—

'f/l National Library of Canada

.
~

"CANADIAN THESES ON MICROFICHE

THESES CANADIENNES SUR MICROFICHE

.

Collections Development Branch‘ ‘

' Cenadian Theses on
Microfiche Service i

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microfiche is heavily dependent upon the
quality of the original thesis submitted for microfilming. Every
effort has been made to ensure mehlghestq.ﬂtyofrepnoduc
tion possible.

if pages are missing, contact the university which granted the
degree ;

Some pages may have indistinét print especially if the original
" pages were typed with a poor typewriter ribbon or if the univer-
sity sent us an inferior photocopy.

Previously copyrighted materials (journat articles publlshed
tests, etc.) are not filmed

Reproducﬁon in full or in part of this film is governed by the
~ Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read
the authorization forms which accompany this thesis.

>

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

NL 330 (r. 85/00)

”

Bibliothéque nationalé du Canada
Direction du développement des collections

Service des théses canadiennes . . .
. 'sur microfiche - : : ‘ .

~_e

AVIS ~

La qualité de cette microfiche dépend grandethent de la qualité
de la thése soumise au microfiimage. Nous avons tout fait pour
assurer une. qualité supgieure de reproduction.

S'il manque des _pages, veuiliez communiquer avec Iuniver-

~sité qui a conféré le grade. .- o=

La qualité d'impression de certaines pages peut laisser &

- désirer, surtout si les pages originales ont été dactylographiées

a l'aide d’'un ruban usé ou si l'université nous a fait parvenir
une photocopie deﬁualite inférieure.

Les documents qui font déja I'objet d'un droit d'auteur (articles
de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, méme partielle, de ce microfilm est soumise
4 la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30.

'Veulliez prendre connaissance des formules d" autorisation qui

accompagnent cette thése.

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS RECUE

Canadi

v

>

. National Library Bibliothéque nationale _
= of Canada - du Canad) . TC -
,‘// \/‘-} : A i
{ “ Ottawa, Canada - — 5
N KAONE SN O- B - JIQIBAY T T
CANADIAN THESES ON MICROF!CHE SERVICE SERVICE DES THESES C4NADIENNES SUR MICHOFICHE
P PERMISION TO MICROFILM AUTORISATION DE MICROFILMER
. Please pnnt or type — Ecrire en Iettres moulées ou dactylographier - N ' .)
, ‘ | AUTHOR—AUTEUR s ' T T
Full Name of Author — Nom complet de J'auteur - '
<) «
Braan Cuwances OJivesason
Date of Birth — Date de naissalce Canadian Citizen — Citoyen canadien
- - \ ' . Yes / Qui No /N
Dune q: \9q39 ’ . D u & o / Non
Country of Birth — Lieu de naissance (P{ermanent Address — Résidence fixe
‘ ‘ ?‘1@ 6 NE Seivment |
UM o EU‘QES & Amr‘—“\u Pmt"’mp, Q& h i 2 AYY) : \
S -
o THE‘sls THESE L T
Title-of Thesis — Titre de la thése) '
» .3“\»‘9\\»‘.- 83D Auert wesn \ \ym" o
t N ’
\

Degree for which thesis was presented

¥ear this degree conferred
Année d'obtention de ce grade

Grade pour lequel cette thése fut présentée - 1

Masreas ce Saence \9es \

University — Université ‘ . Name of Supervisor — Nom du directeur de thése

Onvensviy o Avasaxa bo ANE Sracacm” ‘
o Aumomzmon ~AUTORISATION o Y

7

.
1

Permission is hereby granted to the NATIONAL LIBRARY OF CANADA to
microfilm this thesis and to lend or sell copies of the film.

The author reserves other publication rights, and neither the thesis nor exten-
sive extracts from it may .be printed or otherwise reproduced without the

auttior’s written permission.

~

L'autorisation est, par la présente, accordée a éé BIBLIOTHEQUE NATIONALE
DU CANADA de microfilmer cette thése et d préter ou de vendre des ex-

<
-

emplaires du film.

L'auteur se réserve les autre$ droits de publication; ni la thése ni de longs ex-
traits de celle-ci ne daivent &tre imprimés ou autrement reproduits sans

I'autorisation écrite de I'auteur.

ATTACH FORM TO THESIS — VEVUILLEZ JOINDHE CE FORMULAIRE A LA THESE

>

Signature

e C T

Date

. A\"#“— 2-‘11

1985

NL:91 (r. 84/03)

%4

The University of Alberta

>

| Smalltalk-80: Another View.

- by.
AN A
L Brian Wilkeérson.
N
A thesis |

submitted to'thé'f."aculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree
of Masters of Science -

Department of Computing Science

Edmonton, Alberta
Spring, 1985

3

7 rep roy

. EA
RE 2

A
-8
Egr Sy

R g

, ~ - - aj
= i l}\'.l‘."lfRSle’I‘-\\' OF ALBERTA -
RELEASE FORM | . f-}f_
;\'Ar\ilc.()1:.,\1'%:11(211: Brian C. Wilkerson)
TITLE OF THESIS: Smalltalk-80: Another View
DEGREE FOR WHICH THIS THESIS WAS PRESENTED: Master of ée’icnﬁg
YE{\R‘ THIS DEGREE GRANTED: 1985 S - ¥

Permi.ssion, is hereby granted to The University of Alberta Library to

' yduce single copies of this thesis and to lend or sell such copies for
private, scholarly or scientific research purposes only. o

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may' be printed or otherwise reproduced without

the awthor's written permission. .
N :

(Signed) Jom C Zoter
Permanent Address:

3906 NIZ Skidmore
s ~ Portland, Oregon . o ‘
US.A. 97211 ')

]
' L¥]
Dated April 13, 1985

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

-
r\..
v

G

The undersigned certify “hat t_‘hey have read, and-recommend to the
Faculty of Graduate Stud.ics and Research, for acceptance, a thesis entitled
Smalltalk-80: Another View submitted by Brian C. Wilkerson in partial

* fulfillment of the requirements for the degree of Master of Science.

Abstract; -

R
&

\ ' . Y

e

Smalltalk is one of the most interesting and exciting.developmeﬁts in thé area -
of programming lar cuages. It has had réperCUSsions throughout the ﬁg]d'of
comp 'ting s enc The inﬂuex‘1ce, “ramifications z;nd " possible uses of
S.m_llﬁqlk make ar juired topic of study for all computing scientists. The\ -

]

purpose of this pape. - to provide a critical examination of the important)

** features of Smallta . We will also examine some 6f the possible future direc-

. A .
tions for ongoing research b field While this paper is not meant to be a

t -

general introduction to ~ malltalk iwdoes not Juire of the reader any prior

exposure to Smalltalk.

. Acknowledgements.

'
g .

I'would like to thank'my supervisor, Dr. Duane Szafron, botl‘l for the_techni-
cal and the moral support he has provided, and especially for the long hours
of discussion that gave tilis paper some real substance, and provided n:any o;
the ideas in it. I would alsé li'ke to thank Dave Clemens and the other
‘members of.the E_CS group at Tektronix for a very rewarding and informative -
- summer. And I would like to g;;re a special thanks to Karen Cunninghani,

who first introduced me to the beauty of Smallt'alk, and whose inspiration, so

many years ago, prompted me to study computing science.

-

Table of 'Contel;tp {
2

Chapter 'Introduétion. e e e, ;,....f}
Chapter 2. What is Smalltalk-80? ’
Chapter 3. The History of Smalltalk.’ ... TSR PPN et
3.1 The Dream. ' el e s .
3.é Xerox’s RESEATCH. wvvvo.oveereeoeoeooeeeeoe oo
3.3 The Simula Influence. e i
3.4 The Actor Model. e PR URRTPRIPI
3.5 Actors Influence Smal]'taik. e
Chapter 4. Smallt#,\The Environment.ccoco....... L
4.1 The Nature of the Interface. P VPP PP
4.1’.1 Menus. ..oooiiiiiiiinnnnnnn. e,
41\2 Windows.
4.2 T}le Philosophy of the Interface. ...,
Cha‘;;e:r 5. The Smalltalk Language. e e——
5.1 Objec£s.
5.2 Message S'énding.‘ ...
5.3 Methods. e
5.4 The Concept of Cla;sQ. et s e e et e e bt e e r e e e et aeeaenas
5.5 Inheritance. ...,
5.5.1 Collection Classes: An Example of Inheritance.

5.5.2 Problems with Inheritance.

Chapter 6. The Sm;lltalk Metaphor.

...

...

vi

10

11

13

13

15

15

16
18

18
19
22
23
25
27
31

32

' j \
]

6.1 Objects As Actor's. e tieee e aaaaaas k 32

' 6.2 _Ob_ject-orientea Programming. poeneeens PO 33

Chapter 7..‘I-mpler'hentation. [T RTOTOOOR ATy v e e, 36
7.1 A'Virtual System. ..o g | 37 |

7.1.1 TheVirtual Machine. ..., s e 38
7.1.2 The Virtual Image.c..ccccoocovirirrrorrrrrrrrrr S I
7.2 Object Memory. SO , | 39 -

LL 7.2.1 Garbage Collection.cccecvvvve.... g SRS 41
7.3 Bytecodes. eeee———— S s I 42

7.4 Primitive Methods. T T TR \ " 42
7.5 Influence Of Implerhentation On System. ' et . 43
Chapter 8. The Smalltalk Reality.coo..or... et AT

8.1 Where It Falls Short. SOOI s 47

8.1.1 Problems Witl_] the‘Language. _ - 047

8.1.1.1 Cascaded Messages. B AT
8.1.1.2 Assignment.ccooiiiiiiiiiiniinnnn, 48/ |

8.1.1.3.Variables. e —— 49’_,‘ ‘

8.1.1.4 A SOMEON. oo e eeeeeeeeee e 51
8.1.2 Probiems With the Class Descriptions.c...ccooooiiiinnnn. . 581 \,

8.1.2.1 The Class BitBIt. et 52

8.1.2.2 Scalars and Subranges. 53
8.1.2.3 Private Messages. Ceeerteee e anns RS eeee 56

- 8.1.3 Problems With the Implementatio'n-; eeeeneranas 56.

8.2 Where They Did It Right. o......oo...... e S 57

L4

~e

- 8.2.1 Benefits of the Class Descripfions. .

8.2.2 Benefits of the Metaphor. D R
_Chapter 9. Future Directions: ..
"9,1. Strongly Typed Smalltalk. ... e e,
9.1.1 Probl.ems_;-with. Strong Typing. .cooooriii v,

¥.2 From Programming Exvironment To Oper.ating éyst¢m. e :
‘9.3 Parallel Computat_ilo.n and Multiple Processors.c..c.coues
9.4 Introducing Color. erens o ‘ Tereen
9.5 ‘Int-roducjng Sbund. I e e e
Chapter 10.‘ Conclusions. ...nn....... ceeni Qs
Refereqce_s. F R PR '
Appendix A. A Partial Hier;rchy of Sm;lltalk Classes.cccoovveeviiiinn.

Appendix B. The Definition of the Class Bag.

viii

......................................

57
58

60

600

61

- 61

63

64

64

65

66

69

72

List of Figures.

Figu're 2.1. Three aspegts 61’ Smalltalk.
Figure 5.1. The Class Structure of Smalltalk.o.qcecorrererrernn -
Figure 5.2. Full Metaclass Hierarchy. et
Figute 5.3. The Smalltalk Hierarchy of Collectjbn Classes.c.......

Figure 7.1. The Virtual System.cooooiiiiiiiiiiiiiiinn, e

s

o7

30

38

. o _Chapter 1.

A Introduction.

Smalitalk 1s one o.f the most interestimg and exciting _d.eve_lbpme-nts in the
. area of prégramming languages. It has changed the way we look at program-
‘ming by offering a new methodology for the design and analysis of programs.
It also provides A'richer environment fo;' the development and use of com-
puter programs, both by professional programmers and by casual computer
users.. Although these two reasons are énough to make émalltalk a

worthwhile topic of study, it is more thap just a new programmihg languaé\e; | ;
The results of research into Smalltalk and’its uses have had repercus-

sions througl;out the field of computing science. Smalltalk has one of “t'he
first modern graphical user interfaces, one that sirohgly influenced the
develo\pmeﬂ of the interfa>ce~ on ’the popular Macintoshl‘miclf';)compute;.
Smalltalk provides an environment in which different styles of user int‘erfAc.esf
can be eas-ily studied and evaluated. Smalltalk provides a new metaphor for
the expression of intelligent behavior.. And finally, Smalltalk has contributed
to a new object-oriented design methddology in softwaré engingering.' Tht;
inﬂ(xence, ramifications and possible uses of Smalltalk make it a required
topic of study for all computing scientists.

