., 1987b) in
section 2.2, The large‘ ‘number of design parameters gives GPC great
flexibilty but,e in general, makes the algorithm difficult to tune. (It is

difficult to obtain a useful closed-loop expression directly in terms of

11




to' denve the closed 100p i |
"desxgn parameters can ythen be ~ evaluated by analyzxng thxs closed =loop o
: ‘:'-expresston ‘ ‘:_:The lxnear form of the control law is also usef ul. for
¢ demonstratxng that GPC reduces to a number of well known strategxes (Sectrbn
2 5)  for Iumtmg cases of the des:gn parameters . Restnctnons whxc.h . must

. ;CARIMA model where C(q ) is assumed tobel: . P

" be consxdered in a later sectnon) -

e '-consxder the rdentlty

th ese. desxgn parameters) However. ‘(m Sectton 23 the standard control law
s rearranged mto an ‘equivaleni

transfer functxon The effect of t,he varxous

| be placed on the p@cess model m order for GPC to reduce toa PI ‘or - PID

controller are outlrned in Sectxon 24 Desngn equattons are given for _the B

proportronal mtegral and denvatxve constants in terms of coefftcxents in 3

the general lmear formlof_' ‘the .control law.

.

2 l Derivatron of the Basic Algorlthm

The development of the Genegahied Predlctlve Control (GPC) algonthm"

ke

. ‘depends upon long-range predxéﬁon _of the process output usmg a CARIMA
~'model " 'The Dlophantme 1dent1ty, whnch is combmed wrth the CARIMA model

may - be SOIVed recursxvely such that the predlctxon of the output over a

‘multlstep honzon is computatlonally efflcxent memxzatlon of a ‘cost
- function’ consnstmg of a comblnatxon ‘of future predrcted errors and ‘”control- '
. mcrements yxelds the control law. ‘The., mtroducnon of a. control ‘horizon".

- 'makes 1mplementatlon ‘. ‘of the . : algonthm pracnca.’lf for ‘Self'-funingb'--

Sy I
T

, applrcatrons

The denvaﬁon of the basxc GPC algorxthm rs based on the srmphfred

.'\

A(q 300 = B (e s (211)”_ :

"..V(The extensron for  the case of the general CARIMA model Wlth C(q )#l will

- -2.‘1.fl : Output”_Predlction

—

To denve a 1-step ahead predlctor of y(t+_1) based upon eqn (21 l),'

. el S
«
T

léE;(q"lv')A(d'l)A‘i-f.‘q__"iFj’(o."l)v R (-2;17._2)7'



whxeh; umquely defxnes the polynomxﬁs E(q )-1nd F(q ) gnven A(q Y. and:
rthe predrctxon initerval j Multrplymg eqn . l“P by E,Aq (and droppmg L
" the argument @ ) of the polynomnals for notatronal sxmphfrcatron) grves Y |

EAAy(tﬂ) - EBAu(tﬂ D+ E e(m) . W
$O that after sub‘stituting for EjAA from eqn. (2.1.2) ‘we have:
¥(t+) = EBA(I-1) + Fy(0) + E£(t+)) @)

- Since the degree of E is j-1 the noise coniponents are all in vthe ‘future :and‘ :
- since e is . assumed to be  white the opttmal output predxctor -given measured =
'outputs up tm trme t-and. control signals u(t+1) fot 1<_|-l, ist o S ‘

(t+j|t) GAu(t+J 1)+ Fy(t) ST @19

Note that from eqn. (2.1.2) G, = BEJ_>= B[l-qf’Fj]/AA so0 that the first j
coefficients - of 'Gj are the step response coefficients’ (jae. - coefficients of
B/AA). ‘ ‘

GPC is based on the mxmmrzatron of a multnstep cost functlon (secttonf
2.1. 3) where j ranges from the mmxmum output honzon (N) to the maxrmum‘
‘ ioutput honzon (N) For _]>d (where d is the physxcal dead trme of the'
- process expressed ‘s an mteger multrple of the samplmg mterval)‘_

) predrcted outputs depend upon present and. future control actions.

2,122 ..'_Recu"rsion of the Diophantine Equation

In order to .obtain . the range of ou ut predrctxons from N to N the ,",
"‘Drophantme equat ﬁn (2.1.2) could be solved to give E “and F for - each J |
A simplier and ‘far more computatronally efficient. scheme is to use recursron
of the Dnophantme equatron (Clarkc et al., 1987a) so that -the ‘polynomrals

,E,-+1 and F f obtamed from Ej and F To show this recursxon procedure
D

h consrder th,e 1ophant1ne equatxons wrth A defmed as AA:
l = ,_ v o . . } . 1. : :
ok ‘EjA +A°F | - B t2__l.5a)
1=E A+q"F : | (2.1.5b)

j+1 : j+1

L Ty
. Ll ,/ R "




| V‘V,Subtractxng @ l Sa) from (2 l 5b) grves. )

'0-,- (E - E)A + q"’(q F Fj)

e

The polynomral E -l-:j is of degree j and therefore may - be splxt mto two

"

. ‘ . ) s ’
| | Bip " Ey=FEjve a4
so that: ‘ . ‘ v .
: ‘ e -J, -1 e P ,

\‘ | .EjA+qj(q‘F+1-Fj+Aej+l.,j)s=0 S ;
Since the coefficients of the first j terms must be zero E=O and Fj is
‘given by 1}= (F - Ae ll.j)' ‘ .

- As Alis monic we have: - T _____ o “ »
€y = fi0 ' (2.1.62)
: _-fj+1,i = fj’ 1T By 1T 0,..,na \ “ (2.1.6b)

Also, ,

- , -j . . ‘ .
. EM‘— E, te - (2.1.7)
and, Lo ' ; :

..Gj” = BI-?J_+1 (2.1.8)

Hence given the process polynomrals A and B and the solunon for predxctron '
interval j (i.e. E and ) (2.1%) and (2.1. 7) -may be used to obtain E |
and F e %hd then (2.1. 8) used to calqulate G with  little computanonal
.effort. - To mmahze‘ ‘he iterations  note that A,,f,or . j=1 _the Diophantine

4 -

PR

equation is:
; - -1
1= EIA +q F1
and as A is a monic poblynomival:
E =1, F = q(1;K) ﬁ | L)
_For 1mplementatlon pur’ﬂ‘oses it s srble tg develop snmr]ar equations  to
cémpute G recursrvely from G and F in oréler to avord calculatmg and'

storing the E polynomxals
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Suppose a future ' setpomt sequence [w(t+J), j-N N] i avarlable .
‘at time t. ~In most cases the elements of this sequence wxll be equal to the‘
current setpomt w(t) (whxch may be changed by the user at any txme)
' although for batch _process "control , or robotxcs a future preprogrammed"
| setpomt sequence may be knowm Optronally, w(t) may be obtamed from a raw -
setpomt Y, (t) by prefrltermg ‘ '

W =Foy 0 o @uoy

where F'p is a transfer function filter. . o

" The objective of the controller "is to drive future process outputs
y(t+j) "close" to w(t+]) bearmg in mmd the control activity required to do
so. A re;edmg horrzon approach\ is adopted where at each samplmg time t

\ - a) the future setpoint sequence js obtained,

b) the Joredicti -

. predictive-- model’ (2.1.4) is used to generate a set of pred%ted-g
outputs §(t+j|t) and . COrresponding output “errors, e(t+j) ‘= w(t+j) - y(t+J|t) )
for j=N1,.._.,N2 (noting  that §'(t+j|t) dg’zends in part upon present ‘and

future control increments which have yet to be determined

- ?

%‘ ¢) a quadratrc cost functron %omposed of the ‘re predicted errors
and control mcr_ements is mmrmxzed ;g‘ provide the optrmal sequence of

controls, Au(t+j) ; j=O0,1,..., ;o

u

‘ - 0O ‘ L . :
d) the first control increment, Au(t), of the sequence is implemented.

~ The cost function considered for the basic GPC algorithm is of the form:

B o

NN, = { Z[y(m) - we))” + Z AIBu(t-DF } JRNCARED

| | , i % _4
where: |

s

N . is the minimum output hOl‘lZOﬂ (N >l)

Nz 1s the maxrmum output horrzon (N >N )

) .



Y A(j) 1s a control Jeightmg sequence frequently
’ chosen to be the,'constant ) :

RS

The expec_tn_}on in (2! ll) xs condmoned on data up to time t assummg

that

3,‘? future '~ measuremenits are available. < Recall' that

the

predxctxon of y(t+,|) (for - the process . descr-xbed by (2.1.1)@ is

equation - (2.] A4y

y(t+Jlt) = G A(t+1 l) + Fy(t)

y(t+J|t), in general depends upon

,lvhere the po]ynomial degrees.are:', 6G, = nb+j-l, 6(3, = j-1, 6G, =
" we may drop the predxctxon interval,

while,

where,

.’»!‘

»

optimal

given by

, 1) past and present measured outputs - as well as past known gontrol

increments )

ii) present 'and future control increments yet to be determined.

be split into two polynomxals as follows » ')

J

/71 - g G

+ ~(nb-1)
i %u T Phj4nba

‘The optimal prediction becomes:

'§'(t+jlt) = éjAu(t+j—g + f(t+))

- f(t+]) = GAu(t-1) + Fy(t)

Eq‘uation (2;1.13) may be written for j= N1"“’Nz as follows:

nb-1

. Let f(t+j) be that component of y(t+J) composed of sxgnals known at ttme t
(i.e. - f(t+j) is the open- loop prednctxon of y(t+j) assuming all present and
future control xncrements are zero). ‘' In order to determine f(t+j), Gj may

@112

-y

" ‘The coeffrcrents of G are step response caefficients of the process so. that

(2.1.13)

(2.1.14)
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t

.Y(t“filg)g-' GN;Au(t-t-Nvl-l‘)»A-r--f(ﬂN DA

d

Y(t+N,Jt). = GNzAu(th D+ f(t+N2‘)‘
or in vector form:

y=Gu+f - (2.1.15)
where, , :
Y = [Y(UN) YN 1) o YN

™= [Au(t) Au(t+1), .. Au(teN -1) ... Au(uNz-.l)f'

£ = [f(1+N) f(t+N'-1+i) o BN )"

and the matrix G is of dimension (N,-N +1) x N:

L}
B By v B O . |
G = [\ : - L - ©(2.1.16)
BN 8o
e 2 -

Again - note thaé" the elements of this matrix are "thf step response
coeffxcxents of the process so that.if the plant has physrcal dead-time d>N

the first d+l N rows and last d columns of G wxll be entlrely Zeros.

WIth, ) ‘ h 1 , ST v ' 1
| w = [W(tN) w(esN +1) . w(t+N2)]T

the expectativon.f“of tne cost function (2.1.11) may be written:
J(Nl’Nz) = {(w -Gu -f)(w-Gu-f)+ u-} o (2.1.17)

The ' minimization  of J assummg no constramts on future controls - results in

the pro_;ected control mcrement vector:

v oL
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- Note that the frrst element’ ot‘ u 1s Au(t) so the current control mcrement
is obtained when the first row of (G G + AI)"G is multiplied by the error
vector (w-1). LE

2.14 'l‘he Coutrol Horlzou‘

The matrix to be inverted in eqn. (2.1.18) ‘when computing the current
-control increment is of dimension N xN Although in the non-adaptive case
the inversion need only be performed once and may be done off-line, in the
vcase of self—tumng the .computational: load at .each sampling mterval would
be excessive since _sz is typically large (N ~]0 is commonly used)
Moreover, . if the plant has physical dead-time such that d>N the matrix G G
is smg}llar and a finite nonzero value of control wenghtmg, A, is required
l'or a reallzable control law (i.e., for (G G +AI) to exrst)

The practicality of the GPC algorithm results l'rom borrowmg the idea
~of a control horizon from the Dynamic Matrix Control (DMC) method of Cutler ‘
and Ramaker (1980). After an interval NU<N projected future control moves

are constrained to be zero:
Au(t+j-1) =0 jNU L (2.1.19)

The control horizon, NU, represents the number of nonzero control iln'cr'ements -
the algqrithm is free to select in' order to minimize the cost function.
Control changes further in .the future have an effective infinite weight
placed on them. . The use of the control hqrizon srgmfrcantly reduces the
compitational effort since the vector u is then of dlmensxon NU and the
prediction equations reduce to “ .

) y = Gru +f
where,



r . -
le-l & 0
. - . )] ' “ .
G, g, (2.1.20) .
By, o g
L N3N [N -N +1)xNU

The control law is how:

. u= [GTG + n]"GT(w - 1) 2.121)
] r r | S .

and the matrix involved in the inversion i$- of dimension NUxNU. If NU=1,

the calculation of Au(t) involves a simple scalar inversion.

’. .2

. ' | ‘ \
The basic GPC algorithm is represented in block diagram form! in Figure

2.1.

2.2 .Extenslons to the Basic Algorithm

The applicability end ﬂexibilily'of the original Minimum Variance (MV)
. 1973) was extended by t\he addition of
design transfer functions P(q ) and Q(q ) to yield the Generalized Minimum
Variance (GMYV) controller (Clarke and Gawthrop, 1975, 1_979),
the GPC
the derrvatron is extended to mcorporate the general CARIMA model

strategy (Astrém and Wittenmark,

This section

introduces. similar transfer functrons to basic algorithm. In

addition,

~and feedforward compensation is. also outlmed

2.2.1 "Auxiliary Outpnt; P Welghting

The basic GPC algorithnrj was based on the -minimization of a set of

7D = P y() @2.1)

b
i

may be considered,* wherez?,‘ ’-P(q'l)’ _i‘s" a transfer function with numerator and

e

predicted errors between: the getpo‘int' trajectory and the predicted output
. trajectory. Instead of pred}ctions ~of the actual output, an auxiliary °
output, : EAN




: ‘;' 20
,,,..mc!enomtmor po;ynomlm P nd P - selected - by “siher - the™ uset" or

supervxsory System:
P(q") - Pn(q")/lfd(q'l)

P(q'l) should be selected such that P(1)=1 so that at steady state there is
no offset between the guxiliary and actual outputs,

The appropriate cost function to be minimized is:

' NU ' ‘
J(N N ,NU P) - E{ Z [¥(t+)) - w(t+_])] + Z A0)[Au(t+j- l)] } (2.2.2)
; i=1 s

The prediction equations given in the previous section must be modified to
forecast W¥(t+j) rather than y(t+j). Recall the simplified CARIMA model with \\
C(q” ) = ]: .
' | AY(t) = Bu(t-1) + £(1)/A (22.3)

3

—

but now consider ‘the Diophantine Identity:
= -
- Pn/Pd = EjAA +q ,Fj/Pd (2.2.4)
Following the same procedure as in the previous section we obtain:
Pt+jlt) = G,Au(t+j-1) + Fy(yp, (2.2.5)

. where G_ = EjBJ.

The Diophantme recursion equauons developed earlxek are 1dent1cal to those

involved here except the Starting point is different:

-~

-— »
. E, = pn(O)/? L0, F.1 = aP, - EAP) . (2.2.6)

where A = AA.

The . selection of the P(q ) _ transfer function to achieve -
"model- followmg wxll be 'detaxled in later sections.  There does not appear
to be any evxdence in the literature indicating that transfer functfon P
weighting -'yieldsi better results than simple pblynomialv P weighting (i.e.
P d=-l). Consequently, in the - analysié ~and applications . which follow
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" polynomial P weightmg will be mumed lri this case the polynomials G and,

F are of the same degree as without P weighting (P=1) and the structure of
the prediction equation remains unchanged.

2.2.2 Dynamic Control (Q) Welghting

.lnstead of constant (\) or variable (\(j) costing on control
increments it is possible to' use dynamic costing AQ(q'l) on the control
signal with cost function:

2 NU

L . :

JIN,N,,NU,Q) = E{ ) Iyed) - wied + Z MQ@ ult+j- 1) } (22.7)
o =N i=1 .

In order to avond’/the problem of A-offset (Clarke and Gawthrop, 1979) Q(q° )

~ must have a factor of (1-q° )' The role of Q in GPC is much reduced

compared to GMV where Q is critical for stabilization of nonmxmmum phase
processes. For GPC, Q may be viewed as a fine tuning parameter whrch may be
selected as thé transfer function:

Q@) = Q@ Q) withQ) =0 :

2

Details on the inclusion of Q weighting are provided in (Mohtadi, &986).
' r

A )

Th((e selection of the Q transfer function’ for GPC, as 'with GMYV, is

drffncult a pnon The GMV control law may be written in the conceptual
feedback form ' ‘

T u() = —Q[gb(t+k|t) - w(t)] ‘ (2.2.8)

The choice of,
¢ - -1, ,, -
xQa™) = A1-a7Y)/(1-aq”Y) 2.2.9)
i \2" \ ) R
corresponds to a PI regulator acting on the predicted error Y(t+kjt)-w(t)

(Morris, et al,, 1981) with ga_in.'Kc and integral timp T rela_ted to the .

‘ I
constants @, A and the sampling time %. as follows:

N

A= l/Kc @ = (r-T)/r, : (2.2.10)
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s,

I was™uggested -that suitnble” vnlues of K ' and " be found t‘rom‘

conventional tuning rules for PI regulators ncting on the process without
time delny (which has been _effectively remoyed by the k step ahead
prediction). This is inconvenient (at bes and forms the bms of
statements that GMV with Q weighting is no daptive (Gawthrop. 1986) since

periodic 'retuning is required to accomodate process variations (Mmter and

‘ Fnsher, 1988). The same difficulties .are encountered when attempts are made
16 specnfy Q for GPC. Since better performance can be achieved with much

less design effort by using other tuning parameters, the qse of dynamic

-.control costxng, Qa ) is .not recommended and will not be considered
further in this thesis.

2.2.3 Feedforward- Compensation

The . potehtial exists for self-tuning to. make' a contribution in -

industrial process control in the area of dynamic feedforward compensation.
Feedforward signals may be either measured disturbances or control signals
from other loops in a multiloop environment. _The feedforward signal may be
added to the simplified CARIMA model to yield: B

A@HAY(®) = B@™)au-1) + DigHavie-1) + g) (2.2.11)
The feedforward signal adds a term to the predicted ontput:
Y(tsjit) = GjA’u(ttj-l) + Fy(t) + EDAV(t+j-1) (2.2.12)

It is evident that, in gener§i future values of v must be known or
estimated. A model for the disturbance is therefore requxred the s:mplest
of which assumes that there are no ‘future changes in the level of the

dxsturbance

E{Av(t+j-l)} =0 ju23,. | (2.2.13)

or that v(t) consists of random steps at random times. More generally it
‘may be assumed that: ‘

whe;e’ nt) is an uncorrelated random sequence. Since this model is not

av) = [v @ty aamy @2.14)

. " [ ) - &2'2'—
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known a priori, a recureive extended leut squares or equivalent estimetor
must be emplo&ed to ideqtify the Vn and V 4 poly, ials. In practice, the
model of eqn. (2.2.13) is usually adequate. For mimum phase systems it is
possible to obtain exact rejection if the disturbance transfer function
(feedforward) delay is greater than or equal to the control signal delay.
Note that when the feedback controlier is -detuned (i.e. by using A control
weighting) feedforward compensatnon is also detuned. Details for one method
of recovermg the exact rejection property are provided in (Tuffs, 1984) '

-

2.2.4 Colored Noise; the C Polyno_mlnl

At thxs point we will extend the derivation of the GPC algorithm to the
general CARIMA model where Cﬂ

A@ My = B@ Hut-1) + C@ Het)/a (2.2.15)

To make the derivation reasonably general we will include polynomial P

. -

weighting. Consider the Diophantine Identity:
CP = ABE, + qF, (2.2.16)

Multiplying (2.2.15) by I-ZJ,Aq‘i and substituting for EjAA from eqn. (2.2.16)
yields: ' ’
Ci(t+j) = ij(t) + GjAu(t+j-l) + CEjE(t+j) (2.2.17)

where y(t+j) = Py(t+j) and G,- = EJ_B, or
W(t+j) = ij‘(t) + 'GjAu‘(uj-l) + E£(t+) (2.2.18)

where  the superscript f denotes a signal filtered by 1/C. Since 6Ej=j-_l the

optimal predictor is;
Wtjit) = ij‘(t) + sz'su’(uj-n) S (2.2.19)

The constraints and cost are in terms of Au(t+j-1), j=1,.,NU rather than
Au‘(t+j-l) and therefore the prediction equation must be modified. Consider
the ‘identity:

G, =GC+ q"'ﬁj e © O (2.2.20)

where Sf}i-j'-l and sﬁgamax(nb-l,nc-l).
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- Substituting gives: )
' . / W) = Fy'(0) + & jauttej-1) + G,au(t-1) (2.2.21)

As with the development of the basxc algorithm, let f(tﬂ) be that component
of ¥(t+jit) composg of signals known at time t:

) = Fyo s G, aufe-1) (22.22)

so that, .
Wt+jit) = éjAu(t+j-l) + f(t+j) _ (2.2.23)

Writing this equation for J = N N in vector form and introducing the
control horizon, NU:
Y = cr(. + 1 (2.2.24)

where,

N

Y = [12!(t+N1) J)(t+N1+l) fb(t+1‘~lz)]'r , \
~u o= [Au(t) Au(t+]) ... Au(t+NU-1))T |
[ = (64N ) (15N +1) . f(t{Nz)]T

-
o

G = : g . (2.2.25)

¢ - The miniini“zation of the cost function then yields the control law:
u= [cfc;.r + u]"cf(iv 0 & (2226)

Remark: The C polynomial which has been incorporated into GPC may be either
a controller design polynomial, ,Cc’ 6r an estimate, é, of the “"true" C
obtained by recursive identification. . These alternatxve strategies will. be
e;tplored furthe/r in later chapters.



2.2.4.1 Recursive Implementation

Once again the Diophantine recursion equations for computing E and F
- are identical except for the initialization:

( ,
E=C(0)M0), F,=q(CP - EA) (2.2.27)

where A=AA.,

However, now the identity of eqn. (2.2.20) must also be solved to determine
C';’ and Gy While it is possible  to develop another set of recursion
equations (as in Mohtadi, 1986) the ! followmg derivation \g‘ws that it s

possible to make use of the standard set of equatnons developed- thus far and
\L

relate the solution to the case where Cml.

we many
(2.2.28)
Gj' - Gj' " q"ﬁj' | : (2.2.29)
Multiplying (2.2.28) by CB and substituting for G, = EB ,
CBP = c[\c";j AA + q‘j(ﬁj'AA + BF, )]' \ (2.2.30)

Now consider the case where C#l. Multiplying the Diophantine Identity
(2.2.16) by B and substituting for Gj-EjB from eqn. (2.2.20) yields:

CBP = GjCAA + q"'(ajAA + BF) (2.2.31)
Equating the last two expressions and dividing by CAA gives: '
c';j + q"'(GjAA + BFj)/CAA = c';j + q'j(EjAA + BFj )/AA (2.2.32)

Therefore C-;j = Gj- and the elements of the matrix Gr involved in the conatrol

calculation are independent of C.  (Ultimately, this leads . to the property

that servo control is unaffected by the C polynomial, when there is no
'} . R



: 'G -"Gj and agam wrth C provrdrng G Then eqn (2220) may be used to -
compute: 5 dlrectly : t ,

:odel-plant mrsmatchf - Details ar&“*‘provfdéd W bction 4.54). ¥er '“"the case '

% where P(q )- these elements ""'“a_"re”_' step response coeffrcxents vof‘  the’

process. ST , S ‘
. The prevrousvobservatron leads to a srmple method for computrng Gj’

".:The. Drophantme recursion - subroutrne can be called wrth . C=] giving’ )

s

i

o

2,3 (‘;eneral: Llnear -For’mof Control Law

“* In the prevrous sections the basnc GPC algorrthm was derrved and

s_,.jsubsequently extended to mcorporate polynormal wexghtmgs._ s '; For“ the . case

: "where the algorrthm is based on the srmpllfred CARIMA model with C=1, the
'_ _‘control law was wrrtten m the form |

srmply equal to the current setpomt' : o L E’ |

kY

| .'.” - _[_'(;fcrjr,\r]“cf(w - @3.1)

where the open-loop 'j-Step ahead,_prediction of the output,

r(‘i;j) y(t)+GAu(t 1) s . N L 32)

',and the polynomrals are of degree b‘F -na 6G =nb l

_ While the ‘control law is "easy to _imp.le.ment written ‘in this way, tHis

representation “is_ not convienient -~ for ‘analysis.  In -this section, ‘the

control law s rearranged .into a’ general “linear form such that the =

‘ closed loop transfer functron can be determmed and the effect of the desrgn ~

and tunrng parameters analyzed
: ‘:r_\..r $

In order to carry out the denvatmn the assumptron is made that the

'elements of the future setpomt sequence supplred to ‘the' controller are

o .. w ,«\[w(t) ) 239

B

',,..VWith‘ this assumptron " note - that the cal'culatldn- of Au(t)  involves the -

“followmg terms A a L FE v \“

W), v, Y1), y(t-na), A'u(t-.l,"),...',Au(t-nb)v.5;

,y




Smce the terms appear lmearly, the control law may be expressed m the'

.

- {éneral lmear form
- T@HAUD = R@HWO - S@hvy @30

where vanb, §R=0 and GS-na o
Lo , ‘ , . LR B . A

It remains only td ’determiaxale the ébefficientz v()f : the‘ polynémials T(q'l), B
R(q ) and S(q° ) | 'Td thiS end, let the elements of the fxrst row of the
matnx (G G AI) G be denoted by the row vector: |

- | | W) - Fy ¥(0) - G su-1) ] -
Au(t) = [h .. h ] RO o : '
"7, N, | o | @39

w(t) - FN‘y(t)'- EN. Au(t-1)
g 2

<.
<

2 . 2 Nz

.f.%f‘..c.Au(»t) =Z th(t)-e Z hFy(0) - Z hG jauc-n) @3

i=N - . j=N . ._N
J‘ 1 . ) 1w

.|



N

S g [Z hjfj,()] + + [ Z Lj.nl]q .
o j=N1 | .

(2.3.8b)
In later ‘'sections y will  be shown that the polynomlals T R and S
‘ sxmplify for hmmng cases of the GPC tumng parameters '

2.3.1 Closed-Loop Transfér F unction

When the control law rs expressed Jn the general lmear form . (shown in -

| Fxgure 2.2) A
,TAu,(t) = Rw(t) - Sy(t) .

it s easyb to combine it with the simplified CARIMA model:
. @ Sl

AYD) = Bau(0) + (v

/ ,././"

“where x(t)éf(t)/A represents a nohstatronary dxsturbance, to obtain the'
closed loop expressxons for u(t) and y(t) ’

N
[

~ BRq™'w(t).+ Tax@) - |
oy = — I | - @33)
B _ | TAA + q BS. - E S

: o i  ARw(t) - Sx(t) o R
' u(t) = —o — : R (2.3.10)
TAA+ q 'BS '

Note that at _,Stead,y state (q=1): R - L ‘l“

v, ‘=,[R(I_)_/S(l)}wu i - @31

whe_re_'from'eqn (2.3.7): - o

CRO) -

hj;' sw’ ZhF(l) L

A e - j_N ol o

. ‘ﬁ - ".,"v .g_' Z‘} ,”W ‘

. ' v ,_"‘ﬁe% from the Drophantme Identxty (thh for " ‘example,
pb\h(nomxal P we’ig‘nng) N "

. :»?'?‘.f;i . 3 - =j RS
= LoE P(q )=E(q )A(q )A+q F(q ) e

L (. A
. . . , .

%M;»‘; Y




s‘o‘t_hat, , ;. _
Fj‘(l) = P(l) = 1 and = §(1) = R(I).

~ ‘Equation (2.3.ll) becomes:’

y =w, o (23.12)

which indicates that GPC provides off;et-free control - in' the - presence of -
_ nonstationary step-like disturbanees. Noté"' ‘that. this is “true even if the
control law polynomials" T, R and S are v"derived from inexact estimates of A
~and B obtained from a recurslve “identification algorithm as long as the

it
2. 3 2 Extensnon for Colored Noise RS

- The. GPC algorith 'was extended . in section 224, to mcorporate -3 C

polynomial. . Even wnth colored - noise, the control law can be rearranged into

the - general linear forpt of ean. (2.3.4). For this. case, the coefficients of

T, R and S are determmed as. follows

The_, control law, equation (2.2.26) is:

_ ~ . T . -1 'T —v
= (Gr ~Gr‘.+ ,\I)~ G}..(w f)

Only the vector f, representmg the open loop predncted output trajectory,
is different from the case where C- ' '

. < f(t+_|) = Fy(t)/C + G Au(t 1)/C

to the .current setpomt w(t) (ie. no preprogrammed setpomts are known) the
equation for the current control mcrement Au(t) is: ‘ '

i

-

| N, N, N, | |
Au(t) = Z how(t) - z hF, y()/C - Z hG |Aut-1)/C: . (23.13)
| i=N_ R N

‘Note also that the polynomxals F and 6 originate from - the Diophantine t
Identity. mvolvmg C, eqn, (22 l6) Under _the assumptron that elements of :
‘the future - setpoint sequence supplxed tg the - .controller at txme t are equal o



where GG -max(nb- ,nc-l) and the vecta( @ }ain represents the fxrst row of
: the matrnx (G G * AI) Q ‘ “ o

,'Multxplymg by C and rearrangmg mto the general lmear form TAu(t) = .

Rw(t) - Sy(t) we have: o . , v
o pre N, O |
T=C + q"l[ Z hj'ﬁ'j],' R = C[ Z hj} and S = Z h.'iFj (2.3.14)
" w_ith ‘polynomial“degrees: G'I'-max(nc,nb), SR=nc, 6S=na.
'Combi‘hil’lg‘the control law éxpression with the',general CARIMA - model: , S

AV = Bau(t) + Cx(t)  with x(t) = ¢(t)/A
gives the closed-loop transfer funcfion e‘quations:

 BRg’ 1w(:) + TCAX(t) iy | ,
y(t) = —= (2.3.15)

,TAA + qQ 'BS
| ARW( t) - SCx(t) | Vo
u(t) = - | @316

' o “’TAA +q 'BS
- Again, at steady state, :

£ S
.y, - TR(l)/S(,l)]w" & 23.17)

L]

where from eqn. (2.3.14):

. N2 B N Loe
SR = CQ) Z hj],_ S(1) = Z,hjpju)
. Ci=N =N

%

but f;;om'the‘ ﬁidphantine Idg.ntity eqn. (2.-2.1&):
F (1) = C(’l)P(_l_) _-‘ C(1)

f-Therefore, S(l)sR(l) and Y.=W, Again 1t is . shown that GPC. asymptoncally
ehmmates offset in the presence of nonstatlonary dxsturb‘ances ' ‘
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2.4 PID Structure

-

There ’ has been consxderable bnterest m recent years in obtaimng
self -tuning PID controllers (Vermeer 1987; Song et al., 1984) Self-tumng
PID controllers ‘have been designed based on the GMYV controller (Gawthrop,
1986) as’ well as. the Pole Placement algorithm (TjOkl‘O and Shah, 1985)
this section, the conditions under which the Generahzed Predictwe Control

Colaw ¢ s structurally equivalen.t‘ to a PID controller are  outlined.
Expressions " for the proportional mtegral and derivative constants allow
the design of PID controllers based on a multistep. cost Anction criterion.

In- the prevnous section, the control law l‘or GPC was rearranged into
the form of eqn. (2.3.4): ' L

TAu(t) = Rw(t) .- Sy(t) - "
) \where in the most general case with a- C. polynomial the deérees of T, R and S
R are:

6T = max(nb,nc), §R = nc and 88 =

A typical discrete PID control law may‘ be written in the velocity form
(Stephanopoulos, 1984): ‘

1 s :

, T 1 ™ | rD' v C
Au(t) = K {1+ =+ =2le(t) - e 2— e(t-1) + K [z le(t-2)  (24.1)

v

where Kc 'is the proportional constant, T is the integral time, ™ is. the
derivative time, T' is the sa‘m\pling interval and e(t) = w(t) - y(t).

In practice, it is desirable ‘ to - remove the ‘setpoint from the derivative
action - to avoid control signal “"spikes" or "kicks" due to step ) setpoint
changes.k It is also fairly common to. rem()ve the - setpoint from the
proportional term (Isermann, 1981). Y This leads to the modified PID ‘control

law:

o - T T N L LS ol
Au() = K | =|wt) - K |1+ =2+ 2=yt + K |1+ 25=[yt-D) - K |5
t I S ' s

y(t-2)
‘ I . s s ) _'
..{2.4.2)

By comparison with eqn. (2.3.4) it is obvious that the GPC control law has
the same structure as this modified PID controller if the polynomials .in the .



O,-..._.

i R

” ‘CARIMA model are restrncted to:

- ) R T e e
WG s e Dy A I I g

A@) =1 +ad?+ag?

B(g™) = b, | 0
-1 L . )
c@h=1 B

. ] s
In other words, in order to get a PID structure, we. must assume a 2nd order

model (na=2)" w:th no physical delay or open- loop zeros (nb=0) and without
colored. noise (nc=0). With this assumption eqn. (2.3.4) may be expanded to:

t,Aut) = row(t)’ - 8,¥(0) - s y‘(t-l) -8 y(t-z.) . o (2.43)

where the coefficients are funct:ons of the ‘GPC tumng parameters and model

parameters as given by eqn. (2.3.8):

‘N
2

N
2 .

r=)h . and si=Zh,f, for i=0,1,2 - (2.44)
N .

L}

.0 j J i
j=N ! i 1.

Comparing eqn. (2.4.3) with the modnfned PID controller eqn. (242) yields

the following four equatxons :
ro = KT/r, _ (2.4.5)

Sy = Kc[l, + T./rI + TD/T-] _ o (2.4.6)
o. ' s1 = -Kc[l + 2TD/T-] , N (2.4.7) .
5, = KcTD/T- _ (2.4.8)

Note that only 3 of these -equations are mdependent since from the
Dnophantme Identity it was shown in section 2.3.1 that S(I1)=R(1). - In this
" particular case: , 3 ’

r = s, + ?1 + s, ‘_ (2.4.9)_

Equations (2.4.6) through (2.4.8) mag be solved for K, r and 7

. "T.(51+Zsz) - -8 T '« _
Kc = -(81+2sz) s r] = W .and;w:’ f (S—'f-_z—ﬂ . (2.4]0)




2 4.1 Pl Structure Rt

 The GPC control law assumes ° the structure of a Pl controller if the
\
model is restricted to: p \
‘A@Y) =1 +aq
o | B(q-l),‘{' bo
Ca™) = 1

In other words, to design a PI controller’ based on GPC a Ist order model
(na=1) without a time delay (nb=0) or a noise term (nc=0) must be ,assumed.
The ¢o tants in the PI control law with rro proportional action on setpoint
clian‘ges:n\ - '

® .

N T . . .
Au(t) = Kc[—r—'-]w(t) - [1 + —1 Jy(t) + K Y1) (24.11)
| ) }1 | A
are given by: o
' H ‘. ' -S-IT. ’ :
- K.o=-5,, = 55, (2.4.12)

where s, and s, are (complex) functions. of the tuning and model parameters
- as follows; '

N
2

+

I o is0,1 T (24.13)

.th
€

It is important to point out'that_ no restrictions have been placed on -
" the settings of the basic tuning’ parameters of GPC (the minimum and maximum
output horizons _N1 and Nz’ the control -horizon NU, and control weighting ))
in order to arrive at the ' PID/PI structure. In addition, polynomial P
weighting may b< used Qit_hout restriction. Therefore, the three - tuning
strategies proposed Vin sectioﬁs 42 through 44, which allow the user to
adjust the closed-loop ' speed of response by varying a “smgle tuning -
patameter, apply equally well to the GPC based PID/PI controllers as they do
to the general GPC algorithm.  The remaining "active" tumng parameter of
GPC.is easier to specify than PID controller constants aggl may in fact be
autOmatrcally adjusted by a supervisory system as -demonStrated in Chapter
l(), For example, followmg the recommendations in section 42, N may be
. used to give the desired response wrth NU=I, N -l P=] and \=0.
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Tha Generahzed ?rednctxve Control algorithm is an extremely ﬂexible'

approaeh to control which contains. as special cases for particular _settings
of its dqsngn and tuning parameters, many of the mos/ ‘successful * methods
employed to date. In' Table 2. l. the required settmgs of the desxgn/tumng
‘paramefers ‘are listed whxch reduce GPC ta some of _these. other strategies.
‘After bnefly surveying t_he algorithms listed, a select few, which are

kg

" important for the development in subsequent chapters, will be discussed in -

detail.
Table 2.1 Special Cases of GPC
~ Algorithm .~ NU N, N, P
T _

Default GPC . 1 1 10 10
Pole Placement N,-n ” n —00" P 0
_Extended Hoﬁzon lorh hxd h>d 10
Generalized Minimu *Variance 1 d+l d+! P Q
'Dynamic Matrix Controlf _ <Nz 1 >d I o Oor)
Mean-Level \ 1 1 —00 1 0

. Exact Model-Following No-d 1 >d P 0
Detuned ,Model-FolioWing <N2-d 1 - >d P 0or
Deadbeat o . n n >2n-1 1 0
' |3
Notes: n= max(na+l ,iib)

d = integer physical delay not mcludmg ZOH (d>0)
* as suggested by Clarke et al. (1987a)

t step response podei;

Clarke et al. (1987a) provide general guidelines regérdmg the choice
of . the output and control horizons for the/ basic GPC algonthm Tixey
conclude that the default settmgs =l -10 and NU-=1 give robust
performance for a ‘large number of relatively simple processes. ’ Their

self-tuning GPC controller with these settings provides excellent control of .-

‘a simulated process = with changing order and time delay which gives
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dif'ficulty‘for self-tuning GMY and PP algorithms (Clarke et al., 1987a).

