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Abstract

Simulation is a powerful tool, critical to effective construction project management.

They can provide decision support for different aspects of a construction project, but

they have not been adopted widely in the construction industry as they are difficult

to use.

This thesis has developed Simphony-as-a-Service, an advanced simulation tool

that bridges the gap between simulation software and real-world construction prac-

tices. The key contributions of this work are the following: Re-architecting Sim-

phony, a powerful multi-functional legacy software, into a cloud-based software as

a service on the micro-service architecture for easy adoption; Grounding the tool in

a project-modeling language aligned with industry standards; Providing a browser-

accessible user interface, tailored to the needs of different stakeholders, i.e., project

owners, project managers, and on-site personnel; Incorporating critical-path com-

putation and comparisons to assist in identifying critical tasks and evaluating alter-

native schedules; Providing APIs for real-time project progress tracking, enhancing

monitoring capabilities, and enabling model re-simulation from any point in time of

a project for exploring what-if scenarios and facilitating informed decision-making.
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Chapter 1

Introduction

In the realm of construction management, the coordination of tasks like planning,

scheduling, and budgeting involves a diverse team of engineers, architects, project

managers, construction workers, and support staff [1]. A good schedule is critical

for managing complex construction projects, to ensure that they deliver the desired

products, on time, within budget, and using the planned resources. The construc-

tion schedule, i.e., a description of the project activities, their dependencies, the

resources they require, and the time they may take, is indispensable for effective

project management, from the inception of the project to its completion and deliv-

ery.

Project Management Software (PMS) tools provide techniques, such as Work

Breakdown Structure, Gantt Charts, Critical Path Method, Simulation, and Re-

source Levelling, to assist Project Managers with scheduling and planning. A study

by Galloway et al. surveyed construction personnel from the US and found out that

PMS was mainly used for planning and scheduling before and during construction,

subcontractor coordination, and tracking changes [2]. Microsoft Project [3] and Pri-

mavera P6 [4] are two of the most popular project-management software tools [2].

Microsoft Project, currently in its 16th version, supports project scheduling, report

creation, what-if analysis, and interactive tasks. Primavera P6 provides similar fea-

tures, including project timelines, risk management, information dashboard, work

breakdown structure, and critical path management. Despite their rich function-

alities, these tools are expensive and designed for very large-scale projects which

makes their user interfaces fairly unwieldy. Even more importantly, they suffer
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from two key shortcomings: they do not easily support learning from past project

experiences and they restrict progress tracking to a single individual, responsible

for being aware of all the details of all ongoing activities and providing the relevant

information through the tool’s standard user interface.

Simulation can be a powerful tool that can mitigate the first shortcoming. Sev-

eral simulation tools have been proposed for the construction domain, like CY-

CLONE [5], STROBOSCOPE [6], and Simphony [7]. By using discrete event

simulation to simulate the various project activities, these tools can incorporate the

manager’s experience in developing the construction schedule. For example, they

can incorporate different statistical distributions in estimating the activity progress

or the occurrence of events that can obstruct progress altogether. Therefore, they

can be more effective when construction projects are complex, and environmental

factors, like weather, risk, and accidents, should be taken into account. Despite this

important potential advantage, a study by Abourizk et al. [8] found that simulation

tools are not popular in the construction industry.

The second issue identified above becomes evident as the complexity and size

of the project crew increase, when quite often the projects cannot follow the orig-

inal schedule and adjustments are required. In these cases, the persons in the best

position to accurately reflect progress and delays are the activity crew leads: they

are much closer to the activity and the issues that are causing the delays than the

project manager. It is essential then to provide a simple, preferably mobile, tool so

that more accurate information can be collected in a timely manner. The availabil-

ity of accurate and timely information on how the actual progress diverges from the

schedule is key for the project manager’s decision-making process, who has many

options to choose from. For example, they may be able to hire more people, sched-

ule more shifts for the available crew, and pay them overtime, or even do nothing

and pay the penalty associated with the schedule overrun. The feasibility, cost, and

time demands of these alternative scenarios can again be estimated using simulation

with more precision, allowing better decision support.

To bridge the gap between real-world construction practices and simulation soft-

ware, we have developed a new, web-accessible version of the SIMPHONY [7]
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simulation tool, Simphony-as-a-Service (SimphonyaaS ), which advances the state-

of-the-art in the following key dimensions.

• We have re-architected the original the latest version of the Simphony [9]

software into a micro-service architecture-based software as a service. This

new architecture enables the easy adoption of the tools through the web and

also the development of a suite of user-interface views tailored to the needs

of different roles (i.e., project manager, crew lead, project owner, ...) and

contexts (i.e., office, construction site etc). A key addition to the original

SIMPHONY software is a simple mobile interface to enable easy on-site data

entry by crew leads responsible for an activity.

• This new version is grounded in a project-modeling language, aligned with

the W3C standard Digital Construction Ontology (DiCO) [10], which enables

interoperable construction data representation.

• We have created a REST API that allows real-time project progress updates

to be persisted in our system to monitor a construction project regularly. This

enables re-simulation of the project schedule from any point in time during

construction by automatically updating the model based on the real progress

data, making decision choices easier for project managers.

• We have developed a semantic repository, based on the DiCon, that enables

the cross-referencing of the baseline simulation with re-simulations for the

same project so that project owners and managers can explore multiple what-

if scenarios and compare their corresponding crews, critical paths, and time-

lines

Figure 1.1 shows from a high level how SimphonyaaS incorporates project man-

agers and crew leads into the simulation scenario to make simulation more acces-

sible. The crew leads provide real-time data to our system, our system updates the

model automatically using this data, and project managers can run simulations at

any time of the project to see future predictions and make decisions. We can see
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that no human intervention is needed for automated model updates, which effec-

tively makes the simulation model more re-useable throughout the project.

Figure 1.1: Incorporating users from different roles of construction in SimphonyaaS

The rest of this thesis is organized as follows. Chapter 2 describes the current

literature on simulation construction. Chapter 3 discusses the simulation specifi-

cation model and its alignment with DiCo. Chapter 4 describes the SimphonyaaS

architecture and an overview of the software system. Chapter 5 provides a walk-

through of the system through an illustrative example. In Chapter 6, we show the

performance evaluation results. We discuss future work and conclude the thesis in

section 7.
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Chapter 2

Literature Review

2.1 Simulation in Construction - An Overview

The field of construction simulation encompasses a diverse range of techniques and

methodologies aimed at modeling and simulating various aspects of construction

projects. From scheduling and resource allocation to logistics and risk manage-

ment, simulation provides a versatile framework for evaluating different scenarios

and assessing their potential impact on project outcomes. Discrete event simula-

tion, in particular, has been widely researched as a way to simulate the construction

process. Research in construction-specific discrete-event simulation started with

the introduction of CYCLONE in 1977 by Haplin [5], marking the inception of

modern construction simulation languages. CYCLONE models, shown by a typi-

cal tunneling process in Figure 2.1, typically encompass elements for representing

work tasks, their logical relationships, and resources required by the work task.

The CYCLONE simulation language is simple to understand, but modeling large

processes through the language is tedious as the modeling elements describe the

simulation scenario at a low level. Besides, there is no way to distinguish between

different types of the same resources and give different behavior to the same type of

resources. One has to create completely separate resources for this scenario which

would make elements in the model redundant. CYCLONE was further improved

to MicroCYCLONE [11] which packaged CYCLONE into a microcomputer-based

program for ease of use.

Stroboscope, introduced in 1994 by Martinez and Ioannou, is a general-purpose
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Figure 2.1: A Simple Masonry Supply System in the Cyclone model [12].

simulation programming language for the construction domain [6]. Driven by

object-oriented programming, the language allowed the user to define activities,

resources, and resource flow to create a simulation model. Later on, using this Stro-

boscope simulation engine, a special-purpose simulation tool called EarthMover

[13] was created which had specialized elements for earth-moving simulation like

excavation equipment, the excavation area, the loading capability of the equipment,

and the queued-up load. It has a graphical user interface to define these param-

eters and outputs the results in an Excel sheet. Martinez also proposed another

general-purpose simulation system called EZSTROBE [14] which is based on Ac-

tivity Cycle Diagrams and uses the Three-phase Activity Scanning Algorithm. It

uses 7 different elements to define the activity cycle as an input and outputs a report
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with the simulated timings and data on the activities and queues of the model.

