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Abstract

Due to the advancement of computational hardware and the abundance and variety

of data, deep learning has achieved significant success in natural language process-

ing, computer vision, recommendation systems, and other domains in recent years.

Because of this, recent large models have gained the ability to learn from massive

amounts of data and are capable of handling tasks such as generating pictures based

on user instructions or producing code with clear comments. However, effective ex-

ploitation of massive amounts of data is not a straightforward process, given that the

quality and diversity of data can greatly influence the model performance.

Data engineering is the practice of enabling the collection and usage of data, and

plays a critical role in making data accessible to deep learning by collecting, managing

and converting raw data into useful information. Commonly used data engineering

techniques in deep learning include data collection, filtering, preprocessing, cleaning,

and modification. However, manually crafted data engineering policies require expert

knowledge and a significant amount of tedious work, and can hardly reach the full

potential of these techniques.

In order to avoid human intervention and unleash the potential of data, we au-

tomate the data engineering process to facilitate model learning and inference. In

particular, we learn automated training curriculums and data augmentation strate-

gies that enable the model to learn better from diverse and high-quality data samples.

Moreover, we also improve the inference process by pruning and accelerating the re-

dundant and unimportant part of input data to reduce computation cost. Specifically,

we make the following contributions:
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First, we focus on data selection by analyzing the problem of curriculum learning

in neural machine translation (NMT) with the goal of improving a pre-trained NMT

model. To achieve this, we propose a data selection framework based on reinforcement

learning, which learns to re-select influential data samples from the original training

set by identifying the most effective sample in a mini-batch. By simple fine-tuning,

the selected subset of data can further improve the performance of the pre-trained

model when original batch training reaches its ceiling, without utilizing additional

new training data.

Second, we propose a label-aware auto-augmentation algorithm, to automati-

cally learn augmentation policies separately for samples of different labels to over-

come the limitation of sample-invariant augmentation. Our algorithm incorporates a

predictor-based Bayesian optimizer to identify effective augmentations for each label,

and constructs complementary augmentation policies based on minimum-redundancy

maximum-reward principle. It produces effective label-aware augmentation policies

which achieve significant performance boosts on image recognition tasks at a low

search cost.

Third, we introduce a frame selection framework for the task of video action

recognition to extract the most informative and representative frames to help a model

better understand video content. We propose a Search-Map-Search learning paradigm

which combines the advantages of heuristic search and supervised learning to select

the best combination of frames from a video as one entity. By combining search with

learning, the proposed method can better capture frame interactions while incurring

a low inference overhead.

Finally, we study the embedding dimension pruning problem for recommendation

systems. Specifically, we propose a low-cost embedding dimension search approach for

recommender systems. By assessing information overlapping between the dimensions

within each feature field and pruning unimportant and redundant dimensions pro-

gressively during model training via a two-level polarization regularizer, our method
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efficiently reduces the model parameters, and achieves strong recommendation per-

formance while introducing minimum overhead.
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Preface

This dissertation proposes automated data engineering approaches to improve the

learning and inference of deep models in various applications. Chapter 1 provides

background information and motivations, while Chapter 2 reviews related research

directions. The remaining sections of this thesis are the result of collaborative works

with Dr. Di Niu and other co-authors.

Chapter 3 has been published as “Reinforced Curriculum Learning on Pre-trained

Neural Machine Translation Models” by Zhao, Mingjun, et al. in the Proceedings of

the AAAI Conference on Artificial Intelligence in 2020.

Chapter 4 has been published as “LA3: Efficient Label-Aware AutoAugment” by

Zhao, Mingjun, et al. in the Proceedings of the European Conference on Computer

Vision in 2022.

Chapter 5 has been published as “Search-Map-Search: A Frame Selection Paradigm

for Action Recognition” by Zhao, Mingjun, et al. in the Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition in 2023.

Chapter 6 is a collaborative work currently under submission.
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Chapter 1

Introduction

1.1 Motivation

Deep learning is a subset of machine learning that uses deep artificial neural net-

works to model and solve complex problems. It has been around for decades but has

gained popularity in recent years due to the availability of large datasets and powerful

computing resources. The recent emergence of large generative models such as GPT-

4 [1] and Stable Diffusion [2] has shown great capability in generating high-quality

contents according to user instructions. Their successes are attributed to the large

models’ capability as well as the massive amounts of training data.

With the opportunity of deep models comes the challenge of effective and efficient

utilization of the data. First of all, the quality and diversity of data samples can

greatly affect the learning of models, as proven by many studies [3–5]. Therefore,

how to best utilize the existing data to build the best model becomes an important

question. To address this question, several directions have been explored. Data clean-

ing aims to eliminate noisy data samples that may damage the model performance.

Data augmentation adds modified sample copies to the training data with the goal of

improving the generalization ability. By actively selecting and synthesizing data sam-

ples to participate in the model learning process, deep learning models can achieve

high accuracy and robustness in various applications.

Second, in many real-world scenarios such as video understanding and deep learning
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recommendation models, the deployment of deep models often suffers from the high

memory requirement and low inference speed due to the giant size of the model and

high dimensional input data. One possible solution to alleviate this problem is to

shrink the size of the models by utilizing more efficient networks derived using neural

architecture search [6]. Another promising direction involves reducing the dimension

of input samples by pruning the unimportant and redundant parts.

In this dissertation, we argue that automated data engineering can greatly benefit

the learning and inference of deep models. Our work focuses on learning automated

data engineering strategies, including curriculum learning, data augmentation, and

input sample pruning. To this end, we develop novel methods for a variety of tasks

and demonstrate our methods outperform existing ones.

1.2 Automated Data Engineering

Data engineering plays a critical role in both the model learning and model deploy-

ment of deep learning by extracting and organizing the useful information from raw

data. Many data engineering techniques are widely adopted in modern deep learning

applications, such as data collection, filtering, cleaning, preprocessing, augmentation,

and modification. Through these techniques, the usage of data has been greatly im-

proved in multiple aspects including quality, diversity and information density, which

enables the deep models to function more effectively and efficiently.

However, most data engineering algorithms are constructed based on human expe-

riences which involves tedious human efforts and are far from the optimized solution.

Moreover, data engineering solutions to different tasks are often not transferable,

leading to repetitive trail-and-error processes that are extremely time-consuming.

In this thesis, we propose automated data engineering which automates the build-

ing process of data engineering algorithms using automated search algorithms. By

clearly defining the search space and objective and choosing appropriate optimization

algorithms, we can efficiently find effective data engineering algorithms to improve
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the performance and efficiency of deep models. Compared with hand-crafted meth-

ods, automated data engineering usually finds better solutions and can be generally

applied to varies deep learning tasks.

We focus on constructing automated data engineering methods for different deep

learning scenarios such as natural language processing, computer vision and recom-

mender systems. Our works investigate research problems to optimize the training

data for better model learning as well as reduce the dimension of input data samples

for efficient model inference and deployment.

As an approach of improving the model training, curriculum learning, is pioneered

by [7], which chooses what examples to present and in which order to present them

to the learning algorithm. Our work mainly focuses on automatically finding an

optimized training curriculum that can best improve a pre-trained model in the task

of neural machine translation.

Data augmentation has proven to be an effective regularization technique that

can improve the generalization of deep neural networks by adding modified copies

of existing samples to increase the volume and diversity of training data. In our

work, we study the automated learning of augmentation policies to achieve superior

performance and generalization in image recognition tasks across different domains.

In order to reduce the computation required in video understanding, frame sam-

pling is a common approach to reduce the redundant information of the input video by

sampling a subset of frames from all video frames. We investigate the frame selection

problem in video action recognition task by automatically extracting the informative

and representative frames from the video to improve the model’s performance.

Despite the differences in tasks and domains of our works in this thesis, we ex-

tensively incorporate a unified methodology to analyze and solve different data engi-

neering tasks. Figure 1.1 shows the principle methodology used throughout different

tasks in the thesis. The first step is to identify a research problem and formulate it as

an automated data engineering task. Second, we will define the task objective, i.e.,
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Identify and Fomulate the problem

Define the objective

Construct the search space

Analyze the search efficiency

Design suitable search algorithms

Evaluate derived results

Figure 1.1: The principle methodology incorporated for all tasks in this thesis.

whether to improve the model performance or to save the computation cost. Third,

based on the task information, we will construct the search space by defining all the

possible candidates. Fourth, we will analyze the search cost for each iteration and de-

sign surrogate reward signals to improve search efficiency when the cost is high. After

constructing the search space and designing the reward signal, we will carefully design

suitable algorithms accordingly based on different task characteristics. Finally, the

derived results will be evaluated to validate the effectiveness of our proposed method.

1.3 Contributions and Thesis Outline

We make contributions by proposing an organized problem setting for automated data

engineering and showing its applications to a variety of NLP, CV and recommendation

tasks with respect to different problems using automatically learned strategies. Figure

1.2 gives a demonstration of our works in this thesis. We can see that our works
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Task Downstream Task Search Space Reward Signal Algorithm

curriculum 

learning

neural machine 

translation
entire training set

perplexity 

improvement
reinforcement learning

auto-

augment
image recognition

augmentation 

operations triples

class accuracy 

difference
Bayesian optimization

frame 

selection

video action 

recognition
frames in videos

negative model 

loss

heuristic search + 

supervised learning

embedding 

dimension 

pruning

click-through rate 

prediction

embedding 

dimensions

negative model 

loss
gradient-based search

Figure 1.2: An overview of our works from the perspective of automated data engi-
neering.

utilize different algorithms to handle different data engineering tasks across a wide

range of domains. For examples, we formulate different data engineering problems

of curriculum learning (data selection), augmentation selection, frame selection and

embedding dimension selection as search problems, and design their search spaces,

reward signals and algorithms accordingly.

In Chapter 2, we give a background introduction on the related research works.

Specifically, we will introduce several aspects of the problem including the construc-

tion of search space, the search algorithms, and the evaluation strategy.

More specifically, from the perspective of automatically constructing better data

engineering strategies to improve the learning and inference of deep models, we make

the following contributions:

• In Chapter 3, we formulate the problem of curriculum learning in neural machine

translation (NMT) as a reinforcement learning problem and propose a data se-

lection framework to re-select influential data samples from the original training

set. The selected subset of samples can further improve the pre-trained model

by simple fine-tuning when original batch training reaches its ceiling, without

utilizing additional new training data.
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• In Chapter 4, we have also studied the automated learning of data augmen-

tation policies. To overcome the limitation of previous sample-invariant aug-

mentation, we propose a label-aware auto-augmentation algorithm, that learns

augmentation policies separately for samples of different labels. We incorporate

a predictor-based Bayesian optimizer and a complementary policy construction

stage to efficiently produce label-aware augmentation policies.

• In Chapter 5, input data pruning is used to eliminate the redundant informa-

tion and keep only important information of a sample, which can achieve better

results with less computational power required. Therefore, we focus on the

frame selection of video action recognition, propose a Search-Map-Search learn-

ing paradigm which combines the advantages of heuristic search and supervised

learning to select the best combination of frames from a video as one entity.

• In Chapter 6, we design and implement an automated embedding dimension

search algorithm for recommendation systems to reduce the model parame-

ters while maintaining the strong recommendation performance. Our proposed

method assesses information overlapping between dimensions within each fea-

ture field and prunes unimportant and redundant dimensions progressively dur-

ing model training via a two-level polarization regularizer.

We conclude and provide potential future directions in Chapter 7.
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Chapter 2

Background

Before we present our approaches of automated data engineering for different tasks,

we will set up the context by giving a brief introduction on the topic of Automated

Machine Learning (AutoML) that our methods are related to.

AutoML [8] is a process of using software tools and algorithms to automate some

or all of the steps involved in building and deploying machine learning models, such

as data processing, feature engineering, model selection, hyperparameter tuning, and

model evaluation. It eliminates the need for professional expertise and can usually find

better solutions than humans. Normally, the design of an AutoML system includes

identifying and constructing the search space, choosing appropriate optimization al-

gorithms, and designing efficient evaluation process.

The search space defines the design principles of the task, and its construction is

usually task-specific. For example, the search space of Neural Architecture Search

(NAS) [6] corresponds to different design choices of the network architecture, while

the data augmentation search space includes combinations of different augmentation

operations.

The optimization algorithms define how to guide the search to efficiently find the

optimal candidate and should be carefully chosen based on the characteristics of the

task and the search space. Popular optimization algorithms include random search

[9], Bayesian optimization [10], evolutionary algorithm [11], reinforcement learning
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[12] and gradient-based search [13].

Random search selects the best point from a set of randomly drawn points, while

Bayesian optimization is a sequential design strategy for global optimization of black-

box functions that does not assume any functional forms, usually employed to opti-

mize expensive-to-evaluate functions. The evolutionary algorithm is a metaheuristic

optimization algorithm with high scalability that takes inspiration from biological evo-

lution. Reinforcement learning is also a popular choice in AutoML, yielding excellent

results in many tasks. However, directly applying RL is very expensive in compu-

tation. Gradient-based search as pioneered by DARTS [14] searches over continuous

and differentiable search space with high efficiency.

The evaluation process provides an assessment on the performance of each search

candidate. Naive evaluation involves model training process which can be highly

costly. Multiple efficient evaluation approaches have been proposed such as using

smaller networks, reducing the data scale, network weight sharing, training surrogate

networks to provide evaluation approximation, and evaluation early stopping.
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Part I

Automated Data Selection and
Augmentation for Improved Model

Learning
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Chapter 3

Reinforced Curriculum Learning

3.1 Introduction

Curriculum learning, as pioneered by [7], aims to improve the training of machine

learning models by choosing what examples to present and in which order to present

them to the learning algorithm. Curriculum learning was originally inspired by the

learning experience of humans [15–17]—humans tend to learn better and faster when

they are first introduced to simpler concepts and exploit previously learned concepts

and skills to ease the learning of new abstractions. This phenomenon is widely ob-

served in, e.g., music and sports training, academic training and pet shaping. Without

surprise, curriculum learning is found most helpful in end-to-end neural network ar-

chitectures [7], since the performance that an artificial neural network can achieve

critically depends on the quality of training data presented to it.

Neural Machine Translation [18] [19] (NMT) translates text from a source language

to a target language in an end-to-end fashion with a single neural network. It has

not only achieved state-of-the-art machine translation results, but also eliminated

hand-crafted features and rules that are otherwise required by statistical machine

translation. The performance of NMT has been improved significantly in recent

years, as the NMT architectures evolved from the initial RNN-based models [19] to

convolutional seq2seq models [20] and further to Transformer models [21].

However, since obtaining accurately labeled training samples in machine transla-
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Example 1

zh xianzai ta zheng kaolv zhe huijia.

zh-gloss Now he is thinking about going home.

en He is thinking about going home now.

Example 2

zh wo yao chi niupai.

zh-gloss I want eat steak

en I want a steak. Get me a coke.

Table 3.1: Examples with accurate/inaccurate translations.

tion is often time-consuming and requires expert knowledge, an important question

in NMT is how to best utilize a limited number of available training samples, perhaps

with different lengths, qualities, and noise levels. Recently, the application of curricu-

lum learning is also studied for NMT. [22] propose to feed data to an NMT model

in an easy-to-difficult order and characterize the “difficulty” of a training example

by the sentence length and the rarity of words that appear in it. Other than using

the straightforward difficulty or complexity as a criterion for curriculum design, [23]

propose a method to calculate the noise level of a training example with the help of

an additional trusted clean dataset and train an NMT model in a noise-annealing

curriculum.

A limitation of the existing curriculum learning methods for NMT is that they only

address the batch selection issue in a “learn-from-scratch” scenario. Unfortunately,

training an NMT model is a time-consuming task and sometimes could take up to

several weeks [24], depending on the amount of data available. In most practical

and commercial cases, a pre-trained model often already exists, while re-training it

from scratch with a new ordering of batches is a waste of time and resources. In this

chapter, we study curriculum learning for NMT from a new perspective, that is given

a pre-trained model and the dataset used to train it, to re-select a subset of useful
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Training Set
DT = {(x,y)}

NMT Model
p?(y|x)

Selected Data
DS ?  DT

Update

Data Selection
Policy ?

Select

Train

Figure 3.1: Illustration of the curriculum learning process. The RL policy µ is used to
select samples DS from the training set DT . The selected data DS is used to update
a pre-trained NMT model pθ(y|x).

samples from the existing dataset to further improve the model. Unlike the easy-to-

difficult insights in traditional curriculum learning [7], [22], our idea is analogous to

classroom training where a student first attends classes to learn general subjects with

equal weights and then carefully reviews a subset of selected subjects to strengthen

his/her weak aspects or to elevate ability in a field of interest.

