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Abstract

With the rapid development of smart grids, the detection of anomalies is essential

to improve the quality and security protection of the grid. The identification of

anomalies not only saves valuable time but also reduces maintenance costs. Due

to the increasing deployment of distributed energy resources, traditional methods of

protecting the grid that rely on simple linear models and manual inspections are

no longer sufficient. Meanwhile, the massive amount of data generated by smart

meters and phasor measurement units provide opportunities to better monitor and

control power grids in real-time. Due to this advantage of data availability, various

machine learning and deep learning methods have been proposed and are currently

demonstrating successful results in anomaly detection in power systems.

While previously proposed artificial intelligence techniques can successfully de-

tect anomalies, most of them tend to require large amounts of simulated data of

all different types of anomalies for training their framework. However, anomalous

data may be rare in power distribution systems. In addition, their static training

model makes them vulnerable to new data from different distributions entering the

system. To address these drawbacks, we propose data-driven frameworks based on

deep learning network models to directly detect anomalies in power distribution sys-

tems. Anomalies are generally defined as observations that deviate from standard,

normal or expected values. Specifically, this work is divided into two phases. In the

first phase, we consider anomalies as events caused by changes in the distribution

system load, such as customer disconnection from the grid. A long short-term mem-

ory network is proposed to predict the next time step of the voltage magnitude of all
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buses in the distribution system. A threshold function based on Euclidean distance

is then used to detect voltage anomalies by utilizing only normal data. The results

corresponding to this proposed framework have been successfully tested using a real

distribution network.

In the second phase, we aim to classify faults and locate faulted lines in partially

observable distribution systems using convolutional neural networks. To improve

the robustness of the classification and localization performance, we extract feature

vectors with measurements in the observable buses as inputs to the proposed classifier.

In addition, we incorporate an online continuous learning algorithm to accommodate

variations in the level of integration of distributed energy resources and changes in the

load of the distribution system over time. Unlike previous data-driven approaches,

the proposed method also deals with imbalanced learning tasks, as fault data are often

rare. The performance of the method has been tested and validated by simulating

ten faults on a real distribution feeder model.
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Preface

Some of the work in this thesis is a result of a publication, described in article M. Zhou,

and P. Musilek, “Real-Time Anomaly Detection in Distribution Grids Using Long

Short Term Memory Network,” published in 2021 IEEE Electrical Power and Energy

Conference (EPEC). Chapter 3 of this thesis is adopted from the publication. Section

2.4.1, anomaly detection state-of-the-art, Section 2.2.2, distribution test system, and

Section 2.6.4, recurrent neural network and long short-term memory network, in

Chapter 2 is also adopted from the publication. Chapter 4 of this thesis has been

submitted to Applied Soft Computing, as M. Zhou, and P. Musilek, “Real-time Fault

Classification and Localization in Partially Observable Distribution Systems using

Convolutional Neural Networks,” and the article is currently under review. The rest

of this thesis is the sole original work of the author.

iv



Acknowledgements

The author expresses her appreciation and gratitude to Dr. Petr Musilek for his

supervision of this work. His advice and assistance in the preparation of this thesis are

thankfully acknowledged. The author also wishes to thank Electrical and Computer

Engineering Department and the Faculty of Engineering at the University of Alberta.

v



Table of Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 A Typical Distribution System . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Distribution System Protection . . . . . . . . . . . . . . . . . 6

2.2.2 Distribution Test System . . . . . . . . . . . . . . . . . . . . . 6

2.3 Anomalies in Distribution Systems . . . . . . . . . . . . . . . . . . . 6

2.3.1 Events Caused by Changes of Load . . . . . . . . . . . . . . . 7

2.3.2 Distribution System Faults . . . . . . . . . . . . . . . . . . . . 8

2.4 Anomaly Detection in Power Systems . . . . . . . . . . . . . . . . . . 9

2.4.1 Anomaly Detection State-of-the-Art . . . . . . . . . . . . . . . 9

2.4.2 Fault Detection in Power Systems . . . . . . . . . . . . . . . . 10

2.5 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Neural Network Training . . . . . . . . . . . . . . . . . . . . . 13

2.5.3 Neural Network Regularization . . . . . . . . . . . . . . . . . 16

2.6 Machine Learning in Power Systems . . . . . . . . . . . . . . . . . . . 17

2.6.1 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . 18

vi



2.6.2 K-nearest Neighbor . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.3 Convolutional Neural Network . . . . . . . . . . . . . . . . . . 20

2.6.4 Recurrent Neural Network and Long short-Term Memory Net-

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Real-Time Anomaly Detection in Distribution Grids Using Long

Short Term Memory Network 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Methods and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Time-series Forecasting . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Unsupervised Anomaly Detection . . . . . . . . . . . . . . . . 29

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Performance Measures . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 32

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Real-time Fault Classification and Localization in Partially Observ-

able Distribution Systems using Convolutional Neural Networks 36

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Data Acquisition and Feature Extraction . . . . . . . . . . . . . . . . 38

4.2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Method and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 CNN Training Process . . . . . . . . . . . . . . . . . . . . . . 42

4.3.2 Incremental CNN with Calibration Modules . . . . . . . . . . 43

4.3.3 Fault Type and Fault Location Identification Process . . . . . 45

4.4 Data Preprocessing and Model Setting . . . . . . . . . . . . . . . . . 47

4.4.1 Fault Type Classification Model . . . . . . . . . . . . . . . . . 48

vii



4.4.2 Fault Line Localization Model . . . . . . . . . . . . . . . . . . 51

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.1 Offline Performance . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5.2 Online Performance . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Conclusions, Recommendations, & Future Work 61

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Bibliography 65

viii



List of Tables

3.1 Designed anomalies with corespondent time. . . . . . . . . . . . . . . 31

3.2 Prediction results comparison between 1D-CNN and LSTM, using MAE,

MSE, and RMSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Number of samples generated for normal operation state and for each

fault type (g represents gound). . . . . . . . . . . . . . . . . . . . . . 39

4.2 Structure of the Fault Type Classification Model, CNNC . . . . . . . . 49

4.3 Structure of the Fault Location Identification Model, CNNL. . . . . . 50

4.4 Model performance comparison using weighted average accuracy. . . . 54

4.5 Model performance with different SNR (dB) using weighted average

accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Model performance with different PV penetration levels using weighted

average accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Offline and online model performance comparison with different load-

ing conditions using weighted average accuracy. . . . . . . . . . . . . 60

ix



List of Figures

2.1 A typical radial distribution system. . . . . . . . . . . . . . . . . . . . 5

2.2 Fault types in power system [11]. . . . . . . . . . . . . . . . . . . . . 8

2.3 A mutilayer perception (MLP) contains two hidden layers. . . . . . . 13

2.4 Linear classification using SVM. . . . . . . . . . . . . . . . . . . . . . 18

2.5 K-nearest neighbor classification. . . . . . . . . . . . . . . . . . . . . 20

2.6 Representation of the one-dimensional convolutional neural network

(CNN) architecture with data input connected to the convolution,

pooling, flatten, fully connected and the output layer. . . . . . . . . . 22

2.7 Representation of the recurrent neural network (RNN). . . . . . . . . 23

2.8 Structure of an LSTM memory block [59], where xt, ct, ht denotes the

input, cell state, and hidden state of the cell at time t, respectively. . 24

3.1 Systematic diagram of the proposed anomaly detection framework.

The proposed method is divided into two phases: phase A focuses on

time-series forecasting using LSTM and phase B incorporates the real

and predicted time-series into an anomaly score function. This func-

tion detects anomalies that are further examined by the grid operator

or other expert. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 LSTM architecture. The hidden layer involves multiple memory blocks. 28

3.3 The prediction results for a particular node’s voltage data using 1-D

CNN and LSTM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Performance of anomaly detection. . . . . . . . . . . . . . . . . . . . 34

x



4.1 Calibration modules containing spatial and channel-wise calibration

modules applied sequentially to the activation maps. Here ⊕ and ⊗

represent element-wise addition and channel-wise multiplication oper-

ation, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Proposed architecture for incremental learning. The top architecture

is used for the first task, where the model is trained from historical

data. The bottom architecture is for all subsequent tasks and the

model is trained from part of historical data and all new data. L1−Ln

represent layers of the base CNN module. The calibration modules

calibrate the output activation map Mi to produce M∗∗
i at layer i. C1

is the classification module. To adapt new input data, the base CNN

modules are frozen and not trainable. They are marked in grey color

with the hatched pattern. . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Overall fault type classification and fault location identification frame-

work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Performance comparison on the proposed CNN, ANN, M-SVM, and

KNN for 10 and 11 type of faults, respectively, using F1-Score. . . . . 53

4.5 Model performance comparison with and without SMOTE using F1-

Score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Model performance comparison with different SNR using F1-Score. . 56

4.7 Performance of the proposed online learning model on fault type clas-

sification over varying PV penetration level and loading condition. . . 59

xi



Chapter 1

Introduction

1.1 Motivation

Electricity is essential in our daily life. Due to the high cost of obtaining energy and

the limited energy resources, efficient and operational use of energy is an important

aspect of the economy and society in every country. The rapid development of smart

grids and increased penetration of distributed energy resources (DERs) has become

a key solution for more efficient delivery of electricity and brings many significant

benefits, such as system scalability and reduced demand peaks [1]. It also provides

a platform for integrating customer-owned generation, including renewable energy

systems [1].

In addition, the increasing number of advanced metering infrastructures in the

smart grids leads to massive amounts of available data. This, in turn, provides

opportunities for better real-time monitoring and control of electric utilities. However,

the increased complexity of the grid has also increased the fundamental challenges

for system operation. As a result of these changes in the distribution grid, traditional

approaches to power system protection, based on simple linear models and manual

checks, have limited performance when facing the new complexity and huge amounts

of data. Failure to detect anomalies can result in significant financial losses and may

even lead to power system collapse [2]. Therefore, it is important and urgent to

develop effective methods that can address these challenges and detect anomalies as
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quickly as possible. Subsequently, additional actions can be taken at the discretion

of the distribution system operator to mitigate the anomaly or to analyze it further.

Machine learning (ML) techniques have undergone tremendous advances, recently

achieving near-human performance on a variety of applications, such as email filtering,

speech recognition, and computer vision. ML algorithms have also been widely used

to effectively detect anomalies in various domains in power systems, such as energy

consumption, cyber-attacks, and power grid line outages.

Anomalies are usually defined as observations that deviate from the standard,

normal or expected values. The anomaly detection problem of interest in this work

is based on analyzing the measured values of smart meters and sub-station data

collected in the distribution network. Specifically, we aim to investigate two types

of anomalies. 1. Events caused by load changes in the distribution system, such

as customer disconnections from the grid, unexpected voltage drops, or voltage rises

caused by DERs. 2. Electrical faults caused by human error, equipment failure, or

weather conditions.

While previously proposed ML techniques can successfully classify or locate anoma-

lies, most techniques tend to require a large amount of simulated data on all different

types of anomalies. The anomaly data, however, is usually rare. In addition, the

static training model of many ML techniques makes them irresponsive to new data

from different distributions. Considering the latest trends and challenges in anomaly

detection for power distribution systems, we aim to explore and develop advanced

ML techniques to overcome these issues.

1.2 Thesis Objectives

The goal of this work is to explore the application of existing ML and deep learning

techniques to detect or localize anomalies and subsequently find ways of adapting

these techniques to benefit anomaly detection in radially distributed systems. Sev-

eral deep learning methods originating from natural language processing and image
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recognition will be explored.

There are two main objectives in this work:

1. The first objective is to apply unsupervised ML techniques that use only normal

data to detect events caused by load changes in the distribution system. Three

types of events are considered in this study: customer disconnection from the

grid, unexpected voltage drops, and voltage rises caused by DER.

2. The second objective is to develop a CNN-based framework for fault classifi-

cation and location identification in partially observable distribution systems.

