
Preventing SQL Injections in Online Applications:

Study, Recommendations and Java Solution Prototype

Based on the SQL DOM

Etienne Janot, Pavol Zavarsky

Concordia University College of Alberta, Department of Information Systems Security,

7128 Ada Boulevard, Edmonton, AB, T5B 4E4, Canada
etienne@waziboo.com, pavol.zavarsky@concordia.ab.ca

Abstract. SQL Injection Attacks are a relatively recent threat to the
confidentiality, integrity and availability of online applications and their
technical infrastructure, accounting for nearly a fourth of web vulnerabilities
[1]. In this paper based on a master thesis [2], and numerous references therein,
we present our study on the prevention of SQL Injections: overview of
proposed approaches and existing solutions, and recommendations on
preventive coding techniques for Java-powered web applications and other
environments. Then, we review McClure’s SQL DOM [3] approach for the
prevention of SQL Injections in object-oriented applications. We also present
our solution for Java-based online applications, SQLDOM4J, which is freely
based on the SQL DOM but attempts to address some of our criticisms toward
it, and evaluate its performance.

Keywords: Java, Prevention, SQL, SQLDOM4J, SQL Injection, Web Security.

1 Introduction

Online data theft has recently become a very serious issue, and recent cases have been
widely publicized over concerns for the confidentiality of personally identifiable
information (PII). As a consequence, database extrusion prevention (DBEP) products
have been rising lately. As early as 2002, the CSI & FBI survey reported that more
than 50% of online databases experience a security breach each year [4]. As a matter
of fact, Injection Flaws – and particularly SQL Injections – appear among the
OWASP’s Top Ten most critical web applications vulnerabilities list [5].

Application-level vulnerabilities, which are believed to account for 70% to 90% of
overall flaws, are now the main focus of attackers and researchers. Online
applications (websites and services) are especially at risk due to their universal
exposure and their extensive use of the firewall-friendly HTTP protocol. Moreover,
database security is too often overlooked in favor of web and application server
security, resulting in backend databases being a major target for attackers which are
able to use them as easy entry points to organizations’ networks.

Protecting online applications (e.g. websites) and web services against SQL
Injection Attacks has thus become a major concern for organizations, which face
threats that can go far beyond the expected reach of the public web or application
server. While several effective prevention methods have been developed, ensuring
full protection against SQL Injections remains an issue on a practical level. This paper
will therefore discuss the difficulties that challenge the implementation of a
comprehensive SQL Injection protection solution before giving a critical overview of
some of the major research proposals and main types of commercial solutions. The
paper will then outline some simple mitigation recommendations that apply to the
Java environment.

This paper also presents our solution, the SQLDOM4J, which targets Java
environments. Freely based on McClure’s SQL DOM, it enables developers to
construct and execute safe SQL statements easily. The main concepts behind our SQL
Injection prevention strategy are strong typing and the separation of control and data
channels within SQL statements. These are implemented by leveraging both the
strongly-typed nature of OO applications and JDBC’s pre-compiled type-binded

statement interface, PreparedStatement. This paper will show that the use of the
SQLDOM4J API to build and execute database queries effectively protects
applications against SQL Injection Attacks.

1.1 SQL Injection Attacks

SQL Injection Attacks (SQLIA’s) [6, 7] are carried out by submitting maliciously
crafted inputs to database-driven applications, such as interactive web sites. These
inputs are then used by applications to build dynamic SQL queries, and have the
potential to alter the semantic structure of the query, due to the lack of separation of
control and data in SQL. The numerous SQLIA techniques used by attackers are
based on the many statement structure combinations offered by SQL, and sometimes
also take advantage of additional features in specific DBMS implementations,
particularly Microsoft’s SQL Server. They pursue different goals at various levels,
from allowing other techniques to be used (SQLIA escalation) to actually extracting
database data. The resulting threats are various and range from system fingerprinting
to Denial-of-Service (DoS) and theft of confidential information. SQL Injections
Attacks thus threaten the confidentiality, integrity and availability of databases’ data
and structure, of their hosting systems and of their dependant applications, and as
such greatly require the attention of application developers and the deployment of
effective prevention solutions.