The goal of'-tilis p;per is to provide a criticaj examination of Smalltalk.

We wish to examine the most important features of Smalltalk and to discuss

! Macintosh is » trademark of Apple Computers, Inc.

- their strengths and weaknesses. Bg"d‘oing so we will gain a better under-

‘standing of why_Smalltalk is-having, and will continue to have, such a large

1mpact on computmg science.

Vool

Although this paper is a cnthue of Smalltalk prévnous exposure to

' Smalltalk is not requnred We w1ll provide a brief descnptlon of those

features of Smalltalk that are lmportant to the topic at hand: Thxs dlscus-'

-sion is not meant to be a thorough description of Smalltalk, but it should— be ‘

complete enough that the problems and benefits noted in this paper\ ‘can.'l)e

easily understood.?

We begin our brief description of Smalltalk with a discussion of the ter_-: ’

lninology used in this paper and a look at the history of Smalltalk, We then

implementation ol' Smalltalk—SO in some detail. Since Smalltall(is inter-
preted, the implementation directly aﬂ'e'cta the run-time envir‘Onment,'which
in turn affects the nature of the system; Therefore,. a full understanding of
Smalltalk requires at least a partial unders.tanding, .ol' the implementation:
We also look‘at alternative implementation schemes, and the effect these

1 +

schemes would have on the system:

By the end of the description the reader should have a good .understan"(l»-‘«:

ing of Smalltalk and should be be familiar with most of the features of',

Smalltalk. The remamlng ‘sections concentrate on the factors that ma"ke ea.ch

l

. feature either good or bad. We limit the -scope of thls paper tJan examma—

[‘:
l

. examine the various components of the Smalltalk system and examine the

.
&

' f

v

tlon of those features of Smalltalk that we conSIder to be most lmportant .

2 Readera who are interested in a more thorough description of Smalltalk are drrecud to [Gold82]

- ‘ 3

A

The paper concludes with ai gxamiﬁation of several possible futuré ’
enhanceménts to Smalltalk; These enhancements are evaluated in turn. Th'é‘
evaluation is Baséd on l}ow well a..:feature meets the. goals of Srﬁalltalk, iis
];ractical or theoretic value,";and the availability of the means of implement-‘.
ing the feature. | |

Pl

. Chapter 2.

What is Smalltalk-807 e

One of the biggest problems we face when describing‘a new idea or
development is the lack of a widel)/' known and accepted terminology. We
can try to use existing words that are close in meaning, but this tends to hide
the important distinctions.” If we simply invent new words no one will know

“what we mean until we give ‘a'deﬁnition. Yet, if we do not fully understand
the imPlicatjons of a new idea, we will not be able to give a complete
definition. ’

" Fhe terms that have become associated with Smalltal-k-,are a perfect
e'xamble of this problem. Although they are well known and frequently used,
the definitions of these terms are still vague. Even the word "Smalltalk”

itself is only loosely defined. Before we can evaluate Smalltalk, we must have

a consfstent definition of the terms used.

'

So, what exactly do we mean by the word "Smalltalk™? Most pe'ople who
"know" Smalltalk would probably tell you that it is a programming language.
If they wanted to be more precise, they would describe it as an interactive,

gréphicaljprogramming language. Unfortunately, this second definition can

i .

be misleading. It may imply to some that Smalltalk.is uséd to program
graphics, or that the Smalltalk programming language is represented graphi-
cally rather than by text. The latter is not trwe at.all, and while it is easy to

“write graphically oriented applications in Smalltalk, that is certainly not the

only (nor the most important) use of the language.

The problem \1s that there is no single deﬁnil;jon for the word
"Smalltalk”. As a r;sult'of the unique nature of Smalltalk, the name has
come to be used for three separate but related concepts. The relatio.nships
between these concepts is illustra?ed in figure 2.1. We will look at each of
these concepts in more detail in future chapters, but it will be helpful to have

-a general understanding of the word before proceeding.

One use of the word "Smalltalk” is to refer to the programming environ-

ment, or user interface, that is used. Smalltalk has a highly interactive,

A) - .
graphically oriented interface. Text and pictures are displayed in windows on

a bit-mapped screen while a pointing device (usually a mouse) and the key-

board are used to direct the actions of the system. This particular styie of

user interface (the way in which these elements are used, manipulatea, etc.)

is sometimes referred to as "Smalltalk".

1

{

"Smalltalk :

language methodology

Figure 2.1 -- Three aspects of Smalltalk.

The word "Smalltalk” is also used to refer to the programming language
.itself. This.is probably the most common use of the term. Smalltalk is an
interprete\d language, with dynamic binding of both variables 4and methods
(metlB‘d's‘::orrespond to procedures in prdcedurva.l languages). Smalltalk also
uses a totally dynamic allocation schemej,. with explicit allocation, and

automatic deallocation. It is the syntax and semantics of this highly dynamic

language which have come to be refex;red to as "Smalltalk".

+ The third use of tﬁe term is to describe the programming methodology
embodied by the programming language Smalltalkf' Using the word in this
way is becoming less common as the term “object-oriented” beginé\to take its
place [Rent82]. A programmer using this methodology would begin by
representing the problem in terms of an activq‘ agent. The behavior of this
agent would next be defined, followed by the knowledge needed by the agent |
and finally the actions taken by the agent to aﬂ'ect the appropriate behavnor
The agent is chosen in such a way that the solution to the i)roblem can be
represented as an instruction to the agent to take some action. This action
usually involves asking other agents involved in the solution to také some

other actions, etc. This method of problem solvin'g is, however, sometimes

still {referred to as "Smalltalk".

" This confusioﬁ of térms is highly undesirable. Therefore, throughout the
remainder. of this paper we will use t‘he. following deﬁnitjons; The word
"Smalltalkb", unless qualified, will refef either té the programming language or
to the system as a whole (the language, the met.hodology and the environ-

ment). The distinction ‘Between the programming language and the system

"o
should be clear from context. If we wish to discuss the Smalltalk environ-
ment, we will simply call it "the environment”. When we discuss the pro-

gramming methodology, we will use the term "object-oriented methodology”.

o

Chapter 3.

The History of Smalltalk.

Before we go on to our in-depth look at each of the three major pc;r‘tions
of Smalltalk, we should take a quick look at Smalltalk’s history. It is impor-
tant to know where Smalltalk comes from if we are to understand why it is

the way it is, and where it is likely to go in the future.

"

3.1. The Dream.

While it is impossible to point to oﬁe moment in history and say "this is
when the idea of Smalltalk was born", we generally place its beginnings
between 1967 and 1969. Alan Kay, who was, then a Doctoral student at the
Umversxty of Utah, began working on a pro,;ect known as the FLEX machme
The FLEX machine was an attempt to achieve, both in hardware and in

software, the prototype of a machine that Alan Kay referred to as the Dyna-

book [Kay77].
| The Dyn#book was to be a truly personal computer. It was envisioned as
providing a vehicle for personal expression -ji.n a box the size of a standard
" notebook. The. surface of the machine would contain a touch sensitive, color
graphics display. The user would point to items on the sci‘een by pressing
them, and the keyboar

would simply be part of the screen. It would also

contain sound generators, with the possibility of "playing” the machine via a

~ touch sensitive, piano-like keyboard. The Dynabook was to be a machine

usable by anyone, ahywhere, any.time.

3.2. Xerox's Research.

The FLEX machine was a step toward the goal of the Dynabook but it
was not enougﬁ to satisfy Alan Kay In an effort to insure that the research
. could continue, he presented hlsgldeas and work to a group of people at the
Xerox Corporation: They were interested. In 1970, Alan joined the newly
formed Learning Research Group at Xerox. The goel of the group was to con-
tinue Kay's work and to produc_e a Dynal.)ook; Since the level of technology
was msufﬁclent at that pomt to complete the project, the group- began work

on what they termed an mtermedlate Dynabook

Since the Dynabook was to be an interactive, user frien\dly system; which
was usable by everyone, it would have to have a silhple interface. Since it
was to be a truly personal computer, it would have to be eesy to modify the
_v’syste‘m in a consistent way without reqqfring system wide changes. This
required that a simple but powerful programming lahguage be created, one.
designed specifically to provide these feavtures. Smalltalk was to be the

language for the Dynabook.

3.3. The Simula Influence.

Of all the langu.ages that influenced Smallta]k, Simula-68 was the first to
have a major effect. In fact, Simula-68 is the source of much of the téerminol-
ogy associated thh Smalltalk. It was derived from Simula, a simulation

implementetion language. The major innovation in Simula-68 was the addi-

tion of classes. The designers of Simula-68 realized that when implementing

10

v

a simulation it would be helpful to be'able to define each of the "parts”-of the
simulation separately, with the ability to create as many copies of these parts

~as reqﬁired. This lead to the concept of a class.

In Simula-68, a class was intended to represent either an object;uséd in
the simulation, or a process that occurred in the system being simulated.
Thus,‘a class consisted of several related procedures, together with the data

structures used and manipulated by those procedhreé.

~ The designers of Smalltalk saw two major problems with the Simula-68
definition of classes. ;First, Simula-68 does not enforce information hiding.
This means that changes in the definition of a class cannot be localized to the
implémentation of the class. The second major problem is that not all classes
are created equal. Classes defined by the user are more limited than system
classes, and system classe;s can not be modified by the user.

The first implem‘gntatiqn of Smallt’alk, known as. _Smalltél_k-72,
attempted to correct fhose‘ problems [Shoc79]. It also tried to uge the class
concept more consistently thrdﬁghbut the system. This lead to‘a system in
which the. data structures were given more importanc‘e than the procédur‘es
which manipulated them. The result of these eﬂ'orts,_ while not perfect, was

encouraging enough to keep the project going.

3.4. The Actor Model.

»In- 1973, Carl Hewitt, who was working at the MIT Artificial Intelligence
Laboratory, published, with others, a paper on the subject of actors [HeWi73].

Actors are a generalization of the concept of objects in Smalltalk-72. An

11

e

actor is an independent, intelligent agent who is capable of taking actions on.
cue according to a i)redeﬁned script. Future work on actors served to

strengthen the initial concepts [Hewi77].

The analogy behind actors is an appealing one. Each actor is an in(iivi-
‘dual with a right. to its own priva.cy.‘ Actors are allowed to communicate
using the generalized concept of message passing. They may make »requests
of other actoré, but no actor can force another actor to take actio;ls\ agéinst
its will siﬁce that would be an invasion of privacy. Similarly, no actor can

forcibly extract information from other actors.

This approach is precisely what is meant by da_ta abstraction. Actors are
defined only by the operations that can be performed on them (that is, ihe
messages that can‘;be sent‘ to them)_. I\t. implies information h'i(iing by not
allowing any actor to ménipulate the state of another actor, an;)ther impc;r-
tant feature of data abstraction. Note that this is not the same thing as data
encapsu-lation.3 While data encapsulation existed in Simula-68, this treat-
ment of class‘es provided Smalltalk with a powerful new way of looking at

data abstraction.

3.5. Actors Influence Smalltalk.

. The work of Hewitt influenced the rewriting of Smalltalk. Objects were
given more control over their own state, and there was an increase in the
importance placed on information hiding. These changes, together with

significant improvements in the syntax combined to form Smalltalk-76

3 for a discussion of these terms see [Fair85] p. 139-140.

12

[Inga78], the second generation.4

Still not happy with the form of Smalltalk, the Learn‘ing Research Group

began on the third generation which eventuaily became Smalltalk-80 There

were minor syntactlc changes in the language, but the major change came in -

the definition of the classes in the system the implementation of the system
and the envnronment.‘ The environment was redesigned to be easier to use,
the implementation was made more efficient, and the class definitions were
improved. With these changes,i' Xerox released Smnlltalk-80 [Gold83]

[Inga81a], the version we are examining in this paper.

. i -‘.'j W,

1A ducusalon of the history of Smdltdk to this point, and a description of a dialect of Smalltalk-76
can be found in [Kade78]. .

4

Chapter 4.

| Smal}talk, The Environment.

"~ We begin our study of Smalltalk with a look at the environment
[Gold82], [Gold&4]. The reason for this is that the environment is the most
obvibus and visible part of Smalltalk. It is both graphical and interactive

' .
[Ingag1b].. This graphical interaction is usually embodied in the form of a

- monochrome bit mapped display and a three button mouse. Since touch sen-

sitive screens are not éenerally available, the system still needs to have a key-

board ‘a;ttached to it.

The system makes extensive use of graphical entities, such as windows,
menus, etc., so that it is truly interactive. This interaction blaces a restric- -

tive upper bound on the response time that can be tolerated.