Four types of fault are considered in this study: line-to-line fault (LLF), line-

to-ground fault (LGF), double line-to-ground fault (LLGF), and three-line-to-

ground fault (LLLGF).

1.3 Thesis Outline

This thesis is structured as follows. Chapter 2 begins with an overview of a typical

power distribution system and the anomalies of the distribution system relevant to this

study. A brief literature review on anomaly detection in power systems is presented

next. Then, a brief literature review of anomaly detection in power system is given.

It is followed by a brief introduction to deep learning and its fundamental techniques.

Then, a closer look at the machine learning mechanisms in the field of power system

is presented. The problem of real-time anomaly detection in distribution grids using

long short term memory network is presented in Chapter 3. Chapter 4 describes the

real-time fault classification and location in partially observable distribution systems

using convolutional neural networks. Conclusions and possible directions for future

work are presented in Chapter 5.
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Chapter 2

Background

2.1 Introduction

As described in Chapter 1, the goal of this project is to develop accurate and effective

deep learning techniques for detecting or locating anomalies in radial distribution

systems. This chapter describes a typical distribution system and reviews the com-

monly encountered anomalies on it, which are the anomalies of interest in this work.

An overview of recently developed anomaly detection techniques for power systems

is given. This chapter also provides a brief introduction to deep learning and its

applications in power systems.

2.2 A Typical Distribution System

Distribution networks of an electric power system connects bulk sources of energy to

customers’ facilities. Depending on the type of construction, distribution systems can

be divided into overhead and underground systems, with underground systems typi-

cally being more expensive and time-consuming to maintain. Distribution lines typi-

cally operate in a radial pattern. Loads are typically tapped along the line and can be

single-phase and/or multi-phase taps. Line construction is usually non-homogeneous,

as distribution lines extend as the load grows. If a fault occurs at any point in the

radial system, the supply system beyond the point of failure is isolated and the supply

to the customer is interrupted. It is estimated that 80% of interruptions are caused
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by faults in the distribution system [3].

Figure 2.2 shows a typical radial distribution system with sub-transmission cir-

cuits, substations, primary feeders, transformers, secondary circuits, and service to

customers’ facilities. Sub-transmission lines carry energy from bulk energy sources

to distribution substations. Distribution substations typically consist of supply lines,

power transformers, buses, switch gear, capacitors, circuit breakers, isolators and re-

closers. Transformers reduce the voltage of the supply line to the voltage of the local

distribution level.

Sub-transmission Lines

Distribution 
Substation

Primary 
Feeder A

Primary 
Feeder B

Sub-feeder

Distribution 
TransformersDistribution 

Transformer

Customer 
Services

Secondary 
Mains

Customer 
Services

Single Phase
Lateral

Figure 2.1: A typical radial distribution system.

Three-phase primary distribution feeders distribute energy to the load centers.

The feeders carry high currents to the feeding points, and the size of the feeders is

determined by the current-carrying capacity. From these feeding points, the circuit

branches into three-phase feeders and single-phase laterals, consisting of overhead
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lines and/or underground cables. Distribution transformers are installed to reduce

the feeder voltage to service level. The secondary circuit distributes energy from the

primary distribution feeder to the customer through the service drop.

2.2.1 Distribution System Protection

Devices commonly used to detect and isolate abnormal or faulty circuits in a power

distribution system are phase to phase-overcurrent relays and grounding overcurrent

relays [3]. Relays identify abnormal circuits in a system by detecting abnormal cur-

rents, abnormal voltages, abnormal frequencies, or a combination of them. Relays

are installed to continuously monitor the distribution system and to send a signal to

trip a circuit breaker or recloser in the event of an abnormal condition.

2.2.2 Distribution Test System

The test system used in this work is a real distribution network located in the Mid-

western United States. This fully observable network, where all customers have smart

meters installed, is operated by a municipal utility company. The test system con-

sists of 240 primary network nodes, 3 feeder lines, and 23 miles of primary feeder

conductors involving more than 1,120 customers [4]. Electrical components include

overhead and underground cables with various phase configurations, load tap-change

transformers, various secondary distribution transformers, shunt capacitor banks and

circuit breakers [4]. Data include all customer smart meter measurements for one year

(January to December 2017), system component parameters, and detailed network

topology. To simulate this system, we used a commonly used open source solver, the

Open Distribution System Simulator (OpenDSS).

2.3 Anomalies in Distribution Systems

Anomalies, or outliers, are data points that deviate from the pattern or distribution of

the majority of the data [5]. In fact, there are different types of anomalous behaviors
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in the power distribution grid. These anomalous behaviors can be caused by abnormal

consumption patterns of users, faulty grid infrastructure, outages, energy fraud, or

external cyberattacks [6]. Specifically, in this work, we are interested in detecting

two types of anomalies: events caused by load changes in the distribution system and

electrical faults.

2.3.1 Events Caused by Changes of Load

In this analysis, there are three types of events. Persistent outages are defined as

the loss of service for longer than the normal re-closing interval, or the disconnection

of a customer from the grid. According to statistics provided by the U.S. Energy

Information Administration, the average loss of power per customer in 2016 was

about 4 hours [7]. Power outages can be caused by accidents in the distribution

system, animal disturbances and weather events. In addition to the safety aspects of

outages, power outages mean lost time, lost customers and lost productivity.

Voltage drop is another major issue when it comes to quality maintenance of the

power system. According to the European standard EN50160, a voltage drop is a sud-

den reduction in the effective voltage value to between 90% and 1% of the stipulated

nominal value, followed by an “immediate” restoration of that voltage. The duration

of the voltage drop is between half a cycle (10ms with 50Hz grids) and one minute [8].

One known cause of voltage drops is start-up or inrush current from capacitors, mo-

tors and other equipment. That is, startup of large loads can cause voltage drops.

Voltage drops can lead to high costs and continuous processes that are particularly

affected by this.

The event of voltage rise caused by DERs have also been studied. Overvoltage

problems typically occur when DERs generate more power than the load on the

feeder. The situation does get worse when DERs generate their peak power during

periods of low demand [9]. This problem can affect the power supply, shorten the

life of equipment through overheating, increase power consumption, and even cause
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transformer failures.

2.3.2 Distribution System Faults

Distribution systems are usually subject to shunt faults. Shunt faults are classified

as symmetrical faults and asymmetrical faults. Symmetrical faults are severe faults

that occur infrequently, while asymmetrical faults are common but less severe [10].

Asymmetrical faults are classified as LGF, LLGF, and LLF. Three-phase faults LLLF

and LLGF are two categories of symmetrical faults. In this work, we focus on four of

these faults: LGF, LLGF, LLF and LLLGF, as shown in the following.

Phase A

Phase C

Phase B

AG BG CG
Line to Ground 

Fault (LGF)

AB BC AC
Line to Line 
Fault (LLF)

ABG BCG ACG
Line to Line to 

Ground Fault (LLGF)

ABCG
Three Line to Fault 

(LLLGF)

Figure 2.2: Fault types in power system [11].

LGF, also known as short circuit fault, occurs when one of the three-phase conduc-

tors of the distribution system reaches the ground due to wind, falling wood, animal

contact or line drop [12]. LGF occurs at the rate of 70%, which makes it the most

common fault in the distribution system network [13]. LLGF is a severe occurrence

that causes severe asymmetry that can become LLGF if not resolved within a spe-

cific period of time. LLGF occurs when high winds or falling wood cause one phase

to touch another phase, where 10% of faults in the distribution system are due to

LLGF [13]. LLGF can occur on overhead or underground electrical lines due to high

winds or a short circuit in both conductors. Approximately 15% of defects in the

distribution network are due to line-to-line defects [13].

Symmetrical defects, also known as LLLGF, occur when there is an equipment
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failure, when conductors reach different phases, or when towers connecting the re-

maining phases fall to the ground. LLLGF is the least common fault, accounting for

only 5 percent of line faults, however, it would be the most detrimental [13].

2.4 Anomaly Detection in Power Systems

Due to the rapid development of smart grids, anomaly detection is needed to improve

the quality and safety protection of the grid. Anomaly detection has been widely

studied and applied in many different areas of the power system. In this section,

the recent advances in anomaly detection in power systems are first outlined in Sec-

tion 2.4.1. Then, Section 2.4.2 presents related work for specific types of anomalies,

i.e., fault detection in power systems.

2.4.1 Anomaly Detection State-of-the-Art

The existing anomaly detection methods can be categorized into two groups: machine

learning-based and statistics-based. Machine learning methods have been widely used

to efficiently detect anomalies in various areas, such as energy consumption, cyber

attacks, and grid line outages. In [14], a micro-moments–based deep neural network

model was proposed to detect and classify energy consumption anomalies. In [15]

and [16], an LSTM neural network was employed to find a change in the behaviour

of a system and detect anomalies in energy consumption. The proposed model shows

improved accuracy in electricity theft identification. In [17], a neuro-cognitive in-

spired architecture based on Hierarchical Temporal Memory was proposed for real-

time anomaly detection in smart grid using micro-phasor measurement unit (PMU)

data. In [18], a supervised AI-based load estimator was developed to detect false data

injection attacks by comparing the values of the estimated loads and their actual

measurements. In [19], a data-driven framework combining a breadth-first search-

based mechanism, a generative adversarial network, and a zone coordination process

was proposed to detect and localize outage events in partially observable distribu-
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tion systems by capturing the changes in smart meters’ data distribution. In [20],

a residual-based anomaly detection framework utilizing batch principal component

analysis was developed to detect missing and bad data anomalies in primary dis-

tribution voltage magnitude measurements. In [21], various representative anomaly

detection algorithms such as multivariate Gaussian distribution and one-class SVM

are proposed to determine implausible inspection reports and assist in re-inspecting.

Statistics-based models have also been proposed to detect abnormal events. These

models focus on extracting statistical features of the normal time-series data and uti-

lize statistical techniques for measuring the difference between the observed patterns

and the learned normal patterns. In [22], an alternating current power flow model and

statistical change detection scheme were developed to detect dynamic outages using

voltage phase angle data collected from PMUs. The proposed model can also capture

system dynamics since it retains the time-variant and nonlinear nature of the power

system. In [23], a random matrix theory and mean spectral radius based architecture

was proposed to conduct anomaly detection in smart grid and to locate the abnormal

sources. In [24], a distributed, multi-agent maximum likelihood (ML) approach was

employed to detect anomalies in smart grid with reduced computational complexity.

The proposed method also intended to preserve data privacy among different players

in the network. In [25], the authors propose an ensemble Kalman filter based anomaly

detector using a relaxation-based solution to detect cyber-attacks.

2.4.2 Fault Detection in Power Systems

In recent years, several studies have explored techniques for locating faults in power

systems. These methods can be divided into two categories: conventional and artifi-

cial intelligence algorithms.

Conventional methods include traveling wave-based and impedance-based meth-

ods. Both methods are beneficial for transmission systems. But when considering

the increasing complexity of the distribution system’s topology, these methods are
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not very effective. Traveling wave-based techniques are based on the principle of re-

flection and transmission of traveling waves between the line terminal and the fault

location. The advantage of the method is that it is independent of system config-

uration and load variance. However, it can be costly to implement, as it requires

high-speed data acquisition devices and sensors to capture the transient waveform

for fault location [26–28]. Impedance-based algorithms are popular due to their sim-

plicity and cost-effectiveness in comparison with the traveling wave-based techniques.

Impedance-based algorithms use measured voltage and current to compute the bus

impedance. From the calculated impedance, the fault distance to the measured point

can be determined [29, 30]. These algorithms depend on high values of the fault cur-

rent at the main substation to calculate the fault resistance, which can lead to multiple

estimations of the fault location [31]. Additionally, these methods are vulnerable to

random noise and changes in system parameters.

