
University of Alberta
Master of Science in Internetworking
Capstone Project (MINT 709)

IOT Enabled Natural Gas Detection Secure Wireless Sensor for residential and
commercial deployments with cloud-based data storage

Edmonton, February 2017

Tutor
Gurpreet Nanda

Author
Eduardo Oliva

1

CONTENTS
ABSTRACT ... 3

KEY CONCEPTS AND INVOLVED TENCHNOLOGIES ... 4

THE DESIGN ... 8

A-ARDUINO WIRELESS GAS DETECTOR ... 9

B-LOCAL BROKER .. 11

C-ON LOCATION ACCESS POINT. ... 11

D-VMWARE ESXI SERVER AND VMWARE VSWITCH. ... 11

E-VMWARE VM RUNNING CENTOS. .. 12

F-OPENSTACK NETWORKS, ROUTER, INSTANCE. .. 12

THE SET-UP .. 14

A-BUILD AND SETUP THE WGS ... 14

1)GETTING READY: .. 14

2)THE IOT CODE: ... 15

3)THE SENSOR: .. 18

B-LOCAL BROKER .. 19

C-ACCESS POINT... 21

D-VMWARE ESXI SERVER AND VMWARE VSWITCH .. 22

E-OPENSTACK VMWARE VM RUNNING WITH CENTOS SERVER 7. ... 22

F-USER PC AND/OR SMARTPHONE: ... 28

G-OPENSTACK NETWORKS, ROUTER, IMAGES AND INSTANCE. ... 28

H-REMOTE BROKER ... 32

I-SETUP SUMMARY AND PASSWORDS ... 35

THE SECURITY .. 37

INTERMEDIATE BRIDGE ... 38

POWER-ON ... 42

A-SERVER/INTERMEDIATE MOSQUITTO BROKER... 42

2

B-CENTOS INSTANCE/MOSQUITTO REMOTE BROKER ... 44

C-THE LOCAL BROKER ... 44

D-THE WGD .. 45

E-GASDETECTOR APP AND MYSQL ... 46

F-TALK TO THE WGD ... 47

PERFORMANCE ... 49

FINAL CONSIDERATIONS ... 52

TO BE CONTINUED ... 54

APPENDIX A, BUDGET ... 55

APPENDIX B, TIMELINE ... 56

3

ABSTRACT

The detection of gas leaks is a major safety issue where citizens, employees and assets could suffer
serious harm as the result of undetected malfunction or damage in facilities. Currently, most
detection systems are expensive, passive, hard to wire, maintain and update. With every attempt
to turn them into wireless or portable systems these problems are increased several times and can
become impossible to achieve as well.

Whenever a potentially dangerous gas is involved (e.g. Natural Gas, CO2, H2S, etc), the
responsible entities must satisfy safety regulations and protect human life. Utilities, Oil & Gas,
Insurers and Building companies are the obvious and always interested parts in this equation where
prevention is better (cheaper) than damage control.

IoT1 is offering a wide span of reliable solutions with costs in a trend to the low. Automation and
two ways communications are possible, then the times of isolated and passive detection systems
are gone. Also, wireless communications have a positive impact in budgets and in the required
time to install and setup devices.

IoT is a non-subversive revolution in development, that perfectly matches with virtualization and
clouding environments and is spreading worldwide boosted by open source research and
development. This research will reflect the foundations and spirit of the knowledge received during
the MINT course. In order to achieve this high level of performance and professionalism, the
information should be available always, on time and wherever is required as well. Sensors, wired
and wireless networks, operating systems, internet security and programming languages
understanding will be required to address the build the proposed system.

This project is a “Proof of Concept”, that will combine all the required technologies to achieve the
desired objective (build the IoT system with Cloud computing and database services). Despite that
currently there are already many commercial applications and more research in progress, some
challenges might come from the specific combination selected for this project that will be used to
start-up new concepts or verify the existing.

1 Internet of The Things

4

KEY CONCEPTS AND INVOLVED TENCHNOLOGIES

 Arduino:” is a computer hardware and software company, project, and user community that
designs and manufactures microcontroller kits for building digital devices and interactive
objects that can sense and control objects in the physical world. The project's products are
distributed as open-source hardware and software, which are licensed under the GNU Lesser
General Public License (LGPL) or the GNU General Public License (GPL).”2

Arduino is Based in the Wiring project, that was initiated in 2003 by the Colombian Hernando
Barragan for his Master’s thesis at the Interaction Design Institute of Ivrea, Italy.

 Arduino IDE: The Arduino Integrated Development Environment - or Arduino Software
(IDE) - contains a text editor for writing code, a message area, a text console, a toolbar with
buttons for common functions and a series of menus. It connects to the Arduino and Genuino
hardware to upload programs and communicate with them.3 The Arduino “language” is based
on C/C++.

 Broker (MQTT Broker): is a Mosquitto Server, that depending on its proximity to the
publishers and the use that gives to the received messages, could be Local or Remote. The
Local Broker subscribes messages from the publishers in a LAN, and forwards these messages
to a Remote Broker. A Remote Broker may receive messages though the internet, from Local
Brokers or directly from the publishers. The Remote Broker is the destination of the messages.

 Bridge (MQTT Bridge): a Mosquitto Bridge can be created between two brokers, a local and
a remote broker. While some devices might be publishing messages to a local broker, it could
be bridged to a remote broker that will receive the messages. If the local broker has the right
user and password, the messages that were supposed to be received by the local broker, will
be published in the remote broker. The brokers concept should be understood as “servers”.

 CentOS: “The CentOS Project is a community-driven free software effort focused on
delivering a robust open source ecosystem. For users, we offer a consistent manageable
platform that suits a wide variety of deployments. For open source communities, we offer a
solid, predictable base to build upon, along with extensive resources to build, test, release, and
maintain their code.”4

 Dashboard: the OpenStack Dashboard is the tool that a cloud end user can use to provision
his resources in the limits that the administrator has set up for that user. Is a web based interface
that includes all the OpenStack Services, in some OpenStack deployments is known as
Horizon.

 ESP8266: “The ESP8266 Wi-Fi Module is a self-contained SOC with integrated TCP/IP
protocol stack that can give any microcontroller access to your Wi-Fi network. The ESP8266
is capable of either hosting an application or offloading all Wi-Fi networking functions from
another application processor. Each ESP8266 module comes pre-programmed with an AT
command set firmware, meaning, you can simply hook this up to your Arduino device and get
about as much Wi-Fi-ability as a Wi-Fi Shield offers (and that’s just out of the box)! The
ESP8266 module is an extremely cost effective board with a huge, and ever growing,
community.”5

 Iaas: Infrastructure as a service.

2 https://en.wikipedia.org/wiki/Arduino
3 https://www.arduino.cc/en/guide/environment
4 https://www.centos.org/
5 https://www.sparkfun.com/products/13678

5

 IoT; The Internet of things (Internet of Things or IoT) “is the internetworking of physical
devices, vehicles (also referred to as "connected devices" and "smart devices"), buildings, and
other items—embedded with electronics, software, sensors, actuators, and network
connectivity that enable these objects to collect and exchange data.” 6

 Instance: an OpenStack instance is the equivalent to a Virtual Machine.
 Mosquitto: “is an open source (EPL/EDL licensed) message broker that implements the

MQTT protocol versions 3.1 and 3.1.1. MQTT provides a lightweight method of carrying out
messaging using a publish/subscribe model. This makes it suitable for "Internet of Things"
messaging such as with low power sensors or mobile devices such as phones, embedded
computers or microcontrollers like the Arduino.”7

Mosquitto shares information using a Publisher/Subscriber system. For publishing a message,
the publisher does not need a subscriber waiting and it does not require to wait for
acknowledgement to publish the next message. The subscriber must be waiting to receive
messages and will listen only to the “topics” it is subscribing. Mosquitto uses the ports 1883
and 8883. The port 8883 uses SSL and the messages are encrypted. Mosquitto also supports
TSL. An IoT device can publish messages in a broker, and also can subscribe messages from
them or from other publishers.

 MySQL: “is an open-source relational database management system (RDBMS). Its name is a
combination of "My", the name of co-founder Michael Widenius' daughter, and "SQL", the
abbreviation for Structured Query Language. The MySQL development project has made its
source code available under the terms of the GNU General Public License, as well as under a
variety of proprietary agreements. MySQL was owned and sponsored by a single for-profit
firm, the Swedish company MySQL AB, now owned by Oracle Corporation. For proprietary
use, several paid editions are available, and offer additional functionality.”8

 MQ Gas Sensor: “The MQ series of gas sensors use a small heater inside with an electro-
chemical sensor. They are sensitive for a range of gasses and are used indoors at room
temperature. They can be calibrated more or less, but a concentration of the measured gas or
gasses is needed for that.” 9 MQ Gas Sensors use the same principle that Naoyoshi Taguchi
employed in 1962 to build the first semiconductor device that could detect gases. There are
different versions for different applications, and the most common are numbered MQ-2 to MQ-
9 being able to detect: Combustible gases and Smoke, Alcohol, Natural Gas-Methane, LPG-
Natural Gas-Coal Gas, LPG-Propane, Carbon Monoxide, Hydrogen, CO2 and combustible
gas.

 Open-source model:” is a decentralized development model that encourages open
collaboration. A main principle of open-source software development is peer production, with
products such as source code, blueprints, and documentation freely available to the public. The
open-source movement in software began as a response to the limitations of proprietary code.
The model is used for projects such as in open-source appropriate technologies, and open-
source drug discovery.”10

6 https://en.wikipedia.org/wiki/Internet_of_things.
7 https://mosquitto.org/
8 https://en.wikipedia.org/wiki/MySQL
9 http://playground.arduino.cc/Main/MQGasSensors
10 https://en.wikipedia.org/wiki/Open-source_model

6

 OpenStack: “OpenStack is a free and open-source software platform for cloud computing,
mostly deployed as an infrastructure-as-a-service (IaaS).[3] The software platform consists of
interrelated components that control diverse, multi-vendor hardware pools of processing,
storage, and networking resources throughout a data center. Users either manage it through a
web-based dashboard, through command-line tools, or through a RESTful API. OpenStack.org
released it under the terms of the Apache License.”11

 OpenStack Components: a basic set of component should include:

Service(Name) Function

Compute (Nova) Is the computing controller and is the main part of an IaaS.

Networking (Neutron) Manages networks and IP address.

Block Storage (Cinder) Block level storage for OpenStack instances.

Identity (Keystone) Central directory of users mapped to OpenStack services they
can access

Image (Glance) Images are templates to deploy volumes (disks) and instances
(VMs)

Object Storage (Swift) Scalable redundant storage.