: 4..1. The Nature of the Interface.

.~'There are three typgs of graphical entities used: cursof_s, window.s, and
menus. These three types combine‘t<‘>v form an interface that is both simple
and elegant. The underlying theme is that everything the user wants should
be available. By available we mean not only that it should be visible on the
screen, but also that the user should not be required to "get out of” whatever
they are currently using to.be able to use something new. This style of user

interface is known as modeless.

13

14

In keeping with the object-oriented approac‘h, all graphical entities are
"themselves objects. The user interacts with the system by sending messages
to the objects within the system. These messages are sent by selécting items

from a menu. ®

. Even elements‘vqf the hardware are considered to Be objects. Moving the
mouse is a message to the object Cursor to change its position on the sclleen.
Pressing a key on the léeyboard caﬁses a new o;)j:éét of type Keyb(;ardEvent to
be created, whose exiétence and state can be queried by other objects in the
system. - g

The meaning associated with each_of the three ﬁw.use buttons depends
on the current position of the cursor on the screen. To help. the user cieter-
mine the effects of pushing a fnouse button; the cursor can be asked to
display a different rebpresentation of itself at diﬂ'ere;lt times. To promote a
simple interface, the meanings of the three mouse buttons are as consistent
as possible. The left-most button is useq to select items. These i‘yt'ems could
include such things as pieces of text, subportioné of pictures, or graphical
entities like windows. The middle button is used to manipulate the contents
of the window colntaining the cursor, or, if the cursor is not in a,wincfow, the
system as a whole. This is done by bringing up a window-depend'eﬁt menu
" from which commands are selected. The right-most Button is used to mani-

pulate the window itself. If the cursor is not in any window, this button is

not used.

& While not usually necessary, it is possible to send messages not provided for in the menus by enter-
ing the Smalltalk code for the message send and executing it.

/

[

16

4.1.1. ‘Menus.

”

: , ¢ _
The menus used.in the interface are known as pop-up menus. As the

name implies, these menus "pop up” at the current cursor position when a
, menu-preducing'mousé button is pressed. This should be contrasted with
the -‘alternatestyle of menus, called pull-down menus. In this style, the menu
is represented by its name, and the user must move the cursor to the loca_tion

at which the menu’s name appears, and then depress the mouse button.

The pop-u‘plme{nus used in the Smalltalk environment have one ma.jor
advantage over pull- down menus: the user does not need to move the mouse
as often (nor as far) to accomplish menu driven operatlons This tends to
make the interface easier to use once the location of the menus has been
learned (ie. which mouse button brings up.which menus), bui is more difficult

to learn.

Another feature of Smalltalk’s menus, is that the menu always comes up
with the last selected command as the default selectlon This simplifies
repe‘titive execution of commands, but may be disconcert’ing, for those accus-

tomed to other systems.

4.1.2. Windows.,

Windows are a common way to disnlay both text and graphics., Each
" window consists of two parts: a title tab and a view The title tab contains
the name of the window, and appears above the upper left hand corner of the _

view. The viewis a rectangular reglon of the screen in whlch the lnformatxon

associated with the window will be displayed. In addition, there are two

16

v

kinds of views. Primitive views display data in a readable forrrrat, and com-
. . \ -

pound views are ‘those that contain sub-views. Sub-views can likewise be
either primitive or compound.

Since the contents of a primitive view may be only a subpor'tion of the

‘total data available each primitive view can have a scroll bar associated with .

it. A scroll bar is a thin region that displays the relative srze and. posrtxon of

k

the data wrthm the>‘v1ew with respect to the tota,l amount of data avaxlable -

Scroll bars are on‘ly ‘vrsrble whlle the cursor is w;ynn the assoclated View. In

.&« ‘ L

addition to pm@ﬂrng the lnl’ormatlon above scrol'l bars can be used to move

Q
A through the dat‘ﬁ' belng presented.

4.2. The Plﬂﬁ)sqphy of the Interface. . e
?A’}‘J' R

It is usefl.g.jg briefly examrne the philosophy behlnd the 1mplementatroh

of the.user 1ntq!ﬁace By doing so, the reader should get not only a better N

understanding’ ol"‘;the way in which mteractlons with the system are v1ewed

but alsoa better feeling for the obJect-orrented approach to desrgn.

Those objects that are meant to be displayed on the screen and directly
manlpulated by the user are composed of three parts. The first part is called
the "model”. The model is the data actually being displayed and changed
The second part is called the view". The view is the object responsrble for
presenting the model in a fOrrnat that ia easy for the user to understand. The
last part of a displayed object‘ is called the "controller™. .The controller is -

responsible for tramslating user actions and requests’into_ messages that are

then sent to tlie_ model.

17

An example should make this clear. Consider a text editor (a common

component of the environment). The text being edited (the characters that

i
¥

'make ub"the text, the émplfasis of the characters, etc.) is the model. This is
the in{ormation that the user wishes. to manipulate. The view controls the
W;Iy in which that text is form:;,_t,ed in the window. It is responsible for print-
ing out the current state of the text; managing the scrolling of iqggﬁhation
within the window., etc. The controller is the object that fesponds to user
input. It defines the meaning of pressing\keys, associates menus with mouse
~ buttons, and sends méssages to the text to effect the changes requested by

the user.

1

It is the coordination of these three pai‘ts that produces the interface

_ - ,
seen by the user. The controller checks for user input. When‘the user moves
the mouse to select soyle'text, the coniroller first discovers from-the view
| which text was displayed in the indicated region, then tells the text to select
a portion of itself, and then tells the view that the text.has been changed.

Y
This will cause the view to update the screen, providing the user with a visual

feedback (namely, the highlighting of the selected tex't).

9

£

Chapter 5.

\
.
The Smalltalk Language.
/g“l g

AN

The Smalltalk system was designed with two principal gc;als in mind.
First, the system had to l-)'e interactive so that it would be easy to use. In
order for the language to fit into the interaétive environment desired, the
language itself would have to be'interactive. This means that changes to the/f""/
Smalltalk code must be incorporated into the system immediately’ w1thout
the usual overhead of a lengthy. compilation and linking procedure. For thls

reason, the Smalltalk langqagé is wally. interpreted.

The second goal was that the system must be easy to change and those
changes must be automatically reflected in a consistent manner throughout
the whole system. The requirement that changes be easy to make in turn

requires that information be highly localized. In this way/,iﬁ}éce of informa-

'tion need only be changed in one place. For this purpose, the vlanguage

: designers utilized the concepts of actors and classes.

5.1. Objebts.

The heart of the Smalltalk programming language . is the "object".% An

.

dbject is an abstract quantity, representing an intelligent entity that
responds to certain requests This is similar to the deﬁnltlon of an actor as

given by Hetht Thé?’only dlﬁ'erence s that ob]ects in Smalltalk are not as

a

&

_ °.Ex$mple.s of how to program using objects can be found in [Alth81] and'[Deut8l]. S

» 18

19

i

restricted. as Hewitt’s actg,rs."‘Bﬁt for the most part, the words "object" and

o

"actor" are synonymous.

An object can be thought of as consisting of two parts: its knéwledge and .
the set of messages to which it can respond. The concept of messages is dis-
cussed in the next section. An object’s k‘noivledgecon,sists of those objects in

the system with which it is acquainted.

The expressive power‘of Smalltalk comes from mékiI{g everything in the
system an objec.t. This makes the la;guage‘ both conceptually simple and
elegant. By using a simple but powerful metaphor exclusively, Smalltalk has
achieved a level of expreésive power far greater than the power of the ipitial

metaphor.

This ’increase in power can be seen in other languages as well, the most
| notable of which is LISP. LISP (in its purest form) consis£s of only two data
"‘types that are uééd to represent both programs and data. The object in
.S‘malitalk is used in a manner éi‘milar to the atom and list in LISP: as a

universal representation mechanism. -

5.2. Message Sending.

‘% Objects are autonomous entities. The user cannot manipulate objects as:
‘ ihtger languages. Tasks are done in Smalitalk by asking objects to perfor;r‘l
those tasks. This implies that there must be a way to communicate with

objects. The paradigm used is message sending.

7 A defense of this statement appears in chapter 8, "The Smalltalk Metaphor™; it is more spprdpriat.e
to thev_discusaion there.

20

A message is a request for action, togetherﬂw‘ith any additional informa-

tion needed to carry out the action. Messages are sent to objects. The object
. .
to which the message is sent is referred to as the receiver. The receiver can

respond either by changing its own knowledge or by sending other messages

to other objects (or some combination of these).

rAll message sends return a value in Smalltalk. This is the o.nly way that
the sender of the messagé can know that the message has been received and
the request honored. It is also the dnly way to get information from an
object.

A message send is specified by giving the name of the object to whom the
message is to be sent, followed by the messége éxprlassion. The message
expression is a representétlon. of the message and arguments being sent to fhe
receiver. Smalltalk messages are syntactically divided into thréedcategories:

unary, binary, and keyword.

Unary message expressions consist of the name of the-message (any arbi-
trary identifier, like size or print). Unary messages group left to right, so the

expression .
anArray size print
nds the message print to the result of sending the message size to the object -

anArray. The size of the object anArray is printed.

’

Binary message expressions consist of a binary selector (any of a set of
special symbols such as "+", "-", and ",") and a single argument. The argu-

ment to a binary message can be the name of an object or a message expres-

21

sion consisting of unary messages. Binary messages also group left to i'ight.

The expression

‘3 +4%5 "
 sends the message "*" with the argument "5" to the result of sending.the mes-
‘sage-"+" with the argument "4" to the object "3". Th_en;, is no precedence of
operators in Smglltalk. \
A keyword message expression is written as a sequégce of ké‘ywdrd, argu'-

ment pairs (where a keyword is an identifier followed by a colon, like at: or

)
[l

new:). Arguments to keyword messages can be any expression not containing °

keyword messages. For example, the méssage
anArray at: index + 1 put: (anArray at: index)

sends the message at:put: to the object an{4§ray. This message has two argu-
ments. The first is the result of sending fhe mes;age "4+" to the object indez
with the argument "1". The second is the resulf of sending the message at: to
thé object a;zArray with an argument of indez. This has the effect of copying
the element at the sndexth position in the array anArray to the indez plus
first element of the array. Arguments to all three types of mgssage sends can

be parenthesized message sends of any type, as in the example above.

Although there are three syntactic types of message sends, sem'antically., :
all‘ three are treated the same way'. When a message is sent to an object, the
selector (the name of a unary messa:ge., binary selector, or the concatenated
keywords) is used to look up a method of handling the message. This method

is then executed to effect the desired result. If no method can be found, the

22

~user is informed of the problem and given a chance to fix the problem' on the

fly, or just abort the whole operation.

5.3. Methods.

A method is the Smalltalk representationAot; the response to a message..
Methods- are created by the Smalltalk compiler vwhen it ié given Smalltalk
code. A method contains instructions to change t.he receiver’s knm:vledge and
to send messages to other objects' (resulting in the -exgcution of other

methods). -

Methods are also objects, just like everything else. This makes it
extremeAly easy to handle execution errors. Smalltalk has a symbolic
debugger that is'en.teredAwheneVer an error occurs. The debugger‘ is nothing |
rﬁo;e than an iﬁterface to the execution stack formed by the nested mefhod
inv.ocatiolns. Since methods understand seve?al messages requesting informa- -
tion about their current state (ie. the state of their execution), the user can
make changes to this state of execution. Messagés can be sent to open code
editors, recompile, back up and single s;ep through the execution, proceed
with the exec;;tion with the changes madé, or sitﬁply abort the execution of

the methods.

The fact that methods are objects has another advantage. It is e&y to
build control structures from smaller blocks of code. For example, selection
between two biocks "of code can be made by sending the méssage
ifTruc:ifFaI.;c”: (or: a related meséage such as ijTruc:,. ifFal?c:' or

ifFalse:if True:) to a boolean. The arguments to ‘these messages are all blocks

23

of code, and the method in the class of the boolean will ask the appropriate

block to execute itself. .
\

The code passed to control structures is usually very specialized. Since it

is not useful to create a separate method (with an associated message) for

L}

each sucbh block of code, Smalltalk allows the ¢reation of unn—med methods.

These are called "blocks”. A block can take arguments, as -+ normal
methods. Syntactically, they are represented as a list of argumen: sud a list
of message sequ, separated by a vertical bar and surrounded by 7uare

braces. (Examples of blocks z;ppezir in appendix B.)