Pole Placement

GPC is equlvalent to a Pole Placement (PP) controller if N = N 3%
A=0 and NU-N -n where n is the number of states of the system. The
closed-loop poles are placed at the zeros ‘of the P(q ) polynomial (Mohtadx.
1986). Although .this is pf theoretncal interest, these settings are not
practical as the' matrix which must be inverted in the control law is of
dimehsion .NUxNU. FL_or implementation purposes, Mohtadi and Clarke (1986)
present an alternativé method of achieving Pole Placement by performing
deadbeat control ‘on the augmented plant, AAPy(t) = BAPu(t 1)
with minor modlfxcatxons to the standard algorithm.

, Extended Horiion

Ydstie f_pt al. (1985) proposed ah Extended 'Horizon Adaptive Controller
(EHACQC) whi;h predicts the output at a single point in time, h steps ahead,
where h'is selected greater than the  process deadtime. The predicted output

is then set equal to the setpoint to calculate the projected control

sequence. As with GPC, assumptions must be made regarding future control

actions. Two such stra%ies outlined were to: .
a) choose the constant control u(t) = u(t+l) = ... = u(t+h-1). This is

equivalent to a control horizon of 1 in GPC where Au(t) is freely choosen
but Au(t+l) = ... = Au(t+h-1) =

b) choose the set of controls wu(t), u(t+l), .., u(t+h-1) which

minimizes the control effort:
h

Y [u(t+h-i)y*

i=1
*

This scheme is realized in GPC with NU = h (Mohtadi, 1986).

The EHAC, as with GPC, is implemented in a receding horizon fashion where
u(t) is determined and applied to the plant with the calculations being
repeafed at each sampling instant. An incremental model is suggested as a
means of eliminating offset. ) Although the algorithm js reported to work-
well for ' stable, damped processes, it is not suitable for open-loop unstable
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or oscillatory plants where the ppﬁdrmince is sensitive to the choice of - h

‘(Mohtadi. 1986). = In particular, large values of h (normally the most

conservative) may lead to oscillatory behavior. For these types of
processes, more than .one point of the predicted output trajectory is usually
necessary to achieve satisfactory control.

Generalized Minimum Variance

‘'The Generalized Minimum Variance (GMY) controller of Clarke and
Gawthrop (1975 1979) is one of the most well known self‘-timmg schemes. It
mxmmnzes the smgle stage cost: ‘ i

. J= E{ [Py(t+k) .-Ipw(t)]z + AQu(v]® } (2.5.1)

where k = delay including ZOH = d+]

While originally derived based on a CARMA mod?the meihod has been extended
for a CARIMA model which introduces integral action to eliminate offset in a
natural way (Tuffs and Clarke, 1985). The GMYV single step optimization may
be accomplished in GPC by settmg both the minimum and maxlmum output
horizons to d+I' and the control horizon to 1. .

The GMYV controller is known to be robust against overspec:fncatnon of
the model order but it performs very poorly with variable time delays and is
sensitive to nonminimum phase processes. In both of these situations, X or
Q .weighting must be selected cafefully to avoid instability. This s
difficult in practice since -the correct range of Q wvalues is not known
a priori. Even for minimum phase processes, the selection of Q is subject to

the dxffncultxes dxscussed in sectxon 2.2.2,

_Coﬁtrollers based on Weighting Sequence Models

A large number of l‘ong-range’ multi—stage predictive controllers based
on weighting-sequence (impulSe or step response) models have been proposed
in the literature. The methods ‘include Identification/Command (IDCOM), the
Predictive Control Algorithm (PCA), and Dynamic Matrix Control (DMC)
reviewed in (Clarke and Zhang, 1987) as well as the Multivariable Opttmal
Constrained Control Algorithm (MOCCA) (Snpada and Fisher, 1985; Lim, 1688)
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Consider the CARIMA' model with C(q™}) = A(q™)):

A@™y(0) = B@u(e-1) + A@ ) ey

4 gt
R T it

Expanding the B/A transfer function as an infinite series we obtain the
impulse or weighting-sequence model: ﬁﬁ’

y(t) = H@ Yu(t-1) + x(t) 2.5.3)

For open—lpop stable processes the magnitude of the coefficient of a ", hn',
decreases as n—oo, It is therefore possible to make an approximation by
truncating H to the finite polynomial H(q'!) of order N for sufffcien\ly
large N: . ' . ' _ ’

| y(©) = (b + @ + o+ B Mult-1) + x() (2.5.4)

.

The advantage of such a model is that no knowledge is needed of the order of
the process. However this type of model cannot be wused for pen loop
unstable processes and, due to the large number of parameters in the model'
(typlcally 20-40)- cannot practncally be wused for adaptive control. Note
_alsc_) that in deriving wexghtmg -sequence controllers the implicit assumption
) ;\s made that disturbances are governed .by C(q )=A(q'1) (unless a separate
A,Aisturbance model is incorporated into the particular algorithm).

Identification/Command

‘The IDCOM algorithm (Richalet gt al., 1978) is related to GPC with
N1=1, ,NU=N2 and X=0 acting on a prefiltered setpoint.  However, it uses as
‘iterative approach to calculate explicitly all future controls and must not
be allowed to converge! Convergence: 'prdduces pure model-following cdntrol
which is undesirable as H(q'l) is very likely to have unstable roots,
leading to a control signal which grows without bound.

Predictive Control Algorithm" -

The PCA (Bruijn et al., 1980) is similiar to GPC with N b NU-=N and
nonzero control weighting ), which trades model- followmg performance .
against control effort.  Integral action 1s introduced in an ad hoc man\nerw '
(as with IDCOM) unlike the straightforward method used by GPC.

A
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Dynamic Matrix Control ;* .

Dynamic Matrix Control, developed and used by Shell om&u number of
refinery applications (Cutler and Ramaker, 1980), is based on a step
response model of the plant, S(q™!) where: :

AS(q ') - H(q ) Sy (2.5.5)
DMC originated the key idea of the control hOrizon (i.e. constraining future
control increments to be zero for j>NU) and thus is closest in formulatnon»
18" GrC.

MOCCA is very similiar to the most recent versions of DMC which
accommodate a constrained optimization using linear or quadratic programming
(Garcia and Morshedi; 1986). "It is important to. note ‘that these nulﬁ'erical.
optimization techniqﬁes can also be applied in an adaptive. environment u.s‘ing

GPC.

2.5.1 Mean-Level Control

Oné of the important li’miting cases of GPC is th¢. sfeady- staie-" model
inverse or "mean-level" contrqller. A mean_—leve} cpntroller - pt’omdé&- a <

setpomt whnchg»'mll

Brc

single step in control following - a step change in th

drive the process output exactiy to the new setpomt“ a steady state‘

tends to a mean- ~level controller as N—~oo if NU=], Nl

With N‘-l, NU=]:and A=0 the basic GPC» control
becomes: o
T )-1.T
Au(t) = [GrGr] Gr(w -f)

where o #

: T
’ Gr = ’[g‘o g, - gNz’-x] :
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eqn. (2.5.6), after multiplying:by GTG becomes:
-1

[Z ]Au(t) = Z [w(t) f(t+1+l)] (2.5.8)

We can also write the control law for a maximum output horizon of N’+l:

N2 N’ B
[ Z g?]Au(t).‘- Z g, [w(t)-f(t+i+l)] (2.5.9)
i=0

i=0

0
-

Subtracting (2.5.8) from (2.5.9) for large N, yields: ‘

»

h
Au(t) = [l/gN ] [w(g) - f(t+Nz+l)] (2.5.10)
, 2

Now f(t+N2+l) is the open-loop prediétion of y(t+Nz+l) assuming all present

and future control increments are: zero:

. r
. N
f(t+N2+'1) = 3/ (t+N +1) " ‘ .
and By is the (Nz+1)th step response' c6efficient, which in the Ilimit as
. 2
Nzéoé for an OL stable process is:
limit 8y = ‘K , the steady state gain of the process
N — o0 2 P . V
2
and,
limit { (t+N +l)} =y (00), the predicted OL settled value
O dL
Nz—voo of the output
" Therefore, taking the limit of eqn. (2.5.10)¢ns N,—oco gives:
Au(t) = [I/KP] [w(t) - yOL(oo)] (2.5.11)

1

A ]

which is the equation for a mean-level algorithm where the controller is
simply the inverse of the steady-state gain of the model.



o -locatxons as

. : . ' . 'u »:*“J “" . . .
A mean—level ”controller places -the : closed loo‘
e_ open loop poles ot‘ a stable process
consnderxng the general lxnear form of the GPC control law

‘ pOles Jin

e

the

Thns can be shown by

3 .horxzon of N t e elements of the fxrst (and only) row of (G G )'IG

W ' (e
" . . .

The polynomnals of the control law TAu(t)
(2 3. 7) B ‘

: 1j=1 [ A P
T l+q '

-1 ‘.'ﬂ(i‘- l N -1

e e We ‘can wrtte a sxmxlar set of equattons for an output hOl’lZOIl of N+l and
o

take the dlfference (for large N ) to arrlve at:

;,_ o ,_1_‘ . IR
T = 11/g, ][g +q G ] - R = l/g :
s [ Nz‘ : uz . N +1 R N,

Rw(t) =, Sy(t) are

an'd'S

For an output

2512

from . eqn. .

v ‘(2.‘5.1_3)," :

i=0

~The ’,oharactexistic bolynomial ‘for"f-_the: 'Elosed—loop system (section 2.3.1) is:

L L

'/TAA+q BS

'G

Substxtutmg for T and S the charactenstlc polynomlal becomes

2

4

RS VS N

Y

Th_e Diophantine Igdentity,“eqn. »(2.]].2), may be:'“}ritten“fo'r_ j=N2~'|»l;'_

-

i SN
=% +‘1A'Ai+, a2 __FNz__+'1

¥

F @25:14)
Nzi’l/ngz. -

;.(_‘2,'3." 15) -

" (25.16) N

@517

“same -



-Multiplying through by B and substity
(2 1. 12) grves

a L Tk

B=Gy AA+q‘“”’[E -, AA + B G sagy

e So *_ that ' the oharacteristic vpolynOmial, eqn.  (Z¥ after ' rearrangement :

‘becomes, Lo SRS b e .
B AA[g +q° E[B/AA G _1].,];-’ SIS
e e B I el (25.19)
-SN . . e
S 21-‘
‘ Since the coeffiéients-ofv bothB/AA,and .
‘ G, =g s’ + o Ny
N+1 7 B ¥ 8+ tBeq 2
Rt R . , R T < :
are ‘step response coeffrcreqts, ‘the "cha,ract'eristic' polynomial .may be written
_in the form: S ' | Y ' S
. A ' 1w ' AR ot
Ag +gN2+1q | | | E s
’ : ’ S (2.5.20)
SN : » S o\ e .
' ) Taking the limit as: Nz—woo‘for an ‘open—loop stable proces’s:‘ R L /
limit ———.—[g '+.[g‘ -g ]q' + [g g ]qf + ] = A
o : .,Nz—ooo gN2 Nz : N'z+1 Nz ' .Nz+-? N+t , : :
. R T - R
B Which Verifies that for a ‘mean- level cor'rtroller actmg on a stable process
the closed loop poles remam in the same locations as the open loop poles '
;l', : : T
* . 252 Exact ‘Mpdel-_gouowing

o ln s-eétiOn 221 the - ‘basic GPC algorithm = was exter.ded to include
polynomral P(a ) werghtmg ) The use of ‘an, auxrlrary output allows GPC to ,;fn'
achreve ‘model followmg, where M(q )—l/P(q ) 'is _the -user-speerﬁed
“ closed-loop - refereng:e model ' For- “exact - model followmg the 'i'7'eor_1t'roller_‘

| attempts “to . cah‘eel’ .the * process:) zeros- apd therefore this approa'eh' s
unsurtable fo: processes whrch are nonmrmmum phase (NMP) Astrorn"et al.

> L e A ‘ A
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' (1984) demonstrate that rt is’ more a rule than an exceptron t‘or sampled data
" systems to have unstable zeros. .- For. exampl’%contmuous trme systems wrth
‘pole (OVer zero) excess larger “than two v’rﬁ/ always give " discrete ‘systems.
wrth zeros outsrde the umt crrcle for suffrcrenﬂ_y . sméll samplmg - periods. /
Fractional - trme delays, unavordable in practrce, alsﬁ’ frequently lead to NMP
' drscrete systems ‘ Smce process zeros must obvrously “not be cancelled wef
- are for_ced' to "detune” the model followmg propertres of - GPC for practical
: applications oIt s therefore rmportant rto have 'a knowledge of the tumng ‘

. parameter settmgs which lead to exact and det hed model t'ollowmg for GPC. |

o

* Exact model -following 'is. achreved for thegiia

' (GMV) controller .with - Q:O (Gawthrop, l977) : Therefore., it rs er;pected that
GPC would exh;_brt the’ same behavror for NU= ‘N =N =d+l and A=0, Note that‘
we can relax the specrfrcatron on the mmrmum output honzon to N <d+l since

. enerahzed Mrmmum Vanance, -

‘. V"outputs prror to y(t+d+1) cannot be mfluenced by Au(t). The followmg‘
e development demonstrates that - exact model- followmg ‘is obtained for these‘

.o <%
. " special settmgs of the GPC tuning parameters v

A delay of d unrts rmpires ‘that the frrst d terms . of both . the B and .

G 4e1 (-E B) polynomrals will b zero:
- _ “‘-(d+‘1)— o IR
G.d+1 T [dn * (1 . _G'd+1’ : | .
ld _(d+1’ | (d#nb) - A_;,- 3 N
. E gdq * gd+1 c:l+1’:'l -t d+1,d¥nb ' : ' '(2'5'2_]..)
» A R . v IR - A ' ‘

And (taking N =l’for’_si.mplicity): . T : N
. o ‘ . R A

s [c GJ '7[ -0 Sd]@ - "=‘(z:.5.2.2)

A A N

;So the only nonzero element of the vector h, mtroduced in sectron 2 3, is:
o

X

. ‘ B o
by, = 18, Y eswy

' '1.;;5I'he polynOmrals in the general linear form' of the control law are then
T = l + q E /gé‘ q G ’/g '. = l/g ~and S‘ - Fd‘+1/gd~ (2.5;24)

‘Recall that the closed loop transfer f’unctron ist - ; “ “ 2



: "BRq ‘w(t)“+ TAX(t) o QLT
Y(t),-: - , ' ! - C

‘TAA + q BS
» Substrtutmg for T, R and S and rearrangmg we get: B : o o L
a () ey GMAx(;)j | R
y(t) = — ~(d+1) — o .. (2.5.25)
Gr AA +q BF : S
- \ "

However G and F ongmate from. the onphantme Identlty (eqn (224))
whrch wntten for J-d+l and multxplred by B is:

BP = G, AA+ “‘“)BF a (2.5.26)

L)

Thus,

a @y + E, Ax(1) | o
(1) = F : (2.5.27)

Which  vérifies that exact model-‘t_‘ollotVing" ‘i!s‘.vfachieved' after - the ine\)itable r
delay of d+1 samples. Substituting for “T » R and S, the control- law ( TAu(t)”

= Rw(t) - Sy(t) ) may be_written as: ey BRI

- w(t) - F &(t)
= Au(t) = — 5 a+! :

S aE,.,B

(@528)

It is -apparent from this- equation that the controller cancéls the process
zeros. - . - . ‘ '

g

If P(QY) is specified to be unity, exact model-following prqvides E
minimum variance, (MV)’ or "d+l step a_head" ‘control;' : ) T R S

The reader may suspect that NU=1 ‘and N, -d+l are not the only GPC !
: settmgs whxch lead - to exact model followmg Intumvely, Aif VJN

mcreased beyond d+1 ~as - long as NU is - mcremented by the same amount t'heﬂ
controller retains uf‘t“rcnentl> degrees of freedom s0 that the cost functron
_mlmmxzatxon still results in exact mo lfoﬁwrng : Snmulanon ‘runs have\
shown ‘that’ settmg N >d and NU—N d*f s glve exact model followmg, though .
(it is_difficult to prove this  for the most general case; ‘ .

Mohtadx (1986) suggests that NUM

Wl

in exact ‘model- fqllowmg"...-~-“",_‘{,; -




| 'control algortthms (see Table' 2. 1. It s important to recognize that ‘the .

. ‘3/ it
A
2 5 3 Deadbeat Control

" While intultively ‘the larger value of NU should not effect ~the cost
o P .

- minimization, the srngulanty of - the G G ‘matrix makes Ait' lmpossible to
realize the control . law for thrs case. (lf NU>N =d the last column of G is

‘composed of zeros and G G is smgular)

-

In summary, N >d, NU-N -d N =] and J=0 leads to exact model- followmg
behavror for  GPC. = For practncal applications model followmg must be

! control hotjzon (1 e, N d>NU) or by addmg control weighting (1>0).

#detuned" 31? elther increasing * the maxrmum output hortzon relatrve to the

&
A

o

:‘ The fmal spec:al case of GPC whrch wrll be - considered is that of

‘deadbeat control Mohtadi .and  Clarke (1986) show that GPC is equivdient to
~a  stable state deadbe‘al ‘controller  if the ' system is observable = and )

contrqnable an@ﬂl, Nl'n,; N222n-l, P=l and A=0.’ The number of states of

the SYStem n

‘closed-loop Poles at 'the origin so that the closed-loop transfer function

becomes: o : ' .

i .

L d -1
(6 o Y(t) B(l)w(t)+’I‘Ax(t)

. 1‘5,3"’.

-

For a step setpoint change the controlled vanable reaches the new" setpomt

5

in at moﬁ nb+l steps. - IO

»

Experlénce indicates that for deadbeat ~control the specifications for

NU N and N may l;ew relaxed to:

n- NU > na+1 , } Ni 2 nb+1. | and Nz > NUfN"l—l'

- B
'

e,

© . . S _
and‘Gl’Cfl.,s'till_ delivers deadbeat control. S o .

R L 26 Summary

et
i i ¢

;’.

The ;Generalrzed Predxctwe Control approach mcorporates -a significant

number {ﬂ' ‘design and tuning parameters N N NU, ), P(q ) Rearrangmg

the control law into a general linear form has made it easier to show that

' for specxflc settmgs of these ‘parameters, GPC reduces to many well known

max(na+I,nb). State deadbeat control places all ‘of the

L (@25.29)




mcreased complexnty of GPC is wurranted by the fact that other combmatnons,

- of parameter settings allow GPC to overcom‘e the . limitations of these earlier
techmques and yteld better overall performance In Chapter 4, simple
'strategles for commnssromng GPC are devnsed which reduce the number of
_actlve tumng parameters while. stnll retammg the performance capabilities. '

.
Y
<.

\
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3 rowE rmcnmnm comox.

Many authors hive attempted srto remove the barrrer between the optrmal"

‘predictive  strategies’ mvolvrng mimnnzatron of a cost function and the-

suboptunal" pole assignment techmque Allrdxna and Hughes (1980) present
an algorithm for adjusting the P and Q weighting - polynomials in the

~ self-tuning GMV controller to locate the closed-loop poles at prespecrfred'
" locations thus demonstratmg that ,pole locatrons can be unrquely translated

into a cost function performance criteria, McDermott and Mellrchanlp (1984)
~ follow the same approach except the closed ~-loop pole posrtron(s) are not
user-specified ~ but rather"‘ are obtained perrodrcally . by minimizing a
multistep objective function involving the predicted error for a simulated
setpoint change. A more elegant method of achieving Pole Placement within a
long-range multistep ~ predictive control environment -has  been. descnbed by
Lelic and Zarrop (1987) and Lelic and Wellstead (1987). ~ 'The only
significant advantige of this Generalized Pole Placement (GPP) formulation
‘o‘ver s'tandard‘ PP is the ability to use known future (preprogrammed)
setpoints, - ‘The authors were dissatisfied with their account of how to
“select the=~ various honzons, which, m trials  without preprogrammed
setpoints _.had httle efl’ect upon the closed -loop response. Intuitively this
makes se'nse° once the pole locatrons are . spacified the system Tesponse has
”'largely been determined. - As mentroned in the previous chapter Mohtadi
(1986) has shown that GPC reduces to a PP controller for particular choices
‘of the control and output l:ﬁzons This is accomplrshed wrthout having to

. ‘;ad_lust the P and Q polynomials in response to process model changes In

;robotms or ba*h control applrcatrons these predictive Pole Placement
controllers may yield rmproved performance over that of a standard PP

algonthm (McDermott and Melhchamp, 1984). 'However, in the majority of

chemlcal .process control applications, - the. rncrease in complexity does not
warrant therr use. For this reason the Pole Placement work carried out in
thig’ thesrs is" based on ~‘Aw straight forward incremental formgl%tron of

"Tuffs (1934) - | | o @g?

The" -;‘«derrvatron of the incremental PP controller ° presented ,
31 rncludes the important extension for colored noise. Next th formatron
of Tth Sylvester €quation and numerical problems asso&tated wrth its
solutron ~dre consrdered (sectron. 3.2). Frnally, design . equations are given

48
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s consfapt: -

for two .different Pole Placemerit l;ased " self -tuning PID ‘controllers (section
3.3). R a

B4 ‘\

- 31 Derlvatlo;n of the Basic Algorithm

. i, . ‘
The basic ii;i\ea of Pyle Placement control is to “elect the parameters of
a ‘general linear ‘control gquation in such a way as to piaée the cloSed-loop
poles atl prespecified gositions. Thé f;‘_derivat,ion which follows is based on
the CARIMA mdﬁel vblhic}:' leads to,a."f’fcontroiier with inherent integral action.
Consider the: control law: ' o B
1 GAu(t) = Hw(t) - Fy(t) - | (.1.1)

S} 11

which when applied to the simplified CARIMA model (C(q™}) = 1):«

AY®) =BaTu(®) ¢ €0/8 1 (312)

)
) <

yields the closed-loop equation:,

BHg ~'w(t) + GE(t)
y(t) = -—— (3.1.3)
GAA +q BF

The closed-loop poles are located at. the roots of a polynomial P(q'l) if we

: : e e . . .
“solve for the controller parameters F and G from the Diophantine equation:

| ( | o
GAA + q 'BF = P\\ ‘ (3.1.4)
so that; [ ‘ .
BHq 'w(t) + Ge(t)
y(t) = - , (3.1.5)

To -ebtain offset-free behavior we must have:

. B(OH()/P(1) = 1 : | (3.1.6)

LT
t

The "simplest choice | for .H(q'l) which satisfies this criterion is the

H =.P(1)/B(1) | . . (3.1.7)

’

i

‘which results in the' closed-loop expression:



P(1)Ba 'w(t)  Geq)
y(t) = ‘ + . (3.1.8)
PB(1l) P ’

Note that the open-loop zeros are retained in the closed-loop. !

3.1.1 Extension for Colored Noise

The previous derivation may be readily extended to the general CARIMA
model with Cq )#l (Tuffs, 1984): .

Ay(t) = Bqlu(t) + Ce(t)/a ' - (3.1.9)
Applying the same form of control law as eqn. (3.1.1):
GAu(t) = Hw(t) - Fy(t)

the closed-loop expression may be written:

BHq ~'w(t) + CGe) _
y(t) = . (3.1.10)
GAA +q 'BF .

If the controller polynomials F and G are obtained by solving the “eXtended
Diophantine equation: . ‘ .
GAA + ¢'BF =PC (.1L.11)

the closed-loop system is
BHQ 'w(t) G¢(t)
y(t) = + (3.1.12)
PC . -

Where for no offset H(q'l)'must be selected to satisfy:

_B(l)H(l)/(P(l)C(l)) =1 . (3.1.13) '
. . - \ '
A good choice for H(q'l) is that which eliminatgs the noise structure

polynomial C(q'll from the servo response:

H = P(1)C/B(1)

The closed-loop equation is then:
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P(1)Ba 'w(t) "~ Gé(t)

! y(t) = + ' (3.1.15)
‘ PB(1) P

/ . ) ’
Remark: As for' the Generalized Predictive Controller, the C  polynomial.

which has been incorporated into the PP control law may be either a design
polyn:mial, Cc. or an estimate of the "true" noise model, ('Z., obtained by
recursive parameter identification (e.g. using ELS). The former case, where
C is selected as a surrogate noise model, ~was first-"’cohéiaered by Welistead
and Sanoff (1981). | ’

. 3.1.2 Closed-loop Properties‘

In the. previous section we obtained the closed-loop expression for the
controlled variable assuming that the C polynomial in the Diophantine
equation was identical to that in the CARIMA model. To be more general, the
appropriate equation for the case where the "true” noise polynomial, Co’ is

different from the C polynomial used iin the Diophantine equation is:

P(1)Bq” 'w(t) GC Ax(1)
y(t) = — 4. .
PB(1) PC

where x(t)=£(t)/A represents a nonstationary disturbance. - The cqrresponding

expression for the, manipulated variable is:

P(1)Aw(t) Fcox(t)°

u(t) = - — . (3.1.16)
PB(1) PC A |

s

Since no" open-loop zeros are cancelled by the contrdller’, nonmimimugn phase
' ,
processes ate easily handled by the PP algorithm.

It is important to verify that integral action ensures offset-free
behavior in spite of incorrect model parameter estimates. The open-loop
control law for this case may be written: . ‘ ' ‘

at) = [1 /C;A] [ﬁv&(t) - f:y(t)] . " (3.1.17)
where G,' F and H are obta{ned from the ‘polynomialé .7\ and B estimated,\ for
example, by recursive least squares. From the 'Diophanfi‘n‘e equation at
steady state: -
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F() = PO)C()/B() L (3.1.18)
Therefore F ‘may be split into two components: - ‘4“,*
| F = P()C(1)/B(1) + AF . -(“3.1/;9)

Recall also that H - P(l)C/B(l) 0 that eqn. (31 17) may be wntten

1 [P(1)C P(1)C(1) . |
. u(t) = —— w(t) - y(t) - FAy(t) (3.1.20)
, Ga B(l) .

»

At steady state, an error term (w’-y) independent of the parameter
accuracy can be isolated, and the denommator has zero gain. This confirms
that integral action is obtamed inspite of any model-plant’ mxsmatch

Cod -
3.13 Feedforward Compensation

" Feedforward signals, including measured disturbances and  control
signals from other loops, may be accomodated by using the modified control

equation:
GAu(t) = Hw(t) - Fy(t) - SAv(t) . (3.1.21)
which when applied to the full CARIMA model:

Ay(t) = Bq 'u(t) + Ce(t)/A + Dq‘lv(t) _ (3.1.22)

»

produces the closed-loop system,

BHa 'w(t) + (DG-BS)q™ 'Aw(t) + CGe()
y(t) = — (3.1.23)
GAA + q'BE |

With the Diophantine equatnon defmed as in eqn\ 3.1. ll) and with H

’

selected according to eqn (3.1. 14) this becomes:
! . 14 :
P(l )Bq 'w(t) (DG-BS Ya 'Av(t)  Ge (1)
y(t) = — + . + - (3.1.29)
' PB(1) ‘ PC P

For perfect compensation we must have

“DG - BS = 0 C(3.125)
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_phase processes. Alternatively we may be satisified thh the steady stﬁo

H

' o . L | %
@ ‘ ‘% “ . “ 53

P

A polynomml solution for S does not exist unless D is proportional to B.
For the gqneral case, S must be a transfer function:

.

o s = DG/B : ~6126)

Obviously this type of feedforward compensation is' unsuitable for nonmxmm\tm

&

fe&dforward controller: . .
B S = D(1)G/B(1) : £3.1.27)

which is not restricted to minimum phase processes and is therefore more

suited for practical applications.

o 3'.2 Solution of the Diophantine Equation
g

L e L.

The polynomxal Dnophantme Equation plays an important role in the
apphcatlon ot' ,a Pole Placement controller. . For the case of the general
CARIMA mo.del the Diophantine Equation Wthh must be solved was gnven by

- eqn. % 1. llj

P e GAA+q BF-.=PC

R

N N
.J‘ Pk ¥

-3 ﬁu;umal degree solupon for F andiG is obtained by choosmg the polynomial

degrqes ; ,_f.m 1 A |
. , . N I 5 , - "
' f . /"f‘ # < -ngi=nb,¢ nfs= max(na,np+nc—nb-l) o (3.2.)
F \'Vhéfe; e. L . ) Ty 4 ‘ .
S S IR -t -1 -nf
L L 5 F t'o + flq + .4 fnfq

«

-1 -
G = g, * 8a  + .+ gn‘q e

vLettfh‘“gi AA:X éiahrld,PCé'P;“%,the Diophantine Equation may be written in the form:

. . -
P . . s !
: -

A GA + q'BF =P T (8.22)

with, L , | "
) K —_ -1 —_ -(na+1)
1 na+l

and,

-1 +..+8 -(np+nc)‘
np+nc ’

P=p +pq

Bl

Equating coefficients of like powers of q'1 we obtain nf+ng+2 simultaneous

equations which may be written in matrix form:



ce

T

—o' ' :‘
ana+1 o . q‘ ) -
R 3. mb
tk ‘ . ‘ . .
T ior 8=t

where va"is known as the -‘Sylyester Matrix.;,-

E It""is well known that & solutxon

common factérv is also ‘a l‘actor of

to mcorp0rate ghe delay, the degree of A mu_

the actual order of the process

Sylvester Matrlx 1s_' hxgh

the controller parameters may Be cons:derable

\.‘

' [3-2:-.1'7 ,- n‘u-;..e;_me mue;.,‘;. r" e o

L

p“rturbatrons 1n the™* model paramgters wrll then cause large vanatlons ml

the controller" polynomrals "F and G

el

l,,,) “a

P Smce B '

Spectf ncatlon ol

the computatlonal effort

: ,close ~(o each oth\ produce an 1ll condxtxoned system of equattons

‘p_np-tnc -

g 0 - ’
£ o
. MJ‘ ; L J ‘. )

v (3;2.'-.3)

to th:s equanon exist (i e. eJti‘sts)"'“
B only if the polynomlals A and B do not contam a commo‘n factor unless thls

ormally overparameterlzed
be selected larger than

L the exact order to avord

mvolved m determmmg

e

-~ EUTEY

ctor problem is” drffxcult m practrce and thus re;ﬁ'esents ,a'" 3

i

I‘}ote also that for plants wrth large dead tnme,n the dlmensmn of theb

. ntself as \a sx gularrty of the Sylvester Matnx roots of A and B whlch lle"““‘.'
Small

Th§ only cdmplete ’SOlUthl’l to thrs problem rs to .}s(olate the common';,;‘-'f :"



‘ ctors in A and B and remove rthem from the polynomralss before constructrng"‘ b
the snmultaneous equatlons (Kucera, 1979) However thxs meahod rehes",
heavrly on havrng 1dentrcal cancellmg factors whrch wrll almost never be

the case m practxce.. : ,.'r.g’_» A

« e

l

- One setj‘ f techmques %'for‘“. resolvmg tl)e drffxculty relxes “on
appro&pnatmg the solutnon of - the Sylvester equatlon in a numerrcally robustf'
way.’ “‘l'-'or example ‘a routrne based on the_ Householder orthogonalrty"‘
transform examrnes ‘the S ‘matrix to determme rts psuedo rank" from a. user
supplred tolerance, and rf a rank defrcrency i detected i_t calculates ‘a
mlmmum norm solutxon (Lawson and Hanson, l974) The approxrmate solutron
1mp11es that ‘the closed loop noles wrll “‘not cbnncrde exactly w;th thef

user specrf‘red set. Thls rs turn mayvlead to undesrrable contrql be f’aﬁor Sy T
Lozano Leal and Goodwm (1985) drscuss another strategy 'ﬁsrebyﬁle? a
parameter estrmates t'rom a recursrve least squares ' algorrthm Wxth data s
normalxzatron are modrfred to ensure that . the process model polynomxals are
always relatrvely prxme ‘ Thrs techmque requrres a search for a vector T
'+ which - wherr multrphed sby ‘the covarrance matrlx and added fo the parameter‘

- est’mtates ensures the nonsmgularrty of theo Sylvester : Matrrx ' It is  used .
to_ move global , stabrllty wrthout j: persxstency of excrtatron requirerne,nt,i_-x"
but: is not demonstratéd to be feas:ble l‘or ,practrcal applrcanons ‘ |

‘ : A'n fon- theoretlcal but sxmple ’ potentral solutxon 7 to the numerrcal

. 1ll-cond1tromng problem based {on the assumptron that the .true.,, system

ro polynomralb are re&ti}g pnme by v'
the controller polynomnals' F an# G’f are updated only when the condmon
number of the Sylv!ster Matrrx is 4ol
numencall» robust solutlon "'.is ’.he

i er. thesef' very Smmon crrcumstancU
o -

w‘ a’ user specxfred ”‘bound The last

ntil the .par‘xeter& estrmates mlgrate ‘

from transrent locatrons for whnch common factors in A and B exxst (Tzouanas

e - ’
and Shah, l985) S o ‘ : S
9‘ o | . . - ;-v o . v c‘ . '~" A
N » 33 PID ‘S‘tructu_'re R R ‘ R
s As ‘was. done “for . Generalrzed Predlctrve Control 1t is usefﬁl ‘hto “outline-.
- the condmons under whrch the Pole Placement algorrthm striéturally
&

equrvalent to a BID controller : Equatrons re"’l’atmg the prooortxonal gam
mtegral txme and dertvatxve trme to model parameters and .t.l)e user selectcdﬁ'
'charactenstxc polynomral allow the desrgn of self tumng PID [

’
W

v e - S \‘A SR

R



based oR PP o
The polynomxals in the control law' '

' Al

' GAu(t) -t* Hw(t) - Fy(t)
based on the general CARIMA model, are of degree , ) |
. ‘ o . IR
ﬂ S SG-nb , 6F=na } 6H-nc~ '
-as long as the o{;aractenstxc polynomxal is choosen such that:
: S _6P < nasnb-nc+l® = B e
S Clea’ﬂ'}’-;fovr-‘a PID structure we must have: na=2 ‘and rib’=0i AR .
. . . R i . X . i ) i . e - E \“
P | -1 e . ’
Alq ) =14+ 20" +aq" B(q ) = b, B3
,\," in whrch case the llmlt on the degree of P becomes
), ‘ j{r ;(. e ) L . ‘ % . N
| : P TP <3mc
'For atty 'PID‘ control structure there " is “the vgquiremeht that H(1)=F(1):
Recall the onphantme Equanon (.1 ll) ' -
o | | , s,
. T ' : GAA v+'»q' BF = PC ', '
5o that M B = B l
. o . F(l) P(l)C(l)/B(l) ) . ; C(3.3.2).
ormall H s selected as: * ; el . DT T
\\ _1 o M P(l)C/B(I) s e

A PR

‘f so the requ:rement 1s naturally met / ,
Diff‘erent varxatxtms of the PID controller, .where " the setpomt s

removed from the derrvatxve or proportxonal and denvatwe terms - impose &

, addmonal restnctrons _on the relatlonshlp betweeh H and F Thls is
% easnest to- see from theg followmg (velocrty) dxscrete PID equatnons The
st-andard PID gontroller was grven in Chapter 2 N




Lo T‘ : h.y ; ZTD v .
Au(t) l + =4 -—— e(t) - l + - e(t-l) ¥ l(-“ i
l ,|

o L T) T 21}
Au(t) LR~ 2lw(t) - K w(t l) - l + — ly(®) + K. 1+ - y(t-l). : ;
® . | I °__ r , ‘. K

AR , : \ T . % .,, . :" e . - .
TR - KC{TP-]y(th_) S (3.3.5) |

whlle the "I on SP" versnon thh only m;egm actxon on setpomt changes,
. 4
 was also gfven in Chapter 2 as: '

. fTt). . T .r 1 2r - ™ : ‘ :
_Au(t) = Kc 7'- w(t) - K |1+ = + Tg]y(t) +QK 1+ T y(t l) - c T y(t-2) v
‘ " 1) ; _ L) ' o

» , ,'I 8 l
W o o o L pe336)
controlers, © s
- - " (3.3.7)
, 20 and (337
e 63l
respectively‘.’z@ . . - S ; :
. - ’ " : . ‘. ?