Dashboard(Horizon) Graphical interface for administrators and users.

Orchestration (Heat) Orchestrates multiple composite cloud applications using
templates

Telemetry (Ceilometer) Single point of contact for billing system.

Table-1. OpenStack Services

Other OpenStack services are: WorkFlow (Mistral), Database (Trove), Bare Metal (Ironic),
Messaging (Zaqar), Shared File System(Manila), DNS (Designate), Search (SearchLight), Key
Manager (Barbican).

 Packstack: “is a utility that uses Puppet modules to deploy various parts of OpenStack on
multiple pre-installed servers over SSH automatically. Currently only CentOS , Red Hat
Enterprise Linux (RHEL) and compatible derivatives of both are supported.”12

 Puppet: “Puppet Enterprise is the leading platform for automatically delivering, operating and
securing your infrastructure – no matter where it runs. With Puppet you know exactly what is
going on with all your software. And you get the automation needed to drive change with
confidence.”13
“Puppet provides a standard way of delivering and operating software, no matter where it runs.
With the Puppet approach, you define what you want your apps and infrastructure to look like
using a common easy-to-read language. From there you can share, test and enforce the changes

11 https://en.wikipedia.org/wiki/OpenStack
12 https://wiki.openstack.org/wiki/Packstack
13 https://puppet.com/product

7

you want to make across your datacenter. And at every step of the way, you have the visibility
and reporting you need to make decisions and prove compliance.”14

 TLS: “Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), both
frequently referred to as "SSL", are cryptographic protocols that provide communications
security over a computer network.”15

 Wi-Fi: “Wi-Fi or Wi-Fi is a technology for wireless local area networking with devices based
on the IEEE 802.11 standards. Wi-Fi is a trademark of the Wi-Fi Alliance, which restricts the
use of the term Wi-Fi Certified to products that successfully complete interoperability
certification testing.”16

 VMware ESXi: “VMware Vsphere hypervisor is a free bare-metal hypervisor that virtualizes
servers so you can consolidate your applications on less hardware.” 17
“VMware ESXi is the industry-leading, purpose-built bare-metal hypervisor. ESXi installs
directly onto your physical server enabling it to be partitioned into multiple logical servers
referred to as virtual machines. Customers can use ESXi with either the free vSphere Hypervisor or
as part of a paid vSphere edition.”18

14 https://puppet.com/product/how-puppet-works
15 https://www.google.ca/search?q=tls&ie=utf-8&oe=utf-8&gws_rd=cr&ei=BnesWM-jF5DejwOv_4DYDw
16 https://en.wikipedia.org/wiki/Wi-Fi
17 http://www.vmware.com/ca/products/vsphere-hypervisor.html
18 http://www.vmware.com/products/esxi-and-esx.html

8

THE DESIGN

Figure-0 The System’s Design

.

The main objective is to build a system that should produce information from IoT devices and
store it into a Cloud Based system. The involved devices (actual and virtualized devices) that we
will be setting up are:

A. IoT Arduino Wireless Gas Detector (WGD).
B. Local Broker.
C. On Location Access Point.
D. VMWare ESXi Server and VMWare Vswitch.
E. CentOS VMWare VM running Centos.
F. OpenStack Networks, Router, Images and Instance. (Remote Broker)

An optional component of this system could be the integration of any Smartphone and UserPC
connected to Internet that could be used to interact with the IoT devices. Their presence depends
of security considerations that will be discussed in the following sections of this report.

9

Following, a brief description of each one is provided, but more detailed explanation about features
and set-up will be developed in a separated section.

A-ARDUINO WIRELESS GAS DETECTOR

The first device, and source of the information, of this system is the “Wireless Gas Detector”
(WGD) built with Arduino compatible parts. The basic design includes the Sensor, Wi-Fi adapter,
a couple of Resistors, a Capacitor and a Transistor.

Figure-1 Circuit Design19

The actual circuit is shown in Figure-2, and includes another capacitor and accepts a Serial
Adapter. Three capacitors were added because ESP8266-01 requires power during the connection
to the AP. Without them it reboots with error message #3, at rate of two out of every three times
you power on the circuit. The solution is to add a couple of capacitors to the 3.3V power source
and one more (smaller) in the closest connection to the power intake of ESP8266-01. The solution
provides a flawless booting and connecting performance.

19 http://iot-playground.com/blog/2-uncategorised/53-esp8266-wifi-gas-sensor-arduino-ide

10

Figure-2. Wireless Gas Detector (WGD)

Part Features

ESP8266-01 Provides Wi-Fi (802.11 b/g/n) connection. Serial/UART baud rate: 115200
bps. Integrated TCP-IP protocol Stack. Input power: 3.3 V. Memory 1MB.
Dimensions 24.75mm x 14.5mm.

MQ2 Circuit Voltage 5V DC. Digital and Analog output. Sensitive to LPG,
butane, propane, methane, alcohol, hydrogen and smoke. Heating time 3-
5min.

AMS 1117 Low dropout voltage regulator. Input power: 5V DC. Output current 1A.
3.3V DC output.

FTDI 232 USB to RS-232 converter (used to load the app to Esp8266-01 and connect
the serial-monitor)

Table-2. Wireless Gas Detector Components

 To power on the device, this could be done in two different ways:

1- Connect a regulated 5V DC power source as indicated in Figure 2. This will power on
the whole system, including the Gas Sensor and the Wi-Fi ESP8266 device.

2- Connect the FTDI232 Serial to USB adapter, to the “FTDI-232 connection” pins. This
will power the ESP8266 only. The gas sensor won’t be energized and therefore the
Input Reading that ESP8266 will receive will be always “1” (gas presence).

A third and proven alternative is using both, 5VDC and FTDI232 at the same time. This is
only useful if you want to energize the sensor while you are reading the outputs of the
ESP8266 serial port in Arduino’s IDE Serial Monitor. In this case the default reading will
be “0” (no gas). In this case you must disconnect the AMS1117 Regulator to avoid
malfunction or damaging the parts.

11

The manufacturers are explicit about not energizing the pieces with other voltage than the
recommended. The developed experience is that the parts are more reliable than expected.

B-LOCAL BROKER

The Local Broker is the On-Location Server. It is built on a Gateway 2000 laptop model W35OI
(Celeron processor with 2GB RAM and 160GB Hard Drive) running Ubuntu 14.04. This could be
replaced with a low cost Raspberry Pi module or similar equipment as it is not intended to save
any data or perform any advanced function either. Its main function is to establish the MQTT
Bridge with the Remote Server. During the development phase, it was used to test publishing and
subscribing messages with the WGS.

C-ON LOCATION ACCESS POINT.

A connection with Intenet is required to be able to connect to the Remote Broker. For this project,
the ISP was Telus and the AP model was V1000H.

D-VMWARE ESXI SERVER AND VMWARE VSWITCH.

VMware vSphere 6 Enterprise is installed in a PowerEdge R430 server installed in the University
of Alberta Mint Lab. A tunnel connection is used to access it with VMware vSphere Client.

Figure-3 VMware vSwitch Configuration

To connect to the server, VMware vSwitches are used: vSwitch0 to provide management
connection (through the tunnel) and vSwitch1 to have connection to internet through a Public IP
address provided by the UofA Mint Lab.

12

E-VMWARE VM RUNNING CENTOS.

A Virtual Machine running CentOS 7 Server was deployed in VMware (called CentOStack).
This machine has two NICS (one for management and another one for internet), 30CPUs, 38GB
RAM and 200GB Hard Drive among most importan features.

Figure-4 CentOStack VM settings

F-OPENSTACK NETWORKS, ROUTER, INSTANCE.

In the CentOStack VM, PackStack OpenStack was deployed. In consequence, some virtualized
devices were created. The most relevant are:

 Networks: two networks were created, Public and Internal. Public is to get connection
to the “outside” world, though the CentOStack “br-ex” interface. Internal is the network
that connects to all the OpenStack Instances that could have the project.

 Router: A router is created in OpenStack to connect the Public Network and the Internal
Network.

Figure-5 OpenStack Network Topology.

13

 Instance: is the equivalent to a Virtual Machine, its name is GD01. The OS is CentOS
server v7 installed using one modified OpenStack Image and a CentOS ISO OpenStack
image. This instance has the following features:

 4 Processors.
 8GB RAM.
 30GB Hard Drive.
 1 NIC.

Figure-6. GD01 Instance in OpenStack.

The OpenStack Instances will be responsible of providing Iaas (computing) and Daas (data
storage) for the Remote Broker. This Broker is the Mosquitto entity that processes and stores all
the data generated by the WGD.

14

THE SET-UP

To describe the entire system installation and setup process, we will go through the same list of
components we identified in the previous section.

A-BUILD AND SETUP THE WGS

 1)GETTING READY:
As ESP8266 libraries are not included in Arduino IDE default setup, you must add it to the active
libraries. After this step, you will be able to use the ESP8266Wi-Fi.h. This is also a good time to
add the MQTT library to your IDE (PubSubClient.h) and Base64.h that will be useful to convert
some data types in the next steps.

 Following Figure 1, the circuit was built on a “bread board”. The first time you connect the
power source, the ESP8266 might disable your Wi-Fi network. This is because it has no pre-
installed firmware. To solve this issue you can use a simple example code for Wi-Fi (like “Basic
ESP8266 MQTT example”), to upload the ESP8266-01 configuration. Basically, all you have to
do is include you SSID name, User and Password. Once you upload this basic configuration it will
stop avoiding your Wi-Fi to work properly (It doesn’t matter if you provide inaccurate information
or the AP is not powered on at this time).

 For this task you must connect the Serial FTDI232 adapter, and plug the Flash Pin cable to
GND connector (see yellow line showing where should this pin be connected in Figure-2). In the
Arduino IDE Serial Monitor you should be able to see the ESP8266 trying to connect to an AP
using the parameters you provided (If using our code there are some outputs to Serial Monitor to
show this process evolution).

Figure-7. Connection to ESP8266 Serial Port.

 Most of the times, the ESP8266 will reset by itself after loading a new code, and it will
start working even when the Flash Pin is connected. For better results, it is recommended to remove
the Flash Pin and reset the entire WGD(disconnecting the power source and connecting it again).
Figure-8 can provide a better understanding of the FTDI232 wiring.

15

Figure-8. FTDI232 pin connection to ESP8266-01.20

Once you uploaded your first code to ESP8266, you should be able to see attempts to
connect to the AP in the serial monitor. It is important to don’t try to open the Serial Monitor while
uploading a program to your device, because this will stop the ongoing process.Figure-9 shows a
successful uploading process.