It is also possible to ifnplefnent iteration in Smalltalk using blocks. The
message whileTrue:, which 1s s.ent'to' a Block, éxecutes its ar.gument‘ as long ac
the receiver evaluates to true. The message do: correspohds._tlo a for loop in
’procedural languages. It is sent to collections of objects to evaluate its argu-
" ment, with each elerheht of thelcollection being used as an argument to the

block.

5.4. The Concept of Class.

The class is Smalltalk’s answer to the second goal (changeability). Every
object is an instance of a class. The behavior of an object is determined by

its class. Classes provide a mechanisrﬁ for data abstraction by describing the
behavior of a group of objects.
Conceptually, each object is represented by that object’s khowledge of

the world and the set of messages to which the object can respond. For

exémple, a complex number is represented by the knowledge it has of its real.

24

and imaginary parts, and the operations that can be performed on it. We do
not want to have to describe this behavior for each cdmplex number in the
system since it is always the same. Insteéd, we want to define it once, and

have ¢his information available to all complex numbers.

This is exactly what classes allow. A class is a description of the
behavior and knowledge common to a set of objects (known as instances of
the c_]ass).’ When a message is sent to an object, its béhavior is determined by
the interpreter which determines the class of the object, and looks in the

class description for the method associated with the selector of the message.

Classes can also provide knowledge that is known by all its instances.
An example of this would be the value of pi, which is known by all real

numbers.

Classes are themselves just objecfs in the system, and can be sent mes-
sages. Typical class messages create new instances of the class and provide
|)

public access to class knowledge.

Since all objects are insténces of a class, classes must also be instances of
2 class. The class of a class is called a metaclass. When an object is sent a
message, the method is looked for in the class of the obje'ct. Since weLwant'
all classes to behave differently (cOnsidgr instance creation), there must be a

different metaclass for each class in the system.

Metaclasses gre also objects, and so must be instances of a class. For-
tunatély, there i®nothing we expect a metaclass to do other than provide a
descript{on of the behavior of its single instance. Therefore, we can create a

single class (called Metaclass) that will be the class of all lﬁgtaclasses. (The

25

class Metaclass also has a metaclass, which is also an instance of the class
Metaclass.) A picture of the relations between classes and metaclasses is given

in ‘ﬁgure‘s.l (adapted from [Gold83]). (Dotted lines indicate superclass rela-

tionships, dashed lines indicate instance relationships.)

5.5. Inheritance.

Classes provide an abstraction mechanism, allowing the definition of a
behavior to be shared by many objects. But all instances of the class must
have exactly the sime behavior. It is often common for two classes of objects

to share a subset of their respective behaviors. It would be convenient to

Integer -..---.. » Number ----.... »Magnitude------- » Object
' '] '
1 1 L} {
]]]]
U U U U
v v 1) ¥
Integer Number Magnitude Object

—— e o ———e i
class class class class

F=====-""

Metaclasse-~-==u-=

A

]

]]

1 i
Vo

- Metaclass

class

Figure 5.1 -- The Class Structure of Smalltalk.

28

abstract the commonalities. For example, integers and floating points are
both numbers, and share some common operations (such as addition and

absolute value). Inheritance provides a means of making this abstraction.

Ever‘y”class in the system has a single "superclass” from which it inherits
part of its own definition. The one exception to this rule is the class Object,
which has no superclass. The superclass relationship forms a tree-like hierar-

chy of classes, with the class Object at the root of the tree.

Classes inherit from their superclass all messages (and the correspf)nding"
methods) together with all the class knowledge of the supérclass. Thu‘s, if a
message is sent to an object, and the interpreter is unable to find a me_thod
forAth.é message in the object’s class, the superclass of the class is searched.
This process is continued—until the root of the superclass tree is found. If no '
method cofresponding to the message is found, the interpreter will respond
by sending the message does]\iotUnderstand: to the receiver of the original
message with the original message as the ar.éument. This invokes the run-
time debugging system.
| In the example of m’xmbebrs given above, the classes Integer and Float
both share the superclass Number. If the message "+" is sent to an integer,
then. the class Integer is searched for a fnethod for "+". If no such method is

found, it will search the class Number, where it will presumably find the

method defined.

Y

The metaclasses also have superclasses. This is necessary if messages
sent to classes are to have the same inheritance properties as messages sent to

their instances. Furthermore, the metaclasses follow the same superclass

»

, the class String.

2%

structure as their instances. For example, Integer's metaclass has as its
superclass the metaclass of'NumiJer (since. Number is the superclass of
Intéger). |

The one exception is the superclass of the metaclass of Object. Recall
that the class Object has no superclass, bieing the root of the class hierarchy.
Since there can only be one root in any t?ee, i.ts metaclz'xss must have a super- -
class. The superclass of the metaclass of Object is the class Class, which '
implements the behavior common to all classes. A more complete picture of
the structure of the metaclasses is shown in figure 5.2 (adapted from -

[Gold83]).

In this way, sending a message to a class will cause the system to look for
a method for the message in the metaclass of the class. If no method is
found,-the metaclass of the class's superclass is searched. If none of the

metaclasses has ah appropriate method, the class Class will be examined, and

eventually, thrbugh Class's superclasses to the class Object.

Subclasses can be used to define refinements of éxisting _cvlasses. For
example, a symbol (in Smalltalk) is defined to be a unique string of charac-

ters. In other words, a symbol is just a string that requires extra processing.

"This is represented in Smél]tallg by making the class Symbol a "subclass” of

S

5.5.1. Collection Classes: An Example of Inheritance.

The superclass hierarchy of classes often involves several levels. An

example of where this is useful is the structure of those classes in Smalltalk

28

Class Integer ------e- » Number «---.... >Magnitude-‘---v-~-> Object

L} ’ ']] t

] t t !]

L] t [}]]

y ’ N Vo
Class Integer’ Number Magnitude Object °
class class class class class

' ! ' 1 ')

1]]]]

\, ' ' K 1

Y] '] 1

v | 1 l |

{ t [} [}
Metaclass<-------- R ettt R it Lemcmcemem - 4
A
[} L}
Vo
Metaclass
class

Figure 5.2 -- Full Metaclass Hierarchy.

that represent collections of other objects.” All collections of objects share a
common minimal behavior. This is represented in Smalltalk’s hierarchy by

the single class Collection, whose supercl'ass is the class Object.

The class C’ollecti-on has four subclassesl. The class SequenceableCollec-
tion cieﬁnes the behavior of collections whose elements can be accessed
s;equentially. Both Collection and SequenceableCollection are examples of
"abstract” classes, that is, classes defined only to abstract out the commonali-
ties of their subclasses. .They do not provide enough behavior by thex.nselve.s

to make instances of themselves useful, though’ it is possible to create

29

instances of them. The class Bag, another subcléss of Collectsion, defines the
behavior of an unordered collection that may contain duplicate e;lements..'
Bagis.a "coqcrete;' class, because its instances are fully functional. The other
two subclasses of Collection are Set, which defines the behavior of unordered
collections that do not-conta-in duplicate items, and MappedCollection whiéh
allows indirect referené'.i'ng of keyed collections‘ by defining a mapping from ah .

external set of keys to'the keys used in the original collection.

The class Set has a single subclass called D;'ctionary, which is defined to
be a set of associations between keys (usually symbols) and theif values. The
class Dictionary also has a subclass, called Ide_ntityDictio‘rRary, in which keys
used to access the values must be identical to thel key stored, as opposed to

s

merely having the same structure.

The class SequenceableCollection is the only other subclass of Collectioﬁ
to have subclasses of its own. It haq four subclasses: LinkedList, ArrayedCol-
lection, Interval and‘ OrderedCollection. The cia.ss'LinkedList deﬁnés the
beha&ior appropriate to lists of elements. Its single subclass, Semapliore,
deﬁnes objects that represent lists of processes.ﬁ ‘The class Interval defines thev
behavior of collections of numbers representing"a m;themz;.tical progression.
The class OrderedCollection deﬁnes‘the bghaviox: of collections‘ whose ele-
ments are ordered sequentially. , SortedCé’llection, the only subclass of
OrderedCollection allows ‘the user to define the ordering procedurally. This
ordering is then maintained automatically, so that the elements of fhe collec-

tion are always sorted. ' <

30

g

The largest subclass of ‘S‘equenccableColIection is the class ArrayedCollec-
tion. This class impleménts the behavior of collections ﬁhose elements are
indexed by integer valqes. It has six subclasses: Array, Bitmap, RunArray,
String, Text and ByteArray. As these data types aré genetally well known,u“\.ve ‘

will not provide a detailed discussion of them here. The hierarchy of the col-

lection classes is given in figure 5.3. ;
The above paragraphs have described briefly the struct:r>of.the class

P

hierarchy r‘eprese_nting the collection classes of Smalltalk. In order to m'akz

¥

Object

Collection |
SequenceableCollection

LinkedList
Semaphore
ArrayedCollection
Array- '
Bitmap
DisplayBitmap
RunArray .
String b ‘
Symbol
Text
ByteArray
Interval 7 :
OrderedColletrtion ; -
SortedCollettion
Bag
MappedCollection L4
Set
Dictionary ' y
IdentityDictionary

Figure 5.3 -- The Smalltalk Hierarchy of Collection Classes.
* 3

31

‘-'t‘: wy o
this discussion complete, we now give an example of a message inherited by
> ‘

all collection classes: the v - ssage includes:. Includes: is implemented in the

“ vi

class Collection. Whe sent to a collection, it will answer true if the collection
cojltains its single arguinent, and‘falae otherwise. It makes use of the mes-
- sage do: which must be defined for all concrete collection classes The mes-
sage do: alilows iteration over all of the elements of a collection by evaluat.ing
its block argument for each element of the collection. Includles: tests each ele-

ment in turn, rememberin.g if it inds an element equal to its argument.

If the m?ssage do: is not implevménted. by some subclaés, the default
implgment:;tion in Collection will be found. This message causes a run-time
érror to occur, informing the user that a message that should have-béen
implemén‘ted was left .undefined. Users deﬁ"ning new collection classes are
thus givén more infoﬁnation‘when debugging fhe deﬁbniti‘ons. The éoﬁvention

of deﬁnirng_methods for messages in order to provide better run-time error

Uéhecking and notificatien is common in Smalltalk.

5.5.2. Problems with Inheritance.

A}

One problem wifh this hierarchical abstraction scheme is that it does not -
permit a class to inherii from two other classes unless one of the classes is a
subclass of the other. This is a serious deﬁclency For this reason, most
Smalltélk systems include a set of classes th;.t 1mplement what.is known as
multiple inheritance. Multiple inheritance permits a class to have more than

one su 'erclass, though one superclass is usually chosen to be the "primpary™
per ug p y primary

superclass.

B

Chapter 6.

The Smallt‘;alk Metaphor.

The metaphor used in Smalltalk is, for the most part, that described by
Hewitt in his work on actors. The programming methodology used in
Smalltalk is, therefore the same as that used when deahng with actors.

_Whlle Smalltalk is not the only programming language to support this style
it is probably the best known 8

This chapter will look at the metaphor behind Smalltalk. Ih Is necessary
to learn to think of objects as actors to fully utilize the power of Smalltalk.

Knowing the language syntax is Just not enough.

8.1. Objects As Actors.

Objects are essentially actors. They are independent, intelligent entities
that are able to do cornplex tasks. To accomplish these tasks, it is necessary
for objects to be cooperative. When a request is made (ie. when a message is

sent), the receiver of the re(iuest will comply to<‘.he best of its ability.

In the last chapter we qualified Qur statement that objects are actors by

statrng that they are less restricted than actors. We now examine that cla;rm,
in the context of the Smalltalk metaphor. .

.In one of his discussions of actors, Hewitt stated that "There is no such

8 Another example is the language PLASMA, developed by Hewitt [Hewi77].

32

33 .

t-hing as ‘action a{d distance’™.® This precludes the occurrence of side effects.
But in Sn;alltalk there is a message that has a side effect. The message is
become:, and it causes the réceiver and the argument to "'changg places” in
the system; with{ all references to the receiver being changed to refer to the ‘
argument, and vice versa.” This means that all objects in the system thaf
used to know about the receiver are modified to know only the argument, and
objects w.hg knew the argument will only know the receiver. Furthermore,
‘these chan_g?as occur in objects without asking the objects themselves. This is
a clear viol(éttion of the actor metaphor. Therefore, objécts are less restricted

N " :.Q‘ﬁ
than actors.

¢

6.2. Object-oriented Programming.

Thinking of objects as actors resbonding to messages has in effect on the
way in which one solves problems. There are three methodologies commonly
used when designing solutions to problems: control-based, data-based, and
object-oriented. It will be useful to compare the object-oriented approach
with both the control-based and thé data-based disciplines in order to gaiﬁ a

better understanding of what we mean by object-oriented.