Due to the complexity of distribution grids and the availability of massive amounts

of data, AI-based algorithms have attracted increasing attention. Since AI methods

can automatically extract features and learn from historical information, they are

considered a promising tool for application in power systems [32, 33]. There have

been numerous studies exploring AI models for fault classification and location iden-

tification in power distribution systems. They include the decision tree (DT) [34,

35], random forest (RF) [36], k-nearest neighbor (KNN) [37], support vector machine

(SVM) [38–40], artificial neural network (ANN) [41], convolutional neural network

(CNN) [42–44], and many others. In [35], a combination of empirical mode decompo-

sition, and DT algorithm was proposed to perform fault detection, classification and

localization in the presence of solar photovoltaic (PV) distributed generation (DG).

An SVM-based fault detection, which can simultaneously detect islanding and grid

faults, was presented in [38]. Lin et al. [45] used the support vector data description

method for fault detection and classification with only normal data for its training

process. In [43], the authors proposed a faulted line localization method based on
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a CNN classifier using bus voltages. It is capable of locating the faulted line with

high probability under low observability of the buses. In [44], a fault type classifica-

tion and a possible fire localization algorithm based on independent CNN classifiers

were presented with a single observability characteristic. While the previously pro-

posed techniques can successfully classify or locate faults, most of them require large

amounts of simulation data on all different types of faults. The fault data, however,

can be rare in the distribution system. In addition, their static training mode makes

them vulnerable to new data with different distributions that enter the system.

2.5 Deep Learning

This section serves as an introduction to deep learning. A brief introduction to deep

neural networks is given, and then the training process of neural networks is described.

In addition, an overview of neural network regularization is presented.

2.5.1 Neural Network

A deep feedforward network or multilayer perceptron (MLP) is one of the basic ar-

tificial neural networks. As a classifier or approximator, MLP has been shown to

be an effective alternative to other traditional statistical techniques [46]. Unlike tra-

ditional statistical methods, MLP does not make prior assumptions about the input

distribution. It can model highly nonlinear functions and can be trained to generalize

accurately when new or unseen data is encountered. These features of MLPs allow it

to develop more complex models efficiently.

An MLP consists of interconnected neurons or nodes, as shown in Figure 2.3. An

MLP is a model that represents a nonlinear mapping between an input vector x and

an output vector y. The nodes or perceptrons are connected by weights wn and the

output signal is a function of the sum of node inputs modified by a simple nonlinear

transfer or activation function. The MLP receives inputs at the input layer, passes

through some hidden layers, and finally reaches the output layer. The number of
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layers describes the depth of the network. Each hidden layer contains cells, which

define the width of the network. A small network can contain one layer, while a large

deep network may contain hundreds of layers or more.

x1

x2

x3

Input Layer

y1

y2

Output Layer

Hidden Layers

w11

w12

w13

w14

h1(2)

h2(2)

h3(2)

h4(2)

h1(3)

h2(3)

h3(3)

Figure 2.3: A mutilayer perception (MLP) contains two hidden layers.

For a single hidden layer MLP, the output yk can be determined using the Equation

(2.1) and Equation (2.2), where xi is the input, wij and wjk are the weights, and bi

and bj are the biases or offsets. hj is the intermediate state of the hidden layer.

f(∗) is the activation function, which is the key to determine the nonlinear decision

boundary. It can be set as a hyperbolic tangent or a sigmoid function. For MLPs

involving more than one hidden layer, the expressions can be extended depending on

the architecture.

hj = f(
∑︂
i

wij ∗ xi + bi) (2.1)

yk = f(
∑︂
j

wjk ∗ hj + bj) (2.2)

2.5.2 Neural Network Training

The goal of a neural network is to approximate some function f ∗ that best generalizes

the given data set. Given the following mapping relation, y = f(x; θ), where x is the
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input and y is the output, a learning algorithm is applied to optimize the parameters of

the neural network, θ, to approximate a desired function during the training process.

By choosing an appropriate set of connection weights and activation functions, it

has been shown that the neural network can approximate any smooth, measurable

function between the input and output vectors [46].

To illustrate the training process in detail, let us consider a fully-connected mul-

tilayer (MLP). MLPs are considered supervised learning networks, and training such

networks requires a set of labeled data. The data set is reasonably divided into train-

ing data and test data. During the training process, the MLP is repeatedly presented

with training data. Supervised loss is used to define the difference between the pre-

dicted output and the target value [47]. The weights are updated until the output

matches the target value, minimizing the supervised loss. Finally, the trained MLP

will be examined using test data. A well-trained network will have zero generalization

error and perform accurately on new previously unseen data from the same genera-

tion process. Having a low generalization error indicates that the network has low

bias and low variability. Bias is a measure of the error between the predicted output

and the target value; the model has a high bias that does not fit the data distribu-

tion. Variance is a measure of the variability of the model’s prediction results when

presented with dataset with different distributions. High variance indicates that the

model is overfitted to one dataset and may not generalize well to other datasets. To

achieve generalization, different optimization and normalization techniques have been

designed [47].

Parameter optimization is usually performed by gradient algorithms through back-

propagation. Gradient descent is an algorithm that is used to search for the local

minima of the objective function during the optimization process. Based on this

technique, the network parameters are updated by small increments in the negative

direction of the gradient. The gradient is calculated by the backpropagation algorithm

using the chain rule of calculus. The gradient update is performed during training in
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the following manner [47]:

ˆ︁g← 1

m
∇θ

∑︂
i

L(f(x(i); θ),y(i)) (2.3)

θ ← θ − ϵˆ︁g (2.4)

where θ represents the model parameters, x and y are the input and target output

vectors of the model, respectively. L(∗) is the loss function that the algorithm aims

to minimize. m is the size of the training set, or in the case of stochastic gradient

descent, the size of the minimum batch. ϵ is the learning rate.

Unlike batch gradient descent, which processes the entire training set simultane-

ously in a large batch, stochastic gradient descent uses only a minibatch of the training

set at a time. Small batches can offer a regularizing effect due to the noise they add

to the learning process, which can be compensated for as long as the learning rate is

small enough [47]. It is important that these mini-batches are randomly selected from

the dataset to avoid bias towards a particular group. To reduce training error, it is

usually desirable to have multiple epochs, i.e., multiple passes of the training set [47].

The momentum approach was introduced to accelerate learning. It accumulates an

exponentially decaying moving average of past gradients and accelerates toward its

direction [47]. The update rule becomes:

v← αv− ϵ∇θ(
1

m

m∑︂
i

L(f(x(i); θ),y(i))) (2.5)

θ ← θ + v (2.6)

The velocity v accumulates the gradient element∇θ(∗), which represents the direction

and speed of the gradient moving through the parameter space. The α is a hyperpa-

rameter in the range of 0 to 1 that is used to determine the exponential decay rate

of the previous gradient contribution. The larger the α relative to ϵ, the greater the
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effect of previous gradients on the current direction [47]. In practice, the learning rate

ϵ is set to gradually decrease over time to speed up this process. The learning rate

setting can greatly affect the performance of the model because if a large learning

rate is set, the model will never converge. Algorithms such as AdaGrad, RMSProp,

and Adam were proposed to accommodate the learning rate during training [47].

Training a deep neural network can be challenging. Since the input distribution

of the layers in the network may change when the weights are updated after each

minibatch, the learning algorithm may spend a lot of time optimizing the parameters.

Batch normalization is an adaptive reparametrization method that aims to improve

the speed of network convergence. It standardizes the input layers for each minibatch,

and it can be applied to any input or hidden layer of the network [47].

2.5.3 Neural Network Regularization

Many regularization strategies are used in machine learning to achieve small test

errors and thus perform well on new inputs. In doing so, some regularization strategies

add extracted terms to the objective function. Some add additional constraints and

penalties to the parameter values [47]. In this section, we review several regularization

strategies that have been implemented in deep natural network models.

One regularization technique is to penalize parameter norms, such as weight decay

or L2 norms. By adding a parameter norm penalty, Ω(θ) = 1
2
∥ w ∥22, it leads

to an increase in the variance of the input features and a decrease in the weights

of the features that have a weak relationship with the output target. An alternative

approach is to use L1 regularization by adding Ω(θ) =∥ w ∥1 to the objective function.

By doing this, the weights of features that have a weak relationship with the objective

become zero, which leads to a more sparse solution. Both the L2 norm and the L1

norm can be used to avoid overfitting, while the L1 norm is usually used for feature

selection in sparse feature spaces [47].

Dropout is a regularization algorithm that mimics the behaviour of bagging for
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ensembles of very many large neural networks. Specifically, it randomly selects the

units in the hidden layer and applies a mask, thus creating a sub-network. In the case

of bagging, these models are trained independently. Dropout differs from bagging

in that its models share parameters, and each model inherits a different subset of

parameters from the parent neural network [47]. With dropout, randomly selected

neurons are ignored in the training so that the network is less sensitive to the specific

weights of the neurons. The number of selected neurons is controlled by a parameter

in dropout.

Early stopping is another popular regularization technique because of its effec-

tiveness and simplicity. When training large models given sufficient representational

capacity, as the training error steadily decreases, the validation error begins to rise,

which can lead to overfitting of the model. By stopping early, the training process

stops when the model’s performance on the validation dataset starts to degrade. And

returns the parameter settings for the stopping point where the validation error is

minimized. However, this technique can be expansive, as it may require additional

computational resources to achieve optimal training time. In addition, this technique

requires maintaining a copy of the optimal parameters, which requires additional

memory [47].

2.6 Machine Learning in Power Systems

Machine learning techniques are used in many different areas of power systems due to

their complexity and various uncertainties that are difficult to solve with traditional

techniques. In general, such techniques require information provided by sensors or

devices installed along the line, such as feeder measurements. This information can

be analyzed by machine learning techniques to detect anomalies. This section briefly

describes the various machine learning techniques applied to power systems for de-

tecting, classifying or locating anomalies.
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2.6.1 Support Vector Machine

Support vector machine (SVM) is a supervised learning method that is widely used

in classification and regression problems [48]. The number of support vectors is

determined by the SVM algorithm given a specific set of inputs, while in neural

networks the number of hidden layers is determined by trial and error. SVM is

effective in high-dimensional spaces and it does not require any training effort like

neural networks to achieve good performance. However, if the number of features is

much larger than the number of input samples, it is crucial to avoid overfitting when

choosing kernel functions and regularization terms.

The concept of SVM classification is shown in Figure 2.4. The goal is to train

an SVM model that classifies the input points between two classes (class 1 and class

0). The black circles represent class 1, while the empty circles represent class 0. The

input features are the voltage magnitude, V and phase angle, ϕ, from the measurement
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Figure 2.4: Linear classification using SVM.
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node, and the target output is the type of anomaly. The support vector is an element

of the training data, which is used to determine the margin for identifying the optimal

hyperplane separating the two classes. The optimal hyperplane is defined as the linear

decision function with the maximum margin between the vectors of the two classes.

The margin is defined as the sum of the minimum distances between the training

dataset and the separating hyperplane [48]. If the pattern is nonlinear, the SVM uses

a kernel function to transform the original data into a high-dimensional feature space.

2.6.2 K-nearest Neighbor

K-nearest neighbors (KNN) is another popular and easy-to-implement non-parametric

supervised learning algorithm [49]. KNN assumes that similar instances exist in close

proximity. To classify an unknown sample or instance represented by a feature vector

in the feature space, the KNN classifier computes the distance between that point

and the points in the training dataset. The Euclidean distance is usually used as a

distance metric. Then, the points are sorted according to the ascending order from

smallest to largest distance. The top k entries are selected and the points are assigned

to one of these k nearest neighbor classes, where k is a parameter set before training

the network.

The concept of KNN classification is illustrated in Figure 2.5. The black boxes

represent class 1 and the empty circles represent class 2. Given a point shown in the

orange star, if k is set to 1, the unknown point belongs to class 1; if k is set to 5, the

point belongs to class 0, since the empty circle class is the majority class of the five

nearest points. Since KNN does not require offline training, its main computation is

to “search” online for the k nearest neighbors of a given test point and determine the

class of that point.