Figure-9 Uploading code to ESP8266 through FTDI232

Figure-10 ESP8266, Arduino’s IDE Serial Monitor shows Wi-Fi is successfully connected to AP

2)THE IOT CODE:

Code-1 shows the actual version that was uploaded to ESP8266.

20 http://www.instructables.com/id/ESP8266-based-web-configurable-wifi-general-purpos/

16

CODE Comments

#include <PubSubClient.h>
#include <ESP8266Wi-Fi.h>
#include <Base64.h>
#define INPUT_PIN 2
// Update these with values suitable for your network.
const char* ssid = "TELUS1977";
const char* password = "69b6753026";
byte mac[6];
Wi-FiClient espClient;
PubSubClient client(espClient);
long lastMsg = 0;
char msg[140];
int value = 0;
int ttime=1;
String strtime;
char myIpString[24];
char myTopic[40];
char myMACADDRESS[30];
const char* DetectorType="Gas";

void setup() {
 //pinMode(BUILTIN_LED, OUTPUT); // Initialize the BUILTIN_LED pin as an
output
 Serial.begin(115200);
 pinMode(INPUT_PIN, INPUT);
 Serial.print("Starting execution, next is setup Wi-Fi");

 setup_Wi-Fi();
 Wi-Fi.macAddress(mac);
 client.setServer(IPAddress(192,168,1,16), 8883);

 client.setCallback(callback);
}

void setup_Wi-Fi() {
 delay(10);
 // We start by connecting to a Wi-Fi network
 Serial.println("BEGIN SETUP");
 Serial.print("Connecting to ");
 Serial.println(ssid);
 //macString==mac2String(mac);//
 Serial.print("MAC address:");
 byte myMAC[6];
 Wi-Fi.macAddress(myMAC);
 sprintf(myMACADDRESS, "%02X:%02X:%02X:%02X:%02X:%02X",
myMAC[5],myMAC[4],myMAC[3],myMAC[2],myMAC[1],myMAC[0]);
 Serial.println(myIpString);
 Wi-Fi.begin(ssid, password);
 while (Wi-Fi.status() != WL_CONNECTED) {
 delay(50);
 Serial.print(".");
 }

Your AP
configuration.

ESP8266
Initialization.

Serial port speed.
Data input pin.
Serial.print sends
data to Serial
Monitor useful
during configuration
and test
Get IoT device’s
MAC address.
Set MQTT server IP.
Calback initialized
to be waiting for
incoming msgs.

Wi-Fi device Setup.

Convert MAC
address to String

Try connection to
AP
If connection fails
retry.

17

 Serial.println("");
 Serial.println("Wi-Fi connected");
 Serial.println("IP address: ");
 Serial.println(Wi-Fi.localIP());
 IPAddress myIp = Wi-Fi.localIP();
 sprintf(myIpString, "%d.%d.%d.%d", myIp[0], myIp[1], myIp[2], myIp[3]);
 //Spark.variable("ipAddress", myIpString, STRING);//

}

void callback(char* topic, byte* payload, unsigned int length) {
 char message_buff[100];
 Serial.print("Message arrived [");
 Serial.print(topic);
 Serial.print("] ");
 for (int i = 0; i < length; i++) {
 Serial.print((char)payload[i]);
 message_buff[i] = payload[i];
 }
 String topic_str=String(topic);
 //Serial.println("Before storing msg");
 String msgString = String(message_buff);
 //Serial.println("After storing msg");
 if (msgString.startsWith ("Request"))
 {
 if (topic_str.endsWith(myIpString))
 {
 //Serial.println("request comparisson succeed");
 snprintf(myTopic,40,"outTopic/23.17.224.11/%s", myIpString);
 snprintf (msg, 140,"REQUESTED-%ld-%s Sensor IP:%s MAC:%s Reading
value=%ld",value,DetectorType,myIpString,myMACADDRESS,digitalRead(INPUT_PI
N));
 Serial.print("Publish message: ");
 Serial.println(msg);
 client.publish(myTopic, msg);
 }
 }
 if (msgString.startsWith ("Sleep"))
 {
 if (topic_str.endsWith(myIpString))
 {
 strtime=(msgString.substring(5,msgString.length()-1));
 ttime=(strtime.toInt());
 Serial.println(ttime);
 }
 }

}

void reconnect() {
 // Loop until we're reconnected
 while (!client.connected()) {
 Serial.print("Attempting MQTT connection...");
 // Attempt to connect
 if (client.connect("ESP8266Client","user1","silvana01")) {
 Serial.println("connected");

Get IP address
assigned by DHCP.

Callback function
analyzes publishers’
attempts to publish
in this device. Only
receiving subscribed
topics

The payload is stored
in a msg buffer.

Only two types of
msgs are of our
interest:
1-Requests, for a
sensor reading in this
moment. The
payload says
“Request”
2-Modifications to
the sleep function.
The payload must
contain “Sleepn-“
where “n” Is the
delay time between
two sensor readings.

23.17.224.11 is the
IP assigned by the
ISP.

MQTT reconnect
will loop while v
connected to the AP.

The Local Broker’s
user and password

18

 // Once connected, publish an announcement...
 sprintf(myTopic,"outTopic/23.17.224.11/%s", myIpString);
 snprintf(msg,140,"IOT %s sensor prompt, HELLO!", DetectorType);
 //Serial.println(myTopic);
 //Serial.println(msg);
 client.publish(myTopic, msg);
 // ... and resubscribe
 snprintf(myTopic,80,"InTopic/23.17.224.11/%s", myIpString);

 client.subscribe(myTopic);
 } else {
 Serial.print("failed, rc=");
 Serial.print(client.state());
 Serial.println(" try again in 2 seconds");
 // Wait 2 seconds before retrying
 delay(2000);
 }
 delay(1000);
 }
}

void loop() {

 if (!client.connected()) {
 reconnect();
 }
 client.loop();
 long now = millis();
 if (now - lastMsg > (1000* ttime)) {
 lastMsg = now;
 ++value;
 snprintf(myTopic,40,"outTopic/23.17.224.11/%s", myIpString);
 Serial.println(myTopic);
 snprintf (msg, 140,"%ld-%s Sensor IP:%s MAC:%s Reading value=%ld",
value,DetectorType,myIpString,myMACADDRESS,digitalRead(INPUT_PIN));
 Serial.print("Publish message: ");
 Serial.println(msg);
 client.publish(myTopic, msg);
 delay(1000);
 }
}

are provided to
connect.
(the ones stored and
encrypted in
etc/mosquitto/passw
d file)
The payload and
topic are built.

Main section of the
code.

Will loop forever.

Print to Serial
Monitor outgoing
topics and messages
(payloads).
If a Sleepn- message
is reveiced, the delay
time between sent
messages is
multiplied n times
(ttime variable).

Code-1. CapstoneGasDetector.ino

 3)THE SENSOR:
As already described, the sensor is an analog device that generates a resistance in presence of

certain gases.

19

Figure-11. MQ2 connection pins.21

Vcc is connected to the 5VDC, while GND to ground. DO is the digital output (1 or 0) and AO is
the analog output that can be adjusted using the included blue dimmer in the back side (see Figure
11). In this project we will use DO. The sensor doesn’t accept more configuration than adjusting
the AO range. Although, it requires a “warm up” period (2-3min) o start giving valid readings.
Such delay should not result in any lack of accuracy, because the ESP8266-01 booting process,
Wi-Fi connection and MQTT client connection process could take the same or more time to
succeed (depending on environmental conditions of the radioelectric spectrum).

B-LOCAL BROKER

 One of the most interesting features of IoT devices, is that they can connect directly to the Internet
without any more intermediate devices than an Access Point. Although, they are also interesting
because they can receive messages from the internet as well. But at the same time they are not
supposed to work by themselves, and where one IoT device is installed, it is possible to have a
large series of similar ones performing the same task, for redundancy or to cover a larger surface.
Nevertheless the reason to have many IoT devices in the same place, it is not possible to provide
one public IP address to each one. This is the first reason to use a Local Broker.

The other reason to have a Local Broker, is because IoT devices have limited memory and
processing power, and in consequence they are very exposed to security breaches. That being said,
a Mosquitto Broker may perform as intermediary between the IoT devices and the main server or
Remote Broker, creating a secured bridge (the security will have a separate discussion in another
section).

The local Broker is the known reference for all the IoT devices in the LAN. It was installed in a
low cost portable device, with Ubuntu 14.04 as Operating System. The installed protocol was
Mosquitto 3.1.

Mosquitto.conf file Comments
allow_anonymous false
password_file /etc/mosquitto/passwd
port 8883
connection BridgeIt
bridge_insecure false

Don’t allow anonymous publishers
Location of the passwords file (local) user by Arduino
code to connect.
Port to use (SSL secured)

21 http://www.instructables.com/id/ESP8266-based-web-configurable-wifi-general-purpos/

20

cleansession false
clientid br_local
start_type automatic
remote_username user1
remote_password silvana01
address 129.128.116.190:8883
topic outTopic/# both
topic InTopic/# both

Name of bridge connection to Remote Broker

No insecure connection to Remote Broker

Username to connect to Remote Broker
Password to connect to Remo
IP of the Remote Broker and port to connect.
Topics to be used in this bridge.

Code-2 Local Broker, configuration file /etc/mosquitto/mosquitto.conf

In the Arduino Code (Code-1), the IP address that is provided for connection is 192.168.1.16, that
belongs to the Local Broker. Therefore, ESP8266 connects with it and publishes its topics in the
Local Broker. But, because of the Bridge, all the subscribed topics that correspond with the ones
in the declared in the bridge, will be published in the Remote Broker automatically. This is when
we are talking about Outgoing messages.

In the case of Incoming messages, the Local Broker subscribes to the messages sent by publishers
with valid user/password combination and the accepted topics (as it does with the ones coming
from the LAN). Once the messages are received, they are shared by Mosquitto among all the IoT
devices subscribing to these topics in the LAN. In order to receive messages from the internet, this
Local Broker is exposed in to the internet in the DMZ of the AP. Each ESP8266 running the Code-
1, will receive the message, verify the payload, and that should end with its own IP address. This
indicates to the IoT device that it must take this order for it own. When the topic doesn’t end with
the IP of the device, the message is ignored.

Without the Local Broker, only one ESP8266 would be exposed to the Internet, and it would be
responsible of dealing with all the devices deployed in its LAN. Encrypting own and other devices
messages with less than half MB RAM is beyond its capabilities.

Figure-12 Mosquitto Local Broker.