In a control-based approach, the programrﬁér analyzes the pvroblem from
the standpointA of the 6pe:atiox;s that Qeed to be performed in order to
accomplish the task.. The control structures are designed ﬁrst. This includes
both statement‘ level control and procedural level control structures. {This is

followed by the definition of the data types manipulated.

L

9 (Hewi77] p. 325.

34

‘The data-based approach uses the bpposite order. The problem is
analyzed in terfns of the data structures needed. The solution is then stated
as transformations performed on that data. The actual control structures
used to perform those transformations are ﬁot designed until after the data

structures have been fully defined.

The object-oriented methodology offers é third approach to problem
solving. In this methodology, the programmer begins by defining the actors
(or ogjects) in terms of their behavior. The programmer ignores, at this
stage, the questions of control a“nd data structures. The behavior we deﬁne
consists of the way in which each actor will appear to other actors, that is,
the. (\zS(ternal actions of the actor. Once tl;is has been done, the programmer
determines the information needed by each acter to obtain the behavior ‘

specified. The last stage of the object-oriented approach is to define the con-

trol structures used by the actor to affect its behavior.

N £
In all three of these methodologies, the programmer can use either a

top-down or a bbttom-hp approach. In a top-down object-oriented approach,
the programmer begins by defining the sinigle actor responsible for the eéntire
task. This would lead to a determination of those actors Athat interact with
the first actor directly._ Each of }hese a-ctOI:s. is defined inla similar way, until
fundamental actors (actors that do .nét need to interact with other actors) are

S

. defined. ' /
- ‘ ‘K’

It is equally possible to use a bottom-up object-oriented methodology.

a3

Under this scheme, the programmer would begin by defining the fundamental

" actors. Actors that utilize these actors would then be defined until a single

N

35

actor, capable of performing the task in question, has been defined.

N

When programmiﬂg in Smalltalk, it is common to use a mixture of top-
down and bottom-up methods. The reason for thi{\s is ‘that the Smalltalk
environment is already rich in predefined classes, and fof‘ most problems it is
only necessary to define a few néw classe.s to build a solution. Because th.e
world 1s already populated with 'a “di.verse collection of classes, Smalltalk is
easier to use and more powerful than it would otherwise have been. This is

analogous to standard libraries in traditional languages.

Chapter 7.

Implementation.

We turn now from our description Aof Smalltalk to its implgmentation.
 We stated ecarlier that the primary reason for examining the implerﬁentation
of Smalltalk 1s to determine the subsequent influence of the implementation
on the system. How'ever, there is alsb another reason. Most of the recent
efforts associated with Smaltalk have been attempts to improve the speed of
the implementation [Kras83]. | |

We might well wonder why everyone is trying to irﬁprove the implemen-
tafion. The reason is that Smalltalk tends té be slow. This has been a strong
deterrent tb the” popularity of Sn;alltalk', and it is sometimes felt that
Smalltalk will not be widely accepted, despite its usefulness, until there are
t;etter i‘mplementations; Improving the speed of Smalltalk is, therefore, seen

as a vital effort.

Why is Smalltalk slow? There are three major reasoﬁs. First, Smalltalk
is currently an interpret’éd language, and interpreters ténd to be slow.
Second, Smalltalk is graphically oriented, w"hich requires extensive process-
ing. Third, Smalltalk is a non-VonNe.u'maﬁ language running on VonNeuman
architectures. While none of these reasons would be enough in ahd of itself,
whén the three are takén in combination the result is a system that is p'er-
ceived as being slow. Even the fastest impleméntation tends to be barely fast

enough.

36

37

'

It does not seem that the reasons given gbove are enough to totally
account for the perception of slowness, thoug'h they c’ertainl‘y contribute to it.
The Smalltalk system_seems slow to people becausevsm'a'.vlltalk is so powerful.
By allowing a more natural means of expression, it simplifies .‘the encoding of
the programmer’s concepts. This increases the speed of the problem solving
process so that instead of spending a lbt of time typing, the user spends a
small amount of time interacting and a small amount of time waiting. In

other wbrds, Smalltalk increases the efficiency of its users.

There are other problems with the implementation of Smalltalk besides
its speed. One of these is the amount of memory required. The native code
(both the interpreter and the predefined Smalltalk objects) occupies« about

1.5 megabytes, and this does not include anything that the user might add.

The other major proble‘m with Smalltalk’s im’p]ementationb is that it
requires special hardware to be run. Specifically, it needs a bit-mapped
gra'ph‘ics scréen, a three button moilse, énd enough periphe:ral storage to hold
" the éy’stem between executions. These factors .tend to‘\make Srhalltalk an

<

expensive language to implement.

7.1. A Virtual System.

In an effort to make the Smalltalk system easier to.transport between
ma;chines, it has been éplit into two parts: the virtual machine and the vir-
tual image [Kras81]. The virtual machine is quite small and is machine
dgpendent. The virtual image is far larger (around one kilobyte), but is

identical on all installations. The relationship of the virtual image to the vir-

38

tual machine is shown in figure 7.1. \

7.1.1. The Virtual Machine.

The virtual machine is a computer architecture designed especially for
Smalltalk. It has an instruction set that is tailored toward executing message
sends and other Smalltalk peculiar -operations. It also has several "system”

calls defined which perform I/O operations, primitive arithmetic, etc. The

-

only code an implementer needs to produce is the code to simulate this vir-

~
N

tual machine.
R

virtual
image

virtual
machine

...................................

real machine

Figure 7.1 -- The Virtual System.

39

7.1.2. The Virtual Image.

The virtual image is an implementation independent description ol; all
the objects in the system. This includes all the text and pictures, as well as
all the Smalltalk code. Th‘ese objecfs are stored in a predefined format that
is consistent with the original implementation, but that can be easily

adjusted to fit alternate impiementations.

7.2. Object Memory.

The first major sub-system in the virtual machine is the me iy
manager [Kaeh81]. The object memory is a heap, from which the space for
- objects caﬁ be gllocated, together with the data structures used to manage
the heap. The object memory is responsible for allocating and deallocating

this space, and for providing access to the space it has allocated.

The first complication to thé‘r‘nemory manager is caused by having
objécts of varying sizes. Because the lifetime of most objects is short, this
will tend to fragment memory. .This is a well understood problem, aﬁd the
most common solution is to compact memory at intervals. Unfortun‘ately,'
with a memory size of well over one megabyte, this.te‘nds to be slow. The
problem is further compounded when we take into account that m“‘ost of the
object memory contains pointers to objects. These poipters must be modified

if the object’s location in memory is changed.

The solution taken in most Smalltalk implementations is to use a struc-
ture known as an object table. The object tableis a mapp\ing between virtual

object addresses and logical memory locations. This makes compaction much

faster, since only one entry in the table need be changed, regardless of the

number of references to the object being moved.

The disadvantage of using an object table is that it adds a level of
indirection to all object references. This is another factor which slows down

the system.

There are two additional reasons for using an object table. First, it sta-
blizes response time by spreading out the cost of dynamically allocated
objects. There is a penalty each time an object’s memory is accessed, but
this is not noticeable by the average user. If no object table is used, then
there is, likel}_' to be a noticeable delay whenever the system compacts

memory. -

There are algorithms that spread the compaction process out over time.
They work by doing incremental garbage collection. The use of such an algo-

rithm eliminates the response time argument.

However, there is a more fundamental reason for having.an object table.
Recall that one message u_nder'stood by all objects is the. message become..
Thi; message causes the receiver and the argument to "change places” in the
system, with all references to.the receiver being changed to refér to the argu-
ment, and vice versa. This operation is considerably faster‘ if an object table
is used. This message must be sent every time a structure’s size is dynami-

cally increased. Dependingon the applications of the system the savings

could be considergble.

The choice of whether to use an object table is not an easy one to make.

It will depend on the types of operations best suited to the 'underlying

/TN

41

hardware and the type of applications intended for the system. The most
common choice is to use an object table. Berkeley Smalltalk is one systém
that does not make use'of an object table. Both the original Xgrox irﬁplemen-
tation and the. later Tektronix Magnolia implémen‘tation used an object

table.

7.2.1. Garbage Collection.

Since the deallocation of objeqts is transparent to the user, the object
memory must provide some form of garbage éollectioﬁ mechanism. We have
already seen the effects of compaction on the design of the memory manager,
but there is another choice to be made. There are two prevalent techniques
for finding unused memory: reference counting and mark-sweep garb.age col-

lection.

The preferred methodéfor Smalltalk systevms is reference counting./The
reason for this is the same as that used to promote the use of an oiject table.
'If a reference counting garbagf collector is implemented, ‘thien the cost of per-
forming garbage collection will be spreéd out more evehly over the whole exe-
cution cyélé. This in turn makes the presence of garbage collection more

transparent to the user.

\

The one drawback to reference counting is the possibility of circular data

structures, which will never be detected as garbage.!® Mark-sweep garbage
collectors solve this problem, but take a long time, during which the user is

.

unable (typically) to do any work.

10 for a more detailed description of these problems see [K.nutn] p-412-413 or [MacL83] p.439-446.

42

I

Qne possible solution is to inc.li;dA- b-ot'h iypes of garbage collection_.
When a reference count drops below zero, the space isx reclaimed. If th;e
amount of free space drop"é below some limit, then a inark-sweep garbage col-
lectb; is invoked to deal with the accumulated circular data structures. This -
- has the advantage that no garbage will go undetected forever, but the extra

~

time required to find it will only be spent if the space is really needed. Also,
if a lmérk-sweep collector is implemented, circular garbage can be removed

before the object memory is written out for between-session storage, thus

decreasing external storage requirements.

7.3. Bytecodes.

The second major sub-system in the virtuhal machine is the bytecode
interpreter. Bytecodes are the machine instruction's for the virtual machine.“
~ They are similar to p-code or. m-code instructions, consisting of push and pop
‘operations, fetches and stores to object fields, conditional and unconditional
branqhes, and message sending instructions.

Although the choic_e of bytecodes influences the system, the decisions
that must be made when implementing the bytecode .interpreter tend to have
little or no influence on the systeﬁ) beyond the speed of execution. We will
~look at the effects of including bytecodes in the definition of the system later

in this chapter.

7.4. Primitive Methods.
The third major sub-system withiﬁ the virtual machine is the collection

of primitive methods. A primitive method is like a system call and is

43

implelnented as part of the virtual machine. It performs some task not pro-
Avided for by the bytecodes. The types of tasks handled by the primitive
methods include: integer and floating point arithmetic, input and output,
object ereation, low level manipulation of ebjecte, execution and process con-
trol, and basic system'control functions (such as exiting the system, gat.hering

performance measurements, etc.).

7.5. Influence Of Implementation On System.

Our primary motivation for examil)ing the implemel]tatioh of Smalltalk-
80 was to determine the eﬂ'ects.of the implementaltion oxl the system. We
‘therefore conclude this chapter wiih a look at those fee.tures ol' the implemen-
tation that have the_ greatest effects on the system, and the effect each

feature has.

The first implementation leature that effects the Smalltelk system itself
(as opposed to just the performance of the system) is the collectioﬁ of
bytecodes. Bytecodes are optimized for the Smalltalk language ThlS mal\es.
them more eﬂ‘ic1ent for executing Smalltalk code, but it makes them less gen-

eral than might be desired.

For exa.mple,A one could write an interactive environment for a program-
ning languag‘e. other than Smalltalk using the tools available in Smalltalk to
build the interface: This situation has occurred with p-code, é.nlirltermedia.te
lapguage originally intended for Pascal that has since been used for se\;eral
other languages. However, it may-be difficult to translate the code for the

other programmlng language lntd bytecodes

44

Another problem with bytecodes is that, although they exist within the
systen’;, they are not objects. One goal of Smalltalk was to apply the concept
of "objects'; more universally than had earlier lnnguages. Although compiled
methods (blocks of. bytecodes resulting from "compiling" Smallt'alk code) are
objects, the instruct.ions themselves are merely "byte encoded”. This is done

for the sake of efﬁcienJy.

It is interesting, however, to note that while instructions are not objects
 because they are byte encoded for efficiency, that characters, which are also

‘}usually byte encoded, are treated as separate objects within the system. A
i
_ simllar treatment could have been applied to bytecodes, resultlng in a more

Y

un'iform system.‘
Bytecodes are not the only things within the system that are not true
| objects. Primitive methods are not objects either. It 1s\p0531ble for a method
to include, as part of its implementation, a call to a primitive method at the

"beginning of its code. Any code that follows this call is executed only if the
" primitive method returns a "failure” (ie. detects an error.in the arguments).