In 1999, Simphony [7] was introduced as a discrete event, special-purpose sim-

ulation system for construction. It presented a modular and hierarchical modeling

language to better represent larger and more complex projects. A graphical user

interface or script-based interface both were available as means of model creation.

Further development of Simphony and its current status is discussed in Section 2 of

this chapter.

Modern research on construction simulation focuses on providing more mean-

ingful insight for the construction industry. Lu and Olofsson [15] introduced a

framework designed to facilitate the construction of simulation models, leveraging

the enhanced functionalities offered by Building Information Modeling (BIM) sys-

tems. The system automatically reads data from BIM to create simulation models,

which can then be run using the Simio [16] discrete event simulation engine.

Another study by Peña-Mora et al. [17] introduces a simulation model that

integrates both the strategic and operational factors into account, optimizing both

the process and management decision-making. It essentially creates a feedback

loop within the simulation and updates construction operations based on manage-

ment action within the simulation. The author created an earth-moving scenario

and created a program that simulates the management decisions which is fed to the

operational simulation when more or less trucks were needed. The study showed

that management input changes the output of the simulation over time, depicting

a more real-life scenario. However, the feedback loop exists only in the simula-

tion, and management updates are provided through a program. So, there is no way

to provide real data for the simulation. Figure 2.2 shows how this feedback loop

works.

Feng et al. [18] in 2018 introduced a machine learning-based simulation ap-

proach. An artificial neural network was trained with the results produced from a

discrete event simulation model. The author used this approach on a real project

to demonstrate that it outperformed discrete event simulation in terms of prediction

efficiency. However, it requires the ANN to be re-trained for each new model.
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Figure 2.2: The simulation feedback loop of the system introduced by Peña-Mora
et al. [17].

2.2 Simphony in Construction Simulation

Simphony [7], introduced in 1999, is a Microsoft Windows-based system that fo-

cuses on providing a standard, consistent, and intelligent environment for both the

development as well as the utilization of construction special purpose simulation

tools. Further development on Simphony was done to make it a more well-refined

software package [19] with the capacity to craft specialized tools, known as tem-

plates, which can adapt to behaviors across various modeling languages, including

integrated calendars for organizing tasks, discrete event simulation, and continu-

ous simulation and introduces a variety of templates available in the public domain

for both general and specialized modeling purposes such as tunneling, fabrication,

earthmoving, and PERT. It is a system based on .NET Framework and provides

3 components, (1) Simphony Core Services - a discrete event simulation engine

(2) Simphony Modeling Services - a collection of components that can be used

to build graphical modeling elements for special and general-purpose simulation.

(3) Simphony Modeling Environment, a graphical user interface that allows users

to create simulation models using the graphical modeling elements. The platform

provides robust support for seamlessly combining discrete event and continuous
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simulation techniques. It offers the flexibility of incorporating calendars to syn-

chronize simulation time with real-world dates, allowing for precise modeling of

work periods and schedules. Additionally, the system offers versatile connectiv-

ity options, enabling seamless interaction with diverse data storage applications

such as XML documents or databases. Moreover, it facilitates effortless integra-

tion into larger distributed simulation systems, including those compliant with the

HLA standard, ensuring compatibility and interoperability within complex simu-

lation environments. Overall, it was turned into a development kit for creating

a special or general-purpose simulation system. Based on the 3 components of

Simphony, a more construction-focused simulation methodology was proposed by

Labban and Abourizk in 2021 [9]. It introduced construction terminologies like

resources, crews, tasks, and products into the simulation language, which closely

represents the construction process. It also introduced the concept of simulation

based on real progress data, where simulation could be run from any point in time

within the project based on real progress. However, updating the simulation model

and collection of real data requires manual human intervention, limiting its capa-

bility.

2.3 Hindrance to Industry Adoption

Overall, construction simulation has evolved over the last 47 years to solve many

different needs of the construction industry. However, most of it has still not been

adopted by the construction industry [8]. A study by Lucko et al. [20] summa-

rized the reason for this as - (1) The required extra time, cost, and effort to learn

a new simulation language, model validation, and verification [21], (2) inefficient

utilization of time for both the domain expert and the simulation analyst during

the modeling procedure, (3) the advanced skills necessary for proficiently applying

simulation modeling techniques [22]. In another study Son and Wysk state, “Unless

the time-consuming phase of learning and using a simulation language is reduced,

the advantages of simulation cannot be fully exploited” [23]. To solve these issues,

Abourizk is collaborating with universities, industry, and government to effectively
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integrate simulation into construction management functions in Alberta, and has

found success [8]. The next section discusses how this success was achieved and

what are the limitations that still need to be resolved. We focused our research on

evolving the current Simphony simulation system into a modern software solution

more suited for construction project management.

2.4 Dynamic, Data-Driven Simulation In Construc-
tion using Simphony - Achievements and Draw-
backs

The new Simphony simulation system based on the proposal by Labban and Abour-

izk. [9] has been given the name ‘Simphony Dynamic’. It has solved some of the

major hindrances to the adoption of simulation in construction by introducing: (1)

a modeling language that is aligned with the construction project management pro-

cess, (2) an easy-to-use interface that enables model editing using drag-and-drop

components and spreadsheet views, (3) a collection of visualizations to provide

construction project management decision support. These made the system closer

to adoption in the construction industry. A special version of Simphony Dynamic

was created for PCL Construction, one of the largest construction companies in

Canada, which added further features like (1) support for integrating historical task

progress data into the simulation, (2) the addition of a baseline schedule that the

simulation will adhere to and (3) introduced the concept of man hours to enable

fractional engagement of resources to tasks.

However, we have identified multiple drawbacks that need to be solved for it to

become a system more suited for the construction domain. Creating and updating

a large simulation model using the graphical interface is tedious and lengthy due

to the drag-and-drop procedure of building a task network, which can be solved by

automating the model creation using data from the planning, design, or operational

phase of construction. Multiple simulations of the same project from a different

point in time require manual model parameter updates by the user. This can be

solved by creating a method to automatically update the model parameters based on
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the selected point in time. There is also no support for tracking real-time progress

and re-simulation based on real-time progress automatically.

The software was built using .Net Framework 4.6 [24], which has entered main-

tenance mode and is now a legacy software framework, that needs to be migrated

to the latest version, .NET 8.0 [25], to ensure future stability and maintenance.

The model and results are persisted using Microsoft Access DB in local files, so

interoperability and data sharing is a challenge. There is no central data repository,

so comparison and tracking of multiple simulation runs are difficult. Introducing a

better database technology better suited for the simulation model and migrating the

current AccessDB database will fix this issue.

Figure 2.3: Graphical User interface of the Simphony Dynamic simulation software

In the rest of the thesis, we will discuss our efforts to solve these issues, how

our system performs after we solve them, and put forward our contributions.

11



Chapter 3

Construction-Project Modeling

In this chapter, we discuss the representation of construction projects in Simphony

Dynamic . In SimphonyaaS , we use the same model to describe construction

projects.

3.1 The Simphony Dynamic Project-Specification Model

The original Simphony Dynamic project-specification model, diagrammatically shown

in Figure 3.1 is based on well-understood, broadly used construction terminol-

ogy for ease of use, and includes five main elements: Tasks, Resources, Crews,

Workflows, and Products.

Tasks are specific, well-defined units of work in the construction process. A con-

struction project can be defined as a collection of tasks, connected with each other

through dependencies. In order for the project to be completed, all its tasks must be

completed in some order that respects the task predecessor-successor dependencies.

The project critical path is one among these possible task orderings, which has the

minimum possible length (in time).

Our model supports 3 types of dependencies between tasks:

1. Finish to Start - The predecessor ends before the successor can begin.

2. Start to Start - The predecessor begins before the successor can begin.

3. Finish to Finish - The predecessor ends before the successor can end.
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The simulation also allows these dependencies to be partial i.e. only a fixed per-

centage of one task might need to be completed to start another task.