In the Figure-12, all the IoT devices publish and subscribe topics in the local broker, and they are
connected to the same LAN. Meanwhile, the port 8883 of the Local Broker is exposed to the

21

internet to subscribe incoming topics and to establish the bridge to the Remote Broker. The
firewall (provided by the AP), exposes the Local Broker in the demilitarized zone, in
consequence the traffic coming to its public IP is going to be referred to the Local Broker.

We must remind that Figure-12 doesn’t restrict the source of InTopic to the Remote Broker and
any device connected to the Internet could publish topics to the Local Broker. Although, the
Local broker subscribes to InTopic, as long as:

1- It matches to the subscribed topic.
2- The publisher has a valid username/password combination.
3- The message format corresponds to anyone of the accepted topic/payloads.
4- In the topic structure a valid and active IP address corresponds to any of the

connected IoT devices.

If a single one of the conditions if not satisfied, the message will not be considered either by the
Local Broker or any of the ioT devices.

LAMP (Linux, Apache, MySQL, PHP) was installed in the local Broker to perform tests, run
python applications to publish/subscribe topics, and data storage routines, along with Mosquitto
and PAHO (python libraries for Mosquitto).

C-ACCESS POINT

Figure-13 DMZ and Port Forwarding setup Access Point

While 192.168.1.16 (the Local Broker) is exposed to the internet, all the ports but 8883, that are
not used for any required function, should be closed to avoid attacks that compromise the security
of the Local Broker and/or the LAN. (Figure-13).

22

Figure-14. Our IoT device highlighted in red.

D-VMWARE ESXI SERVER AND VMWARE VSWITCH

Enabling two interfaces on the Dell PowerEdge 430, one for Management and another one for
Internet access, they were configured to connect through vSwitch0 and vSwitch1 (Figure-3). Two
networks, VM Network (Management) and VM Internet (Internet).

VM Network IP address is 10.3.32.103. Using Cisco VPN client to establish connection, VMware
vSphere Hipervisor gives control of VMware ESXi.

VM Internet connection allows to use one public IP (129.128.116.190). This public IP address if
basic to build the MQTT Bridge.

E-OPENSTACK VMWARE VM RUNNING WITH CENTOS SERVER 7.

Once the CENTOS Server 7 ISO was uploaded to VMware ESXi Datastore, it was used to install
the OS. Centos Server doesn’t install by itself the GUI, and you must configure it after finishing
the Centos Server setup. The NIC connected to vSwitch1 will be our source for Internet connection
to accomplish the following phases during the setup, and to connect the MQTT Bridge.

As we were provided with a Public IP, we will set up the interface connected to Network “Internet”
with the following parameters:

 IPADDR=129.128.116.190
 GATEWAY=129.128.116.161
 MASK=255.255.255.224
 DNS1=129.128.5.233
 DNS2=8.8.8.8
 NM_CONTROLLED=no

23

The last parameter is critical, because we don’t want the OS to change our interface configuration.
Having internet connection, we follow with this task list:

1. Update the OS: yum update -y
2. Install wget and git (they will be usefull):

a. yum install wget -y
b. yum install git -y

3. Install mosquitto and its libraries (although it is not going to be used in this machine, is
useful for tests):

a. wget
http://download.opensuse.org/repositories/home:/oojah:/mqtt/CentOS_CentOS-
5/home:oojah:mqtt.repo

b. yum update
c. yum install mosquitto
d. yum install mosquitto-clients

4. Install LAMP (we are interested in MySQL and Python).
a. yum install mysql-server
b. service mysqld start
c. /usr/bin/mysql_secure_installation
d. yum install php php-mysql

5. Install the GUI
a. yum -y groups install "GNOME Desktop"

The reason for installing a GUI is to have access to the OpenStack Dashboard, that requires a Web
Browser and to make easier the installation processes. CentOS (a RedHat based OS), uses “yum”
repositories. The selected OpenStack deployment is an AIO (All in One) named PackStack that
installs OpenStack-Newton. The setup process is as follows:

Commands to be typed in terminal Comments

1. sudo systemctl disable firewalld
2. sudo systemctl stop firewalld

Stop and disable the firewall. OpenStack is
going to create interfaces and will use them and
the already existing to connect the services.

3. sudo systemctl disable NetworkManager
4. sudo systemctl stop NetworkManager

Stop and disable the NetworkManager. The
interfaces should be manually set up and, as
already said, OpenStack will setup interfaces
for its own service.

5. sudo systemctl enable network
6. sudo systemctl start network

Start Nerwork service (in case it was not
already enabled and started).

7. sudo yum install -y centos-release-OpenStack-newton Install the Centos OpenStack Newton
repository

8. sudo yum update -y Update CentOS. This will update all installed
apps.

9. sudo yum install -y OpenStack-packstack Install PackStack.
10. sudo packstack --allinone Start Packstack AIO

Code-3. OpenStack Installation

24

After executing #10 of Code-3, is possible to repeat the same installation using the answer file that
will be stored in the /root folder. As a result, OpenStack creates a set of Network Interfaces, in
addition to “ens32” and “loopback”. Executing “ifconfig” you should obtain the following
interfaces:

Avilable interfaces Comments

br-ex: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 172.24.4.225 netmask 255.255.255.240 broadcast 172.24.4.239
 inet6 fe80::c68:cdff:fe21:7e46 prefixlen 64 scopeid 0x20<link>
 ether 0e:68:cd:21:7e:46 txqueuelen 1000 (Ethernet)

This interface was created during
OpenStack installation, and it is going to be
used to forward all MQTT traffic to the
Instance running Mosquitto

ens32: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 129.128.116.190 netmask 255.255.255.224 broadcast 129.128.116.191
 inet6 fe80::20c:29ff:fe36:efa prefixlen 64 scopeid 0x20<link>
 ether 00:0c:29:36:0e:fa txqueuelen 1000 (Ethernet)

The Centos VM interface connected to
vSwitch1, and is configured with the public
IP provided by UofA. All MQTT traffic
coming to this interface will be forwarded to
br-ex.

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
 inet 127.0.0.1 netmask 255.0.0.0
 inet6 ::1 prefixlen 128 scopeid 0x10<host>
 loop txqueuelen 1 (Local Loopback)

Localhost loopback.

qbraa483725-00: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1450
 ether a6:5f:a9:cd:25:f8 txqueuelen 1000 (Ethernet)

OpenStack interface

qvbaa483725-00: flags=4419<UP,BROADCAST,RUNNING,PROMISC,MULTICAST> mtu
1450
 inet6 fe80::a45f:a9ff:fecd:25f8 prefixlen 64 scopeid 0x20<link>
 ether a6:5f:a9:cd:25:f8 txqueuelen 1000 (Ethernet)

OpenStack Interface

qvoaa483725-00: flags=4419<UP,BROADCAST,RUNNING,PROMISC,MULTICAST> mtu
1450
 inet6 fe80::24d1:8aff:febf:b9a9 prefixlen 64 scopeid 0x20<link>
 ether 26:d1:8a:bf:b9:a9 txqueuelen 1000 (Ethernet)

OpenStack interface

tapaa483725-00: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1450
 inet6 fe80::fc16:3eff:fe92:1874 prefixlen 64 scopeid 0x20<link>
 ether fe:16:3e:92:18:74 txqueuelen 1000 (Ethernet)

OpenStack Interface

Table-3. Interfaces

Once PackStack installation is over, some rules are added to IPTABLES. This rules tell CenOS
what interface and ports will be used by each OpenStack service. Also we must add some rules
for all incoming traffic from internet the public IP, forwarding it to the Remote Broker through
“br-ex.” “iptables -L” command output is:

Chain INPUT (policy ACCEPT)
target prot opt source destination
neutron-openvswi-INPUT all -- anywhere anywhere
nova-api-INPUT all -- anywhere anywhere
ACCEPT tcp -- localhost.localdomain anywhere multiport dports amqps,amqp /* 001 amqp incoming amqp_129.128.116.190 */
ACCEPT tcp -- anywhere anywhere multiport dports fs-agent /* 001 aodh-api incoming aodh_api */
ACCEPT tcp -- anywhere anywhere multiport dports 8777 /* 001 ceilometer-api incoming ceilometer_api */
ACCEPT tcp -- localhost.localdomain anywhere multiport dports iscsi-target /* 001 cinder incoming cinder_129.128.116.190 */
ACCEPT tcp -- anywhere anywhere multiport dports 8776 /* 001 cinder-api incoming cinder_api */
ACCEPT tcp -- anywhere anywhere multiport dports armtechdaemon /* 001 glance incoming glance_api */
ACCEPT tcp -- anywhere anywhere multiport dports 8041 /* 001 gnocchi-api incoming gnocchi_api */
ACCEPT tcp -- anywhere anywhere multiport dports http /* 001 horizon 80 incoming */
ACCEPT tcp -- anywhere anywhere multiport dports commplex-main,OpenStack-id /* 001 keystone incoming keystone */
ACCEPT tcp -- localhost.localdomain anywhere multiport dports mysql /* 001 mariadb incoming mariadb_129.128.116.190 */
ACCEPT tcp -- localhost.localdomain anywhere multiport dports 27017 /* 001 mongodb-server incoming mongodb_server */

25

ACCEPT tcp -- anywhere anywhere multiport dports http /* 001 nagios incoming */
ACCEPT tcp -- localhost.localdomain anywhere multiport dports 5666 /* 001 nagios-nrpe incoming nagios_nrpe */
ACCEPT udp -- anywhere anywhere multiport dports bootps /* 001 neutron dhcp in incoming neutron_dhcp_in_129.128.116.190
*/
ACCEPT tcp -- anywhere anywhere multiport dports 9696 /* 001 neutron server incoming neutron_server_129.128.116.190 */
ACCEPT udp -- localhost.localdomain anywhere multiport dports 4789 /* 001 neutron tunnel port incoming
neutron_tunnel_129.128.116.190_129.128.116.190 */
ACCEPT tcp -- anywhere anywhere multiport dports 8773,8774,8775 /* 001 nova api incoming nova_api */
ACCEPT tcp -- localhost.localdomain anywhere multiport dports rfb:cvsup /* 001 nova compute incoming nova_compute */
ACCEPT tcp -- localhost.localdomain anywhere multiport dports 16509,49152:49215 /* 001 nova qemu migration incoming
nova_qemu_migration_129.128.116.190_129.128.116.190 */
ACCEPT tcp -- anywhere anywhere multiport dports 6080 /* 001 novncproxy incoming */
ACCEPT tcp -- localhost.localdomain anywhere multiport dports 6379 /* 001 redis service incoming redis service from 129.128.116.190
*/
ACCEPT tcp -- anywhere anywhere multiport dports webcache /* 001 swift proxy incoming swift_proxy */
ACCEPT tcp -- localhost.localdomain anywhere multiport dports x11,6001,6002,rsync /* 001 swift storage and rsync incoming
swift_storage_and_rsync_129.128.116.190 */