To calculate the distance between points A and B in the feature space, various

distance functions are used in the literature, among which Euclidean distance is the

most widely used one. Let A = (x1, x2, ..., xn), B = (y1, y2, ..., yn), where n is the
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Figure 2.5: K-nearest neighbor classification.

dimensionality of the feature space. The normalized Euclidean metric is generally

used, as follows:

dist(A,B) =

√︃∑︁n
i=1(xi − yi)2

n
(2.7)

2.6.3 Convolutional Neural Network

Deep learning has gained great popularity, with many achievements described in the

literature [50, 51]. As a type of deep network, CNNs have shown excellent performance

on many machine learning problems. Examples include image recognition, financial

time series, medical image analysis, and natural language processing [52–54]. CNN

can automatically extract local features and recognize complex patterns in input data.

It is robust to input distortions or offsets due to three important concepts that differ

from traditional feedforward neural networks: local receptive fields, weight sharing,

and pooling [55]. As a supervised learning technique, given a set of labeled voltage or

current measurements, the goal of a CNN is to learn patterns and identify anomalous

types of newly observed data.

To design the structure of CNN for application in power system, researcher usually

follows the common practice of adopting a model that has already shown competitive
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performance in other fields. For example, the AlexNet model [56]: the use of one-

dimensional CNNs with hyper-parameters designed to fit the input. There are five

main layers in this type of CNN: input layer, convolutional layer(s), pooling layer(s),

fully connected layer(s), and output layer, as shown in Figure 2.7. These layers can

be described as follows:

(i) The input layer accepts multi-dimensional raw data for processing in the net-

work. It is usually specified by its width, height, and several channels. When the

input data are images, the number of channels is often set to three to account for

the colour channels (red, green, and blue). In this study, the input layer has 1 × N

neurons, where N denotes a variable number of features.

(ii) The primary purpose of convolutional layers is to extract features from the

input data. Convolution preserves the spatial relationship between data by learning

features using a small part of the input data. Essentially a filter or kernel is used

during convolution, and the feature map is formed by sliding the filter over the entire

input and computing the dot product. The size of feature map is controlled by three

parameters: depth, stride, and padding. Depth corresponds to the number of filters

used in the convolutional layers. Stride denotes the number of steps by which the

window moves after each operation. A larger stride produces smaller feature maps.

Sometimes, it is convenient to pad the input matrix with zeros around the border to

obtain the feature map of the same size as the input matrix. The convolutional layer

is followed by the non-linear rectified linear unit (ReLU) activation function which

discards the negative values of feature maps without changing the size.

(iii) The pooling layer is used to reduce the dimensionality of the feature map while

retaining information from the input feature map. It reduces the computational cost

by reducing the number of parameters and prevents overfitting, therefore increasing

the overall performance and accuracy of the network. In this study, the max-pooling

is applied, where the largest elements are taken from the rectified feature map within

a specific window.
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Figure 2.6: Representation of the one-dimensional convolutional neural network
(CNN) architecture with data input connected to the convolution, pooling, flatten,
fully connected and the output layer.

(iv) After several convolution and pooling operations, the original data is rep-

resented by a series of feature maps. The feature maps are then flattened into a

one-dimensional vector which can be fed into the fully connected layer network. The

fully connected layer contains numerous neurons that are connected to all nodes in

the preceding layers.

(v) The output layer has n neurons, corresponding to n classes of the input data.

It is fully connected to the feature layer. Depending on the type of output, the output

layer uses a different type of activation function.

2.6.4 Recurrent Neural Network and Long short-Term Mem-
ory Network

The main drawback of traditional neural networks is that they do not remember

information throughout time. As a result, they do not perform well enough when

modeling data sequences (i.e., time series). For example, if we want to classify what

kind of events occur at each point in a movie. It is not clear how traditional neural

networks use their inference about previous events in the movie to inform later events.

Recurrent neural networks solve this problem. Recurrent neural networks, also known

as RNNs, are a class of neural networks that allow previous outputs to be used as

inputs while having hidden states [57]. Their typical characteristics are as follows.

22



Figure 2.7: Representation of the recurrent neural network (RNN).

For each timestep t, the activation a<t> and the output y<t> are expressed as

follows [57]:

a<t> = g1(Waaa
<t−1> +Waxx

<t> + ba) (2.8)

y<t> = g2(Wyaa
<t> + by) (2.9)

where Wax,Waa,Wya, ba, by are coefficients that are shared temporally and g1, g2 are

activation functions.

With the above architecture, it is possible for RNNs to handle inputs of any length,

and the size of the model does not increase with the size of the input, and most

importantly, the weights are shared across time. However, there are some drawbacks,

including too slow computation and difficulty in accessing information from long

ago [57]. Vanishing and exploding gradient phenomena are frequently encountered

in the context of RNNs. They occur because it is difficult to capture long-term

dependencies, as the multiplicative gradient may decrease or increase exponentially

with the number of layers [57]. To address this gradient disappearance problem, long

short-term memory networks (LSTM) have been proposed.

The LSTMs [58] are a special kind of recurrent neural network (RNN). Due to

their effectiveness in handling long-term dependencies, LSTM networks are especially
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Figure 2.8: Structure of an LSTM memory block [59], where xt, ct, ht denotes the
input, cell state, and hidden state of the cell at time t, respectively.

suitable for processing sequential data such as sounds, written natural language, or

time series data collected from sensors. The purpose of a LSTM network is to identify

the correlation between the input sequence x = (x1, x2, ...xt) and the output sequence

y = (y1, y2, ...yt).

The structure of LSTM network is similar to the standard RNN. It consists of one

input layer, one hidden layer, and one output layer, where the hidden layer contains

one or multiple memory blocks. An example of a single memory block is shown in

Figure 2.8.

The main difference between LSTM and RNN is the cell state, which is the top

horizontal path from Ct−1 to Ct. The cell state is a sequence chain that connects all

LSTM cells. Ideally, it can carry information throughout a serial learning process.

Unlike hidden states which care mostly about a few previous states, cell states can

store information from the earliest time stamps throughout the processing of the se-

quences. The LSTM network has the capability of adding or removing information

to the cell state using different gates in the cell. Gates can optionally let informa-

tion through the cell state using a sigmoid neural network layer and multiplication

operations. The sigmoid layer outputs a number between 0–1, which determines how
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much of the information should be let through the gate. For example, a value of 0

indicates nothing will get through the gate, while a value close to 1 let the informa-

tion through the gate. An LSTM network has three of these gates that control the

amount of information passing through the cell state: input gate, output gate, and

forget gate [60]. The input gate determines what new information is stored in the

cell state. The forget gate learns to filter out information from the input, xt and last

hidden state, ht−1. Finally, the output gate decides how much of the updated cell

state should be given as the output. The overall workflow of the LSTM cell is shown

in Algorithm 1, where the equations are processed iteratively [59].

Algorithm 1:

Input: last hidden state, ht−1; input, xt; last cell state, ct−1

Parameters: Weight matrices, Wf , Wi, WC , Wo; bias vectors, bf , bi, bC , bo

Functions: logistic sigmoid function, σ(); tangent activation functions, tanh()

Output: hidden state, ht; cell state, ct

1: ft = σ(Wf · [ht−1, xt] + bf )

2: it = σ(Wi · [ht−1, xt] + bi)

3: Ct = tanh(WC · [ht−1, xt] + bC)

4: Ct = ft · Ct−1 + it · Ct

5: ot = σ(Wo · [ht−1, xt] + bo)

6: ht = ot · tanh(Ct)
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Chapter 3

Real-Time Anomaly Detection in
Distribution Grids Using Long
Short Term Memory Network

3.1 Introduction

The massive amount of data generated by smart meters provides opportunities to bet-

ter monitor and control power utilities in real-time. Meanwhile, the rapid deployment

of distributed energy resources (DERs) and electric vehicles (EVs) rises fundamental

challenges for system operation. For example, the reverse power flow (caused, e.g.,

by solar panels, EVs, and energy storage systems) makes voltage regulation using

conventional tools difficult [61]. In addition, frequent plug-and-charge EV charging,

sudden changes of load, or the occurrence of line faults can cause momentary drops

of system voltage [62].

In the distribution grid, traditional safeguards monitor and control voltage and

frequency levels through internal relays that control the tap changer operation. How-

ever, the performance of relay actions is restricted, because they only try to keep

the frequency and voltage within acceptable limits. Other anomalies, such as unbal-

anced three-phase voltage, system swings, and line outages are not detectable by the

traditional method. Failure to detect these anomalies can result in significant finan-

cial losses and may even lead to power system collapse. Therefore, it is of critical
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importance to detect anomalies as soon as possible.

To overcome these issues, we develop a real-time method for anomaly detection in

distribution systems. The proposed method uses long-short-term memory (LSTM)

model to analyze the voltage magnitude measurements in the system. LSTM network

is a special type of recurrent neural network (RNN) [58]. LSTM networks are suitable

for complex tasks including speech recognition and time-series forecasting. Due to

its effectiveness in learning long-term dependencies, we use LSTM model to predict

the next time step of voltage magnitude for all buses in a distribution system. Volt-

age anomalies are then detected using a threshold function based on the Euclidean

distance. The performance of the data-driven anomaly detection algorithm is veri-

fied using a real distribution grid located in the Midwestern United States. The test

system is described in Section 2.2.2.

The anomaly detection problem of interest in this work is based on analysing nodal

voltage data collected in a power distribution grid. Anomalies are generally defined

as observations that deviate from standard, normal, or expected values. Specifically,

we consider anomalies as events caused by changes in the distribution system load.

For example, a customer disconnected from the grid, unexpected voltage drop, or

voltage rise caused by DERs. The sole input to the anomaly detection system is the

stream of voltage magnitudes at each bus. The proposed framework aims to detect

any anomalies in real-time. Subsequently, additional actions can be taken at the

discretion of the distribution system operator (DSO) to mitigate the anomalies or to

analyse them further.

3.2 Methods and Procedure

The proposed solution consists of a forecasting technique exploiting the voltage mag-

nitude measurements extracted from the test system. It aims to identify the distribu-

tion system anomalies through monitoring the difference between the predicted and

real voltage data. As shown in Figure 3.1, the two main operational phases of this
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Figure 3.1: Systematic diagram of the proposed anomaly detection framework. The
proposed method is divided into two phases: phase A focuses on time-series forecast-
ing using LSTM and phase B incorporates the real and predicted time-series into an
anomaly score function. This function detects anomalies that are further examined
by the grid operator or other expert.
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Figure 3.2: LSTM architecture. The hidden layer involves multiple memory blocks.

framework are (A) time-series forecasting, and (B) anomaly detection. More details

of this workflow are presented next.

3.2.1 Data Preprocessing

The input data consists of 1-year period voltage magnitude measurements expressed

per unit. The voltage dataset includes all three phase magnitudes for a total of 240

nodes or buses which are recorded hourly. To preprocess the data, we began by scaling

all values to the [0, 1] interval. This normalization step changes the range and scale

of the data, thereby improving its uniformity. A normalized dataset also speeds up

the learning. In particular, we apply the min-max scaler, where the original value is

subtracted by the minimum and then divided by range (max-min).

To obtain the training (Xtrain, Ytrain) and testing (Xtest, Ytest) samples, a sliding

window with of size t is introduced to divide the original time series into N sub-
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sequences of input/output pairs. The inputs are X = (xi....i+t
n )

N
i=1, and the outputs

are Y = (yi+t
n )

N
i=1. Moreover, we split the dataset so that 2/3 are used for training,

and 1/3 is reserved for testing. Note that all splits are chronologically ordered, so

that there is no overlap between the datasets.

3.2.2 Time-series Forecasting

The time-series forecasting has been implemented using the LSTM network due to

its capability of learning long-term dependencies. The input data are the hourly

voltage time series measured at 240 nodes and various transformers (overall, values

from 909 sensors were recorded). The obtained preprocessed data are fed into the

LSTM network for predicting the next time-step value. Hence, the output data of the

network is the predicted time series. The architecture of the LSTM network is shown

in Figure 3.2, where the hidden layer consists of LSTM memory blocks illustrated in

Figure 2.8.