WIth H given by eqn (3.3.3) ‘and F obtained from the solunon of the

onphantme ’ Equatxon (31 ll) it is evxdent that* above relationships
A :

wxll not- hold for a general C. polynomnal - However, two. special éases, “where

;ihe_se  restrictjons on- the n afid yr,e'g‘qlatp'ry‘ " prqperties ‘of - the

s

1331 ‘.'"I on. Sl‘".Congfolleiﬁ\

If the cori’d*it"io! ‘is imposed tha;t—;s)”'uthen' e v
- _-= P(l)/B(l) - FQ) |
o | ‘ . : BRI L

and *the. PB ;lgbnthm reduces to a "l on SP" PID' controller. he user is

e

’. . ". : W » N ) \.



i ..\l‘ree to choose the closed-loop poles ‘via Wxth a 2nd s

as long  as 6P53'
order A polynomnal zoroth order B\ polynomnal unity o} polynomxal and RN
P-l+p q +p q +p1 . the qolutnon of the onphantme Equatron (3 1. ll) is: o EX
Ge=g =1 and  Feqp -;“AA)/B S (338 ¢
so tl:at the coel'fiofents of F are: - . e . o j
» *1+p -a .b+a -a B P +a .
. ikt W 3 3 . .3 2
fo - f1 . b-‘ ond , fz‘ b | (3.3.9)
; 0. . \‘ - ‘ .0 |
Comparmg coeffrcnents ol‘ the T on SP" PID controller wnh the PP coqtrol B
B ! o » .
“law yields three oquatxons _ IR R AQ : DR SRR R
o= . T‘f""b ) ' 27 “r Y’ '
fo =I§ [l + ? + T J " fl = -K [] + ——,r—J -:’“A fz KC[T].(33150) .o :
e LoX e Lo - Lol |
) whit y be polved l‘or the PID controller constants: ,‘
g . v -I . . o L
. ’ ’ .0.’13‘4' ﬁ(-:r (f+2f) v ' . ‘Tf R N
: . N A s 2 " TR |
fo o Kpemetp) Y il AR R K 1ﬁ;‘
. . S e A %y;# e ‘ o L o '. ) .
Subsntutmg for fo’ ‘,fl; ~and f using" (339) we ﬁrve at expressnons for
)‘

K;; T and r as. functrons of - .4&3 and P'~ S gy . - P y
. a é . X ;:‘““{‘;: o ) * o \"\‘4‘.' ‘ s . ~

3 ’ . R T . ) ﬂ- } »,
-(a +a 2P +2p ) -T'(a_1+a ,+pz+2p3‘) l-T a +p ). '

_ _ 2
K, = i b - S S Py +p ,and 1y (a +a +p +2p -).\
_ o ‘ 1 * s -
R R - & R , (3312) Lo
331é PIL Structuro " . oy - ,_: Y, e t §
jollowmg a sxmxlar )lme “of . reasomng as l‘or the prevrous section, the _
" conclusxon is reac’hed that the PP algythml will reduée to # "l on SP" PI - ‘
: controller RO X e
~( - . .~ ‘,_ A T a~ LI N «- v ’ ' A
L R Au(t) = Kc[ ]w(t) - K [] + —]y(t) + K y(t-l) - - (3.3.13). ) -
~ if na=1, nb=0, and nc=0: | e S N e ‘ S
: . o ' ’ - : - I : .- . @ -
¥ A@ly=1+agqt " (’ .
¢ : ’ B("Zl,) .=vb ‘ o s i o : . ) ., ' \,*:
& B@)=b, MR e
: ; N [T 5 . ’ »
. ) ) N ~ . ) . .
: k * ‘_:\‘»y" ""’- 7 s ‘\b



'5the PP algor'ithm‘ re"duces

P T
- l" » .
C(q‘.:) &» o
e PI. controller . constants . in terms of A B and . the user specified
bharactenstrc. polynomxal P(q ) - l+p q +p q . - - o
S Co Re-apep) —T (a,+p,) - i
K = ——2  4nd " r=—3_12 S (33.14)
A bo I ! - lfprpz. : IR
'3“‘.3,2 "PID on SP" Cont‘roller 4 . 2

If it is assumed that “C=A . (for an . open-loop . stgh

the -

- desired charactenstxc polynom:al‘*‘should "be selected such P

P=l+p q , A=l+a q La q and ,B=b the solution ; - ¥ Pl ] Bquation |
(3.1.11) is: S @ s . .

'JS? } q. % . : .. < A . .
P, 1‘?? = (l4p, (3.3.15)

and since ' e,

BT . ST

on SP" ~ PID, q.ontroller Equations

‘313) gnd (33.11) still hold 'and .mh ‘the coefficients of F substituted
- r .

om (3.3.15), the Plp controller gams are ngen by

| '~_(1+p1>(-a1f2az>. - -T (a+2a) ,yf.'. L ra
Kp = b TI‘= l+a1+a2- * p = ;:T(ZE; ‘ .(:‘;3 ”)
. ' X {.' '.vh' oo " " - ‘—' 1 % i . "".. . : 5.
. 'ﬂ 3..3‘.2.1'v Pi Structure ) T _ &f . S o ; R
h If the degree of Als lxmlted to 1 (rather then 2) - L
.fr» rm\e% - A(q.)=l+aq / o

~

Then with C(q ) = A(q ) a "PI *on~ Sp” PI controller can be denved from ’

the PP algorrthm The ?@Etrolle; gams in terms of A ‘B . and the user ’

f ‘ specxfred charactensspolynomxal, P(q” )== 1+ p q °are’ R S e
ROSFREES (s, c U Tapr e




fdxsturbénce modéls the PP algonthm has been sh‘own to be equrvalent to. PlD

»

3 4 Summ‘ry - | {* . ;:‘_,:-A"".wj'; T ’ ‘ .4‘ Q.

\w' DR LA

The derivation o? a conceptually-slmple rncremental 'P’ole ‘,'l*lacement
controller (’l‘ufl‘:. 1984) has been presented ' Recommendatrons for: ule‘étmg
the deS1rf¢ 4 racterrstrc polynomral ¢and noise model polynomtal will be
grven in: subsequent chapters. By. lrmmng the structure ,,\of the process and \«'(

Ce

(an f"Pl) controllers. ' Pole Placement control may also be obtained as a “,

vspemal ’ case ‘of the Generahzed Predr’rve Controller Whrle condeptually
) di PR
.“more»;,\;conxplex, : such a. predrctrve Poj‘ ‘laéement controller is capable of ;"'. N
mcorpora;mg preprogrammed , ‘setpemts‘ for robotlcs or. batch control “
v applrcatrons. , R : . | , f
R T . Lo Cat
e _ ! Ll



-4, PERFORMANCE AND TUNING OF GENERALIZED PREDICﬂVE Col '
" : : : QM :
In, ter "2, 'the ebasic' BPC algorithm , was ,dertved and extended to

. rncorpor‘e

«

P4

Rearrangemt of the control law mto a general Ith ki 'm allowed the
detern;tnation og. ‘.a closed tloop transfer functton agi . asSrsted in
demonstratrng that GPC mcludes many well known control technjqes as specral‘
cases. ‘ The ﬂCXIblllty of GPC arrses from - the substargﬁla;number of design
, param;'j ers burlt» into- the appr*bac‘ “}he purpose of tgts \chapter is; to

~t0 «their selectron " for

.

o The Generahzed Predtcttve Control law ‘is based on m%npmtmtzatton of

“oap, A

v’\ i B K K ' :

eighting polynomrars (P, etc) ‘an cqlgred ‘noise. a(C).'

ters on the performance of

a cost function consrstmg -of future ~pr'edrcted %rors and .,f,wetghtq;l ”’%ont?elm@ i

vmerements thh gontrol_ wei jhtrng enabled, _the‘ opttmab sequent:e of

_'projected con‘t_rols _represents a trade'f between output performance (i.e.

~ *"thé servo and regulatory response of the controlled variable alone) and

~ control effort. Unlea specral precautions ~are taken, the = characteristics
t

of the closed-lgag. ou respqpse  will vary with changes in. the process

, even with pe'h y
e \ . -
unacceptable, it s important to identify the conditions under which GPC
w;ll mamtatn a consistent output performance This is the topic of section
. . . >
4.1’ i ' !

Py

imodelling. Since for most applications this variation. is

',,As rnentroneg' the- GPC algorithm tncorporates a s:gmfrcant nur%ber of :

gt

Gl ‘desrgn or- tuntng parameters - Even in-the case where we do “not _specifically ="
tal?e mto account the nature of the' .disturbance_s ‘(i.e. ignoring "C), the
. closed loop behavior depends " upon " the chdice . of the 'fOIlowiag:"\t'-ive
controller parameters: g o, - e )
) A a) mfnrmum output hortzon N i
mutmum output hdnzon N2 v o, e
- c) control horrzon, NU : ‘ -
ETR d) control werghtrng, P o " » ' '
(\/ ' 'e) outpttt werghtrng, Mg L. - |
Although the gross \ef‘t‘ect of each ‘ifYividual pararneter has been co‘rdered
elsewhere (Clarke et al 1987a;- Lambert, EP .. 1987; LambertM 1987), from
_a user. standpomt the sp‘ecification . of. these pnrameters us still; d.iffvicult:,,

. f B (PR - Co- . . ,



.

; unchanged .at least for some

411 'frocess Gain Changes

'since they “are highly  interacting, - - Strategies are needed t‘or reducing the,

mnnber ‘of "active"" tuning parameters (by assignlng properc default values to
the 'remamder during commissronrng) whﬂe retaining the ‘ability of GPC to

‘ ) .
handle a wide range of - processes from srmple lo\u order, stable plants, to

cqmplex, nonminimum ‘phase, unstable plants w\h variable  time ° derays Three

f tunrng strategres (based ‘on the Output Horrzon, Lambda Werghtﬁtg and Detuned
Model -Following confrguratrons of GPC) which rnvolve adjusttng only a srngle

tunrng paramefer are described and analyzed in ;ectrons 4.2 tq 4. 4

HE

Ja‘,& b 'N‘z.‘ 5 - . o o
' ; } Lﬁ { Z}[Py(tﬂ) - w(t+1)] + Z AfAll(tﬂ l)] } ‘ (4.1.1)
¢ ~ \ﬁm R N ~ PR J ; .

As the pré?:?si:‘ anut/outmtt behavror chang e tradeoff between the

output performahc‘e and cdntrol actmty, represented by the frrst anq sec

"tergts,,s shrftscm orde; to mrmmrze 1. Therefore, as - long as frxed e trol
‘-werghttng rs employed, the user should not’ expect the response of the o&but

to remain‘ mvarrant even’ when an ‘exact’ model* ’ 1s avarlable " On the other

"hand, i control weighting is not used (or if it adjusted when the process
cha‘nges as descrrbed rn sectron 4.3.2), the output performance rémains

:,Des of process ch* , | w

il

“, :;4‘

h

9,

It is ,st'rarghtforafard to show that " the _output performance is maintained '

L]

-

~

»




3

B

c functnon (denved in section 2 3.1) nges

s ‘.I"L'L':“‘u!iv",’.iﬂ,x."a;@{;m;:.;,’,‘.,: L L A AR B D T R L BN T IR TR 2 ‘,"‘:vtlf\’w‘:" i r“ s 3 /
" ‘ 2% : 63
d ;‘

in spite of gam changes in the process if no control weighting is used

(A=0) and there are no modellmg errors. ‘

. Process gam changes are reflected entnrely by the B polynomnal in the

CARIMA model, the coefficients of which aré proportional to the process

gain, K (see, for example, Neuman and Baradellp, 1979). Factoring out the

gam we ha\ﬁ" ST . : |
7 B=KE

. : ]
o .__ L3 ’

- (4.1.2)

where the pnme denote§ 3 quaxmy cor spondmg to the case Wﬂere K -l As
a {esult tbe - and F polgynomnals obtai d fromeahe onphantme Identntyl o

Q
P=EAA+q F, B
| " T j
are independent of Kp:
» ’ ' ! ’ ’ , ‘) - ! ! ‘
‘ ‘F, = F, G, =EB=KEB=KG . , (4.’1.3)'
, i i i P P i ‘ _
Therefore, the elements of t!te matrix G_are proportional to Kp: ' .
, . G =KG |
. N r pr fs =
so ‘with A=0, '
. - . . L " , rr \ i . - . 7 '"' A
: [GTG]"GT=' [GTG ]'IGT/K v o (414) ¢+
- r r r r r r P . s :

»

. ) v v - . . ".""'Q,;" e ’ " \\,
The elements of the vector h are given by: .. ‘ : T ' ‘

o B K, NN,
. go that  the - polynomnals in the @eneral -lihear form of the control law
_(section 2.3): A4 ’} . L
) ) ' _ TAu(t) = th) Zsy(r) - N
.. ' . N
are functions of Kp,as followsf i A ¥ .o
) . » . .
) T=T R-= R/K, S=S/K_ N ,(4.1.5)

Substltutmg the above values of T, R and 'S mto the closed- loop transfer
P b

| BRq 'w(t) + TAx(t) BR q 'w(t) + TAX®)
s -oy(t) = — ] = — ' T . (416)
TAA + q BS ’ - TAA+q BS ‘

- -



Which indicates that the closed ~loop output resp.g.sds:‘ls invariant of irocess ' "
gain change’ - : : : '

4.1.2 fCha'ngel ln‘ fl’,@ceui'l_)ynamlcs '

~ Changes in the dynamlcs of the process .imply changes in the location of
the open-loop zeros (as well as the open-loop ‘poles). In order to be -

’ suitable for nonminimum phase processes the design and . tuning parameters

© e

v

s

must be selected such that GPC does not attempt to cancel the zeros of the
process. Obvrously, wnth the open-loop zeros retamed in  the closed- loop,
the output performance _cannot be made completely invariant ;)t' ‘the changes m
dynamlcg » In  many vapplrcatrons however, the open- loop zeros *do not have a
s:gmfu‘:ant;‘h influenge’ on the closed lobp response With good mode]
xdentrfrcatxon and ‘with the design/tuning parameters selected* according - ho
oe of the confrguratlons recommended in the fﬁﬂowmg sections, the output

perfoffnance Rv{gll be relatxvely,msensmve to changing dynamlcs.

4‘2 *Tuning Strategy #1 based on Od'tput Horizon Conf u
v .. ) ‘ & A ‘ . P
A useful st_rategy for ~ implementation of the Generalized vPredic)ﬁtﬂive

Controller i$ one wherein:

-

1) the maJorlty of the ‘design . parameters’ are fixgd during the

commrssronmg stage when the controller is first mstalled | . ’

2)- a small number of "active” tuning : parameters (preferably one) are
- made a'vailable~ for adjustmg the ~ closed-loop sfeed of - 'response *in a

predxctable manner, - durmg @e tion. .
J’- -~ ,, ‘ ' ; N
It should be possxble fi

the user to obtam control action which rarlges

‘ﬁow‘neal (cbmespo dmg to a consgrvative control objective) to strong -

(ngmg "tight" control*o measured variable).

: % ’ , . RIS L
= Note: “the settxngs of the 1gn  parameters fixed during ‘the
commlssxonmg stage are said to define a nfi'guration of "GPC. e
& a ‘ |

- The . fxrst proposed. tunmg, strategy _is ‘based on the‘ "Output Horizon"
conhguratlon of GPC. For (hxs conﬁguratron the design parameters are

5

B ]

‘ ¥

L N
D i



assigned the following fixed values during commissioning:

NU=l, NeI, P= Y =0 : ' (4.2.1a)
The active tuning parameter, N;, is then used to vary the speed of response
with: ' ’

d+1,s N, < 00
where d is the integet time delay, of Pthe process. . .o

As Nz—»oo these are the settings for the .mean-level controller described
in section 235.1. Such a @htroller is very conservative; at each nme
lstep, the  control increment expected to reduce the error to zero at steady
state is implemented. On the other hand, for N -d+l we have a minimum
variance (MV) type controlle( whxch attempts to eliminate the "d+1" step

ahead prediction error. The control adjustments generated by MYV control are . '_.H'
unacceptably large in most applxcattons * This type of controller is also
very sensitive to underestlmatxon of - tlhe dead -time, d, and may only be used

for minimum phase processes. T o |

For practical application of thxs Output Horizon confi iguration of . GPC
to real processes it is possxble to adhxeve the useful .range " of responses
with : ‘

d +1 <N <t
2 [

3 . T max

(4.2.1b)

where din is the maximum expected time delay and t is the wWettling: time of

the ,process in sampling intervals {ocluding the delay). ’Note that there ¢

exists a "goonmtultlve "'fee‘l:i for election of N, which is related "to ’
e -desired closed-loop™ response time. _For - stdrt-up in an uncertain

efivironment, a large value/of N , is recomme\ded. -ln Kppendix A, it is shown

that, - even in the pres of model-plant h, the closed— oop ‘- sy®em

using GPC *with NU=I N l-l and A=0 is goaran | to . be stabl for large '

enoqgh N @asflong as the open-lgop system and the, mode » -

A s RS ,««”-;;-;

> [

~ The Output Horizon conflguratnon. has been recommended' by Maurath et 'klr.g% 5 iiw
(1985) ,for predictive control ol" unconstramed SISO - sysgems , usmg ' :-}t
controllers based on 1mpulse or step nes*ponse models (1e DMC) It ma.y -be. Lt

wsed in the manner described - for all - processes wnth ‘the exceptxon of

continuous-time NMP plants ‘which exhibit on initial rmverse response. : The



*,

‘«
.

. . . R . T .’\‘\ .
ulecﬁon* of N, for' such plants requires more careful consideration as

dllcunbd in the next section.

4.2.1 Inverie ‘:Ruponse Pla'nt; :

v

The initial respohse of a continuous-time nonminimum phase process to a: .
step input is in the opposite direction as the final steady state vnlue Injk
order to provide stable control over such a process, the max:mum outR'

ftxon 0
f‘ - Ty

honzon, N must  be large enough to "look beyond" the -inverse
the response, For the: Outppt Hon:eg configuration:

IR . \ T
. cGr = [go 8’ ‘\gNz-l]‘

and
{ Tn )-1~T /N
L g o Zgi
et ' * =0
4 _ .
. where g, i=0,.,N -1 are step response -coefficients- of the model.
. VRIS ‘ , 3 :
of the notatiosf of section 2.3: '
W » ' o
Mz s, e 41 = 8 / 2 71 j==l,..,N2
: 2
8l
i=0

.

and the polyngmial R v'ih the general linear form of the control law:

*

IR
Wil
vy

(4.2.2)

In terms

(4.2.3) ,‘0

» (4.2.4)
-

N, N, <,
o R .. R = hj R g
. . =1 r=l - *
; 2
. ) . o ) Z g
' i
) :A‘Ssg,me ; that initially the system 5s» 1"': steady “state (thh y(t)-O -for

Pl -

v sngﬁcxty) when there is -a_ stén ‘*é_’ - h' the setpomt ‘”W(;) A
4 &l‘ Wb Sies

A A S O
,o ) .‘ N

PR
. Au(t) -‘Rw(t)

A

The ;control‘

LF "

(4.2.5). |

In order for the bdntroller to take action m) the proper direction we must

have; BN S \

-



»sign(R):g-,slgn[zz gj‘_l] - alfh(xp) cl - (4.2.6)

W e =]
| Y] ﬁ

" where K -[B(l)/;&(m, is the steady state gain of the pl&m. ‘

If N min is the lowest value of N for which thu cntenon if satisfied then
we must have N zN min for stable control. Note that xt is possible to check
on-line if N is large _enough to "look beyond” the myerse response and

hﬁ/‘y this cntQ S ‘ ,

4.3 Tuning Stl’ntegy # 2 based on Lambda Weighting Configuration

A second strategy for simplifying. the task of tuning GPC is based on
what will be referred to as the "Lambda Weighting" configuration. The

following design parameters are fixed during commissioning:

NU = na+l, N1 = nb+l, N g2 NU+N -l, P=1 (4.3.1a)
where na and nb are the orders of the model polynomials A(q ) and B(q )
(nb mcludes the delay). L ’

The scala'r control weighting, A, is designated as the. active tuning
parameter with o
0 5'/\ < 00 .

Normally' if N2 is set roughly edutal’ to the rise time of the process
(defined as the time elapsed from a step change in the input until the
output reaches 63% of the final steady state value) in sampling intervals, 1

+ ) Nz o~ tl’ ‘ . . . (4,3.lb? )
the above mequaltty for: N xs satnsfxed Nz set in this way will also
normally be - larger than ‘N \in (det‘med in the prevxous sectlon) so that - there a

gt ‘wxllprﬁe To. n?oblem controllmg inverse responsh plants o ’

For this conftguranon A=0 yields deadbeat control. Placing ~all of
the poles at the origin in "thlS manner drives the . controlled variable to the
setpomt in at most nb+l  steps. ‘This rapld response requires stronger

control act:ons ‘than are desxrable in ‘most circumstances. Nonzero values of




,\ may be used
the controller is progressufely detuned ‘In ‘a‘tfhé followmg section it will

e

&
P
£~ v

vtoz"‘ achieve (the desnredn speed of ' 'résponse_v ”as XS xncreased :

- be shown that one closed loop pole approaches z-l whxle the ' remaxnder‘

S converge to the ~open- loop poles as’ A-voo b “JThis xmplies that for open-loop

_-unstable processes. the\ closed-loop systen&- 1s *et”able only if A 1s below some '
N

} 'crmcal value, : é . Wthh _is not . known a pnon For "~ this lreason the
’ Lambda Wexghtmg\configuratxon is not redommended for unstable plants P et
s inrﬂna;_cqntr‘o-l Weight‘ing o o
. . ] »‘ . . ' " ”‘ '\ - - ) ‘:‘ . . ; .v‘> . . . ‘ ‘ | o
' Reczll the GEC control law is: = ) .
R DA O | s
. ﬁ=[~G’Tc+Al]G@w-f) g ’i\
‘ For‘sni"ficiently large values of ) we ha\{e
' T i l T o ‘ 11 T T ,‘ v ] ‘ ‘.” R ”‘ |
i[Gf(\;r + AI]\G} = Gr/A SRR / (4.3.2)
"'so_that the elements of the first row of this. matrix a\re: .
h,.= .g;_-,i/,\ e j=N “',..,N T 433

_In the general linear- form “of the control law the poly‘nornials.T; R'and' S,

from eqn. (2. 37) become:

N._.' v YN . o
e IR T N ‘
=1 + q-l[z G/A ,,‘f R = ZgJ 1/>‘ ~and» g F/j (434) a

In the limit as A—occ,- g

limit (T) =1, Lmit (R)=0 and limit (5 =0+ (435)

A —o00 Ao Ao T
| tl"le"v clos_éd.-loop characteristic polynomial becomes e
. Limit (TAA +q BS) = A R ,(4;3.6)

This 'veri'fie's that in  the llmlt as A—»oo, the closed loop poles approach the.

E locations of the open ~-loop. poles and an addmonal pole at z=1, The pole at

,zjl ds a consequenc_e, of‘ weightmg control lncrements in the GPC " Cost .
o v - . ) . S v" » - ) " ’

Tt



. e32 "Mgrnten.née of "P’errdm'gnce, e
ln sectron 4 l.l we showed that wrth A-o - the response of

B

,‘_»\._controlled varrable is rnvarLant to proce S garn changes as’ long as we have .
. ‘exdct: modeltng ExperrenCe conftrms that frxed A werghtrng 1mphes I

tradeoff between output performancv and control effort, However Cif A is

scaled such - that it rs proportronal \to the gam of the process squared the .

_output performance is. ‘ndependent 6f gam changes opce again To see thrs,v‘

reconsider the development in’ s@t}en 4 1.1 where the process gam Ktv was '
‘t‘actored out / , S '
. T B =X } '//?K G ‘ K -VG".._ .
PP L | |
' /(/'Ihe prime denotes a quant}ty for a unity processv gam) The elements of
| the matrrx G are proportron?l to the. gain: oo :
Lo : oy T /e : l o
It ) is scaled accordin’g t/o", L ‘ j - L \ S .
5 A= /\Ké,.: A [B(lﬁ/A(l)] " A = a constant. o (4.3.7)
[ G+ n’]"c" - [GTG + Ti] TCT/K | (4 3.8)
T e / ‘ : o _

-TThe elements of/ the first row: of thts matnx .are mversely proportronal to .

‘, the process gam and proceedmg in the manner of sectron 4.1.1 we frnd agam‘.

that R ) c

VAN : P e
-/ K T"Tw_ R"-“R/K SPS/K

A

'.Smce Ta}l‘ and R and S appear in the closéd loop transfer frunctron as,

’productSfé with B the response of the output / is mdependent of the ‘actual
"‘:procesgaln.' ' . A R e ’ S \

'I‘he output performance cannot be made completely rndependent of changes

_m/ process dynamics. However, it is " possible to . desensltrze “the closed loop ‘
*sf'stem to these changes if mstead of using (4 3.7) . the actual A used m,

1
N
1

-

J the. contri calculatrons is scaled such that rt 1s proporttonal to [B(l)] L )

*



s A "»\,;,{B(m’

'J_where the relative" control werghtmg, )t m, rs chosen by tho user. . / o

»

To explam mtuitrvely1 why this ahb\uld work suppose that the dynamrcs of a

- process become sl“ower 114 the salnple tnme does not change, the coefficxentss

of the B polynomral ,(estrmateq on lme) and the elements of the G matnx

~(whrch are: step response coefﬁcrents) will decrease m a’ srmrlar t‘ashron -
‘The "balance between the two terms in the matnx

’ N

| [(;'fcr + ',\1]'- [c G, + ) [a(r)ﬁr]

.’whiohv is- inverted 'during the «‘control calculatron L is- maintained. ~In ,thl_sf S
‘situation, the changing dynamics will have less in*fluence on . the output
responseu (Note: earlier in - this section it was -shown that maintaining the
’ alance _between - the two terms is necessary ,,for the output resﬂonse to be

-

.mvanant of gain changes) R : S ‘

FESN

There are also numerical reasdns: for preferringk the - scalin_g of  eqn.
(4.3.9) to that of eqn. (437) Réliable "estimates- of " the process 'gvain: are’
difficult - to obtain oncline; A(l) is often qutte small and for self-tuning
applrcatrons' where estrmated parameters fluctuate A(l) may approach zero

for transrent perrods

'The\scali of A by"[B(l)] was first . suggested by Lam (1980) for use
~ with N-stage g based state- -space self-tuning confroilers. i
4.3.3 Selection of ,Control Weightingf_ '

The range of values of A (or A) which pro\vrde reasonable detumng of

) the contrqller are - not 1mmed1ately obvrous~ ‘ Based on simulation j
experimental trials, AI must be wrthm an order of magm[{rde of Gr’ Gi_' to

0 G TG control
increments o will be roughly halved relative to deadbeat ‘control

have som'e3 effect. If A is approxrmately equal" R
(corresponding'_'to A=0). Using' the trace .of G G as a measure of its
' “mag'nitude, a  good startmg value of X which is expected to reduce the
deadbeat control increments. by a factor of approxxmately 1/(m+1) is '

v

-



A = ""mr“f ST ’ - (4310)‘ "

Tlns value ol‘ A may be used to calculate a startrng value {or A via eqﬁ\
- (4.3.9) wluch may then _ be _"Justed durmg operation to fxne tune the -
response. . o S ) o e T

.“" . e ] - ) . ., ‘ 2
4.4 Tunlng Strategy *3 based on Detuned Model- Followlng Conflguration

- GPC can be set up’ to follow the closed -loop - model , M(q” )-l/P(q'l)
exactly, in whrch case the process zeros are cancelled ) In order to have a
‘practrcal control. scheme for plants with arbrtrary zeros we must "detune"
:the model followmg capabllltres. As discussed in section 252 thrs may be
‘accomplrshed by either increasing the output honzon relative to the control
:horrzon or by adding control weighting. The former method is easier to
carry out as the amount of control werghtmg required to achleve stability
for NMP processes without detuning the control loop more than necessary is
difficult to determine a priori. lﬂtuned Model Followmg may be obtamed‘

X

by commissioning GPC with:

S UNU = natl, N =1, N > d+NU, 2 =0 : (44.12)

- - A
and usmg the inverse closed-160p model P(q') = l/M(q'l), as the active
tuning parameter. (Note that N = d+NU would yreld .exact model following.)

By setting NU Ra+]l we are allowing the contgoller sufficient. degrees of
freedom \O\HV‘EE model  sufficiently- c;sely but  not exactly. .
Srmulatron runs -indicate that mcrementmg N by only a small amount over
- that requrred for exact model- followui'g ensures that no attempt is made to
_}cancel open loop zeros. For processes with wvariable time delgys, N2 should )
-be set large enou __gh so that it exceeds d +NU where” d is the largest
expected dead tune : To be on the safe srde a rather larger value of N
recommended correspondmg more closely wrth the rise time of the process-
. (defxned previously to include the dead-time. and any ‘inverse response time)
in samiling mtervals ‘ ' ‘
N =~

. N =t (441b).

Recommended methods for selectxng the closed- loop model M(q ), to achreve
a desrred response will now be consrdered ' '
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, —_with a gam of one: "\

¢

T A | R o
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4, 4 1 Speclﬂcatlon of Dellred C'Ioud-Loop Model: o oot

A good way of ctmg M 1s to ‘consxder an aﬁpropmte contmuous t:me" ,
model and: fmd nts equivalent pulse transfer functnon (Cla.ke, 1983).  The
simpliest continuous . model for an overdamped response i3 a st order ,process
S \ k

S

- M(s) = 1/(1 + rCLs) ~ , : V(ZL"4.2‘)

-

" The pulse tranisffq;: function for a sample interval T',

L, et _
ME) = —— (4.43)

l-plz

-T -/TIL~ . _ .
e ? where r is the desired closed-loop time

has a spole, P, = , oL

‘constant. : : . e Y

BN

Since it is of no interest to mcrease the dead-time in the process, the
" polynomial P(z" ) should be selected as '

/ L _ -1

-1 l - plz L3 .
Pz) = g—5— (4.4.4)
-l =-p
: 1
Note that P(l)=1 to 'ensdre offset-freé - behavior. This  first . order

closed-loop model is primarily applicable to plants which have Ist order
chdradearistics. Experience indicates that excessive  control action s
reqnire'd “to make many higher arder "*industrial-type" processes respond in a

_Ist order manner. For these cases a more appropriate model.is 2nd order:-

Pl

M(s) = W - S (4.4.5)
: s 4+ 2¢rs + 1 :

where 7 is the natural period and.{ is the damping factor. o .

The z-transform of this model (including -ZOH) for underdamped systems (§‘<l)t
; is given by Neuman and Baradello (1979): ' :

RS -2 .
nz + nz

M) = L2 (4.4.6)
- . ’ l+-p1z + P,z




el . U o . ' N . N U
i S . N
A o e . T et
i “Mth‘ L T fk v
S L
. .
)

") . .%s-i"l'./f‘ws [(T /,)/—:? ] "p’ - ,'25"1'/ r -

o ‘ \ ' o ?nd ‘.,nl + q’*- 1 + p'l. + p, I o

v

LR : . ' o : ' . . ‘
‘ (n and n, as functnons of T ,» 7 and .; are gnven in the above reference.)

Since we are in a detuned 'j'"_fde where we do not . follow the model precnsely,

it makes little dxfference 1f the numerator dynamics are ignored. A
" polynomial P may then be used.‘ ’ ' ' '

Py = 1 2 ~ @4)
S o+ P, t

e

L

For step setpoint changes, the 63% rise time (dommant time constant) is
' approxlmately 21‘ as long as 0.5<¢<1.0.  The fractional overshoot (for a 2nd
order system ngen by ean. (4.4.5)).'is solely .a function of the damping

LN

. 1
factor (Stephanopoulps, 1984): = ’
v S8

| _ { ¢ } |
o= e V1 | (4.4.8)

Rearrangmg thxs equatlon _gives the dampmg .factor as an_ explicit function

of the overshoot

2
(&n o)

T, (4.4.9)

™ +(&n o) :
» * v

For convenience, the damp'»ing factor is given for different vaIues of the

. percentage overshoot in the followmg table '

. % 6vershopt, o, Damping factor, §'
5 0.69
10 0.59
15 © 052
20 ) 0.46

25 - 0.40 -

: . - e B T TR
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4.5 Interpretntlonl of the C polynoinlol In the CARIMA Mq}el
- ‘
The Generalized Predrctive Controller was extended  to - xncorporate the*C

'polynominl in section 2.2, 4 In that derivation. C represented the CARIMA

‘noise model poiynomtal Lt l‘ollows tmmedrately that rf an ,on-line eetimate

C, can be obtained usmg an appropriate recursivé. identification algorithm
(eg. Extended Least Squares or Recursive Maximum Likelihood) better
disturbanoe rejection may be possible. ' However, an alternative engineering
approach is. to interprete . C as a design polynomial, Cc, which may be
seleqted iﬂ such a way as to achieve desired performance The important
observat‘ion; that‘ C does not affect the setpoint tracking propert§e§ provides
guidance for its specification and allows GPC to meet independent servo andl

regulatory objectives.

4 5.1 Estimating (o using Extended Least Squares <
-y »
The general CARIMA Aodel, l

»

\ = A@hayn = Baau- Hecadew .

-can be rearrahged into the e'xtended iéa;t squares form:  * s

‘AY() = -q(A-1)Ay(t-1) + BAu(t-1) + q(C-DE(t-1) + £(t) (4.5.1)
or, ' ' ' | .

T .
Ay(t) = 6°4(t) + &) - ) (4.5.2)
where ‘
o 4 T
f = [a1 v 8 b0 bnb €, cnc]

and :

‘;\W\-\[iy(t—l) . -Ay(t-na) Au(t-1) .. Au(t 1-nb) 6(t-l) £(t nc) M

. Since the noxse terms CE(t-1 ),..,f(t-nc) are unmeasureable they must be
ptoxied by either the a priori eStimation error, ¢(t), or the a posteriori
residual, e(t), '

—eft) = Ay(t) - aT(t-i)qs(t) - ' - | . (4.5.3)
e(t) = Ay(t)»- 6 (t)¢(t) . S 4.5.4)
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~ An ordinary, recursive least - squares Xorimm employing the above 'extended"

p
-
-l,

regressor and ‘narnmeter _vector fo the Extended Least Squnm (ELS)‘

rmethod., Certam\ posmve-real conditions must be” utnsfied for convergence

of 5 (Ljung and deerstrbm, 1983). If they are violated, a° more
0 ted routme such as Recursive Maxnmum Likelihood (RML) must be
nsed When enther ELS or RML is used, it is _ that p(q ) remain
inverse-stable as the estxmators are themsel , .systems wnth ‘ )
gnven by C(q ) This gondmon may be #ns , performmg
factorization to give a stable representation  with identical

properties (Astrdm and Wittenmark, 1984).  This, however, adds ¢onside'rably
to the on-line computational burden (Tuffs, 1984). ' g

Ny The use of a posteriori residuals instead of a priori prediction .errors
results in faster transient convergence of the C parameters (Ljung and
Soderstrém, 1983) Experience indicates that, even in this case, the C

‘parameters converge. at a rate which is an order of magmtude“slower than the

A and B coefficients (Isermann 1981)

Most real processes have more than one disturbance or noise source
acting on them. For. example, -fl may represent a disturbance which enters at
the process input, fz may be measurement noise acting directly on the

v o \
process output, etc. "This can be modelled as:

ABY(H) = BAU(t-1) + C £ ) + sz;(t) te . @55)

v

"The noise components can be combined into a single random sequence C&(t) by

. . il e o ge s . . . 2 .
spectral factorization. Only if the individual --noise variances o, . remain

“constant  will C(q'?)/ be a time invariant polynomial. " In pi-actical
#

appiichtion; this does. mot hold and therefore we expect C(q'l)- to vary with

't‘ime. ~Coupled with the slow convergence of the C parameters this implies’

that successful. ldennfxcatmn of the noise model C(q ) is unlikely. Since

' -“C(q ) may have httle correspondence to the actual mnoise structure, the use

of a design polynomial (which may represent prior knowledge of the process

-noise) has been suggested by several authors..
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4.5.2 Design Polynomial, Ce ‘ ' o .

Wellstead and Sanoff (1981) introd}:cp an arbitrary filter with fixed ,
coeffncients forming a surrogate noise model * into the Pole Jlacemen‘_
algonthm ~ Clarke (1983) uses an a priori estimate of C(q’ ) denoted by
T(q ) (not the same as the T polynomial appearing in the genergl" linear
form of the control law (2.3.4)) in the GMV controller for tailoting the
response to  disturbances. The choice of 1/T(q ) as a low pass filter
detunes . the . control actnon for high frequency transient disturbances (Tuffs,
1984). In particulay, the use of T(q ) prevents overcompensation when
controlling industrial processes known to be affected by rapid variations in
load but which respond relatively slowly to the control sngﬂal 5

In the majority of the following sections we wnll consider the use of a
design po(ynomlal , Cc, in the Generalized Predictive Control algorithm,

4.5.3 ‘%D’ejree of Freedom Structure ' '
It is #istructive to consider the special case where the polynomial

representing the disturbance term in-the CARIMA model, C(g'l) is equal to
A@Q'):
/0 = B/AN-) + &0/A
J

(i.e. the dispurbances consist of “random steps acting directly at the output
of the process). The solution of the Diophantine Identity,

. .
CP = AAE, + q'ij
is then,

Fj=A  E=(P- qya (4.5.6)
so that, '

G =EB=(P - q')B/A
NS J -

Substituting for Fj, the open-loop prediction j. steﬁs ahead (eqn. (2.2.22))

becomes: \ a |
f(t+j) = ¥ + GAut-1))C - | (45.7)
-The open-loop prediction of the auxnhary output simply the current

measurement plus the expected influence of past controls. ThE implies that

\

‘



meumwmaﬁ wmiriqwmm
nt output emct of the disturbapce. WNote that this is the default
typc' of dhmrb‘nca prediction used by lonl-nngo ‘odictlvo control
algoril bned on impulse ‘or step response models (e. 3. DMC) without a
single riel forecaster (Man, 1984) or closed-loop observer to predict the
future e!‘t’ect of residuals (Navratil et al;, 1988). )

So.