Furthermore, while all the samples participate in batch training for the same num-

ber of epochs, it is unlikely that all data contribute equally to a best-performing

model. Table 3.1 shows an example of two data samples from the dataset used in this

chapter, where Example 1 is accurately translated and can potentially improve the

model better, while Example 2 is poorly translated (with unexpected words in target

sentence) and may even cause performance degradation when fed to the model. The

objective of our curriculum design is to identify examples from the existing dataset

that may further contribute to model improvement and present them again to the

NMT learning system. An overview of our proposed task is given in Figure 3.1, where

useful data can be selected and fed to the system repeatedly to strengthen the model

iteratively.
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We formulate the data re-selection task as a reinforcement learning problem where

the state is the features of b randomly sampled training examples, the action is choos-

ing one of them, and the reward is the perplexity difference on a validation set after

the pre-trained model is updated with the selected sample. Thus, the primary goal of

the learning problem becomes searching for a data selection policy to maximize the

reward. Reinforcement learning is known to be unstable or even to diverge when the

action-value function is represented by a nonlinear function, e.g., a neural network.

For the sake of alleviating instability, our proposed RL framework is built based on

the Deterministic Actor-Critic algorithm [25]. It consists of two networks, an actor

network which learns a data selection policy, and a critic network which evaluates the

action value of choosing each training sample while providing information to guide the

training of the actor network. Besides introducing the framework, we also carefully

design the state space by choosing a wide range of features to characterize each sample

in multiple dimensions, including the sentence length, sentence-level log-likelihood,

n-gram rarity, and POS and NER tagging.

Experiments on multiple translation datasets demonstrate that our method can

achieve a significant performance boost, when normal batch learning cannot improve

the model further, by only re-selecting influential samples from the original dataset.

Furthermore, the proposed scheme outperforms a number of other curriculum learning

baseline methods, including the denoising scheme based on the use of additional

trusted data [23].

3.2 Related Work

High-quality machine translation corpus is costly and difficult to collect, thus it is

necessary to make the best use of the corpus at hand. A straightforward method to

achieve this goal is to remove the noisy samples in the training data, and train an

new model with the clean ones. Unfortunately, it is hard to estimate the quality of

a parallel sentence in the absence of golden reference [26]. Moreover, [23] find that
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some of the noisy samples may yield some benefits to the model performance. Then

they define a new method of computing noise level of a data example with the help

of an extra trusted dataset and propose to train an NMT model in a noise-annealing

curriculum.

Curriculum learning aims to organize the training process in a meaningful way by

feeding certain samples to the model in certain training stage such that the model

can learn better and faster [7]. They propose a simple strategy which organizes all

training samples into bins of similar complexity and starts training from the easiest

bin to include more complexed bins until all bins are covered. [27] apply this idea to

NMT by binning according to simple features like sentence length and word frequency,

and improve this strategy by restricting that each sample can only be trained once

during an epoch. [28] conduct empirical studies on several hand-crafted curriculum

and adopt a probabilistic view of curriculum learning. [22] further propose a compe-

tence function c(t) with respect to training time step t as the indicator of learning

progress and select samples based on both difficulty and competence. However, these

heuristic-based approaches highly depend on hand-crafted curriculum and are hard

to generalize.

Compared with heuristic-based approaches, RL-based policy learning models are

trained end-to-end and do not rely on hand-crafted strategies. [29] use Bayesian

optimization to learn a linear model for ranking examples in a work-embedding task.

[30] explore bandit optimization for scheduling tasks in a multi-task problem.[31]

select examples in a co-trained classifier using RL. [32] organize the dataset into bins

based on the data noise proposed by [23] and utilize a DQN to learn a data selection

policy deciding from which bin to select the next batch.

Different from the existing curriculum learning methods, our work focuses on learn-

ing a training curriculum with reinforcement learning for an existing pre-trained NMT

model. We argue that existing curriculum learning methods are only applicable on

train-from-scratch scenarios, and learning from an existing model can save training
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time.

Active learning [33] is another related area which focuses on selectively obtaining

labels for unlabeled data in order to improve the model with least labeling cost. [34]

[35] study active learning for Statistical Machine Translation using some hard-coded

heuristics. [36] design an active learning algorithm based on a deep Q-network, in

which the action corresponds to binary annotation decisions applied to a stream of

data. [37] make use of imitation learning to train a data selection policy.

3.3 Problem Definition

In this section, we provide a brief background of NMT and formulate the curriculum

learning task on pre-trained NMT models as a reinforcement learning problem.

Machine Translation can be considered a one-to-one mapping from a source sen-

tence x to a target sentence y. In neural machine translation, a model parameterized

by θ is searched for to maximize the conditional probability pθ(y|x) over the train-

ing samples. Modern NMT models adopt an encoder-decoder architecture where an

encoder encodes the source sentence x into a hidden representation h and a decoder

predicts the next target word yi given the hidden vector h and all previously predicted

words {y1, ..., yi−1}. Thus the conditional probability is decomposed as

log pθ(y|x) =
L∑︂
i=1

log pθ(yi|y<i, h), (3.1)

where L is the number of tokens in each target sentence. Given a training corpus DT ,

the training objective of an NMT model is to minimize

J(θ) =
∑︂

(x,y)∈DT

− log pθ(y|x). (3.2)

We consider curriculum learning on a pre-trained NMT model, where the goal is to

improve an existing model pθ(y|x) by selecting a subset DS from the training dataset

DT that led to pθ(y|x). As compared to training from scratch, we take advantage

of both the versatility of normal batch learning in the initial pre-training stage and
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a carefully selected curriculum for targeted model improvements. Specifically, our

objective is to find an optimal policy µϕ to select DS from DT and update pθ(y|x)

with DS such that the performance of the updated model is maximized, i.e.,

max
ϕ

perf
(︂
pθ′(y|x, ϕ)

)︂
,

s.t. pθ′(y|x, ϕ) = train
(︂
pθ(y|x), DS(ϕ)

)︂
,

DS(ϕ) = µϕ(DT ),

(3.3)

where DS(ϕ) is a subset selected from DT using policy µϕ, pθ′(y|x, ϕ) is an updated

model after training pθ(y|x) with DS(ϕ), and perf indicates the performance of a

model, e.g., measured by BLEU or Perplexity.

The main challenge is to identify and select the most beneficial data samples from

DT . A naive way is to evaluate the BLEU improvement on a validation set brought

by every single data sample in the training set and select the ones that improve the

BLEU the most. However, this method is extremely costly and is not scalable to

large datasets.

To obtain a generalizable data selection policy, we formulate the task as a reinforce-

ment learning problem in which the environment is composed of both the dataset DT

and the model pθ(y|x). The RL agent aims to learn a policy µϕ which decides which

sample to select when presented with a random batch of samples. In our framework,

a state s corresponds to the representation of both a data batch to select from and

the NMT model, a refers to the action of selecting the best data sample from the

batch, and r is the performance improvement of the NMT model on validation set

after being updated with the selected sample.

The RL agent is trained through interacting with the environment by repeatedly

performing the following: 1) receiving a state s containing a random batch of samples,

2) providing an action a back to the environment according to its trained policy, and

3) updating the policy using a feedback reward r given by the environment. Once

the policy is trained, it can be used to select data from an arbitrarily large dataset

and is scalable.
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3.4 Methods

In this section, we describe our Deterministic Actor-Critic framework for curriculum

learning, as well as the design of the state, action, and reward in detail.

3.4.1 Model Overview

For the model design of the RL agent, we choose the Deterministic Actor-Critic

algorithm.

Actor-critic [38] is a widely used method in reinforcement learning combining both

an actor network µϕ that outputs an action a = µϕ(s) given a state s to maximize

the reward, and a critic network Qw that predicts the action value Qw(s, a) of a

state-action pair (s, a). The actor learns a near-optimal policy via policy gradient,

while the critic estimates the action-value guiding the update direction of the actor.

Compared with actor-only methods like REINFORCE [39], the existence of the critic

reduces the update variance and accelerates convergence.

As our reward calculation involves evaluating the updated NMT model on a val-

idation set and is thus expensive, we exploit a memory replay buffer to increase

sample efficiency. Furthermore, we choose a deterministic policy setting as opposed

to stochastic policy due to the fact that the deterministic policy gradient can be

calculated much more efficiently as shown in [25].

The update of the framework is illustrated in Figure 3.2. The critic network Qw

takes a state-action pair (s, a), evaluates the action value, and outputs a predicted

reward r̃ = Qw(s, a), and updates the parameters supervised by the actual reward r

from the environment. Note that the critic network provides an immediate reward

per iteration. As a result, we do not need to employ additional techniques, e.g.,

Temporal-Difference (TD) [40], to approximate the long-term reward. The objective

of the critic network is thus to minimize the squared error of δ between the predicted
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Figure 3.2: The proposed RL framework.

reward and the actual reward, given by

δt = rt − r̃t = rt −Qw(st, at). (3.4)

The update of parameters w is achieved through gradient descent as follows:

wt+1 = wt + αwδt∇wQw(st, at). (3.5)

where αw corresponds to the learning rate of parameters w.

The actor network µϕ takes in a state s from the environment, applies the learned

policy, and outputs a corresponding action a. The objective of the actor network is

to learn an optimal policy generating the proper action to maximize the predicted

reward Qw(s, a). Policy gradient is used to update the parameters ϕ, i.e.,

ϕt+1 = ϕt + αϕ∇ϕQw(st, at)|a=µϕ(s)

= ϕt + αϕ∇ϕµϕ(st)∇aQw(st, at)|a=µϕ(s).
(3.6)

Algorithm 1 summarizes the overall learning process of the proposed framework.

In each round of data selection (with K rounds in total), we first train the RL agent
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Algorithm 1: The Proposed Method

Input: Training set DT and an NMT model pθ0(y|x)
Output: A better performing NMT model pθK (y|x)

1 for t = 0, . . . , K − 1 do
2 for number of RL training iterations do
3 Sample b examples from DT and form state s
4 Generate action a = µϕ(s)
5 Compute predicted reward r̃ = Qw(s, a)
6 Update pθk(y|x) with selected sample to get pθ′k(y|x)
7 Calculate the perplexity difference on validation set between pθk(y|x)

and pθ′k(y|x) as reward r

8 Update Qw using Eq. (3.5)
9 Update µϕ using in Eq. (3.6)

10 Select data DS from DT using µϕ

11 Update pθk(y|x) with DS to get pθk+1
(y|x)

for an adequate number of iterations. In each iteration, we derive a state, an action,

and a reward in lines 4–7 and update the actor network and the critic network in line

8 and line 9, respectively. After the RL agent is fully trained, we apply the learned

policy to select a subset DS and use DS to update the NMT model pθk(y|x) and move

to the next round. Usually one or two rounds are sufficient.

Figure 3.3 demonstrates the network structure of the RL agent. A feature network

is shared between the Actor Network µϕ and the Critic Network Qw. It takes in the

raw features of the sampled batch of b examples, where each feature of each sample

goes through an independent single-layer MLP. The concatenation of the outputs

constitutes the state representation s. Note that different examples in the sampled

batch share the same network weights.

The Actor Network µϕ is composed of a two-layer MLP and computes a score

for each example in the sampled batch of b examples based on the input state s,

and outputs the action a as a probability vector representing the probability of each

example being selected, by taking a softmax operation over the computed scores of b

examples.

The Critic Network Qw also has two layers and calculates the action value of a
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Figure 3.3: The network structure of the RL agent, where the depth represents a
batch (of 3 samples in this illustration).

given state-action pair (s, a), where the action a is the output of the Actor Network,

i.e., a = µϕ(s), and is concatenated to the second layer of the critic network.

Note that although the feature network is shared between both the actor network

µϕ and the critic network Qw, we only update it with the critic network to reduce

training instability.

3.4.2 State

The state s is meant to be a full summarization of the environment including a data

batch of b examples to select from and information about the pre-trained model. How-

ever, the number of parameters in the pre-trained model is too large to be included

in the state directly at each time step. Thus, we need to find a representation that

can represent both the samples to be selected and the existing model using a limited
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number of parameters. In our state design, we focus on three different dimensions,

namely informativeness, uncertainty, and diversity. We use the sentence length as a

measure for informativeness, the sentence-level log-likelihood for uncertainty, and the

n-gram rarity together with NER and POS taggings for diversity.

The most intuitive representation feature of a parallel sentence is the sentence

length, i.e. the number of tokens in a sentence. This simple scalar roughly mea-

sures the amount of information involved in a sentence and is also used in [22] as a

“difficulty” estimate.

Following the intuition that examples yielding large uncertainty can benefit the

model performance [41], another feature we use is the sentence-level log-likelihood

Lpθ(y|x) calculated by the pre-trained model pθ(y|x) by summing up the log probability

of each word yi of the target sentence:

Lpθ(y|x) = log pθ(y|x) =
∑︂
yi∈Y

log pθ(yi|x). (3.7)

[42] and [43] suggest that selecting samples that are farthest away from the existing

dataset can benefit model training. Incorporating this idea, we further utilize two

other feature vectors, n-gram rarity and taggings, to represent the similarity between

a given sample and the entire training set.

For n-gram rarity, we use n = {1, 2, 3, 4}. Given all the sentences in DT , we define

the relative frequency for a unique n-gram g
(n)
j in DT as

f (n)(g
(n)
j ) ≜

1

N (n)

∑︂
sk∈DT

∑︂
g
(n)
i ∈g(n)

(sk)

1
g
(n)
i =g

(n)
j
, (3.8)

where j = 1, ...,#{unique n-grams}, sk is a sentence from DT , g
(n)
(sk)

is all n-grams in

sk, and N (n) is the total number of n-grams in DT . For n-gram representation of a

sentence sk, we form all the n-gram frequencies into a vector:

F (n)(sk) = {f(g(n)1 ), ..., f(g
(n)
L )|g(n)l ∈ g

(n)
(sk)
}. (3.9)

In this chapter, we use n = {1, 2, 3, 4} and calculate the n-gram vectors for both the

source and target sentences.
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For taggings, we use Named Entity Recognition (NER) and Parts of Speech (POS)

and apply ideas similar to our n-gram design. As the tagging of a word is dependent

of the sentence that the word lies in, a same word may be tagged differently in

various sentences. To give an example in POS tagging, the word “Book” can either

be tagged as “NOUN” or “VERB” depending on its meaning in the sentence. If most

occurrences of the word “Book” are tagged as “NOUN” in the training set, the model

may not be able to correctly learn the second meaning of it. Therefore, the model

should be fed more with samples in which “Book” is tagged as “VERB”. In order to

reflect this phenomenon, we define a tagging value for a word w and its current tag t

as

v(w, t) ≜
1

Nw

Ntag(w)=t, (3.10)

where Nw is the number of times the word w has appeared in the training set and

Ntag(w)=t is the number of times the word w is tagged with tag t among all its occur-

rences. Similarly, for both NER and POS taggings, the tagging values of words form

a vector representation of a sentence:

V (sk) =
{︂
v
(︂
w1, t1

)︂
, ..., v

(︂
wL, tL

)︂
|wl ∈ sk

}︂
. (3.11)

3.4.3 Action and Reward

In the task of curriculum learning, an action represents the process of data selection.

[36] assume a stream-based setting where data examples come one by one in a stream,

and design their action as making a decision on whether or not a single incoming

data example should be selected. We argue that our problem setting is actually pool-

based instead of stream-based, where a pool of data exists for selection and deciding

on the selection of each individual sample per step would be inefficient. In [32],

a dataset is split into several bins according to a noise measure of data samples,

and the action determines from which bin the next batch of training data should be

selected. However, this method highly depends on an effective heuristic criterion for

bin formation and is thus hard to generalize.

22



Therefore, we propose our action design which samples a batch of b data examples

from DT , computes a score for each example according to the trained policy, and

choose the one with the highest score. Correspondingly, in our design, we can easily

control the size of DS by varying the batch size b, i.e., |DS| = |DT |/b, since we choose

one out of b samples for each batch.

For the choice of reward signal, we use the performance improvement of the NMT

model evaluated on the validation set after it is updated with the selected sample.

Perplexity is used as the performance metric instead of BLEU as it is shown to be

more consistent and less noisy [44]. We assign a reward of 0 to unselected samples.

3.5 Experiments

In this section, we will first describe the datasets used in our evaluation and provide

the implementation details along with the performance results.

3.5.1 Datasets & Metrics

To compare our proposed method with other curriculum learning methods on NMT

task, we conduct comprehensive empirical analysis on several zh-en translation datasets:

• MTD is an internal news translation dataset with 1M samples in the training

set and 1,892 samples in both the validation set and the test set. The average

length of source sentences is 19.55 and the average length of target sentences is

21.06.

• CASICTB, CASIA2015, NEU are three independent datasets with 1M,

2M, and 2M examples from different data sources in WMT18 which is a public

translation dataset in news area with more than 20M samples. We only use a

part of data from WMT18 to evaluate our method. All three datasets share the

same validation set newsdev2017 and the test set newstest2017 both composed

of 2k samples.
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Table 3.2: Description of evaluation datasets.