Since objects are not allowed to return conditions like SNOBOL [Gris71]
and ICON [Gris83], primitive methods are not objects. The user of the sys-
tem can not even refer to primitive methods excepf when writing code. This

concept of "successful” execution does not appear anywhere else in the sys-

<
tem.

LA

One can envision a system in which primitive methods are instances of

/

the class PrimitiveMethod. The user would not be allowed, of course, to

manipulate the state of the objects indiscriminately, but this scheme would

45

i

allow for adding new primitives to a running system and ‘for,colnpiling

) Sma]ltalk code into the machine code of the underlying processor. The disad-
% e
vantage of allowing this is “that it would'ﬁe difficult to test the valldlty of new

"pnmxtlves ‘This would lead toa decrease in system rellablllty

"There is. another problem associated with/p'rimitive\me'thods. The invo-

cation of a primitive method is giot the result of executing an instruction in

the compiled method. Instead, it is stored as a bit encoding, along with other
encoded informat'lonﬁ;,;in a single integer value. When a co‘mpiled method is
asked to execute itself, it first looks at the encoded information in this

hY

integer. If it indicates that a primitive method exists for this message, the

method will execute the primitive method instead of itself. This is not as

general as it could be. . . ' '

' ';r:

There are several other places in the system in whlch other information

is similarly encoded Certam information in class descnptlons 13 also bit
.‘.‘, .

: encoded In practlce these bit encodings are not a senous problem. It is pos-
sible for the user of the system to access these values, makmg them appear to
L J

be merely integer encodings. While integer encodings may not~ seem elegant,

they can help make the system more efficient in terms of speed.

In general, the question to ask when evaluating an implementation tech-

nique ‘is whether it disrupts the user’s view of the system as a collection of
actor-like objects. We have seen a clear example of a Smalltalk feature that

dld violate this view of the system. The message bccome causes a mde-»eﬂ'ect

which goes against the actor metaphor in lts strictest sense. On the other -

hand using 1nteger encodings for certain fields of frequently used and

B

L 46

1

common objects does not violate this principle. Therefore, integer encodings

are consistent with Smalltalk (here we mean some ideal‘ for;n of Smalltalk)

while messages like become: are not.

Chapter 8.

+ The Smalltalk Reality.

We have already seen some of the features of Smalltalk, but we wil take
a more in-depth look at them in order to identify their strengths and

weaknesses.

8.1. Where It Falls Short.

We begin our examinatibn with those features that we feel ;a.ré'undesir-
able. Our examination will encompass three major areas\. We will first exam-
" ine the problems With the syntax and the semantics of the Smalltark pro-
gramming language. We will then look at the Smalitalk class definitions that
create problems when usmg ‘Smalltalk. We w1]l conclude by restatmg the

most 1mportant problems with the 1mplementatlon
).

8.1.1. Problems With the Language.

8.1.1.1. Cagcaded Messagesl. '

We said earlier that Smalltalk message sends consist syntactlcally of the
name of the recelvef followed by a message expressmn. However, the
language defines a feature called "casqaded messages”. A cascaded message
consists of #‘singlé receiver, followed by one or more message expressions
separated by semicolons.” This is a shorthand way of sending each of the mes-
sag‘es. to th;a receiver, one after the other, as if each message expression had

8
.-.‘

47

48

been preceded by the receiver’s name.

The concept of. cascaded messages seems convenient at first, but it'
violates a primary prin_ciple of programming language design: the principle of
“syntactic consistency [Rich77], [MacL83]. Syntactic consistency means that a
single concept should have a single representation. In this case, howéver, a
single concept (a message send) has tWo fomjs. We do not feel that the con-
venience of ‘cascaded messages fs enough to jhstify the syntactic complexity

4

and possible confusion that results.

8.1.1.2. Assignment.

The next language feature we look at is assignment. We intentionally
| postpon'ed iptroducing a;signment until now because of the problems associ-
ated with it. Syntactically, it is represented by a variable name followed by a
left-arrow («) and a message expression. Semantically, this rr;eans to bind the
v;riable given on the left to the object which is the result of the message send
on the right. Also, as in standard programming languages, a variable name
occurring within a message send is replaced by the object to which it is

bound.

Although an assignment is written like é.ny other message send, it is not.
The assignment "operator™ is not a binary selector. There are three impor-
tant differences between it and binary selectors. First, its "receiver” (ie. the

left hand side) is not dereferenced as are receivers of messages. It is not pos-

sible to specify this special treatment for real binary selectors.

49

Second, it can not be redefined or overloaded. Binary selectors can have
deﬁnitio.ns in many diﬂ'erent-vplaces. For example, the selector "+" indicatés
addition if sent to a number, and concatenation if sent to a string. There is‘
nothing in the definition of the classes which implement message selectors or

methods to prevent the character "«" from being used as a binary selector. It

is only the language definition that prohibits this use.

Third, the value "returned” by the assignmenf“ can only be used in
another assignment or as the value returned by a method. True message
senés return values that can be used anywhere, including using the value as
the .argument to another message send. The u:se of the assignment "operator”

is inconsistent, and should be changed. A combined solution to both this and

the next problem will be presented later.

8.1.1.3. Variables.

The last problem with the Smalltalk programming language that we
examine in this paper is the definition of variables.” The problem ié that vari-
ables aré not obje‘cts. All o_bjécts are required to be an instance of a class.
But variables do not have a class, so 'they can not be objects. Iﬁ is also p()ssi-
ble to send messages to objects, but. it is impossible to send messages to vari-

ables. ‘
There would be nothing wr(;ng with this if variables were merely a syn-

tactic conve'niénce for déscribing obj»ect_s to the compiler. Thé period, used .

- between message expressions in a method description to separate expressions,

is exactly this. The period is needed by the compiler, and does not pose a

50

problem.

But variables are more than ju.st names given to objects for reference
“within a given piece of Smalltalk code. -If we can change the object refer-
enced b‘y them‘, they must have an existence apart from ihe objects assigned
to them. (We are c_ertainly not modifying the object represented by .tHem
when we assigh new values to them). Therefore, we must conclude that vari-

ables exist within Smalltalk.

But, as we stated earlier, variable are not objects. The value of a vari-
able is always an objéct, but the variable itself is not. This is another case

in which the actor metaphor is not strictly maintained.

It is because variables are not objects that message sends are always

“call-by-value. They can not be call-by-reference since no reference to the

~

variable exists. We can not pass a variable to a method, since only objects
can be passed as arguments. If we could pass a variable, then we could

change the value of the variable, thus producing a call-by-reference discip-

Y

line.

/

cept of memory cells used in traditional VonNeuman architectures. The cells

The definition of variables used in Smalltalk is a throwback to the con-

are used to store objects, but the concept is the same. This is not to say that

A,

%he ‘idea of variables is somehow bad, onlyv that the concept should be

represented in a consistent way.

51

, —
8.1.1.4. A Solution.

The solution, to both the problem of variables and the problem of assign-
ments, is to make variables be objects. If variables were objects, the incon-
sistency would be removed. Furthermore, the assignment "operator” could

be a true operator (that is, a binary selector) which is sent to the variable.

Variables could be implemented by either defining a new class or by
using an existing class (for example Symbol). Using an existing class would
require adding a new _pviece of‘information to the knowledge of instances of
the class (namely, the object bound to the ig’stance). The class Symbol would
work well for this, because syfn’bols are alréady uﬁique within the Smalltalk

'A

system.

Symbols within Smalltalk would play the same role as atoms in LISP.
Symbols could also beAde‘ﬁned to have an arbitrary number of properties,

'jmaking symbols totally analogous to atoms. Notice that this would have the

" extra benefit of allowing the user to experiment with different binding stra-

tegies.
A

8._1.2; Problems With the Cl#ss Descriptions.
The'ne);t set of problems we wish to examine come frc;m the definitions of
the classeé supplied with the Smalltalk sy‘stem.f'There is only one instance of
~a class definition that needs irﬁprovement, but there are a couple of more

general observations about the use of classes as a structuring technique.

82

8.1.2.1. The Class BitBit. N

Since Smalltalk is graphichll-y oriented, it %s not surprising to find that a
substantial portion of the pré-deﬁned classe? deal with gr‘aphics. One of
those classes is DisplayScreen, whose instances represent physical display dev-
ices. The class DisplayScreen is ‘.a subclass of the more gemeral class
DisplayObject. A_display quect is an imaée that cany!)e displaye/

The way in whiéh one performs graphical operations is by sending the

message copyBits to an instanc‘é of the class BitBIt.!! Instances of the class
BitBlt represent bit manipulation operations. They have knowledge about all
the primitive opei‘ations, including speciﬁcation of a‘comlbination schemé and
clipping. The ihstances of BitBit also know who the bits are to be taken

.

from, and who is to receive the bits.

—

The class BitBlt was created for two reasons. First, there are fourteen
separate parameters governing the copy operation. Forcing the user to
respecify each Qf these values for every copy would be unpleasant atbbest.‘
Typicélly, several operations are done with only minor changes to some éf
these arguments. Therefore, the class BitBlt g‘llows a way to specify the con-
stant factors only once. The second reason was to allow the creation of a sin-
gle implementation of this frequently performed task, that could be optim-
~ ized to improve the speed of Smalltalk. The message copsz;ta is implemented

as a primitive method.

11 The name BitBit stems from an early implementation of Smalltalk on a machine with an instruction
called BLT, which stood for "block transfer”. A BitBit operation is a transfer of bit Jocations, hence the
name "BitBIt", or "bit block transfer”. :

53

The i)roblem with BitBlt is that we are sending a message to an instance
of this class to effect a change in another object. BstBlt is acting as an inter-
face to one of its display objects. This is a good solution, except (:,hat we
already have an interface to objects called messages. A message is an object
that rémembers_ tho dperation being requested, and all the arguments to be
passed on to jthg.‘fe'c:é_iver. BitBlt is just a special (ie. single) purpose message,
and theré"«ivs‘.'no r.éa"] need ‘for this. Instead, .instances of BistBit should be

U | . :
represented as general messages sent to display objects.

There are two possible reasons for making Ba'tBlt a separate class. The
first is the cfficiency question raised above. This issue is a red herring. If bit
operations were performed by sevnding a message to display objects, then the
.method associated with that message could invoke the optimized primitive.
The second reason is that messages are rarely created. When fhe compi‘ler
finds a message send, it translates the,‘ sena into the bytecode equivalent of

 thesend. This too, is an insufficient reason since messages work just as well.

8.1.2.2. Scalars and Subranges.

We now move on to make some observation about the ﬁse of classes as a
. structuring technique. For most data structures, classes provide a,natﬁral
and convenient way of expréssing the behavior of the data. But there are two
categories of data for which classes seem to be less th;m ideal. These

categories are scalars and subranges. »

Scalars and subranges are important data types, and the difficulties with

rep}esenting them are interesting. There are several examples of scalar data

4

54

types in the Smalltalk system, but there are no classes that represent
subranges. The lack 8 such classes is significant, especially in light of the
frequency with which facilities to define subranges are being included in most

modern procedural languages.

The exampl;s of scalar data available illustrate another problem; Con-
sider the class Smalllnteger (which implements integers within a finite range).
Instances of this class are stored as pseudo-objeéts (although the fepresenta—
tion is well hidden) to make them more efficient. Conceptually, all scalars
know one piece of information: their ordinal value within their class. This
information is typically stored as an integer value. Instances of the class

Smalllnteger are special in that they are their own ordinal value.

Instances of the class Character, on the other hand, mu~st explicitly store
their ordinal value. The ordinal value is based on the ASCII encoding
scheme. Because the ordering of characters is defined in the virtu image,
consistency is guaranteed. This also allows chara'cters to be stored compactly
as- bytes when they are used to compose a string. The class C’h/artfcter pro-

: | : : S
vides a message that returns the character whose ordinal value is given as the

argument. '

Characters and integers are conceptually similar. All characters (or
integers) are represented as instances of a single class, and have an ordering
defined on them. Because of these similarities, it is natural in Smalltalk to
_ abstract the b'ehavibr common to them into a single class. The glass Magni-

tude provides the behavior common to all scalar types.

a

55

1

In additi.on to the classes Character and SmalIIﬁteger which are fairly
common pre- deﬁned scalar types, Smalltalk provides two unusual classes
Instances of the class Time represent the time of day, to the nearest second.
Instancos of the class Date represent a date (day, month’ and year), thh the
earlmst date being the first day of the Julian calendar. Both Date and Time

are subclasses of Magnitude.