Below is a basic example of SQL Injection. Instead of submitting the credentials

[a_login] and [a_password] in a website authentication form, the attacker enters

[‘ OR 1=1 --] and []. As a consequence, the following expected SQL query:
SELECT * FROM users WHERE login='a_login'

AND pwd='a_password'

Becomes:
SELECT * FROM user WHERE login='' OR 1=1 –'AND pwd=' '

First, the attacker “gets out” of the text field by starting his input with a single

quote. By doing this, he closes the SQL Where clause on the login field, hence

enabling the injection of SQL control code right into the query. Of course, no login is
blank, so the first expression will always evaluate to false. In order to circumvent this

problem, the attacker inserts the expression OR 1=1, which will always evaluate to

true – this is called a tautology. Next, the -- (double dash) operator marks the start of

comments, prompting the SQL parser to ignore the Where clause on the pwd field.

The resulting meaning of the altered SQL query is therefore equivalent to “select all
users”. Thus, the application logic controlling user authentication will authorize the
attacker and, in the worst scenario, the application might even return an error message
containing the data returned by the DBMS, i.e. the list of user credentials.

Please refer to our full paper [2] for an in-depth study of SQL Injection attacks,

mediums (vectors) and techniques.

1.2 Prevention Implementation Difficulties

Developers are faced with multiple challenges when attempting to effectively secure
online applications (especially web sites). Adequately addressing these issues depends
on the state of the application at the time, the developer’s priorities and ultimately on
the approach that will be chosen. Here are some of the major issues that arise when
implementing SQL Injection Attack protection:

Entry points of multiple data input channels (GET and POST data, cookies, user-
agent headers, etc.) have to be identified for most protection schemes to be effective.
In some large web sites applications this can prove too difficult and architects might
opt for other protection approaches which work e.g. at the database interface level.

Segmented queries (queries built across several modules) are typical of web
applications and of distributed services: queries are not entirely constructed at one
specific location in the application but rather follow the application logic flow, i.e.
they are progressively defined (selected columns, criteria) as the application reacts to
users’ actions and inputs. Hence, they are difficult to trace and sanitize at once.
Moreover, should query sanitization or validation be done progressively or at
finalization? Solutions based on tainting have the potential to address this issue.

White-list filtering is highly context-dependant and can rarely be implemented in
strict and widespread manner without reducing usability, as valid characters vary
considerably with multiple contexts.

Evasion techniques, as for all types of attacks subject to detection-based protection,
are constantly evolving and have proved very effective. This greatly hinders the
efficacy of black-list mechanisms, which are still largely used as adequate white-
listing is hard to implement. As for pure HTTP attacks, inputs should be normalized
before applying detection, however normalizing is itself a difficult task. Moreover,
black-listing cannot offer full protection, even combined with normalization.

Maintaining input validation rules up to date with evolving database schemas (data
types, column lengths) can also be challenging, opening the path for e.g. truncation
attacks. Solutions which bring the database structure closer to the application (and
therefore directly accessible to the developer) should resolve this issue.

Lastly, many protection schemes introduce significant overheads such as developer
training, code rewriting, infrastructure modification or performance decrease.

2 Existing Methods and Solutions

Many detection and prevention schemes [8] have been developed proposed to address
SQL Injections. These solutions typically follow different approaches as they are
targeted at various system and language environments and implement protection at
various levels of the architecture (network, server, application). Some approaches are
applicable to other types of injection attacks such as Cross-Site-Scripting (XSS) or
XPath Injection. On another level, some are specific to a particular environment (e.g.
web applications) or language, while others are implementation-independent (e.g.
reverse-proxies). Due to paper length restrictions, this section will be limited to a brief
description of major proposals and main types of available solutions, pointing out
their most important advantages or drawbacks. Please refer to [2] for a more
comprehensive and in-depth analysis.

2.1 Proposed Approaches

In accordance with the scope of this paper, only approaches focusing on prevention
methods will be mentioned – detection still being useful, but more adequate to an
auditing, forensics or live response context.

Active input data encoding transforms string inputs into safe character sequences,
using a 2-way encoding algorithm (e.g., Base64). While this is fail-proof for strings, it
renders data stored in databases useless for SQL operations (as it is encoded),
introduces storage overhead and must be combined with strong-typing.

Tainting [9] labels all input data as ‘suspicious’. Individual filters valid the data
(i.e., untaint it). SQL queries containing tainted data are then blocked before
execution. Main drawbacks: accuracy relies on user-specified filters, and all data
entry points must be identified.