Dataset Train Val Test Src-Len Tgt-Len

MTD 1, 000, 000 1, 892 1, 892 19.55 21.06

CASICTB 994, 248 2, 002 2, 001 22.61 23.95

CASIA2015 1, 049, 988 2, 002 2, 001 23.89 25.19

NEU 1, 999, 946 2, 002 2, 001 16.95 18.54

Table 6.1 summarizes the details of the experimental datasets. The columns titled

“Train”, “Val”, and “Test” correspond to the number of examples in training, vali-

dation, and test sets. “Src-Len” and “Tgt-Len” correspond to the average sentence

length of source language and target language respectively.

For evaluation metrics, we use Perplexity for the reward calculation in RL agent

training, and report BLEU [45] for the final performance of the NMT models.

3.5.2 Experimental Settings

We implement our models in PyTorch 1.1.0 [46] and train the model with a single

Tesla P40. We utilize NLTK [47] to perform POS and NER taggings.

For the NMT model, we use the OpenNMT implementation [48] of Transformer

[21]. It consists of a 6-layer encoder and decoder, with 8 attention heads, and 2,048

units for the feed-forward layers. The multi-head attention model dimension and the

word embedding size are both set to 512. During training, we use Adam optimizer

[49] with a learning rate of 2.0 decaying with a noam scheduler and a warm-up steps

of 8,000. Each training batch contains 4,096 tokens and is selected with bucketing

[27]. During inference, we employ beam search with a beam size of 5.

For the RL agent, we use an Deterministic Actor-Critic architecture and build our

system based on [50]. In our framework, we use several tricks proven to be effective

to RL training including a memory replay buffer of size 2,500, a warm-up phase of

500 steps, and a target network which is updated by mixing weights with the on-line
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network with a mix factor of 0.1. For calculating rewards, we train the NMT model

with the single selected sample using SGD and a learning rate of 1e-4.

The feature network maps data features of sentence length, sentence-level log-

likelihood, taggings, and n-gram rarity to vectors of size 1, 8, 16, and 32 respectively

with a FC layer, and concatenates them together as a shared state representation.

The actor network is composed of two FC layers with hidden sizes of 300 and 400.

The critic network is designed the same as the actor network except that the output

action from actor network is concatenated to the second layer. Relu is used as the

activation function in each FC layer in this network.

In experiments, we conduct two rounds of RL agent training and data selection.

In each round, the RL agent is trained for 20k steps and the best model with the

highest sum of rewards during the last 1,000 steps is used for data selection. The

RL agent keeps selecting data given randomly sampled batches from the training set

DT and feed the selected data to the NMT model until no performance improvement

is observed. For the training process on selected data, we keep the NMT model’s

optimizer and learning rate setting unchanged.

We use different batch sizes of the sampled batch b for the two rounds of training

and selection with b1 = 16 and b2 = 128 indicating in the first round we select 1

sample from 16 and in the second round, from 128 samples we select the best one.

This is because we think in order to achieve improvement further on the basis of the

first round, a stricter data selection criterion must be applied.

3.5.3 Baselines

To make comparisons with other existing curriculum methods, we have conducted

several baseline experiments.

We take the core ideas of existing curriculum learning methods of training on data

samples with gradually increasing difficulty [22] and gradually decreasing noise [23]

and apply them to our setting with pre-trained models. We evaluate the following
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three baseline methods along with our proposed method.

• Denoising is a curriculum learning method of training an NMT model in a

noise-annealing fashion [23]. They propose to measure NMT data noise with

the help of a trusted dataset which contains generally cleaner data compared

to the training dataset. [32] also utilize data noise in their curriculum design

and achieve similar performance as [23]. For the choice of the trusted dataset,

we choose a subset of 500 sentences from the validation set newsdev2017 of

CASICTB, CASIA2015 and NEU.

• Sentence Length is an intuitive difficulty measure used in [22], since longer

sentences tend to contain more information and more complicated sentence

structure.

• Word Rarity is another metric for measuring the sample difficulty, as rare

words appear less frequently in the training process and should be presented

to the learning system more. The formula for calculating the word rarity of a

sentence can be found in [22].

For baseline experiments, the pre-trained NMT model is further trained on 20%

of the original data, which are selected by the above criteria, i.e., the least noisy, the

longest, and the highest word rarity, respectively.

3.5.4 Main Results

Table 3.3 compares the performance of our method with other baseline methods on

different datasets evaluated using BLEU. The result shows that our proposed method

significantly out-performs other baseline methods by a great margin. We conduct two

rounds of training and update in our experiments. While the result of the first round

surpasses almost all the baseline methods, our second round further improves the

performance and achieves a final BLEU improvement of +0.90, +0.60, +0.59, and
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Table 3.3: Performance comparison of our proposed method with other baseline methods
using BLEU on different datasets.

Method MTD CASICTB CASIA2015 NEU

Base 18.21 (+0.00) 13.43 (+0.00) 18.65 (+0.00) 20.06 (+0.00)

Sentence Length 18.34 (+0.13) 13.52 (+0.09) 18.75 (+0.10) 20.21 (+0.15)

Word Rarity 18.35 (+0.14) 13.49 (+0.06) 18.72 (+0.07) 20.17 (+0.11)

Denoising 18.42 (+0.21) 13.55 (+0.12) 18.86 (+0.21) 20.44 (+0.38)

Ours-1 Round 18.81 (+0.60) 13.60 (+0.17) 18.91 (+0.26) 20.38 (+0.32)

Ours-2 Rounds 19.11 (+0.90) 14.03 (+0.60) 19.24 (+0.59) 20.79 (+0.73)

+0.71 on MTD, CASICTB, CASIA2015, and NEU respectively over the pre-trained

model.

The reason of our success is due to our utilization of an RL framework to proac-

tively select data samples that are potentially beneficial to the training of the NMT

model. First, we formulate the task of curriculum learning on pre-trained NMT mod-

els as a reinforcement learning problem. Second, we construct an effective design

of state, action and reward. Our state representation includes features of different

dimensions of informativeness, uncertainty and diversity. Third, we propose a De-

terministic Actor-Critic framework that learns a policy to select the best samples

from the training set to improve the pre-trained model. By incorporating all these

designs together, our proposed framework is able to achieve a significant performance

enhancement on the pre-trained NMT model.

3.5.5 Analysis

We evaluate the impact of different modules and methods by ablation test on MTD

dataset. Table 6.4 list the performance of our model variants with different features

included.

We incrementally accommodate different features of examples to the state by

first starting from sentence length and sentence-level log-likelihood as they are both
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Table 3.4: Ablation analysis on
different features of our proposed
framework on MTD.

Method MTD

Base 18.21 (+0.00)

Senlen + Logp 18.47 (+0.26)

+ N-gram 18.63 (+0.42)

+ Tagging 18.81 (+0.60)

+ 2nd Round 19.11 (+0.90)

scalars. The performance increased slightly by 0.26 BLEU compared with the pre-

trained base model. Then we further accommodate n-gram rarity and POS and NER

taggings to the state vectors, and observe a larger increase of performance of 0.42

and 0.60 respectively. Finally, we incorporate the second round of RL agent training

and data selection on the basis of the result of first round, and achieve the best per-

formance with a 0.90 BLEU increase. Note that a stricter selection policy is applied

to the second round (128 choose 1) compared with the first round (16 choose 1).

3.6 Conclusion

In this chapter, we study curriculum learning for NMT from a new perspective, to

re-select a subset of useful samples from the existing dataset to further improve a pre-

trained model, and formulate this task as a reinforcement learning problem. Com-

pared with existing curriculum methods only applicable on train-from-scratch scenar-

ios, our setting saves training time by better utilizing the existing pre-trained models.

Our proposed framework is built based on the deterministic actor-critic algorithm,

and learns a policy to select examples that can improve the model the most. We con-

duct experiments on several zh-en translation datasets and compare our method with

other baseline methods including the easy-to-difficult curriculum and the denoising
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scheme. Through rounds of training and data selection, our method achieves a sig-

nificant performance boost on the pre-trained model, and out-performs all baselines

methods by a great margin.
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Chapter 4

AutoAugment

4.1 Introduction

Data augmentation has proven to be an effective regularization technique that can

improve the generalization of deep neural networks by adding modified copies of exist-

ing samples to increase the volume and diversity of data used to train these networks.

Traditional ways of applying data augmentation in computer vision include using

single augmentation techniques, such as rotation, flipping and cutout [51], adopting

randomly selected augmentations [52], and employing a manually crafted augmenta-

tion policy consisting of a combination of transformations. However, these methods

either do not reach the full potential of data augmentation, or require human expertise

in policy design for specific tasks.

Recently, automated learning of augmentation policies has become popular to sur-

pass the limitation of manual design, achieving remarkable advances in both the

performance and generalization ability on image classification tasks. Different search

algorithms such as reinforcement learning [53], population-based training [54], and

Bayesian Optimization [55] have been investigated to search effective augmentation

policies from data to be used to train target networks. Dynamic augmentation strate-

gies, e.g., PBA [54], AdvAA [56], are also proposed to learn non-stationary policies

that vary during model training.

However, most existing methods focus on learning a single policy that is applied
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Figure 4.1: The effects of different augmentation operations on each class in CIFAR-
10, demonstrated by the test accuracy change in each class after each single augmen-
tation is applied to training WRN-40-2.

to all samples in the dataset equally, without considering variations between samples,

classes or labels, which may lead to sub-optimal solutions. Figure 4.1 demonstrates

the effects of different augmentation operations on different classes of samples in

CIFAR-10, from which we can see that the effectiveness of augmentations is different

on each class. For example, when the operation “Posterize” is applied in training,

the test accuracy of “dog” class increases by 3.8%, whereas the test accuracy of

“cat” drops significantly by 5%. It is possible that a certain augmentation used

in training has completely different impacts on different labels. This observation

implies the limitation of label or sample-invariant dataset-level augmentation policies.

MetaAugment [57] proposes to learn a sample-aware augmentation policy by solving

a sample re-weighting problem. It uses an augmentation policy network to take

an augmentation operation and the corresponding augmented image as inputs, and

outputs a weight to adjust the augmented image loss computed by the task network.
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Despite the benefit of a fine-grained sample-dependent policy, MetaAugment is time-

consuming and couples policy network learning with target model training, which may

not be convenient in some production scenarios that require functional decomposition.

In this chapter, we propose an efficient data augmentation strategy named Label-

Aware AutoAugment (LA3), which produces label-aware augmentation policies to

overcome the limitation of sample-invariant augmentation while still being computa-

tionally efficient as compared to sample-aware or dynamic augmentation strategies.

LA3 achieves competitive performance matching or outperforming a wide range of

existing static and dynamic auto-augment methods, and attains the highest ImageNet

accuracy on ResNet-50 among all existing augmentation methods including dynamic

ones. In the meantime, LA3 is also a simple scheme which separates augmentation

policy search from target network model training, and produces stationary augmen-

tation policies that can easily be applied to enhance deep learning with minimum

perturbation to the original target model training routine.

LA3 adopts a two-staged design, which first explores a search space of combinations

of operations and evaluates the effectiveness of promising augmentation operations

for each class, while in the second stage, forms a composite policy to be used in target

model training.

In the first stage of LA3, a neural predictor is designed to estimate the effective-

ness of operation combinations on each class and is trained online through density

matching as the exploration process iterates. We use Bayesian Optimization with

a predictor-based sampling strategy to guide search into meaningful regions, which

greatly improves the efficiency and reduces search cost.

In the second stage, rather than only selecting top augmentation operations, we in-

troduce a policy construction method based on the minimum-redundancy maximum-

reward (mRMR) principle [58] to enhance the performance of the composite aug-

mentation policy when applied to the target model. This is in contrast to most

prior methods [53, 55], which simply put together best performing augmentations in
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evaluation, ignoring their complementary effects.

Extensive experiments show that using the same set of augmentation operations,

the proposed LA3 achieves excellent performance outperforming other low-cost static

auto-augmentation strategies, including FastAA and DADA, on CIFAR-10 and CIFAR-

100, in terms of the accuracy. On ImageNet, LA3, using stationary policies, achieves

a new state-of-the-art top-1 accuracy of 79.97% on ResNet-50, which outperforms

prior auto-augmentation methods including dynamic strategies such as AdvAA and

MetaAug, while being 2× and 3× more computationally efficient, respectively.

4.2 Related Work

Data augmentation is a popular technique to alleviate overfitting and improve the gen-

eralization of neural network models by enlarging the volume and diversity of training

data. Various data augmentation methods have been designed, such as Cutout [51],

Mixup [59], CutMix [60], etc. Recently, automated augmentation policy search has

become popular, replacing human-crafted policies by learning policies directly from

data. AutoAugment [53] adopts a reinforcement learning framework that alternatively

evaluates a child model and trains an RNN controller to sample child models to find

effective augmentation policies. Although AutoAugment significantly improves the

performance, its search process can take thousands of GPU hours which greatly limits

its usability.

Multiple strategies are proposed to lower the search cost. Fast AutoAugment [55]

proposes a density matching scheme to avoid training and evaluating child models,

and uses Bayesian Optimization as the search algorithm. Weight-sharing AutoAug-

ment [61] adopts weight-sharing settings and harvests rewards by fine-tuning child

models on a shared pre-trained target network. Faster AutoAugment [62] further

reduces the search time by making the search of policies end-to-end differentiable

through gradient approximations and targeting to reduce the distance between the

original and augmented image distributions. Similarly, DADA [63] relaxes the dis-
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crete policy selection to a differentiable optimization problem via Gumbel-Softmax

[64] and introduces an unbiased gradient estimator.

Instead of producing stationary augmentation policies that are consistent during

the target network training, PBA [54] learns a non-stationary augmentation sched-

ule, inspired by population based training [65], by modeling the augmentation policy

search task as a process of hyperparameter schedule learning. AdvAA [56] adopts an

adversarial framework that jointly optimizes target network training and augmenta-

tion search to find harder augmentation policies that produce the maximum training

loss. However, AdvAA must rely on the batch augment trick, where each training

batch is enlarged by multiple times with augmented copies, which significantly in-

creases its computational cost. In general, one concern of these dynamic strategies is

that they intervene the standard model training procedure, causing extra deployment

overhead and may not be applicable in many production environments.

While most previous studies focus on learning augmentation policies for the en-

tire dataset, MetaAugment [57] proposes to learn sample-aware augmentation policies

during model training by formulating the policy search as a sample re-weighting prob-

lem, and constructing a policy network to learn the weights of specific augmented

images by minimizing the validation loss via meta learning. Despite its benefits,

MetaAugment is computationally expensive, requiring three forward and backward

passes of the target network in each iteration. LB-Aug [66] is a concurrent work

that also searches policies dependent on labels, but focuses on a different task un-

der multi-label scenarios, where each sample has multiple labels rather than a single

classification label. LB-Aug uses an actor-critic reinforcement learning framework

and policy gradient approach for policy learning. Despite the benefits from label-

based policies, LB-Aug has potential stability issues due to the use of reinforcement

learning, which is generally harder and computational costly to train. In fact, the

search cost of LB-Aug is not reported. In contrast, LA3 targets the classical single-

label image classification tasks, e.g., on CIFAR-10/100 and ImageNet benchmarks, on
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which most other auto-augmentation methods are evaluated. It adopts Bayesian Op-

timization coupled with a neural predictor to sample and search for label-dependent

augmentation policies efficiently. In addition, a policy construction stage is proposed

to further form a more effective composite policy for target network training.

4.3 Methodology

In this section, we first review the task of conventional augmentation search and in-

troduce the formulation of the proposed label-aware augmentation search task. Then

we describe the two-stage design of LA3, and present the algorithm in detail.

4.3.1 Conventional Augmentation Search

Given an image recognition task with a training dataset Dtr = {(xi, yi}|D
tr|

i=1 , with

xi and yi representing the image and label respectively, augmented samples T (xi)

are derived by applying augmentation policy T to sample xi. Usually, the policy

T is composed of multiple sub-policies τ , and each sub-policy is made up by K

augmentation operations O, optionally with their corresponding probabilities and

magnitudes, which are adopted in the original design of AutoAugment [53], but not

included in some of the recent methods such as Weight-sharing AutoAugment [61]

and MetaAugment [57].

Conventional augmentation search methods focus on the task whose goal is to

construct the optimal policy T ∗ from given augmentations so that the performance

R of the task network θT on the validation dataset Dval is maximized:

T ∗ = argmax
T

R(θT |Dval),

where θT = argmin
θT

1

|Dtr|

|Dtr|∑︂
i=1

Lθ(T (xi), yi),
(4.1)

and Lθ is the loss function of target network θ.
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Figure 4.2: An overview of the proposed LA3 method. It contains two stages, where
in the first stage, augmentation triples are individually evaluated for each label via
Bayesian Optimization with the help of an label-aware neural predictor. In the second
stage, the best combination of complementary augmentation triples is selected based
on the minimum-redundancy maximum-reward principle.