The polynomials S and Rkhjthe general linear form of the GPC law with
Ce=A are, from section 2.3.2: ’

‘ ’ - N, ‘ ‘
. S=Ra= A[Zhi] (4.5.8)
\‘\ _ o ‘_j’Nl ) a |
Recalling the clos\é_d-loop expression for y(t), eqn. (2.3.15), the error e(t)
may be written: ’
‘ . TAA + q° ‘B(s-R)]w(t) - TCAXx(t)
e(t) = w(t) - y(t) = : ) — (4.5.9)
TAA + q "BS ‘

With C=A and SR,
TAA [w(t) - x(t)]
— " (4.5.10)
TAA + q. 'BS ' .

e(t) =

Therefore the response of the control ‘error to disturbances and setpoim.
cha}ages is identical apart from the sign.  If disturbances (as observed at
thg'process output) and setpoint changes have the same form (e.g. steps) the
coniroller can be designed "optimally" for both. If, on the other hand,
disturbances have a different form (i.e. C#A), then it is generally not
possible to tune this "one degree of freedom" controller for optimal servo
and regulatory response. It is necessary to consnder a structure with “two
'degrees of freedom" (Stephanopoulos and Huang, 1986; Zafiriou and Morari®
1987) We will consider several ways of designing GPC for independent servo
and regulatory control in section 4.6. First, however, we will show that in
the absence of modelling errors (in A and B) the C polynomial does not
affect servo control. -
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'ro show ‘that the C polynomial incorporsted - igto the GPC control law
does not aﬂ'ect setpoint tfacking properties, recall equation (2.2.32) where
the prunes denoted polynomials for the case where Cs=I:

614 a(G A8 + BF)/CAA = c';j' +-q"(G'J'AA . BFJ')/AA
Therefore, . l

. ;_CjAA + BFJ - C(G’AAf BFj‘) | (4.5.11)

Writing‘ this equation for j-Nl....Nz.‘ multiplying by the set of real
numbers, h;' and summing yields: . '

Nz Nz . Nz Nz
ZhjﬁjAA +ZhJBFi - C[ZhjﬁjAA ;X}HBFJ] , (4.5.12)
j=N1 j=Nl J:Nl : j=N1 )

The Ssummation terms are related to the polynomials - in the general linear
form of the control law as may be seen by rearranging eqn. (2.3.7) (for C=l)
and (2.3.14):

N, . N, ,
.Zhjﬁj = q(T-1) Zthj =S (4.5.13a)
‘j=N =N,
N N
\ 2 ) ‘ 2
‘; Zhjﬁj = q(T-C) Zthj =S : . (4.5.13b)
=N : . =N .
So thét'eqn. (4.5.12) may be written: Y
AT-C)AA + BS = C[q(T 1)AA + BS] (4.5.14)
which after reamngement yields:
TAA + q'BS = C[TAA + q'BS]  (4.5.15)
) X

This equation indicates that the characteristic - polynomial for a". general C
is formed as the product of the characteristic polynomial for the case Csl
and the polynomial C (i.e. the roots of C become closed-loop poles). Noting
also that R = CR', the closed-loop -transfer funétion given by eqn. (2.3.15)
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o a "w(t) + TC,Ax(t) ¢ CBR q "w(t) + TC, an(t)
y(t) = ~ - y T ¢ (4.5.16)
TAA + q"'BS | C[T AA 4+ q ns’T

-

in the control law. Thus in the absence of process modellins #rrors - ( i.e.
A-Ao, B-B) the C polynomial incorporated into the control law does not

where iho \"true® noise structure polynomial _C° 'is dminguhﬂed from .C used

.affect the responso to setpoint changes. However, since in general, T+TC

the dnsturbmce rejection properties are modified (as is the servo response
when there is MPM).  If in addition to the process model, the noise model is
exact (C-Co) the disturbance predictions are optimal and ihe output variance
can be minimized, if desired. - ' ‘ '

M I3

4.5.5 Prediction of Residuals

The C'polynomial can be interpreted as modifying the prediction of the
residyals into the future (Foley, 1988). The residual is defined as the
difference between the actual output and the model predicted output at the
current time. Recall the open-loop prednctxon of the 6utput j steps ahead .
was given by eqn. (2.2.22): .

;(a ’- [F C]y(t) + [E/C]Au(x 1)

An expression for’ 5 may be obtamed by multlplymg “the Diophantine Idenuty

(2.2.16) by B and substntutmg for Gj from eqn. (2.2.20):

R - ’
Gj - qC[PB/AA - Gj] - BF /AA , | (4.5.17)

P4

Substituting Ej into eqn. (2.2.22) gives:

F s
£(t4j) = [E‘] [y(t) { Bl au- l)] [55 - G]Au(t—l) (4.5.18)
The coefficients of G; are the first j coefficienté of PB/AA, such that,
! }:j B . .
f(t+j) = c y.(t)v - {—A—}u(t-l) + GjAu(t—l) o (4.5.19)

-2
where G - g + gj“q + 354.,“ + ..
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‘(?‘or the case' where Pal, thm are’ step response cosfficlents of the
process.) Since the residual, s ) , .o

w0 = vt - (B/A)u(t-1)

the open- Ioop output pudiction may be writtan ' . -

2

f(uj) - [F/C]r(t) + »G‘Au(tul) Cn (4.5.20)

Li

Thus, the transfer function F/C dgermmes how the past and present
resndulls are predicted into the future. Since both' disturbances and
model-plant mismatch contribute toward the residuals, it  should be clear
thl‘he C polynomial influences both the robustness and disturbance
rejection pfqpert_ies of the closed-loop. The secovnd term in thg previous
equation represents the predicted effect on the output of past control -
increments based on the I/O model of the process.

The exphcnt prediction of res\:duals is emphasized in the block diagram
of Figure 4.1. ;
. ‘l

\
4.6 Independent Servo and Regulatory Objectives

In order to have the capability of achieving independent servo and
regulatory performance objectives, a control law must have at least two
degrees of freedom. If, in addition, the two “control elements" are
partially or completely decoupled the initial tuning of the controller will
be simplified. For GPC we know tfxat the horizons Nx' N’ and NU,.the control -
weighting, ), and the P weighting polynomial influence the overall behavior
of the closed-loop (servo and regulatory). A setpoint transfer function
prefilter,

w(t) = F.py'p(t) with .F'p(l) = 1

may be used to modil;y the closed-loop servo response alone. The controller
design po]ynomial. Cc, tailors the rejection of disturbances and  behavior of
the loop with MPM. C;lparly, several pgssibilities exist for designing a
controller w\h two degrees of freedom. By way of éntroduction. consider
the Exa odel-Following configuration of GPC“ (NU-N’-d. Nl-i, Nz>dx’ A=0)
with a! setpoint prefilter and Cc design polynomial. The closed-loop



: ?;transf'er funcﬁon may be writ' T

- y(t)

‘lwhere T - da/BR ST R
‘F""-, P anq C should be selected m‘ such ‘a way as to*; transform the . '
e ‘,closed loop expressxon mto ’ ' o BENER -
LT s (d+l) SO RPIP
S y(t)-=Mq y(t)+MTCAx(t) o (4062) -
f‘w‘h‘e_re 2 'Mi 'is .fthe c105ed-loop servo model and ‘Mr is “‘the closed-loop
~ "regulatory model". " ; L A
: %three poss‘i‘bilities' listed in Table 4:1" will be 'considered ‘in t“‘“'-,
‘ . '.I»'a‘b‘le_'4.l GPC Alternatlve Settmgs for IndepeTitl'en-&-\
' '.‘ L B e _' ’ Servo and Regulatory Control ' ,
. ) . o §
Case . 'F.p' Lo P S ER Sl
. ! < . e ) f“ .
! \ LM MM,
: Moch s A/,
-~ N j /' . =
3 | M ./Mr ‘ 1 /Mr 1 A
e 'z‘ . ‘ : o
~In éhe £ollow1ng chapters 1t wrll be shown that it 1s _possible to
'very sxmllar closed loop behavror thh any of the three methods
~the" mterpretatron of eacLalternatrve s shghtly dxfferent
‘ B 4.6.'.11 Two Degrees df ")vFr‘eedom',”‘Case l: C as &’ Disturbqnce Model R ) T
o WIth the setpomt prefllter dxsabled P can be set equal to the mverse
' _,"servo model and C used to taxlor the response to dxsturbances A typxcal
.‘example will clanfy thxs method Assume ‘that a 2nd order Servo’ model has

; been chodsen accordmg to section 4.4.1:

)
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' 'model~plant mxsmatch charactenstlcs lrkely to. ‘be- encountered If l/C is a

= and regulatory modes

“models.

el + pl "'Tp’w PR / e

S
1 +,p q + pq

If we select a regulatory model" wrth the addxtroﬁ"ff\.pole -clz

o l+p+p 7 1
Coe e /Mr-Mr/Cc. En . S e
N : ‘ lv-l- p q_;. + p q 1+ c q

then we are using C = l+c q ‘to represent knowledge of the drsturbances or

low-pass frlter,' hrgh _frequency drsturbances "a flltered and i the

controller tuned . for - servo cbntrol wrll also’ reJect drsturbances in a ;

desirable m%’nner The 1mportance of - using C ~ in - this  way to - provic:y'

robustness in the presence of model plant mxsmatch ~will be demonstrated in

the followmg chapter ' - : R N 4

A few re‘marks -are in order. . The  servo and regulatory 'modes Aare ' not

_completely decoupled (Although the C polynomial may be adjusted to modify’
. the reJectlon of drsturbances 'wrthout affectmg \the‘, response to setpomt_

changes srgmfrcantly. given a reasonable process _model). - In/by far the

'majorrty of applrcatrons thrs is -not a disadvantage since: the / user -will not.

have suffrcrent knowledge ‘or reason to specify. completely “different"servo

. ‘For ‘practical "ap'plications, exact model following/ must - be - "detuned".l"

In. .this_ case,' the “closed-loop . will only ,approximate y follow ' the des‘ired

[

i / ’ e
Rather than employmg P the control engmeer /may select ]GYN 'NU and

CAL (accordrng ‘to  Output “Horizon or Lambda Werghtmg confi uratrons)
ac.hi}evvef‘ the desired .servo response. -~ In.- these‘ situations;  the engineer wxll.
be - less - certain of B the locations of the .;CIosed-loop poles,. \,'but better -

performance may be achieved. ,
PEERER N ) N \ .

’I’he alternatrve presented “in this sec’tion" ,(Case’ l) is recommended for .
control wrth two - degrees of freedom unless’ 1t is des;red to decouple the._‘,,_

servo and regulatory modes completely." It is used extensrvely in this

* thesis.. \ R 9
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“»"4 6. 2 Two Degrees of Freedom, Case 2' C as a Regulatory Morlel

The second method for provrdrng two' degrees of t’reedom involvesv
refrltenng ‘the setpomt > Y, o ‘and selectmg P=]1 to grve "d+l step ahead"
: control . The C polynomral ‘may then be used to specrfy the regulatory
response independently S . ‘

For example, if the desrred servo and regulatory models are 2nd order,
then one possibility is:. ’

W . -1 ‘ v R o e .

. F L M = B .. F.p(]) = l

i '~l+mq1+mzq'z‘

C=l/M 1+cq +cq ’

R +n
.4

X o

An all-pole regulatory model is requrred smoef m VGPC\“‘ C ( '1) "'s'

restricted ,'in form to a- “polynomial. How dynamxcs,’

resulting from z-transformatron of a contm" “may ,,be'

retamed in the servo- model, rf desrred - disc "ﬁ ', . coeffncnents

'system by equatxons g:ven m sectron 4 4, l)

Note again that for ‘Detuned Model Followmg the closed loop behavior
-will not correspond to the specrfred models exactly I the \Qutput Honzon
or. Lambda Werghtmg conflguratrons are . used (rather ’ than Detuned
Model Followmg) ‘the - appropriate tunmg parameters ‘ .should * be - selected tg
grve. Sd+l step ‘ahead" ‘or‘ - deadbeat: control t0' . the flltgid setpomt
respectively. / |

: The design 'pOIynom‘ial Cc is used to specrfy\the desxred closed- loop
- . regulatory performance. . = With tlns rnterpretatron it does not jllSt
" represent a model ol' the dlsturbances : However as an alternatrve C may

be selected as the product of t noise model and the - mverse closed loop_ S

N 'regulatory ‘model.

4 6.3 Two Degrees of Freedom, Case 3: C Dlsabled o A

: As a thrrd alternatnve for makmg use of two degrees of freedom P may

o



| v -;.vchosen as’ the mverse regulatory mbdel and the setpoint prefrltered by
”'k:"the transfer funtxon M /M to achneve the reqﬁxred servo response, \\ %

B For e;s,mple, ﬂ_‘ ‘ the‘ user - wants - to - obtain .a lst order respoonse to

setpoint changes but a 2nd ordet regulstory model, then:

-2 ' A

~ ' 14+p : c
P=I/M = 1 5 2 .. C=I ‘
‘ ﬂr ] +_pl+ pz' c’ .
’ o 11'+.m1’ l+piq'1+pzq'z
and  F =M - ' - ‘
\ sp ./M, 1+mq'1“ I+;.>1+‘p2

could be soccificd Substxtutron of P"and F into the closed-loop, equation
' (4.6.1) shows that the des:red performance can be obtamed ‘Howerer; wheh‘\
model- followmg ‘."detunedf‘" the- setpoint prefilter wxll "not be able to f
e ' cancel the r"egulatory mocfbs exact/ly;_ consequently there may be some

2

interaction when ‘the regulator model is changed.
At an increase: in coerlexlty, C may be selected as a noise model

rather than fxxed at  unity. In» thrs circumstance, the product’ CCP

determmes the response of the closed loop-.to load changes

4.7 » ‘"Parameter Estimation

’ ¢ : The‘. difficulty‘ of | successfull.y xdentlfymg a no:se model C,\ suitable
/V for inclusion in -the control law has already been pomted out. The questiou
still remains as to how parameter estnmatlon should be structured to give
‘good estxmates .of the A ‘and B polynomxals in the process "model. = With
ordmary RLS, the predlctxon error must be unc0rrelated with the elements of
the - _regressor in order for the parameter vest:mates to be unblased This
will only be the case when"the true noise polynomial, C -=l Since this "is_
rsrel‘{!‘ihe\‘_’ca‘se, other methods ~must be ‘considered. Two alternatives
initially lo_ok promising. )

_ The first idea consists of )-vusing" ELS to _‘iden_tiﬂfy A, B und C, as
-, described  in detail in section = 4.5.1. | The difference is " that now the
"estimated polynomial, €, is not __employe'd ‘in'‘the control law. (A design :
polynomial Cc -inay be used as’ discussed in previous secvtio'ns)'. In facr, the
sole  purpose of using ELS is to eliminate bias in the A and B parameters.



'Tlhla43nethod has 'been used by-: Walgama (1986) to gu ,‘
process parameters for an adaptrve Kalman Fxlter Predictor.

v

ntee convergence of the

The second method rnvolves t‘rltermg the - gressor by l/C normally‘
" selected as a low pass filter to remove lngh ‘ re%uency cOmponents (Tuffs,
©1984). Note that the estrmator design polyuomral. ,,C may or - may not b*‘
~equal to the "design polynomral C used 'in tthontrol law. The incrementi
mode! used for parameter estrmatron is then |

Ay *(t) = -q(A l)Ay (t-1) + BAu (t-l) + [CO/C]E(t) @.7.1)

ikl

o

“where the superscrrpt e denotes a srgnal frltered by l/C

If C‘ is equal to the true noise term CO an RLS estimator with filtered data A o
‘will give _unbiased A and ﬁ parameters. " While- an mappropnate C - filter
will result in- biased parameters, the low pass frltermg @of the data vector
still  limits the frequency band over whrch _the . lineat ~model is expected to

match the process, ' PR ‘,"r\" : , e
. . ) . ’ . LW ) . )
Figure 4.2 emphasizes th e_ of the controller and estimator design
polyromials, C_ and C,, in the ap on of self-tuning GPC '

)1.8 Summary

~Three tuning strategres for GPC which allow the uler to vary the
closed-loop ~ speed of response over ;a full range using smgle active |
‘(varrable) tuning parameter were devrsed The ™ remammg tuning parameters -
(defmmg the configuration) are fixed durmg commnssronmg at the values

£y

grven in the followmg table

-

K%
A

Configuration - N1 | ,Nz ' ' NU A P(q'l)

Output Horizon ‘ 1 variable o1 0 B

Lambda Werghtmg . nb+l aNU+N1-1 na+l variable 1

‘Detuned Model Followmg 1 >d+NU na+] 0 _' varrable o

Cont’rollers based on each of these configurations of GPC - may be applied to

L3



-~ chemical pro.ce‘sses' without resﬁtrjc‘tion\. " 'The Lambda. ngightiug ‘ddpfigdn?#idn' )

f\«»\\‘is,« however, ;nqt‘a recomméhdéd for open-loop ‘unstabie ‘plants.  The Ou ut
\HOrizon “and betuned Model-Foilowing configurations . automatically -guarantee

that the closed-loop response  will - be ii;yafiant_ to -process gain changes (and
relatively unaffected by 'changes“' iq " process  dynamgcs) -given an acc'uréte
process model.  The control weighting, ), .must bé proportional to {B(J)]’ to
ensure the output p,'erform‘ance' is main?éi whenl 'qsin.g‘the Lambda Weigh;ing'
configuration. | '
'Yl)‘,' in the GPC control law is
recommended, rather than attempting to estimate the noise model on-line. In

The use of a design polynomial, C

" the ideal case of no -process-model ‘mismatch, it has been shown that Cc does
not affect the setpoint tracking properties of the - closed-loop. In
practical  applications it = should be .used to tailor the rejection of
disturbances and improve robustness. to inodellfng errors, as demonstrated in
Chapter 5. ’ . - |

The inclusion of the ’Cc deéign ’polynomial or .a setpoint ' prefilter 'gives_
the Generalized Predictive Controller the 'capabi_lity of meeting independent
servo and regulatory ’objectives..> Three alternatives ~for ‘utﬁizing two
degrees of freedom were discussed in this chapter. | :

A related design . polynomial, 'Ce(q'l), was - in odu;gd to filter ,t‘h,e
incremental regressor - before parameter estimatio In the following.
chapter, it will be shown Athaut, t'his‘ filter can’ ‘be specified m voAr'der to
. focus . attention on lower. freq.uencies and allow idéntification 6!' ~bt:6ée§s

models  suitable fdr generating long-range predictions. -
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8. EVALUATION OF THE GENERALIZED PREDICTIVE CONTROL
- TUNING QTRATEGIES

"
I . ’

' Random and unmeasurable events make it difficult to interpret the

: ‘;\behavior" of a self-tuning . controller during an experimental _ application.

Qetter understendipg is achieved by carrying out simulations\,iunder carefully

| chpsen conditions, .. However, it is important to make such simulations as
")rea'listic as possible to avoid difficulties when the controller is later

© used on a real process. For example, the evaluation of the regulatory

behavior. of a controller must be based on simulations where more than one

type of dxsturbance is mtroduced

The vsimulations which follow are.intended to:

‘a) verify"tl‘ne theoretical an;lysis of the previous chapters, y
b) demonstrate the role of t};e tuning parameters in modifying the
14 closed-loop behavior, , '
¢) . provide a basis for specxfﬁ: regommendauons for tumng parameter
settings, and S Te e o
d) . evaluate the performance of GPC. o .
. ' | ) - d
Section 5.1 contains details regarding the organization of the
simulations, methods of" analysis and the 1dentxf1cauon routine employed for
the self-tuning and open-loop xdennﬁcatxon runs. The simulations carried
out with exact model parameters in section 5.2 indicate the level of
performance which can be expected under ideal eonditions. Parameter
estimation under more realistic conditions, when there are disturbehces and
unmodelled dynamics, is considered next in section 5.3. The reduced order‘
models identified in section 5.3 are used to evaluate the performance of GPC
in the presence of model-plant mismatch in section 5.4.

*

5.1 Details for Simulation Study _

The process transfer functions used to study the behavior of GPC are

_presented “in  section  5.1.]. For evaluation of regulatory control

performance, two types of disturbances are considered (section 5.1.2). The
root  locus and frequency response analysis techniques, which augment the

_time-domain simulations in this chapter, are described in sections 5.1.3 and

.

89
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5.14, respectively. For identiﬂ:ation purposes, th'e variable forgetting
factor - constant trace RLS algorithm referred to in - saction 5.1 .5, was used
exclusively in this thesis. ‘

5.1.1 Process Transfer Fuactions

Th¢ linear SISO processes listed in Table 5.1 ,ygre choosen for the

simulation study to represent plants which might Ugegencountered in the
chemical process industries. K  Several of ‘Bhave characteristics

which make them difficult to control (for well establig TOR /

Table 5.1 Simulated Process YHif

Process Continuous Discrete Pulse : Zeros Poles

. b

Transfer Function Transfer Fuction

L 4
-1 ’
1 .0952z - .
A S —_— ~ 7 9048
(1+10s) - 1-.90482
1 | .0280z " 1+.02342 72 8371 7165
B 1 2 8187
(1+435)(1+5s) 1-1.5353z' +.58662" :
1 00768z’"+ 02123272%+.003572"° -.1798  .3679
C : - ~
(145)(1+3s)(145s) ~ 1-1.90312 %+1.15142°2- 2158,°>  ~2-386 7165
R | 8187
) [ -1 -z
.- -1 .03506z "+.03665z2 -1.045 8187
(1+55)(1-35) 1-2.2143z '+1.14262°2 | 1.396
-2s+1 | -.0864z "+.14682"? 1.699  .6065
E S : :
(1465)(1425) 1-1.45302"1+.5134272 Bd65
2(229) .03700z '+.0717227%+.007852" . -.1164 9048
F — ,
(s+1)(s243054229)  1-1.34222" %4+ 4455273~ o4507°  ~1-822  2187%
, 0443

Note: Sampling Interval: T.=l for Processes A to E, T'=0.l for Process F
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Processes A, B ‘and C are st order, 2nd order overdemped and, 0 der.
overdamped. stable processes. respectively Process B is a benchmark used by |
several authors in the literature’ including Vermeer (1987) and ’rjo\hro and ...

Shah (1985). Process C has a nonmimmum phase (NMP) zero \in ﬁt'he
discrete-time domain. The 2nd’ order Process D is both open- -loop - \rstable
and NMP and therefore represents a -considerable challenge. Process E' 'is a
2nd order continuous-time NMP plant where the “initial ' response to an rnput
step change is opposrte in direction fn/)m the steady state response (i.e.
rnverse -response). The final process is Rohrs (1984) benchmark exsmple

This thrrd order plant which includes second ofder, hrgh frequency dynamrcs_

. has been wused by several authors to study the robustness of self-tuning
controllers in the presence of unmodeled dynamrcs (Cluett et al., 1987)

’

5.1.2  Types of Disturbances

Although chemical - processes are subjected to a wide variety of
unmeasurable disturbances, the range of effects is . adequately spanned by
considering' disturbaces which enter at the process mput and others which
manifest themselves directly at the process output. For the purpose of this
thesis,  isolated, nonzero-mean,  step-type  disturbances  are considered.
Letting du(t) and: dy(t) represent  "input" and  "output"  step-type
disturbances, the difference equation used for the simulations involving

. regulatory control was .
.
Ay(t) = Bu(t-1) + du(t) + ;Ad'y(t) (5.1.1)

corresponding to the following block diagram:

u(t)

' Note that the "true” noise polynomial, C (q ) in the CARIMA model is’ equal
to 1 for the "input” type drsturbance an A(q ) for the “output" type

disturbance. .
v

»

9l



92

5.1.3 Root Locus Analysis :

B
_ Rearrangement of the GPC control law into a general linear form, as
discussed in Chapter 2, resulted in the characteristic equation:

TAA + ¢ 'BS = 0 (5.1.2a)

The polynomials ,T(q'l) and S(qg’') are functions of all of the tuning
parameters »of GPC as w'ellv as the process model polynomials .A(q'l) and
B(q'l). "Root loci are plots of the roots of the characteristic equation in
the con}plex z plane as one tuning .parameter is varied oveé a specified "
range. If the tuning parameter is comh’pous (e.g. control weighting, X)
the loci are continuous. For tuning parameters which take on only‘ integer
values (eg. the maximum output horizon, Nz) the locations of the roots are
represented by discrete points. ,

On the root locus plots of this chapter, open-loop zeros are "denoted by
an "o" and open-loop poles by a large‘:‘U". For discrete plots, a small "O"
is used to plot closed-loop pole locations whereas solid lines are used for
continuous loci. The unit circle represents the stability boundary. For
the smaller root locus plois, only the clgsed‘-loo“p pbles are indicated.

When there exists' model-plant mismatch, the characteristic equatfion' is
written: ‘ '

N

» TAA + ¢'BS = 0 _ (5.1.2b)

where how T and § are obtained from the estimated model polynomials A and B.
(The controller is based on the model (A,ﬁ) which may differ from the actual
process (A,B).) o

T5.1.4  Frequency Response Analysis '

The frequency response of a discrete time system is .obtained by setting =
ijn
Z=¢

in the transfer function description of that system. With the GPC:
control law in its general linear form, the closed-loop transfer‘ fp‘nction
may be obtained for disturbances entering the loop at arbritrary locations.
For e:.(ample, considering the du(t) and dy(t) disturbances of section 5.1.2,

the transfer function description is:

/
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BRz 'w(z) + TAd (2) + TA‘Aa;(z)

m (5.1.3)
TAA + z 'BS

y(z) =

where the argument- z is used rather than q for the model and control law
polynomials. The frequency response is evaluated for w between 0 and the
Nyquist frequency, r/T.. For Bode plots,” it is convenient to consider the
indepqndent variable to be the normalized frequency, wT..' in radians. ‘

Isermann (1981) refers to the transfer function relating the controlled
_variable, ‘y(z), to disturbances entering the loop directly at the process
output, dy(z), as the “dynamic control factor® (i.e. Gyd(z'l) = TAA /
TAA+z'1BS ). The magnitude (gain) of the dynamic control ‘factor |Gy dl‘
indicates how much disturbance are attenuated by the controller. For most
controllers, a plot of le d| versus wT' may be divided into three regions

(Isermann, 1981): X " )

Region I: low frequencies; IG’ d| < I, disturbances are reduced .
Region II: medium frequencies; le dl > 1; disturbances are amplified
Region III high frequenéi‘e_s; |Gy d| ~ 1; disturbances are unaffected *

The effectiveness of the controller is restricted to regiox{ I Isermann
also points out that tun\gng parameter changes ‘of a controller which reduce
le d| in one region inyériably cause the magnitude of the dynagm'c control
factor to .increase in another region. (i.e. optimal tuning parameter

settings depend on the frequency content of the disturbances encountered).

5.1.5 Recursive Least Squares

The basic RLS algorithm has a number of deficiencies which limit its
usefulness ¢ practical identification problems. Many variants of the
basic algorithm have been proposed (Shah and Chlﬂ, 1987).  For simplicity,
in this thesis, parameter estimation was carried out usin& a RLS algorithm
with  variable forgettihg factor maintaining a constant trace pf the
covariance atrix (Sripada and Fisher, 1987). (The  on/off ‘criteria

discussed in the referenced paper were not employed). .



5.2 Evaluation of GPC with Exact 'f'rocou Models

In this section we sre interested in the ideal behavior of GPC; the
control algorithm is given the exact parameters of the simulated process at
each sampling ‘inm’nt. The evaluation of the three configurations (tuning
strategies) of GPC detailed in Chapter 4 is based on experience with all of
the processes listed in Table 5.1. For the sake of brevity, only those
simulations demoﬂstrating the most important ) characteristics of each
configuration, will be presented. The set of simulations with exact process
models includad’ in this chapter are summarized in Table 5.2.

Table 5.2 GPC Simulations with Exact Process Models (nonadaptive)

Fig.- Process Time- Servo Regul—‘ GPC Purpose
No. Varying : atory Config.
5.1 C no yes no OH effect of- N2
5 D " " " " o
5.3 C " " " Lw effect of A
5.4 D " " - " "
55 C y " DMF / \,/":}th of Pq™")
= . — [
5.6 C yes yes no OH ain. of performance
5.7a " " " " LW,A=const "
576 " " LW,A<(B(1)]’ "
5.8 " - L\/ " DMF ) .
59,100 C no yes yes DMF ‘effect of Cc(q'x)
5.11 " " " - , 3 cases 2 degrees of freedom

Abbreviations: OH = Output Horizon, LW = Lambda Weighting, DMF = Detuned :
Model-Following P ‘\

S S




. "NV. : Figures 5 la and - 5 lb show the posmon of the closed loop poles and-'
' correspondmg tune domam response f0r the third. order Process C.. For N =1, R

. satrsf ¥

-

5 2 l ..dutputw Horlzon Conﬁgurntlon B =

_ the Qutput Honzon cont]guratnon of GPC the actxve tunm”_
parameter used to alter the speed ipf response rs the maxrrnum output honzon s

the controller attempts " to. cancel he open-»loop zeros (- 1798 -2, 5862),'1 :
mstabrlxty results ‘after a finite perrod of time (not shown) When N 'is L
set to . 2 th{ee nonzero CL . poles close to the orrgm yield - a rapxd response
As N rs mcreased the CL- poles tend to the OL poles (3679 7165 8187)
resultrng m mean-level control For N >2 the OL zeros are “retained in the S

L closed loop transfer functron

It 1s mt;restmg to- consrder the same - confrguratron of GPC apphed to
OL unstable and NMP Process D.- For N =1 ‘we agam have "1 atep ahead"
control whrch is not stable due te the presence of the NM'P zero (-1.0453).
If N is mcreased to 2 (see Fxgure 52a and b). the CL poles are complex and

’relatrvely close to the ‘origin. - " For larger values of N the ~response of the . .

system is progresswely detuned. As N —00, One CL pole approaches the stable'
OL pole (8]87) while . the - other tends to the mtersectron of _the . po_srtrve

-, real - axis and . the unit crrcle. ‘This -results  in the very Dsluggi_shf

""integrati"n'g."f response _for the last setpoint, change of ,Frgure’ 5.2b. :

»

For an 1nverse response process xt was stated “in . sectron Jgg@l ‘that

N Jmust be selected large enough to. "look beyond" the * mverse response
- Runs thh Process E mdrcated that stable control could only be achreved for
:N >5.° For thrs process the step response coeffrcrents whxch make up the Gr

matnx are as. follows

-0864 -.0652, 0101 1035,’.2‘1_29, 3140, ...
A

1

Lookrng at  the sum of the first N elements we find that for N 5. this sum .'
,'1s positive ~Whereas - for N <4 'it‘ is negatrve For thrs posrtrve gam

process, thrs verrfres l‘ﬁat l‘or stable control N must "be large enough to

5

. /
N " b . ‘_\ Nz ‘. . .
; . sign g | = signK )
S v N8 [ _g:-l] ) gn( p) |
' =1 ‘




: cIn summary, ~for the processes consrdered nt was stratghtformd ‘
, vary “the - speed of respoﬁsw usmg N as . the active tunmg parameter ‘ Large"

"values of N resulted m & siable control m all cases. and such values are’

' recbmmended for start’ up under uncertatn condttrons Note that the effect {
"‘of .N upon the closed- loop speed “of response _ is - nonlmear For oL stable‘
processes,, the effect decreaﬁes ,as N &becomes large ‘ For an OL unstabl‘e
process, the opposnte tendency may be observed |

' & .
L. S, 2.2 Lambda Weightlhg Configuration Ty e

;‘For thrs COnfrguratron of GPC the tuming ‘parameters are set "up to
. 'achieve’ deadbeat control which is rthen detuned . for practical . application‘
usmg A control werghtmg Figure 53a shows root loci as A, is varred from

0 to oo while servo: responses for four values of A i chlis range are plotted

: - m Frgure 5.3b, for Process, C : No control werghtmg Qﬂls in all €L’ poles

bemg assrgned to the ongm and a correspondmg deadﬁt response As A—o0

.;_ ”th_ree. CL poles tend toward the OL poles (3679, ..7165, 8187) whxle a fourth
tends 'toward’ z=1 giving an "integrating" reSponse " The fourth pole is a
" consequence of werghtmg control increments ' m the - multtstep cost * function
"(necessary 50 that there will: be no offset at steady state) “For all values

of A the OL zeros are retamed in the closed loop . —

Figures 5.4a and 5.4b show srmulatton reéults for OL unstable Process .
“D.. Once again =0 yields, deadbeat control with all CL poles ‘at the ongm
" For A—oo the :CL poles approach the OL poles (8187 1.3956) . and the point z=1
~and, - as. a result, the system. is stable only for ‘values cof A<299.: This
represents a 'li'mitation of the Lambda . Weighting co‘nfiguration;ﬂ' for.' .OL'f ‘
unstable " processes -a large. amount fof control w_éightlng, normally . considered
to be conservative, may’ lead to instability. '

‘Stable control was - achieved for all values of A applied to Process E
since - the maxtmum output horizon N set to 10, is sufficient to "look
: beyond" the tnverse response (results not shown) '

‘ 5..2.3' Detuned M‘ode‘l;F'ol‘lowlng

To achieve a practical model‘ 'reference controller that can be applied

r



zeros ‘must . be avoided by‘."’ :

_ ‘“‘"detﬂu mg" : rn some manner For a ptocesé wrthout physrcal delay (d-O), .
© ‘setting NU-N results ' in exact model followrng  The first. entry m ‘Table

/ﬂ

,‘ "5.3 ’( ted at the end of ‘the * chapter together with correspondmg Frgure
5. 5) demonstrates that with - NU-N -4 apphed to Process C two CL poles

. attempt to cancel the. OL' zeros (- 1798 ~2. 5862) one of whrch is'NMP. Note
"~ that the other CL - pole is exactly equal to that of the desired reference
. model (0.9). One method of "detumng is to increase N2 relatrve to NU

When N is mcremented by 1, the CL pole. prevrously outsrde the umt cn-cle

s pulled" msrde and placed near the ongm

\3,!_—,7» -.

~An alternatrve method of  "detuning" exct model ~following - is to add a

small amount. of control werghtmg Consrder the mrddle two entries of Table
5.3, It s evrdent that * for stable control to be. ~achieved A must be > A '
where A z 9x10 -~ Too large a value for A would IQ to. poor trackmg of
the reference model Unfortunately, the range of surtabiklues of A Wthh

prevent cancellatran of NMP process zeros thhout unnecessarrly slowing the

response of the system aré not” known g pnon It is therefore recommended
that -exact model-following be "detuned" usmg N rather than X

- To - account for ‘variable t1me delays or nverse response” processes a
larger value of N is n rmally used. Wlth N =10 the final block of results
in Table 5.3 lrsts the closed-loop pole locatrons when the reference model

'rs changed The correspondmg trme domain servo responses are shown in
'Frgure 5.5. The fairly high level of contrpl actmty is due to the fact‘

~ that we are asking a 3rd order process to behave in a ot order manner.

Specifying a -2nd order desired closed- loop model with a srmrlar rise time

results in a substantial reductron in control srgnal variance.

"The Detuned Model- Followmg confrguratron of GPC gave stable control‘

vfor all processes -in ‘Table 5.1. By altermg the reference model it. was

possible to obtain a full range of response times. The locatrons of the CL

“poles not assocrated with ' the reference model depend upon the other tuning
‘parameter settmgs (i.e. N N NU and )). "These poles are normally close

to the origin and have relatrvely little mfluence on the CL .Tesponse.

524 Maintenance of Servo Performance_‘

For many applications_ it is desirable that the. output response of the
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" closed-loop remam‘ invariant to’ changing process characteristjcs . For

. others, a trade-off between control effort and output performance may bejj

”‘acceptable prov]ded “that  the response of - the controlled variable does not
undergo serious “degradation. To investigate mamtenance of performance for
‘each conflguratron of GPC, control  was exercrsed over a time-varying. third
r  process. J_ust prior . to each upward-going setpoint change the
' cteristics' of Process C . were changed according to Table 54, ‘the
"control algorithm receiving the exact process parameters (including, the time

4]

delay) at each sampling instant.

Table 5.4 Characteristics of Time-Varying Process C'

i |
/o “ B -t.s
A ' Ke ¢
- Transfer Function: - Gp(s) = = P
{;z} b (l+s1 b 1) ( l+srp2)(l +srps»)
Sampling Interval Kp t, U " ,sz tpS Description
0-149 1 0 1 3 5 nominal values .
150-249 1.3 3 5 time delay added
 250-349 100 0 .1 3 5 - gain change . -

350-449 I 0 1 30 5 ‘dynamics change
450_—_549 , 1 0 1 -3 5 unstable process

Note: T:l vt - (d=t d/‘l‘.)

>

5.2.4.1 Outpur Horizon Conﬁguraﬁ

The time domam response for Output Honzon control is shown in Figure’
56. The response is 1dent1cal for the thrrd setpomt change compared to
the first (involving - a process gain change) and very similar to the 2nd -and
4th (ti_me del'ay added and a change in one of he time ¢onstants,
respective'ly). . Only when the process. becomes OL unstable does the output
‘response ,become significantly more sluggnsh. Adjustment of Nz' would be

reduiréd in this case to ~restore the speed of response to that obtained for

~.

e



.- the nominal process conditions.

5242 Larnbdn Welghtlng Configuratlon

Movxng ‘on to the Lambda We:ghtmg conf‘xguratxon consider first the
- case where ‘constant control wexghtxng is used (Figure 5.7a). A=] gives a
"nice" response for the nominal Process C but some overshoot when time delay
is - added. The higher process gain for the third setpomt change allows’ the
controller L to achieve a near deadbeat response since the small control
effort requxred does not weigh in the multistep cost function mxmmxzapon‘
(eqn 4.1.1). Slnce the cost function penalizes: control activity,  when’ qnhe\
‘time cons&'nt of the process increases, larger- control actions (required in
order to maintain output response ' time) are not allowed and a sluggish

response ‘with large overshoot is obtained.