Instruction-set randomization [10] encodes SQL keywords. A proxy decodes them,
and blocks queries containing clear-text keywords. While this introduces a
cryptographic processing overhead it is potentially effective, but for this the proxy
needs to be able to recognize all keywords, including vendor-specific ones.

Query pre-modeling [11, 12, 13] validates queries’ control structure against a pre-
determined set of legal variations. Complex but promising, this approach would
probably not support segmented queries.

IPS/IDS and application firewalls [21, 31, 32] are now specializing but suffer from
their inherent limitations (e.g., evading signature-based detection is too easy) and lack
contextual information. Anomaly-based detection works better but cannot provide
guaranteed protection.

New query building paradigms [2, 3, 14] circumvent the danger of concatening
strings to build SQL queries by introducing other construction means, e.g. an API.
Particularly suited for OOP environments, they can be effective but introduce
overheads and have a high chance of reducing querying expressivity.

2.2 Available Solutions

Protection products which can be used to prevent SQL Injections in online
applications have been emerging these last 3 years, in the form of Web Application
Firewalls (WAFs), HIPS solutions and more lately Database Extrusion Protection
(DBEP) systems [2].

Snort-based solutions are used by many organizations who wish to leverage their
IDS experience. They will catch some SQLIA’s as Snort packages some database
vulnerabilities, but it only features signature-based detection and thus can’t offer
serious protection [21].

Host-based IDS, such as Application Security’s DbProtect [22], while not targeted
at prevention, are mentioned as they play an important role: they provide advanced
auditing, enabling organizations to comply with regulatory requirements. They can
notably detect insider attacks – 70% of all database attacks [15].

WAFs [16] use SPI and Deep-Packet Inspection methods to inspect the data portion
of HTTP traffic, blocking protocol violations and malicious content (cookies, POST,
GET) and ship with enterprise-class features such as load balancing and HTTP
acceleration. The most renowned and rewarded commercial WAF products are
Imperva’s SecureSphere Web Application Firewall [32] and F5 Networks’ Big-IP
Application Security Module [33]. These products are gaining a well-established
position in the web and application security market, which is also influenced by
expert organizations such as the OWASP Foundation and the WASC. They are quite
effective as they use a combination of signatures, behaviour analysis and user
policies.
ModSecurity [34] is a famous open source WAF for Apache with over 10,000
commercial deployments worldwide. According to a Forrester Research study
published in 2006 [35], it provides the “best attack detection for web application
threats”. It runs as an Apache module either in reverse proxy or in embedded mode
provides many features. Its strength notably relies in its high customization capability
which enables users to for instance specify script-specific parameter filters. eEye
Digital Security’s SecureIIS [36] could perhaps be considered the commercial MS-
oriented counterpart to ModSecurity. It runs as an ISAPI filter in order to integrate
closely with the IIS, which allows it to inspect SSL traffic once it’s decrypted. Its
detection strategy relies both on behaviour analysis and on a base of known
vulnerabilities. Its advantage apparently resides in its behaviour analysis-like CHAM
(Common Hacking Attack Methods) technology which identifies generic attack
methods and enables it to prevent unknown (zero-day) attacks [37]. It is said to have
blocked all the new attacks conducted against IIS since its first deployment [36].
Nonetheless, it lacks important features such as auditing which is critical for
organizations concerned with compliance issues.

DBEP or Data Loss Prevention (DLP) products [23] are new specialized protection
systems which are placed right in front of database servers and integrate application
firewall and IPS features. Specifically aimed at preventing data theft (extrusion), they
go beyond compliance, risk reduction and attack detection by their use of fine-grained
rules and event correlation methods. They can be deployed as in-line (IPS-like) or
out-of-band (IDS-like) devices. Thus they specifically target database vulnerabilities
and data protection. The two main front-runners in the yet small but quickly growing

DBEP market are Guardium’s SQL Guard [24] and Imperva’s SecureSphere Database
Security Gateway [25]. Both products have received numerous awards as they offer
comprehensive, effective and scalable solutions with features ranging from automatic
reporting to dynamic user activity profiling (baselining). On the one hand, Imperva,
which is also praised for its aforementioned WAF product, is appreciated for its
central management, dynamic user profiling and vulnerability assessment features. On
the other hand, Guardium, which poses as the most widely used DBEP product and
has been named “leader across the board” by Forrester Research [38], is particularly
appreciated for its full-automation capacities.