All Tasks in Simphony have three important properties - duration, manHours,

and HistoricalProgress. The duration property is the estimated duration needed

to complete a task. The manHours property is the estimated man-hours needed

to complete a task. The task’s HistoricalProgress contains data on how this task

progressed over time in previous projects, that can be used to create an S-curve to

be provided as input to the simulation engine. If there is no such data from previous

projects, the HistoricalProgress can be kept empty.

Resources are the manpower, and in some cases the equipment, required for the

construction project. Usually, it is estimated when a particular resource will be

needed and for how long at the beginning of a project, and the contract lengths

of the resources are based on those estimations. For our simulation to understand

these parameters, every Resource has an important property, a list of objects called

ResourceAvailability. This object has two attributes - availableFrom and quantity.

The quantity attribute indicates how many of a type of resource is available, and

the availableFrom attribute indicates from when that quantity of resources can start

working.

Crews are collections of different types of resources, required for a particular

type of task. Each project task can only be accomplished if its corresponding crew

is available. Each crew can perform multiple Tasks of the same type, as long as

they are not performed concurrently. For multiple concurrent same-type Tasks an

equal number of crews must be hired. Each Crew element has a list of objects

called CrewResources. Each CrewResources object has two attributes - quantity

and resourceName, to indicate which resource is attached to the crew and in what

quantity.

In effect, the concept of “crews” encapsulates a set of individuals with a variety

of skills and the equipment necessary for a specific task. Since projects typically

have multiple repetitions of the same task, the task crew simplifies the need to assign
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resources to each of these instances: the same crew can accomplish all repetitions,

as long as they do not overlap in time. Realistically, the concept of crews represents

a popular practice of maintaining, as much as possible, the same groups of people

working together so that the project can benefit from their experience as a group,

instead of having individuals getting accustomed to working in different groups all

the time.

Workflows are collections of interconnected Tasks that, when accomplished, pro-

duce a product, essentially achieving a(n intermediate) goal of the construction

project. Workflows, in effect, encapsulate stereotypical task collections that can

be found in multiple projects. Workflows in the Simphony system are reusable and

can be saved to be used in multiple products of the same project. Thus, a construc-

tion project can be defined simply as a collection of interconnected Tasks or as a

collection of Workflows and Tasks. The Workflows in a Simphony Dynamic project

can be modified to adapt to the needs of the product.

Products are the outcomes of Workflows. A product can be a physical product

or a construction goal. For example, when building a multi-level building, there

can be multiple Workflows for multiple floors. It is possible to assign a Workflow

to a product and customize that Workflow as suited for that particular product. This

is done to remove the redundancy of creating the same or similar Workflow across

multiple products of the same type.

When a Workflow is attached to a Product, a copy of all Tasks and their con-

nections are created and attached to the product. These new Tasks are called Pro-

ductTasks. This enables dependency between Tasks across products, where one

ProductTasks might depend on a ProductTasks of another product. The properties

of these elements are the same as Task with one additional property called Schedule,

describing the estimated or planned start and end dates of the ProductTasks.

In SimphonyaaS , the project-simulation specification is represented as a graph

in GraphDB and transmitted as a JavaScript Object Notation (JSON) 1 for commu-

1A sample Project-Specification Model JSON is available at: https://shorturl.at/fBCFX
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Figure 3.1: A diagram of the Simphony Dynamic project-specification model

nication over the network.

3.2 The Simulation Results

After the user sends a simulation request to SimphonyaaS , the simulation is run and

the system returns a JSON 2 with all the necessary information for decision support.

The results contain the calculated critical path, the progress of each task over time,

the resource utilization over time, the crew utilization information (waiting times

and file length), the progress of the tasks over time, and the estimated start and end

date of each task. The overall structure of the simulation results is shown in Figure

3.2. We will discuss the results in detail in this section.

The Simulated Timings are the date and time when the tasks in the project were

started and finished by the simulation. These results are directly attributed to the

related Task of the project. Two data properties, called simulatedStart and simulat-

edFinish are linked to the task at the end of the simulation to represent the simulated

start and end times.
2A sample simulation result JSON is available at: https://shorturl.at/rMTW8
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Figure 3.2: A diagram of the Simphony Dynamic simulation result model

The Critical Path Status of a task is represented by a boolean value attributed to

the Task, called isInCriticalPath. If this value is true, the task is on the critical path.

The Task Progress Over Time is represented as a collection of objects called

SimulationProgress linked to the relevant Task. Each object has 2 values: date,

indicating on which date the progress was collected by the simulation, and progress

, the percentage of work done on that date.

The Resource Utilization is represented by an object called ResourceUtilization,

which has three attributes: date, available and inUse. The date attribute indicates on

which date the simulation collected this data, available is the number of resources

that were available on that day to the simulation and inUse indicates how many of

the available resources were being utilized. A list of ResourceUtilization is attached

a Resource to indicate which resource these results belong to.

The Crew Waiting Times show if crews were waiting for a task’s dependencies

to finish and were not being utilized. A CrewWaitingTime object represents this

result and has only one attribute: waitingTime, which indicates the time span the
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crew was waiting. The CrewWaitingTime is linked to a Crew and a Task, indicating

which crew was waiting for which task.

The Crew File Lengths contains the number of crews that were waiting for Tasks

and were idle at any point in time of the project. It is represented using the Crew-

FileLength object. The object has 2 properties: date, pointing to the date the crew

was waiting, and fileLength, showing how many crews were waiting on that date.

Each instance of a CrewFileLength object is linked to a Crew. One Crew object can

be linked to multiple CrewFileLength objects.

3.3 Enabling Model Re-simulation and Reusability

As we have discussed in the literature review, Labban and Abourizk [9] proposed a

system to incorporate automatic updates to the simulation model in Simphony. The

updates were automatic in the sense that the productivity of each task is updated

using Bayesian Inference and real data, but a person still has to input the real data.

So to update the model, manual human interference is still required.

We wanted to achieve the same effect but without any human interference. For

that, we created a REST API in the Repository microservice which would receive

real progress data from the construction site and a mobile application through which

crew leads would report the daily tasks progress. This enabled us to use the progress

data straight from the database without manual intervention. Each real progress

entry is saved as a Real Progress object, with 2 properties: date, indicating which

date the progress entry was made and progress, the percentage of work done on that

day. Each object is linked to a task in the project-specification model. Figure 3.3

shows Real Progress is linked to Task and its properties.

Whenever a user requests a simulation to our system from any point in time,

we query the database to find out what was the progress of each task at that point.

We then adjust the man hours and duration of the task based on that progress i.e.

reduce them as required. For example, if 20% of a task was completed at the time

of simulation, we changed the duration of the task to 80% of the original duration

and 80% of the original man hours in the model in memory, without changing the
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Figure 3.3: Linking RealProgress to Task in the project-specification model.

original model persisted in the database, enabling model reusability. This process

happens automatically without any user intervention whenever the simulation is

requested. Our method, however, does not use Bayesian Inference to update the

productivity of the tasks, which would have made the updates more accurate.

3.4 Digital Construction Ontologies

To enhance the potential for interoperability of Simphony Dynamic , we looked

into existing construction ontologies, and we identified the Digital Construction

Ontologies (DiCo) [10] as the most extensive due to its coverage of all aspects of

construction. DiCo facilitates semantic interoperability among different entities and

procedures of the construction sector. Eight ontologies are included within DiCo

to represent the different phases of the construction process: Contexts, Variables,

Entities, Processes, Agents, Information, Materials, Occupancy, Lifecycle, and En-

ergy.

More specifically, the Digital Construction Processes ontology was of partic-

ular interest to us as it is designed to describe the management of construction

projects, essentially the same domain covered by the Simphony Dynamic project-

18



specification model. Figure 3.4 shows an overview of the Digital Construction Pro-

cesses ontology.

Figure 3.4: A diagram of the DiCo process ontology

The DiCo Processes ontology defines the DiCo concept Activity, as a process

performed by actors or stakeholders. Activities are distinct, purposeful processes

that have defined start and end times. Activities in DiCo can be basic, or complex

and composed of other Activities, in effect resulting in a hierarchy of Activities.