The problem of maintaining performance in the face of gain and dynamics
. changes can be largely alleviated by employing the scaling of )\ shown to be
necessary . in seCtion 4.3.2, For noxninal Process C, ‘B(l)=.03248,' and
therefore selecting A =948 gives A=) [B('l)]z==l and the .same response, as
for the no scaling case, to the fxrst setpoint change (Figere . 57b) With
this scalmg, the output ‘response is completely invariant ‘c‘;f the - process'
- gain change and almost invariant of all the other process variations. !Note.
that X itself ranges from .01338 to 10000 in order to achieve this. For
nominal valu*es of 'AProcess C, trace(G G) is on the order. of 4 so that the
valye A=] used to start is that whrch roughly halves the control increments

~ which would have been implemented for deadbeat control (see section 4.3.3).

5.2.4.3 Detuned Model-Following

. The servo - response " for Detuned Model Followmg control . of the
time-varying Process C is shown as anure 58. A crmcall‘y' damped second
order reference model was selected with natural period, | =3 . (P 12.407 -
l7.820q"1 + 6.41‘3q->2). . This  control strategy -results in the output
v‘perfc')rx‘nance being maintained almost perfectly unchanged in- spite of the

large variations in the process gain and dynamics. '(The output response is -
actually only 1dent:cal for the case of the process gain change). ‘ﬁowever,
.‘the large * control actions taken are the penalty for such exgellent

. & ".”;«-
]
\ .




fmainteoanbe “of perform"e_nc\e. | o \
. o v
. In sumnrary. ‘ all three cohfig_ur_ations of GP-C are capable' of rendering
. the output servq " response  of the - closed-loop ‘invariant to process gain
changes and insensitive .to changmg dynamics given an accurate process model
at all samplmg’ instances.

5.2.5 Disturbance Tailoring using C'c

The previous simulations dealt with tuning parameters which affect the '
overall (ie. servo‘e‘ and regulatory) behavior of the closed-loop (although
only servo responses were shown). ‘Here the ability of the controller design

polynomial Cc to modify the rejectiori of disturbances is demonstrated.

Assume, for convenience, that the thiré: order Processv C is .at steady
state with output equal to zero when an unit change in measurement occurs
(due to. a disturbance of unknown type). ‘_Ifig'ure 5.9a s_hows the predicted
qutput trajectory f(t+j), j=1,35 'for‘ t'hr_ee different settings of Cc' (with
P=1). (Note that at this point the type of disturbance has not been
specified and therefore the actual effect of the disturbance upon the outputf ’
in the future is unknown Figure >5.9a‘simply slrow's how Cc_ modifies the
predicted output tra_pectory) ' '

Consider also Figure 5.9b which shows the. closed- loop response to

: 'setpoint changes and determmlstlc unmeasured dxsturbances where the overall

2 GPC tuning parameters have been set for :Detuned Model-Following.  Thirty

. sampling mtervals after each upward -going setpoint change a step ~"input”

:;_type disturbance (d (t)) of size 0.1 is applied and removed 40 samples

later This .is followed by a step "output" type disturbance (dy(t)) of
magmtude 0. 2 apphed for 30 mteratrons g '

Cc-l is frequently assumed in- applications of (self-tuning) control
reported in the literature.. - With this assumption, the model employed by GPC
is: : _ ‘ |

y(t) = [B/Aju(t-1) + x(t)/A
,wh'ere x(tl = {(t)/A ‘rep?jents 2 nonstationary load.



'l‘hep controller expects that all disturbances wnll have an increasingly large |
¥ on - the output tn ﬁg future (Flgure 5 9a) - This - expectation . leads to:
excellent rejectlon ‘of the "input" type loads which are perl‘ectly modelled,
,(anure s, 9b, samples 60 to 120).. However, these strong predictions are '
unsuitable for . dxsturbances which have fully manifested themselves at  the
. output m\ a single trme step and the controller over-reacts strongly in thls'

case (Figure 5.9b, sample l40 to 180) ' '

With Cc = A, the controller is act'ually'making use of the model:
64 y(t) = [B/AJu(t-1) + x(t)

with' the expectation that the future . effect of disturbances on the output
will. be the same as the current effect (Figure 5.9a). The step response
eqmvalent of this model is used in the basic formulation of Dynamic Matrix

Control (Cutler and Ramaker, 1980). As anticipated, the - rejection of
"input" type disturbances is very. sluggish (Figure 5.9b, samples 250 to
-~ 330). '

As a cor‘npromise, ‘l/Cc ‘may be selected as a low pass filter. For
-example, with C=l-‘ 8q'1, the controller  rejects both types of disturbances
in a manner mtermedlate to that of the two previous cases (Figure 5.9b).

‘ Note that whlle C was used to modlfy the regulatory response, with no
- process modelling errors, the servo response remained unaffected by this

design poly_nornial. .

It is interesting to also look at the closed-loop frequency response'
for different settings of the design polynomial Cc. Magnitude Bode plots
/ for the transfer functions, '

g

-1 ' A -1
Gu d(z ) = y(z)/du(z) = TA/(TAA+z BS)
G, ) = y(2)/d (2) = TAA/(TAA+2'1BS) |

are shown as Figures 5.10a and 5.10b. It is apparent that C=l gives better

rejection of both 'types of dxsturbances at low frequencres. However,

C=l-8z"1 or C=A detunes the controller and provides better attenuation of

high frequency loads (Note that d (t) and d (t) are not restncted in” form
' to step dxsturbant:es for this frequency response analysrs)

01
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5.2.6 Two Degreees of Freedom S

| . ) _

In section 4.6, discussion centered on different ways of using "two
degrees of freedom"™ to allow independent servo and reg)ulatory closed-lo&)/
behavior. In the absense of modelling errors, each of the three
alternatives presented - allows specification of servo' and regulatory models
which are followed closely, in the closed-loop. The simulation in Figure
5.11 was carried out withﬁ ‘Process C and the \same sequence of setpoint

changes and disturbances used previously. The polynomials P and Cc and the

»

e E B

transfer function F;p followed the schedule:

‘Sampling Interval F;p P | i C,

_&
0-229 1 C(-8qh/2 1-9q7"
$230-429 . - 2/(1-8q7Y) 1 | (1-8¢°(1-9q7))
430-630 (1-9q71)/.1 (1-.997)(1-8a7)/(.1)(.2) 1

with the other tuning parameters set for Detuned Model-Following. Note that
4 . '

in each case the servo and regulatory reference "models” ar‘e:
M = 2/(1-80) ; M = (2()/(1-8q"X1-9a7)

The response to setpoint changes and the rejection of the disturbances is
almost identical for the different methods. - This simulation will be
repéated when there is model—plantil ‘mismatch - to evaluate the robustness of

each method under more realistic conditions.

5.3 Parameter Estimation

In this section the emphasis is shifted to on-line parameg

ntrol. In particular, we are concerned with ho

should be carried out in the presence  of disturbaligy
deled dynamiCs to yield models suitable for GPC. ‘
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8.3.1 Effect ot Dllturbelcer "

anures 5.02a and 5.12b present the results of self-tuning control of
Process C (with gam K -20 50 that the B polﬁ:omxal coefficients are
significantly greater than zero) with C -C =],  The basic tuning parameters
of GPC were set for Detuned Model- Followmg Steps in the disturbance,
du(t). of magnitude 0.1 were applied to the process and removed at sample
times 160, '2()0. 240 and 280. Similarly steps in dy(t) of size- 0.2 were
added to the output over the period from 400, to 520 iterations. The
parameter estimates of the full order model were initialized with b =] and
the rest equal to zero;, the covariance matrix was set to 100 times ndenuty
With a constant trace RLS algorithm this implies a large parameter.
estimation gain at all times. For clarity, only the parameter estimates 51
and b1 are plotted (with true values al--l.9031, bx"4246)'

During the initial sequence of setpoint changes, the parameters
converge to their true values leading to excellent reject'ion of the 'input"
type disturbances. However when the "output" loads hit (for which the true
noise polynomiat, CO-A) the parameters become biased resulting in a ‘poor
response for the following setpoint change. '

For the sake of contrast, Figure 5.13 shows results for the case where
both the controller design polynomial, Cc. and estimator filter, -Ce, are set
equal to A. In thns case, the parameters become biased when the d (t)
dnsturbances occur (for which C -l)

If Cc is selected to be 1-.8q -1 and used both in the control law and
for regressor filtering  (i.e. Ce-Cc) the parameters are slightly biased for
both _v'types of disturbances but control is, on average, better (see Figure
5.14). Note also that the regulatory performance compares favourably with
the equivalent simulation where GPC is given an exact process model (cf..

last part of Figure 5.9).

Now consider the use of Extended Least Squares (ELS) identification
with a posteriori residuals as proxies for the noise and the order of the
estimated noise term, nc=3(=na). The results shown graphxcally in - Figure
5.15 apply to the case where the estimated - ‘polynomial C is used in the
control law. For the d (t) and d (t) disturbances the true noise filters
are C =] and C =A, respectively. Durmg the first half of the simulation,
the plotted estxmated parameter, 61, hovers around zero. When the steps in



, tends “toward '1; As frequently noted in the literature, the
convergence rate for the C parameters is significantly slower than for A and
B. It is important to note that the A and B parameters are upbiased
throughout the simulation inspite of the different step disturbances. The C
polynomial proves to be unsuitable for inclusion into the control law as the
resulting closed-loop behavior is very poor.

d (1) occur, ¢

One might expect that of ELS were used for identification but a fixed
polynomial, Cé, was employed in the control l,aw (i.e. in place of C) the
combination would be very effettive. This speculation turns out to be the
case for the simulation shown as Figure 5.16, with 'Cc-l-.Sq'l. Using ELS,
the A and B parameters are unbiased by the du(t) and dy(t) disturbance‘s and,
as a result, the servo performance is excellient throughout. The selection
of Cc represents a compromis_e so that both "input" and ‘"output disturbgnces
are rejected in a satisfactory manner. Note that this run is almost
indistinguishable from the corresponding non-adaptive simulation with no MPM
(cf. last part of Figure 5.9).

5.3.2 Reduced Order Models

-

All real processes are of high order but, for practical reasons, must
be represented by low order models. Parameter estimation mes) be conducted
in the presence of unmodelled ; dynamics in such a way as to yield good
predictions over the long-range prediction horizon. In general, this means
that it is ‘important for the model to match tH® process closely at
* relatively low frequencies (frequencies around ‘the desired closed-loop
bandwidth).

Consider Rohrs' third order process with a first order model.  To
- obtain converged or "tuned" paramefer estimates an open-loop identification .
test was performed using a PRBS input (sequence length = 511, amplitude =
_l). A PRBS signal was selected to ensure all modes of the process were
excited as would typicalfy be the case under closed-loop control. Tuned
 parame‘er sets are listed in Table 5.5 for RLS with the regressor filtered
byv l/C‘,' They are also tabulated for ELS with -different "specifications for
the order' of the estimated noise polynomial, nc.
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Algorithm Settings Parameter Estimates Notes

. . bo‘
RLS Cay | -.65 -.012
" : C=1-9q7! -.94 .033
" . C(1-9q7) =93 145

L o, ‘

ELS nc=l % h -31 -.003 large variance
" nc-a i -.18 N -.002 in parameters

" nc=3 =20 -002  (esp. €)

N

The parameter estimates ob'taino'd “using ordinary RLS (Cazl) and ELS are such
that the sign of the _estimated process gain is incorrect! Stable control
would not be possible if the controller employed any of these models. The
Extended Least Squa;é;ﬁ method does not, by ijtself, erisure that a reduced
order model with(a good low frequency fit will/be—obtained.

Tl_me frequency response of the full order brocess and each of the
-reduced order models identified using RLS’ with regressor filtering is shown
in Figure 5.17a.  Since an incremental model is uséd for parameter
estimation, the input and output. measurements are actually filtered by A/C
the frequency response of which is plotted in Figure 5. 17b. (Note that _it
is only the relative gain at different frequencies that is important; the
frequency responses shown are actu.ally for C(l)A/C so that the curves
coincide at low frequencies). With C-l the d:fferencmg operator, A,'
amplifies high frequencies. This explams why the corresponding first order
model fits the third order process best at the Nyquist - frequency. ~ With
C‘-l-.9q'1,- A/C. is a high 'pass filter andD again the estxmated model
provides the best match with the true process at relatlvely + high
frequencies. For the 2nd order design polynomnal C -(l 9q' )2, A/C is a
bandpass filter and the model obtained closely matches the true process at
all but the highest frequencies. This model is clearly the "best”_ for
long-range predictive control and will be "ﬁsed‘ in the next sec\ion * for



" ontrol Mth\)a reduced order model. (Note that the dominant OL pole of
" Rohrs’ process is 0.9048. The roots of the first and second order C.
polynomials were selected such that the cut-off frequency of the filters

M coincided with that of the process.) \ .

| Rohrs’ prbcess is predominantly Ist o‘r’der with only high frequency 2nd
order _ dynamics. * As such, regressor filtering allows one to almost
completely mask out the unmodeled dynamics. For a more difficult problem
consider estimating a first order model for the third order Process C with
the same PRBS input sequehce. Tuned parameter sets may be found in Table

5.6 for various regressor filter polynomials.
. ~

| Table 5.6 Estimated First Order Models for Process C

»

3 Algorithm Setiing; ‘ - Parameter Estimates
a}' b,
_RLS ' C =1 , -.80 -.0075
"® C =l -9q7! -97 .009
. o Ce=(l-.9q'1)2 -.94 .080
7

The unit step response for each of the identified reduced order models may

_Ae compared with that of the true process in Figure 5.18a. the that a
reasonable low frequency model is obtained only with the 2nd order Ce
polynomial. -

While the step response of Process C is clearly not that of a first
order ptocess with no delay, it could be inte_rpreted as originating from a
first order process with a small time delay (e.g. in a noisy industrial =
. environment by a practicing control engineer). Under these conditions an

overparameterized B polynomial together with a first order A polynomial is a
reasonable choice for the model structure. Table . 5.7 contajns tuned
parametex: estimate for nb=2 and na=1 with corresponding unit step responses
shown in Figure 5.18b. |

B l.“ﬁ . R
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Table 5.7 Estimated First Order plus Time Delay Models.for Process C

. Algorithm Settings ‘ Parameter Estimates _

o “.1 l’o b! bz
RLS C=l -1.10 .0035 022 017
. C=1-9¢" = .97 005 027 029
" C=(1-9q7")’ ¢! 012 023 . 065

¢

The models identified with ELS and different C polynomial orders were
unsuitable.  In all cases results were similar to those obtained using RLS
with no regressor filtering (C,=1) and therzfore are not tabulated.

The first order + time delay models (Figure 5.18b) fit the -true step
response better (at / least for Jghe first 10 sampling intervals) than the
corresponding models obtained with only b0 estimated (Figure 5.18a). For
example, with no regressor filtering the sign of the gain for the first
order model is wrong; stable control is not possible for GPC using this
mbdel. _ However, when the B polynomial is overparameterized an unstable
model is identified which provides \ade'quate predictions -for small output

:th foyf most GPC controller settings this

i

horizons.  Simulations indicated
mode! allowed stable, although oscillatory, fontrol.

5.3.3 Specification of C,

+The role of the% estimator filter, 'C., is to attenuate high frequen‘cy{
signals, including meaVrement * noise and unmodeled  dynamics. The
differencing operator, A, Sserves to \diminate d.c. offsets and low frequency
loads. Together, A/C. focuses parameter estimation on the relevant_
frequency range. There are two aspects to the choice of CG: selecting the

N

order.of C_ and specifying the root(s) of C.

An extensive theoretical analysis of RLS estimation with regressor
filtering' (Mohtadi, 1988)- leads to  the conclusion that the overall weighting

on the prediction error is given by:

':‘ " B T :"“:: IPEI ‘ v AR LA '07& AT
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lAA/C_ \
This indicates thn‘ if the weighting is to ‘“roll-off” at high frbquonoios.
C. should be of degree > na+l. - However, the ,imuhtion and experimental
results presented in this work and elsewhere (Lambeq.E.P.," 1987;
Lambert,M., 1987) do not indicate the need for a C. filter of higher degree
than two. -

With SC.-Z. ‘A/C. ‘constitutes a bandpass filter (see Figure S5.17b).

Bandpass filtering of the 1/0 gata has been recommended by several authors
including Sripada and Fisher (1987), Middleton et al. (1988) and Wittenmark
(1988). The filter should pass - frequencies around . the desired closed-loop
bandwidth and attenuate _higher and lower frequemcies ' (Wittenmark, 1988).
One rule of thugnb governing design of the esiimator bandpgss filter is that
the upper break frequency should be about twice the desired closed-loop
bandwidth and the lower break frequency should be about one temth the
desired bandwidth of the closed-loop system (Middleton e\ al., 1988). ;

- However, if C. is restricted in form to a 2n-d' oi'q;r polynomial with
T-rgpeated roots ( i.e. C.-(l-c.q'l)2 ), the number of parameters which must
be specified by the user is minimized. The double breakpoint of this filter
.is at -ln(c.)/Tl. Many authors recommend sampling a process at. gn interval
of approximately 1/10 of the dominant open-loop time constant. Typically
the closed-loop - time constant is specified to be approximately one half of
the open-loop time constarzt. " The desired closed-loop bandwidth is then in
the range of around l/ST' 'rqd/s. A value of c.zQ.B places the double
breakpoint of 1 /C. at’ the desired c'losed-loop bandwidth.  This value has
been suggested as a default in the literature (Lambert,M., 1987).

2
3

§.4 Evaluation of GPC in the Presence of Model-Plant Mismatch

-

For practical a[;plémfons of non-adaptive or self-tuning GPC the model
used 'in the -design of the controller will not generally correspond exactly
to the process béing controlled. It is important, therefore, that the
control system be insensitive or robu;st with respe¢t to these modelling
errqss. In this section the simulations are concerned with demonstrating
the effect of the basic tuning parameters, and in particular the controller



wﬁ”*desxsn | poly omlal Cc, on the robustness of Generahzgd Prednctnve Control ~

’ '»usmg RLS thh _Tegressor fxltermg) was

'l_‘he' "best" reduced “order 'models 1dentnfred in the prewous snctxon will. be \ o

l!. ‘y
S employed The set of srmulatrons with model plant mj match are summanzed
,m'rabless IR S
Ta't'meﬁs.s GPC,Simulations with Model-Plant Mismatch (nonadaptive) .~
s Fig: Process ~ Servo Regulatory  GPC. - * Purpose : .
" No. Ty o . Config. |
s19 F oy mo o OH Effectof c
o520 o "« ™ . LW - Effect of A
Sos21 oo LW . Effect of C_ ™o
522 " o " ‘ ( " o DMF " s | af)“’ ;
52324 € yes om0 OH Effect of C, o
525 c yes. - - yes Jcases 2 degrees of freedom L
Abbreviati',ons:' OH Output Honzon LW = Ldambda - Werghtmg, DMF = Detuned
. Model-Foilowing PR o ‘
Notes; - time invariant 3rd_ order, processes

reduced (lst) order models rdentnfxed off-lme (sectron 5. 3 2)

. . '."‘\
FONSE Brer

T

. 5.4.1 Output Horizon Conﬁguranon

For Rohrs pr‘ocess ' the "best reduced order »dtodel (ROM) (identified'
Sy ) | . | RPN

| ' A:-'l-‘.93q-1‘ '--1'3‘= ‘.145

Usmg thxs model and thh the basnc tumng parameters set for Output Honzon
control _the closed loop system is stable only for N >34, -rHowever, even for

‘values of N tending - to mf:mty the  closed- loop response to setpomt -

. -‘changes or dxsturbances g very Oscxllatory The addmon of the desrgn
"polynomral, ch",:?=' 1-.9q lv’_ or Cc = (l 9q ) stabrhzes the system for



“ } ‘;'gtven values appropnate for - Lambda Welghnng control;- ‘The~ ¢

‘V'*Smaller values of N and yrelds san§factory closed loop behavror : "The‘
_'servo response for N -10 is shown. in Fxgure 5 l9 along w1th 2—pl’ne graphs
mdxcatmg locations of the nonzero closed loop poles : For comparison, the
response of the system when the controller is grven the exact full order_ '
. ,model ‘(FQM) is tncluded. Note that the control signal - was. clamped to lie
' ‘within # ‘5‘unlts. | '

© 542 Lamb‘da' We}ightlng’\ Configuratlo'n

Fxgure 520 apphes to- the case where the basrc tuhmg paramgters are
*A-loop'
system usmg the same ROM 1s stable for A> 16 with a smooth servo response
when A210. Note that trace(G G )/NU 454 lambda values of the same order -
of magnitude, recommended earlier for startup, would " lead  to a stable
closed-loop. | B ;,,-b |
Lambda was . set - to the relatrvely low value of umty to demonstrate the

‘use. of ‘the‘ desrgn polynomxal Cc 'in improving the behavror of -
closed-loop. As shown in Frgure 521 ‘adding a ‘first or second order'Cc
polynomral ‘with roots - ‘at 0.9 damped the output oscrllatrons "~ For

B completeness the corhpondmg response with no MPM: and C -l is mcluded

~ 5.4.3, Detuned Model-Following

=~

" In ‘ the presence of ‘ model-plant - mismatch, using a first order P

- ".polynom‘ial [ P = ‘(l' p q'l)/(l p) ] the: c'losed loop is stab’le provided that

'p >0. 91. However ;;'or this and other desxred closed- loop models “with slower
poles hxgh frequency oscillations remain. = With p1-=0.8,v ,Fxgure 5.22  again
'demonstrates the - use of !.,‘c for " the purpose: of making GPC robust to. the
unmodeled dyn ics. Note that  the choice' ot' Cc=l‘—.9q'1 yields. = better
performance than "Cc=(l-.9q'~1)2.‘: ‘ " ‘ '

5.4.4 Use of C_in Achieving,:Robustness o v R

. Th° prevxous simulations wnth Rohrs process demonstrated the use of C
m provrdmg robustness for high frequency unmodele% dynamrcs A .second_
.»example of thxs_ 1mpor_tant ~property, - for the more, dlffxcult case of low

frequency MPM, would  be beneficial.  Recall the ‘ fxrst\ order model
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,(xdentrﬁed usrng RLS w:th rebressor’ l‘ilter‘ing) ‘which best . l‘it the "step«:

R ‘response of Process C was - -
A= 1-.94q7" B = .080

ln this 'oa'se there is more severe model plant mrsmatch than for Rohrs.
: ‘exampile” Output Horizon control - usmg thrs ROM and with N =10 proves.to be
'unstable However, either ,C-l 9q ‘or -(l 9q° ) yields a stable’

system as shown in Frgure 5.23, With the «second order selectxon of C the

closed-loop response is slrghtly more detuned Note that when GPC recerves .
- the” full order- model -an excellent response rs possrble wrthout the use of C |

‘in the control law.

A first order model wluch better matches the - step response of Process o}
. Was rdentrfred with B overparametenzed"
) - . i o i..‘..:.‘ ! ' N

= 1-91g7} B = 012+.023q7%+.065q"2

.~ Although the closed-loop is stable for Cc=l' ‘using this ROM, when a first or
" second order C'c polynomial - is added the response is improved oonsiderably
(Figure .5.24)‘.'

o . . 0.
54@ Speciflca‘tionv of Cc

The vc»ontroller- design - polynomial, Cé, ';influences both the robustness
and disturbance rejection _properties of "-‘?the “‘closed-loop  system. As a
. resolts of its dual "role the specrfrcatron of C ‘represents a trade-off
between rapid elimination of dxsturbances and sen_sitivity to - measurement

‘noise -and unmodeled dynamrcs.

Combining" eqn. (2.3. 16) wrth (%5 15) the following closed-loop

: expressron for u(:g) may be obtﬁd )
' S . A A 4. A

T . . ’ R Aw(t) ' SC‘ox(t) _ _
: u(t) - ———— ' - (54.0)
’ " TAA + q s 'cc[TrAA +q "BS] : : o

\

(where the primes denote %olynornials corresponding to Cc=l)

The  transfer . function S/Cc affects the rejection of disturbances.. and MPM.,
: S N : _ ‘ ; .

o



2
. Smce 68=na. thrs analysrs leads to’ speculatxon that the degree of C should :
be > na to ensure reasonable hrgh frequency propertres (Mohtadi, 1988) e

Several factors seem to pomt to the specrfxctxon of the: degree of C
equal to the order of the process: model na.  First, recall from sectron
5.2.5, that with- C =A the future effect of - resrduals is predicted to b,e” the
same as the current effect. The Dynamic Matrix Controller, making use of
this‘ disturbance model, has proyen to be very = robust in industrial
applications (Cutler and Ramaker, 1980). GPC takes on similar robust :
‘characteristics yiyif‘ 6Cc¥na and the root(s) of 'Cc are selected to coincide
with’ the dominant 'open loop time constant.- - Secondly, with 8Cc=na; the
predicted -~ output tra_lectory for a change in, the residual ( e f(t+j,
j=1',...) is normally a monotonically increasing function . of the prediction
horizon, j. (This may not be the case when 8Cc>na.)- Thus, the form “of .the
prediction of ' the future effect of a disturbance meets intuitive
expectations. Finally, for some of the sxmulatrons and experrmental tna'ls
conducted in - this thesis, better results were obtained- with . 6C: 1ha than with

a CC polynomial of hlgher or lower degree (see section 5.4.3, for example).

Much of ' the _discussion in section 533 (regarding the specrfrcatron of

the root(s) - of Ce) also applies to the ification of the root(s) of
Cc(q'l).‘ For ‘simplrcxty,;,;g can be choosé®"as a stable polynomial with
repeated roots: o “631
= (1 -c,a “lyne
5 _

and c set to 0.8 or 09 to start with, . Once the controller has - been

commissioned, ¢, may be adj‘usted- to fine tune ;vthe regnlatory response. L +

" Remark: . ‘Although C_ has been specified as a monic -polynomial ( ie
C-C(O)— ) this is not a requirement. It is Athe location of the root(s) of
Cc rather than the steady state  gain, C (l), that is of rmportanqe To see

this, note that if C is' multiplied by an arbntrary scalar, k, the
‘polynomrals G-=E B and F determmed from the Drophantme 1dent1ty (2 2.16): .

kCP = kE,AA + g kF
c J J

are also scaled by k. From eqn. (2.2.20),



| ﬂkG_ - GkC, ;q"kc‘lm

it is evrdent that G is unaffected by k whereas E is proportronal to k.

‘,»sf*‘; Smce 5 and F’ enter ‘the control law through the open loop j-step ahead

'predrctron of the output

“KF y(t) kG Au(t-1) F.y(t) & ‘Atu(t-l)
f(t+3) = j + j = i + j
kC_ kC_ . C, C

e

only as ratios with Cc, the ,pre,dictians are independent of the scaling, k

5.4.6’ In'dependent Servo and Regulatory Objectires-

While the 1mportance of usmg the design polynomxal C for robustness
.has been - demonstrated the observant reader may wonder whether it is
possrble ‘to achieve similar results using drfferent settinge of the other
tuning parameters, in particular P agd F o The product of C and P enters
the control law through the Drophantme equatron (2216), " the essﬁtral
drfference '-bemg‘;,t_hat l/C filters theé past control mcrements and past and
present measurem"ents in the prediction (eqn. .2.2.22) and thusv ends up in the
servo numerator of the closed—,loop transfer function based on the equivalent
genera¥- linear form of the"oontrol law. (eqn. 4.5.16). Thus by augmenting P
"with a term which is alsé added to the setpoint  prefilter, F'p; a similar
effect to:“ using Cc may be achieved. This is in fact the third alternative
for  using "t“wo degrees - of freedom" to achieve independent servo and
regulatory objectives. . i |

The simulation conducted - in - section 526 was repeated . with the
» controller based on the first order + time delay model of Process C: -

: | . A =1-91q" B = .012+.023¢™2+.065q™2

so that now‘ there Is ‘}:’{PM Figure 5.25 shows t}ie response to the same
sequence of step setpoint changes ' and dxsturbances with F o’ P and Cc taking
on the same values for each portion of the simulation. Note ‘that ‘the time
~scale has been adjusted and the control horizon, NU, is different from the
simulation with no ‘MPM. | ' | ,

The most important observation is that similar closed-loop performance
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is achieved for tHe alternative tunin‘g' ‘parameter - settings as suggested by
the analys‘is in - section 46 The closed-loop pole locations (not shown) are
~ almost the same. If the basic tuning parameters nvere set for Exact rather
.than Detuned Model-Following, the CL poles (and zeros) and time ‘dornain'
response ‘would be identical (although the systeni is unstable since the zeros
of the ROM are NMP). - '

L

"To recap, each of _the alternatives discussed “earlier‘ for wtilizing two '
degrees of freedom yield similar Tesults for the 1same regulatory and servo
reference  "models”. Whatever  alternative s used, it is  strongly

recommended that the regulatory model contsin an additional term used to

tailor the respogpt ‘to disturbances .and - provide robustness to MPM. It is
convenient, but not " necessary, that Cc be used for  this purpose,
corresponding to the first alternative presented in section 4.6..

—

5.5 Summary

The time-domain simulations, root locus an lysis and frequency response
analysis enhanced the 'understanding of the GEC algorithm. The following
conclusions and recommendations are derived from the results presented in

" this chapter:

a?b In the absence of ,MPM the " three c0nfxgurat10ns (tuning strategies)
of GPC yield excellent control over a wide varrety of processes, including
those that are nonminimum phase and/or open—loop unstable.  The ‘active
tuning - parameter can be used to vary the ‘speed of response over a wide
range. ’ '

b) If fxxed A control weighting is used, the . output performance may be
ser;ously degraded if there are large changes in the process gam or-
dynamlcsT .‘However, if X is -proportional to [B(l)] or if the ‘Output Horizon
. or Detuned ‘Model-Following configurations are used, the closed-loop - response
is almost completely invariant of ~~these changes‘iz, T

4 .

. o ' - N '
¢} The controller design polynomial C(q ) can be used to achieve

acceptable regulatory behavior for the range of disturbances acting on the
process under  consideration. Even " more nmportantly, Cc dramatically
improves the robustness of the controller to model-plant mismatch : without

s

[t}
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:detumng the setpoint trackmg propertres of the system It is recommended
that C be selected as a polynomral of order na (ie. C-(l -c q )“' where
na is the degree of A(q ) " For reasonable sample times, a value of <
equal to 0.9 represents a conseertrve setting while 0.8 often yields an"
acceptable trade-off between robustness and performance As the root(s) of o
Cc tend ' toward zero, drsturbances are rejected more raprdly wrth stronger

control action. : , pE

Al

d) The estimator filter C.(q'l)-- should be |utilized to focus. the
estimator on frequencies around the closed-loop bandwidth and reduce
V parameter drift for unmeasured disturbances. It is strongly recommended
that C ‘be selected as ‘a "2nd order ‘polynomial (le v ‘==(l.-c.q'1)’) ywnich
leads to bandpass filtering of the I/O data in the incremental regressor.”
In this case, inspite of nonzero mean disturbances and unmodelled dynamics,
it is po'ssible" “to identify low frequency models, which provide good
long-range predictions. For most applications the roots of Ce may be

selected as 0.8 or 0.9.

Note: the reader interested only in GPC may wish- to skip to Chapter 7

where an expdéimental evaluation is presented.
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Table 5.3 ' Closed-loop Poles for Detuned Model-Following
Control of Process C | A

-
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j? hd
N ) NU A p Closed-loop Poles
1
\ .
4 0.9 0.9000, -2.5862, -0.1798 / '
5 4 0.9 0.9000, -0.3821, -0.1799
4 4 10°® 0.9 0.9000, -2.0574, -0.1803
4 10°° 0.9 0.9000, -0.8820, -0.1853
10 4 0 0.0 0.0000, -0.2252 + 0.0399i
" - ol 0.6 0.6004, -0.3458, -0.1835
) " " " 0.8 0.7999, -0.3521, -0.1827
" " " 0.9 0.9004, -0.3545, -0.1824 .
o, - ' -1 - »
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6. PERFORMANCE AND TUNING OF POLE PLACEMENT CONTnOL

Thrs chapter is concerned wrth the selectron of the tumng parameters
and resulting closed-loop behavior of the Pol’e P_lacement, (PP) algorrthm
derived in Chapter 3.  Placing the 'poles, at specified . ' locatrons implies that -
the output response of the system , wrll be invariant to’ process gain changes
as long as the’ model reflects the . actual  process (sectron 6 1). Although
'the PP control strategy does «not hAVe a large number of tuning parameters
‘compared thh GPC the selectron ‘of the desrred closed-loop poles requrres '
consrderatron (section 62) "The e:ttensron of thev scheme_ to rnclude a -
setpoint : prefilter and. a polynom‘ial‘ for tailoringj disturbance rejection,
allows Pole"_Plalcement “to meet independent servo and regulatory ob_;ectrves
" (section  6.3).. Finally, 'the performance -and propertres “of  the Pole '
Placement - controller will be ,demonstrated through a ‘srmulation study
(section 6.4). | SRR |

+

. ' @ .
6.1 Maintenance of Output Performance for Process Gain Changes

T
Consrder the case ‘where - there 'are gam changes in a  process but there

is- no model -plant mlsmat\h (The estrmated parameters track the true  values

exactly) Process gain changes are reflected entirely in the B "parameters

| such that the gam may be factored out:
B=KB . . . 6L

: ‘ \.\-(:l,\ T i
The pnme "denotes a polynomxal correspondmg to a gam of unity The closed .
loop expressron for the output was given by eqn .18 oo

P(1) L
\P qlw(t) + -——f(t) B R T

Clearly the servo . response of “the- system wrll be myarrant of” process gam .

y(t) =

- changes Note that, G is “ﬂobtg&ed from the solutnon of the Drophantme

o equatron (3 1.11):

fy GAA+q BF PC

With B replaced by K B the polynomrals G and F for an arbrtrary.‘gam may be -

expressed in terms of the solutron for a @mt gain: >

LI ' ' ’ 3

F .
. 140



o G=G, - F F/K , T (6.1.2)
Substitutmg for B and G,.the closed loop transfer functxon becomes'
S P(l)B - R o ‘
y(t) = a W(t) + ——f(t) : - (6.1.3)
PB(l) . S
and it apparent ‘that the response of the output will be unaffected by
- ' process gdx.%'changes L o S L

.8

6.l.l - Chanfes in 'Process Dynamics

For tlus PP controller, ‘the open-loop ~process Zeros are retamed in tl}e .
: closed loop ' Therefore, .changing = process \ dynamics’ erl mfluence the
‘ behavror of t‘he closed -loop, even with perfect modellmg However, in many
cas he zeros do not have a strong impact on the output response and

5 herfce the. closed loop performance will be almost mvanant

a2 In  contrast, the ~output performance il be serrously degraded if the

~order of the process decreases such’ that near common factors arise in the.

‘3 estimated model polynomrals A and. B (Clarke et al 1987a).
‘;r‘. < Q" A B ) ) . . ”:’
B 6.2 Specification of Desired Closed-Loop Poles %
: The desned time- domain response is specified using th¢ desrred
characteristlc polynOmxal N CH ) For ekample a frrst order closed loop
’&‘ responselwrth a trme,,ﬁ constant Top May be sought by specrfymg
SN o EJE - .
‘_'_;, o P(q 1) = l-‘p;q; ‘with p, = & '/CL . 6.2.1) .
~ | - \ : : o . o
ah A - more - realistic . user-specified characteristic polynomial for typical
‘ , (relatively ’hi'gh ord'er) industrial processes is 2nd order. Significantly

less control ‘action. .is normally required for a 2nd order type response with
' the same rise -time. " The denommator of -the pulse transfer functron of an

'underdamped 2nd order system with natural period, r, and damping factor g‘,
-was grvep nn sectron 441 - e : _ L

: ‘P(q'l) =1+pq’+ p,a” o . (622)

R VT



.'_ . . S R ] ’ ‘\ | . ) N ' f ‘,‘ ’\142 E
: =T /7, S = 2RT r
with P, ,' -2e '/cos[(T '/r)t' l-g" ] and p’ =e /
Note that since the open-loop zeros of the process -are retained in the
closed loop, the actual dampmg factor and natural penod wrll drffer from

. _the _desrred values, even with no MPM It is rntumvely easier to specnfy l

+ " the desired overshoot and rise time as opposed to f" and ¢. The damping

- factor for a - 2nd order model is an explicit function of the fractional

s

overshoot given by eqn. (4.4.9):

Unfortunately, . the 63% (or any other) rise time is a complex function of
both r and ¢. It is approximately equal to 27 as long as 0.5<¢{<l1.0. - For a
critically damped 2nd order systerr: (¢=1.0) the precise relationship is

r=t /2.5 o (6.23)

- 6.3 Independent\Servo and Regulatory Control

The difficulty of obtaining a recursive estimate of the noise medel, &,
useful for control purposes (discussed in section 4.5.1) implies that the
use of a design 1pol"ynomial,- C., is. a more effective ‘approach. This design
_polynomial is eliminated’ from the servo response, as long as eqn. (3.1.14)
is  satisfied; therefore only unmodelled dynarnics = ands disturbarlces are
affected by C The servo response alone may be. modified by mtroducmg a
setpomt prefrlter ( w(t) = F y (t), F (l) = 1 ). Then, as with GPC,
there exrsts several different ways of utrhzmg "two degrees of freedom" to
meet mdependent _Servo and_ regulatory obJectrves " The closed-loop
expressron with a setpoint prefrlter as derrved in section 3.1.2 is:. '

F P(1)B Gea CoL

¥ = “E—— a’ly,_® + — x(0 e (6.3.0)
PRO) PC ﬂt ‘ |

<

The three ‘methods outlined in Table 6.1 may be used to select F o’ P and Cc

so that the closed- loop transfer functron becomes




Pn(l)B - .eca |

y(t) = qQ y (0 + x(t) ' - (6.3.2)
C P B(l) , S
[ ] r
. is the desired servo "characteristic polynomial" ? '

,r‘is the desired regulatory "characteristic polynomial"

v _ Table 6.1 PP Alternative Settings for Independent
' ' ° Servo and Reg‘ula;ory Control

Case "F_ p e

2 p [
1 1 | P P r/P'
2 - P'(l)/P' I . Pr »
. ¢ PP()
"3 ' — P 1
| PP(l) !
| I o
Note " that since PC = P for all three cases, the polynomials F and G
- -
obtamed by solution of the D:ophantme equation (3 1.11): < '

GAA + q”'BF = PC

[

are the same. Also, the product HF in the control law,
. ‘ : i ‘
GAu(t) = HF oYs (t) -oFy(t)
works out to be P(l)P /P B(1) in each case. Thus, whilo each of the three‘
alternatives dlscussed in the following sections. is conceptually -different,
the . fipal control law obtainéd is ideatical, for hgixe_n' bolynoniials Pr and. -

P. R e RS )
s ) . . L R ) . ‘
sv . . e ’ ’ . o .;" . . . R
6.3.1 Twa’Degrees of i eedom, Case 1. Using Pand C . .
Y If the P polynbm:al is. used to, form the : desxred pole set”

% control the desngn po ;nomnal C. may’ be used. to’ add addxtlonalff
dnsturbance rejectnon* “‘,l'hé regt;; " g

w
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the “servo characteristic - equation as a factor to satisfy the «f.restrictlon'
that C be a polynomxal With this scheme, the servo and regolatory modes
are not completely decoupled -altering the desired response to setpoint
changes will also affect the behAVnor for load "variations. .Cc ) may be
; mterpreted as . a  fixed nonse model and used to filter the regressor to
1mprove parameter estrmatxon as discussed u’ section 4.7. This 'alternati\'/e
~is . by far the most commonly rel‘!l’red to in the literature; it may be usedv

'l or all apphcatrons iexcept those where -the user wishes the ser.vo and’
regulatory modes to’ bi ' '

‘;”’mpletely d:fferent
© 6.3.2 Two Degree‘s “o'l Freedom,'Cas‘e 2: Using 'F.p and Cc .