The structure of the implemented LSTM network consists of an input layer of

size 909, a hidden layer with 23 LSTM neurons, and an output layer that makes

the next time step value prediction. The default sigmoid activation function is used

for the LSTM memory block. The LSTM model only depends on historical data for

providing the next time-step data. Moreover, the model automatically learns how

much of the previous information contributes to future predictions. Thus, it can be

used for real-time forecasting.

3.2.3 Unsupervised Anomaly Detection

The core operational phase of the proposed framework is anomaly detection. In this

work, we are interested in detecting anomalies at any time instance by examining

the difference between the real and predicted time series. Conventional approaches

often suffer from a lack of data that represent anomalous behaviour. As anoma-

lous behaviour is rare and detrimental to the system, it is difficult to gather enough
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anomalous data. The technique proposed in this contribution addresses this data

imbalance issue. In particular, it implements an unsupervised technique that does

not require labeled data.

Given the real and predicted time series, their Euclidean distance can be calculated

at each instant. Then a threshold Th, based on the Euclidean distance function, is

introduced. Since the data is acquired from multiple sensors, the differences are first

calculated for each sensor and then accumulated for all sensors. In this work, the

threshold is set to Th = µ+ 5σ, where µ is the mean and σ is the standard deviation

of the differences. If the distance calculated at a specific instant is greater than the

threshold, the corresponding instant is considered a potential abnormal point. Since

the uncertainty or fault occurring in the distribution system can last for a while, we

aim to detect it once it happens, in real-time. The anomaly detector takes three types

of input, the real data, xi = (x1, x2, ..., xt), predicted data, yi = (y1, y2, ..., yt), and

a threshold, Th. The distance between the real data and the predicted data d(x, y)

can be calculated as d(x, y) =
√︁∑︁n

i=1(yi − xi)2. Then, the calculated distance is

compared to the preset threshold, Th, if d(x, y) is larger than Th, then the particular

time instance t is stored as an anomaly.

3.3 Experimental Results

The proposed framework is built using the open source deep learning tool Pytorch

in Google Colab and tested on a real distribution feeder with corresponding 1-year

voltage magnitude measurements. The distribution feeder consists of 240 nodes which

involve more than 1120 customers [4]. To simulate potential disturbances in the dis-

tribution system, three abnormal cases have been considered: 1) multiple customers

disconnected at various nodes, 2) unexpected voltage drop due to overload, and 3)

voltage rise due to excess solar power. All three abnormal cases are randomly assigned

to various nodes at different points in time, as detailed in Table 3.1. Corresponding

abnormal cases are incorporated into the simulation, and the obtained results are
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integrated into the data set.

The anomaly detection framework is trained and verified in two stages. In the

first stage, three training datasets are prepared, each involving one type of abnormal

cases where each dataset are trained and tested separately. In the second stage,

the performance of the system is tested using a data set including all three types of

abnormal cases.

Table 3.1: Designed anomalies with corespondent time.

Abnormal cases Time (M-D-Y)

Case #1.1 3-06-17 5:00PM-8:00PM

Case #1.2 4-14-17 8:00AM-11:00AM

Case #2.1 4-28-17 8:00AM-11:00AM

Case #2.2 7-25-17 8:00AM-12:00PM

Case #3.1 2-04-17 1:00PM-4:00PM

Case #3.2 11-19-17 11:00PM-2:00AM

3.3.1 Performance Measures

For anomaly detection with high confidence, it is of critical importance that the LSTM

network performs accurate forecasting. To evaluate the implemented LSTM model,

three metrics have been used: root mean squared error (RMSE), mean squared error

(MSE), and mean absolute error (MAE). Each metric has its own advantages and

disadvantages.

MAE is a relatively simple and straightforward metric for evaluating the correctness

of the predicted value, yi w.r.t. true value, xi. As shown in Eqn. 3.1, where n is the

sample size, it calculates errors on a similar scale, which implies that it treats large

and small errors equally.

MAE =
1

n

n∑︂
i=1

|(xi − yi)| (3.1)

Although it is widely used, it is not sufficient to appropriately evaluate forecast
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accuracy. A large error is much less desirable than two or more smaller ones whose

sum is about the same as the large error. For this reason, it is preferred to use a

metric that is better at detecting larger errors. Therefore, compared to MAE, MSE

is a more suitable metric. It is simply an average of the squared differences between

the target value and the value predicted by the model.

MSE =
1

n

n∑︂
i=1

(xi − yi)
2 (3.2)

As it squares the differences, it penalizes even small errors which may lead to an

overestimation of how bad the model is. On the other hand, it is preferred over

other metrics because it is differentiable and hence it can be optimized in a more

straightforward way.

RMSE, a widely used statistical metric, is a quadratic scoring rule that also mea-

sures the average magnitude of the error. It is the square root of the average of the

squared differences between predictions and the actual observations. RMSE penalizes

larger errors as all errors are squared. This gives comparatively higher weight to larger

values. Moreover, RMSE is an absolute error measure that squares the deviations to

keep the positive and negative deviations from canceling one another out.

RMSE =

⌜⃓⃓⎷ 1

n

n∑︂
i=1

(xi − yi)2 (3.3)

The two main advantages of MSE or RMSE are that they provide a quadratic loss

function and that they are also measures of forecasting uncertainty.

3.3.2 Performance Evaluation

The proposed LSTM model was trained using the preprocessed voltage time series

data which contained 2/3 of the overall data set. In the training of the LSTM model,

ADAM was used as the optimizer, with a learning rate of 0.01, batch size 256, and 500

epochs. The MSE was selected as the loss function. Once the training process was

completed, the model was tested using the remaining 1/3 of the data. The prediction
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Figure 3.3: The prediction results for a particular node’s voltage data using 1-D CNN
and LSTM.

results of the proposed LSTM are compared with another state-of-the-art method, 1-

D CNN [63]. The prediction performance is evaluated using MAE, MSE, and RMSE.

Smaller values of the error metrics indicate higher prediction accuracy.

Table 3.2: Prediction results comparison between 1D-CNN and LSTM, using MAE,
MSE, and RMSE.

Model MAE MSE RMSE

LSTM 0.0010341 2.25965 × 10−6 0.0015032

1-D CNN 0.0012261 2.78637× 10−6 0.0016692

All forecasting error metrics for the nodal voltage data are listed in Table 3.2.

Compared with 1-D CNN, the proposed LSTM has lower MAE, MSE, and RMSE

values. The detailed prediction results for a specific bus are shown in Figure 3.3.

Compared with the 1-D CNN, the voltage curves predicted by the proposed LSTM are

visually closer to the actual voltage curves. This further confirms that the proposed

LSTM outperforms the alternative model.
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Figure 3.4: Performance of anomaly detection.

Finally, the proposed anomaly detection framework was assessed by inspecting if

it can detect all considered anomalies. The performance of the anomaly detection for

one of the voltage streams is shown in Figure 3.4. It can be observed that the proposed

framework can detect all 6 anomalies at the instants when they occur, in real-time.

More importantly, the framework did not detect any false positive samples, which

means that it provides high confidence in the detected anomalies. Also, it is worth

noting that the framework is designed to analyze all voltage streams at each time point

to avoid detecting false positives. This is important, because other environmental or

human factors, such as noises, may occur at a particular sensor, resulting in a large

discrepancy between the true and predicted data for that particular sensor. In this

study, we concentrated on three example anomaly types. However, it is expected that

the developed framework will be able to detect multiple types of anomalous data.

3.4 Conclusions

In this chapter, we present a new data-driven framework to detect anomalies in distri-

bution systems using voltage magnitudes measurement. The proposed LSTM-based

approach is able to predict highly accurate next time step data with MAE of 0.0010341
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and RMSE of 0.0015032. The developed anomaly detector successfully detected all

pre-designed anomalies with a high degree of confidence. The proposed anomaly

detector operates in an unsupervised manner, which addresses the data imbalance

problem caused by the lack of anomalous data. The results corresponding to the

proposed framework have been successfully tested using a real distribution grid.
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Chapter 4

Real-time Fault Classification and
Localization in Partially
Observable Distribution Systems
using Convolutional Neural
Networks

4.1 Introduction

Fault classification and location identification are critical tasks in smart distribution

networks. Identification of faults can not only save valuable time, but also reduce

maintenance costs. With the rapid deployment of DERs, traditional fault detection

methods that rely on simple linear models and human inspection are no longer suf-

ficient. This is because they are not capable of handling the increased complexity

and inverse power flows in distribution systems. While the previously proposed ML

techniques can successfully classify or locate faults, most of them often require large

amounts of simulation data on all different types of faults. The fault data, how-

ever, can be rare in the distribution system. In addition, their static training mode

makes them vulnerable to new data with different distribution that enters the sys-

tem. By taking into account the recent trends and challenges in distribution system

fault classification and location identification, this section proposes a new real-time,

data-driven framework for fault classification and localization in partially observable
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distribution systems, based on CNN models. In particular, this article concentrates

on the first stage of the fault localization problem, i.e., locating the faulted lines

or faulted area. Considering that most data are obtained under normal operating

conditions of the distribution system and the fault data are rare, we propose a data

augmentation technique to create synthetic fault data during the data preprocessing

phase. Furthermore, instead of only using voltage or current measurements taken

from the distribution system, we add special features that fundamentally contribute

to the fault to improve model performance. Finally, we incorporate transfer learning

and calibration modules to dynamically train the network to enable online continual

learning.

The main contributions of this article can be summarized as follows:

1. Development of a novel CNN-based framework for fault classification and loca-

tion identification in partially observable distribution systems.

2. Delta information capturing pre-fault and fault state changes is added to the

feature set to classify and localize faults.

3. The positive-, negative-, and zero-sequence components that contribute to power

systems analysis under faulted or unbalanced conditions are extracted to classify

faults.

4. Synthetic minority over-sampling technique (SMOTE) is utilized to augment

the limited amount of simulated fault data.

5. An online continual learning algorithm is proposed based on transfer learning

and calibration modules to accommodate variations in the integration level of

DERs and loading in distribution systems over time.
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4.2 Data Acquisition and Feature Extraction

In this section, we briefly describe the test system used in this study and the data

acquisition process, including the number of samples generated for each fault scenario.

The feature vectors are also introduced for fault classification and faulted line (FL)

localization.

4.2.1 Data Acquisition

The simulation system we used is described in Section 2.2.2. To ensure that the

photovoltaic (PV) system was modeled as realistically as possible, we obtained hourly

irradiance and temperature data for Chicago in 2017 from the NASA Prediction of

Worldwide Energy Resources (POWER) project [64]. Each PV source was installed at

the location of the existing load and scaled according to the load size and the desired

PV penetration level. As for the location, the PV sources were randomly distributed

on each feeder. For simplicity, the PV sources were assumed to provide only active

power and penetration of 10% of these sources was considered as the baseline.

The simulation steps were performed as follows. First, load information was as-

signed to each bus on the network. Next, the quasi-static time series power flow

over 1 year was solved via the Matlab-OpenDSS interface using the yearly mode in

OpenDSS. Finally, the voltage magnitudes and phase angles of the selected buses

were extracted for further analysis. According to the study presented in [65], smart

meters connected at the end of the line/branches of a radial distribution network give

the most relevant information for fault identification applications. Therefore, in this

study, buses located at the end of each line or branch of the test system (23% of

the total buses) were selected to place the phasor measurement units (PMUs), thus

minimizing communication requirements. To evaluate the fault classification and FL

identification framework, various fault scenarios were simulated and generated. In

each simulation, different types of fault were randomly assigned at different distances
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between buses. It is assumed that only one fault occurred at a time. The fault resis-

tance was set to change in the range of 0.01 to 0.05 per unit (p.u.). Table 4.1 shows

the number of samples generated for the normal operating state and each type of

fault.