All Activities in DiCo are performed by Agents, where an Agent is defined as

a ”Person, organization, or organizational unit involved in a construction process”.

An Activity or a collection of activities produces or is concerned about an Entity,

which is a physical object or an occurrence. The MaterialBatch and Equipment

concepts linked to an Activity describe what materials and equipment are needed to

complete an activity.

3.5 The Aligned Simphony Dynamic -DiCo RDF Schema

Figure 3.5 shows how we have aligned DiCo with the Simphony Dynamic project-

specification model.
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Figure 3.5: Alignment of the Simphony Dynamic project-Specification model the
DiCo Process Ontology

At the core of the two models lie the concepts of Activity (DiCo) and Task (Sim-

phony Dynamic ) which correspond well to each other. As well both models cap-

ture the concept of compositionality of Activities/Tasks albeit in a different manner.

DiCo allows for a recursive hierarchy of Activities composed of other Activities un-

til at the end the composition elements are basic Activities. In Simphony Dynamic

, Workflows are Task compositions. Thus, in our aligned schema, Workflows are

considered equivalent to top-level Activities, and Tasks are considered equivalent

to Basic Activities.

DiCo Activity is a subclass of DiCo Process, and a process has 3 properties

-hasStart, hasEnd, and hasDuration. These 3 concepts can be directly mapped

with simulatedStart, simulatedFinish, and duration of simulation results as the same

concepts, as they all represent the start, end, and duration of an Activity or Task

All Activities in DiCo are performed by Agents, where an Agent is defined as

a ”Person, organization, or organizational unit involved in a construction process”.

Simphony Dynamic Crews are equivalent to Agents, as they are both conceived to

be the organizational units that complete the Tasks/Activities.
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Simphony Dynamic Products correspond to Entities: they are the physical ob-

jects constructed through Workflows or the conceptual milestones accomplished

once the Workflows have been completed.

The Simphony Dynamic concepts of Schedule and HistoricalProgress do not

have direct equivalents in DiCo but they can be viewed as types of DiCo concept

Information associated with tasks to facilitate their simulation.

The purpose of this alignment is to make the data structure more understandable

and interoperable to the people of construction. DiCo is used by the Building Infor-

mation Modelling Management System (BIMMS) [26] platform which has created

6 tools that utilize this ontology. DiCo was evaluated in 5 different criteria: Clarity,

Coverage, Consistency, Extendibility, and Usability. Although some of the evalua-

tion criteria were subjective, DiCo being a high-level construction ontology leaves

room for extensibility, which makes it flexible and favorable for creating a more

domain-specific construction ontology or schema. By aligning our data model with

DiCo, we can claim that it will also be of the same quality as DiCo in these 5

criteria.
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Chapter 4

Simphony-as-a-Service: SimphonyaaS

4.1 The Migration Process

The Simphony Dynamic simulation environment is originally written on the .NET

Framework 4.6, which is a Microsoft Windows-specific framework. However,

.NET Framework 4.6 was retired by Microsoft on April 26, 2022, and support

for it will end on January 12, 2027, which effectively makes Simphony a legacy

software. Microsoft is developing a cross-platform development framework, called

.NET which is currently in version 8.0. Simphony Dynamic is a Windows-only

desktop application, but the simulation engine has the potential to be an online

software service if repackaged into a Software-as-a-service model and it can be

deployed in the cloud for better accessibility. To turn Simphony Dynamic into a

SaaS (software-as-a-service) model deployed in the cloud, we wanted to port it to

.NET 8.0 to make sure it could run both on Windows and Linux, so there are no OS

constraints. Linux servers are much more popular than Windows servers because

it is free of cost, and working with Linux servers is deemed easier due to larger

community support. So it was very important for our service to run on Linux as

well as Windows to allow our system to be versatile in terms of deployment op-

tions. To migrate Simphony Dynamic from .NET Framework 4.6 to .NET 8.0, we

first looked into how we can wrap the Simphony Dynamic simulation engine using

ASP.NET Core 8.0, a web framework that is based on .NET 8.0, to expose REST

APIs to facilitate simulation by remote clients.

The first step of this migration process was to create a Nuget package of Sim-
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phony Dynamic. A Nuget package is a dependency library/package in .NET that

can be imported into a project. Firstly, we created an empty .NET Framework 4.8

Class Library project and moved the Simpony Dynamic code into it. Secondly, we

removed the GUI (Graphical User Interface) code from this project because it had

Windows-specific dependencies. Thirdly, we ran the project to generate the NuGet

package.

The second step of the migration process was to create a Nuget package of

Simphony Core Services, as it is a dependency for Simphony Dynamic. We used

the same process as the previous steps, but as Simphony Core Services has no user

interface, we did not have to deal with GUI code.

The third step was to import these two Nuget packages into our .NET 8.0 project

and test if they could be imported and used.

The last step was to use ASP.NET Core 8[27] web framework to create a REST

API that allows the user to request a simulation by sending a JSON representa-

tion of the simulation model and getting the response in a JSON format when the

simulation finishes.

Migration from Microsoft Access DB to GraphDB Simphony Dynamic uses

Microsoft AccessDB as its persistence storage. As we have identified in the previ-

ous Chapter, this hampers the interoperability and extensibility of the system sig-

nificantly. The main reasons for this are - (1) Microsoft Access DB stores data in

local files, so sharing any model or simulation result requires file sharing (2) If any

updates are made to the model, then the local files have to be shared with everyone

to get the updates (3) there is no database authentication or authorization so there is

no data security layer present. We found these to be very big drawbacks, especially

the security aspect. As a result, updating the database was essential.

Before migrating, we wanted to understand what type of database would work

best with Simphony Dynamic. After analyzing the data structure and queries re-

quired, we came to the following conclusions

1. The Simphony Dynamic data structure can be represented using a graph. A

model in Simphony Dynamic is a network of tasks represented using a Di-
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rected Acyclic Graph. This led us to conclude that a graph database would be

well-suited for our purpose

2. Any future analysis of model and simulation data, especially if it consists of

graph traversal techniques, can be done easily using a graph database

3. We wanted to align the simulation modeling elements of Simphony Dynamic

with a construction digital twin ontology, to do that a graph database would

be ideal as it has terminologies and methods to represent inheritance and

equivalent object classes.

We looked into popular graph database implementations and chose GraphDB

[28]. The reasons for choosing GraphDB are - (1) support for all RDF file formats

(2) Available as a cloud deployment on Microsoft Azure or AWS (3) better visual-

izations compared to competitors (4) built-in graph path search algorithms that can

be used in SPARQL.

Adapting a microservices architecture After the migration, we looked into what

architecture is best suited for our needs. We wanted our system to be deployable

to the cloud, and as efficient and cost-effective as possible. Also, as we wanted

our system to be a SaaS (software-as a service), scalability, and availability had

to be taken into account. Considering these requirements, we concluded that the

microservices architecture was best suited for our needs.

Each microservice will need to take care of only its responsibility, increasing

efficiency. It is cost-effective to deploy and maintain smaller codebases in the cloud

as the system will only scale the frequently used microservices if needed and not

the whole codebase. Scalability is increased as microservices that are used more

frequently can be scaled horizontally in the cloud to maintain performance. Multi-

ple instances of the microservices that are crucial to the simulation process can be

deployed to increase availability.

We conducted a feasibility study to find out if Simphony Dynamic can be bro-

ken into microservices, how many microservices can be created, and what would

be their responsibilities. We identified two points of interest we could where the

24



Simphony Core Services Database Interactions
Responsibility Discrete Event Simulation Persistent Storage
Codebase Size 122238 Lines of code 1722 Lines of code

Point of coupling with Simphony Dynamic Simulation execution
Read/Save Model and

Simulation Result
Degree of coupling with Simphony Dynamic High Low
Migration effort Extremely high Low

Table 4.1: Factors considered for the feasibility study on adapting microservices
architecture for SimphonyaaS .

project could be broken down into microservices - (1) The interface of Simphony

Dynamic with Simphony Core services (2) The database reads and writes.