4.3.2 Label-Aware Augmentation Search

Though learning a dataset-level policy achieves considerable improvements, it is un-

likely the optimal solution due to the lack of consideration of sample variations and

utilization of label information.

In this chapter, we aim to learn a label-aware data augmentation policy T ∗ =

{T ∗
y0
, · · · , T ∗

yn}, where for samples of each label yj, an individual policy Tyj is learned
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by maximizing the label-specific performance Ryj of label yj:

T ∗
yj
= argmax

Tyj
Ryj(θT |Dval),

where θT = argmin
θT

1

|Dtr|

|Dtr|∑︂
i=1

Lθ(Tyi(xi), yi).

(4.2)

Similar to conventional augmentation, in our label-aware setting, we define that

each policy for a label is composed of multiple augmentation triples, each consisting

of three augmentation operations. The magnitude of each augmentation operation is

chosen randomly from ranges defined in AutoAugment [53], and is excluded from the

search space in order to introduce randomness and diversity into the policy, and allo-

cate more computational resources to assessing the fitness of operations to different

classes of samples.

In this chapter, we propose a label-aware augmentation policy search algorithm

called LA3, composed of two stages as presented in Figure 5.1. The first augmenta-

tion exploration stage aims to search for effective augmentation triples with density

matching, and train a neural predictor to provide evaluations on all seen and unseen

augmentation triples in the search space. And the goal of the second policy construc-

tion stage is to build a composite policy for each label based on the evaluation results

from stage 1 by selecting a subset of complementary augmentation triples based on

the minimum-redundancy maximum-reward principle.

4.3.3 Stage 1: Augmentation Exploration

Density Matching is an efficient mechanism originally proposed by Fast AutoAug-

ment [55] to simplify the search process for effective augmentations, since the problem

defined by Equation (4.1) and Equation (4.2) is a bi-level optimization problem, and is

extremely hard to solve directly. It calculates the reward of each augmentation triple

without the need of repeatedly training the target network. Specifically, given a model

θ pre-trained on the training set Dtr and a validation set Dval, the performance of

a certain augmentation triple τ can be evaluated by approximately measuring the
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distance between the density of Dtr and density of augmented validation set τ(Dval)

with the model performance R(θ|τ(Dval)). And the reward r is measured by the

performance difference caused by applying the augmentation triple τ :

rτ = R(θ|τ(Dval))−R(θ|Dval). (4.3)

Similarly, in our label-aware setting, the reward r for a certain augmentation triple

τy at label y is given by

rτ,y = Ry(θ|τy(Dval))−Ry(θ|Dval). (4.4)

Bayesian Optimization with a Neural Predictor is a widely adopted frame-

work in many applications such as neural architecture search [67, 68] to find the

optimal solution within a search space. In standard BO setting, over a sequence of

iterations, the results from previous iterations are used to model a posterior distri-

bution to guide the candidate selection of next iteration. And a neural predictor is

a neural network that is repeatedly trained on the history evaluated candidates, and

provides evaluations on unseen candidates, which increases the utilization efficiency

of history evaluations and notably accelerates the search process.

In our LA3 algorithm, we incorporate a label-aware neural predictor f(r|τ, y) which

takes in an augmentation triple τ and the label y it is evaluated on, and predicts the

reward r. In each iteration, the sampled augmentation triples for different labels

are evaluated according to Equation (4.4), and together with the previous evaluated

augmentation triples, are passed to train a new predictor.

Next, we select 100 candidate augmentation triples at the balance of exploration

and exploitation, based on the following selection procedure: 1) Generate 10 new can-

didates by randomly mutating 1 or 2 operations in the chosen augmentation triples of

the previous iteration; 2) Randomly sample 50 candidates from all unexplored aug-

mentation triples; 3) Sample 40 candidates from the explored augmentation triples

according to their real reward values. Then, for each label y, we choose the augmen-

tation triple τ with the highest predicted reward r̃τ,y for evaluation.
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Algorithm 2: Stage 1: Augmentation Exploration

Input: Pre-trained target network θ, warm up iterations T0, total iterations
T

Output: Well-trained predictor fT (r|τ, y)
/* warm-up phase */

1 for t = 0, · · · , T0 do
2 randomly generate augmentation triples {τ ty0 , · · · , τ

t
yn} for all labels

{y0, · · · , yn}
3 obtain rewards {rtτ,y0 , · · · , r

t
τ,yn} by Equation (4.4)

/* search phase */

4 for t = T0, · · · , T do
5 train f t(r|τ, y) with data collected from previous t iterations {(τ, y, rτ,y)}t
6 for yi = y0, · · · , yn do
7 generate 100 candidate augmentation triples by exploration and

exploitation
8 obtain predicted rewards r̃τ,yi = f t(τ, yi) for 100 candidates
9 τ tyi = argmaxτ (r̃τ,yi)

10 obtain real rewards {rtτ,y0 , · · · , r
t
τ,yn} for {τ

t
y0
, · · · , τ tyn} by Equation (4.4)

11 train predictor fT (r|τ, y) with all collected data {(τ, y, rτ,y)}T

Overall workflow of the first stage is summarized in Algorithm 2. To begin with,

a warm-up phase of T0 iterations is incorporated to randomly explore the search

space, and retrieve the initial training data for learning a label-aware neural predic-

tor f(r|τ, y). Then, for the following T − T0 iterations, the search phase is adopted.

In each iteration, we first train a neural predictor from scratch with data collected

from previous iterations. Then, for each label, we apply the fore-mentioned selection

procedure to select a set of candidate augmentation triples, and use the trained pre-

dictor to choose the augmentation triple for evaluation. After enough training data

is collected, a well-trained label-aware neural predictor can be derived to provide

accurate evaluations on all augmentation triples for different labels.

4.3.4 Stage 2: Policy Construction

Policy construction is a process of mapping the evaluation results of stage 1 to the final

augmentation policy for training target networks. It is needed because augmentation
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Algorithm 3: Stage 2: Policy Construction

Input: Well-trained predictor fT (r|τ, y), search space A, number of
candidates Ncand

Output: Label-aware policy T ∗

1 for yi = y0, · · · , yn do
2 for τ ∈ A do
3 predict the reward r̃τ,yi = fT (τ, yi)

4 initialize label-specific policy Tyi ← ∅
5 for k = 0, · · · , Ncand do
6 for τ ∈ (A \ Tyi) do
7 calculate v(τ, yi) using Equation (4.5)

8 find augmentation triple with highest score τ k = argmaxτ (v(τ, yi))
9 Tyi ← Tyi ∪ τ k

10 T ∗ = {Ty0 , · · · , Tyn}

policies are usually searched on light-weight proxy tasks such as density matching, but

are evaluated on the complete tasks of image classification. Even for methods that

search on complete tasks such as AutoAugment [53], they still naively concatenate

multiple searched policies into a final policy. However, the policies for concatenation

usually share a great potion of overlapped transformations, resulting in a high degree

of redundancy.

In this chapter, we propose an effective policy construction method to iteratively

select candidate augmentation triples for the final policy, based on the mutual infor-

mation criteria of minimum-redundancy maximum-relevance (mRMR) [58]. Specifi-

cally, in LA3, the relevance metric is defined as the predicted reward r̃ as it provides

a direct evaluation on the performance of a certain augmentation triple. And the re-

dundancy of an augmentation triple τ is defined as the average number of intersecting

operations between it and the already selected augmentation triples Ts. Formally, in

each iteration of policy construction, we define the score v(τ, y) of each unselected

augmentation triple τ at label y as

v(τ, y) = r̃τ,y − α× r × 1

|Ts|
∑︂
τs∈Ts

|τ ∩ τs|, (4.5)

40



where |τ ∩ τs| refers to the number of overlapped operations between τ and τs, r is

the average predicted reward of all augmentation triples in search space and is used

to scale the redundancy, and α is a hyper-parameter adjusting the weight between

the reward value and the redundancy value.

Algorithm 3 illustrates the overall process of the policy construction stage where

the goal is to find a label-aware policy containing a collection of augmentation triples

that maximizes the rewards while keeping a low degree of redundancy. Specifically, for

each label yi, we retrieve the predicted reward r̃τ,yi for each augmentation triple τ in

the search space A. Afterwards, a label-specific policy Tyi is constructed iteratively by

calculating the score v(τ, yi) of unselected augmentation triples with Equation (4.5)

and add the augmentation triple with the highest score to the policy until the required

number of candidates Ncand is met. Eventually, the label-aware policy T ∗ is built with

each label yi corresponding to a label-specific policy Tyi .

4.4 Experiments

In this section, we first describe the details of our experiment settings. Then we

evaluate the proposed method, and compare it with previous methods in terms of

both performance and search cost. Finally, we perform thorough analysis on the

design of different modules in our algorithm. Code and searched policies are released

at https://github.com/Simpleple/LA3-Label-Aware-AutoAugment.

4.4.1 Datasets, Metrics and Baselines

Following previous work, we evaluate our LA3 method on CIFAR-10/100 [69] and Im-

ageNet [70], across different networks including ResNet [71], WideResnet [72], Shake-

Shake [73] and PyramidNet [74]. Test accuracy is reported to assess the effectiveness

of the discovered policies, while the cost is assessed by the number of GPU hours

measured on Nvidia V100 GPUs. For a fair comparison, we list results of stationary

policies produced by static strategies, AutoAugment [53], FastAA [55], and DADA

41

https://github.com/Simpleple/LA3-Label-Aware-AutoAugment


[63]. We also include results from dynamic strategies, PBA [54], AdvAA [56], and

MetaAug [57], producing non-stationary policies as target model training progresses.

4.4.2 Implementation Details

Policy Composition. For a fair comparison, we use the same 15 augmentation op-

erations as PBA and DADA do, which is also the same set used by AA and FastAA

with SamplePairing [75] excluded. Additionally, “Identity” operation that returns

the original image is introduced in our search space to prevent images from being

excessively transformed. Each label-specific policy consists of Ncand = 100 augmenta-

tion triples, while in evaluation, each sample is augmented by an augmentation triple

randomly selected from the policy with random magnitudes.

Neural Predictor. The network structure of the neural predictor is composed

of two embedding layers of size 100 that map labels and augmentation operations to

latent vectors and three fully-connected layers of hidden size 100 with Relu activation

function. The representation of an augmentation triple is constructed by combining

the three augmentation operation embedding vectors with mean-pooling and concate-

nating it with the label embedding vector. Then it is passed into the FC layers to

derive the predicted reward. The predictor network is trained for 100 epochs with

Adam optimizer [76] and a learning rate of 0.01.

Search Details. For CIFAR-10/100, we split the original training set of 50, 000

samples into a training set Dtr of size 46, 000 to pre-train the model θ, and a valid

set Dval of 4, 000 for density matching. We search our policy on WRN-40-2 network

and apply the found policy to other networks for evaluation. For ImageNet, we

randomly sample 50 examples per class from the original training set, and collect

50, 000 examples in total to form the valid set, where the remaining examples are

used as the training set. In the augmentation exploration stage, the total number

of iterations is set to T = 500, and the warm-up iterations is set to T0 = 100.

In the policy construction stage, α = 2.5 is used to calculate the reward values of
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Table 4.1: Top-1 test accuracy (%) on CIFAR-10 and CIFAR-100. We mainly com-
pare our method LA3 with methods that also produce stationary augmentation poli-
cies, including AA, FastAA and DADA. Results of dynamic policies (PBA, AdvAA
and MetaAug) are also provided for reference.

Dataset Model
Baseline AA FastAA DADA LA3 PBA AdvAA MetaAug

static static static static dynamic dynamic dynamic

CIFAR-10 WRN-40-2 94.7 96.3 96.4 96.4 97.08± 0.08 − − 96.79

WRN-28-10 96.1 97.4 97.3 97.3 97.80± 0.15 97.42 98.10 97.76

Shake-Shake (26 2x96d) 97.1 98.0 98.0 98.0 98.07± 0.11 97.97 98.15 98.29

Shake-Shake (26 2x112d) 97.2 98.1 98.1 98.0 98.12± 0.08 97.97 98.22 98.28

PyramidNet+ShakeDrop 97.3 98.5 98.3 98.3 98.55± 0.02 98.54 98.64 98.57

CIFAR-100 WRN-40-2 74.0 79.3 79.4 79.1 81.09± 0.28 − − 80.60

WRN-28-10 81.2 82.9 82.8 82.5 84.54± 0.03 83.27 84.51 83.79

Shake-Shake (26 2x96d) 82.9 85.7 85.4 84.7 85.17± 0.13 84.69 85.90 85.97

PyramidNet+ShakeDrop 86.0 89.3 88.3 88.8 89.02± 0.03 89.06 89.58 89.46

augmentation triples.

Evaluation. The evaluation is performed by training target networks with the

searched policies, and the results are reported as the mean test accuracy and standard

deviation over three runs with different random seeds. We do not specifically tune

the training hyperparameters and use settings consistent with prior work. We include

the details in the supplementary materials.

4.4.3 Experimental Results

CIFAR-10/100. Table 4.1 summarizes the CIFAR-10 and CIFAR-100 results of

different auto-augmentation methods on a wide range of networks. Among all static

methods that produce stationary policies, LA3 achieves the best performance for all

5 target networks on CIFAR-10 and for 2 out of 4 target networks on CIFAR-100.

When extending the comparison to also include dynamic strategies, LA3 still achieves

the best CIFAR-10 and CIFAR-100 accuracies on WRN-40-2, which is the original

network on which policy search was performed. When transferring these augmenta-

tion policies found on WRN-40-2 to other target network models for evaluation, LA3

also achieves excellent performance comparable to the current best methods. In par-
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Table 4.2: ResNet-50 top-1 test accuracy (%) and computational cost on ImageNet.
Batch Augment (BA) trick is used in the training of LA3 (BA), AdvAA (BA) and
MetaAug (BA). The number of transformations used in batch augment is also given
in the table.

Baseline AA FastAA DADA LA3 LA3 (BA) AdvAA (BA) MetaAug (BA)

static static static static static dynamic dynamic

Batch Augment (BA) n/a n/a n/a n/a n/a ×4 ×8 ×4

ResNet-50 Acc (%) 76.3 77.6 77.6 77.5 78.71± 0.07 79.97± 0.07 79.40 79.74

Search Cost (h) − 15, 000 450 1.3 29.3 29.3 − −

Train Cost (h) 160 160 160 160 160 640 1, 280 1, 920

Total Cost (h) 160 15, 160 610 161.3 189.3 669.3 1, 280 1, 920

ticular, LA3 achieves the highest score for WRN-28-10 on CIFAR-100. These results

evidently proves the effectiveness of LA3 as an augmentation strategy to improve

model performance, and demonstrates the strong transferability of our label-aware

policies across different neural networks.

ImageNet Performance. In Table 4.2, we list the top-1 accuracy of different

methods evaluated on ResNet-50, as well as their computational cost. For a fair

comparison, we also indicate whether the Batch Augment (BA) trick [56], which forms

a large batch with multiple copies of transformed samples, is used for each method,

with “(BA)” after the method name. We also indicate the number of transformations

used in the batch augment. Note that the search cost for dynamic methods is included

in the training cost, since they learn a dynamic augmentation policy during the

training of the target model. We include the results for LA3 both with and without

batch augment.

From Table 4.2 we can observe that among all methods without the batch augment

trick, LA3 achieves the best ImageNet top-1 accuracy of 78.71%, while the search

only took 29.3 GPU hours, which is 15 times faster than FastAA. Although DADA

is faster, LA3 is substantially better in terms of the ImageNet accuracy achieved.

Meanwhile, LA3 (BA) achieves a new state-of-the-art ImageNet accuracy of 79.97%

surpassing all existing auto-augmentation strategies including dynamic strategies Ad-
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(b) CIFAR-100 policy
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(c) ImageNet policy

Figure 4.3: The proportion of different augmentation operations in policies for dif-
ferent labels in LA3 searched label-aware policies on CIFAR-10, CIFAR-100 and
ImageNet.

vAA and MetaAug, with a total computational cost 2 times and 3 times lower than

theirs, respectively. The high cost of these dynamic policies is due to the fact that

augmentation policies may vary for each sample or batch and must be learnt together

with model training. By generating static policies, LA3 is a simpler solution that de-

couples policy search from model training and evaluation, which is easier to deploy in

a production environment, without introducing specialized structures, e.g., the policy

networks in AdvAA and MetaAug, into target model training.

4.4.4 Ablation Study and Analysis

The reason of the success can be attributed to the following designs in our LA3

algorithm.

Label-Awareness. One of the main contributions of the paper is to leverage

the label information and separately learn policies for samples of different classes,

which captures distinct characteristics of data and produces more effective label-aware

policies. The results of LA3 variant without label-awareness (i.e., searching for label-

invariant policies) are shown in the first row of Table 4.3, which are constantly lower

than LA3 in all experimental settings. This confirms that label-aware augmentation

policies are effective at improving target network accuracy.