Table 4.1: Number of samples generated for normal operation state and for each fault
type (g represents gound).

Fault Type Phase Involved Number of Samples

Line to ground (LG)
Phase a - g 200

Phase b - g 200

Phase c - g 200

Line to line (LL)
Phase a - Phase b 180

Phase b - Phase c 180

Phase a - Phase c 180

Double line to ground (LLG)
Phase a - Phase b - g 180

Phase b - Phase c - g 180

Phase a - Phase c - g 180

Three phase to ground (LLLG) Phase a - Phase b -
Phase c - g

100

Normal - 8760

4.2.2 Feature Extraction

A power distribution network consisting of 240 buses with 55 observable nodes is

considered in this study. A single fault may be one of the following four types: LG,

LL, LLG, and LLLG. We are interested in real-time fault classification and FL local-

ization using PMU measurements collected before and during the fault occurrence.

Specifically, voltage magnitudes and phase angles will be collected to extract feature

vectors to be fed into the proposed framework. Suppose that a fault occurs on the line
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between an upstream bus p and a downstream bus s. Prior to the fault occurrence,

its admittance model can be described as⎡⎣Ipre−F
ps

Ipre−F
sp

⎤⎦ =

⎡⎣Y pp
ps Y ps

ps

Y sp
ps Y ss

ps

⎤⎦⎡⎣V pre−F
p

V pre−F
s

⎤⎦ (4.1)

where, Ipre−F
ps and Ipre−F

sp are the vectors of phase currents flowing from bus p to bus

s, and bus s to bus p on the line, V pre−F
p and V pre−F

s are the vectors of phase voltages

at bus p and bus s respectively. Y pp
ps and Y ss

ps are the self-admittance at bus p and

bus s, and Y ps
ps and Y sp

ps are the mutual admittance matrices between bus p and bus

s, and bus s and bus p respectively.

When a fault occurs on the line segment between bus p and bus s, the during-fault

admittance model can be represented as follows⎡⎣IFps
IFsp

⎤⎦ =

⎡⎣Y ′pp
ps Y

′ps
ps

Y
′sp
ps Y

′ss
ps

⎤⎦⎡⎣V F
p

V F
s

⎤⎦ (4.2)

The during-fault current can then be derived as

IFps = Y
′pp
ps V F

p + Y
′ps
ps V F

s

IFpp = Y
′sp
ps V F

p + Y
′ss
ps V F

s

(4.3)

Therefore, the difference between the pre-fault and during-fault voltage, ∆V =

V pre−F
p/s − V F

p/s, can be constructed as

∆Vp = V pre−F
p −

I
′
ps − Y

′ps
ps V

′
s

Y
′pp
ps

∆Vs = V pre−F
s

I
′
sp − Y

′ss
ps V

′
s

Y
′sp
ps

(4.4)

From (4.4), it is clear that the difference between the pre-fault and during-fault

voltages contributes to the fault type classification and FL localization based on the

admittance differences in each phase. Therefore, both its real and imaginary parts,

|∆V | and ∆θv, are added to the feature vectors to classify and locate faults.

In addition, symmetrical components are also incorporated during the feature vec-

tor extraction. Symmetrical component method has been widely used in fault analysis

40



by converting a three-phase unbalanced system into two sets of balanced phasors and

a set of single-phase phasors, or symmetrical components [66]. These sets of positive,

negative, and zero-sequence components may contain valuable information about the

fault. Therefore, these three sequence components are added to the feature vectors,

with the objective of improving the accuracy of fault type classification. To convert

a set of phase quantities into symmetrical components, the following calculation can

be performed ⎡⎢⎢⎢⎣
V0

V1

V2

⎤⎥⎥⎥⎦ =
1

3

⎡⎢⎢⎢⎣
1 1 1

1 α α2

1 α2 α

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
VA

VB

VC

⎤⎥⎥⎥⎦ (4.5)

where α is defined as 1∠120, V0, V1, and V2 are the zero, positive, and negative

sequence components, respectively, and VA, VB, and VC are the voltages for phase A,

B, and C, respectively.

This results in the following equations

V0 =
1

3
(VA + VB + VC)

V1 =
1

3
(VA + VB + VC)

V2 =
1

3
(VA + VB + VC)

(4.6)

Consequently, the feature vectors for fault type classification (C) and faulted line

localization (L) are defined as:

ϕC = {|V ABC |, θABC
v , |∆V ABC |,∆θABC

v , V0,1,2} (4.7)

ϕL = {|V ABC |, θABC
v , |∆V ABC |,∆θABC

v } (4.8)

4.3 Method and Procedure

To design the CNN structure for application in fault classification and location iden-

tification, we follow the common practice of adopting a model that has already shown
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competitive performance in other fields. Specifically, the CNN is based on the AlexNet

model [56], which uses one-dimensional CNNs with hyperparameters designed to fit

the input. There are five main layers in this type of CNN: input layer, convolu-

tional layer(s), pooling layer(s), fully connected layer(s), and output layer, as shown

in Figure 2.7 in Section 2.6.3.

4.3.1 CNN Training Process

The CNN is trained in a supervised manner using a sequence of training examples

[(x1, y1), (x2, y2), ..., (xK , yK)], where xt ∈ R1xN , yt ∈ Rn for 1 ≤ t ≤ K. Data xt

is given as input to the network, while vector yt denotes the target output. Let Θ

denote the set of CNN parameters. The CNN training process can be represented as

an optimization problem with the objective of minimizing the expected loss on the

training set [47]. The cross-entropy loss function is utilized for multiclass classification

with a regularization term λ ∥ Θ ∥2f to avoid overfitting, as shown below

L(f(x; Θ), y) =
1

m

m∑︂
i=1

yilog(f(xi; Θ)) + λ ∥ Θ ∥2f (4.9)

where f(x; Θ) is the output probability of the CNN parameterized by Θ when the

input is x, m is the number of training examples, and λ denotes the regularization

coefficient.

To solve this optimization problem and find the optimal set of Θ that minimizes

the above loss, the stochastic gradient descent algorithm and some of its variants

(such as RMSProp [67] and Adam [68]) performed fairly robustly in various tasks.

Adam is the most often used optimization algorithm, since it is fairly robust to the

choice of hyperparameters. In addition, batch normalization and dropout layers are

often introduced into the network to prevent overfitting. Batch normalization layer

is used to prevent internal covariate shift by standardizing each element in the layer

to zero mean and unit variance [69].
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Figure 4.1: Calibration modules containing spatial and channel-wise calibration mod-
ules applied sequentially to the activation maps. Here ⊕ and ⊗ represent element-wise
addition and channel-wise multiplication operation, respectively.

4.3.2 Incremental CNN with Calibration Modules

A static CNN model learned from past data may not fully capture the characteristics

of future data. To solve this problem, incremental learning is proposed to update

the CNN model and satisfy the need for online learning. Traditional incremental

learning can be costly and time consuming, as it often requires retraining the model

to adapt to changes in the system or data distribution over time. Moreover, it may not

preserve previously acquired knowledge and can lead to catastrophic forgetting. An

effective incrementally trained model must be able to learn from new data that arrive

sequentially and still retain the knowledge gained from previous data set without

retraining on all previously seen data. To address the above challenges, we adopted

transfer learning and calibration modules, aimed at accommodating variations of the

integration level of DERs and loading in distribution systems over time.

Transfer learning is a technique for transferring knowledge from one domain/data

set to another using a specific weight adjustment strategy [70]. It selects partial

knowledge gained from training the network on the source data set as supplements

to the training set in the target domain by assigning appropriate weight values to

these selected instances. Based on the above idea and inspired by [71], we use spatial

and channel-wise calibration modules within the intermediate activation-maps of the

CNN, as shown in Figure 4.1. Specifically, the spatial calibration modules (SCM)

learn weights to calibrate each point in the feature map while the channel-wise cali-

bration modules (CCM) learn weights to calibrate each channel in the feature map.

The calibration module (CM) was added after each layer of the base CNN.
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Suppose that the output activation map of the ith CNN layer is Mi. Let αi be

the SCM operator added after the ith layer of the base module. The SCM uses

1D-convolution with 3 × 3 kernel size and the output of αi representing the spatial

calibration weights. The calibration weights will be added element-wise to Mi to

give the spatially calibrated activation maps, M∗
i , which are then fed as input to

the channel-wise calibration module. Let βi be the CCM operator added after the

SCM operator for the ith layer of the base module. The CCM operator first performs

global average pooling (GAP) on M∗
i , and then applies a 1D convolution with kernel

size 1 × 1. This is followed by a batch normalization operation that produces an

output of βi that represents the channel-wise calibrated activation maps. Each of

the calibration weights is multiplied by the corresponding channel of M∗
i to produce

the final calibrated activation maps M∗∗
i for the ith layer. Algorithm 2 shows the

workflow of CMi, and the overall calibration process can be described as:

M∗∗
i = CMi(Mi) = βi(αi(Mi)⊕Mi)⊗ αi(Mi)⊕Mi (4.10)

Algorithm 2:

Input: activation maps, Mi

Output: spatially calibrated activation maps, M∗
i ; channel-wise calibrated acti-

vation maps, M∗∗
i

1: αi(Mi) = 1D-CNN(Mi)

2: M∗
i = αi(Mi)⊕Mi

3: β(M∗
i ) = BN(1D-CNN(GAP (M∗

i )))

4: M∗∗
i = βi(M

∗
i )⊗M∗

i

For the first task, a base CNN model with a classification layer and calibration

module is trained using historical data, as shown in Figure 4.2. For the subsequent

task, where part of the historical data and all new data are fed to the system, the

parameters of the base CNN module Θ are kept frozen and only the data-adaptive
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calibration module and the classification module are trained. This way, the model

adapts features relevant to new data from the base model using calibration modules.

Historical Input

L 1 L nCM 1 CM n
C 1…

L 1 L nCM 1 CM n
C 1…

M 1 M 1
** M n

**M n

M 1
’ M 1

’**

M n-1

M n-1
’ M n

’ M n
’**

Historical + New Input

Figure 4.2: Proposed architecture for incremental learning. The top architecture is
used for the first task, where the model is trained from historical data. The bottom
architecture is for all subsequent tasks and the model is trained from part of historical
data and all new data. L1 − Ln represent layers of the base CNN module. The
calibration modules calibrate the output activation map Mi to produce M∗∗

i at layer
i. C1 is the classification module. To adapt new input data, the base CNN modules
are frozen and not trainable. They are marked in grey color with the hatched pattern.

4.3.3 Fault Type and Fault Location Identification Process

The overall proposed framework for fault type and FL identification is presented in

Figure 4.3. There are two major components in the framework, namely offline learning

and online continual learning. For offline learning, a CNN-based model is proposed

for identifying the 10 different types of faults that can occur in a distribution network.

These faults are presented in Table 4.1. Identifying the type of fault that occurs in a

distribution network is an essential operation for further determining the FL in the

system. The historical voltage magnitudes and phase angles collected at the end of the

line/branches were input into the system. Next, features ϕC shown in Section 4.2.2

were extracted and fed into the fault type identification model, CNNC . The number
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Figure 4.3: Overall fault type classification and fault location identification frame-
work.

of features fed into the model was determined by the number of buses where the PMU

were located. Using these features, the CNNC was capable of determining the type

of fault by recognizing the pattern in the bus voltage magnitude and phase angle

values, the delta voltage information, and the calculated symmetrical components.

The output of the CNNC was a one-hot encoded vector of size 11, where each index

denoted one of the 10 fault types and the normal type.