1
¢

With P=I and F -P(l)/P -controller with provide a deadbeat
response .to frltéfed setpomt changes . The C polynomial can then be wused

‘to mdependently !

A specxfy the regulatory response, the two modes . are
‘completly decoupled For-. this strategy, ‘Cc. is * the desired regulatory
characterxstxc polynomnal (as opposed to the noise model of case 1) and

should not be used to filter the regressor for identification.

6.3.3 Two Degrees of Freedom, Case 3: Uslng Flp and P

Without using: the design. polynomxal C., the desired regulatory response

may be acified using P and ‘the setpomt filter transfer function selected
" to cancelne desired regulatory poles ‘and.v," introduce 2 different set .of
poles for servo control. At an increase}.&f‘»ln complexity, Cc, representing
information about the type of disturbances- usually encountered, may be
added: Together, C.c and P, then determme how dxsturbances are to be

handled.”

6.4 Evaluation of Pole Placerifiyeﬁt ‘;Control

A snmulatron study, parallelmg that completed Afor GPC was undertaken -
to - evaluate the. PP controller. The transfer . functlons for the processes

-

cons‘idered are  listed in’" Table 5.1. D‘etsils on

‘the types of disturbances
studied 4may be found ‘in section 5.1.2. ‘

Sha
SN
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6.4.1 Evaluation of PP\"C'ontrol with Exact Process Models

Whrle the evaluadén of the PP controller was carried out with each of

the procesSes llsted in- Table 5.1, for the -sake  of brevity, only snmulatrons
with Process C w:ll be presented This third order discrete- time NMP plant
is considered to be typical. of- many processes ‘in the chemical xndustry The
sxmulatlons involving control with an exact process model are summarized ‘in
Table - 6.2. Figure num‘bers for GPC runs which are dxrectly compareble are
listed in the last column of this table. '

Table 6.2 PP Simulations with Exact Process Models (nonadaptive)
! : & . .

Fig.  Process Time- Servo Regul- - Purpose - GPC Comparison
No. , Varying atory : Fig. No.
61 C no. - yes no “effect of P(q™) SIb3bS5
6.2 C yes yes no main. of performance  5.6-8
%63. C no yes " yes effect of C(a7") 5.9b
6.4 " " " " 2 degrees of freedom 5.11

- ;

6.4.1.1 Varyin’g the Speed of Response

/

. Figure 6.1. -n’ows the - servo - response of the system to step setpoint
chan* as_ the -.desired closed-loop pole is varied from 0 to . 0.9.

ngmfxcantly less control action was required for the case of a u@mond 3

order crmcallgb damped desired characteristic polynomlal with the same 63%

nse time (results not shown).

6412 - Maintenajce of Servo Performance _ Lo

L Y ' , o B N
~'The. Pole Placement control st,retegy inherently .es a closed-'loop
Tesponse which is invariant of process gain variati 'J'
“ %i performance can be

éﬁ
o

the- absence of
‘MPM) A' However,\no guarantee of mamtenance ‘of ou
grven for changmg process dynamxcs as the OL zefos are retamed in the CL
transfer functron T.o examme the behavror of Pﬁ .control for a time-varying

.« .

A
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process with precisely knfown parameters, the simulation . described. in sectio'n

'5.2.4 was repeated. A “second -order desired _characteristic polynomial was

‘specified oorresponding to' ab critically damped prooess with natural period,

=3, As Frgure 6.2 1llustrates, the servo response of the “system is almost

“perfecg)y invariant inspite ' of the large hanges m dead- tnme, gain, ‘and

_ process dynamics. The results compare very favorably with those of GPC in

the Detuned Model Followmg mode (cf Figure 5.8).
‘6.»4.1.3" Disturbance .Talloringtrusl'ng Cc‘

":“s, Tl;e controller design polynomial C may be used. to alter the regulatory

response of the closed- lqop, :wrthout affectmg thef servo behavior, in a *
1mnlar manner as for GPC.‘;‘ For the simulationf shown “in Figure 6.3,

unmeasured step disturbances ' d (t) ig_‘{‘and dy(tf) of ‘rnagnitudes ‘0.1 and 0.2

respectively, were applied and removed ~after each upward-going setpoint -
~ change. ;With' Cc“-l, the controller provides optrmal rejection of the ‘input"

type disturbance bur overreacts to the steps in dy(t). With CC=A the

situation’ is reversed; the steps in du(t) are rejected very slowly while the

"output" ‘ type disturbance is handled in ‘an optimal manner. The third

portion of the simulation serves to denomstrate that _Cc=l-.8q'1 provides a

reasonable compromise.

6.4.1.4 Two Degrees of Freedom

Earlier d‘is‘cussion pointed out that there are several alternatives open
to the wuser in terms of specifying the desired servo ahd regulatory
closed-loop poles. | The simulation in . Figure 6.4 was carried out. with
Process C - and the same sequence of setpoints and disturbances used
previously. The tuning parameters P, C and F  followed the scheduie:

Sampling Interval F P C

sp K
0-229 - : 1 , S 1-8q7Y - 1-9q7"
230-429 2/0-8q7Y) 1 (1-.8q71)(1-.997")

430-630 . (1-9q7h/ (1-99°1)(1-8q7}) 1
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similar to that for the analogous GPC run ijn sectxon 5.2. 6 The desired

servo and regulatory charactenstxc polynomials are:

P =1-8¢" ‘ %
P = (1-8q7'X1-9q"")

in each case. Identical responses are obtained as expected. The same would
be trpe even if there existed model-plant mismatch, since the control law
for each case is identical (see - section 6.3). Note that the actual
regulatory response obtained ° depends upon the type of dnsturbance entering

the loop.

r

6.4.2 Evaluation of PP Control in the Presence of Model-Plant Mismatch

The simulations in this section are based on the reduced order models
xdentnfxed off-line in section 5.3.2. Table 6.3 provides a summary. The
last column of this table indicates the figure number of the comparable GPC

simulation presented in Chapter 5.

. ,
Table 6.3 PP Simulations with Model-Plant Mismatch " (nonadaptive)

Fig. Process Servo Regulatory Purpose ‘ GPC Comparison
No. . ' " Fig. No. '

6.5 . F yes . no Effect of Cc 5.19,21,22

6.6,7 C yes no Effect of CL; 5.23,24 .

ot

Notes: time invariant 3rd order processes
reduced (1st) order models identified off-line (section 5.3.2)

6.4.2.1 Rohrs’ Process

* In Chapter 5, the following reduced order’ model (ROM) of Rohrs process
was identified usmg RLS with regressor filtering:
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A=1-93g) Ba.l45

To examine the robustness of Pole Placement control with respect to
unmodelled dynamics, this ROM was used along with a first order desired
charaéteriétic polynomial, P=1-p lq'1 and the des'ign polynomial, Cc-l. The
closed-loop was observed to be stable orly for p!zo.9l. However, as Figure
6.5 illustrates,} the system may be stabilized with p;=0.8 using a first or -
second order Cc polynomial. The 'response "to sétpgint changes compares
favorably to that using the full order méﬂel (FOM) and Cc-l. The
closed-loop poles shown graphically were obtained as roots of the
characteristic equation: _ _ o
GAA.+ q'BF = 0

where F and G are computed frdm the Diophantine equation:
GAA + q 'BF = PCC
(A,B represent the true process, f\,ﬁ représent the estimated model).

6.4.2.2 Use of Cc inyAchieving Robustness

Recall in section 5.3.2, two first order models of Process C were
identified,’one with nb=0:

A = 1-.94q7 B =080

and the other with nb=2:

. A = 1-91q"" B = .012+.023q7'+.065q"2

There is a large. amount of model-plant mismatch, particularly with the
- former model. Figures 6.6 and 6.7 demonstrate the use of the design
polynomial Cc in prbviding robustness to this MPM. For the case of the
"first order + time delay" model (i.e. that with nb=2) the system is stable

with C.-=1 but the response improves Tonsiderably when ‘first or second order

polynomials are used instead.

]

b

S TN

\



favorably with those obtained in the previous chapter for ahe three\ proposed
GPC tuning strategies. In partncular ' '

“h
N .s\

6 S Summary

In general, the simulation results with Pole Placemen%t control cgnba

W 'a)

c)

4

'(k}

Excellent closed-loop behavior was observed for chemical processes
which are nonminimum phase and/or open-loob unstable. A first

. order desired charactéristic polynomial, P(q'l), may be wused to

vary the closed-loop response for a first order plant.  For higher
order processes, a 2nd order desired characteristic polynomial is

recommended.

The Pole Placement strategy  inherently yields » a  closed-loop
response which . is invariant of process gain changes given an
accurate model. Changes in process dynamics normally have only a

minor influence on the output performance. (Changes in process

order, on the other hand, }nay result in serious deterioration of

the respeonse).

The role of ‘the controller design polynomial, Cc(q'l) is the same
as for Generalized - . Predictive Control. - Therefore, the
recommendations given in the previous chapter are also valid for

Pole Placement.

As with GPC, the PP strategy benefits by having a model which
matches the true process at relatively low - frequencies. Ce(q"l)
should be selected as a 2nd order polynomial corresponding to

bandpass filtering of the regressor.

A

\
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| . Exptnmnman APPLICATION OF SELF-TUNING
\ . crnammzr.b PREDICTIVE CONTROL

"

While simulations provide insight into the operatron of a controlA

algorithm and the selectron of its' tuning parameters the . true test ‘of ar
algorrthm remams “with its applieatron on 8 real process. Durrhg
’ expenmental runs ~ the behavror ol‘ the . controller - i§ influenced by

‘unmeasurable events as”® well as unknpwn elements of the plant. ""‘While this"* .

: 1mplres that no two tests are ptecrsely eomparable in @& pilot plant

-envrronment care can be takem to: ensure that all runs m a set take place‘

) under sxmrlar condmons ' R R
“«’Expenmental work with two - pil lants is mcluded in thls Chapter

’The Strrred Tank Heater apparatu,s allows evaluatron of GPC on. 2 relatrl/ely »

]

.lmear ’ procﬁs ~with predomrnately first - order dynamxcs However as

'descrrbbsl ‘in- sedtxon 7l dependmg upon the method used to mtroduce cold. -

water the p‘rocw‘can be far. from ideal with a large amount of. easurgment

noise. - The: time delyy can be varied erther by measuring  the ou‘let water )

“temperature. 'at drffergnt .;dtstances from & tank or by changmg the water

‘,flowrate . C oA
The Interactmg Tanks, ‘detaxledén sectron 74 mby be arranged\tti\form

a 2nd order nonlmear process better surted for evalua%ﬂg theﬂbrhty cﬁ& a -

self—tunmg controlle_r to mamtam desired performance inspite - of changmg'

A

process conditions.e While®™ known nonhneantres can, in prmcxple, 'be

handled by a form of- gam scheduling, from the pomt of vxew of the,

;controller a nonlmear‘ process under ahangmg Operatmg condmons b‘ehaves~7 g

-

m a: manner similar to a time-varying process , ‘
The real)-nme scomputer system and other rmplementatron detaxls .are

descnbed braefly in sectron 72 The experimental work in sectrons 7 3 and

1.5 (xnc/ﬂdes both servo. a}d regulatory control:- Ig‘ is in reco“’ : i

the fact that setpomt changes are ' a relatrvely Tare  OCCUrrance

chemical mdustnes yet - much . of “self-tuning - control  literature ~ deals

exclusrvely thh the servo problem N

: . } . 2 N ) ' ’ “ . . v . r
o % I > 7.1 Sllrred .Tank,Hea’.te'r(/,v . o

o .
o

-

o

P

%

The Strrred Tank Heater _equipment -is illustrated schematically Cwin

Frgure 7‘1 Cold water enters the glass tank is heated with steam and T

: ° : o : 155
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~__constant liquid

~ introduced. Note also  that the =

9

8 e,-.':
&ndm%gsafor the Stxrred 1 ank Heater ’are h

~

f»flows out through a long copper tube wrth thermocouplen located at varymgr

distances - from ~.the tank. Several, dxfferent feedback and f] t‘orward

confxguratnons are' possible usmg ‘the‘ apparatus 'For the SISO
‘,conéguter-controlled loop, the temperature of the outlet water and the‘ steam .
fables,

respectively. ‘A vIeumat:c proportnonal regulator " is in place to mamtaxn&
le

-<,;,'

flowrate were selected ‘as ;the controlled and . mampulated v

the - tank by altering the outlet l'low of water.

Manually changmg the mlet cold water flowrate is a convement / method -of
introducing a dlsturbance " Note' that the - of et

results in (small) "variatxons in-

‘mvers&y proportnonal to the mlet cold

'
_____ Table 7.1 ?' nk Heéater Nominal Operating Conditions
Inlet Water Te Mute + ot o - s°%
Inlet Water Flowrate * ‘ : 33 .cms/s :
~Water Level = Lo : " 28em .
' Steam Valve' Opemng T N S 50%
(Resultmg) Outlet Water 'lsemp‘" ’ , ) ~35- °c.

. . . - .
LT ' . -

Each of the four thermocoﬁles operate over the range 22 54 °c.

R 'U‘

to proport:onal control .
ps of this type ‘are .
A in . the . system ‘is -

Standard operating

thle the tank ’is equipped ‘with a mxxer, it cannot be considersd-

@ well mnxed" the 1nlet iwater plunges ~ directly into the/ tank on .the Same

l'measured usmg T/C #) ‘to- step changes in stez

"tulgxng ;conn‘egtton, the l‘esultxng temperature measurement is free of ‘noise. -

inlet water. flowrate (53 66 ‘cm /s) occurrmg at’

S1de as ‘the outlet tubmg connectxon However, when a deflet;tor- is put in

M s

R e I Dt
,,7.1.L,.ﬁopénh-noo'ptcharacteiization ot e :
. o 2 N x” R ) . P . [ . . } . n

00 s intervals. “Note that

1

"place to direct the . water to the wall of the tank away from the outlet

o Plgure 12 'shows " that open-loop response‘ of. the- outlet‘ temp'erattlreg
v,alve posmon (50-57%) and A



the. mlet water t‘lowrate :s not plotted lﬂ the frgm‘e The magmtude ¢"h$ v
v dtsturbance i that used ..throughout this thesns i l* "'the first half- of the
run the mlet water deﬂector was rn place, ‘the ftrst-l order response ‘fo ‘the -

; mampulated and -disturbance variables is expected from a“*'?unple mathematrcal s
o ﬁtﬁdel ot‘ the precess tStephanopoulos, 1984) -The time constant of the; |
process. rp, is. approxrmately 48 s while "the w.process and ', drsturb e statrc ,
.‘ gains are’ K o~ 085 C/% and K ~ -0.50 C/(cm /s), respectlvely At steadg{‘; .
State the standard devratron of the measurement signal. is. 008 C‘/ For the "‘!’r

L4

second half of the' test r’ mlet water deflector ‘was uSed the response pf

. e,.,

- the system no- . longer apf k frrst order and the standard’ devratroa of the , T

temperature s:gnel has Jﬂcreased dramatncally to 0.6 °C. ‘ e "
Wrth the first thermocouple (T/C #l) .th’e‘ physrcal dead trme 'is' :

relatrvely srnall Nkasurmg “the tem era,ture using T/C #2 located l‘urther -

tﬁnsportatxon time delay as md:cated

l’%m the tank extt mtroduces a lar

. e
in Table 7.2. » A T An R : .

Table 7.2 Time Delays associated Wwith the Stirred Tank Heater '

. S Yo o v Yy ™ -
A . . ‘

Thb”bCOuple e ’ . Inlet Water Flowrata"l ' ) i
' - 53 cm /s "™ 66 cm /s
4s o 3s.

=7, 1 2 Selection of Sampling Interval

@
Drscrete samplmg at a- r@ate of 1/10 to l/4 of the dominant time A

constant or’ pure trme delay (whxchever 1s larger) s frequently recommended N <
the lrterature (Stephanopoulds, l984 lsermann 1981). A sample trme
T', of 8. s was selected for all tnals wrth the Sttrred Tank Heater : Ihls

samplrng xnterval is approxrmately l/6th of the process trme constant and

l/5th of the trme delay when usmg T/C #2 R T »
B i \'l“ : N : !
T e e T




' ":-3-}( T2 Implementation Details
ﬁ’» SRt e - . 3* r ’

lmplementatron of - selfétuning contrdl requrres af more sophisticated

'3

gyhjrthms ,In either case, a
ret;;,-«tnme comptlter system capable of muftr- 8
descr“bxng the hardware and software , used for the expenmental work a few

rapproach than conventronal process ¢
kmg is’ a prerequisite.  After

e 1

other practrcal §spects of self -tunmg control}wrll be_ mentroned

’9’ . ‘-“ o ‘ “"‘,, “: R "“

=

Y 7 2 1 Computer System and App "'naﬁs‘;sdrt,vir‘e‘

"‘The control algorrthms studred were programmed rn FORTRAN 77 on the

”"ﬁeﬁett Packard 1000 2iIMX E Series computers in the Unrversrty of Alberta’s

' Data Actquisition Control ‘and; Srmulatton Centrg
system provrdes a’ t“ullu ~m.ult1 taskrng envrronment @‘ a‘ tmcal - gppltcatton
lnvolvmg real -time,. data acqursmon and’ computmg, &Je~ 1/0, a graphrcal
* operator drsplay and opﬂtdr interrupts ena@lmg parameter changes has bee’n
,,descnbed (McIntosh .and Yegneswaran, 1986) “The- expenmental runs presented
in thrs g subsequent chapers were obtamed usrng a . simplified scheme. * An

i hd

g en

" uration drsk file ‘containing . tuning parameters and desired operating
condmons ° The' real-time data acquisition and control task reads the
i confrguratron file when the operator changes have 'been completed. ‘ .

h ) . ’

Approxnmately 17 pages of FORTRAN source code’ \%as requrred to praogrant

" ‘the Generallzed Predrctlve Conn'ol algorithm. (The real-time Pole Plcacement

_program used in the next chapter consrsted of n pages of source . code.) In

’contrast, 4 pages of code made up “the frxed gam PID controller usedC' t'or
comparison. ' . - . .

“ 7.2.2 Initialization

- . i ,
‘ The sa’ihe procedure was followed for startup of both the self-tumng GPC
and BP» controllers 'i Durmg the frrst 25 samplmg mtervals the control

srgnal was manually -swrtched between “ user-specrfred ' values ; geyery 57

'rteratrons) Thrs Was - suft‘rcxent for"’ the parameter e’matron to arnve at

a reasqnable moder Bumpless _ _transt‘er., to  closed-loop . control s .
automatrcally achieved due to the incremenm! nature of the" control laws,

,-#' e o cLnl o »”» n ) : /:' R

“The RTE- 6/VM operating

opergtor commumcatron_s program .is use_d to modrfy a

t



&

#

- 3
. +
T

et ¥

The controllers are protected from nntsgrel wmdup limply by limitrng the
control signal to the range between . uturetion limits (normally 0- lO'b%)
The mcremental control - signal nctunlly applred to? the plant is used in ‘the
calculatrons at the neXt samplxng xnstan&

o

7.2.3 Pnumeter Estimation

T
%

i

ge constant trace Recursive . Least Squares algonthm, descrrbed in

pfl 5 4 Was. used for parameter estrmatrory during " all expenmental
ypid - initialization, the trace - of the covarrance matr
‘ actor qf 10 for the first 25 samplrng mter*ls “dur
Bl ""'e ~the rnanual step changes in the control signal  provided
gtertatr? ) ;a:%‘,rhe; N covarrance matrix ﬂ,w“as also inflated ‘for 10 iterations
}el&,'rgg every ‘setpoint change (with the expectatxon that the ‘:data wqxld be

excrtmg during this periog).

-

“E\‘ 7,3 Generalized Predictive Control of the Stirred-Tnnk Heater
o '
f‘, :‘,'“.“,ﬁ’he eﬁperrmental runs with the Stirred Tank Heater were conducted thh
ﬂr’ee mb;eotwes in middgy The first set are: itended to  demonstrate the
N ,1&
/“) effe%t )of ti\e regressm filtering polyno‘mra] C.’ and the" regulatory design

. 'h

N

e uGIyﬁomra) o on’ the robustness .and behavior of GPC in the presence of -

model-plant' mrsmatch drsturbances and measurement noise.  Next the at*hty

of the three oveLall ' GPC -tuning . strategies to provide a full range *of
detireg freSponse VL trmes (qlosed lMWidths) is evaluated - Finally,

marntenance .of 4 -performance- is demonstrated for a trial variable
deed trme I‘he complete set of experrmental runs wrth the S“" rred Tank
A Heater are, summarrzed in Table 7.3, o S
& - - .
‘ hd '
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Table 7.3 GPC isxperimental Runs with the Stirred Tank Heate'r (Self -tuning)

v

Fig. With/Without Time GPC C(a) C(™) Purpose

| No. Deflector Delay Config. o .
constant = OH A T 1 . effect of C..Cc
"n L] 1 kb 86_1 L]
o . ; -1,2
[] 3 " l_.s l .8 . "
. w( -84 9 a’ VS
7§ -~ without constant OH - | B effect of. C‘.’ch;
19" " -, " 1 1-8q7t < o~ 7
1.8 " " " (1-8q7"?
19 " " " (-8 1-8q7! b
710 " o " a-8q7H)  (1-8q7Y? "
, » i
7.11  with. “constant OH (l-.8q"1)2 1-.8q"0  effect of Nz_ ’
712 % .o LW " " s effecthof Ao
43 " .or  DMF .\ effect of P(a™)
._r‘ ‘ B
7.14  with * variable PID % delay comp
115 DMF  (1-8q" )’Ti 8 "N
pooo e l |
A%xr_eviations: %H = Output Honzon LW = Lambda Welghtmg,
. ' DMF = Detuned Model-Following * . _
* 0 . \
manuadly tuned . S ’ '
= .~ -t
VE N\ <
R ' . .
7.3.1 Stabiliution'using Polynomlais C. and Cf " -‘_ Rl

In the simulations of Chapter 5, the regressor filterind® * and

disturbance tailoring polynomials were - employed to . §tabilize closed loop

systems in the. presence of unmodglled dynamjcs and used to 1mprove the *

rejectxon of varidus disturbances.: l-}ére we will deal thh the impact of

these polynomxals on self-tuning servo  and - regulatory control of the Stirred

Tank Heater temperature measured using T/C #1.

this subsection, theQ inlet water flowrate was changed stepwise from 53 cm®/s .

& o e .

For ~alI of the trials in -




to 66 cm'/s" at' time 750 8. At 900 a t‘l\xe flowrateo was re@rned to- 53 cm’ /s '

Output Honzon tuning parameter e g! were used with - N set to the
default value of 10. The varrable forgettmg factor identification
algorrthm maintained the trace of the covanance matrix at 0.2 (except for
the 10 rte’ratrons following a setpomt change wh(n the trace was inflated
‘and mamtamed at 2.0). !

| With the\ mlet water deflector in place the process ' is well mrxed and

relatively norse free; a t'u'st order model is expected to provrde adequate

predictions in this ¢ase. - ' _ :
L 7.3.1.1 thh lnlet‘Water Deflector ‘ ;«\“:.x ,
.aa ’ 'I,f,“""CG'-and @ are both unity, the response of the closed-loop, shown in

&
Figure 7.3a, is oscillatory with relatively strong control admstments An

inté"gra_ting” 'model (i.e. 51 ~ -1) das identrfred for the last half of the' run

f'as indicated by the - parameter trajectories in Figure 7.3b. If the
“regulatory action of the controller is. detu ‘C’czll‘-.8q'1 the rapid
, . oscillations ..ig. the output are , almost eli’minat'e e -7.4), Selection of
L 2nd order regressor frltermg A@olynomral was shown ‘*earlier to corresﬂond

to bandpass filtering of the 1/0 data. With C=(l .8q ) the control

'performance ‘ih Frgure 7.5 is shghtly 1mproved compared wrth“ *Fxgure f’“ﬂ

Thrs is true even though the "true" noise model polynomxal correspondmg to
tl‘ inlet water flowrate disturbances s closer o umty (smce this is -an

mput" type drsturbance) L ’ .

7.3.1.2 Without Inlet Water Deflector o . T
s .

firred ';{ank Heater is operated - without . the Jnlet ‘water

;{o?sq obscyres the character of the process. Consrder agaln GPC wrth
shown] in Frgure 7.6. The identification algomhm

h

‘ \farls to com up wrth a medel saitable for long- -range prediction. At 620’ ‘

"

" the sign of thd estrmated parameter b becomes negatrve and = the controller
saturates permanently -Even if the re jeChOD of dxsturbances is detuned, by
setting C to 1-.8 , the problem of a_poor low frequency ‘' model persists
(Figure 7 7) 'I'Ze estimated process gam- . 18 consxstent.kl‘x,, far too low
(compared wrth the

s . '\,
N L3
. .

rocess }!un determma&irlier based on open-loop step

Y
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tests). For example, after the startup sequence, Kp = B(1)/A(1) s
whereas the open-loop step tests (section 7.1.1) gave K =085 °C/%. ‘

If . the incremental regressor - is filtered: by 1/C -l/(l 8q") the
initial parameter estimates shown in anure 7.8b provide a treatonable  low
frequency model. After 60Q ,,,,, s, the RLS algonthm identrfres an unsta&
model- v(il ~ -1.1), The controller is very active throughout (with Cc-_-l) and
eventually drives bé to a negative value. Detuning the (regulatory) )
controller with Ce-l-.8q'1 rectifies the problem as demonstrated in Figure.
19. The identified model gives good long-range predictions and is not
“corrupted by the -inlet water flowrate disturbances (occurring at ‘750 and 900
s).  If the sanm polynomial is used in the control law as for regressor '
filtering (Ccn(l-,Sq'ljz) the controller’s. rejectionA of  disturbances s
further detuned‘; (Figure 7.10). The output performance is degraded slightly.
in - comparison 'tc; -the previous run.

. Y
[
O

It is impbrtant -to note that it was necessary to 'select both the
estimator filter, C.(@ ), " and controller design  polynomial, - C (q ) gs
_outlined earlier in sectron ‘55, to achreve good results, '

7.3.2 Altering the Speed of Response ; .

Once stability of the closed-loop system has beén obtained by properly“
selecting any paremeters associated with the identification algorithm and by
,&dsing . the- deeign polynomials Ce(qfl_) and 'Cc(q'lq; attention can be turned to
adjusting the overa

(servo: and  regulatory) speed of response; of the -
closed-loopé. - Each~ of three tuning strategres convemently allow GPC ‘to
achieve a-full range of r
subsection, fstep changes in
em®/s qﬁz ;Sack ‘again) were

was 40°C. Just prior to each

onse trmes. For the experxmental runs in thrs
e inlet water flowrate'_(fr’om‘ 53 cm’/s ™ 66
ced during the period qwhenv the setpoint
-going SP hange, ,the active - tumng
parameter was ad;usted to mcrease t
forgetting factor RLS (.algoi’ithm mamtamed the'_h
-"The mmahzanon sequence and the parameter trajectones are

- (as they add little’ m!‘ormatron) ‘ , oo N S
‘ S 3 -3 SRR

The re$ults for the tu’ningr strategy, ~based on tle Out;ut Horizon



sampling xnterval i ' k

For Lambda Weighting control it was- recommended in seqtion
the trace of G G be used as a guide in" the selection . of d\-
. parametér convergence, tr(G, Gl/NU ~ 3.0, The servo andy
response of the system is shown in Figure 7.12 for A = 30 ‘ ,
The response is sllghtly more oscnllatory, (not as “tight") .. with

\

‘Output Horizon control. ;
., Finally, tlie results - for | Detuned Model Followﬁ are™ presented in
.,Figure 7.13. The selected values\rf P, (0.8, 0.7 and 0.4) correspond to
* desired closed-loop nme‘ constants o 235s, 22s and 9s, respectively. . Note

that a first‘ order“'closed;lqu““model is - particuﬁlrly suitable fo}r} this
. gredominantly first order process. 1 oo

]

AR
¥, *

o '3.30 Handllng‘ Variable Dead-time

4

A change in  time delay may be introduced by ﬁswi’tching between

Ahermocouples during an experimenta® run. At a water flowrate of 53 Lcm /s
S sthchlng between T/C #l and "2 changes the dead-time from approxlmately 4s
. 40? s. Such a large variation in time delay destabxhzes fxxepparameter

® as well as some self—tumng controllers (GMV, for example) - As-a snmple
‘demonstratnon a PID controller was tuned by trial and error  to glve ‘an
overdamped response to setpoint changes *and inlet water flowrate dxsturances

y (occurrmg at times 250 s and 500 :s) using T/C #l as. shown in Fxgure 7. l4

\ When  the larger dead-time is rntroduced the servo and regplatory respense

s very oscillatory (disturbances entered at 1400 and 1700 s). ,
, v ) : , <

. *

Compensatwn for the variable' time delay with 'GPC results from '’

over-parametermng the B(q ) polynomxal The maxnmum expected physical

w1 b parameters ﬂr oush b) allows for any . remaxnmg fractlonal
. »>. dead time;" A~nY C t‘he, three conflguratxons at‘ GPC may Qe apphed Cons:der
‘Detuned Model- Fojlewmg with P=5 4q , (correspondmg to i desired
closed-loop time constant of 35 5), : When the Ilarger time delay is

mtrodueed a transrent ‘of approxnmately 40 samplmg intervals  (Figure 7'l5a)

18 requxed to arrive at an updated paranreter set. (For clanty, in Fxgure

time delay is< 5 samplmg mte;(:als @, =t cl/T = 40s/8s =~5). Estimating "



»

‘f}'

7.156 only the ‘parameters 5 , B are plotted. " A expected. 6 hovers
near zero when_-there is little ttm*-delay ahd 5 tends: to zero when the time
deﬁy increaees) The inlet water flowrate ltep disturbances introduced at
750, 900 1750 and 2050 s are rejectqdwsmoothly in the presence or absence
of the ‘additional transportatnon delay. . a

7.4 Interacting Tanks

¥

The interacting tank apparatus consists: of a pair of glass vessels
cdtfnected by a rnanually adjustable valve kresistance), as  shown
schematically in Figure 7.16.  The level in the first "conical® tank and the .
inlet - water flowrate were selected as the controlled and manipulated
‘variable‘s, respectively, For operation with ghe level above 18cm the
diameter is constant; a simple mass balance (Stephanopoulos, 1984) indicates
that the transfer function between the inlet water flowrate and the level in

the first tank is second order (overdamped) with a zero in the

continuous-time domain (i.e. pseudo first order). For levels’ in the first
vessel - below 18cm, the diameter decreases linearly. Highly nonlinear )
behavior is observed for operation in this _conical section. Process

variations were introduced by changing the resistance between the tanks.
Since altering the resistance between the tanks in open-loop causes an
immediate change in liquid level, with a slight abuse of terminology, this
change will be referred to as a ';disturbance Standard ~ operating
conditions for the mteractmg tanks may be found m Table 7.4. '

Table 7.4 Nominal Operating Conditions for the Interaidngﬁlks

" Inlet Water Pump Speed
Inlet Water Valve Position

) (Resulting) Conical Tank Level ’ o 18 cm SR
: TS Y - Ne - i - . : -
’,,,-" ) {%7 ‘_“ ~ I ) : - . -

7.4.1 Non}inearlty

w“
. T : ) : )
The open-loop response of the eomcal tank level to step changes in the

control signal to the inlet water valve is plotted in Figure 7.17. f’l‘he



| "gseq"nd mark tho
. ‘re’s tance between the tanks

The hxghly nonhnear nature of the system is evrdent form thure 7 17. \

Based on “this ‘and other open~loop Qtpenments approxrmate process ga‘ins and

dommant trme constants are llated as functtons .Qf hqutd level chahges in.
Table 75 L ot e ‘; ‘ | ‘ .
N ’ RN * : . e "l:’.' .~ NN ’ R . L ! ) o.
-l s Table 75 ,Nonl’n\earity.‘:of‘ the Interacting Tanks , -
oo Conical. Tank-Level . j‘:"fl?rooesfs‘-‘_Ga_in., K Doi';ninant‘ﬂTyhe Constant, 7 .
Sl e SN ey et e R e P
coh2-18em A, o=Sem/% o T 20050 %
N v, QJA‘-' : . ) v . : .v BRI : f .
o | 9-12cm : R =5 Cm/% o R .\\ 40 s - E
R 5_9 cm 5 L -45 Cm/%' " I 15's
The pure ttme delay of the process was determmed to be under 2 S. Note '
that h', comcal : shape _ of ‘the B Afrrst " vessel . gives rrse to:
_; dnrectlonally—varymg dynamrcs o ‘ 2 e o e , o

“1,7;4.'-2; sam’pn_ng ‘Inter‘v‘a] |

S It. is obvxously dxffrcult to follow re\ommendatmns in the lrterature =
" for . selectqap of the samphng mterval when there extsts large ‘variations: in
the_ res_ponse : tune of a process. A sample ttme of 8 s was felt to be - a_'
"reasonable " compromise.. " This . interval tepresents .1 /25th of th i large‘st,‘g- .

: expected domxnant ttme Eonstant and one half of the smallest

‘ @
c *7.5, Generalized Predlctite Control,o_t‘ ‘the Interacting mks' -

v. : , _
‘ In Chapters 4 and 5 1t was shown theorettcally and demonstrated via -~
srumulanons that ‘each of the - three coaf«rguratxons of GPC 1s capable of

- maintaining - output p_erformance the response of the controlled vanable is

;'kinvariant' to .prooess ‘gain chang_es ‘and rnsensmve to changes m dynamncs o

£



;.:_ﬁ‘n;;mrt'i{iésn{fotlowlbh g conditigns. 4, SR AR .,g‘
e For coficiseness, Detuned Model Folfbwing control of’" the, "Iﬁteracting

Tanks ’15\ not dxscussed res?, were si rlar to- that of . Output Honzon'

control - The " experrmental rugs thh the lnteractmg Tanks are summanzéd m

\, 4 o f, “‘\

. . Lo . /4 ' ‘4‘ » ‘ \ ) —‘».‘ ~‘: “ )' - .:‘/:/‘;“:

- .4.'

/i L 5 - . . e "

 Fig.

a8 -*,’en," | "<1'-'-8.q,“.>.’— 1-4a

! : ' oo . g . .
Cah) . Purpose .. .o

.
LIS

s ty P
. - maintgnance of performance-.
TN . . o, e S

~
~.

e _7{19f LW A=c0)’lstant R L S T B S B
7.21j|“ ,PI /\ B S S B " EERRE SN

-
Abbrevxatmns OH Qutput Honzon, LW

Lambda Weighting
manually tuned S— _3 . o o .’ ‘

: j L "
- 7.5,./1‘ ‘Output Horizon Configuration T / S :

-

/ For,' ‘this ”"confi‘gnration" 'n"o' ekplicit'~ "weighting s :}laced on co'nt_rol-’
/actmty and therefore it fs expected. that outoUt performance wxll “be : L
/ maxntamed The closed loop response to~ setpomt changes (between 18cm-v
/ l2cm and 6cm)tand the dlsturbance enterxng at 2000 s 1s shown m Fxgure .
/{ 7 l8a 5 The. default value of the controller regulatory desrgn polynomnal o
/ L =l 8q ‘,‘ was employed for ‘all GPC runs. w:th the Interactmg Tanks A

second order model was xdentxfred wrth the trace of the covanance matrlx

held constant at’ 80 and bandpass fxltermg of the regressor (C =(l 8q ))

l",v =



C Parameter : trajectonas \ar "‘ylndl"cated ’i * Figure . 7:18b . : estxmates‘ ‘
| mmahzed at aero,' (Startup consrsted ot‘ four OL fp changes in the'
. :control srg_nal follqwed by one‘ CL setpomt change duri

the run) C ‘ W ‘ ; e

_ Comparmg thg servo responses it i& evrden that the self—tuning
e controller fis able ‘0 mamtam th'e closed loop bZd;thth ap‘proximately
constant Most 1mper'tantly. thrs is ‘being’ accomplrshed during simgle large -

setpomt Tanges (i.e. "ap opposed to - over \several sntallﬂ, setpomt changes

__‘.wr‘thm the, regron of _nonlrneari_ty). e . ‘ o - .

.