Figure 4.3 gives an overview of the searched label-aware policies on CIFAR-10,

CIFAR-100 and ImageNet, where we calculate the occurrences of different operations
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Table 4.3: Ablation analysis results in top-1 test accuracy (%) on CIFAR-10 and
CIFAR-100 with different designs removed from the full LA3 method.

CIFAR-10 CIFAR-100

WRN-40-2 WRN-28-10 WRN-40-2 WRN-28-10

w/o Label-aware 96.70 97.11 80.08 82.76

w/o Stage 2 (top-100) 96.53 97.49 78.57 82.76

w/o Stage 2 (top-500) 96.70 97.26 79.85 84.04

LA3 97.08 97.80 81.09 84.54

in each label-specific policy and plot their proportions in different colors. We can

see that the derived policies possess a high diversity by having all the operations

contributing to the final policy, meanwhile making the individual policies notably dif-

ferent among labels. This observation further proves the need for separately treating

samples of different labels in augmentation policy search.

Neural Predictor. In addition to using density matching to simplify augmen-

tation assessment during search, we have adopted a label-aware neural predictor to

learn the mapping from an augmentation triple to its label-specific reward. We now

conduct a thorough evaluation to assess the performance of the neural predictor. For

each search iteration, the predictor is trained on 80% of the history data and tested on

the remaining 20% data in terms of both the Spearman’s Rank Correlation and Mean

Absolute Error (MAE). As shown in Figure 4.4, as the policy search on ImageNet

progresses and more samples are explored, the predictor can produce more accurate

predictions of rewards, obtaining a 0.78 Spearman Correlation and a decreased MAE

when the search ends. This allows the predictor to properly guide the search process

and find effective policies.

Furthermore, the use of the predictor better utilizes the search history and improves

the sample efficiency during searching. As a result, the search cost of our method is

significantly reduced and is 15 times lower than FastAA.
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Figure 4.4: The evaluation of the predictor during the policy search on ImageNet
given by the Spearman’s Rank Correlation and Mean Absolute Error over search
iterations.

Policy Construction. We evaluate the impact of our two-stage design on CIFAR-

10 and CIFAR-100 datasets, by showing the performance of model variants with

different policy construction methods in row 2 and 3 of Table 4.3.

We compare our policy construction method based on mRMR to the commonly

used Top-k selection method adopted in AA [53], FastAA [55] and DADA [63]. We

use two different k value settings of k = 100 equaling the number of candidates used

in LA3, and k = 500 following the FastAA setting. We can see that the policy that

includes 500 augmentation triples per label with top predicted rewards yields a better

performance than the policy with top 100 augmentation triples on both CIFAR-10

and CIFAR-100. This can be attributed to the better diversity as more possibilities

of augmentations are contained. However, increasing the k value is not the best

solution to improve augmentation diversity as the augmentation triples with high

rewards tend to have similar compositions and may result in a high redundancy in

the final policy. Our LA3 incorporates a policy construction method that selects high-

reward augmentation triples, and at the same time, keeping the lowest redundancy of

the final policy. With the two-stage design, our LA3 method beats the top-k variants

and produces significant improvements in all settings.

47



Limitation. Unlike dataset-level augmentation policies that can be learned from

one dataset and transferred to other datasets [53, 54, 56], LA3 learns label-aware

policies where labels are specific to a dataset, and hence lacks the transferability

across datasets, although LA3 demonstrates transferability across networks as shown

in Table 4.1. However, when dealing with a large dataset, LA3 can work on a reduced

version of the dataset to search for label-dependent policies efficiently, and requires

no tuning on training recipes when applying the found policy to the entire dataset.

4.5 Conclusion

In this chapter, we propose a label-aware data augmentation search algorithm where

label-specific policies are learned based on a two-stage algorithm, including an aug-

mentation exploration stage based on Bayesian Optimization and neural predictors

as well as a composite policy construction stage. Compared with existing static and

dynamic augmentation algorithms, LA3 is computationally efficient and produces

stationary policies that can be easily deployed to improve deep learning performance.

LA3 achieves the state-of-the-art ImageNet accuracy of 79.97% on ResNet-50 among

all auto-augmentation methods, at a substantially lower search cost than AdvAA and

MetaAugment.
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Part II

Automated Input Dimension
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Chapter 5

Video Frame Selection

5.1 Introduction

Videos have proliferated online in recent years with the popularity of social media,

and have become a major form of content consumption on the Internet. The abundant

video data has greatly encouraged the development of deep learning techniques for

video content understanding. As one of the most important tasks, action recognition

aims to identify relevant actions described in videos, and plays a vital role to other

downstream tasks like video retrieval and recommendation.

Due to the high computational cost of processing frames in a video, common prac-

tices of action recognition involve sampling a subset of frames or clips uniformly [77]

or densely [78, 79] from a given video a serve as the input to a content understanding

model. However, since frames in a video may contain redundant information and

are not equally important, simple sampling methods are often incapable of capturing

such knowledge and hence can lead to sub-optimal action recognition results.

Prior studies attempt to actively select relevant video frames to overcome the lim-

itation of straightforward sampling, achieving improvements to model performance.

Heuristic methods are proposed to rank and select frames according to the impor-

tance score of each frame/clip calculated by per-frame prediction [80, 81]. Despite

the effectiveness, these methods heavily rely on per-frame features, without consider-

ing the interaction or diversity among selected frames. Reinforcement learning (RL)
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has also been proposed to identify informative frames by formulating frame selection

as a Markov decision process (MDP) [82–86]. However, existing RL-based methods

may suffer from training stability issues and rely on a massive amount of training

samples. Moreover, RL methods make an MDP assumption that frames are selected

sequentially depending on observations of already selected frames, and thus cannot

adjust prior selections based on new observations.

In this work, we propose a new learning paradigm named Search-Map-Search

(SMS), which directly searches for the best combination of frames from a video as

one entity. SMS formulates the problem of frame selection from the perspective of

heuristic search in a large space of video frame combinations, which is further coupled

with a learnable mapping function to generalize to new videos and achieve efficient

inference.

Specifically, we propose a hierarchical search algorithm to efficiently find the most

favorable frame combinations on training videos, which are then used as explicit super-

vision information to train a feature mapping function that maps the feature vectors

of an input video to the feature vector of the desirable optimal frame combination.

During inference on an unseen query video, the learned mapping function projects

the query video onto a target feature vector for the desired frame combination, where

another search process retrieves the actual frame combination that approximates the

target feature vector. By combining search with learning, the proposed SMS method

can better capture frame interactions while incurring a low inference cost.

The effectiveness of SMS is extensively evaluated on both the long untrimmed

action recognition benchmarks, i.e., ActivityNet [87] and FCVID [88], and the short

trimmed UCF101 task [89]. Experimental results show that SMS can significantly im-

prove action recognition models and precisely recognize and produce effective frame

selections. Furthermore, SMS significantly outperforms a range of other existing

frame selection methods for the same number of frames selected, while can still gen-

erate performance higher than existing methods using only 10% of all labeled video
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samples for training.

5.2 Related Work

Action Recognition. 2D ConvNets have been widely utilized for action recogni-

tion, where per-frame features are first extracted and later aggregated with different

methods such as temporal averaging [77], recurrent networks [79, 90, 91], and tempo-

ral channel shift [92–94]. Some studies leveraged both the short-term and long-term

temporal relationships by two-stream architectures [95, 96]. To jointly capture the

spatio-temporal information of videos, 3D ConvNets were proposed, including C3D

[97], I3D [98] and X3D [99]. Transformer architecture [21] have also been applied

to video understanding by modeling the spatio-temporal information with attention

[100, 101].

In this chapter, we follow the previous frame selection work and apply our method

mainly on the temporal averaging 2D ConvNets.

Frame Selection. The problem of selecting important frames within a video has

been investigated in order to improve the performance and reduce the computational

cost.

Many researchers focused on selecting frames based on the per-frame heuristic

score. SCSampler [80] proposed to select frames based on the predicted scores of

a lightweight video model as the usefulness of frames. SMART [81] incorporated

an attention module that takes randomly selected frame pairs as input to model

the relationship between frames. However, these methods select frames individu-

ally regardless of interactions between selected frames, which may lead to redundant

selections.

Reinforcement learning (RL) approaches are widely adopted in frame selection to

find the effective frames in a trail-and-error setting. FastForward [85] and AdaFrame

[82] adopted a single RL agent to generate a decision on the next frame, and updated

the network with policy gradient. MARL [83] formulated the frame sampling process
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as multiple parallel Markov Decision Processes, and adopted multiple RL agents each

responsible for determining a frame.Although the RL-based approaches are effective,

the training stability issue and the requirement of huge amount of training samples

with high computational overhead remain a problem.

Recent studies combined frame selection with other techniques to improve the

model efficiency. LiteEval [102] adopted a two-level feature extraction procedure,

where fine expensive features were extracted for important frames, and coarse frames

were used for the remaining frames. ListenToLook [103] proposed to use audio in-

formation as an efficient video preview for frame selection. AR-Net [104] aimed at

selecting the optimal resolution for each frame that is needed to correctly recognize

the actions, and learns a differentiable policy using Gumbel Softmax trick [64].

Our work focuses on the classic task of selecting a subset of frames based on visual

information. Different from existing methods, our work incorporates a new “Search-

Map-Search” paradigm that leverages efficient search and supervised feature mapping

to explicitly find the best frame combinations, and achieves excellent performance

outperforming other frame selection methods.

5.3 Methodology

5.3.1 Overall Architecture

Figure 5.1 gives an overview of our proposed framework, which consists of three

stages: a search stage, a feature mapping stage, and another search stage. The

training process of our method involves the first two stages, while the inference process

involves the last two.

Specifically, the goal of the first search stage is to find the best frame combina-

tions in training videos with the lowest model losses, which serve as the supervisory

target information for the feature mapping stage. We design an efficient hierarchi-

cal algorithm coupled with Guided Local Search [105] to identify the effective frame
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Figure 5.1: An overview of the proposed “Search-Map-Search” method. It contains
three stages, where in the first stage, an efficient hierarchical search algorithm is used
to derive the best frame combinations with lowest losses, which are utilized as the
supervised information to train a feature mapping function in the second stage. In
the third stage, for a query video, we incorporate another search process to infer the
frame combination whose features are closest to the combination feature predicted
with the trained feature mapping function.

combinations at a low search cost.

In the second stage, a feature extractor is employed to extract input frame features

from the training video frames, and the feature of the best combination from search

results. Then, a feature mapping function is trained via supervised learning by taking

the input frame features as input, and transforming it to the target feature of the

best combination.

In the third stage, we incorporate another search process to infer the effective frame

combination whose feature is closest to the predicted feature from the well-trained
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feature mapping function.

5.3.2 Stage 1: Search for Best Frame Combinations

Given an action recognition task with a pre-trained model M and a training dataset

Dtr = {X, y}|Dtr|, where X = {xi}mi=1 represents a video sample made up of a col-

lection of m frames, and y is the action label for the video, our goal of stage 1 is to

find the best frame combination X̃
∗
with n frames for each training video X that

minimizes the model loss:

X̃
∗
= argmin

X̃

L
(︁
M(X̃), y

)︁
,

where X̃ = {xk|xk ∈ X}n,
(5.1)

where L is the loss function of the action recognition task. Note that repetitive

selection of the same frame is allowed in our setting, as we believe that repeated

important frames are better than meaningless frames.

In order to efficiently find the best frame combinations, we have designed a hier-

archical search algorithm which exploits the high similarities of adjacent frames by

performing search hierarchically on coarse-grained clips first, and then on the fine-

grained frames. Besides, we incorporate Guided Local Search [105] in our algorithm

to exploit per-frame losses as prior information for a good starting search point,

which further reduces search costs and empirically outperforms other strong search

algorithms such as Genetic Algorithm [106].

The overall workflow of our hierarchical search is summarized in Algorithm 4.

To begin with, the video is first split into coarse-grained clips each consisting of

a collection of non-overlapped frames. Then, we calculate the model loss for each

clip by representing it with the averaged feature vector of all frame inside it, and

utilize the information to create an initial solution composed of the clip with the

lowest model loss repeated n times. On top of the initial searching point, we adapt

Guided Local Search to find the best clip combination by defining a problem-specific

penalty to escape from local optimum points. The details of Guided Local Search
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Algorithm 4: Hierarchical Search

Input: Video X, Clip Length K, Combination Length n
Output: Frame Combination X̃

∗

/* clip search phase */

1 Split the video into clips each consisting of K frames

2 Prepare an initial solution C̃0 containing the clip with the lowest loss
repeated n times

3 Perform Guided Local Search to improve C̃0 and get C̃
∗
= {Ck}nk=1

/* frame search phase */

4 Define search space for each position in combination

SF = {Sk|Sk = {xj|xj ∈ Ck}}nk=1 on top of C̃
∗

5 Randomly initialize solution X̃0 from SF

6 Perform Guided Local Search to improve X̃0 and get X̃
∗
= {xk}nk=1

will be introduced in Appendix. After searching on coarse-grained clips, we again

incorporate Guided Local Search to find the best fine-grained frame combinations

by replacing each derived clip with a frame inside it. Via hierarchical search, we

have greatly reduced the search space and lowered the search cost significantly, while

obtaining satisfying solutions.

5.3.3 Stage 2: Feature Mapping Function

The goal of the second stage is to identify the best frame combination produced in

stage 1, given the input video frames by learning a feature mapping function F .

Specifically, the feature mapping function F takes in the features of input frames

H0 generated by a pre-trained feature extractor θ, and outputs a predicted feature

ĥ ∈ Rd representing a frame combination where d denotes the feature dimension:

ĥ = F(H0)

where H0 = {hi|hi = θ(xi)}mi=1,
(5.2)

where θ is the feature extractor, and hi ∈ Rd is the extracted feature vector for frame

xi.

For the network structure of mapping function F , we choose to incorporate trans-

former layers [21] to construct the spatio-temporal representations of the input frame
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features, and an aggregation function to aggregate the representations of variable

lengths into a predicted feature vector ĥ:

Hl = transformer(Hl−1)

ĥ = aggr(Hl),
(5.3)

where l is the number of transformer layers in the mapping function.

The objective of the mapping function is to minimize the distance between the pre-

dicted feature ĥ and the aggregated feature vector of the searched frame combination

h∗:
min dist(ĥ, h∗)

where h∗ =aggr({hk|hk = θ(xk), xk ∈ X̃
∗}).

(5.4)

In our implementation, we incorporate cosine distance and mean-pooling as the

distance function and aggregation function respectively, while other function choices

can be further explored.

5.3.4 Stage 3: Search to Infer Frame Combinations

After the mapping function is learned, it can accurately predict the features of the

best frame combinations for unseen videos without relying on the ground truth labels.

The goal of this stage is to incorporate another search process to infer the frame

combinations from the predicted features. Formally, the objective of the search is

to find a frame combination X̂ whose aggregated feature h′ is closest to the given

predicted feature ĥ:

X̂ = argmin
X̃

(dist(h′, ĥ))

where h′ = aggr({hk|hk = θ(xk), xk ∈ X̃}).
(5.5)

As the evaluation in the search only involves the calculation of the cosine distance

between vectors, which requires little computation, we directly apply Guided Local

Search on the fine-grained frame level without the hierarchical setting applied in stage

1.
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5.4 Experiments

In this section, we conduct extensive experiments aiming at investigating the following

research questions:

• RQ1: Can the proposed SMS improve model performance over the base frame

sampling method?

• RQ2: How does SMS perform compared to other state-of-the-art frame selec-

tion methods?

• RQ3: What’s the computation efficiency of SMS for video inference?

• RQ4: How do the different components affect the performance of the proposed

SMS?

• RQ5: Can SMS generalize well to spatio-temporal models, e.g., transformer

based video models?

5.4.1 Experimental Setup

Datasets.

We evaluate our SMS method on 3 action recognition benchmarks including Activi-

tyNet V1.3 [87], FCVID [88] and UCF101 [89]. The videos in ActivityNet and FCVID

are untrimmed with average video lengths of 117 and 167 seconds respectively, while

UCF101 dataset contains trimmed short videos with an average length of 7.21 sec-

onds. Table 5.1 summarizes the detailed information of the experimental datasets.

Baselines.

We compare the proposed SMS with the base selection method and the following

state-of-the-art frame selection methods:
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• Base is a sparse sampling method proposed in TSN [77], where videos are

divided into segments of equal length, and frames are randomly sampled within

each segments.

• AdaFrame [82] incorporates reinforcement learning to adaptively select infor-

mative frames with a memory-augmented LSTM. At testing time, AdaFrame

selects different number of frames for each video observed.

• MARL [83] adopts multiple RL agents each responsible for adjusting the po-

sition of a selected frame.

• SCSampler [80] proposes to select frames based on the prediction scores pro-

duced by a lightweight video model.

• SMART [81] combines the single-frame predictive score with pair-wise inter-

action score to make decision on the frame selections.

• LiteEval [102] selects important frames to extract fine features and adopts

coarse features for the remaining frames.