Chain FORWARD (policy ACCEPT)
target prot opt source destination
neutron-filter-top all -- anywhere anywhere
neutron-openvswi-FORWARD all -- anywhere anywhere
nova-filter-top all -- anywhere anywhere
nova-api-FORWARD all -- anywhere anywhere
ACCEPT all -- anywhere anywhere /* 000 forward in */
ACCEPT all -- anywhere anywhere /* 000 forward out */
ACCEPT tcp -- anywhere 10.0.1.8 tcp dpt:ibm-mqisdp
ACCEPT tcp -- anywhere 10.0.1.8 tcp dpt:secure-mqtt

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
neutron-filter-top all -- anywhere anywhere
neutron-openvswi-OUTPUT all -- anywhere anywhere
nova-filter-top all -- anywhere anywhere
nova-api-OUTPUT all -- anywhere anywhere
ACCEPT udp -- anywhere anywhere multiport dports bootpc /* 001 neutron dhcp out outgoing neutron_dhcp_out_129.128.116.190
*/

Chain neutron-filter-top (2 references)
target prot opt source destination
neutron-openvswi-local all -- anywhere anywhere

Chain neutron-openvswi-FORWARD (1 references)
target prot opt source destination
neutron-openvswi-sg-chain all -- anywhere anywhere PHYSDEV match --physdev-out tapaa483725-00 --physdev-is-bridged /*
Direct traffic from the VM interface to the security group chain. */
neutron-openvswi-sg-chain all -- anywhere anywhere PHYSDEV match --physdev-in tapaa483725-00 --physdev-is-bridged /*
Direct traffic from the VM interface to the security group chain. */

Chain neutron-openvswi-INPUT (1 references)
target prot opt source destination
neutron-openvswi-oaa483725-0 all -- anywhere anywhere PHYSDEV match --physdev-in tapaa483725-00 --physdev-is-bridged
/* Direct incoming traffic from VM to the security group chain. */

Chain neutron-openvswi-OUTPUT (1 references)
target prot opt source destination

Chain neutron-openvswi-iaa483725-0 (1 references)
target prot opt source destination
RETURN all -- anywhere anywhere state RELATED,ESTABLISHED /* Direct packets associated with a known session to the
RETURN chain. */
RETURN udp -- 10.0.1.2 anywhere udp spt:bootps udp dpt:bootpc
RETURN tcp -- anywhere anywhere tcp dpt:secure-mqtt
RETURN icmp -- anywhere anywhere
RETURN tcp -- anywhere anywhere tcp dpt:ssh
RETURN all -- anywhere anywhere match-set NIPv4fa8b34e6-ffcc-4a33-954d- src
RETURN tcp -- anywhere anywhere tcp dpt:ibm-mqisdp
DROP all -- anywhere anywhere state INVALID /* Drop packets that appear related to an existing connection (e.g. TCP
ACK/FIN) but do not have an entry in conntrack. */
neutron-openvswi-sg-fallback all -- anywhere anywhere /* Send unmatched traffic to the fallback chain. */

26

Chain neutron-openvswi-local (1 references)
target prot opt source destination

Chain neutron-openvswi-oaa483725-0 (2 references)
target prot opt source destination
RETURN udp -- default 255.255.255.255 udp spt:bootpc dpt:bootps /* Allow DHCP client traffic. */
neutron-openvswi-saa483725-0 all -- anywhere anywhere
RETURN udp -- anywhere anywhere udp spt:bootpc dpt:bootps /* Allow DHCP client traffic. */
DROP udp -- anywhere anywhere udp spt:bootps udp dpt:bootpc /* Prevent DHCP Spoofing by VM. */
RETURN all -- anywhere anywhere state RELATED,ESTABLISHED /* Direct packets associated with a known session to the
RETURN chain. */
RETURN all -- anywhere anywhere
DROP all -- anywhere anywhere state INVALID /* Drop packets that appear related to an existing connection (e.g. TCP
ACK/FIN) but do not have an entry in conntrack. */
neutron-openvswi-sg-fallback all -- anywhere anywhere /* Send unmatched traffic to the fallback chain. */

Chain neutron-openvswi-saa483725-0 (1 references)
target prot opt source destination
RETURN all -- 10.0.1.8 anywhere MAC FA:16:3E:92:18:74 /* Allow traffic from defined IP/MAC pairs. */
DROP all -- anywhere anywhere /* Drop traffic without an IP/MAC allow rule. */

Chain neutron-openvswi-sg-chain (2 references)
target prot opt source destination
neutron-openvswi-iaa483725-0 all -- anywhere anywhere PHYSDEV match --physdev-out tapaa483725-00 --physdev-is-bridged
/* Jump to the VM specific chain. */
neutron-openvswi-oaa483725-0 all -- anywhere anywhere PHYSDEV match --physdev-in tapaa483725-00 --physdev-is-bridged
/* Jump to the VM specific chain. */
ACCEPT all -- anywhere anywhere

Chain neutron-openvswi-sg-fallback (2 references)
target prot opt source destination
DROP all -- anywhere anywhere /* Default drop rule for unmatched traffic. */

Chain nova-api-FORWARD (1 references)
target prot opt source destination

Chain nova-api-INPUT (1 references)
target prot opt source destination
ACCEPT tcp -- anywhere localhost.localdomain tcp dpt:8775

Chain nova-api-OUTPUT (1 references)
target prot opt source destination

Chain nova-api-local (1 references)
target prot opt source destination

Chain nova-filter-top (2 references)
target prot opt source destination
nova-api-local all -- anywhere anywhere

TABLE-4. IPTABLES including OpenStack rules.

One last procedure related to the IPTABLES is pending. It is sharing the Internet connection by
executing the following commands:

 service iptables
 iptables -t nat -A POSTROUTING -o ens32 -j MASQUERADE
 service iptables save
 service iptables restart

On Table-4, highlighted in yellow, you can see the entries to forward MQTT traffic to the 10.0.1.8,
the IP of the OpenStack Instance running Mosquitto.

27

Figure-15 Ip route CentOStack VM.

Figure-15 shows two key routes, The first one is the default route via “ens32” for all traffic without
any specific route, and the second one that tells CentOS that all traffic for 10.0.1.0/24 (the Internal
OpenStack Network) should go to 172.24.4.228 (The OpenStack Router Interface connected to br-
ex) via br-ex interface.

When PackStack finishes the installation and booting all OpenStack Services, it creates
keystonerc_admin” file, that is useful for authentication. One way to use it is typing the command:

source keystonerc_admin

This will use the admin password that is stored in this file and will authenticate the admin user in
OpenStack. Now is possible to work with OpenStack from the Terminal console. For example we
can obtain the list of OpenStack enabled services:

Figure-16 OpenStack Services

Also, you can use the admin password stored in this file (keystonerc_admin) to open the
Dashboard in a web browser with admin user. (Figure-17)

28

Figure-17. OpenStack admin password (Keystone service)

F-USER PC AND/OR SMARTPHONE:
Optional, but not less important, an “UserPC” and/or “Smartphone” could be used to interact
with the system, either to modify the IoT Sensors setup, or to retrieve data from the Database
Server.

G-OPENSTACK NETWORKS, ROUTER, IMAGES AND INSTANCE.
OpenStack is a cloud virtualization tool that provides many useful solutions. For simplification
purposes, we will focus on Networks, Router, Images and Instance setup. The Dashboard allows
you to setup virtualized devices in OpenStack. To load the Dashboard (called Horizon in other
versions) you can do it from the web, accessing entering the following ip address in the web
browser address bar:

“129.128.116.190/dashboard” from remote location using Intenet
“localhost/dashboard” from the CentOStack VM web browser.

Figure-18. OpenStack Dashboard Log-In

User Name= admin

Password= aa7009ee14183f3

29

After you are logged-in, you can start creating your own project or proceed to build a project
inside the already created “admin” project. Following, the list of steps to have an Instance
running in OpenStack:

1)Create Host aggregates: Clic Admin/System/Host Aggregates, to create the Internal
Availability zone and the GasD Host Aggregate that will be useful for performance assessment
and billing data consolidation.

Figure-19. OpenStack Host Aggregates

2)Create the Internal Network that will be used to connect the Instance where our application and
database server are going to be working. The Public database was created by Packstack during
the setup. Click Project/Network/Networks and create the Internal network. Figure

Figure-20. OpenStack Public and Internal Network

30

3)Once the Networks are ready, it is time to create the Router, that using Static Routes will forward
the packets between Internal and Public networks

Figure-21. OpenStack Router and Static Routes

4) OpenStack uses the concept of Images and Flavors. The Flavors are pre-made templates to
create Instances. They specify features like number of processors, RAM and Volume size. If there
is not any Flavor matching your needs, you can edit them before building and Instance. In our case
I edited m1.large to be able to create an instance with 4vCPUs, 20GB Drive and 8GB RAM.

Figure-22. OpenStack Flavors.

The images are used to create Instances based on Volume Images that can be based in certain
Operating System IOS or a previously created volume. OpenStack can upload a file from the Host
Machine, to build an Image that will be used to install the Instance.

31

Figure-23. OpenStack Image CentosISO loaded with CentOS Server 7 ISO.

5)The Instance, Virtual Machine in OpenStack, can be created based in a flavor and using an Image
loaded with the Installation Package of an OS. During its creation you must provide:

 The Name.
 The Image used to boot (Source).
 The Flavor it is based in.
 The Network is connected to (Internal), this will result in the assigned IP (10.0.1.8).
 The KeyPair (GasKey)Optional to have ssh access to the cloud.

Figure-24. OpenStack Instance GD01.

If you have enough resources to build this instance, it will be created and will Start by itself. But
so far it doesn’t have a volume. Previously you could create a Volume and leave it ready to be
attached to the Instance (despite it is already working). The DropDown button under Actions, has
a specific action to attach a volume. Meanwhile, the Instance is loading CentOS installation. At
this point you have a working OpenStack Instance.

32

H-REMOTE BROKER
Having an OpenStack cloud running an Instance takes us closer to accomplishing the Remote
Broker. Once CentOS is installed, the following steps are:
1-Login into the GD01 Terminal. Two ways are available:
 a)Click GD01 name and open the console.

b)From any system connected to internet, “ssh 129.128.116.190” and after “ssh 10.0.1.8”.
This procedure is less resources demanding and provides faster CLI response.

Figure-25. SSH VM hosting Cloud and Remote Broker.