3 Preventive Coding Techniques

Here we briefly present eight recommended mitigation techniques [2, 17, 20] that can
prove very effective against SQL Injections in online applications (e.g. web sites) and
other environments.

1. Always apply the “Least Privilege” rule: set up low-privileged database accounts
for applications that access the DBMS.

2. Always validate user-supplied data – as well as any data obtained from a
potentially unsafe source – on the server side. Client-side input validation can be
useful (mostly for user experience) but cannot in any case be relied upon.

3. Do not return SQL error messages to users as they contain information useful for
attackers, such as the query, details about the targeted tables or even their content.
This can be easily prevented in Java using exception handling: simply catch all

SQLExceptions.

4. Enforce data types for all inputs. Type-specifying regular expressions can be
used to validate the data. Types can also be enforced via pre-compiled statements

with binded variables (e.g., JDBC’s PreparedStatement interface. Also check
boundaries to prevent buffer overflows and truncation errors which could lead to a
crash of the DBMS.

5. Encode text input fields likely to contain problematic characters into an
alphanumeric version using a two-way function such as Base64.

6. Filter all input data via a 2-step process. First, apply white-list filtering at user
input collection (e.g., web forms): allow only field-relevant characters, string formats
and data types; restrict string length. Then, black-list filtering or escaping should be
applied in the data access layer before generating SQL queries: escape SQL meta-
characters and keywords/operators.

7. Validate dynamically-generated database object names (e.g. table names) with
strict white-list filtering. For instance with Oracle, allow only alphanumeric
characters, '_', '$' and '#'.

8. Avoid quoted/delimited identifiers as they significantly complicate all white-
listing, black-listing and escaping efforts.

4 The SQL DOM

As our solution builds on this proposition, we will give a brief overview of the
concept behind the SQL DOM [3], explain its mechanisms and discuss its strengths
and weaknesses.

4.1 Overview

The concept behind the SQL DOM is fairly simple: instead of relying on developers
to implement cumbersome defensive coding techniques while using strings to build
dynamic SQL queries, force them to use a safe API which will take care of security.

An API generation tool (sqldomgen) analyses the database schema at compile time
and writes code for a custom set of SQL query construction classes (which then
integrate into the IDE and are directly called by developers to build SQL queries).
The resulting DOM is a tree-like structure based on a generic template, mapping the
possible variations of SQL queries according to tables and columns definition.

There are 3 main types of classes: SQL statements, table columns and where
conditions. These classes have strong-typed methods mapping the data types in the
database schema. This enables them to validate data types automatically. The
constructors of column classes escape strings (i.e., replace each quote by a double
quote) at runtime to sanitize them.

4.2 Strengths

McClure’s approach holds important advantages for application layer-based
prevention of SQL Injections.

Firstly, it is especially suited for OOP environments: native strong-typing and
constructor-based automatic string sanitization excuse it from developing a complex
SQL Injection detection scheme.

Also, the consistency of SQL strings is improved: object (tables and columns)
names are generated by the database-bound API and types are automatically enforced.
As McClure argues, this has the potential to substantially reduce testing and
maintenance in database-driven applications.

Another main advantage is that the attack surface is reduced, as building queries is
carried out without directly manipulating SQL keywords and operators.

4.3 Weaknesses and Limitations

The SQL DOM has inherent weaknesses and also some limitations.
1. As any new query development paradigm, it is bound to introduce overheads for

developer training and code rewriting, as query-generating code needs to be rewritten.
2. Its full-object policy (at least one object is instantiated for each criteria) comes at

a cost: performance, which could be reduced by using static classes.
3. Stored procedures remain unprotected even though they are very common.

4. Another limitation is that the SQL DOM does not execute queries (it only
generates them), while this could improve database integration and perhaps further
reduce the attack surface by hiding database connectivity.

5. McClure’s paper neither precisely describes its string sanitization strategy (aside
from a hint at quotes escaping) nor elaborates on exception handling, although it is
central in OOP application security. How will the SQL DOM behave if a null value is
passed on as a criterion?