After the fault type was determined, the next step was to identify the FL. The

fault type, along with the features ϕL, were fed into the fault location identification

model, CNNL. Note that if the fault type is normal, the framework will not proceed

to the CNNL. Since the features ϕL were all numerical values, the one-hot encoded

fault type vector was converted to dummy encoding columns to ensure consistency

within the input. In total, 11 additional columns were added and a value of 1 was

placed in a specific column and 0 for all other columns, to indicate a particular fault

type. CNNL learned the correlations between the input features and the provided

labels and was capable of identifying the FL. CNNL was designed to produce a vector

of size m, which represents the likelihood that the fault is located on a particular

line in the set of all lines M in the distribution network. For example, using the test

system described in Section 2.2.2, if a single line to ground fault occurs between node
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2028 and node 2029, the output vector would indicate a value of 1 at the 2027th index

and a value of 0 for all other lines. Similarly, if a double line to ground fault occurs

at node 2028, the output vector would indicate a value of 1 at the 2027th index or

the 2028th index and a value of 0 for all other lines.

However, as mentioned in Section 4.3.2, a static CNN model may not fully cap-

ture the characteristics of the future data and is not suitable for online application.

For example, consider historical data collected from a system with DER penetration

levels of 0-20% and loading between 70-100%. When the system undergoes further

increase in DER penetration levels or loading, the offline model cannot capture the

pattern learned in the new data and its performance is likely to degrade. To address

this problem, an incremental CNN model with transfer learning is used to provide

online continual learning. Note that this model requires labeled data for training.

Essentially, the model training process is similar to the offline learning model. The

feature vectors ϕC and ϕL were extracted from part of the historical data that con-

tained all different types of faults and all new data. The convolutional layers L1 to

Ln were frozen while the calibration module CMi and the fully connected classifier

C1 were trained and fine-tuned using the new extracted feature vectors. The online

model can adapt to changes when new data enter the system continuously within

a short training time period. This is possible by using parameters transferred from

the offline model. When needed, all subsequent new data and historical data can be

further used together to train the offline model to enhance the model in recognizing

patterns within a more complex data distribution.

4.4 Data Preprocessing and Model Setting

The test distribution system under normal condition and with four types of line fault

of Section 1, were simulated and data were collected. As shown in Table 4.1, only a

small amount of fault data were simulated compared to the normal data. This cor-

responds to the scarcity of fault data in real distribution systems. The preprocessing
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of collected data started by converting the categorical labels to one-hot encoding to

ensure the labels and the target outputs from the proposed model were in the same

format. Next, to address the class-imbalance problem (normal vs. fault cases), we uti-

lized the synthetic minority over-sampling technique (SMOTE) [72]. It over-sampled

the fault classes so that the number of samples for each minority classes was the same

as the majority class. Then, the over-sampled data was partitioned as follows: 70% of

the data were used for training, 20% for validation, and the remaining 10% for model

testing. Finally, a min-max scalar was applied and the data set was normalized to

the interval [0, 1] to improve its uniformity and speed up learning.

4.4.1 Fault Type Classification Model

The fault type is classified using the CNN-based model. The structure of the CNNC

classifier is summarized in Table 4.2. There are a total of four major layers in this

model: the input size of the model is [−1, 1, 344], and there are two main convolutional

layers (layer 1 and layer 4), one fully connected layer (layer 7), and one output layer.

The last dimension of 344 corresponds to the total number of features. The “-1” in

the output shapes are place holders for batch size. In each convolutional layer, the

convolution-1d operation has a kernel size of 1 while stride and padding are set to

1. The convolution-1d operation is followed by a maxpool-1d operation that has

a stride of 1. To prevent the model from overfitting, a 20% dropout is added after

the maxpool-1d operation. Furthermore, after each convolutional layer, the spatial

calibration module (layer 2 and layer 5) and the channel-wise calibration module

(layer 3 and layer 6) are added to calibrate the output activation map from the

previous convolutional layer. The output of this model is [−1, 11], which represents

the 11 types of faults.

The CNNC model was trained using Adam optimizer with decay factor parameter

α = 0.9 and the learning rate or iteration step size was set to 0.001. The cross-entropy

loss was selected as the loss function and the network was trained for 50 epochs. The
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Table 4.2: Structure of the Fault Type Classification Model, CNNC .

Layer No. Layer Type Output Param No.

Layer 1

Convolution1d [-1, 32, 344] 128

MaxPool1d [-1, 32, 114] 0

Dropout [-1, 32, 114] 0

Layer 2
Convolution1d [-1, 32, 114] 3,104

BatchNorm1d [-1, 32, 114] 64

Layer 3

AdaptiveAvgPool1d [-1, 32, 1] 0

Convolution1d [-1, 32, 1] 1,056

BatchNorm1d [-1, 32, 1] 64

Layer 4

Convolution1d [-1, 32, 344] 128

MaxPool1d [-1, 32, 114] 0

Dropout [-1, 32, 114] 0

Layer 5
Convolution1d [-1, 32, 114] 3,104

BatchNorm1d [-1, 32, 114] 64

Layer 6

AdaptiveAvgPool1d [-1, 32, 1] 0

Convolution1d [-1, 32, 1] 1,056

BatchNorm1d [-1, 32, 1] 64

Layer 7

Flatten [-1, 3648] 0

Linear [-1, 128] 467,072

RELU [-1, 128] 0

Layer 8 Linear (Output) [-1, 11] 1,419

effectiveness of the CNNC was evaluated by the fault type classification accuracy, ηC .

The F1-score was also used to evaluate the performance of CNN; it is the harmonic

mean of precision and recall which gives a better measure of the incorrectly classified

cases than the accuracy metric. Both metrics are shown below

ηc =
the number of faults correctly categorized

total number of faults
(4.11)
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F1 = 2× precision× recall

precision + recall
(4.12)

where precision and recall can be calculated as:

precision =
true positive (TP)

true positive (TP) + false positive (FP)

recall =
true positive (TP)

true positive (TP) + false negative (FN)

(4.13)

Table 4.3: Structure of the Fault Location Identification Model, CNNL.

Layer No. Layer Type Output Param No.

Layer 1

Convolution1d [-1, 32, 260] 128

MaxPool1d [-1, 32, 86] 0

Dropout [-1, 32, 86] 0

Layer 2
Convolution1d [-1, 32, 86] 3,104

BatchNorm1d [-1, 32, 86] 64

Layer 3

AdaptiveAvgPool1d [-1, 32, 1] 0

Convolution1d [-1, 32, 1] 1,056

BatchNorm1d [-1, 32, 1] 64

Layer 4

Convolution1d [-1, 32, 260] 128

MaxPool1d [-1, 32, 86] 0

Dropout [-1, 32, 86] 0

Layer 5
Convolution1d [-1, 32, 86] 3,104

BatchNorm1d [-1, 32, 86] 64

Layer 6

AdaptiveAvgPool1d [-1, 32, 1] 0

Convolution1d [-1, 32, 1] 1,056

BatchNorm1d [-1, 32, 1] 64

Layer 7

Flatten [-1, 2752] 0

Linear [-1, 128] 352,384

RELU [-1, 128] 0

Layer 8 Linear (Output) [-1, 239] 30,381
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4.4.2 Fault Line Localization Model

Another CNN-based model, CNNL, was developed to localize the faulted line for the

ten fault types. The structure of the model is shown in Table 4.3. There are two

major convolutional layers in which the convolution-1d, maxpool-1d and dropout

has the same property as CNNC . The spatial calibration module and channel-wise

calibration module are also added after each convolutional layer. The input feature

has a shape of [-1, 1, 260] while the output of the CNNL model has a shape of [-1,

239] which indicates the 239 lines in the test system.

The Adam optimizer with the same properties as for CNNC was used during the

training process of CNNL. The cross-entropy loss was selected as the loss function

and the CNNL was trained for 45 epochs. The effectiveness of CNNL was evaluated

using the faulted line localization accuracy, ηL, as well as the F1-score

ηl =
number of fault line correctly located

total number of faults
(4.14)

4.5 Experimental Results

In this section, the performance of the proposed framework for fault type classifi-

cation and FL identification in the distribution system is evaluated using the test

system introduced in Section 2.2.2. We first compare the proposed framework with

other frequently used models from the literature. This verifies the effectiveness and

feasibility of the proposed model under a specific DER penetration level and loading

condition, i.e., during the offline learning mode. The robustness to noise and fault

resistance is also analyzed. Finally, the online fault type and FL identification system

are verified by the data collected under systems with different DER penetration levels

and loading conditions.
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4.5.1 Offline Performance

We first compare the proposed framework with the classifiers described in the previous

literature to assess the performance of the proposed offline model. Next, we evaluate

the effectiveness of the SMOTE approach. Finally, we investigate the robustness

to noise. The offline model was trained and tested on the data set under 10% PV

penetration level and 80% of the rated load condition. The fault resistance was set

to change in the range of 0.01 to 0.05 p.u.

Model Comparison

A total of 96,360 data points (70% for training, 20% for validation, and 10% for

testing) including 86,000 SMOTE generated data points were used to train and test

CNNC . Meanwhile, a total of 2000 data points (70% for training, 20% for validation,

and 10% for testing) including 580 points generated by SMOTE were employed to

train and test the CNNL. We compare the proposed CNN with that of three other ma-

chine learning classifiers, including multiclass support vector machine (MSVM) [73],

fully connected artificial neural network (ANN), and k-nearest neighbour (KNN).

The MSVM used the coupled pairwise strategy and radial basis function kernel

to find the globally optimal solution. ANN of two layers was implemented with 64

neurons in the first layer and 32 neurons in the second layer, 20% dropout, and

a 1D-batch normalization layer were applied before the output layer. RELU was

selected as the activation function, while the learning rate was set at 0.001. The k

parameter in the KNN was set to 11 for the fault type classification case and 50 for the

faulted line localization case. The simulation results of the different models and fault

types are presented in Figure 4.4a and Figure 4.4b for the fault type classification

and FL localization, respectively. The results demonstrate that the proposed CNNC

and CNNL can detect, classify, and localize distribution system faults accurately and

reliably. A high F1 score also indicates that there are fewer misclassified samples

as there are fewer FN and FP. Moreover, both models perform much better for all
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types of faults compared to the other three classifiers. In particular, the CNNC model

achieved an F1 score of more than 98.5% for the LG, LLLG and normal types, while

its performance for the LLG, and LL fault types is only slightly worse. Table 4.4 shows

the weighted averages of accuracy over all types of faults for different classifiers. The

results further confirm the feasibility of the proposed method.
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(a) Fault type classification
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Figure 4.4: Performance comparison on the proposed CNN, ANN, M-SVM, and KNN
for 10 and 11 type of faults, respectively, using F1-Score.
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Table 4.4: Model performance comparison using weighted average accuracy.

Model Type Weighted ηc Weighted ηl

Proposed CNN 98.5% 97.9%

ANN 96.3% 96.5%

M-SVM 96.7% 82.1%

KNN 97.1% 93.8%

Effectiveness of SMOTE

Two types of data set were used to evaluate the effectiveness of SMOTE for fault

type classification: the unbalanced simulated data set described in Table 4.1 (10,360

samples in total), and its version augmented using SMOTE (96,360 samples in total).

Similarly, the unbalanced data set in Table 4.1 except the normal case (1,420 samples

in total) were employed with its augmented version using SMOTE (2,000 samples in

total) to evaluate the effectiveness of SMOTE in fault line localization. The results

shown in Figure 4.5a and Figure 4.5b demonstrate that the trained model tends to

be biased towards the majority class. In particular, We can observe that there is a

significant performance drop for the fault type LLLG compared to the other types

of faults, since this class has the lowest amount of samples in the unbalanced data

set. With SMOTE, the above problem is eliminated as we can observe that both

CNN models achieved high F1 scores of about 97% for all types of faults. However,

note that there is a trade-off between time and accuracy: as more data samples are

generated, the model requires more time for training.

Robustness to Noise

The signal-noise-ratio (SNR) is a commonly used measure that compares the level of

desired signal to the background noise, including in PMU data [74]. The experimental

range of SNR from 40 dB to 100 dB was selected to test the robustness of the proposed

model to noise. Gaussian noise of the same SNR was added to both the training and
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Figure 4.5: Model performance comparison with and without SMOTE using F1-Score.

testing data set. Other preprocessing of the data set were the same as described

in Section 4.5.1, including the use of SMOTE. The model setting also remained the

same for both CNNC and CNNL.