3 . .
1]

. .
1152 Landa Weighting Conﬁguratlon

Th previous experrmental desrgn was duphcated wrth the basrc tuning

s the Prrst 500 s of_,

‘-rparameters set - for . Lambda Werghtmg control At mtermedrate ltqurd evels_‘ -

(=12cm), tuned model‘ parameter ‘estimates resulted ‘in |tr(G G_| 6. A
. T value of Aal 0 therfore,. is ewgected to yield control actrons roughly 2/3.‘
as large as for “deadbeat -control. Frgure . 19a confrrms the analysxs in
Chapters 4 and 5 which mdrcated that a, constant - value of Ais unsurtablen
for mamtammg output performance when there are l?ge garn and dynamrc\‘

. changes . v , _ L
. The estihated prdcess gam, “l'(p.-,:-’ ﬁ(l)/&(l), and the surnﬂof .__the lé(q'l)
polynomral parameters; B(1), are ) plotted . in Flgure .7.19b. '»_El‘he .
identification algonthm ‘ rern'aining‘ alert and provrdmg - reasonable static.

 gain esttmates at the | drfferent' operating levels -For < example, with the
o setpornt at 18cm during the time interval. from . 700 to 1000 s, theé gain was
| ted to be -6.5 cm/%.- Thrs is relatively close,., to the value -5 cm/%

computed from open-loop tests listed m Table 7.5. ’ o

-
~

S the co‘ntrol werghtmg is proporttonal 10 . [B(l)] R ‘the -output:
’ ”performance ‘can be made msens:trve to process changes. From the prevrous
figure;—at— rntermedrate quurd levels, parameter estimates were: such that.

B(1) & -0.06. “Thus X = 300(B(1))" should yield approximately filagigeme  speed
o of response for . operatron around lZcm When the setpoint " is Scm or 6crn, A
\\ ' wrll be . automatrcally ad_;usted to compensate for the process nonhnearrt

‘The resultrng output performance is very consistent  as rndrcated in- - Figure
1.20a. Agarn note “that  this approach mvolveﬁ a trme-varymg werghtmg on

contfel\actron



.5.3 Comparlsonmltl: PID Control L ot
e mte;estin;\tocslnparethe Previbus .resylts . with _that which can . .
Bo achlevad \usmg a_fixed gain PIM controller ' ?re 7,21 is xllustratxve
of the problems 8 PID controller has’ in mamtanning utput porformance The
X controller Was’ mmallyr tuned usmg the Zregler-Nlohols teclrnrqueQ (Zregler
and Nichols. 1942) wrth !he ga?ns adjusted by tnal and error to . rmprove the

Servo - response at rntermedrate quuxd levels " For- the setpomt changes

. between 12cm and 6cm a large amount of mtegral actndh \is needed m,, order to '
automatrcally reset" the output (by roughly 20%) In contrast, when moy'mg-v
between 18cm. andm lZcm very ‘little integral action is ‘required; too much
_lfeads to}he overshoot shown in Figure 7.21. " ‘

76 Summary - ‘ A '

'} The self—tunmg Generahzed Predrctwe Cc‘troller gave very good
results when applled first to a pilot scale Stirred Tank Heater with a large
amount of measurement ’noise and a variable time delay, and Second to a set -
" of hrghly nonlinear Interactmg Tanks -The incremental algorithm ‘wa‘s easy
to commission. with automatxc bumpless transfer and anti-reset windup

v o . . \

protectron _ _ _ . ..’,». .

+

Specrfxcanon of  the 'estrmator . and controller desngn polynomrals,
C (q ) and C (q ),‘ according to /Qhe recommendaﬂons grven in Chapter 5,
was shown to .be absolutely vital for satrsfactory control of ' the Strrred

“Tank Heater. . Excellent compensation for sudden changes in‘ time delay was

obtai _d_ slmply by ovem'ara'meterizing thej(q"l') polyno‘mial., Each of the
three 'tuning” strategies of GPC could” be nded to vary the ,-,o‘losed-loop “speed

of response B _ .

’l’he experxmental runs wrth the nonlinear Interactxng Tanks demonstrated
»that self~tumng GPC is capable of mamtarnmg output performance despite
large charges m process gam ‘and dynamrcs Therefore it is not nedessary
for tlté user (or a supervisory system) to adjust the tunmg parameters as.
B long as the rdennfxed model  is always a reasonable representation of the ‘;

process.

[
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'the oxperimenul runs in this cln?ter are diyectly

4 ¢
»

R 8. EXPIR!MEN‘I AL APPLICA'HO OF SELF-TUNING ’
POLE. PLACEMENT CO L .

. \ A
Conllstent wlth the pmllel development of"the GPC and ' PP eontrollers.k ;
pmble to GPC trials
was in _most

in the previous chapter. ~ The - behavior of Pole . Placement
respects found to be similar to that of GPC, particularl i GPC tuning
penmetexs' were selected for Detuned Model-Following) "R  is the‘refore‘
possible ‘to reach . simildr conclusions regarding the \influence of the
controller noise model polypomial, Cc'(q'l), and the delired chamctenstnc
polynomial, P(q"l). To avoid repetition, onl)" a subset ofg\he runs actually
carried out w‘itbh PP control are included in the followifg sections on’ the

Stirred: Tank Heater and Interacting Tanks. ‘ U A

8.1 Control/; of the Stirred Tank Heater

’ The pilot scale Stirred Tank Heater was descnbed in §ectnon 7.1;
recall that the open- loop response Of the  system ' depends strongly on whether

~an inlet water deflector is used or not. The implementation details

dxscussed in section 72 apply equally well to the Pole. Placement algorithm.
The Pole Placement experlmental runs wnh the Stirred Tank . Heater are

summarized in Table 8.1.

Table 8.1 PP Experimental Runs with the Stirred Tank Heater (Self -tuning)

Fig.  With/Without Time C‘(q'l)‘ ' tc(q'l) " Purpose GPC Comp.
No.  Deflector Delay . Fig. No.

8.1 with constant - 1 1  eff.of C,.C 73

8.2 " " (1-80°)?  1-8q7 " 7.5

- .

8.3 without constant 1 | eff. of C‘,Cc‘ 7.5

84 " > om (1-8qY"  1-8q7' " 19
‘ . . ) .- thx'\ .

8.5  with constant  (1-8q")® 1-8q'  eff. of P 7.11-13

'86  with  variable (1-.8q°Y)? 1-8q"!  deadtime comp. .7.15

188 -
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8.1.1 Stabilization using Polynomials C' and Ce
\ ’ '

\ The sequence of etep setpoint clungee and disturbances for the
analogous GPC runs were replicated here for PP control; at time 750 s the
_inlet water flowrate was increased from 53 cm /l to 66 cm /e. returning to
the former flowrate at 900 s. The constant trace for the RLS identification
algorithm was specii.'ied 'to be 0.2. . A first order desired characteristic
polynomial wi'th pole at 0.8 was used throughout.

8.1.1.1 With Inlet Water-Deflector

In the absence of a large amount. of measurement ‘noise the closed-loop
is stable for C and Cc equal to one as' demonstraled in '_Figure g1 At
times, however, the identified model -gives poor predietions of the ouput
(the model is unstable- during the period from 600 to 1100 s). With Cc-l.
the controller reacts strongly to what is perceived to be a series of
disturbances with the net result c(fm sustained oscilMtions are present in
the response of the input and output. ,

If bandpass‘ filtering of the regressor is introduced, a better low
'freqdency model is identified (In Figure 8.2, the model is "stable with a
“reasonable” steady state gain). At the same timg if the disturbance model
polynomial used in the controller is selected as Cc-l-.8q'l, the regulatory
action of the controller is detuned and the output response is smooth. The
inlet water flowrate disturbance does cause some parameter bias resulting in

.overshoot for the ‘following setpoint change.

8.1.1.2 Without Inlet Water Deflector

Remo.ving the/ inlet water deflector from the Stirred Tank Heater reduces
the signal/noisé ratid considerably. It is .also exp‘ected, that unmodelfed
dynamics will be present as thé process no longer appears first order (since
it is not well- mxxed) Wxthout regressor filtering a suitable low frequency
'model cannot be obtained (F:gure 8.3) and it is impossible to stabilize the
closed -loop. '

. On the other ha/nd very good results are achieved using C =-(l 8q )
and Cc-l .89 as illustrated in Figure 8.4. For the majority of the run



P ' ' o ’ . " 4" g '
b vt : , » , 190
‘the mlmmd mmmn hoversd '‘around & --0 85 and 6-0 14 (wlth'
. corresponding gain sstimate, lt =0.93 °C/%). wm . approached -x .0 at 1000
8 the ‘control performance wu only slightly deanded These seottings for
C.(q'l): md'C.(q") also gave the best results using GPC.

[

8.1.2 Altering the Closed-Loop Response

A first order desired characteristic polynomiul is a suitable selection
for this predominantly first order process Figure 8.5 shows results for‘ a
trial where P was changed from 1-8¢"' to 1-.7q”' and fimally to l-.\dq'1
before each iqcreise in setpoint, (The corresponding desired closed-loop
time constants are 35, 22 and 9°s, respectively). The standard inlet water
flowrate .load changes were introduced during operation with each tuning
parameter setting.  The. trace of the covariance matrix was maintained at
0.02 and the regressor filtered using C.-(l-.8q'l.)2. The initialization
sequence is not shown in Figure 8.5. The results are very close to those
obtained with GPC in its Detuned Model-Following configuration.

8.1,3 Variable Dead-time Compensation |

The. Pole P\hgement algorithm’s ability to advt to changing time delay‘
is a cousequencp of} overparameterizing the process model ' numerator.
Estimating seven B parameters is sufficient for the maximum expected '
dead-time of 5 “sampling intervals. The temperature measurgment was switched
from T/C *1 to T/C *2 at time 1150 s as indicated in Figufe 8.6. After the
retuning transient, the response to setpoint changes is' delayed by 40 s but
otherwise basic%lly unchanged. As expected, the time taken to. eliminate the
water flowrate ' step d:sturbances has mcren.fd with the addmonal dead-time

present

)

|

Y 8.2 Control of the Nonlinear Interacting Tanks
« v N

The conical and cylindrical Interactmg Tanks described in section, 7.4

. allow evaluatxon of Pole Placement control on a second order - hi}ghly

nonhnear process. The pnmary ‘objective is to confirm that the Pole
Placement algorithm will maintain a__ consistent _output  response -@vén
reasonable model - parameter -estimates. The experimental runs with the

-



lntorictlhg Tenks are summarized in Table lﬁ

o

Table 8.2 PP Experimental Runs with the Interacting Tanks (Self-tuning)

. ‘ ' .
Figure No. Model Orders ~ Purpose GPC Comparison
na nb , Figure No.
' R a
8.7 . 2 . maintenance of performance 7.18-20
8.8 2 0 ~ .
_(r
\

. 8.2.1 Full Second Order Model

»

Figure 8.7 displays the closed-loop behavior and parameter trajectories
for self-tuning PP control of the level in the conical vessel. A full
second order model was identified with all other controller snd estimator
parameters set the same as for GPC in, the previous chapter. The lack of
stability is thought to be due to near common factors in the estimated model
polynomials f!(q'1 ) and i\(q'l). At one sampling instant (toward the end of
the run) the identified process- model was: o

o 'B(@)  -.0734q +.0519a"?  -.0734q7’(1-.707107 ")

A(@Y)  1-1.6678q71+.67969°7  (1-,9596q 1) (1-.7082q™")

The OL zero (.7071) lies close to, one OL pole (.7082) and is expect¢d to
) -

have produced an ill-conditioned Sylvester Matrix. C
One possible way to rectify the probfém\ is to identify a lower order -

S v

g

model.

8.2.2 Reduced Second Order Model

mernmental run was repeated with' 1| B parameter and 2 A
parameters e¢Stifnated (since b for the previous run/ was observed to hover
near zero). The results are shown in Figure 88. -With the reduced 2nd

order model the speed of response is slmost invariant of the process
changes. Increasing the gesistance between the tanks at 2100 s causes an



small "blip in the output at tnme 2650 8 was due to a short - power surge‘

ﬁ«;lwhrch mornentanly mcreased the mlet water pump speed

The OL step res;%nse of thrs process appears predommantly Ist order”
g be more )

(anure 7. 17) Based on thrs observatron a- lst order model WO

;;reasonable for . this - apphcatxon N Results obta{ned with 2’ B and 1. A
'parameter estrmates (not mcluded) were srmrlar “to Frgure '8.8. - Note" that

,-usmg a lst order model" allows overparametenzatiqn “of B. to account' for

a"anable trme delays without qausmg drff;oultres wnh the solutron of ‘the

“'Sylvester equatron A

. 8.3 Sum'mary- 8
&

20

ke The Pole Placement algorrthm when apphed to the Stirred Tank Heater
gave results very srmxlar to those obtamed the previous chapter usm‘g
’GPC.‘ Overparametenzatlon of the B(q{_) po,lynornial. allowed. ‘excellent

_compensatlon for varnable time ‘delays.
When control of the nonlmear Interactmg Tanks was attempted _near

common factors m the esnmated polynomxals of ~the full second - order model

destabxhzed the closed -loop. Although in  this partrcula[r) case, the problem-

was rectlfled by reducing - .the number of estimated parameters " the

sensmvxty cof Pole -Placemen‘t = controlle'r_s_ to: oVerparame‘terlzatlo,n “of _gthe

So

A(q ) polynoniial (when Bq™Y) ‘is - also. overparame%;jzed);‘ represents a

signifi 1cant drawback

" 55
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9. COMPARISON OF GENERALIZED PREDICTIVE
" AND POLE PLACEMENT CONTROL

In the previous' four chapters, simulation and 4oxporimenul results were
used to evaluate and demonstrate the capabilities of the Generalized
i’r&dictive -and Pole Phgement techniques. Since the -behavior of GPC | débénds
strongly on the settings of its many design and tuning parameters, three
configurations of GPC were studied. When each of thésg configurations is
implemented, only one tuning pa‘rameter remains availabl_é” for the user to
adjust in order to achieve the desired response time. Note that while the.
potential exists to achieve better performance with GPC by adjusting all of
“the. tunihg parameters during operation, in practice this is extremely
difficult to do. The possibility of accidently'selecting a very poor tuning
parameter set is quite high. In this chapter, a comparison is made between:
each of the three configurations of GPC and the PP controller, l?ased on
results presented in Chapters 5 through 8. '

In section 9.1, the closed-loop transfer function for Generalizéd
Predictive Control is compared to that for Pole Placement. control and the
relationship between the two control strategips is commented upon. In
sections 9.2 through 9.5, the algorithms are compared based on the following
criteria: .

1) ease of a;;plication , ' N

2) computational effort

3) ability to maintain peri‘ormance despite variations in
a) process gain and dynamics
b) dﬁad-time |

o).
¢) process order
4) character of the closed-loop response

Section 9.6 provides a brief summary of the results of the comparison.

9.1 Closed-Loop Transfer Functions

In section 4.5.4, it was shown that the GPC characteristic polynomial
contains the controller design - polynomial, Cc(qq).. as a factor. The
closed-loop transfer function for GPC may thus be written:

.

201
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.. CBRQ"'w(t) + TC_Ax(t)
yt) = == :

U T (9.1.1)
C.[TAA-rq-Bs 1 ,
where C° repmentj the "true" noise model. {

'g'. S". “ind T'-' are polynomials in tNe general linear form @f* the ‘control law
(2.34) with Cc(q'l)-l. given by eqn. (2.3.7). These polynomials are:
indirect 'functions of the design and tuning parameters, N_, N’, NU, ),
P@)) as well as the model polynomials A@?) and B(q'l). Thus, the
closed-loop poles depend upon all these variables., '

A

A Pole Placement controller can“ be obtained as a special -case of GPC by
several different combinations of the design parameter settings (Mohtadi and
“Clarke, 1986, see also section 2.5). In " this -case, the closed-loop transfer
function becomes: i '

v ~ CBRq'w(t) + TC Ax(t)

- : [ 0
¢ Cy(t) =

&

9.1.2)

|
e and the user,Qp’O’ey’ih{ the closed-loop poles directly through the choice of
P(q'l). Aside from « difference in notation, this is the same closed-loop
transfer  function * that ' was obtained for the standard Pole Placement®

CP
¢

formulatfon, (see sec}ion 3.1.2):

‘ C B{P(1)/B(1)]q 'w(t) + GC,Ax(1) - .
- . Yy == T - (9.1.3)

LR C;P .

'( with the following equivalences: P(1)/B(1) = R, T = G )

-

A few remarks are in order. . 7

-

The Pole Placement controller can. be thought of as a "fourth”
configuration of Generalized Predictive Control.” For the .Pole Placemient
confighration, the desired characteristic polynomial, P(q'l), serves as the
active tuning parameter. o '

* The roots of th{e controller  design - polynomial, . Cc(q'l), becpme
closed-loop poles when using - Pole Placement or Generalized Predictive
Control with arbritrary de;ign and tuning parameter- settitigs. In ei}her
,case, Cc(qfl) does not affect servo control in the absence of MPM.
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ln aennral. the cloud-loop poles for OPC (le. roots of [TAA + 's'n
move ta different locations if A(Q) snd B(q™)) change. Simulations
indicate that these movements are often quite small for typical pro.cm,,,;i
variftions.  In contrast, when using the Pole Placement /strategy, the
" closed~loop poles are invariant to. changes in the model polynomnals Aq )

and B(q )

‘ , 9.2 Esse of Application - ‘
Past criticism of the Generalized Predictive Controller often centered

on the difficulty of specifying the numerous design and. tuning parameters.
Based on experience with the three \configurations of GPC devised in this
thesis, this criticism is no ﬂ'&ngg,jalid. With only one active &ping‘
parameter used = to vary . the overall speed of response, the Generalized
Predictive Controller can be as easy to apply as the . Pole Placement.
strategy.
o~

™

e 9.3 Computational Effort

The computational effort involved in using GPC depends primarily upon
. the control horizon, NU, 'and, to a lesser extent on the maximum output
horizon, Nz‘

The matrix which is inverted in the control calculation:

(Gf(:r + 7!

1s of dxmensxon NUxNU and therefore larger values of NU increase computing .
requ:rements. For the Output Horizon conflguratnon NU-l and only a scalor
division is necessary. The computational effort involved for the Lambda
Weighting “or Detuned Model-Following configurations is usually somewhat
higher, since NU=na+l. However,” a 2nd order ‘model (possibly with B
overparameterized) ié ‘of sufficiently high order for most chemical
processes. Therefore, freqqenily NU<3, and the matrix inversion is not
burdensome. | .

| The number of Diophantine recursions is proportional to Nz. In most
cases, after tun'ing the closed-loop response, 'N’ is somewhat smaller for the

-

Output Horizon configuration.
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) - standar¢  Pole Placement l'ormulutlon, “the solution for the
bolynomisls F and G requires ‘the inversion of the .Sylvester
&or a minimal degree solution, this square matrix is of dimension
XN, np+nc-nb-1) + nb + 2, When B is overparameterized to compensate Yor
a lnrge (or variable) time delay, the computational effort involved in this’, %
inyersion may be considerable. . On the other hand, if Pole -Plycement i
obtained as a special case of GPC, the number .of operations is comparable to
the Detuned Model-Following ‘or Lambda Weighting configurations. \

- ;

{
‘

¢ 9.4 Maintenance of Performance

The goal of an a{laptive control system is to maintain the  closed-loop
performance at user specifications despite variations in the gain, dynamics,
dead-time andYor order of the process. The coxl\trol algorithm itself should
be capable of aintaining performance for these variations, given a
reasonable model of " the process at all times. )

N ¢
9.4.1 Variations In Process Paramg\grs

Placing the closed-loop poles at prespecified locations implies' that.
‘tl;e output response will be ‘invariant to process gain changes usirlg Pole'
Placement. The same will be true for Generalized Prédictive Control if no
control weighting is used (Output Horizon and Detuned Model-Following
configurations) or if ,\c:t[B(l)]2 (Lambda Weighting configuration).  Since the
open-loop zeros are retained in the closed-loop for both GPC (eqn. (9.1.1))
and PP (eqn. (9.1.3)), the output response will vary slightly for changes in
process dynamics. The output performance is more conslstently maintained
using the Detuned Model- -Following configuration or Pole Placement strategy
compared with the ‘Output Horizon or Lambda Weighting configurations (compare
Figures 5.8 and 6.2 With 5.6 and 5.7b).

1

19.4.2 Variations in Dead-time

The ability of ‘both the GPC and PP controllers to ‘compensate for
variable dead-time 1s a consequence of overparameterization of the B -
polynomial. Excellent performance was obse,rved using = either algonthm for

5

large changes in the time delay (compare Flgures 7.15 and 8. 6). . A /1
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9.4.3 Variations In Process Order
GPC is known to be robust against variations in the order of the

'process which result in an overparameterized model (ie. an overparameterized
A polynomial) (Clarke et al, 1987a).  This is mot true for PP " control;

instability frequently results when near common factors srise in the

estimated model polynomials }A and B (see Figure 8.7). The GPC and PP
controllers appear to be equally robust to model-plant misma\o{ when the
model is underparameterized (compare Figures 5.19, 5.21 and 5.22 with 6.5).

9.5 Closed-Loop Response Characteristics

Some qualitiative comments  can be made regarding the closed-loop’
response obtained using PP or GPC control. LessA control effort is expended
(not _sup’risingly) when the Lambda Weighting configuration is employed.
However, for manyg applications, a slightly more oscillatory response s
obfained compared with the other two configurations of GPC and with PP
co{irol (compare Figure 5.7b with 56, -58 and 6.2, note the different

scales for the coegol signal).

9.6 Summary .

The primary limitation of the Pole Placemeht algorithm is the inabi¥ity
to- provide acceptable control performance when. the model (i.e. A polynomiai‘)
is of higher order than the process. This lgnitation is overcome by the
prediction-based GPC  algorithm. The GPE approach requires' less
computation;l effort than the standard PP strategy. Both self-tuning
algorithms are highly effective in maintaining the output performance

despite variations in process gain, dynamics or dead-time. }



10 PERFORMANCE ADAPTIVE CONTROL

‘In th‘e 1deal case where an accurateu dynanuc model of the nrocess 'jis/_v_” .

ri‘ S

.'.'known at all trmes, the - closed loop ponse can -be made mWarmnt to
'process gain ~ changes - usm.g.n enther Generahzed Predtctwe Control or Pole
Placement. - -However, this assurance cannot be #iven under more realistic
conditions when there is B | | ' o
a) 'model-plant mismatch, or = . R
-

‘And even if - no model plant mxsmatch exrsted the appropnate settmgs of the

. b) changes in process dynamxcs

controller tunmg parameters y;eldmg the desxred closed loop behavxor are
not always known a priori.. . ‘ ) |

, Therefore, consider * the introduction of an "outer loop" Which ‘monitors
'~ the -closecf%loop system and adJusts , ‘controller parameters 'so that -~ the’
'performance meets user specrf:canons - Such a- performance?) supervxsor (_0r
‘ perfo,rmance tuner") would .,car_ry ~out - the - initial »select;on.‘f of 5 tuning .,
parameters - to. achieve desired 'perforrnance " and. thereafte‘riw‘ inake ‘minor
i,alteratnons as’’ necessary to maintain cons:stent b'e'havior in' the presence of.
modellmg errors and varlatrons m process«»dynamrcs » Since -. the nnderlying_
self- tunmg ‘GPC or PP controller  has ‘a structure ‘with *"two degrees. of
freedom , it should be possxble to méet. spec:fxcatnons on. both the response

’to setpomt changes and the rejectron of dlsturbances

-

: It must be recogmzed that a performance supervnsor cannot be expected.

: '_'f"to tune the closed-loop system' when the underlymg controller is’ beyond its

”'range of capabllrtes - “The performance tuner srmply carries - out a local‘

'ioptrmlzatlon of  the =~ controller tunmg parameters once the control algonthm ‘

and- l-structural parameters (e.g. model order sample “time, etc) have been
- :selected. ~ The, selectron of the "best” controller and determxnanon of these

: ‘»structural parameters would be the ... responsxblllty of a hxgher level global

off line supervxsor ‘, The - supervrsory shell for an’ (adaptlve) controller ‘is_ :

._envxsroned to consist of the two - hlerarchrcal ‘Tayers slﬁwn in the followmg

 figure:

o

o206



: KG\lobal Off lrne Supervrsor'“
7 . l‘

Local Real-time ‘Supervisor
1) Operations Sup.e rvisor
2) Parameter Estimation Supervisor

3) Performance Supervisor/Tuner .

"(‘Adapt iv e)“(;'ont rol Algorithm
'Fxgure 10.1 errarchtcal Struc ture for Adaptlve Control Superv:sory- 4
~ System .

-The development of a complete control supervisory system is beyond the
'scope of this work.  However, ln"‘b':order to give the reader a perspectiye on
Iwhere the performance supervrsor would fit into .the overall schen%e,‘ some of
o the functrons of a. supervrsory slﬂl will be " outlined in sectlon 10.1. “The
emphasis of the chapter is on a prototype performance tuner surtable for
either Generahzed Predrcttve or Pole. Placement’ control Two aspects of the
performance . loop are dealt wrth in  section 10.2, ._.what_ constltutes' a
'_reasonable set. of. user - specrfxcatrons for servo and . regulatory "cOnt‘rol and .
how should the controller tunmg parameters be ad;ustedﬁo meet the - desired
gperformance Sectrons 10.3 ang 104 contain - simulations and expenmental
runs which demonstrate the operanon of the performance ‘tuner.

- 10.1 Supervis;y_/ éhel.l for an Adaptive Controller |

Ther- is. a. large discr‘epancy hetween simulation  algorithms . and
practical adaptive 'con_trollers‘ “which" must - handle nonllnearit’ies' ~unmodelled
‘dynamics, -meaSurement noise, ete.”.': Reported successful oapplrcatrons almost
'.always include "'fsafety-nets" and the use of . specxal trrcks to overcome' '
'lxmrtatrons “due to the vrolatron of umptrons made m the theoretrcal
development of the controller (Wxttenmark and Astrbm, l984) The idea of :

Ajmcorporatxng ‘the ‘“"special tricks" into a supervisory shell for an adaptjve
# ‘ » S
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‘ controller is ‘not new an early paper ‘on the subject (Schumann et al.. 1981)
proposed a2 startup phase for determxnation .of structural parameters followed

by supervxslon of parameter ‘estrmatron dunng closed~loop operatron.
Isermann aﬂd Lachmann (1985) expanded .the functions of the on-lme
supervrsor to xnclude i monitonng - closed-loop.  stability with appropriate :
modrfxcauons to the controller design. SRR R . .

More recently, the use of an expert system has been suggested to assist
| in the task of commnssnonmg -and operating self-tumng controllers (Astrom,v
RE 1985; Sanoff and Wellstead, . 1985) Expert sy_stcms are computer programs
-which contain knowledge in a specific area of human e‘xperti'se‘, sufficient
to perform as. consultants The body of knowledge is orgamzed (often as a
set of production’ rules) in a knowledge base distinct from the inference
engine which applies the : expertrse to solve the problem at  hand. ‘As' -a
consequence .the systems knowledge pan ber’ eas:ly expanded and modxfred
Expert “systems have tradmonally been applied for off-—lme problem solvmg,
such as diagnostics, but for supervision of adaptrve control a’ real-‘tim'e
system is necessary (Arzen," 1986). It s also'\important that the system
have a _ well-developed user-interface - to allow the operator or control
engineer to addk or. change ““rules"” ‘and thereby build the system

mcrementally, based on experrence

In this thesis 1t 1s proposed that the sdpervisory system consist ‘of a
" global off line supervrsor ‘and a local real-time = supervisor . as mdxcated
Figure lOl -~ The global supervisor is responsible "for;_{.,‘ the selection and
(:onfiguration' of the set of - ‘control, estimation and othe'r—; routines which  are
-~ best surted to “the control tproblem at hand. At the present ‘time this; _task\.
i.s‘ best performed off-lme by control _engineers, _‘w‘ith - the assistance of
, computers for computation,  simulation, ‘etc. The automation . of ’th‘iys.’
~ high-level task is beyond current capabrlmes ‘ - ! k
. Wrth the selectron and. confrguratxon of the control system complete a
~ real-time supervisor’ may ebe used to momtor .closed-loop performance and
}ocally optrn§: controller and estrmator tumng parameters. . The real-time
v

local super woulq also be responsible . for momtonng’ the 3 operations -

vwhrch take place wrthrn a process control environment (e.g. alarms, errors,
etc.). | y' v - | o ) o
“In the following subsections, the functions of the global and local
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. superwsors will be outlined. A .brief review of the current state of
technology ‘with regards to 1mplementauon of some of these functnons w:ll K

. !
'

also be. g:ven

’
¢

t

10.1.1 Global OH-LIne Supervlsor ,

Some ol‘ the - functtons mvolved in the selectxon and design of a control'
system which would be carried out_ by the global off-line superyisor include:

L o

- identification of process characteristics
- identification of appropriate model structure(s),“ mod‘e_l ~order(s) and

dead-time (as a function of operating conditions)
' | o

- selection o_f} sample time.

- selection - of . the "most suitable" control algorithm from- a set of
available routines ) .

- ‘selection of an appropriate parameter estimation algorithm

At’ the present time,: a pre-tune  test is ?ﬁten used to obtam initial

process knowledge. = For stable overdamped processes a open-loop step change
in the . control signal giving rise- to a process " reaction curve"
(Stephanopoulos,. 1984) may, be used to estxmate the .dead-time, process gain
and dommant time constant. ; mdrcatron of the amount of measurement

noise present{' n;ay be obtame' calculating the varrance of the output once

'steady state has been reached. As an alternatxve _a relay signal may be

used to obtam process information in terms of the critical gam and penod

(Astrom, 1985). The sample time may be computed from the’ dommant time

constant and trme delay o usmg rules avaxlable i_n the literature (e g.

Isermann, -1981). Sela and Ray . (1986) dxscuss 1mplxcatnons pf the choxce of

'sample ttme on parameter estxmatnon and control.

Schumann et al. (1981) describe a_ search "techniqu_e for '.identificatiOn ‘
of “'model order and 'd.e_ad,-_time which involves performing _parameter estimation
for a number of  assumed | structures and comparing how. well each model .
predxct\ the plant output A “better criteria for selection' of model__
' structure would be how well a controller desngned based on a model behavesv
in ,closed.—loop control ~of the actual process.u Lru and Gertler (l987b) .

B v
oo s - I DU N mafacannbian tmAnw hu dncmn:no



- the qualrty ot‘ the referenoe model.

Can0

acontroliers for each low order candidate model aud comparing closed-loop,

'transfor functions derrved Wrth a hrgh order reference’ model representing
e thL plant Tlre procedure is,. howovor,) qurte lengthy ‘and’ rehes _heavily on',
Currently there is much disagreement in the literature on whrch control
“ 'and estimation algorrthms are most  suitable for various applrcatnons Each
.research group - has therr~£ favorite whods whrch -unfortunately, are not
always ‘evaluated in an objective manner. This _ thesis evahihtes only the
'Gene;alrzed Predictrve and Pole. Placement controllers.” . = ¢

. . ‘ N )
One of the criticisms of adaptive control is concerned with the large
number of ::ontroller and rdentrfrcatron parameters whrch must be specrfred
" by the user. The global off lme supervisor would also be responsible for

configuration and startup functrons including:

"

- initial configuration of the controller and estimator

s

- selection of conservative initial . settings for the c6ntroller and -

’%estimator design parameters .
.

- desrgn of a simple safe, backup controller (e.g. PI) -

- ensurmg that the user performance specifications are Salistrc

) . ‘. 5
For example, if the Generalized Predictive ContrBller was selected for
an  application, the ' global -—supervisor would choose . the particular
configuration (Output Horizon, Larnbda Weightintg, or 'D_e‘tuned Model-Following)

to be implemcnted * If in turn, the Output Horizon conf’iguration was
selected, the global supervisor would set NU N ‘P and A‘to the appropriate
" default. values given in' section 4.2. A conservative value of the active

tuning parameter, Nz, (which affects both servo. and regulatory control)
- would be- selected _'(i;c. Nz - settling time of process in sampling intervals)
along. with a detuned setting for .the controller design polypomial, 'Cc,

*(whith affects stability and disturbance - rejection) ( ie.. Cx(1-9a)™ ).

Assumiug use of a: constant trace RLS identification algorithm for parameter“ '
es‘tiniatiOn, the global supe,r_visor would * recommend. conservative values for -
the trace of the 'covariance ~matrix (gain “of the estimator) and the estimator “
filter polynomial ( ie. C,=(1-9a™)" ). All of these . initial choices ~would

‘be subject to later adjustment by the local real-time supervisor. ‘
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Fmally, the global supervisor must .ensure ‘that the user specrfications
on ‘the desired closed-loop pert‘ormance are _realistic and may . be achreved

given the. charactemtics of . the process. _the | operating constraints _(! e .

“\actuator limits) and the control and estrmatron strategies selected

-10.1.2 Local Real-Time Supeﬁlsor

The local supervrsor carries out a number of real-time tasks to momtor
Aand optrmrze operation of ‘the adaptive “control system. It is proposed that

"the loeal supervisor consist of the following modules: o . -

" 1) .Operations Supervisor (or Executive)
%) Parameter Estimation Supervisor

" 3) Performance ‘Supervisor/Tuner

10.1.2.1 Operations ‘Supervisor

»

The operations supervisor is concerned with the task of the local’
on-line supervisor not' specifically associated with the parameter estrmatron

or control routines. Thrs includes, but is ‘not restrrcted to: ’ ‘ s

- momtorrng plant alarms related to the control loop
b

- choosing the active performance specrfrcatrons and constrarnts from '

the user-supplred set

- detecting instabilities by momtorrng closed loop behavror

\

- performing fault dragnosrs to 1dent1fy the source of severe problems

1y

with the adaptive controller T

- identifying whether the adaptrve controller is beyond range of

. capabrlrtres (reqtf’ rrng attentron of global supervisor. or operater)

- recommendmg "recovery procedures” to . restore safe operatron of the -

loop (e.g. use of° backup coptroller)

"~ detecting and- elrmmatmg erroneous measurements, (due to instrument
 failure, etc.) data handlmg errors, ‘outliers", etc. (e.g. by ‘usthg
a velocity limiting frlter) : | o

| ’ ] ‘c.« Poe :ll‘ ' "‘ ‘ c . " ’ “ : '4 . " :' . ,.‘ 2‘1

!
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- performing operator eo,nhmunlcatietis "includlng!:
- advising dperetor of cutrent status ~
- « recommending operator actions
- allowing™ modnheatnons to knowledge-bue
< . .

| Ensuring tha‘t the‘ closed-loop system remains stable is the’ most
importari't consnderatxon .of the operatxons ‘supervisor. Practicel experience
indicates that adaptnve controllers may go unstable if ‘there exits a large
amount of model-plant 'mnsmateh (relative  to the . desired closedJoop‘,-
bandwidth) due to a poor model structure ‘or large process change. For any -
corrective action to be taken, the~ monitor “ must detect if the system is
becoming ‘unstable or moving _-towatdé‘ the limit of . stability. . Several
,heuristie instét_bility .moniters heve “been proposed in the - liyterat'ure' (e.g.
Isermanh end' Lachmann, l985) Gertler and Chang (1986) provide a review of
the subject . and suggest the combmatnon of filters, rectifiers and trend
analyzers to form an mstabxhty indicator. Liu and Gertler (l987b)' suggest
a scheme mcorporatmg fxltermg the absolute value of the error which makes
possible a uniform handlmg of oscillatory and non- oscxllatory signals and
reduces the effects of noise. | _

Once a tretld towards instability is -detected, action must be taken to
restore safe operation of the loop _'eith'er by -detuning the adaptive
controller or switching 't.o a safe fixed-gain ‘“backup ‘controller. Liu and
Gertfer ,('1987a,b) .,demonetrate the former alternative for a Pole Placement
cpntro’ller; Using Pole ‘Placement, closed-loop - stability is guaranteed if
bot_h the open-loop ‘plant and identified . model are stable and the - desired
"closed-loop poles are specified to be sufficiently close to. the poles of . the
medel. | Thus they sugéest moving the desired closed'-loobepol'es towerds the
model poles ~ incrementally until = stability is _restored. For the Output
" Horizon configuration of Generalized Predictive Control, Appendix A contains
a proof 'indicating that - the closed loop  will ‘be stable for large values of
N as the algonthm tends toward a mean=-level controller. For the L'ambda‘
Wenghtmg and Detuned Model- Following confxguratlons of GPC stability can
also be brought about if the -active tunmg parameter is used to. detune the
controller suffnclently . . o ‘

W:th stabxhty restored, the next logical step is to carry. _‘ out - fault’
diagnosis to identify _t‘he source. of the problem. It is “impo'rtant to
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determine if there has been & lerge cl’:’ange ln the process .such thut the
- adaptive controller is beyond its range of operatxon. E The operator. or

global supervlsor should be notified in this case.. ) )
10.1.2.2 Pamn ter Estimation Supervlsor ‘ SR
~” ) ’ *

The main/ objective in supervising the parameter estimation procedure i &
to ensure tht the moJel identified is a ‘"reasonable" representation of the
process. Itf‘ is important not to update the controller based on parameter
estimates that are grossly in error (Seborg et al, 1986). " The para\m‘eter

estimation supervisor : should: o o
[§]

- check if the gam and poles of the discrete-time process model are
reallstxc

- monitor the prediction error, parameter estimates, etc. for abrupt

changes, ringing, etc. .