We said earlier that Magtzitude'implements scalar types. However, not
all of the subclasses of Magnitude are scalars. For example, the class Float is
a subclass of Magnitude. Floating point numbers are not scalar, since they
are conceptually not finite. Another example of a non-scalar numeric sub-

class is Fraction, whose instances are, like floating points, not finite in nature.

In addition, thereis a giaring absence from Magnitude's hierarchy. Con-
trary to most modern procedural languages, Smalitalk does not define boole-
ans to be scalars. Booleans are represented as unique instances of the classes
False and True, both of which are subclasses of the class Boolean. The reason
for Having two subclasses is to enable the objects ¢rue and false to respond

ﬁerently to control messages. For example, the object true responds to
ifTrue:ifFalse: by executing the first argument, while false responds by exe-

b

cuting the second argument.

Thus, the representation of scalars,\(‘xand their proper place in the class
hierarchy, is inconsistent at best. Instances of classes like Smalllnteger and
i Character have a knowledge of their ordinal position within the scalar type.

Instances of classes like Float and Fraction, while inheriting all of the

behavior common to scalars, are not scalars. Instances of t es Time

¢

¢ 56
and Date, while scalars, do not store an explicit ordinal position. They rely |

on'the ordinal positions of their constituent parts to provide their ordering.

The lack of consistency illustrates the problem. In Smalltalk, a ciass can
only be implemented using arrays and records as constfuctors. This is ade-
quate for non-scalar data types, bup is only marginally acceptable for scalar
types. It is simply not ge. ral enough for subrange definitions. We feel that
. a more genefal stfuctliring mechanism needs to be developed. |

8.1.2.3. Private Messages.

-

y: .' A_nother problem with the Smalltalk class definition scheme is the
absence of private messages. Curreptly, if a message is defined for a class or
its instances, that message is available to anyone in the system. In order to
promote small, modular methods, Smalltalk should provide a s.cheme for
declziring certain messages to be internal to a given class. But this" would add

complexity to the method look-up scheme, and the benefits gained might not

be worth the cost.

23

8.1.3. Problems With the Implementation.

We have already looked at most of the problems int‘roduéed by the
implementation, but we feel that two of these problemsare important enough
to warrant mentioning them again. These two inoblems are bytecodiés ah;
primitive methods’. Specifically, neither of t.hese is an objéct. It is not
surprising th'at including features not .reprlesented by obiécts would iptroduce

problems. We have said before that the power behind Smalltalk comes from

its uniform treatment of everything in the system as an object. Introducing

14

57
features that are tr'eated'diﬂ'erently can result in a loss of expressive power.

8.2. Where They Did It Right.

We turn now to the more positive aspects of Smalltalk. What follows is,

of necessity, general. The problem here is that there are so‘ many good

features that picking out a reasonable number for discussion is impossible

without leaving out something important. 'Even so, there are a couple of gen-

" eral classes of benefits that we will discuss to make this discussion more bal-

anced.

5;2.1. Benefits of the Class Descriptions. ‘

One benefit of using Sm\a/ll'talk is_vthat the system provides a rich set of
building blocks. As we said before, ifnplementing a solution to rﬁos't prob-
lems of ;noderate‘ size involves deﬁniﬁg a handful of new classes, or adding to
existing classes, and coordinating the actions of the instances of these c'lasses.
The rewards are often far greater than the effort exﬁended. This is due to the

fact that so ‘many classes are pre-defined.

Smalltalk also promotes sharing of class definitions by providing support
for transmission of classés in a standard textual way. This is important in

any program ing language if we are to avoid re-mventmg the wheel every

time we write a program. Tradltlonal programming languages that support

'separate compilation permit this same approach. But traditional languages

of this sort do not generally come with as many standardized, pre-defined
classes as Smalltalk. This standardization of pre-defined classes is due to the

fact that there is ohly one version of Smalltalk. 7

68

o

Another advantage of having such a iarge base of classes in the system is ‘
~that it provides the beginning programmer wit‘htmany useful - examples.
Becailtse object-oriented programming is unfamiliar to many ‘people it 1s
important to have a la;ge set of examples. This should help those who are

unfamiliar with Smalltalk begin programming in the system.

8.2.2. Benefits of the Metaphor.

)

The other general class of henefits stems from the underlying metaphor
used. The actor formalism, developed by Hewitt and utilized by Smalltalk,
provides considerable expressive power. We have argued before that this is

primarily because it is both simple and consistent.

Hov{?éver, just being powerful does not mean that the language is useful.
It is possibvle to have a language that is powerful, but difficult to use. For-
tunately, this is not the case with Smalltalk. Smalltalk provides a useful way
of expressing soluiions to problems. Because of the nature of Smalltalk, these

solutions also tend to be both simple and elegant.

This does not make Smalltalk a replacemént for ot/!;er lang.uagesr: The;e
are times when other programming languages may be better. For exanmple, if
speed and efficiency are major considerations, then Smalltalk is probaLbly not
the best choice. As the implementations of Smalltalk are im}noved; this will

no .longer be true.

Another result of using the actor formalism is thajﬁ Smalltalk is easy to .
learn. The model of intelligent actors is an intuitive one. This makes

Smalltalk easy.for non-programmers to use. Because Smalltalk is ihtéractive,

—a

o | | | g 59

non-programmers can quickly learn how,{o write message sends (as opposed
) e : 5 . R f

r'a

to merely using ments). This is the first step i‘n~learning.to_ program in

N

Smalltalk.

émalltalk has also beem taught to children with some success. This is

‘not surprising, since Smalltalk has rﬁahy similarities to LOGO [Pape80],

another language used td instruct children. Both languages are graphical in .

nature though in sllgbtly different ways They are both modular but LOGO
1s procedural stressmg small sunple procedures Both are small and syntactl-

cal]y_ sxmple, with correspondipgly simple semantics~ "This is another strong

o

, indication that the actor metaphor is a good one for d‘personal computér like

vy

tlie Dynabook is envisioned to be.

o

o

%7

&

Chnpter 9.
&

~e

'Future Directions.

Smalltalk’s history has been one of constant improvement. There were

eight years and three versions between Smalltalk’s con‘ception and the release.

of Smalltalk-80. This is é."/large_ precedent for cedntinued improvement‘s,

[}

although the changes may be slower nov ‘hat Smallt-" s been. released.
And while there has yet to be a Dynabook, work will u - .oul. 'ly continue in

one form or another. It is only fitting that we take a look ai some of the pos-

sible enhancements and future di_fections for the language and the system.

9..1. St.rongly Typed Smalltalk.

It has been suggested that Smalltalk 'shou-l,d; be made into a strongly
g #

- typed language 12.The benefits of strong vy ping are well known Although

2 ’

Smalltalk s variables are currently polymorphlc thxs feature of the language
is used in relatively few places. In most of.t_he instances where it is used,
variables are allowed to be of any type that is a subtype of some single class

of obJects It is almost never the case that a single variable will have values

that do.not share a common set of messages.

The type of an ob]ect m Smalltalk would be the class of the object. Vari-

ables would be a]lowed to have values that are objects whose class is either

X \«" ",

the same as or a subc}ass of the Ttype” of the variable. In addltlon to the
;“" ”:' l s u o e
12 Possible methoqlp’ SOV : . o :

Kl
@t

61

knowledge already known by obJects each object would know the ° ‘type” of
the knowledge known. This would allow the Sm;lltalk compiler to do the
same kind of chéckinjg done by the campilers for strongly typed languages

like Pascal. Modula-2, and Ada.

'9.1.1. Problems with Strong Typing.

There are a couple of problems with introducing strong typing to

Smalltalk. First, strong typing reduces the freedom of expression allowed.

This is not necessarily a bad thing, the question we need tol whether or
not this freedom 1is needed. Since there are few times when €
taken advantage of, it does not seem as though this would bg”ag serious a

problem as it first appears to be.

‘Thé second problem is a more difficult one to solve. The duestion ‘is, how
do we handle objlects that repvresent collections of pther objects? As a typical
case, consider the class Array. Currently, arrays can have elements of
differing types. But if we_’wz:’nt Smalltalk to be strongly\ﬁped'we would need
ié include. the‘ coﬁcept of a "base" type for collections. Again, the ultimate
question is whether this would inhibit the natural expression of solutions tg

problems. This is somewhat more difficult to determine.

O
- 9.2. Frorp Programming Environment To Operating System.

Another possible future enhancement is make the Smalltalk envxronment
a multl-user one. This would, ideally, make it p()ss\xble to use Smalitalk for

projects reéuiring teams of program_m&s. It wou_ld also have the L - of

AV

A

lz".
. Ry

82

removing the "toy” language label which is sometimes attached to Smalltalk.

There are many problems with designing a multi-user Smalltalk. One of

Mg}e first problems is protection of users from other users’ changes to the sys-

tem. Smalltalk is an open system, ‘allowing the user to change anything.
This should still be allowed, but changes made by one user should not affect -

other users of the systerﬁ unless the other users accept the changes.

R

o '.'N‘E)tké:hqi&@;\'(er; that a multi-User Smalltalk is contrary to the concept of

the Dynabdok. Recall that the Dynabook was to be a peréonal computer.
This implies ‘a single user, who is in complete control of the system. This
- ¥ . .j '

vision must be balanced against the appeal of using Smalltalk for large pro-

jects.

- One possible compromise is to use a Smalltalk-defined network to com-

v
.

municate information between two (or. more) Smalltalk environments. There
is already an implementation independent textual format for transferring
’c‘lass'deﬁnitions between Smalltalks; but an external mechanism is required

4 .
for shipping the text from machine to machine.

One solution td'this problem is to add a built-in modem ;)r other com-
munication facility to the Dynabook, togefher with a protocol for transmit-
ting individual objects between machines. We Would not need to restrict our-
§elves to the static loading of objects. One can envision an applicat'ion which
would allov&one to communicate with other Dynabook owneré by entering
information into a "communication” window .and having the information be

! A

displayed on the other Dynabbokfs screen (also in a window, of course).. This

4

[Susu8l] and [Born82).

e

‘.’"'. - o

83

information could consist of words, pictures, music, etc.

>

9.3. Parallel Computation and Multiple Processors.

A major problem with Smalltalk is .its speed. A natural solution to this

" problem is to use vmyl‘tiple processors. Smalltalk current]); suﬁports multiple
processes within fhe system, by time sharing the single processor between
t‘hcm. There are two ways in which multiple processors could be utilized, and

.some combination will probably used in the near future.

The first way to use more than one processor is to incorporate special
dedicated processors to manage the hardware with a single general proceésor
dfor execution of S‘malltalk code. An example of this would Be to have a dé&i-
cated display processor to update the screen. _This would help make up for

the slowness of the graphics. It is not at all clear how control or information

"should be split between these processors, however.

The second way to use multiple processors is to have more than one gen-

eral purpose processor in the system. These processors could be moY:ledin

muni-

the system as instances of the clas's‘Processor, and would probably co
cate by sending messages, with the rest of the objects being "shared”. This
use fits well with the notion of having independent actors, since it would
ailow_ multiple actors to be ;a.ctive at once. As the numb’t{of general purpose
processors increases, the attr.activeness of special purpose procgssdrs becomes

greater.

. “J.

64

9.4. Introducing Color.

Another possible addition to the Smalltalk environment fs color graphics.
There is a lot of wo;k remaining to be dcne with reépect to invest-igating and
formalizing the use of color in user interfaces. Siﬂce Smalltalk makes it easy
to create and test alternate styles of user interfaces, it éeems an ideal place to
make these experiments. Whether color should be used évery where, or just

in selected areas is one of the questions to be answered.

In additioh, recall that the goal of the Dynabook is to provide a medium
for personal expression. Color seems to be a required component for such a
system.. Since Smalltalk is the language of the Dynabook, adding color to

Smalltélk's.eems to be necessary.

9.5. Introducing Sound.

" Another component that needs to be added to Smmlltalk before it is used
in the Dynabook is sound. Early versions of Smalltalk included sound, but it

was dropped in more recent versions. This was probably done to make
: Ve - "9.

~

szillta‘lk. more portable. As more and mor"éh-iac.hi_né:s: are produced which
incorporate sound generators, §8and will once again-become an integral part
of the system. Applications using sound are already being writteh for

machines that can generate sound, such as the Macintosh.

‘{

'*Chapter 10.

Conclusions.

. A

We have examined thé Smglltalk sy"stem,' and made several observafions
about it. There are several problems with the system as it is currently
"defined and implemented. However, Smalltalk is clearly an important system
for several reasons. It introduces a new metaphor for problem solving. It
prov1des an mteractwe graphlcal environment that improves programmer
productivity. It provides a large and extensible base of data types, organlzed
in a hlerarchlcal sttucture. ‘Tts inheritance mechanlsm allows abstractlon of
common behav1or locahzmg modifications to the deﬁnltlons And ﬁnally, we

_examined a few of the possible e}nhancements which could serve to make the

. Sﬂ"mal‘ltalk system even better. . .