When we investigated the interfacing of Simphony Dynamic with Simphony

Core Services, we found an extremely tight coupling within the code. For each

simulation run, they communicate with each other very frequently. Hence, we con-

cluded that they cannot be broken apart and should be kept together. If these two are

broken into microservices, the network latency overhead of these many interactions

will easily exceed the actual processing time.

The interactions with the database were found to be fairly limited. There were

only 3 instances when the database was queried - (1) when loading the model (2)

when saving the model after any changes (3) saving the results after the simulation

was run. So, we decided to separate the code that dealt with the database into a

microservice. Table 4.1 summarizes the result of the investigation.

We determined we could break Simphony Dynamic into 2 microservices:

1. Simphony Simulation Microservice - this microservice would contain Sim-

phony Dynamic and Simphony Core Services as Nuget packages and would

expose a REST API to allow remote clients to run simulations

2. Repository Microserivce - this microservice would interact with GraphDB

to load and save models and simulation results. It would expose REST APIs

for remote clients for this purpose.

4.2 Re-Architecting Simphony Dynamic into SimphonyaaS

SimphonyaaS is based on a microservices architecture. The system consists of two
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microservices and a suite of user interfaces. For project managers to easily inter-

act with the Simphony simulation system, we have developed three different user

interfaces catered to their needs: (i) a dashboard for monitoring project progress

and simulating what-if scenarios, (ii) a model editing user interface to create a new

simulation model or edit the baseline of an existing model, and (iii) a mobile appli-

cation

The overall architecture is shown in Figure 4.1.

Figure 4.1: Architecture Diagram of SimphonyaaS

4.2.1 The Simulation Microservice

The Simulation Microservice is the heart of our system: it wraps the original Sim-

phony Dynamic simulation engine and exposes a REST API, supporting the HTTP

POST method, to facilitate simulation from remote clients. The API accepts a sim-

ulation model represented in the Simphony Dynamic Model specification in a JSON

format. The internal architecture of this microservice is shown in Figure 4.2. Four

steps occur when a simulation request is sent to the microservice:

1. The microservice accepts the JSON and validates the model, if the validation

fails then the service returns an error message with a message pointing to

where the error occurred.
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Figure 4.2: Internal architecture of the Simulation Microservice

2. If the JSON is valid, it is deserialized to a C# object instance which is under-

standable to the Simphony Dynamic simulation Engine.

3. The simulation engine accepts the model object instance as input and runs the

simulation to return the result.

4. The simulation result is serialized into a JSON and returned to the user.

There is only one HTTP endpoint in this microservice to facilitate simulation 3.

4.2.2 The Repository Microservice

The Simphony Repository Microservice connects to the database and performs all

required queries on the GraphDB repository. It contains all the SPARQL queries

and exposes HTTP REST APIs to communicate with other microservices. When-

ever a request is made to the service, a SPARQL query is executed on the database,

and the result is serialized to a JSON and returned to the user. All kinds of interac-

tion with the database must occur through this microservice. This ensures that read

and write operations have strong consistency, and keeps the database secure as it is

3The API documentation of the endpoint is available at: https://shorturl.at/kuBH2

27



not being exposed to the web directly. The microservice is written in Python using

the FastAPI web framework.

The GraphDB database contains all the simulation models and results and is

the only persistent memory of our system. Simphony Dynamic uses Microsoft Ac-

cess DB, which is a relational database to store data. Although a relational database

works completely fine for reading and writing simulation data, a graph database has

some significant advantages in our case as the data itself is represented as a graph

of construction tasks. Especially when it comes to queries that require graph traver-

sal, SPARQL queries can significantly outperform SQL queries. This is especially

helpful for scenarios where data analysis is required within the task network. The

next portion discusses some key questions that can be answered using SRAPQL

and GraphDB.

Q. Which tasks require a particular crew e.g. Electrical Crew?

A crew lead might want to know which tasks their crew is assigned to. This infor-

mation can help him create shift assignments for the crew.

PREFIX sds: <http://simphony.dynamic/simulation/0.1/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?taskname

WHERE{

?task sds:hasCrew ?crew .

?task rdfs:label ?taskname .

?crew rdfs:label "Electrical" .

}

Q. What is the predicted status i.e. percentage of work that should have been

completed on a particular date, according to the baseline simulation data?

With the real data at hand, the project manager might want to compare the real

project progress to the baseline progress.

PREFIX sdm: <http://simphony.dynamic/model/0.1/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

28



PREFIX sds: <http://simphony.dynamic/simulation/0.1/>

SELECT (SUM(?maxProgress)/180 as ?totalProgress) WHERE{

SELECT ?product (MAX(?progress) as ?maxProgress)

WHERE {

?progressData rdf:type sds:SimulationProgress .

?progressData sds:dateTime ?dateTime .

BIND (xsd:dateTime(?dateTime) AS ?date)

?progressData sds:progress ?progress .

?progressData sds:productName ?product

FILTER (?date < "2015-05-01T00:00:00"^^xsd:dateTime)

}

GROUP BY ?product

}

Q. Which products were completed on a certain date according to the baseline

simulation?

Having the list of finished products from on-site data, the project manager might

want to do a comparison of that list with the baseline. By doing this comparison,

the project manager can know if the project is on schedule, or is ahead of schedule

on a product level. The following query allows the project manager to get a list of

products that were supposed to be completed according to the baseline.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX sds: <http://simphony.dynamic/simulation/0.1/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?product ?productProgress WHERE {

{SELECT ?product (MAX(?progress) as ?productProgress)

WHERE {

?progressData rdf:type sds:SimulationProgress .

?progressData sds:dateTime ?dateTime .

BIND (xsd:dateTime(?dateTime) AS ?date)

?progressData sds:progress ?progress .

?progressData sds:productName ?product

FILTER (?date < "2015-04-29T00:00:00"^^xsd:dateTime)

}

GROUP BY ?product }

FILTER (?productProgress = 1.0)

}

Q. What tasks should be completed to start working on Task B, if the project
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is currently on Task A?

If the project is currently at Task A and the stakeholders want to accelerate the work

to start working on Task B, all the tasks that connect the path from Task A to Task

B should be completed.

This question is particularly interesting as it uses the capabilities of graph traver-

sal built into GraphDB, which is difficult to query in a relational database like MS

AccessDB.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX path: <http://www.ontotext.com/path#>

PREFIX sdm: <http://simphony.dynamic/model/0.1/>

PREFIX Task: <http://simphony.dynamic/model/0.1/Task/>

SELECT ?start ?end ?index ?startName ?endName

WHERE {

VALUES (?src ?dst) {

( Task:A Task:B )

}

SERVICE <http://www.ontotext.com/path#search> {

<urn:path> path:findPath path:allPath ;

path:sourceNode ?src ;

path:destinationNode ?dst ;

path:resultBinding ?edge ;

path:resultBindingIndex ?index ;

path:startNode ?start;

path:endNode ?end;

path:exportBinding ?startName;

path:exportBinding ?endName .

SERVICE <urn:path> {

?start sdm:hasSuccessorTask ?end .

?start rdfs:label ?startName .

?end rdfs:label ?endName .

}

}

}

}

Q. Is there a cycle starting from Task A?

The Simphony Dynamic Project-specification model is a essentially a Directed Acyclic

Graph of tasks. If there is a cycle within the task network, the model is invalid. The
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following query checks the validity of the model.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX path: <http://www.ontotext.com/path#>

PREFIX sdm: <http://simphony.dynamic/model/0.1/>

PREFIX Task: <http://simphony.dynamic/model/0.1/Task/>

SELECT *

WHERE {

VALUES (?src) {

(Task:A)

}

SERVICE <http://www.ontotext.com/path#search> {

<urn:path> path:findPath path:cycle ;

path:sourceNode ?src ;

path:resultBinding ?edge ;

path:pathIndex ?path ;

path:resultBindingIndex ?index ;

path:startNode ?start;

path:endNode ?end;

SERVICE <urn:path> {

?start sdm:hasSuccessorTask ?end

}

}

}

4.2.3 The Project-Specification Editor

The SimphonyaaS Model Editor is a web-based model editing interface. The pre-

existing simulation modeling GUI, which was created in .Net Framework 4.6 for

Simphony Dynamic was redeveloped into a web interface using React.js. The edit-

ing interface presents a drag-and-drop system to create an activity network similar

to Simphony Dynamic . The resources and their availabilities, the crew structure,

and products can also be created and edited from this interface using tabular inputs

similar to Simphony Dynamic . The user can then simulate the model and save the

results in the database as the baseline schedule.
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Figure 4.3: SimphonyaaS Project-Specification Editor

4.2.4 The Project-Management Interface

The SimphonyaaS Project-Management Interface is the primary user interface of

our system where the user can track a project and simulate what-if scenarios. The

interface consists of charts and tables for the user to view the project data and var-

ious comparative reports. Data from 3 different contexts are present in the Project-

Management Interface:

• Baseline data - The result of the simulation that was run at the beginning of

the project, to find the expected end of the project, and expected progress over

time

• Present or Real data - Task progress data collected from the site as the project

progresses in real life.