2-Install the utilities and apps that we need to set up our broker. This Instance is getting an IP from
OpenStack (you can verify in the Instances tab). We will set up this interface connected to the
Internal Network of OpenStack with the following parameters:

 IPADDR=10.0.1.8
 GATEWAY=10.0.0.1
 MASK=255.255.255.0
 DNS1=129.128.5.233
 DNS2=8.8.8.8
 NM_CONTROLLED=no

The last parameter is critical, because we don’t want the OS to change our interface configuration.
Having internet connection, we follow with this task list:

1. Update the OS: yum update -y
2. Install wget and git (they will be usefull):

a. yum install wget -y
b. yum install git -y

3. Install mosquitto and its libraries (although it is not going to be used in this machine, is
useful for tests):

a. wget
http://download.opensuse.org/repositories/home:/oojah:/mqtt/CentOS_CentOS-
5/home:oojah:mqtt.repo. Or, we can use “scp root@172.24.4.225:/<path to repo
folder>/* ./ to copy from the previous installation process.

b. yum update
c. yum install mosquitto
d. yum install mosquitto-clients

33

4. Install LAMP (we are interested in MySQL and Python).
a. yum install mysql-server
b. service mysqld start
c. /usr/bin/mysql_secure_installation
d. yum install php php-mysql

3-In MySQL a Database “GasDetector” was created with a table SensorLog, with the following
structure:

Figure-26. gasDetector database, SensorLog Table structure in MySql;

2-Install Mosquitto. Mosquitto libraries, Publisher and Subscriber. Also we must create the
password file (Passwd).

Figure-27. Mosquitto.conf file

34

With this configuration Mosquitto will be ready to accept publishers using the secured port 8883
and will require UserID and Password as well. By now, will be better to comment out (# in the
first line character), the lines inside the red box, because the will be used in a separate section.

3-Install PAHO and Mysql libraries for Python. Develop the subscriptor code (GasDetector.py).
This application will subcribe to the topic of interest and will save data coming in the payload that
matches with the requires structure. Is it doesn’t match, then an exception will be caused and the
message will be discarded.

GasDetector.py Comments
import paho.mqtt.client as mqtt
import mysql
from time import gmtime, strftime
from mysql.connector import errorcode
import sys
import MySQLdb
userID="user1"
password="silvana01"
def storedata(ttopic,info):
 # you must create a Cursor object. It will let
 # you execute all the queries you need
 cur = dbase.cursor()
 try :
 i=0
 l=list(info)
 j=0
 if l[i]=='R':
 comments="Requested reading"
 i=i+10
 j=i
 else:
 comments="Regular reading"

 while l[i]!='-':
 i=i+1
 sequence=long(''.join(l[j:i]))
 print (sequence)
 i=i+1
 j=i
 while l[i]!=' ':
 i=i+1
 sensortype=''.join(l[j:i])
 print (sensortype)
 i=i+11
 j=i

 while l[i]!=' ':
 i=i+1
 ipv4=''.join(l[j:i])
 print (ipv4)
 i=i+5
 j=i
 while l[i]!=' ':
 i=i+1
 mac=''.join(l[j:i])
 print (mac)
 i=i+15
 vvalue=''.join(l[i:i+1])
 if vvalue=="F": vvalue="0"
 if vvalue=="T": vvalue="1"
 print (vvalue)
 ttime=strftime("%Y-%m-%d %H:%M:%S", gmtime())
 print (ttime)
 sql="insert into SensorLog (sequence,topic,ip,mac,value,sensortype,datereceived,comments)
values (%s,%s,%s,%s,%s,%s,%s,%s) "

Import all required libraries.

MQTT user and password

Function to store message
containing message with right
structure.

Extract fields from message.

Build SQL instruction

35

 args= (sequence,ttopic,ipv4,mac,int(vvalue),sensortype,ttime,comments)
 cur.execute(sql,args)
 dbase.commit()
 print("data was stored succesfully")
 except:
 print("Unexpected error:", sys.exc_info()[0])
def on_message(client, userdata, msg):
 print("TOPIC:" + msg.topic + " payload:" + str(msg.payload))
 storedata(msg.topic,msg.payload)

def on_connect(client, userdata,flags, rc):
 print("Connected with result code "+str(rc))
 client.subscribe("outTopic/#")

try:
 dbase = MySQLdb.connect(host="localhost", # your host, usually local$
 user="root", # your username
 passwd="silvana01", # your password
 db="gasDetector") # name of the data base
except mysql.connector.Error as err:
 if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:
 print("Something is wrong with your user name or password")
 elif err.errno == errorcode.ER_BAD_DB_ERROR:
 print("Database does not exist")
 else:

 print(err)
 sys.exit()
client = mqtt.Client()
client.on_connect = on_connect
client.on_message = on_message
client.username_pw_set(userID, password)
client.connect("localhost", 8883)
try:
 client.loop_forever()
except (KeyboardInterrupt, SystemExit):
 dbase.close
 raise

Prepare Arguments to pass to
SQL
Commit changes to database

If exception is captured then
report on message.

Create MQTT connection
function
Subscribe to topic

Connect to Database

Capture error connecting to
database

Create MQTT client

Validate client user and pwd

Capture KB exception
Close database on exception and
exit.

Code-4. Subscriber application, GasDetector.py

I-SETUP SUMMARY and PASSWORDS

After going through the entire Setup process in this section, we should have:

 A WGD connected to the LAN of the facility where it is going to be deployed, and
publishing topics in a Local Broker.

 A Local Broker bridge-connected to a Remote Broker, and resending all the topics that are
declared in the bridge. Also this broker is able to subscribe topics from publishers (like a
mobile app or other PC connected to the internet) trying to update the WGD configuration.
The enabled update are: 1)Change the frequency of readings, 2)Request a reading in this
precise moment), but more parameters can be adjusted with the same procedure.

 An OpenStack cloud running an Instance for Data Processing and Database Management.
 A MQTT Remote Broker subscribing topics from Local Routers.

In consequence, some usernames and passwords were created to secure the system:

System/Device Username Password
Local MQTT Broker user1 silvana01
Lab’s Server (IP 10.3.32.103) root sdnlabs#103
Ubuntu 14.04 (Local Broker OS) root 31052005scor

36

OpenStack Cloud Dashboard on Public IP 129.128.116.190 admin aa7009ee14183f3
CentOStack VMware VM root aR7576196-R
CentOS OpenStack Instance root yV_353680257Union
Remote MQTT Broker user1 silvana01
MySQL root silvana01

TABLE-5. UserNames and Passwords.

37

THE SECURITY

The potential of the IoT is only comparable to its intrinsic weakness. The only way to achieve fast
performance with low power consumption is making focus on the basic functions and leaving on
a side all that can be delegated to systems with more resources (cpu-memory-storage) and power
supply (AC).

The integrated low power 32-bit MCU (in ESP8266-01) can has very interesting features, but SSL
is not included in the list. Then, transmitting from a site location to a server using internet, will
create a large route where possible sniffers could easily steal the UserID and the Password.
Assuming that the LAN is well secured and properly set up, then installing our “own man in the
middle” could help to achieve a higher level of security. 22 Having an extra component or
intermediate device could be seen as a redundant or additional cost, but when handling information
like “hazardous gases presence”, we can’t open the door to third parties becoming the strange man
in the middle. Mosquitto is TLS (Transport Layer Security) capable and IANA designed port 8883
port for its implementation.

The Local Broker is this “nice-man” in the middle and has three security duties:

1) Encrypt all the messages that are going through Internet on their way to the Remote
Broker.

2) Validate all the incoming topics before passing them to the WGSs.
3) Hide our “by design-low security” devices from possible attacks.

Among all the MQTT-SSL posts available on the Internet, the “generate-CA.sh” script23 is very
useful and is the most popular to generate self-signed certificates (for the Certification Authority,
the Server and Client).

In this occasion, we created:

 One certificate authority.
o ca.crt, ca.srl, ca.key files.

 One server certificate.
o localhost.crt, localhost.csr, localhost.key files

 And two clients
o “client1” for the bridge
o “paho” for the program GasDetector.py
o Two set of .crt, .csr and .key files.

Once the certificates and keys were generated, it is time to perform some modifications to our
setup:

a. Local Broker mosquitto.conf file.
b. Remote Broker mosquitto.conf file.
c. Add the Intermediate Broker.
d. GasDetector.py code.

22 https://www.justinribeiro.com/chronicle/2012/11/08/securing-mqtt-c ommunication-between-ardruino-and-mosquitto/
23 https://github.com/owntracks/tools/raw/master/TLS/generate-CA.sh

38

File to Update New Configuration lines Comments
Local Broker
mosquitto.conf

…
bridge BridgeIt
bridge_cafile /etc/mosquitto/myCA/ca.crt
bridge_certfile /etc/mosquitto/myCA/client1.crt
bridge_keyfile /etc/mosquitto/myCA/client1.key
address 129.128.116.190:8883
…

CA authority.
Server certificate

Client key

Remote
Intermediate
mosquitto.conf

…
cafile /etc/mosquitto/myCA/ca.crt
certfile /etc/mosquitto/myCA/localhost.crt
keyfile /etc/mosquitto/myCA/localhost.key
require_certificate true
…
bridge BridgeIt
bridge_cafile /etc/mosquitto/myCA/ca.crt
bridge_certfile /etc/mosquitto/myCA/client1.crt
bridge_keyfile /etc/mosquitto/myCA/client1.key
address 10.0.1.8:8883
...

CA authority.
Server certificate
Server key
Require certs for authentication

Bridge to our only Remote Broker
And we could have more bridges,
one for each Remote Broker in our
LAN.

Remote Broker
mosquitto.conf

…
cafile /etc/mosquitto/myCA/ca.crt
certfile /etc/mosquitto/myCA/localhost.crt
keyfile /etc/mosquitto/myCA/localhost.key
require_certificate true
…

CA authority.
Server certificate
Server key
Require certs for authentication

GasDetector.py In the main section of the code, where the client
connection is established, right after:
“client.username_pw_set(userID, password)” add:
….
client.tls_insecure_set(True)
client.tls_set("/etc/mosquitto/myCA/ca.crt",
 "/etc/mosquitto/myCA/paho.crt",
 "/etc/mosquitto/myCA/paho.key")

Don’t verify server’s name.
Certificate authority
Paho client certificate.
Paho client key.

TABLE-6. Enable TLS features to the system.

One simple, clear and dangerous vulnerability is left open. Publishing topics from internet on the
Local Broker with only Username and Password is the perfect backdoor. The system administrator
must assess the trade-off resulting of blocking or leaving this open. The safest option is that all the
messages that can affect or modify the WGD performance should be generated inside the LAN.