• ListenToLook [103] proposes to use audio information as video preview for

frame selection. For a fair comparison, we follow AR-Net [104] and include the

variant with only the visual modality.

• AR-Net [104] aims to select the optimal resolutions for frames that are needed

to correctly recognize the actions.

Evaluation metrics.

Following previous studies, we evaluate the performance of models using mean Av-

erage Precision (mAR), which is a commonly adopted metric in action recognition

tasks, calculated as the mean value of the average precision over all action classes.
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Dataset Train Val Actions Avg. Duration

ActivityNet 10, 024 4, 926 200 117s

FCVID 45, 611 45, 612 239 167s

UCF101 9, 537 3, 783 101 7.21s

Table 5.1: Description of evaluation datasets.

ActivityNet FCVID UCF101

# Frames 8 16 25 8 16 25 3 8

Base1 77.34± 0.06 79.41± 0.05 80.04± 0.24 83.84± 0.05 85.34± 0.03 85.65± 0.04 90.65± 0.13 90.70± 0.10

SMS (infer only) 82.76± 0.15 83.78± 0.08 83.85± 0.17 86.35± 0.03 86.94± 0.06 87.08± 0.04 91.45± 0.12 91.58± 0.09

SMS (train & infer) 83.72± 0.05 84.35± 0.08 84.56± 0.08 86.54± 0.06 87.25± 0.11 87.59± 0.01 91.94± 0.15 92.25± 0.10

Table 5.2: Performance comparison of the proposed SMS and the base method. In
SMS (infer only), frames are selected with our method only during inference. In SMS
(train & infer), frames are selected with SMS during both training and inference.

Implementation details.

In the first stage of hierarchical searching, the clip length K is set to 30. For the

feature mapping network, we adopt a two-layer transformer network with a hidden

dimension of 2, 048. The feature extraction network used in our implementation is a

ResNet-50 network [71] pre-trained on the Kinetics dataset [98].

For the data pre-processing for action recognition tasks, we decode the video at 1

fps for long videos in ActivityNet and FCVID and 55 fps for short videos in UCF101

to retrieve the rgb frames, which are augmented during training by resizing the short

side to 256, random cropped and resized to 2242, after which a random flip with a

probability of 0.5 is applied. For inference, we resize all frames to 2562 and perform

three-crop.

For the training of action recognition models, we choose ResNet-50 as the backbone

and run 100 epochs using an SGD optimizer with a momentum of 0.9, and a step

learning rate schedule which decays the learning rate by a factor of 10 every 40
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Method Backbone
ActivityNet FCVID

# Frames mAP impr. # Frames mAP impr.

SCSampler ResNet-50 10 72.9 0.4 10 81.0 0.0

AdaFrame ResNet-101 8.65 71.5 3.7 8.21 80.2 1.8

MARL ResNet-101 8 72.9 0.4 - - -

SMART ResNet-101 10 73.1 - 10 82.1 -

SMART* ResNet-50 8 80.67 3.33 8 83.35 −0.49

SMS 10% ResNet-50 8 82.12 4.78 8 85.69 1.85

SMS ResNet-50 8 83.72 6.38 8 86.54 2.70

Table 5.3: Performance comparison of the proposed SMS and other state-of-the-art
frame selection methods. We show both their performance and the their reported im-
provements over the base sampling method, due to the inconsistent base performance
among different methods. Results of baselines are retrieved from literature, except for
SMART*, which is implemented using the same features and implementation settings
as SMS. We have also included the results of SMS learned only on 10% training data
as SMS 10%.

epochs. For ActivityNet and FCVID, we use an initial learning rate of 0.005, and

a batch size of 64. For UCF101 with shorter videos, we increase the batch size to

128 and adjust the initial learning rate to 0.00256. All models are trained using code

adapted from MMAction2 [107] on eight Nvidia-A100 GPUs. And we report the

average performance and standard deviation of three runs.

5.4.2 Effectiveness Analysis (RQ1)

To validate the effectiveness of the proposed SMS, we make a comprehensive com-

parison with the base method on both long-video dataset ActivityNet and FCVID,

and short-video dataset UCF101. As the video lengths of different datasets vary in

a large range, we choose to select different number of frames for each video in these

datasets, where 8, 16 and 25 frames are selected for long videos in ActivityNet and

FCVID, and 3 and 8 frames are selected for short videos in UCF101. Furthermore, we
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conduct experiments to select frames with SMS only on test data during the inference

of pre-trained base models, and incorporate SMS in both the training and inference

process. The experimental results are shown in Table 5.2, from which we can observe

that:

• When applied to test data, compared to the base sampling method, SMS (infer

only) significantly improves the average mAP on different number of selected

frames by 4.53% and 1.85% on ActivityNet and FCVID, respectively. While

SMS (infer only) significantly improves model performance, SMS (train & infer)

improves the mAP by 0.75% and 0.34% mAP on ActivityNet and FCVID. This

observation demonstrates that the frames selected with the SMS method are

beneficial to both model training and inference.

• While most other frame selection methods only focus on long untrimmed video

tasks, SMS is also effective on short trimmed video tasks. Despite that in

UCF101, the irrelevant parts of videos are trimmed off, which to a great degree

limits the potential of frame selection, SMS still achieves steady improvement

of 1.42% average mAP over the base method with the same number of selected

frames.

5.4.3 Performance Comparison (RQ2)

In order to justify the benefit of our new learning paradigm of frame selection, we

compare SMS with other classic frame selection methods on ActivityNet and FCVID.

We choose ResNet as the backbone architecture of the action recognition model and

report the performance with similar number of selected frames ranges from 8 to 10.

As the implementation and training details are different among the frame selection

methods, the performances of the base models are inconsistent. Therefore, directly

comparing the reported performances may be unfair. Moreover, due to the lack of

1The base performance in our paper is higher compared to it in other papers, due to the better
codebase and training settings.
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Figure 5.2: Comparison of SMS with other approaches in terms of performance vs.
inference cost (model size per video) evaluated on ActivityNet. We control the infer-
ence cost by varying m, the number of candidate frames in a video from which n = 8
best frames are to be selected.

source codes and models, we are unable to compare all methods under the same

settings, especially for the RL-based methods whose results are difficult to reproduce.

To make a fairer comparison, in addition to the absolute performance, we also compare

the relative improvements of the frame selection methods over the base sampling

method. Also, we have implemented the most recent frame selection method, SMART

[81], using the same features and implementation settings as our proposed SMS, and

include its results as SMART*.

The comparison results are demonstrated in Table 5.3, from which we can see

that with the least number of selected frames and the smallest backbone model,

the proposed SMS achieves the best performance of 83.72% and 86.54% mAP on

ActivityNet and FCVID respectively. Moreover, even with the higher-performance

base models which are harder to improve, SMS still obtains the largest improvements

of 6.48% and 2.70% among all frame selection methods. In a fair comparison with

the same implementation settings, our method significantly outperforms SMART* by
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Feature Extractor (Training Source) Mapping Model Arch Performance Inference GFLOPs

ResNet-50 (Kinetics) Transformer 83.72 1.50

ResNet-50 (Kinetics) MLP 83.22 0.01

ResNet-50 (ImageNet) Transformer 79.97 1.50

ResNet-50 (ActivityNet) Transformer 81.06 1.50

MobileNet-V2 (Kinetics) Transformer 79.53 0.93

Table 5.4: Ablation analysis results in mAP (%) on ActivityNet using 8 frames with
different feature extractors and feature mapping model architectures. The feature
mapping inference GFLOPs per video is also provided.

Backbone # Frames Method Performance

TimeSFormer 8

Dense 84.33

Base 90.11

SMART* 90.53

SMS 91.97

Table 5.5: The ActivityNet evaluation results in mAP (%) using different frame
sampling strategies on TimeSFormer.

3.05% and 3.19% respectively on ActivityNet and FCVID.

The reason of our success is due to our novel training paradigm of “Search-Map-

Search”, where an efficient hierarchical search method is incorporated to find the best

frame combinations, which better models the frame interactions. Moreover, in SMS,

a feature mapping function is learned to map an input video directly to the optimal

frame combination, which is theoretically superior to the one-by-one frame selection

adopted by existing methods.

5.4.4 Efficiency Analysis (RQ3)

We now analyze the efficiency of SMS and compare it with other frame selection

methods in terms of action recognition performance versus inference cost (evaluated

by the model size per video. For a fair comparison, we only include the results that
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Figure 5.3: The evaluation of different search algorithms on 100 videos, given by the
average loss over the number of evaluations.

use ResNet as the backbone model.

In order to evaluate the tradeoff between performance and inference efficiency, we

first uniformly sub-sample m candidate frames that constitute the search space for

each video from which n = 8 best frames are to be selected. As m increases, features

are extracted from more candidate frames, and the resulting frame selection becomes

more effective, while the inference cost becomes larger. As demonstrated in Figure 5.2,

the action recognition performance of SMS grows rapidly from m = 8 to m = 25,

while further increasing m to 50 or 100 incurs only slight increase in performance but

huge inference overhead. In practice, one can easily achieve a good tradeoff between

performance and cost accordingly by tuning the number of candidate frames m.

In comparison with other approaches, SMS achieves higher action recognition per-

formance and beats other methods under different computation resource constraints,

showing the effectiveness of the proposed search-mapping-search paradigm in frame

selection.
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5.4.5 Ablation Study (RQ4)

This subsection aims to analyze the effects of different components designed in our

proposed SMS.

Search algorithm. We have conducted experiments to compare the performance

and efficiency of our designed Hierarchical Guided Local Search algorithm with other

powerful search algorithms such as Fast Genetic Algorithm [108] and the frame-level

Guided Local Search [105].

In Figure 5.3, we show the best loss averaged on 100 randomly selected videos

with different search algorithms, and their corresponding search cost measured by

the number of evaluations. By adopting different clip length K, our proposed hierar-

chical search algorithm can trade off between the search performance and the search

cost. From Figure 5.3, we can see that using the same number of evaluations, our

hierarchical search achieves better results compared to Fast Genetic Algorithm, by

more effectively exploiting the prior knowledge of the per-frame loss information. The

original Guided Local Search without hierarchical design is extremely costly which

requires nearly 3, 000 evaluations per video. Contrastively, our algorithm is more

efficient with the hierarchical design, and achieves comparable performance with far

less computation cost.

Feature mapping network. The process of feature mapping aims to transform

the input frame features to the feature of target combination. We have conducted

experiments to explore the impact of different network architectures and training data

sources for feature mapping.

For the network architecture, we adopt transformers to sequentially modeling the

frame features with their spatio-temporal relations taken into consideration. Another

simple applicable design is to adopt a mean-pooling layer that aggregates all the

features of frames into a single feature vector, followed by a simpler two-layer MLP

network. In Table 6.4, row 1 and 2 compares the performance and the inference
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efficiency of the two designs. As we can see, using transformer model as the mapping

function outperforms MLP design by 0.5% mAP due to the better representation

ability, while the inference cost of both designs are small and negligible (less than

2 GFLOPs) compared to the cost of frame feature extractions (tens or hundreds

GFLOPs).

Feature extractor. We have analyzed the effect of different feature extractor

settings by trying smaller model structure, e.g., MobileNet-V2 [109], and different

pre-trained data sources including ImageNet [70], Kinetics [98] and ActivityNet [87].

Comparing the results of row 1, 3 and 4 in Table 6.4, we can see that the pre-

training data of feature extractor can make a difference. The feature extractor trained

on the largest Kinetics dataset achieves the best performance as it better captures

the semantics of actions by training on more related samples, compared to the ones

trained on smaller ActivityNet dataset and out-domain ImageNet dataset. Besides, as

shown in row 5 of Table 6.4, using smaller models such as MobileNet-V2 for extractor

can lead to performance decline. In general, the representation capability of feature

extractors is valuable for frame selection to recognize the important frames and find

the best frame combinations.

5.4.6 Generalizability Analysis (RQ5)

It is a natural question to ask if the frames selected by SMS can also be beneficial

to spatio-temporal video models. To find out the answer to this question, we have

conducted an experiment to apply the SMS selected frames on TimeSFormer [100],

which incorporates the transformer architecture and is one of the most advanced video

models.

The results are shown in Table 5.5. The dense frame sampling strategy incorpo-

rated in the original TimeSFormer implementation randomly samples a clip containing

8 successive frames from videos, and achieves 84.33% mAP on ActivityNet. However,

in untrimmed video dataset, dense sampling can only captures a small part of the
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video and may miss important information. In contrast, the base sampling strat-

egy selects frames uniformly from videos and achieves 90.11% mAP, while SMART*

achieves 90.53% mAP.

By using the input frames selected by SMS, we obtain a significant performance

gain of 1.86% over the base sampling strategy and 1.44% over SMART*, and achieve

91.97% mAP. This improvement demonstrates the strong generalizability of SMS

across different model architectures, and that SMS is not only effective on 2D video

modeling, but can also capture the spatio-temporal relationship among frames and is

beneficial to 3D video model learning.

5.5 Conclusion

In this chapter, we propose a new learning paradigm for frame selection, called

“Search-Map-Search”, which consists of a search stage to efficiently find the best frame

combination with a hierarchical search algorithm, a feature mapping stage that learns

to transform the input frame features directly into the feature of the searched com-

bination, and another search stage that selects frames based on the mapped feature.

Compared with existing frame selection methods, SMS is a more accurate learning

paradigm that takes advantage of efficient search and supervised feature mapping to

directly select the best combination of frames as one entity, which better captures

the frame interactions. Experimental results show that SMS achieves significant per-

formance gains on multiple action recognition benchmarks, and outperforms other

strong baseline methods.
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Chapter 6

Embedding Dimension Pruning

6.1 Introduction

The amount of information on the web has been growing exponentially, and becomes

overwhelming for users, as they look for interesting and relevant information on the

web. As a decent solution to this problem, recommender systems are a subclass of

information filtering systems, making recommendations of items that are of particular

interests to a user among the vast amount of available items, and are commonly

deployed in a variety of areas such as online shopping [110], advertisement [111, 112],

music apps [113], news apps [114], video apps [115], etc.

Compared with traditional recommender systems, modern deep-learning-based rec-

ommender systems (DLRSs) have achieved great success due to its capability of ob-

taining meaningful feature representations to model user preferences and item char-

acteristics, especially for high-dimensional categorical features, e.g., age, address,

product category, etc. Embedding tables are usually adopted in DLRSs and are re-

sponsible for mapping the high-dimensional sparse encoding vector for each category

in each feature field into a low-dimensional dense feature vector. Although playing

a critical role to recommendation performance, the embedding tables are usually ex-

ceptionally huge in real-world recommender systems with numerous users and items,

leading to a dominating number of parameters in the model. Therefore, enhancing

the design of the embedding layers has a great value to both reducing the model size
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in DLRS and improving model performance, yet is an under-explored area of study.

Most existing recommender systems assign a uniform embedding dimension for all

feature fields ignoring the discrepancy in importance of different features, which may

lead to inefficient memory usage and sub-optimal recommendation performance. The

reason is that, the embedding dimension of a feature field indicates the amount of

useful information contained in the field. Assigning a small dimension to a highly

informative and predictive feature, for example, the “last viewed movie” feature in

a movie recommender system, may greatly limit the expressiveness of the feature

and hence lead to performance degradation. On the other hand, assigning a large

dimension to non-predictive features can incur unnecessarily large models, which leads

to high memory usage and computational cost as well as overfitting issues.

Many studies have been conducted to address this issue by assigning different di-

mensions to different feature fields in embedding tables, e.g., by hand-crafted rules

based on the popularity of features [116]. Recently, automated embedding dimension

search has greatly advanced the recommendation performance and memory saving.

Different strategies have been investigated to search for non-uniform embedding di-

mensions, including reinforcement learning [117, 118], evolutionary algorithms [119],

gradient-based approaches [120–122], one-shot learning strategies [123, 124], and net-

work pruning methods [125].

In this chapter, we propose, DimReg, which performs low-cost embedding dimen-

sion search in recommender systems only through regularized optimization. Not only

does DimReg achieve better performance than prior methods under the same model

reduction ratio, but it is also efficient, barely increasing the learning cost of the orig-

inal deep recommender model. In particular, our contributions are summarized as

follows:

• We use a scaling factor to control the magnitude of each embedding dimension

in a feature field, which can be seen as an importance indicator [126]. We
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achieve pruning of embedding by numerically regularizing the scaling factors of

different dimensions in the feature vector during model training. By applying

a polarization regularizer [127] generally on scaling factors of all embedding

dimensions, the unimportant dimensions are well separated from important

ones, and can be pruned without any performance loss.

• We observe that embedding dimensions in a feature field can be correlated and

dimensions with similar information could be redundant and unnecessary. In

order to reduce the redundancy, we propose a pruning criterion based on the

intuition that different embedding dimensions should convey different informa-

tion. In particular, we impose a polarization regularizer on pairs of highly

correlated dimensions, which are identified iteratively during model training, in

order to keep informative and representative dimensions and prune redundant

ones.