• Future data - The result of the new simulation that was run from the present

date (or date selected from the date picker) to see what will happen in the

future.

A snapshot of the Project-Management Interface is shown in Figure 4.4. At the

left side of the user interface is a sidebar, with navigation links to the 6 different

pages of the dashboard. At the top left, there is a button labeled RELOAD DATA.
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Figure 4.4: The dashboard page of the SimphonyaaS Project-Management Interface

Clicking this button fetches the project specifications and real progress update data

from the Repository microservice, and updates the user interface. At the top middle,

there is a dropdown to change the selected project. At the top right, there is a date

selector. This allows the user to navigate through the project data over time by

selecting any date. The user interface is updated to view data based on the selected

data. To the right of the date selector, there is a button to change the theme of the

user interface between dark and light themes, and the rightmost button is a logout

button.

There are six pages available in the Project-Management Interface:

The Dashboard page Figure 4.4 shows the Dashboard page of the management

interface. The dashboard page is divided into 7 cards showing information from the

past, present, and future of the project. The dashboard page also has a button, la-

beled SIMULATE, which can be pressed to run a new simulation from the selected

date. The yellow circles with numbers have been added to the figure to refer to the

user interface elements in the text. On this page, anything in red color indicates data

from the baseline simulation i.e. expectations, green color indicates real progress

and purple color indicates future predictions from simulation.

The top left card (marked as 1) shows the expected progress of the project on
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the selected date. The next card on the right (marked as 2) shows the real progress

of the project. The next card (marked as 3) shows the start date of the project and

the expected end date, according to the baseline. The next card (marked as 4) shows

the currently selected date, and when the simulation predicts the project will end,

based on the current progress.

In the middle of the dashboard is a large card (marked as 5) that shows a com-

parative line chart between the baseline project progress (shown in red), real project

progress(shown in green), and simulated future project progress (shown in purple).

By default, the future and past 10 weeks are shown in the chart but can be config-

ured using dropdown selectors on the card.

The bottom left card (marked as 6) shows the recent real progress of tasks,

sorted by date in descending order. The next card to the right (marked as 7) shows

which crews are currently active, and their resource allocations. The last card of the

bottom (8) shows the resources that are currently active in the project, marked with

green, and how many of them are available for work, marked with red.

Overall, the dashboard shows a summary of the past, present, and possible fu-

ture of the project to the project manager.

The Critical Path page The Critical Path page shows the baseline and current

critical path of the project. As the project progresses and tasks are completed, the

critical path of the project can change. If the work is not adjusted to focus on the

new critical path, then it will lag behind the expected deadline. The page shows

this comparison in a tabular format. Figure 4.5 shows the Critical Path page of the

Project Management Interface.

There are 6 columns in the table on this page. The first two columns indicate

which Product and Task the data belongs to, working as a primary key for the data

as these two together form a unique name of a task.

The next column named Simulated Start shows when the future simulation

started this task. If the task is already done, the data is empty as a task already

completed is not repeated in the future. The Simulated Finish column shows when

the future simulation started and finished this task and is kept empty if the task has
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already been completed.

The next two columns, Baseline Critical Path and New Critical Path show the

comparison between critical paths of the task. If a task was part of the critical path

in the baseline simulation, it is indicated with a True value and False otherwise

in the Baseline Critical Path column. If a task is currently in the critical path,

according to a new simulation (run using the SIMULATE button on the dashboard)

the value on the New Critical Path column will be True, and False otherwise. The

user can identify any discrepancies within these two columns to discover changes

in the critical path.

Figure 4.5: The Critical Path page of the SimphonyaaS Project-Management Inter-
face

The Real-time Data page The Realtime Data page shows the user the real on-

site progress and how it compares to simulated progress. The data is presented in a

tabular format and any of the columns can be filtered to find the desired task data.

The user can look into each task individually and detect which tasks need more

attention by comparing the man hours completed of the tasks. A snapshot of the

real-time data page is shown in Figure 4.6.

There are 6 different columns on this page. The Product ad Task column indi-

cates which task and which product the data is related to.

35



The Budgeted Man Hours column shows how many man hours were initially

budgeted or estimated for this task. The Simulated Earned Man Hours column

specifies how many man hours were completed on the selected date, according to

the baseline simulation. The Earned Man Hours column shows how many man

hours have been completed in real life and the Percentage Complete column shows

real progress in percentage.

Figure 4.6: The Realtime Data page of the SimphonyaaS Project-Management In-
terface

The Resources page The resources page allows the user to edit the resource con-

figuration of the current project to explore what-if scenarios. Figure 4.7 presents a

snapshot of the Resources page. At the top of the page is a dropdown, where the se-

lected resource can be changed. In the figure, we can see that the ”Cranes” resource

is selected. The table has a toolbar with options for filtering columns and a button

to add new records. Using the Actions column the user can edit or delete an entry.

The Available From and Quantity columns indicate what quantity of resources are

available and from what date. A project manager can change the resource config-

uration of his project from this page, and re-simulate the project by going back to

the dashboard page and pressing the SIMULATE button.
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Figure 4.7: The Resources page of the SimphonyaaS Project-Management Interface

The Shifts page The shifts page allows the user to edit the shift configuration of

the current project. Figure 4.8 shows the shifts page. The user can select any day

of the week to add, remove, or delete shifts from the dropdown at the top of the

page. They can then add a new shift using the Add Record button on the toolbar at

the top of the table or edit the shift using the action buttons on each record. After

the user makes their changes, they can go back to the dashboard page and press the

SIMULATE button to see how the new configuration changes future progress.

Figure 4.8: The Shifts page of the SimphonyaaS Project-Management Interface
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The Gantt Chart page The Gantt Chart page shows the baseline, current progress,

and simulation results in a Gantt chart, as shown in Figure 4.9. The red color indi-

cates baseline tasks, green indicates real progress, and purple indicates the predicted

start and end times of the task according to the new simulation. It presents the re-

sults in both tabular and visual format and the views can be resized using drag and

drop to view more of the visual part or the tabular part. The Gantt chart also shows

the dependencies between the tasks using directional arrows. The timeline granu-

larity (the horizontal granularity) of the Gantt chart can also be adjusted through a

dropdown at the top of the page to properly fit the data on the screen.

Figure 4.9: The Gantt Chart page of the SimphonyaaS Project-Management Interface

4.2.5 The Progress-Monitoring Mobile Application

The Simphony Mobile App allows the user on-site (Construction Site Manager) to

report the progress of work every day to the system after the end of the day. The

application is very simple with only two input fields: which date the update corre-

sponds to and what percentage of work of a task has been completed on that date.

The user can select a particular date, search for an activity using its name, and enter

the percentage of work done for that activity for that day through the application.

The application connects with the Repository microservice to send daily updates to

be stored in the database. The on-site crew leads can use the application to report
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everyday progress. The Project Manager can view this update in the dashboard and

can use this data for decision support.

Figure 4.10: The user interface of SimphonyaaS Progress-Monitoring Mobile Ap-
plication
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Chapter 5

An Illustrative Example

In this section, we will go through an example and show how our system provides

decision support for project management. We will demonstrate the process of sim-

ulating a Greenhouse building model, progress tracking, model re-simulation from

a selected point in time of the project, and explore what-if scenarios.