INTERMEDIATE BRIDGE

With the non-secured connection, a bridge was created and it was enough to forward all incoming
messages to port 8883 at the Public IP interface, to the Internal IP of our OpenStack instance
(Figure-26). But TLS creates new challenges and a secured connection can’t be created with the
same configuration.

The SSL Handshaking process fails in our configuration, and this makes impossible to authenticate
the certificates. In consequence, the communication process can’t go beyond the request and is

39

timed-out. A simple solution to this problem is creating what we will call “Intermediate Broker”.
Therefore, instead of forwarding all incoming communications on port 8883, we can install a
Mosquitto Broker in the in the VM with the IP exposed to internet. Then, create another bridge
with our Remote Broker. A full secured connection is created from the Local Broker to the Remote
Broker thanks to the “Intermediate Broker”.

The Intermediate Broker configuration is similar to the Remote Broker’s, and requires the
CA authority files to create its own server and client certificates (using the generate-CA.sh script).

Figure-28. Unsecured MQTT Bridge.

Figure-29. Secured MQTT Bridge.

After installing TLS authentication we have a more secured system, where Brokers are
authenticated by username-password combination plus certificates. Also, the communications are
done by secured channels and using encryption methods. Some processing load could be saved
once the Intermediate Broker is reached, and using unsecured communications inside the Remote
Broker’s LAN seems to be reasonable.
Although, encrypting the MQQT messages inside the LAN gives additional protection against
breaches in the Intermediate Broker’s security. Also, because we could be using a shared set of

40

hardware and virtual resources running other applications, encrypting our messages protects them
from vulnerabilities of other processes using the same resources.

The Intermediate Broker could be used to distribute topics among many Remote Brokers running
in different OpenStack Instances. For example (Figure-29), the Intermediate broker could have
bridges to each Remote Broker, and for each one a different set of topics will be delivered. The
Intermediate Broker can easily segregate topics in a Cloud for different Mosquitto services or
customers that don’t want to share computing or storage resources with each other.

Figure-30. Intermediate Broker.

The mosquitto.conf file for the Intermediate Broker (and many bridged Remote Brokers) should
include the following settings:

cafile /pathtocertificates/ca.crt
certfile /pathtocertificates/server.crt
keyfile /pathtocertificates/server.key

bridge Broker1
remote_cafile /pathtocertificates/ca1.crt
remote_certfile /pathtocertificates/cliente11.crt
remote_keyfile /pathtocertificates/client11.key
remote_username user1
remote_password password1
address 10.0.1.8:8883
topic outTopic/broker1 both

bridge Broker2
remote_cafile /pathtocertificates/ca2.crt
remote_certfile /pathtocertificates/cliente21.crt
remote_keyfile /pathtocertificates/client21.key
remote_username user2

41

remote_password password2
address 10.0.1.9:8883
topic outTopic/broker2 both
……

Code-5. Intermediate Broker mosquitto.conf file.

Where each Bridgen to Brokern has a different user-password combination, Certificate
Authority and keys as well.24 Before the implementation of the Intermediate Broker, we were
only able to forward all traffic on port 8883 to one IP address.

24 Once the Intermediate broker is set-up, the Iptables Forward rule to 10.0.1.8:8883 must be removed.

42

POWER-ON

It is time to power-on the system and verify it is fully working. A set of steps have to be followed
to have all the devices and applications running as they were intended.

A-SERVER/INTERMEDIATE MOSQUITTO BROKER
The first step is to power on our server (located in the lab). Using VMWare Vsphere Client we
will log on in the VMWare Hypervisor, If this is done from a remote location (e.g. Internet
connection), a Cisco VPN-Client is required to create a tunnel.

Figure-31. VPN Client

Figure-32. VMWare vSphere Client.

43

For this, you need the vSphereClient UserName and Password (plus the VPN Client
username+password if required). “The Getting Started” tab will receive you and there you can
right click your VM in the list of available VMs.

Figure-33 Power-On your Virtual Machine.

The last part related to the server Power-On is to login into CentOS (root user and its password =
aR7576196-R are required) and load the GUI. Startx will load CentOS GUI (Centos GNOME
Desktop).

Figure-34. Log in and load GUI.

Having control of the CentOS terminal, is time to start the MQTT Intermediate Broker. The
following command will start it in detached mode:

44

mosquitto -d -c /etc/mosquitto/mosquitto.conf

The Intermediate Broker will wait for incoming connection requests, and the first request to be
received should be the one coming from the Local Broker bridge. Meanwhile the Intermediate
Broker is trying to be authenticated by the Remote Broker to create the required bridge. The
connection request will be timed out a couple of times until the Remote Broker is up and accepts
the connection request.

B-CENTOS INSTANCE/MOSQUITTO REMOTE BROKER

Once the GUI is up, is time to start the dashboard and boot the Instance (using Mozzilla Firefox
web browser). Figures 15 & 16 show the admin password and the graphic interface of OpenStack.
Continue with Figure 22. To have a working instance all you need is to click the “Start Instance”
button and it will start up. As described in the Setup section, it is better to access the Instance
terminal with SSH, rather than using OpenStack console.

In the command prompt (of the console or a SSH terminal), we must enter the commands to load
the broker and the app that will store all the subscribed and valid messages:

mosquitto -d -c /etc/mosquitto/mosquitto.conf

As result the mosquitto Remote Broker is up (in detached mode using this specific configuration
file) and will enable TLS communications on port 8883.

python GasDetector.py

command will start our application and it will create a connection with mosquitto.

Figure 33. Mosquitto and GasDetector running.

At this point, we will leave the Remote Broker running upon the arrival of messages from our IoT
devices.

C-THE LOCAL BROKER

We already installed the Local Broker on a commodity PC, or on a low cost compact system like
Rasperry Pi. We must ensure that mosquitto is running and that it is able to connect to the Remote
Broker. In this case we will run run mosquitto in verbose mode to see the interaction with the
Remote Broker and the IoT devices.

45

Figure-34. Local Broker Bridge requests connection, it is authenticated and working.

Figure 34 is a nice example of Mosquitto in verbose mode. Initially opens the listening port
8883 for IPV4 and IPV6. Then tries to create the bridge with the Intermediate Broker, and once
it succeeds it receives a CONNACK message for the bridged connection.. The following lines
report that it receives a connection request from localhost with a message. If this message’s topic
is in the list of topics to be sent through the bridge, then this messages will be published in the
Intermediate Broker.

D-THE WGD

The Wireless Gas Detector can now be powered on. Let’s remember that the MQ2 Gas Sensor
won’t give accurate readings during initial warm-up process (a couple of minutes). Nevertheless,
this shouldn’t cause any problem, because also ESP8266-01 takes some time to be registered in
the access point and to create a connection with the Local Broker. (Figure-10 illustrates this
process).

Once the connections are made, the WGD starts subscribing topics in the Local Broker. In the
Figure-34 this process is seen in the Arduino Ide Serial Monitor.

46

Figure-35. Serial monitor of WGD in production.

As in Figure-10, Figure-35 includes the connection to the AP, but continues with the MQTT
connection. Maybe because the Local Broker was busy or wasn’t already up, the connection is
retried. Once the connection is achieved (Figure-34 -New Connection), the topics begin to be
published. Is important to highlight that the topics are published as long as the Local Broker is up.
Although, it is not aware of any communication beyond that point, therefore it could be that the
Remote Broker is not in service or the Bridge to the Intermediate Broker was not created either. In
this scenario, the WGD continues with its work, despite the state of the rest of the system.

E-GASDETECTOR APP AND MYSQL

With the WGD subscribing topics in the Local Broker, and these topics bridged to the Remote
Broker, the GasDetector.py program will subscribe to them and store the data in the database.

47

Figure-36. GasDetector.py screen output.

Figure-36 shows the GasDetector.py output in CentOS terminal, and Figure-37 show the same
information already stored the MySQL database.

Figure-37. Select output.

As many messages were received by second from the same publisher (all of them with the same
date-time), the Seq# is useful to identify the messages in the database records.

F-TALK TO THE WGD

IoT devices are capable of delivering information, but also they can receive instructions. As an
example of this instructions, the Arduino code (thanks to the callback function), can subscribe to
incoming topics. The security for this action is implemented using Username and Password
authentication on the Local Broker, but it can also include TLS authentication and encryption. The
program verifies the incoming message, and is expecting for:

48

 “Request” , in response to this message the WGD will transmit the state of the MQ2 sensor
in this right moment.

mosquitto_pub -h 23.17.224.11 -t "InTopic/23.17.224.11/192.168.1.11" -m "Request" -p 8883 -u

user1 -P silvana01

 “Sleepn-“ where “n” is the gap in seconds between publishing two messages. Any value
could be used. For example 1 = 1 message each second, and 0.01 is equal to 100 messages
per second. In the following command the gap is fixed to 3 seconds.

mosquitto_pub -h 23.17.224.11 -t "InTopic/23.17.224.11/192.168.1.11" -m "Sleep3-" -p 8883 -u

user1 -P silvana01

The Local Broker “shares” the message among all the IoT devices that are subscribing the topic
(wildcards like # are used). The IoT devide that subscribes the message, but in the topic finds its
own IP, then takes the “Request” or “Sleep” order for itself.

Figure-38. Request made from a terminal connected to internet.

Figure-39. MQTT Dashboard. Publishes messages in Local Broker.

MQTT Dashboard (e.g.), an Android app, can publish/subscribe MQTT topics. It is SSL capable,
although, we can not enable this feature on the Local Broker because this will cause that the IoT
devices will be enforced to try SSL encryption.

49

PERFORMANCE

Using CentOS utilities and VMware performance monitor, some tests were done to different
workloads. It is important to remember that we are working with only one IoT device. Despite we
could simulate more traffic using applications, we would be using the same Local Broker and
internet connection.

One message/second 1000 messages/second
Figure-40. CentOS/ running OpenStack VM resources monitor.

Figure-40 shows a resource usage increase due Mosquitto increasing activity. Memory doesn’t
seem to be really affected by the higher traffic/operations by second, although, the Network usage
itself and the CPU utilization show a substantial variation. So far, all the messages are arriving
successfully and are stored by the database application without TLS.
A simple comparison made on VMware performance monitor, delivers similar results. On Figure-
41, the CPU activity highly increased. Up to this moment no significant message loses were
noticed and increasing the resources utilization should not be an alarm but a goal to achieve.

50

Figure-41. WMware resources monitor. Top= CPU, Middle= Storage, Bottom=Memory.

In Figure-41 there red lines show some changes due VM tasks. The highlighted events are:

 OpenStack Instance start-up
 Start receiving 100 messages/second.
 Receive 1000 messages/second.
 Receive 100 messages/second.
 Instance shutdown.
 OpenStack services stop and CentoOS shutdown.