5 The SQLDOM4J Solution

Our solution (full version at [2]) was freely adapted from the SQL DOM and aimed,
through an overhauled architecture and reviewed design, at meeting security and
functionality objectives. Items rated ‘critical’ are summed up here.

Firstly, type enforcement and string sanitizing should be automatic, transparent and
preventive (before any interaction with database).

Secondly, SQL errors should never be directly returned to visitors, i.e. only
managed SQLDOM4J exceptions should be raised, and easily identifiable.

Moreover, the API should be tamper-resistant.
Lastly, the database structure mapping should be precise and equivalent Java data

types defined in an optimal way to match SQL types.
Additionally, the SQL DOM creates one class per table and for each class/table,

one method per possible operation per column, making the API both inefficient and
cumbersome. To simplify this, all database structure mapping information will be
stored in a single repository class, whose members will be accesses statically to avoid
unnecessary object duplication.

5.1 Architecture & Design

The architecture of the SQLDOM4J has been kept deliberately simple in order to

fulfill its security purpose. There are 3 class packages in our solution: database,

sql and exceptions. The database package’s DB class stores all database

mappings (table names, column names and data types) as static enumerations. The

sql package contains the SQL manipulation classes (e.g. SelectQuery) – those

that developers use to build and execute queries, using DB’s enumeration members as

constructor parameters. The exceptions package contains detailed but safe classes

which all derive from the generic SQLDOM4JException, enabling developers to

catch the API’s errors easily. Please refer to the appendix for a detailed class diagram
and further explanations.

As a result, the security model is simple. First, the API checks data types against its
mappings, upon input value submission. Second, the query is pre-compiled by the

DBMS-specific driver using JDBC’s PreparedStatement interface with binded
variables. Any error in either step will prevent the query’s execution.

This design also aims at addressing the recommendations presented in section 3.
Indeed, server-side validation (2), SQL error interception (3) and strong typing (4) are
directly enforced, while text input encoding (5) and 2-step input validation (6) are not
needed in our case, as dynamic input is injected through a separate protected data

channel (binded variables) via the PreparedStatement interface. With the
SQLDOM4J, object names (7) are not inputted by the user and are routinely
validated. A low-privileged database account (1) should however still be provided to
the API. Quoted delimiters (8) are not supported and thus avoided.

5.2 Example

Here is a data type violation example:

PreparedStatement ps =
 new SelectQuery(conn, DB.Table.MEMBERS)
 .select(DB.MEMBERS.ID,
 DB.MEMBERS.LOGIN)
 .orderBy(DB.MEMBERS.ID, OrderBy.ASC)
 .whereEquals(DB.MEMBERS.AGE, 123456)
 .getPreparedStatement();

The problem here is that AGE is a smallint (i.e. short) and 123456 is out of its
bounds. Here is the resulting exception:

SQLDOM4JColumnWrongTypeException SQLDOM4J error: a
specified comparison cannot be conducted as data types
do not match for the specified column.

6 Evaluation

Throughout this project we have privileged security over performance while still
keeping in mind development- and efficiency-related objectives. We will first outline
how the SQLDOM4J addresses common implementation difficulties. Then, we will
provide a qualitative evaluation of the SQLDOM4J’s accuracy followed by a
quantitative evaluation of the API’s performance overhead. Both these evaluations
will be presented as comparisons with McClure’s SQL DOM solution, which was
implemented in C#. We will also identify possible future improvements.

6.1 Addressing Prevention Implementation Difficulties

The design of the SQLDOM4J addresses common implementation difficulties
(section 1.2). Data input entry points do not need to be identified as protection is
applied right before database interaction. Segmented queries are fully supported; their
security is ensured as each query modification is validated by the API. White-filtering
and blacklisting are unnecessary as dynamic inputs are specified using binded

variables (i.e. data channel). Evolving database schemas are not a difficulty here as
the API reflects the changes to the database structure – a simple rebuild is required.

6.2 Accuracy

There are 2 possible attack vectors for SQL Injections: non-text inputs with no type
checking, and string inputs with no proper sanitization. Hence, the 1st step in
preventing SQLIA’s is type enforcement, which eliminates risks on all non-text
inputs. Our solution checks types dynamically at runtime, by 2 separate agents: the
API (upon value submission and in accordance with the schema mappings) and the
DBMS (at query finalization, before actual execution). The 2nd step is string
sanitization, which is quasi-impossible to implement universally. Using the

PreparedStatement interface to do this has the advantage of separating control
and data channels and performing an accurate, vendor-specific sanitization – in a
portable manner.