• DimReg performs dimension pruning through regularized scaling factor opti-

mization in conjunction with model weight training, adding minimum overhead

to learning cost. Unlike other methods that require retraining the model weights

after dimension search [122–124], DimReg does not require a separate re-training

stage, which further reduces the computational cost and makes it easy to deploy

to real-world large-scale recommender systems.

Extensive experiments are conducted on two classic click-through rate (CTR) pre-

diction tasks, Avazu and Criteo. The experimental results show that DimReg can

effectively prune the unimportant and redundant embedding dimensions without hurt-

ing the recommendation performance. With more than 98% of model parameters

pruned, the recommendation model derived by DimReg still outperforms the original

model and beats other strong embedding dimension search baselines.
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6.2 Related Work

In this section, we give an introduction on existing embedding dimension search

methods, which can be roughly categorized as heuristic methods, AutoML based

methods, and pruning based methods.

The heuristic methods adopt hand-crafted rules to determine the embedding di-

mensions, where MDE [116] assigns features of higher popularity with larger embed-

ding dimension and give fewer dimensions to the less popular ones.

Aiming at increasing the generality and reducing the human effort, automated

learning of embedding dimension selection has also been widely explored. Some stud-

ies formulate this problem as a hyper-parameter optimization task by pre-defining a

set of candidate dimensions for each feature field as the search space, and employ

different search algorithms. ESAPN [117] and NIS [118] adopt reinforcement learning

approaches to search for effective embedding solutions. RULE [119] splits the embed-

ding tables into small blocks, and identifies the optimal elastic embedding composition

with evolutionary algorithms. Despite the effectiveness, the induced search cost of

these methods is very high and often unacceptable for real-world application deploy-

ment. Inspired by DARTS [14] in neural architecture search, AutoEmb [121] and

AutoDim [122] formulate the problem in a differentiable manner and searches the

suitable embedding dimensions within a collection pre-defined dimension candidates

by gradient descent, which significantly improves the search efficiency. Similarly,

aiming at reducing the search efficiency, SSEDS [123] and OptEmbed [124] adopt

one-shot learning setting, where a big supernet is trained only once, and then used

for the evaluation of different candidate solutions by sampling the corresponding sub-

set part of the supernet. Although the DARTS based methods and one-shot learning

based methods achieve fast search, they share some common problem: (1) they both

require a retraining phase after the search is done, which can cost weeks or months

extra training time for large-scale on-line recommender systems; (2) there exists per-
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formance gaps between the evaluations during search and retraining, which may lead

to sub-optimal solutions.

Another approach PEP [125], treats the problem of embedding dimension search

as a model pruning problem, and adopts a learnable soft threshold to remove unim-

portant embedding parameters with small magnitudes. However, this method results

in unstructured pruning, which does not alter the model architecture and relies on

hardware and framework specially designed for sparse computation to achieve actual

acceleration and memory saving.

Unlike most of existing methods that rely on two separate stages of searching and

re-training, our method achieves efficient and effective dimension selection by pruning

unimportant and redundant dimensions during the model training, with minimum

training overhead introduced.

6.3 Problem Formulation

In this section, we first briefly introduce the typical click-through rate (CTR) predic-

tion model and then present our formulation of the embedding dimension selection

problem.

6.3.1 CTR Prediction Model

Figure 6.1 provides a brief overview of common deep CTR prediction models. Let

Dtr = {(X, y)}|Dtr| represent a training dataset, where the binary label y indicates

whether a click event happens, while the input feature vector X = {x1,x2, · · · ,xm}

consists of m feature fields, each field associated with an item property or a user

characteristic. In reality, most of the feature fields are categorical features represented

by one-hot or multi-hot encoding vectors. Sometimes, the number of categories in a

feature field can reach several thousands or even millions, leading to high-dimensional

and extremely sparse input features, where values of most dimensions are zeros.

In order to reduce feature dimensions and construct more meaningful represen-
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Figure 6.1: A typical CTR prediction network with three feature fields, where the
input features are mapped to embedding vectors by embedding tables, where the deep
layers convert the embeddings into the CTR prediction.

tations, an embedding layer is commonly employed to convert the high-dimensional

sparse features into low-dimensional dense features. Technically, for a categorical fea-

ture in the i-th feature field denoted by xi ∈ Rni with ni categories, the corresponding

embedding vector ei ∈ Rd is derived as

ei = Eixi, (6.1)

where Ei ∈ Rd×ni is the embedding table of i-th feature field and d denotes the

embedding dimension.

Following the embedding layer, deep layers with different network structures are

usually employed to transform the retrieved embeddings to predict the probability

whether a click event happens. Typical network choices include feature interaction

layers [128], deep neural networks [110] or both [129]. The training objective of a
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CTR model f can be described as:

min
E,Θ

1

|Dtr|
∑︂

(x,y)∈Dtr

L
(︁
y, f(X|E,Θ)

)︁
, (6.2)

where E = {E1,E2, · · · ,Em} is the collection of embedding tables of all feature fields,

Θ is the parameters of the network layers after the embedding layer, and L is the

loss function (e.g., cross entropy).

6.3.2 Embedding Dimension Selection

The original CTR model adopts a uniform dimension d for all feature fields ignoring

the discrepancy between different features, which may result in overly large embed-

ding tables and sub-optimal performance. In order to generalize better while reducing

model size, the task of embedding dimension selection focuses on assigning an appro-

priate dimension for each feature field.

Formally speaking, the objective of our embedding dimension selection problem

is to optimize the training loss, regularized by the number of preserved embedding

dimensions, i.e.,

min
E′,Θ

1

|Dtr|
∑︂

(X,y)∈Dtr

L
(︁
y, f(X|E′,Θ)

)︁
+ λ

m∑︂
i=1

di

s.t. E′ =
{︁
E′

i ∈ Rni×di |di ≤ d
}︁m

i=1
,

(6.3)

where E′
i is a sub-table of Ei consisting of embedding dimensions selected from Ei,

and di is the preserved embedding dimension of field i and can be different for different

feature fields.

In this chapter, we treat the embedding dimension selection in a model pruning

manner. Initially, for each feature field i, we have a large original embedding table

with d dimensions Ei ∈ Rni×d. During the model training process, a part of unimpor-

tant and redundant embedding dimensions are progressively pruned. The important

and informative dimensions form the resulting embedding table.
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Figure 6.2: An overview of the proposed DimReg method. For each feature field,
a general polarization regularizer is applied on the scaling factors of all embedding
dimensions to prune the unimportant dimensions with scaling factors close to zero
(grey). From the preserved dimensions, the correlated dimensions with similar mean-
ings are selected and penalized by another regularization to prune the redundant
dimensions.

6.4 Methodology

In this section, we first provide a general overview of the proposed DimReg approach,

and introduce our embedding dimension pruning method including the polarization

regularization and our strategy of identifying unimportant and redundant dimensions.

6.4.1 Overview

Figure 6.2 provides an overview of the proposed DimReg approach, where for each

feature field, we first multiply each of the embedding dimensions by a scaling factor,

to obtain a scaled embedding table. By making predictions based on scaled em-

bedding tables, we convert the hard regularized optimization problem in Equation

(6.3) to regularization applied on the scaling factors, which are trained together with

the model parameters. The objective is to suppress a part of the scaling factors to

zero, such that embedding dimensions with nonzero scaling factors are identified as

important and necessary.

In particular, we employ a two-level polarization to regularize the values of scaling
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Figure 6.3: The data distribution of scaling factors trained with L1 and polarization
regularizers respectively.

factors. On one hand, polarization on the scaling factor of each individual dimen-

sion is performed to separate the pruned dimensions from preserved ones. On the

other hand, to encourage the emergence of informative and representative dimensions

and prune redundant ones, we compute the correlations between the preserved di-

mensions, and again apply polarization regularization on the scaling factors of highly

correlated dimensions. Such correlation assessment is conducted dynamically and

iteratively during model training. Our motivation is based on the hypothesis that

the information carried by different embedding dimensions should be distinctive and

representative to avoid redundancy.

6.4.2 Pruning through Regularization

In order to achieve the structured pruning of embedding dimensions, a common prac-

tice in the area of embedding dimension selection is to assign a switch variable to each

candidate option controlling the probability whether to conduct this option or not

[120–122]. In this chapter, we assign a learnable scaling parameter αj
i to each embed-

ding dimension j in the feature field i. Obviously, the scaling factor should be positive

and bounded. Therefore, we use the sigmoid activation function upon the parameter

to compute the actual scaling factor ϕi,j = sigmoid(αi,j). Specifically, a scaled em-
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bedding table Ẽi is derived to replace the original embedding table Ei = [Vi,j]
di
j=1 by

scaling each dimension Vi,j with the factor ϕi,j, i.e.,

Ẽi = [ϕi,j ·Vi,j]
di
j=1 . (6.4)

The value of the scaling factor ϕi,j reflects the magnitudes of the dimension which is

often deemed as a major indicator of importance [126]. Many works use this method

to select embedding dimensions by dropping the options with small scaling factors,

assuming a small scaling factor indicates that the corresponding embedding dimension

is less important and shall be pruned. However, no matter how small the scaling factor

is, removing a non-zero dimension will introduce perturbation to prediction results,

which may cause performance degradation. In fact, as a remedy, most of existing

methods adopt an individual re-training stage that trains the pruned network again

from scratch, to reduce performance drop. Despite its effectiveness, re-training the

model will induce huge computational cost in reality.

In this chapter, we propose to apply regularization techniques to push the scaling

factors of unimportant and redundant dimensions down to zero and achieve sparse

solutions during the model training process, which eliminates the risk of pruning

non-zero dimensions as well as the costly re-training stage. The objective function

for neural network training with regularization applied on scaling factors is:

min
E,Φ,Θ

1

|Dtr|
∑︂

(x,y)∈Dtr

L
(︁
y, f(X|Ẽ(E,Φ),Θ)

)︁
+ λR(Φ), (6.5)

where λ is the hyper-parameter for the regularizer, R(·) is a regularization function,

Φ denotes a collection of all the scaling factors involved in regularization, and Ẽ

is a collection of scaled embedding tables Ẽi and a function that transforms the

original embedding tables into scaled tables using Φ. Note that in our framework,

after learning E,Φ and Θ with proper regularization, we derive a pruned model with

smaller size by by pruning the dimensions with zero-value scaling factors from the

scaled embedding tables Ẽ, which does not change the prediction results. Therefore,

model retraining is not needed.
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6.4.3 Regularization via Polarization

One classical regularizer that produces sparse solutions is L1 norm, i.e., R(Φ) = ||Φ||1,

the effect of which is to push as many scaling factors to zero as possible. Although

some zero-valued factors are achieved, L1 regularization does not discriminate the

pruned and preserved dimensions well. As shown in Figure 6.3a, the learned scaling

factors are distributed densely over the values, and a non-trivial threshold value is

required to conduct pruning.

In this chapter, rather than using an L1 regularizer, we perform the polarization

regularization [127, 130] on scaling factors, which suppresses a proportion of the

scaling factors while keeping others intact, better separating the pruned dimensions

and preserved dimensions.

The polarization regularizer is formulated as:

Rp(Φ) = t||Φ||1 − ||Φ− ϕ · 1||1

=
∑︂
ϕ∈Φ

t|ϕ| − |ϕ− ϕ|, (6.6)

where t is a temperature hyper-parameter, ϕ = 1
|Φ|

∑︁
ϕ∈Φ ϕ is the mean value of all

scaling factors, and 1 is a all-ones vector with the same size as Φ. In Equation 6.6,

a new term −||Φ− ϕ · 1||1 is appended to the L1 regularization, which aims to push

each scaling vector ϕ from the mean value ϕ. As the value of each scaling vector

is bounded by sigmoid function ϕ ∈ (0, 1), the minimum value of −||Φ − ϕ · 1||1 is

achieved when half of the values in Φ are equal to zero while the other half are equal

to one.

The temperature hyper-parameter t controls the proportion of zero-value scaling

factors ρ. And the optimal solution of the polarization regularization term is achieved

when:

ρ =

⎧⎪⎨⎪⎩
−t/4 + 1/2, −2 ≤ t ≤ 2

0, t > 2

1, t < −2.
(6.7)

where the proof of Equation 6.7 can be referred to [118].
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Figure 6.3b shows the data distribution of the scaling factors learned through

polarization regularization. We can clearly observe that the scaling factors are well

separated into two groups with few factors locate in between, where the scaling factors

in the first group are very close to zero while the factors in the second group are very

close to one. This polarization phenomenon provides a sparse solution where the

pruned dimensions with clear zero-value scaling factors induces no performance drop,

and the preserved dimensions are well distinguished from the pruned ones with no

ambiguity.

6.4.4 Pruning of Unimportant Dimensions

By applying the polarization regularizer on different scaling factor groups Φ, we can

achieve embedding dimension pruning in multiple levels.

In the first level, we aim to prune the embedding dimensions according to their

importance to the model, evaluated by the values of their corresponding scaling fac-

tors, which represents the scale of the dimensions and serves as an excellent indicator

of importance commonly adopted in model pruning methods [126]. In DimReg, we

adopt the same importance pruning standard for embedding dimensions in different

feature fields, by setting the group of scaling factors in Equation 6.6 as all scaling

factors in m feature fields:

Φimp = {ϕi,j}dij=1
m
i=1. (6.8)

Through fair competition, more important feature fields will have higher chance to

keep more dimensions.

6.4.5 Pruning of Redundant Dimensions

Other than the importance pruning as all previous work focuses on, we propose

to further prune the dimensions with redundant information also using polarization

regularization.
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In this chapter, we characterize the dimension redundancy as the information over-

lap between different embedding dimensions. Specifically, we define the information

overlap oi,jk as the redundancy score between a pair of embedding dimensions Vi,j

and Vi,k within the same feature field i using Pearson correlation coefficient [131] as:

oi,jk = Pearson(Vi,j, Vi,k), (6.9)

where Pearson(·) is the correlation function. The highly correlated dimension pairs

convey redundant information and hence can be reduced to one dimension.

For determining which dimension pairs are redundant, we first calculate the redun-

dancy scores for all feature fields O:

O =
m⋃︂
i=1

Oi

where Oi = {oi,jk}dij=1
di
k=j+1,

(6.10)

where Oi represents the redundancy scores of all dimension pairs in feature field i.

Then, we rank the redundancy scores of dimension pairs in O and select a proportion

with the top scores as the redundant dimension pairs set V. The ratio of redundant

pairs to all pairs is denoted as β.

Once the redundant pairs are found, we again apply polarization regularization

on each redundant pairs (Vi,j, Vi,k) to softly push the scaling factor of one dimen-

sion to zero with Equation 6.6 by setting the factor group in Equation 6.6 as the

corresponding two scaling factors:

Φred
i,jk = {ϕi,j, ϕi,k} . (6.11)

6.4.6 Training Process of DimReg

The overall training process of DimReg is illustrated in Algorithm 5 where the goal

is to derive a lightweight CTR model with excellent performance by pruning the

unimportant and redundant embedding dimensions.
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Algorithm 5: Training Process of DimReg

Input: Embedding Layer E, Network Layers Θ, Scaling Factors Φ, Training
Dataset Dtr, Training Iterations T , Redundant Pairs Update Interval
l, Pruning Threshold γ

Output: Trained Pruned Model Mp

1 for step = 0, 1, · · · , T − 1 do
2 if step | l then
3 Update V using Eq.6.10

4 Sample a batch (X, y) from Dtr

/* Compute CTR Loss */

5 LCTR ← L
(︁
y, f(X|E,Φ,Θ)

)︁
/* Compute importance regularization */

6 Rimp ← Rp(Φ
imp)

/* Compute redundancy regularization */

7 Rred ← 0
8 for (Vi,j, Vi,k) ∈ V do
9 Rred += Rp

(︁
Φred

i,jk

)︁
/ |V|

/* Compute total loss */

10 Ltotal = LCTR + λ(Rimp +Rred)

11 Update E,Φ,Θ by minimizing Ltotal through gradient descent

12 Get pruned embedding layer E∗ ⊂ E by pruning unimportant and redundant
dimensions with scaling factor less than γ

We first compute the redundant embedding dimension pairs using the current em-

bedding table every l training iterations (line 2-3), the purpose of which is to stabilize

the training and reduce the cost, because the redundancy pruning needs time to take

effect. Then, for each training batch, we first compute the standard CTR loss (line

5), the importance regularization term with respect to all the scaling factors (line

6), and the redundancy regularization term as the average of all the regularization

terms of each redundant dimension pairs (line 7-9). Finally, the total loss for this

batch is computed by adding the CTR loss with the importance and redundancy

regularization term scaled by λ, and is used to update the parameters of the CTR

model including the embedding layer E, the scaling parameters Φ, and the following

layers Θ. After the training process is finished, the parameters of the model are

82



Table 6.1: The detailed information of datasets.