Smalltalk is the combination of Aian Kay’s vision of the Dynai)ook and
Carl Hewitt's actor fofmalism. 'T‘he"idea be;ind the Dynabook is an appeal-
ing one. ’ljhe actor fnodel, by its very simplicity and consistency, provides a
powevr‘ful‘l:w;y' of expressing. solutions. Together, they have influenced the

‘field of computin_ggﬁ;s'g"lénce dramaiicdlly. ‘It seems likely that they will con-

- %% tinue to do so for many years to come.

65

s

[Alth81]

[Borng2]

[Deut81]
[Fair85]
[Gris83]
[Gris71]

[Gold82]

. [Golds4]

References.

1Y
* . Q

Althoff, James C., Jr., “Building Igat.a Structures in the

Smalltalk-80 System,” BYTE, pp. 230-278 (August 1981).

Bornin:g, Alan H. and Daniel H. H. Ingalls, “A Type Declaration
and Inference System for Smalltalk,” Proceedings of the Ninth
Annual ACM Principlés ofvProgramming Languages Syﬁxposium,
(January 1982).

Deutsch, Peter L., ““‘Building Control. Structures in the Smalltalk-

80 System,” BYTE, pp. 322-346 (August 1981).

Fairly, Richard 'E., Software Engineering Concepts, McGraw-Hill
Book Company (1985). .

Griswold, Ralph A. and Madge T. Griswold, The IconTPrbgram~

ming Language, Prentice-Hall (1983).

Griswbld, R. E., J. F. Poage, and 1. P. Polonsky, The SNOBOL/

Programming Language, Prentice-Hall (1971).,

4

Goldberg, Adele, “The Influence of an Object-Oriented Language

on the Prqgﬁ}amming Environment,” (Journal paper), pp. 35-54

r

(19827). :

Goldberg, Adele, Smalitalk-80 : The Interactive Programming

N,
(.

Environment, Addison Wesley, Reading, MA (1984).
RN ® ‘

.
SE

&

[Gold83]

[Hewi73]

[Hewi77]
[Inga81a)
[Inga81b]

[Inga78]

[Kade78]
[Kaeh81]

[Kay77]

[Knut73]

67

Goldbefg, Adele an‘d David Robson, Smalltalk-80 : The Language
and sts Implementation, Addison Wesley, Reading, MA (1983):
Hewitt, Carl, Peter Bishop, and Richard Steiger, “‘A Universal
Modular ACTOR Formalism for Artificial intelligence,” Third
A.nnual IJCAI Proceedt’ngs, PP- 235-245 (1973).

Hewitt, Carl, ‘“Viewing Control Strﬁciures as Patterns of Passing. .
Messages,"” Artificial Intelligence 8 pp. 323-364 (1977).

Ingalls, Daniel H. H., ‘“Design Principles Behind Smalltalk,’;
BYTE, pp. 286-298 (August 198@) |

Ingalls, Daniel H. H., *“The Smallt.alk Gr.ap:.hics Kernel,” B‘YTE,
pp. 168-194 (August 1981).

Ingalls, Daniel H. H., “The Smalltalk-76 Programming System --

Design and Implementation,” Conference Records of the Fifth

Annual ACM Symposium on the Principles of Programming

Languages, pp. 9-16 (January 1978).

Kaden, Neil Ezra, “.‘ul,l‘__n_derst‘.anding Smalltalk,” Master’s Thesis,
University of Toronto (October 1978).

Kaéhler, Ted, “Vi}tual Memory for an Object-Oriented
Language,” BYTE, pp. 378-387 (August 1981). |

Kay, Alan and Adele Go'ldberg, “Personal Dynamic Media;" Com-
puter, pp. 31-41 (March 1977),

Knuth, Donald E, The Art of Computer Programming, Volume 1 /

Fundamental Algorithms, Addison Wealey, Reading, MA (1973).

[Kras83]

[Kras81]

[MacL&3]

[Pape80]
[Rent82]

" [Rich77]

88

Krasner, Glenn Smalltalk-80 : Bits of History, Words of Admce

Addison Wesley, Reading, MA (1983).

Krasner, Glenn, "“The Smalltalk-80 Virtual Machine,” BYTE, pp.

300-320 (August 1981).

MacLennan, Bruce J, Prt'nc:'nles of Programming Languages :

Design, Evaluation, and Implementation, Holt, Rinehart and Wins-

ton, New York,(19783).

Papert, Seymour, Mindstorms: Children, bompulers, and Powerful .
Ideas, Basic Books, Inc. (1980).

Rentsch, Tim, “Object Oriented P}ogramming,” ACM SIGPLAN

Notices 17(9) pp. 51-57 (Sepnember 1682).

Richand, Fredricn >and Henfy F. Ledgard, ‘““A Reminder fo;'

Language Designefs," SIGPLAN Notices, pp. 73-82 (Dec. 1977):

!

[Shoc79] Wohn F., “An Overview of the Programmlng Language
. Smalltalk-72,” SIGPLAN Notices 14(9) pp. 64-73 (September

Y
1979). .
[Suzu81] énzuki, Norinieal, “fnferring Types in Slmalltalk,” Conjerence
Co Record of the Et’ghtl; Annual ACM Symposium on the Principl-es of
Programming Languages, pp. 187-199 (January 1981).
g

Ap;endix A.

A Partial Hierarchy of Smalltalk Claﬁsses;

.V’

R

Qbject
Magnitude
Character
Date
Time
Number
Float . ’ ,
Fraction
Integer
LargeNegativelnteger
LargePositivelnteger '
Smalllnteger : Y B
LookupKey ; @ ”"f? ‘
Association
Link
Process
Collection 0
SequenceableCollection
LinkedList -
& Semaphore
ArrayedCollection
Array §
Bitmap
"DisplayBitmap
RunArray
String
Symbol
TRext -
ByteArray - S
Interval ' .
OrderedCollection ‘
SortedCollection
Bag o
MappedCollection
Set '
. Dictionary . - B
IdentityDictionary

Stream

PositionableStream
ReadStream
WriteStream

ReadWriteStream
ExternalStream
‘ FileStream
Random '
File

FileDirectory
Filel’age
UndefinedObject

Booléan'
False
True

ProcessorScheduler
Delay ,
-SharedQueue

Behavior
ClassDescription
Class
MetaClass

Point
Rectangle
BitBIt

‘CharacterScanner
Pen o

DisplayObject
DisplayMedinm
Form ’
Cursor

DisplayScreen

InfiniteForm
OpaqueForm
Path %

AV

e
e

e

Arc
Circle
Curve
Line
LinearFit
Spline

ny

s

"]

71

7 R

.D:‘ :) o . . *..\'r"

N
N

e _ : Appehdix B.

#

The Definition of the Classﬁag :

class name . Bag L .
superclass Collection '
instance variable names ‘contents ’ A :

category . ' ’Collections-Unordered’

class comment

"] am an unordered collection of elements. I store these elements in a
' dictionary, tallying up occurrences of equal objects. Because I store
an occurrence-only-once, my clients should beware that objects they
store will not necessarily be retrieved-$uch that == is true. If the
client cares, a subclasgiof me:should be created.”

B Y

3
class methods :

instance creation

new y

.

t super new setDictionary
- instance methods - o L

= .»;{-I}%accessmg i _ "

&S i .. £
" at: index o
] ’ : . L

self errorNotKeyed_

at: index put: anObject

5 e

" self errorNotKeyed
size

. | tally |
A " tally < 0.

gy
AR,
B A

- o T - .
s contents - - . o _)
+. dos ‘ ' _ ‘ S o a
L [eachl A - e
e tally - tally + each] ‘ S
t tally | o : S
sortedCounts ' .
"Answer w1th a collectlon of counts with elements, .sorted by .
de_creasmgqount. ol S o ° _
Lo W : : .
|dounts ' f,.; e EORC AR e
‘cbunts -| SortedComctﬂrbtf%* ﬁ“ﬁ” R
sortBlock ',‘,, - i B
X S=yl B D
- contents . v _{#}‘3 B T ' o
| assoc1at10nsDo e '
[sassn| N “

b
<
P
<.

. counts add (Assocxatlon key z}ssn value value: assn key)]
_ G ‘{ Sy -
Elements o ‘ Do ‘ P

&nswer with.-a ecollection of elements wnth counts, sorted by
Tl element‘,&. t Wt B S A

L L E A o

k “v;'}f'-_: elenﬁnts IP ot N o | : e

0qcontents ﬁ. i
L asagcmtldnsf)a 7'5’- S
- Lo ", sn/l : "A" . = T L e) s i ’
L . Y [as G- R » A .
: e el%mggntgtadd assn] o ' o)

. f~eleme'nt45 : % -‘ %g " ' : | . . -.

testin_’q SR .- ' to . AU
o '“‘ N . s 3 ' . e .
? ln”cludes anOb_)ect TR e :
t contents mcludesKey a.nOb]ect S R
< °la . | ’ . . .
occurrpn_cqsOf: anObject | N v
e 0 \g- R o E T *
. N

e (self mc]udes anObJect) ' o o
lfTrue' ‘ : ‘ L
[fcontents’ at: anOB]ect] oo e T |
: 1fFfalse oo e T oL
r ';\"‘4' . o . [' O] . 5 ‘,., , , . ’ # ; R . . - L ' ' «

Ty
.- Q'ﬂ\

| I ' T4
‘adding °
add: nei»vaj'ect .
. - [4 =

.«
t self add newObject \VlthOccurrences 1
add: newOb_)ect wnthOccurrences. anInteger

"Add the element newObject to the elements of the receiver. Do
" so as &hough the element were added anlnteger gumber ofmmes

Answer newObject.” - Coen N
¥
(self includes: newObJect) <o _ . ‘Y ‘ ‘
ifTrue: | ' B SN
- [contents 4t: newObJect, put: anInteger + (contents at:
newObject)] - . '
lfFalse
[contents at: newObJect put: anlnteger]. .
t newObJect A R * @
L &
. » _ S |
memove:.ﬁ“ldO%j‘éct ifAbs'e'nt': exceptionBlock . v
' nt .. - P _)
|count | .
. (selfmcludes oldOb]ect) .
f{.,lfTrue& , - o
S Hfeolnt - contents at: oldObject) = 1 o
i '%‘V‘.' ¥ ifTrue: .
' + [contents, gemoveKey 'S}dObJect] . «‘%‘ R
e ifFalse: o RS
= 'y [contgnt)s at: oldObJact put count - 1]] Y ’
e lfl“als‘qfv ; | o
[V g except10nB&oc%value 2 ' , e
TN toldObject ‘ :
o § . : < s
'enumer.at_mvg, ' . | : ' & S
“do:-aBlock - : ‘ -
. -% - Cme . '
G nténts . o : . =
3 . associationsDo: . - Tt -
a [:assoc | S S -
.., . assoc value ' ‘ A

Y

: tlmesRe%
. [aBlo Q:value @assOC ﬁeyn

. . h v
. Pj \ - -
. P
- . S
-) ~o : .
. .. ,
3

- 4 ‘

3 . .
‘private ‘ o B -

e

setDictionary

contents - Dictionary new o ; o »

>
\ ! '
A
«
g -
. v
i
. ~ & .
vt . .
. 2 .
» B ..
N R ‘
W v
. , L)
s - -7
p .
2 ! e
P .
- ’ »
'
vt .
" . o
\ , o .
¢ e
T $
2
[“ . @ '
¥ v ’
S
’ -
[. T .
. \ . ql\; %
. . R
e . P3
(W at R ; .
" \!' ’ \‘ .
"
1 o
- e
R s \ . & . 4t
P g
e N v ot ’
a2
.
5) ~ "
N . W
b b
. v - -
Bt t
Y
“ .
, . N {%.
’) - ‘-l
: S &
N 2 - . 3 - .
™ . -~ 7 <A - :
v I .
.) . 24 A - . 4’
N . . : . '3
E . R S
. . 8 .
N“. - ‘
- - &
.)
‘O i Y s
- N) . ‘. b 4 Foa. W
] 4 - - e -
\ - v -
“ i 2 . -2
! E T 3)
N - S . B
. h - * . 4 A
el = ‘ ~ N : . . - .
.. L
y . # @ T ‘
N M . ‘ ~ : S -
& ‘ P . Tom . ta
. , . - : oo
- : o ! 4 w o
. . o . . -
. b‘“%ﬂ@i’ r - ’
N . 5«\‘" - . <. :