6.3 Performance

As our goal was to provide evaluation data that would be comparable with the test
results provided by McClure’s SQL DOM paper, we designed a similar series of tests
which used the SQLDOM4J to build prepared statements and varied the number of

SELECT columns from 1 to 13. As for the SQL DOM, the results of these tests are

averaged over 10,000 executions. The machine used was a 1.86 GHz Pentium M

Centrino workstation with 1GB of DDRAM2. For this test, both the classic String-

based generation and the SQLDOM4J generation are shown using bars, while the
relative overhead is shown using a blue line.

Fig. 1. Test: variation on the number of SELECT columns

The absolute overhead is important: 0.5 to 0.65ms (13 columns) per query. Yet, it is
still below the millisecond barrier and doesn’t exceed the query execution time
(~0.7ms). The relative overhead decreases harshly with the number of specified
columns (1 to 13): from 120x to 25-30x.
In comparison, the SQL DOM’s absolute overhead was of approximately 0.13ms for
13 selected columns. Why such a difference? Apart from the very likely performance
differences between our and the SQL DOM’s test machines (unspecified in his paper),

the main design difference between the 2 solutions is that the SQLDOM4J uses the

PreparedStatement interface instead of strings. Indeed, we measured that the

second phase of the construction of an SQL query with our API, which corresponds to
the DBMS-based preparation of the pre-compiled statement, accounted for half of the
overhead introduced by the SQLDOM4J. We however believe that this overhead falls
within the scope of a reasonable performance-accuracy trade-off, when accuracy is
identified as security.

6.4 Future Improvements

We believe that the SQLDOM4J solution, which was developed in the scope of a
master thesis research project, could significantly benefit from improvements to its
accuracy and performance; here are the main ones that we have identified.

Column lengths (e.g. for varchar fields) could be stored in the DB class (as

names and data types are) allowing the solution to perform bounds validation for
input data and therefore increase its protection level and overall accuracy.

Whereas it is still confined under a 1 millisecond barrier (with our test systems),
our solution’s performance overhead is significant, especially when compared to the
SQL DOM’s. The main source of overhead is the use of the underlying DBMS-driven

PreparedStatement interface and we believe that its use within our API could

be limited while still offering a similar level of protection. For instance, accuracy tests
have shown that type violations are successfully detected by the API. Hence, SQL
queries which do not use variable text values could be built without the use of

PreparedStatements, whose added value mainly pertains to text field protection.
An interesting evolution for the SQLDOM4J solution would be to integrate the

API with a Java Object-Relation Mapping (ORM) or persistence framework, such as
Hibernate or Oracle TopLink [18]. These frameworks generally build strong-typed
queries automatically, but may allow developers to specify custom SQL queries for
increased flexibility, thus opening a window for SQL Injections. For instance, the
constructor of Oracle TopLink’s SQLCall [19] class accepts a simple Java string as
argument and it is executed without verification. It could be modified to only accept

queries built with the SQLDOM4J API (SQLQuery objects) in order to ensure their

validity while still allowing developers to specify custom queries. Another possibility
would be to integrate the SQLDOM4J with TopLink JPA, TopLink's open source
implementation. The SQLCall class could then inherit from the SQLDOM4J's
SQLQuery subclasses' safe query building features.

7 Related Work

Safe Query Objects [14] is an advanced Java solution which integrates with the
JDO ORM [26]. Its native querying paradigm evolution has the inherent drawback of
hindering querying expressivity as it defines a new querying language.

LINQ [27] is a .NET component introduced in Visual Studio 2008. It adds native
querying features to C# and VB9 and enforces strong typing based on type inference.
Unfortunately, the LINK to SQL provider is only available for SQL Server.

Quaere [28] is a LINQ-like open framework that adds a querying syntax
reminiscent of SQL to Java applications. It performs queries on Collections and is
able to query databases. As such, it is very practical; however it does not provide any
protection against SQL Injection Attacks.

JEQUEL [29] is a Java solution similar to the SQLDOM4J, as it allows developers
to specify queries using methods and maps the database structure. It supports prepared
statements but does not currently enforce strong typing or validate queries.