5.1 The Example Project

To demonstrate our the capabilities of SimphonyaaS , we chose a real construction

project from a database of real project data collected by Batselier et al. [29], avail-

able publicly on their website [30]. We selected a project based on 4 criteria: (1)

an activity count of 25 or less, to make the example simple to understand, (2) an

industrial construction project, so that the terminologies are easily understandable,

(3) a serial/parallel task ratio of more than 40% to demonstrate how our system

handles parallel tasks (i.e. changes in the critical path) and (4) comprehensible

task names for better understanding of the example. Based on these criteria, only

2 projects from the database were found eligible - the Greenhouse project (Project

code 2019-08) and the Castelein project (Project code 2018-03)4. But within these

2, the Castelein project had incomplete resource allocation data so we chose the

Greenhouse project.

4The project codes are assigned by the authors to all the projects in the database as unique
identifiers.
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Figure 5.1: Transforming the Greenhouse project Excel file to Simphony
Simulation-Specification model

5.2 Transforming the Example Data to Simphony Dy-
namic Specification Model

The Greenhouse project has 23 tasks, as shown in Table 5.1. The dependencies

of each task, their baseline schedule, duration, and resource allocation are also de-

scribed in the table. The data is available as a Microsoft Excel file in xlsx file

format. We transformed the data into a Simphony Simulation-Specification model

using a Python script. Figure 5.1 shows the process through which the script trans-

forms the data. It is to be noted that the task Finish is not included in the model, as

it only indicates the time of finish of the project and has no resources attached to it.

So in the simulation model, we have 22 tasks.

However, the simulation model can also be created using the Model Editor In-

terface in a similar fashion to how it is done in Simphony Dynamic . At this point,

the initial project specifications were ready with a baseline schedule, resource spec-

ifications, a task network, and baseline simulation results. The simulation results

were the same as the planned baseline of the Greenhouse project, and it predicts

that the project will end on 10 June 2020.
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5.3 The Project Management Dashboard

The project starts on October 14, 2019. We assume a scenario where work is done

every day and through the mobile application, the site manager reports the daily

progress. We also assume that until 10 December 2019, the first 2 tasks from table

5.1, Gravel core foundation, and Pile foundation were completed. We can see in

Figure 5.2 that for the Greenhouse project, 21.27 % of the project was expected to

be finished on 10 December 2019, but 9.09% was finished. The expected end date

for the project is 10 Jun 2020 at 5:00 PM. The current selected date is 10 December

2019, and the predicted end date is not available as the user has not run a simulation

yet.

Figure 5.2: The dashboard page of the Project Management Interface for the Green-
house project on 10 December 2019, before simulation.

Once the user presses the simulation button and the simulation is complete, the

dashboard is updated with the simulation results. The new simulation predicts the

future from 10 December 2019, so we refer to it as future data. Figure 5.3 shows

the dashboard after it is populated with the real data. We can see the simulation

predicts that the project will end on 24 June 2020, pushing back the project by 14

days. The line chart shows the comparative analysis of the project’s progress. The

green line shows the real progress of the project up to 10 December 2019, and the

purple line continues this line to show how the project will progress in the future.

The red line indicates the baseline progress over time. For the current scenario, we
43



observe that the baseline progress line is always above the future prediction for the

next 10 weeks. So, the project is likely to be behind for the next 10 weeks.

Figure 5.3: The dashboard page of the Project Management Interface for the Green-
house project on 10 December 2019, after simulation.

5.4 Comparative Critical Path Analysis

At the beginning of the project, the critical path for the Greenhouse project was:

Gravel Core Foundation →Pile Foundation →Foundation →Assembly W1 →Assembly

W2 →Assembly W3 →Wall Coverage W3 →Roof W3 →Flooring Inside →Drying

floors →Sprinkler installation.

But after the first two tasks in the critical path have been completed, it changes to:

Design prefab parts →Production prefab parts →Foundation →Assembly W1 →Assembly

W2 →Assembly W3 →Wall Coverage W3 →Roof W3 →Flooring Inside →Drying

floors →Sprinkler installation.

In Figure 5.4, we can see how this change is shown in the Critical Path page

of the interface. The New Critical Path column shows the critical path calculated

based on the real-time progress on the selected date. This was calculated when the

SIMULATE button was pressed on the dashboard. The Baseline Critical Path shows

which tasks were in the critical path at the beginning of the project. The columns

Simulated Start and Simulated Finish are the results of the simulation, showing
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when the task is expected to start and finish. The Design prefab parts and Product

prefab parts are now on the critical path, but were not on the baseline critical path.

Figure 5.4: The Critical Path page of the Project Management Interface for the
Greenhouse project on 10 December 2019

5.5 Tracking Real Progress and Comparison with Base-
line

The Realtime Progress page, as shown in Figure 5.5 presents a table with the real

progress of all the activities, reported using the Progress-Monitoring Mobile Ap-

plication. As the crew leads report the progress of each task every day, this panel

updates the data for the project manager to view. Through this single table view,

the project manager can compare how much work has been done and compare it

to the baseline simulation and budgeted man hours. In Figure 5.5, we can see that

the first 2 tasks have been fully completed by 10 December 2019. According to

the baseline simulation, the tasks Design prefab parts and Production prefab parts

should have been completed by this time, but the real data shows these tasks have

not yet been started. So, the project manager can quickly decide to put more focus

on these tasks to accelerate the project. This panel is one of the most important

parts of the Project-Management Interface as it provides a detailed expectation vs

reality overview of the project.
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Figure 5.5: The Realtime Progress page of the Project Management Interface for
the Greenhouse project on 10 December 2019

5.6 The Gantt Chart View

The Gantt Chart panel shows the simulation results, the baseline schedule, and also

the progress of each task. The red color shows the baseline schedule, the purple

color shows the future simulation results and the green color shows the current

progress. In Figure 5.6, we can see that the tasks Gravel core foundation, and

Pile foundation, have been fully completed as they are fully green, indicating their

progress is 100%. The other tasks have not been started yet so their start and end

dates are simulated, indicated by their purple color. The dependencies between the

tasks are shown using directional arrows. The tasks that are on the current critical

path and labeled ”Critical” on the Gantt Chart. The left side of the Gantt Chart

presents these data in a tabular way, as shown in Figure 5.7
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Figure 5.6: The Gantt Chart page of the Project Management Interface for the
Greenhouse project on 10 December 2019

Figure 5.7: The tabular view of the Gantt Chart page of the Project Management
Interface for the Greenhouse project on 10 December 2019

5.7 Simulating What-If Scenarios

As we have seen in our example scenario, the Greenhouse project is behind schedule

on 10 December 2019 and is expected to finish on 24 June 2020 instead of 10 June

2020, a delay of 14 days. To decide what can be done to accelerate the project,

what-if scenarios can be simulated through the Project Management Interface by
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changing the number of resources allocated or by editing the work time i.e. adding

or removing more shifts.

The project manager for the Greenhouse project might decide to hire more peo-

ple to accelerate the project, but before doing so they can test if it will help to meet

the deadline from the Resources panel of the Project Management Interface. The

user can select which resource they want to allocate more of and add or edit the

availability for that resource. Let us assume a scenario where the project manager

wants to hire 1 more crane and 6 more personnel on 10 December 2019 and see how

it changes the project timeline. Figure 5.8 shows the resource configuration after

the changes are made by the project manager in the interface. After re-simulating

the project using the new resource allocations, our system shows that the project

is projected to end on 23 July 2020. So, adding more resources will accelerate the

project by 1 day.