- adjust design parameters of the estimation algorithm (e.g. trace of
c‘ovariance ‘matrix, etc.) in. response to changes in operation (e.g.

setpomt changes) or indications of model acceptabtlxty

- carry out parameter "scheduling” (resettmg) 1f parameters are known

functions of operating conditions

Robust control requires a model which is baccurate around the cross-over
frequency (Wittenmark and Astrdm, 1984). . To estimate a good model it is
necessary ‘to monitor the excxtanon in the relevant frequency band; when the
control sngnal generated by the controller is - persistently excxtmg
‘extra - perturbatxon sxgnals must be added or the estimation algorithm must be
switched off. The parameter estimation supervisor would be.responsnble for,

R

- 'monitoring excitation

: -
- detecting disturbances (\{q:xs a change in the process)

&, ',deciding whethér the parameter estimator should be on or off

'4 Several ! of the “modxfrcatxons to the basic RLS algorxthm are intended to
‘avmd 7 dtffncultnes ‘when there is insufficient excitation (Shah -and - Cluett,

1987) _ I‘-lowever,‘_ the selection of .the on/off “thresholds” and other

«l ; . . . v
BA H S ‘_

Ty
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| éltimator tunins punmetm ‘are omn appllclﬂov ﬁoplﬂc. | Much work
remains to be done to crmo (] univeml parameter ldentlffation system,

10.1.2.3 Performance Supervisor/Tuner

3

lhdusfrial implementation of adaptive control has been hindered by the

fact that the benefit of improved control is outweighed by the risk of poor
behavior as a result of modelling and controller design errors.  Self-tuning

controllers aré equipped with tuning parameters which compensate for

model-plant mismatch, usually by slowing the closed-loop speed of response
and trading-off performance for robustness JFixed tuning parameter settings
do not take into cons:deranon that the accu”racy of the process model
changes over time, A supervisor could be used to monitor the actual
closed-loop performance and modify tuning parameters to _reﬁect changes in
model accuracy in order that the behavior meet user specifications.

‘In the followin‘g” sectibn,; the performance ;upetvisoi-, shown iq block
diagram form in Figure 10.2, will be discussed at greater lengt;x.

10.2 Performance Supervisor/Tuner

- The role of the performance super?isor is to adjust controller tuning |,

'parameters so that the actual measured -closed-loop performance meets
user-specifications. The vision of an ideal adaptive controller which
r;quires no user input is 'unrealisti‘é;. it is at least necessaryv “to. tell the
controller what it is expected to do (Wittehmark and Astrdm, 1984).
However, the,‘ specificétions' given to the 'adaptive controller should be in
terms of performance expected; the user should not be required to set values

for tuning par_amét,ers which are abstract or otherwise unrelated to.

closed-loop behavior.
) A

'10.2.1 Closed-Loop Performance Specifications

. ‘ ]
Universal agreement on what constitutes a reasonable and complete set
of specifications for c¢losed-loop performance. has not been reached. The
'following_ ‘closed-loop specifications have been suggested or used for

demonstration purposes:

\
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o

° Bandwldth and damping (Wlttenmnrk and Astrdm, 1984)

o Domlnant pole response (damplns ratio' and oscillation frequency)
- (Jiang, 1987) 3

o Overshoot and damping of error (Myron, 1986, Bristol and Kraus, l@“‘}

po o ‘

o Overshoot for setpoint changes (Minter and Fisher, 1988)

Methods for’ altering controller parameters such that actual performance
meets ~ specifications have also been pl/éposed. However, these d\rthors have
either ignored regulatory control altcgether or attempt to tune parameters
to reach a comprise “between the response to setpoint changes and reJectron

of disturbances. Clearly, a better approach is to consider separate

specrf:catrons for servo and regplatory performance.

10.2.1.1 Servo Response Spécl[lcatlons :

‘The set of servo performance criteria which should be specified by the

. user depends upon the ObjeCthCS of the partrcNar application. Although

there are . many drfferent setpoint following objectives, two srtuatrons a\e

_ commonly encountered.

In- the first sr(uatron the applrcatron calls for control as ‘"tight" as

-possible. An appropnate strategy would be to mmrmrze the response time
vsubject to constramts on overshoot ‘and/or damping. The user would be

required to specify the mammum allowed overshoot (and/or damping) to step
setpoint clixnges i ‘(Since damping and overshoot are “not independent, if both
are specifie‘d the algorrthm would act on whichever is closest to the
constraint). Note that when the supervrsor has finished tuning the loop,
the - actual measured overshoot (or ‘damping) should be near its target value.
Thrs approach is used by the Foxboro EXACT to tune PID controller constants
(Kraus and Myrom, 1984). Minimization of the response time with an
overshoot constraint may be an unrealistic perl‘ormance specification for
highly damped \p (‘ocesﬁwrth little dead-time which cannot easily be made to

respond in a oscillatory manner. The. supervisor will- continue to increase

‘controller "gains" in -an effort to force the output To overshoot following

setpoint changes; this results in excessive control action (Minter and

¥ v
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Fisher, 1988)

For many chomicnl procm cqg\trol Mllc‘tiom 8 very rapid resonse to"
‘setpoipt, changes is not desinblo. the user ria' looking for overdnmped.
beh In this case, it is more approprolte for the user to specify the
desired” rise or settling time.  While any defined rise -or settling time mny
be used, the 63% rise time (closed-loop time constant) has been assumed in
the following Qpproximate knowledge of the dominant open-loop time
constant at one operating point (determined from a pre-tune test) may ‘be
used as a reference to specify the desired closed-loop time constant'; a good
default is simply the opcn-loop time constant.  In the event that the
specified 63% rise time does lead to a underdamped response, sthe user should
also provide limits_ on the allowable overshoot (and/or damping). " In

contrast to the previous strategy, in the majority of cases the actual
overshoot and damping will be below the limits specified when the target 63%
rise time is met. ' '

a .

10.2.1.2 Regulatory Response Specifications
, . ]

—~S .

It is much -more difficult to <5’rovide reasonable specifications -on the
regulatory performance of a controller. This is a “direct consequence 'of the -
- unknown nature of the types of disturbances encountered. If measurement—

'noise or other stochastic disturbances are continuaily present, thé cont
signal variance (measured when the’ setpoint is constant) may be used as a .
performance criterion. Control  engineers  frequently tune loops based on
keepmg the\verage level of control output variations below an acceptable
level. If on the other hand, the process is subject to infrequent, sudden
load changes the error damping (i.e. decay ratio) is a better performance
index.  The \estimate of the amount of measurement noise prescht, obtained
during the pi‘etune phasc, may be used as a basis for selecting the most
appropriate measure of i'egulatory performance. A priori bknqwled e of the
anticipated disturbances  would also weigh in the' decision as to which

specification is ‘most appropriate. - D '

. . N
10.2.2 Cont:olfer Adjustment Mechanisms o 'é\;‘\

Even in the absence of model;plant mismatch, noise, and
y y

uncertainties, ‘a . functional relationship between the controller tuning

Lo~
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parameter settings and the resulting closed-loop behavior is not known
explicitly. The settings of the tuning parameters. yielding the desired
performance must be found by an- iutlon or search procedure.  Past
researchers have proposed mechanisms to" adjust controller tuning parameters
such that the measured closed-loop . performance is equal to the_ ,« sypecifiéd’
targe;wmue. For example, Pollard and ,Brosilbw (1986) modify the filter
time constant, ), of an Internal Model Controller according to:

9 '
A‘(t)'- ,\f(t-l) + w(t) (Pm,(.t)'Pd) - (10.2.1)
where Pm(t) = measured performance, and P . desired performance

. However, the choice of the weighting factor, w(t), was not given in the

ference.

For the purpose of this thesis, the following simple general tuning
parameter adjustment equation will be used:

o .k[P (t) - PJ \
t( = tp(t-l) + = tp(t-l) . (10.2.2)

/
d

where tp is the tuning parameter setting and k is an adjustment gain factor

frequently assigned the value of 1. Rearrangement of (10.2.2) intQ 'the
" form: i e ' ' C
tp(t) - tp(t-l) .k[Pm(t) - Pd],
—_— =t (10.2.3)
tp(t-l) P 4

makes it apparent that the percentage change in the tunirig parameter setting
. is proportional to the percentage difference between the measured and
. desired performance. Thus, . both the performance and tuning g‘qrameter values'
are ,"nqrmali;ed". Note also that tp(t-l) is the tuning parameter value in
use prior to the cutrent adjustment. The tuning parameter is not normally
ad\Justed every sampling interval (but rather after a setpoint change (servo)
or after a number. of sampling intervals (regulatory)). -

Since both Generalized Predictive and Pole Plaéement controllers have
"two degrees of fredom" "it is possible to adjust appropriate tuning

parameters to satisfy specifications on servo and 're'gulatory' peformance.
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the servo. response provided that the closed-loop is stable.

i
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10.2.2.1 Malintaining Servo Performance , . L
. ' \
\ :

N

For Generalized Predictive Control, t
should be adjusted"“ to muintain servo performance * at user specifications
depends upon which of the three configurations of GPC outlinéd in Chapter 4

he active tuning parameter \thch

| has been selected:

y)
‘Configuration Active Tuning Parameter
Output Horizon maxim]m output horizon, Nz
Lambda Weighting relativé control weighting, A“l
Detuned Model-Following ° _inverse closed-loop model, P(q'l.)

hd

Since we ~are interested in maintaining a consistent output response, for the
Lambda Weighting configuration the actual control weighting should Q)be' scaled
with [ﬁ(l)]’ (ie. A-[ﬁ(l)]z)\nl). Recommendations regarding the structure

of P(q'l) were given in section 4.4.1: for a process adequately represented

by a first order model, P(q'l) may "be selected as a first order polynomial.

For higher order plants, a 2nd order P(q"v,l) polynomial results in less

- control activity. In situations where little overshoot can be tolerated, ¢

(the damping factor)v should be taken as > 1 and r (the natural period) used
to vary the speed of respdnse. For Pole Placement Control, the desired
closed-loop characteristic bolyqomial; P(q'l), is used to modify the rvo
response. It may be selected “in the same manner as the inverse closed-loop
model of (Detunied Model-Following) GFC.

10.2.2.2 Maintaining Regulatory Perforlpance

The controller design -pqunomial, Cc(q'l),, has been demonstrated to be
very effective for tailoring the rejection of disturbances and reducing the
negative effects of model-plant mismatch, when using Generalized Predictive

or Pole Placement control. This tuning parameter has ver Je impact on

""The simulation

-

and experimental runs of vious chapters have also /d?onstrated that
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Ce(q") has a strong influence on the variance of tho) control signal.  For
both GPC and PP, this controller design polynomial should be selected as

. -l.na
C, =(-ca”)

where c, is the tuning parameter adjusted by the supervisor (within limits
.of 0 to 1) to meet regulatory performance specifications and na is the model
order. For practical app "A“ons. it may be desirable to further limit the
range of acceptable values for ¢ . (e.g. 0.5 ¢ ¢, s 0.95). ]

10.3 Performance Adaptive Control Simulations

In this séction, the operation of the performance supervisor/tuner is
demonstrated for self-tuning @eneralized Predictive and Pole Q}::ement
control of the third order process,

1 5
G(s) =
P (19¢)(1+38)(1+5s)

referred: to earlier as Process C (Table 5.1). A firgt—otder model is
identified using RLS with the trace of the covariance matrix equal to 0.02.
. is bandpass filtered (Ce-(l-.9q'1)2) in order to obtain a good

model inspite of the unmodelled dynamics. The diﬂ'erence,J

Ay(t) = Bu(t-1) + du(t) + Av(t) (10.3.1)

was used to simulate the process' where steps in (i“(t) of magnitude 01.02 were
intcoduced 40 samples after each upward-going setpoint change and removed 40
samples later.  Gaussian noise, v(t), with a standard deviation of 0.05 was
added to the output'continuously. ‘
The overshoot and closed-loop time constant were calculated by
observing the response for 20 iterations after each setpoint change. The
regulatory performance was evaluated by measuring the control sighal

variance using the recursive equations:
u(t) = (1-2 u(t) + 2 u(t-1) (10.3.2)

- Sk = (l-Auv)[u(t) - Tf(:)]’ +_ske-1) (10.3.3)

*

where the forgetting factors A“m and ,\uv were chooseh. to Jbe relatively small

’



.the vanance._ > The varxance was not updated during the transrent followmg

l

"’j:rf"l"each setpomt change 3 ;_ N
The performance tuner ‘was. started 100 rteratlons from the start of a

ru The tumng parameter whxch affects servo control was adjusted once
';'followmg each setpomt change ‘-, The ,regulatory tunmg parameter was -

| adJusted every 30 samples T TR e T

. 1'0‘,3..1 , Géﬁ'e}anzed Predic'tl've. Control

- Two srmulatxon , runs‘f Were conducted based t)n the Output ‘Horizon
conf:guratron of GPC For the fnrst of these, “the “servo obJectxve was to o
"meet the user specxfred 63% rxse tame of 6 sample mtervals The - regulatory
performance obJectrve was to keep the variance ho control sxgnal at the ‘
-desired - value of 0.01. Results are shown m the.fmr parts (a to d) of

Figure 103 ’r’I‘h e regulatory tumng parameter adjusted usmg equatxon

'”(lO 1 2) was actually the equlvalent contmuous hme root, T, of C-l ~C q
“(r =-T /tnc) which rs expected to be more linearly related to the vanance .

ol’ the control srgnal ‘than ’tli-e drscrete time root, cl‘;- “The controller was

‘»mmahzed thh Output Hon:on N -=5 and the desrgn. polynomlal C 1 8q

,'Even after the open loop startup, d_urmg whxch txr_ne.. the  model. parameters L

5 'converge, fhese tumng parameter 'settings : wyield i os'cillatt)'ry" behavrorr as - a

"consequence of h model~plant mrsn’latch and.’ m\easurement norse
5 '_ mcreasmg -N and c (Flgure 10. 3d) the performanci\. ,supervrsor'  at
i 1mprove the response dramatlcally such that the, closed loop system meets

o both the servo ‘and regulatory performance spemfl'éatrons (Fxgure 10.3¢). o é‘i‘}-’- : _"' e
L For the second run the servo ob_)ectxve ‘was to mmrmlze the ;:response L
tlme subject to the constramt that the overshoot not exceedq 20% The‘
‘ closed loop response and measured performance are xllustrated in F:gures
N 510 4a and’ b Model parameter tra_)ectones (whrch lwere almos ¥
those of Frgure lO 3b) ‘and the tumhg parameters adjusted by the perfo?mance
_;'_supervrsor are not plotted As the . run progresges, l both the overshaot “and

: 'dentr a

: 'control srgnal vanance approach the desxred target valuesl

10 3 2 Pole Placement Control o \ﬁ r W \ ‘

In parallel Wlth ‘the GPC ru Pole Placement Tuns were conducted ;for“j-' 8

. s X e
o n Lo . co - ; N - : Ty 3



the “two " dtfferent servo objectives.‘

characterrstlc polynomral (P-l-p q ) and frrst b}gder ‘ regulatory desrgnv"
. polynomral (C -l-c q ) were selected The performance supervisor adjusted
: jfthe contmuous time - roots of these polynomrals '

';0 0l. The initial . settrngs of P, =0.8 ‘and ¢ -08 ngej’""frse to underdamped‘

S8

‘f.performance 'supervisor, - the “pole - of ‘the desired characterrstrc _polynomial

0.85. The -performance tuner .fmc_ls that ~as a’ result of modelling errors a'

Vely A T
' T e T

"5ln b‘dth cases, ﬁi frrst o'rder

The four parts of Fxgure 105 contam results for the case where the '.

desired performance rs expressed in terms of a closed loop time constant of
aamples (for setpol"ht ‘changes) - and. regulatory control srgnal variance of

1 1

incrementing both p  and e (Frgure lO.Sd) untrl ,the - -performance

‘behavror. _ .Th, performan_ce ,tuner progressnvely detunes the loop ;by,

speclfications are reached . (Frgure 10. Sc) , Note "~ that - without' - the

-T /r - -1/e
would normally have been set. by the desngner to be. p = e L.=. e . o=

'

~ value of p1=0.87 is. necessary such that the actual closed-loop time constant

is 6 sampling intervals.

'The' performanCe tuner works equall’y well  when " the setpoint ‘tracking

objective - 15\ to mrmmrze the response time whﬂ’ keepmg the overshoot below_

& .
sensitive to measurement norse smce it. is = determined. from only one. point

'on the response curve (the frrst peak) As a consequence ‘the perfbr‘nﬁtc'e

2'0‘?6 as- shown in. Frgure 10.6a,b. Ho__wev_er, the observed overshoot is  quite -

*

tuner may adjust the servo tunmg parameter frequently when there is lrttle ‘

‘the data such that the measurement of the overshoot is less - susceptrble to

_ closed‘- loop,.‘

. DOISC

. ose 10 4 Performance Adaptive Control of the Stlrred 'ﬂank Heater g

- reason to do so. A more robust techmque would mvolve "frttmg a curve" to-

fn Chapter 7 and 8, it was shown that proper selection. of the.

regulatory desrgn polynomral ',Cc,, 'is_ absolutely necess'ary‘ “'for stable t:ontrol
of the Strrred Tank Heater when operated wrthout the inlet water deflector

performance The outer performance loop also allows the controller to . meetj
~ independent specrfncatrons on the setpomt trackrng 'propertres of “ the

‘The followmg expenmental runs demonstrate how the performance supervrsor N

mautomatrcally tunes this: polynomral gt yreld vt,he, desrred regulatory'

. “.”;’0
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o Standard operatmg coﬁtrons for.. the Stirred Tank anter. mcluding"_w‘f»
sample time, were descnbed m sectron 71 Dnsturbances were mtroducecl by‘
‘increasmg the inlet 'Water f‘lowrate from 53 cm /s to 66 cm /s for a penod
-of appro:umately 200s durrng the -time the setpomt was at 40 C A flrst
order ‘model was 1dentrf1ed " with tr(P)-O 1. and ‘the estimator desngn ‘
polynomial, C=(1-8q" he, The performance supervisor was commrssroned 500s
from the"' start of each run. The. response to setpomt changes was momtored
" for 100s before adJustrng the servo tunmg parameter The regulatory tuning -
knob (C) was adjusted every. 120s of regulatory control (control durmg any
tnme except the lOOs following a setpomt change)

L

10.4.1 Generalize‘d Predictlve Control

'The runs with’- GPC were - conducted ° based on the' Output ' Horizon
confrguratlon although similar results can ‘be achieved for Lambda Welghtmg»
or Detuned ‘Model- Followmg control. ' Consrder the situation where the user
specifies a 63% rise time in ‘response  to . setpoipt - changes of 30s and a
" _regulatory control signal variance = of 0.25. ,Figure 10.7 ‘(.a .tb,. d) 'contains ‘
tesults when  the _initial controller-, tuning parameters are intenti'onally'
: lnitialized very - bpoorly‘ (N z=5,4 Cc='l) for.‘ this: system. The performance
’supervisor - detunes  the controller by incrementing both N and _ c (where
‘C =]-¢ q ) (Frgure “10. 7d). until both the servo -and regulatory performance"
specrfrcatrons are met. (Fxgure 10. Tc). '

Next consrder ‘the - case where the obJectrve for setpomt trackmg is “to

maxrmrze the “speed - of response while keeping the overshoot at or below 20% '
-To ‘make the demonstratxon more, realistic,  the controller tunmg parameters
.we_re rm_txalrzed very. ,con‘servatrvely as 1s normally recommended f6'r startup
(N_=20, "c.c-lf;ssq")_. * As indicated by’ the results of Figure 108 (a & b), -
. the 'performance 'supervrsor "trghtens the . serv_o _reSp_onse ,,whxle keépmg ‘the
'control 'sign‘al vanance “at the acceptable leyel. "('I‘h}e_" model._ -and 'bcontroller
tunmg parameter strajectones are not shown) ' B | |

}0 4 2 J‘Pofe Wacement Control
‘ The' results for performance tu_ning of Pole Placement  control- are
‘ equally 1mpressrve “For the expenmental- run’ s_hjown ‘in Figure 10.9 (a to Q),‘
the _controller‘ tu_mng'_ parameters \yer;e ‘initialized = poorly (P=1-.5q"%, Cc=l)



nand tlte closed-loop system appears unstabl,p Q ’l’lm‘*f"I performance supervrsor .
detunes ‘both the regulatory and servo- elements of the controller until the
targets for the 63% rise trme (30s) and control srgnal variance . (0. 25) are:
reached (Figure 10.9c). In _the absence - ol‘ model- plant mnsmatch “one: would‘

- -T /r ~ -8/%0

expect that with p, -', e oL =e = 077 the desired closed loop time

constant would be met. However, from Figure 10.9d, xt is’ evident that the
performance tuner finds a value of P, =(.88 to be necessary. ‘ L

" The ‘results “for the final run wrth the . performance supervrsor are shown
in Figure ‘10.10 (a, & *b). The servo obJectrve of this run was to minimize.
the rivse time ‘with an overshoot constramt of 20%, given conservative

‘mg parameter settmgs (P=l-9q . Cc_==le.95q"~1). . As ‘poi(nted .out

Jitapiipthe measurement of the overshoot is .quite sensitive to noise; . the
perfbrmaﬁee tuner over-reacts in attemptmg to correct, for these varratrons

4
(Frgure 10. lOb) C : -

/10.5( Surnmary i
// A hierarchical structure for . a computer control  supervisory system.

consisting of a global of f-line lexg_l and a local realitrme level has been

proposed. Some " of. the: functions: of the. modules cort g the system have
«been ‘outlined‘ and a prototype of the performance.' supervrsor module
deye’loped. The performance supervnsor (a module within the local real- tnme
super\rlsor)' momtors “the -actual response of . the  closed- loop system and
adjusts - ’controller’ ) tuning 4 parameters ‘to  .achieve and - maintaln
user- specxftcatlons on. both servo and regulatory performance, - despite the
. mevrtable presence of modellmg errors Experimental runs thh the Sttrred
. ‘Tank Heater demonstrated the abrhty of - the performance  supervisor to
‘minimize the response time to step setpoxnt changes subject to an overshoot‘.
constramt ‘or achreve a desrred 63% rise trme Durmg regulatory -control,
'the variance - ‘of the control signal was mamtamed at a user-specrf:ed level ‘
The performance supervrsor mampulated the Hctive tumng parameter of the
.G_PC o1 PP‘ controller (i.e. Nz"' X or P@ )) as  well as the regulatory,

control Jdesign ‘polynomial Cc(q°1) to accomplish its goal. ' N4
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e 1. CONCLUSIONS AND Rp‘comennnmns N
Sélf- tunrng Generahzed Predtctrve and Pole Placement controllers are -
.capable “of effectrvely controlhng simple overdamped plants as  well ‘as

complex processes which are snmultaneously nonmxnrmum phase and open -loop

' unstable with variable dead time. The assumptron of a CARIMA process model "

.grves rise - to mtegral action requrred for the elnmxnatlon of = offset - due to
| _nonstationary _dlsturbances frequently “encountered m.,-th * chemical process .
industries. . 'The GEnerahzed Predictive - Controller reduces to’ numerous
‘well-knowp algorithms (eg Deadbeat Generahzed Minimum Vanance, Extended
’HOI‘IZOD - ete.) for . pgrtrcular settings of its  design and tunmg parameters.

e

More 1mportantly,. for dlfferent settmgs “of these parameters," the MGPC

algorrthm overcomes many of the lrmrtat:ons of these earlier . me'thods -and
yields much improved performance If restrictions are ‘placed on the form of
‘the CARIMA model, the GPC algorithm can be made struct’urally equxvalent to a
. PID/PI controller. Thrs opens up the possrbrlrty of . developmg self - tumng
k Plchontrollers based on the mmlmxzatron of a multistep cost function. '

. ‘ &
lll Controller V_Tunlng
§. .

The large number of tumng parameters assocrated with the - Generalrzed
Predictive »Controller_grves the algorrthm‘%, great flexibility = but at. the ,same
time makes implementation more dlffrcult _Strong - interactions - between the

;parameters implies that the most - practrcal 'tunin'g strategies are those' that

"assxgn constant values_ to reduce the number of actrve ‘tuning param}/!ers i

while . stlll retammg ‘the ablrty to control a brpad range of processes/ The
.- three confrguratxons of GPC devised enable thet u‘ser Yo vary’ the closed loop
'response over a ‘wxde range by. adJustmg a ngle tumng parameter A Toot

locus analysxs of GPC can be peiformed by‘ denvmg the?. closed loop transfer

- function based on ‘an equlvalent general Amear form of- the control law The
. A .
followmg_ conclus;ons _are © also ba;ed tlme-domam sxmulatrons and .

< C

. experiment‘alor'unsl}'*”

N

the " active . tuning parameter, : Nz," of ~the Output Horizon

'detunaeﬂd' Forl an open =loop: stable process the closed loop poles move from

the open loop zeros (mlmmum vanance control) to the open~loop poles-

W@

_i's' mcreased ' from - d+l to P~ the controller /i's progressrvely :

¢
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Ledie s :,.zw.“,‘g'u R e g . I : Bl .ol

i

"(mean.never control). ~ This ‘co'nfi”tiOn of GPC requlres 'the least

computati_onal effort. .

2) - For the Lambda ,Welghtmg conl‘nguratron, the control werghtmg, A,
‘is used to vary. the speed of response. ~ As )\ is adJusted from 0. to oo the

lclosed -loop poles move from the ongm " (deadbeat control) . to ‘thé" open-loop

poles plus the point fz-l on the wunit circle. = This confrguratron is

recommended for app'i‘atrons where strong control  action .cannot be

tolerated. However, the response may be slrghtly oscrllatory

-

- 3) The‘ inverse closed- loop model ‘P(q'l) is . the pnmary tuning
parameter for vthe Detuned Model Followmg confrguratxon ol‘ GPC The
closed loop poles wlll - tend to be "close" to the user-specrfred ‘Toots  of P,

Thrs strategy is recommended for apphcatlons where accurate followmg of a

. reference model is desrred. , The penalty incurred is a more acnve c0ntrol. ;

. S " o
signal. ‘ s

Pole Placement can be obtamed within the framework of GPC by specrflc

- settings  of . the tuning _ parameters. Alternatrvely, the' "tradmonal"
formulation- where the coefficients of the ~controller parameters are solved .

. for directly may be used® In either case, the PP controller cannot be used

when both ‘the numerator and denommator "of the model are overparametenzed
The sensmvrty of the approach ‘to numencal ill- condmonmg due to, near

common factors in ' the model was observed durmg exper;mental runs wrth1 a ‘set

Loof - Interactmg Tanks : For this reason; - the three confrguratrons of GPC o

prewously evaluated are recommended over the Pole Plae’ement techmque

v
.

S 11.2. Maintenance of Performance.
o R ey | ®
o ,' For the -majority of industrial applications, the output behavior should
remain  consistent - despite = variations in the process. If fixed " control

- weighting - is employed, the 'ontput‘ response’ may be seriously degraded if

there are large changes in the _process, even if the .model ‘is accurate at - all

s-ytrmes., HoWever' if A is proportronal to [B(l)] or if the Output Horrzon
: Detuned Model-Following or Pole Placement - confrguratlons are utrhzed the

closed- -loop response will - be invariant of" process - gain .changes and
relatively unaffected by changing dynamics. This ~was.! demonstrated for

a A

PN



adaptive control of the 'nonlrnear Interacti;rg Tanks. -
113 vRobustness to Model-‘Plnnt»Mlsmetch ‘

In realistic. applications, the identified model will never be a true
representation of the process. Therefore, it . is crucnal that the contrén’?
be insensitive to model-plant mxsmatch LA controller desrgn pblynmm;al "*“‘ ‘

C (q ) representmg prior knowledge of ‘the disturbances affectmg a pl@’ }'x:'_'.
A

;"

should be used to provide robustness to this MPM and . tailor the re;ectron.
disturbances. It was found that C (q ) was essential for - satrsfactory: W
control of the pilot- scale Strrred Tank Heater For GPC C determmes how
residuals (disturbances plus‘ the -effects of modellmg errors) rnfluence the*{l“"f
predicted future output .trajectory. ~ Thus, in the absence of MPM, the
setpoint tracking: propertres of the closed-loop are mdependent of the C
| polynomial. Thrs controller design polynomial grves both GPC and PP
_controliers "two degrees of freedom" to meet independent servo -and

“regulatory objectives.

11.4 Low Frequency Model Idgntification

LAY
LI

An estimator filter, C‘(q 1) should” be’ used to focus the parameter

estimation algorithm on  frequencies d4ropnd the closed-loop bandwidth. This .
filter allows identification of a model . ‘which is suitable for both GPC (ie.
the model gives accurate long-range predrctrons) and PP, inspite of nonzero
mean disturbances, unmodelled dynamics and measurement - noise. Bandpass
filtering of the regressor ‘using C (q -4 ) was vrtal for stable control of the}i

Stirred Tank Heater.

_ An Extended Least Squares algonthm gave unbrased model parameter
‘estimates  (A(q” Y and B(a 1y in  the presence of  various “ncolored”
disturbances, but the model identified dict not provide a | good ' low t‘requency
fit when there were unmodelled: dynamics. Very poor control performance: was*
~ observed, when the estimate of the noise model, vé(q'l), was used in . the
control law. The use of a user- specrfred design polynomral Cc(q'l), in the
control calculation is the recommendetl approach.. = - = < 4

: . " ' . . - i - ) .' ° S.)
v o .- : . m ' © -

. -
S
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Wnth model plant rmsmatch no ,,guarantee can be given that the output’
will  respond - ~according  to expectatnons. - In  addition, the | appropriate g
"settings of the active tuning parameter and the Cc polynomial yielding -
desired behavior are not. known a priori, A pe'rformance supervisor - was
developed, to monitor the response of the closed loop syst'em‘ and adjust ‘both
"the_ active tuning parameter‘ (for the partrcuggr confrguratxon of GPC
1mplemented) and C (q ) to achieve and maintain user-specified servo and
_/regulatory performance. The performance tuner is. only one element of a
'propose'd' hierarchical ~supervisory system  consisting of - a global ‘off-line
level and a local real-time level The performance supervrsor carries out a-
local- -optxmnzatxon  of “the' controller parameters ‘once the’ structural
parameters (e.g. model order, sample time, etc.) have been selected and 4
 reasonable ' model identified. . Exper‘imental trials with the Stirred Tank
Heater demonstrated the ability’ of the .performance supervisor to  meet
overshoot constraints  or give a desired closed-loop ‘time‘ constant - for,
setpoint changes sv.hile keeping the regulatory coptrol signal variance at a

user~specified target value.

N o i
11.6 ' General Comments v )

One of the .objec,tiv,es‘ of * this work was  to prdvide strateg'ies and
guidelines - to  simplify " the task of selecting  the controller tuniné
parameters to yield desired performance. The selection of parameters for a
realistic parameter estimation ‘algorithm was. not- the. pnme focus of thxs
work. However, based on expenence with the constant trace RLS routme Tsed -
throughout this thesxs - the selectnon of estimator parameters © (eg ‘the

trace of the covanance nitnx)s is much more difficult- than the selectxon of.

hthe\ controller parameters °" Identification remains the - lweak hnk" in

&

adaptrve control

7 \

1 1 ;7 Future_ Work,
The control algorithms studxed n this - thesis. . represent the cur’rent
state ol‘-the-—art i self—tunmg or’ adaptrve technology "thle it» has been

}rjem%t;a?ed that' . these™ strategres can provlde xmproved control performance :

)
v .
3 A
1' . -
: & . . e
LAy . ) ¥ IR : . I .
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- ing, order for, adaptlve tephmques to. gain w;gggpread acceptance in- mdustry .
\ { ust be - well . understood, easy to rmplement and maintenance free Much

has been. made through realistic experlmental trials, but a number

of areas i for future work: , .

1)  The self-tuning PI and PID contro&ers desrgn* based on the ,‘
Generahzed Prednctrve Control and Pole Placement algorithms' require
‘ detailed evaluatlon and comparison w1th other similar strategies reported ir\
. the lrterature ln partrcular ‘the PP "PID on SP* controller derived based
* ‘on the assumptron that C(q )-A(q ) should be quite rothst to model-plant
mrsmatch and . measurement " noise (see Chapter 6). ‘The possibility of
'rdqrrtrfymg several B parameters and replacing b by Zb in the equations
l&smto calculate the PID controller gains, in order to handle small time
dela{'s, should be mvestrgated ' '

2) The Extended Least Squares algonthm yrelds an unbxased model

'which, unfortunately, may not match the process at ‘low frequencies. In

1-4" general ‘the opposnte 1s true for Recursrve Least Squares with ‘(bandpass)

frltermg of . the regressor The potentral exxsts to obtain an ~unbiased low“

frequency model by combmmg f;ltermg with the ELS approach. Furtheg work

.should also be drrected toward developmg better guidlines for specrfrcatron
of the estimator fxlter, C (q )

¢

"3) Only a prototype of the performance tuner module of the local
real-time supervisor was 'developed and tested in this thesis. This m‘o‘dule
.requires refinément and the remaining modules in the superyisory system
‘require development in’ order to- produce a complete adaptive control . package‘
suitable for industrial,applications. o ~ o .‘

4) The formul'ationt_: of the Generalrzed Predictive Controller has been
extended to the 'multivarrable case (Mohtadi, et al., 1986) and work is.‘
'underway to mcorporate constramts using linear or quadratxc programmmg’
_ The question as, to whether the tuning strategies ‘'which have been proposed
for the SISO GPC algont '“are applicable to the MIMO case should be

. answered.

In very general terms, 80O

o
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either GPC or - PP, -as long ‘as the modél is a "reasonable" .rébrésentatioh of -
- * the- process. ~THe challenge' for the future is to ‘develop equally easy to use
identification routines which track progeés variations and provide an

‘accurate model for extended periods of time.

v ‘
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The proof of Theorem 1 xs grven in (Lm and Gertler, l987a)
Theofém 1 leen a plant model G (q ) wrth denomrnator A(q ) = l + a q

O I a q | and poles a |a|<l il, .na.  Given also -a controller

desrgned to yreld a closed- Joop ‘transfer functron Gcn(q ),wtth denomrnator
(q ) = A(q h s A (q ) (where A, (q ) - 6q ¥ o 4 6q'h) and
: poles ‘ |p1|<l _)-l, ,h - For any stable non mtegratmg process G (q ) ‘
.'and model Gp(q ) there. is a limit value 6L>° 50 that the closed loop is-
) “ _guaranteed to be stable for |6 |<6 . j=l, ,h - b
k “Bas,e_d_ on this -vth'eorem'vconsider lLemma 1.

Lemma' “l.“v For the bas:c GPC algonthm thh NU=l N -l A=0, and setpoint
' w(t), and f'or any “stable nOn mtegratlng process G (q ) and model G (q ) =
:fB(q )/A(q ), there . exists a limit value N£<oo su_ch that the A‘system _
}guaranteed to: be stable rf N >N£ L S : _ ‘
-4 The proof_ ‘of ‘this Lemma follows di’rectly from the “results of sections
2.3 and 25.1. TIh 'section"' 231, it %&s shown that GPC places the poles .
of the closed loop system at: the roots of ’ B I '

N (.

s

S tAa+qs (Ad)

S In'sectio'n:2.5.-‘l, nnder'the asgll"mp"tionsf: ._':;, .
‘a) NI, NU_l ,\so | o
P ‘A(q ') is a stable P°1Yﬂ0mlal with all Toots inside the unit circle .
) the ‘getpoint sequence s equal to the actual *setpoint (1ef. no

LT A
preprogrammed -'setpomts.are used) S

o

(it was demonstrated that the characterrstrc pglynomral (A, l) may be ' wntten ,
vfor large Nz in the: form SRR e o,

wo

&) R e



Wﬁ‘ére g, it a step response coeffieiéut for ‘the model' SRR
B/AA = g + gt‘q + e gN q z + gN +1q ’ .‘ : (A.3)
fe b .q,,,‘“ y , . > H& )
ates that GPC in thns confxguratxon places ‘the poles of g
‘:er functxon at the root’of

(N +1)

E.qu‘atio‘n (A.2) i
the ‘closeﬂd-loop‘ '

(Ad)

v ..,-;

Pc,;(qf;) - A(_'q‘ ) + A&(q"l)

Aci,(?. ) = [A/ gNJ [( N 417 g )q >.+ ® N'+z'g_N,z+1)q.z_ t+ ]

| .é,sl.q" + 5 q 24 e | R S (A5)

) . R ﬁ . A v»_‘ [ )
_The coefficents - 8—)0 j=1,.. N 5% Therefore a Pi‘mjt yalu‘é, Ne, exists .

" such that for N >N |6 |<6 vj. Thxs completes "the proof N

t ’ » LN -