Storage and Memory performance, upon the workload used, don’t show any variation. Moreover,
Disk usage was lower during the “high transmission/rate “. Memory shows an increasing Baloon
Memory.25 Therefore, this resources seem to be oversized for the required tasks and ready to

25 “Virtual memory ballooning is a computer memory reclamation technique used by a hypervisor to allow the physical host system
to retrieve unused memory from certain guest virtual machines (VMs) and share it with others.”
http://searchservervirtualization.techtarget.com/definition/memory-ballooning

51

receive more workload. What requires attention is the CPU usage. The Figure-41 performance
before implementing TLS. While 1000 unsecured messages/second where requiring 60% of CPU
to be received processed and stored, after TLS was implemented, a higher usage of CPU was
registered.

Figure-42. VMware CPU performance monitor. Using TLS

The same 1000 messages/second using TLS require 80% CPU. Figure-42 shows a peak caused for
a change in the WGD that increased the rate to 1000 messages/second. During this test, all bridges
were using TLS. The network usage for 1000 messages/sec is similar to the levels shown in the
unencrypted tests (Figure-43).

Figure-43. VMware Network performance monitor. Using TLS

52

FINAL CONSIDERATIONS

The objective of this project was to combine IoT with OpenStack cloud services, but the
development process showed a wider researching field. Although the simplicity of IoT is the
reason for its weakness, keeping it simple is the best way to make it more secure. But with
simplicity we don’t mean that IoT devices should make direct connections to servers. Some help
is required.

The IoT device, by itself, can’t provide much of security. Mosquitto is a powerful tool to
communicate with IoT. Both, the device and the protocol can’t deny their lack of complexity.
Although, there is no reason to make things more complex.

Mosquitto already has embedded TSL features. The protocol provides enough tools to secure the
communication process. As proposed in this project, the OpenStack instances can be used to
provide computing and storage services to IoT, with totally isolated resources for different
applications or customers, as well as being able to add more resources as the same pace the
customers increase their requirements.

The knowledge acquired leads to this conclusion: the cleaner and simpler a system is, it will be
easier to secure it. Stay simple is the best practice to close the door to intruders as well. But there
is a challenge to this rule. 50 billion IoT26 devices will be installed by 2020, and the temptation to
reach them remotely is already enabled in people’s mind. While the Remote Broker’s side seems
to be already secured, 50 billion backdoors could be exploited by botnets. With a little effort and
investing some dollars per facility27 we can install a similar structure for Local and Intermediate
Brokers on site. The first one will deal with IoT devices and build a bridge to Intermediate/Remote
brokers. The second one will authenticate (TLS) incoming topics from publishers in the internet
to cloud services.

Given the possibilities that are arising with IoT, it is easy to wish everything will be as planned
and start to seed IoT devices and directly connect them to start collecting data. But two Internet
Security rules should be listened:

1) “People make mistakes
2) The first rule will always be right.”28

Imagine this: grandma’s health monitor connected to her open (no password) Wi-Fi, plus a non-
updated device’s firmware or operating system, plus some low cost “smart” home appliances, plus
a “home-made” IoT project to control the baby sitter, all of them using the same clouding service
that a cloud provider offers to some applications of a research/energy plant. Now include the
preceding two rules. Despite that IoT has a big potential, it is our responsibility to ensure that the
technology is applied the right way and following the highest standards of quality.

In response to this concerns, when this project was starting, the first modification to the design
was to add the Mosquitto Local Brokers. The WGD can communicate directly to the cloud, no
doubt. But the Local Broker enables the coexistence of many IoT devices in the same facility and

26 https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
27 Current price for a RaspBerry Pi is US$39.99, source www.ebay.com.
28 Leonard Rogers, Internet Security, UofA-Mint. 2015.

53

addresses the main issue: the security of these devices. The Intermediate Broker comes to do the
same on the Remote side.

Up to this date, there is not any published research/project proposing the brokers model that
includes the usage of an Intermediate Broker (Figures 27-28). In fact, the idea of an Intermediate
Broker is nothing more than a Local Broker that retransmits all the messages it is subscribing
(from another broker). This straightforward solution becomes useful and has a lot of possibilities.
The protocol itself figures out where the messages should be sent, the corresponding bridged
Remote Broker, and this way the Remote Brokers are not exposed in a first line of fire against
attacks, while everything is well secured using TLS encryption and authentication.

With Iptables port forwarding rules, we can’t deploy as many servers (Remote Brokers) as desired.
All the traffic goes in one direction. One alternative solution could be to subscribe to all topics in
the first broker the messages find when they arrive, and an application could distribute messages
using a database of topics and publishing in the Remote Brokers. It is using a Broker to receive
the messages, decrypting and analyzing, to finally publish them in the right Remote Broker (quite
the same!). But this could be rejected by customers that don’t want their information to be
decrypted and handled before it reaches their instance in the cloud. Customer’s privacy, sensitive
or financial information could be affected.

The Intermediate Broker does the same way as the Local Broker does. The Local Broker is our
“trusted man in the middle” and provides protection to weak IoT devices. The Intermediate Broker
is the guard of our OpenStack Instances that store all our information.

With the only requirement of using the port 8883 and TLS we are reducing backdoors and
vulnerabilities coming from our system and we don’t create any to other services.

Certainly, certificates and keys can be stolen as well as passwords might be brute-force decrypted.
Attackers can pretend to be a genuine IoT device (belonging to our system), or one of the accepted
Local Brokers. Although, IDS-IPS can be installed to “learn” normal traffic conditions and detect
non-genuine messages.

Our Python application GasDetector.py currently discards any message without the right structure,
but a more complex database design is recommended, where all the IoT devices should be
registered in order be able to validate all the publishers in our Brokers. Sequence beginning
messages, control of sequences and logs auditory are required to make it even more secure. Also,
because the simplest Local Broker has enough resources to, it is possible to develop local databases
with a registry of authorized WGD publishing messages in each LAN.

54

TO BE CONTINUED

The following is a list of proposed tasks to continue with the current research:

 Study the WGD power requirements. Setup a battery powered circuit and establish how
long can it operate without re-charging.

 Deploy Local and Intermediate Brokers in actual facilities. Enable TLS for internet
publishers of topics oriented to modify the performance of the WGD.

 Deploy several devices in the same LAN and analyze the bandwidth requirements for
different transmission rates. Create a function to calculate the required type of connection
for certain number of sensors in one location.

 Deploy several Local Brokers using different internet connections.
 Deploy several Remote Brokers each one in a different OpenStack instances and segregate

traffic using the topics configuration in the Intermediate Bridge setup.
 Create databases in the Local Brokers to store the information while it is impossible to

connect to the Remote Brokers.
 Refine the ESP8266-01 Arduino code to verify that the warm-up time of the MQ2 sensor

was reached. Because the time parameter is relative to environmental conditions, a
temperature sensor could be used to verify that MQ2 is operating at 100 C ± 20%.

 Combine sensors for different gases.
 Integrate LEDs and audible alarms to the circuit.
 Use the Analog Output of the gas sensors and report different concentrations of gas.
 Modify the circuit of the WGD to install backup sensors to avoid wrong values due

malfunction.
 Modify the circuit to install two or more sensors (for different gases) in the same device.

55

APPENDIX A, BUDGET

DETAIL Cost CAD$
ESP8266 Serial WI-FI Wireless Transceiver Module Send 2.64

100Pcs NPN Transistor TO-92 2N2222A 2N2222 1.49

400X 0.25w 1/4w Metal Film Resistor Pack Kit 1% 4.67

210Pcs 25 Value 0.1uF~220uF Electrolytic Capacitors 4.69

MQ-2 MQ2 Gas Sensor Module Smoke Methane Butane Detection for
Arduino

1.64

5V 3.3V FT232RL USB To Serial 232 Adapter Download Cable Module
For Arduino

3.61

FT232RL 3.3V 5.5V FTDI USB to TTL Serial Adapter Module for Arduino
Mini Port

2.48

Basic Starter Kit UNO R3 400 Breadboard LED Jumper Wire for Arduino
TE132

22.32

5pcs 4.5V-7V to 3.3V AMS1117-3.3V Power Supply Module AMS1117-3.3 1.56

Soldering Kit 24.99

Female jumper cables 3.75

Solderless Breadboard Bread Board 830 Tie Points Contacts 3.19

LCD Digital Volt Ohm Meter Voltmeter Multimeter 830L 10.78

Total spent 87.81

56

APPENDIX B, TIMELINE

Start Duration Action/Task in progress

Sep 09 45 days Order Parts (online).

Oct 06

First Pieces were received.

Oct 23

All pieces received. Build circuit.

Oct 23 5 days ESP8266 is rebooting during Wi-Fi connection to AP because ESP8266
requires more energy in this stage. Solution: install 3 more capacitors, two
after the AMS1117 regulator and a smaller one in the closest available
connection to the ESP8266 power input.

Oct 29 7 days Install local broker. Subscribing and publishing topics with test messages.
Modify Arduino example code for ESP8266. Work on Mqtt connection,
obtain ESP8266 MAC and IP, convert this information in different formats
and use to build topics and messages.

Nov 06 4 days Develop Python code to subscribe topics and store in MySQL in the Local
Broker.

Nov 11 7 days Install a test Remote Broker in own VM. Build bridge with local broker and
run Python app to store data in Remote Broker.

Nov 19 10 days Download and install different OpenStack deployments in own laptop. Tests
with Autopilot and Devstack AIO and PackStack AIO setup. Expand laptop
memory and install new hard-drive. Decide to use PackStack AIO on CentOS.
Low number CPUs make impossible to create OpenStack Instances.

Nov 29 3 days Test Android apps to publish topics in Local Broker, and test Callback
performance.

Dec 3 1 month Project on hold, waiting for Lab Server with public IP.

Jan 4 1 day Access is granted to VPN and Server. Public IP is assigned.

Jan 6 7 days Perform and verify different OpenStack configurations.

Jan 14 5 days Create Remote Broker. Build bridge. Subscribe to topics published by WGD
and store data in MySQL.

Jan 20 2 days Enable Mosquitto username-password in local and remote brokers. Modify
MQTT connection Arduino Code and mosquitto.conf files.

Jan 23 1 day Begin final report preparation. Gather codes, screenshots. Unsecured
communications tests.

57

Jan 25 13 days TLS tests. Problems with SSL handshake. Connection timed-out. Problems
with traffic arriving to public IP and forwarded to OpenStack Instance.

Feb 08 5 days Implementation of Intermediate Broker. Tests with encrypted messages.
Success!.

Feb 13 7 days Report redaction.

Feb 22 Submit Report