Another what-if scenario the project manager might want to look into is adding

more work hours. For the Greenhouse project, let us assume the project manager

decides to add an extra 2-hour shift on Mondays, Wednesdays, and Fridays from

10 December 2019. They can edit the work times in the Shifts panel, as shown in

Figure 5.9. After adding the shifts, the simulation is re-run. The results show that

now the project can end ahead of the expected end time, by 8 June 2020 instead of

24 June 2020, showing that adding more shifts can accelerate the project.

So, by going through these what-if scenarios, the Greenhouse project manager

can conclude that he can add more shifts to the current calendar, rather than hire

more resources, to accelerate the project and meet the deadline.
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Figure 5.8: Updates done to the resource configuration of the Greenhouse project
on 10 December 2019 (Zoomed in for better view).
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Figure 5.9: Updates done to the shift configuration of the Greenhouse project on 10
December 2019 (Zoomed in for better view).
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Chapter 6

Evaluation

6.1 Evaluation of Simulation Results

Q. Are the simulation results consistent between Simphony Dynamic and SimphonyaaS

?

To evaluate the simulation results generated by our system, we collected a model

from the creators of Simphony Dynamic . The model represents a real construction

project by PCL Construction, with 1691 tasks. It was provided to us as a Microsoft

AccessDB file and using a Python script, we transformed it to our model JSON for-

mat. We simulated the model on SimphonyaaS and Simphony Dynamic and collected

the simulation results for comparison.

We discovered that although both simulations start and end on the same day, the

order of task execution was different between Simphony Dynamic and SimphonyaaS

. We printed out all the calculations happening within the simulations and found out

that there were slight differences in floating point calculations, especially during

calculations of the remaining man-hours of a task as the simulation progressed. We

looked further into the matter and discovered that the floating point representation

of .NET was updated in .NET Core 3.0 [31], which was causing this. This change

caused the calculations in the simulation in SimphonyaaS to shift progressively and

created a chain reaction that changed the execution order of the tasks. However, the

simulated project end dates were unaffected and were the same in both systems.

We concluded that the results are different due to the differences in floating

point representation. A possible fix for this issue can be representing all floating
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point values in the Simphony Dynamic engine with the C# type Decimal rather than

Double, which allows better precision for floating point calculations.

6.2 Performance Evaluation

To test how our system performs for models of various complexity and the over-

head of SimphonyaaS compared to Simphony Dynamic , we conducted performance

evaluations. All evaluation was done on an AMD Ryzen 7 7840HS CPU with 32

GB of RAM.

6.2.1 Scalability

Q: How does the system perform under different project sizes? What project

attributes impact run-time cost?

For scalability evaluation, we reused the Greenhouse project and created two

different scenarios: increasing the number of tasks i.e. Greenhouses to be built,

but not increasing the number of resources, and the other with resource scaling

i.e. increasing the number of resources as needed as we add more Greenhouses.

These two scenarios present two cases - a large number of tasks with not enough

resources to tackle them, and another with enough resources to handle them. We ran

the simulation for a total of 100 iterations, and for each iteration, we increased the

number of tasks by 22 and the number of resources by 41 in one scenario (marked

with orange in Figure 6.1). In the other scenario, we only increased the number of

tasks by 22 while keeping the number of resources to 41 always (marked with blue

in Figure 6.1).

Figure 6.1 shows the results of the performance evaluations. We can see that

if we do not scale the resources, the runtime increases rapidly and reaches 185.95

seconds for a simulation with 2200 tasks. But scaling the resources keeps the same

simulation runtime within 2.66 seconds. This shows that the simulation engine

struggles if there is a lack of resources and awaits the release of resources when

simulating tasks, hence taking more time. The results also show that the runtime is

strongly positively correlated to the number of tasks in the simulation model, with
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a Spearman’s ρ value of 0.99 for both tests, indicating that the API runtime will in-

crease if the number of tasks increases, regardless of resource scaling. However, for

an increase of tasks with no resource scaling, the increase is exponential, whereas

for an increase with resource scaling, the increase is linear. Figure 6.1 presents the

results of this experiment.

Figure 6.1: Scalability performance evaluation results for the Simulation API

6.2.2 Overhead

Q: What is the overhead incurred by the service-oriented infrastructure on the

original simulation cost?

To test the overhead incurred by SimphonyaaS from the migration process, we

used a simulation model with 1691 activities and 180 products, which contains the

planning data of a real project by PCL Construction.

For a better testing scenario, we created 18 different chunks of the model, start-

ing from 10 products and their tasks, and iteratively increasing the size to all 180

products and their tasks. Then we took the 18 different chunks and simulated each

chunked model 10 times on both our system and Simphony Dynamic .
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We measured the runtimes at 3 different points (1) The time taken to simulate the

model by Simphony Dynamic (2), the roundtrip time of the simulation POST API

in SimphonyaaS (3) the time it takes the simulation microservice of SimphonyaaS to

simulate the model. The simulation entry point of the Simphony Dynamic simula-

tion engine is a C# function named ’Model.Simulate’. We checked the execution

time of this function to measure the simulation times in both SimphonyaaS and Sim-

phony Dynamic . To test the REST API roundtrip times, we calculated the differ-

ence between the timestamps of when we sent the request and when we received

the response.

Figure 6.2 shows the comparison between the mean runtimes of the 3 scenarios,

Figure 6.3 shows the median runtimes of the 3 scenarios, and Figure 6.4 shows the

mode runtimes the 3 scenarios.

By observing the results, we saw that for the larger chunks of the model, SimphonyaaS

performed better, and for the smaller chunks of the model, Simphony Dynamic per-

formed better. From here we can conclude that the overhead is much less than the

simulation but when the simulation is small they are comparable, so the overhead

penalizes the new architecture for smaller models.
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Figure 6.2: Comparative mean runtimes of Simphony Dynamic and SimphonyaaS

Figure 6.3: Comparative median runtimes of Simphony Dynamic and SimphonyaaS
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Figure 6.4: Comparative mode runtimes of Simphony Dynamic and SimphonyaaS
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Chapter 7

Conclusion

7.1 Contributions of SimphonyaaS

In this thesis, we migrated the Simphony Dynamic legacy software (based on .NET

Framework 4.6) to a state-of-the-art microservices-based software-as-a-service ar-

chitecture (based on .NET 8.0). This migration was forced by the fact that Microsoft

has announced that they will discontinue support for .NET Framework 4.6. Even

if, however, this was not the case, the migration to a web-accessible cloud-based

architecture is motivated by two key objectives. First, cloud-based deployment

enables easy adoption of the software by users who may be unable to install the

legacy desktop application on their own infrastructure. Second, cloud-based de-

ployment enables performance scalability by virtue of the fact that the software

runs on state-of-the-art infrastructure and can potentially access increased compu-

tational and storage resources.

The migration process enabled several key functional improvements.

• We aligned the project specification model to Digital Construction Ontology,

which increased its potential for interoperability and extensibility. In parallel,

we migrated the system database to GraphDB, a database that supports the

management of RDF triples (in terms of which DiCON is described) and the

efficient implementation of a variety of queries of interest.

• We migrated the original Simphony Dynamic user interface to a web-based

Model Editing Interface with a similar look and feel.
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• In addition, we developed two new user interfaces, conceived to meet the

needs of users from different levels of the construction process and present

reports and data based on their role in the construction process. The project

management interface assists the project manager in exploring what-if sce-

narios like modifying resources or shifts for better decision support. A new

mobile application, and a new REST API, were developed to facilitate real-

time data collection by crew leads on the site.

• Lastly, our most important contribution is adding the feature of model re-

simulation from any point by automatically adjusting the model parameters.

The process is made seamless as the real data is persisted in our system and

the user has the option to select this point in time from the project manage-

ment dashboard. This makes the simulation model reusable throughout the

whole project without any manual intervention.

Together, these contributions address some of the problems that were hindering

Simphony Dynamic from being more widely adopted by the industry.

7.2 Future Work

Future work can focus on integrating the system with popular project management

software used in the construction industry e.g. Microsoft Project, and Primavera

P6. Most construction companies use these software to plan and schedule their

work, and provisions to directly import data from them into our system will greatly

increase the chance of industry adaptation.

More what-if scenario exploration can be added to the Simphony Project man-

agement dashboard based. The current system does not calculate cost estimation

but it can be implemented to make the simulation results even more useful.

Additional Construction factors like weather, risk, material, and equipment can

be incorporated into the simulation engine to represent construction sites accurately.

Another possibility is creating machine learning models to automatically learn

the on-site progress and report it to our real-time data tracking API. This will auto-

mate the data entry and can supplement the mobile application.
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