8 Conclusion

In this paper we have tried to give a balanced overview of the protection methods
applicable to the prevention of SQL Injections in online applications such as web sites
and services. The academic field has developed promising strategies such as
WebSSARI [9], while the industry is now producing specialized WAF and DBEP
products which are rising and likely to become essential parts of comprehensive
online data protection strategies. Yet, despite the effectiveness of these products, we
believe that their use should not excuse developers from applying preventive coding
techniques, as these hold true potential when implemented properly. Instead, they
should be complimentary components in a global defense-in-depth strategy against
SQL Injection Attacks.

Then, after discussing the strengths and weaknesses of McClure’s SQL DOM
proposal, we have presented our SQLDOM4J solution. The main difference, aside

from the architectural simplification, is the use of JDBC’s PreparedStatement

interface, which comes at an important performance cost while providing
considerable security benefits, especially in complex web environments.

All interested readers can obtain a copy of [2] and the Java prototype solution of

the SQLDOM4J from the authors upon request, or at http://waziboo.com/thesis.

9 Acknowledgements

The research was supported by the RISTEX program of the Japan Science and
Technology Agency (JST).

10 License

This work is released under the Creative Commons Attribution-Share Alike 2.5
License, viewable at http://creativecommons.org/licenses/by-sa/2.5.

References

1. Andrews, M.: Guest Editor's Introduction: The State of Web Security. IEEE Security and
Privacy, 4, 4, 14--15 (2006)

2. Janot, E.: SQLDOM4J: Preventing SQL Injections in Object-Oriented Applications. Master
thesis, Concordia University College of Alberta (2008), http://waziboo.com/thesis

3. McClure, R., Krüger, I.: SQL DOM: Compile Time Checking of Dynamic SQL Statements.
In: 27th IEEE International Conference on Software Engineering, pp. 88--96. IEEE Press,
New York (2005)

4. Power, R.: 2002 CSI/FBI Computer Crime and Security Survey. Computer Security Issues
& Trends, 8, 1, 1--22 (2002)

5. OWASP Top Ten 2007, http://www.owasp.org/images/e/e8/OWASP_Top_10_2007.pdf
6. OWASP Foundation: SQL Injection, http://www.owasp.org/index.php/SQL_injection
7. Chapela, V.: Advanced SQL Injection,

http://www.owasp.org/images/7/74/Advanced_SQL_Injection.ppt
8. Halfond, W., Viegas, J., Orso, A.: A Classification of SQL-Injection Attacks and

Countermeasures. In: IEEE International Symposium on Secure Software Engineering
(2006)

9. Huang, Y., Yu, F., Hang, C., Tsai, C., Lee, D., Kuo, S.: Securing Web Application Code by
Static Analysis and Runtime Protection. In: Di Nitto, E., Murphy, A.L. (eds.) 13th
international conference on World Wide Web, pp. 40--52. ACM, New York (2004)

10. Boyd, S., Keromytis, A.: SQLrand: Preventing SQL Injection Attacks. In: Nagel, W.E.,
Walter, W.V., Lehner, W. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 292--304. Springer,
Heidelberg (2004)

11. Buehrer, G., Weide, B.W., Sivilotti, P.A.: Using Parse Tree Validation to Prevent SQL
Injection Attacks. In: Di Nitto, E., Murphy, A.L. (eds.) 5th International Workshop on
Software Engineering and Middleware, pp. 106--113. ACM, New York (2005)

12. Halfond, W., Orso, A.: Preventing SQL Injection Attacks Using AMNESIA. In: Di Nitto,
E., Murphy, A.L. (eds.) 28th ACM/IEEE International Conference on Software Engineering,
pp. 795--798. ACM, New York (2006)

13. Su, Z., Wassermann, G.: The Essence of Command Injection Attacks in Web Applications.
ACM SIGPLAN Notice 41, 1, 372--382

14. Cook, W., Rai, S.: Safe Query Objects: Statically Typed Objects as Remotely Executable
Queries. In: Di Nitto, E., Murphy, A.L. (eds.) 27th ACM/IEEE International Conference on
Software Engineering, pp. 97--106. ACM, New York (2005)