Dataset # Instances # Fields # Features

Criteo 45M 39 1M

Avazu 40M 22 0.6M

well-trained, where the scaling factors are well separated into a group close to zero

and a group close to one. According to the learned scaling factors, we can derive the

pruned model by pruning the embedding dimensions with zero-value factors without

any performance loss (line 12).

6.5 Experiments

In this section, we first describe the details of our experimental settings including

the used datasets, network models, baseline methods, and the implementation details

of DimReg. Then we evaluate the proposed DimReg, and compare it with previous

methods in terms of both the recommendation performance and the efficiency i.e., the

number of model parameters after pruning. Finally, we perform thorough ablative

analysis on the design of different modules in DimReg. Our code will be released for

validation and future studies.

6.5.1 Datasets, Network Models and Baselines

Datasets. Our experiments are conducted on two widely used public datasets. For

both datasets, we use 80% for training, 10% for validation, and 10% for testing. We

summarize the details of datasets in Table 6.1.

• Criteo1 dataset is a real-world industry dataset for CTR prediction of on-

line advertisements. It consists of 45 million user-click logs on ads. It has 24

categorical feature fields and 13 numerical feature fields. Following the best

practice [132], we transform each numerical feature x value by log2(x), if x > 2.

1https://ailab.criteo.com/ressources/
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In addition, we replace low frequency (less than 10) categorical features with a

default ”OOV” (i.e. out-of-vocabulary) token.

• Avazu2 dataset consists of 40 million user-click logs on ads over 11 days. It has

22 categorical features. Following [132], we replace low frequency (less than 4)

categorical features with a default ”OOV” (i.e. out-of-vocabulary) token.

Network Models. We select three well known CTR prediction models including

FM [128], DeepFM [129], and Wide&Deep [110] as the base network models in our

experiments.

Baselines. We have compared our proposed DimReg method with the following

state-of-the-art embedding dimension search methods.

• MDE [116]: Mixed Dimension Embedding (MDE) is a heuristic embedding

dimension search method. It assigns the embedding dimension for each feature

field based on its popularity.

• AutoDim [122]: AutoDim utilizes a differentiable neural architecture search [14]

approach to find the best embedding dimensions from a pre-defined dimension

search space.

• PEP [125]: PEP (short for Plug-in Embedding Pruning) learns trainable

thresholds from data to remove redundant dimensions of the embedding ta-

ble so that mixed-dimension sparse embeddings can be obtained to cut down

the number of parameters while maintaining or boosting the performance.

• DeepLight [133]: DeepLight method proposes to prune not only the embed-

ding parameters but also the DNN layers. For a fair comparison, Deeplight is

only used for embedding table pruning while the DNN layers are not pruned.

2https://www.kaggle.com/competitions/avazu-ctr-prediction/data
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• SSEDS [123]: SSEDS proposes a single-shot embedding dimension search

method, which identifies the importance of each embedding dimension of each

feature field efficiently through only one forward and backward pass. SSEDS

uses a parameter budget hyperparameter to control the sparsity of the mixed-

dimensional embedding table.

• OptEmbed [124]: OptEmbed method proposes to prune both the number

of items as well as the dimensions of embedding tables. It utilizes learnable

thresholds to prune embedding features based on its importance. OptEmbed

uses a single supernet to train all candidate architectures in the embedding

feature search space. In addition, it adopts a evolutionary search approach to

find the embedding dimensions of each feature fields.

6.5.2 Implementation Details

We implement the proposed DimReg method based on PyTorch [134] and pytorch-

fm3. Following previous work [123], we set the initial embedding dimension d = 128

for all feature fields, and incorporate two fully connected hidden layers with 1, 024

units in each layer and RELU activation function as the deep layers Θ in DFM

and Wide&Deep. As the feature interaction layer in FM based models (e.g., FM

and DFM) requires the dimensions of all features to be the same, we incorporate

a transform layer for each feature field that maps the pruned embeddings back to

vectors of 128 dimensions. Adam optimizer [76] with a learning rate of 1e− 3 is used

to update the network parameters. The batch size is set to 2, 048 for all datasets.

As to the hyper-parameters incorporated in DimReg, we use a regularization rate λ

of 5e−5, and set the ratio of redundant dimension pairs β to 0.1. During training, we

re-calculate and update the redundant dimension pairs every 5 epochs. The pruning

threshold for scaling factors γ is set to 0.001.

3https://github.com/rixwew/pytorch-fm
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*OptEmbed adopts different training hyper-parameters derived using grid search.

Figure 6.4: Comparison results of different embedding dimension search methods in
terms of test AUC over different number of model parameters on the Criteo dataset.
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Figure 6.5: Comparison results of different embedding dimension search methods in
terms of test AUC over different number of model parameters on the Avazu dataset.

The recommendation performance of DimReg is evaluated with the pruned em-

bedding tables other than embedding tables of the original sizes with filling zeros in

the pruned dimensions [124]. All experiments are conducted on a single Nvidia A100

GPU.

6.5.3 Experimental Results

To validate the effectiveness of the proposed DimReg, we conduct thorough com-

parison experiments to compare it with other embedding dimension search meth-

ods on three classic CTR networks, i.e., FM, DeepFM, and Wide&Deep. We fol-

low the experimental setup of SSEDS [123], and adopt the same training hyper-

parameters in the evaluation of our method and other baseline methods except for

OptEmbed [124], which carefully tuned the hyperparameters of the recommendation
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Table 6.2: Time and memory cost of the proposed DimReg method measured on
Avazu evaluated using Wide&Deep on Avazu.

DimReg Re-train Based Methods

Training cost (GPU hours) 19.33 32.50

DimReg Unpruned Model

Inference cost (seconds) 39 45

DimReg Unpruned Model

Memory cost (megabytes) 73 1,009

model and produced results that are directly comparable to other baselines. We re-

port the performance of DimReg under different sparsity levels using temperatures

t = {2.0, 1.7, 1.5, 1.2}. The experimental results on the Criteo and Avazu datasets

are demonstrated in Figure 6.4 and 6.5 respectively. We summarize our observations

below.

First, all the models incorporating embedding dimension search methods have sur-

passed the base models with a unified embedding dimension in both the recommenda-

tion performance and the model efficiency, which verifies the superiority of assigning

embedding dimensions to different feature fields with pertinence. Furthermore, au-

tomated learning methods tend to achieve better results than the heuristic method

MDE.

DimReg achieves significant improvement on the recommendation performance

compared to existing methods. On Criteo, DimReg achieves remarkable performance

boost of 8-12‰ AUC scores compared to the uniform embedding dimension, and

improves the previous best method by 6-8‰, which are huge improvements in rec-

ommender systems. Note that the results of OptEmbed are referenced from the paper

which are reported on a different set of training hyper-parameters and can not be di-

rectly compared. As an indirect comparison, OptEmbed improves its baseline model

by only 0.1‰which is not as significant. On Avazu, DimReg also beats other state-of-
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Figure 6.6: The hyper-parameter sensitivity test of L1 and polarization regularizers
by plotting the pruning ratio of different temperature values.

the-art methods on DeepFM and Wide&Deep, and achieves comparable performance

on FM.

In addtional to the exceptional recommendation performance, DimReg achieves a

high average model suppression rate of 82.6% and 98.6% on Avazu and Criteo respec-

tively. The extremely high suppression rate on Criteo is because DimReg significantly

reduces the dimension of the feature fields with top-3 number of items from 128 to

1, 3, 2 respectively, which greatly reduces the number of model parameters. This re-

sult indicates that DimReg can effectively recognize and prune the unimportant and

redundant dimensions which contributes little or negatively to the recommendation

performance.

6.5.4 Memory and Time Cost

The main purpose of embedding dimension pruning is to save cost of the recommen-

dation systems. We have also conducted experiments to evaluate the memory cost

as well as the training and inference cost of DimReg on Avazu using Wide&Deep, as

shown in Table 6.2.

By pruning over 80% of the dimensions, DimReg significantly reduces the size
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Table 6.3: Comparison results of the polarization regularization vs the L1 regulariza-
tion on Criteo in terms of AUC and the number of parameters in pruned models.

FM DeepFM Wide&Deep

AUC # Params. AUC # Params. AUC # Params.

L1 0.8082 5.07M 0.8108 4.85M 0.8108 3.70M

Polarization 0.8086 4.53M 0.8108 4.61M 0.8115 3.77M

of the recommendation model from 1,009 megabytes to 73 megabytes reducing the

memory cost by 93%.

For the training cost, compared with other embedding dimension search methods

which require re-training the recommendation model under the same pruning ratio,

DimReg can directly produce pruned model ready for deployment without re-training

which significantly reduces the training cost from 32.50 GPU hours to 19.33 GPU

hours.

As to the inference speed, the unpruned model takes 45 seconds to complete the in-

ference of the validation set, while the pruned model by DimReg reduces the required

time to 39 seconds, achieving 1.15× inference speedup.

6.5.5 Ablation Analysis

We have conducted comprehensive ablation analysis to evaluate the impact of different

designs incorporated in our method, including the polarization regularization, the

redundancy pruning, and the retrain-less setting.

Polarization Regularizer vs L1 Regularizer. As illustrated in Figure 6.3,

the major advantage of the polarization regularizer is its capability of separating the

scaling factors of the preserved and pruned dimensions, while L1 regularization pushes

all scaling factors towards zero.

In Figure 6.6, we demonstrate the temperature sensitivity over the pruning ratio

of the L1 regularizer i.e., R(Φ) = t||Φ||1, and the polarization regularizer shown in
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Table 6.4: Ablative experimental results on Criteo, where “DimReg w/o RP” removes
the redundancy pruning from DimReg, and “DimReg + Retrain” re-trains the pruned
model by DimReg.

FM DeepFM Wide&Deep

AUC # Params. AUC # Params. AUC # Params.

DimReg w/o PR 0.8085 5.53M 0.8108 4.61M 0.8109 3.93M

DimReg 0.8087 5.26M 0.8110 4.85M 0.8115 3.70M

DimReg + Retrain 0.8082 5.26M 0.8110 4.85M 0.8116 3.70M

Equation 6.6, by plotting the pruning ratio of the models over different values of the

temperature hyper-parameter t. As we can see, the pruning ratio of L1 regularization

is extremely sensitive to the temperature value, where the pruning ratio rises rapidly

from 0.03 to 0.95 with a small increase on t from 0.6 to 0.65. The reason of this high

sensitivity of L1 regularization is that a major part of the scaling factors regularized

by L1 are located around the pruning threshold γ = 0.001 as L1 regularization pushes

all factors towards zero, where a slight change on the temperature t would cause a

great number of scaling factors to cross the threshold γ and lead to significant change

on pruning ratio. This phenomenon of L1 regularization is undesired as in most cases,

we want to have good control on the size of the pruned model to achieve the best

trade-off between efficiency and performance. In contrast, the polarization regularizer

can achieve easy control on the size of the recommendation model.

We have also conducted experiments to compare the recommendation performance

of polarization regularization to L1 regularization on the Criteo dataset. To make a

fair comparison, we compare the pruned models with similar number of parameters

produced by polarization and L1 regularization. The results are shown in Table 6.3.

We can see that under the similar model size, the polarization regularization beats

the L1 regularization with all network structures, which proves its superiority.

Redundancy Pruning & Re-training. We conduct experiment to evaluate
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Table 6.5: Comparison results of different functions to calculate redundancy scores
of embedding dimensions shown in AUC evaluated on Avazu.

Wide&Deep

Cosine 0.7875

L2 0.7870

Pearson 0.7878

the impact of the redundancy pruning. Table 6.4 demonstrates the results where we

can see that with similar model size, DimReg achieves better AUC scores compared

to the version without redundancy pruning, which validates that redundancy is an

important criterion in dimension pruning, and removing redundant information is

beneficial.

We have also assessed whether the re-training stage is needless in DimReg. In Ta-

ble 6.4, we can observe that unlike previous methods, re-training the model pruned

by DimReg achieves no significant performance change. This is because DimReg pro-

gressively prunes embedding dimensions during the model training, which produces

no performance gap between the trained model and the pruned model for evaluation.

Redundancy score calculation. During the redundancy pruning, we have also

conducted experiments on Avazu with Wide&Deep to explore the optimal function

to calculate the dimension redundancy. In Table 6.5, we compare different functions

including Cosine Similarity, L2 Similarity and the Pearson Correlation Coefficient. We

can see that, using Pearson Correlation Coefficient to calculate the redundancy score

of dimensions achieves an AUC of 0.7878 which is better than the AUC performance

of 0.7875 and 0.7870 achieved by using cosine similarity and L2 similarity. This is

probably because the Pearson correlation better captures the relationship between

embedding dimensions in the semantic level, while the other measures focus more on

the vector similarities.
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6.6 Conclusion

In this chapter, we propose DimReg, an embedding dimension pruning method which

prunes dimensions based on importance and redundancy via a two-level polariza-

tion regularizer. By effectively recognizing the important embedding dimensions and

removing the redundant dimensions progressively during model training, DimReg

achieves significant improvement over existing methods on both the recommendation

performance and model efficiency, while introducing minimum overhead to model

training.
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Chapter 7

Conclusions and Future Directions

This chapter summarizes the main contributions of this dissertation and discusses

possible future directions.

7.1 Conclusions

First, we discuss the automated data engineering approaches to improve the model

learning including reinforced curriculum learning, and automated data augmentation.

In Chapter 3, we present our work on curriculum learning for neural machine trans-

lation with the goal of improving a pre-trained model when original batch training

reaches its ceiling. We propose to formulate curriculum learning as a reinforcement

learning problem to automate the learning of the training curriculum by iteratively

re-selecting influential data samples from the original training set. We base our data

selection framework on Deterministic Actor-Critic, in which a critic network predicts

the expected change of model performance due to a certain sample, while an actor

network learns to select the best sample out of a random batch of samples presented

to it. By simple fine-tuning with the selected samples, we achieve significant improve-

ment on several evaluation datasets and outperform other competitive methods.

In Chapter 4, we describe our experience on label-aware auto-augment (LA3 ) which

takes advantage of the label information, and learns augmentation policies separately

for samples of different labels. LA3 consists of two learning stages, where in the
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first stage, individual augmentation methods are evaluated and ranked for each label

via Bayesian Optimization aided by a neural predictor, which allows us to identify

effective augmentation techniques for each label under a low search cost. And in the

second stage, a composite augmentation policy is constructed out of a selection of

effective as well as complementary augmentations, which produces significant per-

formance boost and can be easily deployed in typical model training. LA3 achieves

excellent performance while maintaining a low computational cost.

Besides the model learning, we also propose to employ data engineering techniques

to improve the model inference.

In Chapter 5, we propose a new automatic frame selection paradigm called Search-

Map-Search for video action recognition tasks. We first propose a hierarchical search

method conducted on each training video to search for the optimal combination of

frames with the lowest error on the downstream task. A feature mapping function is

then learned to map the frames of a video to the representation of its target optimal

frame combination. During inference, another search is performed on an unseen video

to select a combination of frames whose feature representation is close to the projected

feature representation. By combining search with supervised learning, our method can

better capture frame interactions while incurring a low inference overhead. Extensive

experiments show that our frame selection method effectively improves performance

of action recognition models.

In Chapter 6, we have focused on automating the search for better network archi-

tectures by proposing DimReg to search for the optimized embedding dimensions for

recommendation system models. DimReg assesses information overlapping between

the dimensions within each feature field and pruning unimportant and redundant di-

mensions progressively during model training via a two-level polarization regularizer,

while introducing minimum overhead. Moreover, our method does not require retrain-

ing after embedding dimension search, which significantly reduces the computational

cost and is more friendly to deployment in real-world recommender systems.
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7.2 Future Directions

This thesis focuses on improving the learning and inference of deep models through

automated data engineering approaches, which can be further extended in the follow-

ing directions:

Interpretability. Although automated data engineering can find more promis-

ing data strategies than humans, there is a lack of scientific evidence for illustrating

why the found policies perform better. For example, in the found augmentations of

LA3, samples of certain classes prefer some augmentation operation, e.g., posterize,

while other classes would suffer from this augmentation, where the reason is un-

clear. Therefore, increasing the mathematical interpretability is an important future

research direction.

Generalization. Many strategies are learned specifically for targeted datasets

and cannot be transferred directly to other datasets or domains. Learning a well-

generalized strategy for datasets sharing similar characteristics is an important direc-

tion that can save plenty of time and efforts. A similar direction is Meta-RL [135].

Pre-training data strategies on large general datasets and fine-tuning them on specific

target datasets may be a worth exploring direction.

Jointly Learning. My works are all focused on a single data engineering problem

at a time. However, the construction of a deep learning system involves multiple data

processing procedures, and learning them separately is highly costly in both com-

putation and time. Therefore, constructing an automated data engineering pipeline

that allows jointly learning of multiple data processing problems is a promising future

direction.
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