15. Cole, L.: AppSecInc to Launch Database Security Suite. Database Journal (2007),
http://www.databasejournal.com/news/article.php/3657096

16. Ristic, I.: Web Application Firewalls: When Are They Useful?. OWASP AppSec Europe
2006,
http://owasp.org/images/9/9c/OWASPAppSecEU2006_WAFs_WhenAreTheyUseful.ppt

17. OWASP Foundation: Preventing SQL Injection in Java,
http://www.owasp.org/index.php/Preventing_SQL_Injection_in_Java

18. Oracle TopLink, http://oracle.com/technology/products/ias/toplink
19. Oracle Fusion Middleware Developer's Guide for Oracle TopLink – Using a SQLCall,

http://oracle.com/technology/products/ias/toplink/doc/11110/devguide/qrybas.htm#CIHEBF
ID

20. Kost, S.: An Introduction to SQL Injection Attacks for Oracle Developers, http://www.net-
security.org/dl/articles/IntegrigyIntrotoSQLInjectionAttacks.pdf

21. Kost, S., Kanter, J.: Evading Network-Based Oracle Database Intrusion Detection Systems,
http://www.integrigy.com/security-
resources/whitepapers/Integrigy_Evading_Oracle_IDS.pdf

22. Application Security Inc. DbProtect, http://www.appsecinc.com/products/dbprotect
23. Wiens, J.: Time To Take Action Against Data Loss,

http://networkcomputing.com/channels/security/showArticle.jhtml?articleID=203103046
24. Guardium Products, http://www.guardium.com/products/products.html
25. Imperva SecureSphere Database Security Gateway, http://imperva.com/products/dsg.html
26. Java Data Objects, http://db.apache.org/jdo
27. The LINK Project, http://msdn2.microsoft.com/fr-fr/netframework/aa904594(en-us).aspx
28. Quaere, http://quaere.codehaus.org
29. JEQUEL, http://jequel.de
30. Mookhey, K. K., Burghate, N.: Detection of SQL Injection and Cross-site Scripting Attacks,

http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-mookhey/old/bh-us-04-
mookhey_whitepaper.pdf

31. Bachfeld, D.: Lethal injection, http://www.heise-security.co.uk/articles/75593/0
32. Imperva SecureSphere Web Application Firewall, http://imperva.com/products/waf.html
33. F5 BIG-IP Application Security Manager, http://www.f5.com/products/big-ip/product-

modules/application-security-manager.html
34. ModSecurity, http://modsecurity.org
35. Gavin, M.: The Forrester Wave™: Web Application Firewalls, Q2 2006,

http://www.forrester.com/Research/Document/Excerpt/0,7211,38766,00.html
36. SecureIIS Web Server Security, http://eeye.com/html/assets/pdf/datasheet_secureiis.pdf
37. eEye Digital Security: Windows 2000 IIS 5.0 Remote Buffer Overflow Vulnerability

(Remote SYSTEM Level Access),
http://research.eeye.com/html/advisories/published/AD20010501.html

38. Yuhanna, N.: The Forrester Wave™: Enterprise Database Auditing And Real-Time
Protection, Q4 2007,
http://www.guardium.com/files/resources/ForresterWaveEnterpriseDatabaseAuditingQ4200
7.pdf

Appendix: SQLDOM4J API Architecture

Below is a UML class diagram representing a sample concrete model of our prototype
solution’s architecture. This is a simplified view (not all classes and class members
are shown) which displays both the API aspect of the solution and its internal
components. For instance, SQL query construction classes are shown

(SelectQuery, UpdateQuery, InsertQuery, DeleteQuery) as well as

non-instantiable abstract classes (SQLQuery).

Fig. 2. SQLDOM4J sample API architecture (simplified view)

The database package contains static data type mappings (between SQL, JDBC and

Java) and associated methods in the DBTypes class which is used internally, and the

DB class which is accessed by developers to select tables and fields when they build

queries. The DB class maps the underlying database structure (tables’ and columns’

names and data types) via static enumerations; the first (DB.Table) containing the

table names and the subsequent containing each table’s definition. In our case, the
API was mapping a dummy database containing 2 tables (‘Members’ and
‘MembersInfo’); the diagram shows the details for the ‘Members’ table mappings.

Exceptions are kept in a specific package and are not shown here except for the

generic SQLDOM4JException.