Figure 4.6a shows the F1 score for fault type classification with different SNR

levels, and Figure 4.6b shows the F1 score for FL localization. The results indicate

that the sensitivities of CNNC and CNNL to different types of faults differ. For

example, the normal class shows a decreasing trend when SNR is 70 and 80 dB, while

the LLGAB fault indicates a continuously increasing trend. Moreover, the LGA and
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LGC faults are less robust to noise compared to other fault types, while the LLLG

and normal case are more robust to noise. A relatively steady trends can be observed

when the SNR is higher than 50 dB in both Figure 4.6a and Figure 4.6b where the

F1 score can reach 95% or more. Table 4.5 shows the performance of CNNC and

CNNL with different SNR using weighted average accuracy. When the SNR is 40 dB,

a degradation of around 5% can be observed for both models. The influence of noise

is contained when the SNR is greater than 60 dB, where the performance does not

degrade noticeably.

Table 4.5: Model performance with different SNR (dB) using weighted average accu-
racy.

SNR (dB) 40 50 60 70 80 90 100

Weighted ηc(%) 93.2 97.7 98.2 98.5 98.4 98.3 98.5

Weighted ηl(%) 92.1 97.1 97.4 97.5 97.5 97.6 97.8
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Figure 4.6: Model performance comparison with different SNR using F1-Score.
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4.5.2 Online Performance

Section 4.5.1 confirmed the feasibility of the CNN-based framework under a distribu-

tion system with fixed PV penetration level and fixed rated load. However, in practice,

the PV penetration levels and loading conditions may vary over time during the op-

eration. Considering the situation where new data are continuously collected from

systems with varying levels of PV penetration and loading, we conducted simulations

to test the proposed online continual learning algorithm. As shown in Section 4.5.1,

the data with 10% PV penetration level and 80% rated load condition were used to

initialize the offline model.

PV Penetration Level Variation

With the recent rapid deployment of DERs, it is crucial that fault detection and

localization systems can adapt to various PV penetration levels. To test the ability

of the proposed online learning algorithm to handle data involving different levels

of PV penetration, additional cases were simulated and data collected from the test

distribution system. Specifically, 50 data samples of random fault type were simulated

under PV penetration levels of 20%, 30%, and 40%. File data samples for each fault

type in the original data along with the new collected data were fed as a data stream

to update the trained offline model. Both CNNC
C and CNNC

L were trained for 15

epochs while other model settings were identical to the offline models CNNC and

CNNL

The results for CNNC
C and CNNC

L are presented in Figure 4.7a and Figure 4.7b.

Both figures show the performance comparison between data set with different PV

penetration levels for all types of faults. Note that the line labelled PV-mix represents

the data set containing 50 data samples of mixed PV penetration levels (20%, 30%,

40%). Overall, the F1-score for CNNC
C and CNNC

L is higher than 96%; it can be

concluded that the proposed online learning model can quickly adapt to data with

different distribution, in this case with different PV penetration levels. A similar
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trend in performance over different types of faults can also be captured, e.g., the

LG, LLLG and normal type performed relatively better than the LL and LLG fault

type. Table 4.6 presents the weighted accuracy ηC and ηL for different levels of

PV penetration. It could be seen that the results of the proposed online updating

algorithm is quite promising. In the worst case, the accuracy of locating the faulted

line decreased only by 1.2% (for PV penetration level of 40%). Furthermore, with

the input of different new data, the model update times remain within 1.6 seconds.

Therefore, the training process is suitable for practical implementation.

Table 4.6: Model performance with different PV penetration levels using weighted
average accuracy.

PV Penetration Level Weighted ηc Weighted ηl Time

10% (offline) 98.5% 97.9% 252 s

20% 98.3% 97.5% 1.45 s

30% 97.7% 97.6% 1.56 s

40% 97.2% 96.7% 1.54 s

Mix 98.4% 97.7% 1.48 s

Load Variation

As the load in distribution systems can vary during normal operation over time, it is

essential to evaluate the online accuracy of the model when the load is different than

its rated value. In this scenario, the data set used for training the model involved

50% , 80%, and 125% of the rated load. In total, 50 data samples were simulated

and collected for each case above. Note that other parameters, such as the level of

PV penetration, remained the same as for the offline model. Both CNNC
C and CNNC

L

were trained for 15 epochs while other model settings were identical to the offline

models CNNC and CNNL. To demonstrate that the online model can effectively

adapt to variation of loading, the F1-score was computed for different types of fault

in Figure 4.7c and Figure 4.7d. The results demonstrate that the online model can
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Figure 4.7: Performance of the proposed online learning model on fault type classifi-
cation over varying PV penetration level and loading condition.

capture the patterns in data set with varying loading conditions within a short amount

of time. Furthermore, the data set with different loading conditions were fed to the

trained offline model and the weighted average accuracy were calculated. The results

were compared with the online model as illustrated in Table 4.7. The performance

of the offline model varies with differing loading conditions. In particular, when the

dataset is at 50% of rated load, both offline model CNNC and CNNL resulted in a

significant performance degradation. Due to the large difference of this new dataset

compared to the original dataset which (100% of the rated load), the offline model

was not capable to accurately classify and locate the faults. On the other hand, the

online model achieved an average accuracy of above 97% in locating the fault lines.

Moreover, the performance of online model does not degrade or vary significantly over
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different loading conditions.

Table 4.7: Offline and online model performance comparison with different loading
conditions using weighted average accuracy.

Metrics 50% Load 80% Load 125% Load

Weighted ηc (CNN
C
C) 98.5% 97.8% 97.5%

Weighted ηl (CNN
C
L) 97.3% 97.5% 97.3%

Weighted ηc (CNNC) 84.2% 91.9% 92.4%

Weighted ηl (CNNL) 81.7% 89.4% 91.1%

4.6 Conclusions

In this chapter, we describes a novel real-time data-driven framework for fault classi-

fication and location in partially observable distribution systems, based on CNN. The

proposed framework uses special feature vectors extracted from the voltage magni-

tude and phase angles. The extracted feature vectors play an important role as they

are highly correlated with the faults and fundamentally assist the CNN in identifying

patterns within data. The fault classification and localization performance is fur-

ther increased using SMOTE of the data prepossessing stage to augment the limited

amount of simulated fault data. Moreover, an online continual learning algorithm

based on transfer learning and calibration modules is proposed to accommodate vari-

ations of the DER integration level and loading in distribution systems over time. A

real distribution grid located in the Midwestern United States was used to confirm

the feasibility of the proposed method and to evaluate its properties. Testing results

demonstrate that the proposed offline CNN-based models can accurately classify and

locate faults with F1 scores greater than 97%. The simulation results also confirm

the robustness of the proposed model to different levels of noise. In addition, the

online model has shown its effectiveness in adapting to variation of PV penetration

and loading condition within a short amount of time.
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Chapter 5

Conclusions, Recommendations, &
Future Work

5.1 Conclusions

This thesis explores the application of deep learning models to detect, classify and

locate anomalies in smart distribution grids. To analyze the suitability of these tech-

niques, a real distribution grid located in the Mid-western United States has been

used. This fully observable test system includes one-year smart meter measurement

of all customers, system component parameters, and detailed network topology. First,

a long-short-term memory model with a threshold module was developed to detect

events caused by changes in the distribution system load, such as customer discon-

nected from the grid and unexpected voltage drop. This model was compared to

another neural network model-based approach. After identifying the anomalies, it is

important to classify and locate them. Therefore, a convolutional neural network-

based framework was proposed for fault classification and fault line location identi-

fication in partially observable distribution systems. To avoid expensive retraining

process when processing data with distribution different from original training data,

we incorporate transfer learning and calibration modules to dynamically train the

network to enable online continual learning. For validation, the proposed model was

compared to other classic machine learning models. Finally, experiments were con-

ducted for both offline and online mode, and model robustness was also examined.
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The results confirmed that the proposed LSTM model with threshold modules

are well suited for identifying anomalies when there are only data collected under

normal conditions available and no anomaly data. The LSTM model’s advantage in

time series forecasting is due to its capability to learn long-term dependencies. This

has lead to a 0.10% in MAE and 0.15% in RMSE score, setting a strong foundation

for the threshold modules in identifying anomalies. This proposed anomaly detector

operates in an unsupervised manner and solves the data imbalance problem caused by

the lack of anomaly data. In addition, the results demonstrated the effectiveness of the

proposed convolutional neural network-based framework for fault classification and

location identification. The extracted special features play an important role because

they are highly correlated with faults. The proposed CNN-based model achieved the

best performance in the conducted experiments. Specifically, the proposed CNN-

based offline model was able to classify and locate faults accurately with an F1 score

higher than 97%. Furthermore, the online model shows its effectiveness in adapting

to changes in PV penetration and load conditions in a short time.

In conclusion, this thesis proposed and validated deep learning approaches for

detecting, classifying and locating anomalies in smart distribution networks. The

contributions during the experiments validated the feasibility and effectiveness of

using deep learning methods derived from natural language processing and image

recognition for smart distribution network anomaly detection. The experimental

results showed that the proposed system can be implemented on a real-time basis

without the extensive work of retraining the entire model with newly collected data.

5.2 Contributions

In the course of the experiment, the following contributions were made to accomplish

the two main objectives of this work.

1. The first objective is to apply unsupervised ML techniques that use only normal
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data to detect events caused by load changes in the distribution system. Three

types of events are considered in this study: customer disconnected from the

grid, unexpected voltage drop, and voltage rises caused by DER.

• We first analyzed long-short-term memory (LSTM) model and their appli-

cation in time-series forecasting.

• Next, a threshold function based on the Euclidean distance was introduced

to detect anomalies by comparing the predicted and actual next time step

voltage data.

• The performance of LSTM model was compared with an one-dimensional

convolutional neural network (1D-CNN), and the proposed model is further

validated to demonstrate the effectiveness of the LSTM.

2. The second objective is to develop a CNN-based framework for fault classifi-

cation and location identification in partially observable distribution systems.

Four fault types are considered in this study: line-to-line fault (LLF), line-to-

ground fault (LGF), double line-to-ground fault (LLGF), three-line-to-ground

fault (LLLGF).

• First, additional features that contribute to fault type classification and

fault line localization were explored and extracted.

• Next, we investigated the statistical method, SMOTE, in augmenting the

limited amount of simulated fault data.

• Then, we explored and applied CNN models for fault classification and lo-

cation identification. We also explored online continual learning algorithm

to accommodate variations in power system over time.

• Finally, further validation of proposed model was conducted and model

robustness to noise was examined.
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5.3 Future Work

Overall, this thesis demonstrated that deep learning techniques can be transferred

to anomaly detection in smart distribution grids. In the future, this work will be

extended to determine the exact location of faults along a line. Online models can

also be optimized to achieve shorter model update times while maintaining model

accuracy and adapting to different topologies of the distribution network. Finally,

to potentially improve the performance of the model, more advanced enhancement

techniques, such as generative adversarial networks, can be used to perform enhanced

investigations of fault data.
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machine-based islanding and grid fault detection in active distribution net-
works,” IEEE Journal of Emerging and Selected Topics in Power Electronics,
vol. 8, no. 3, pp. 2385–2403, 2019.

[39] R. Perez, C. Vásquez, and A. Viloria, “An intelligent strategy for faults location
in distribution networks with distributed generation,” Journal of Intelligent &
Fuzzy Systems, vol. 36, no. 2, pp. 1627–1637, 2019.

[40] X. Zheng, X. Geng, L. Xie, D. Duan, L. Yang, and S. Cui, “A svm-based setting
of protection relays in distribution systems,” in 2018 IEEE Texas Power and
Energy Conference (TPEC), IEEE, 2018, pp. 1–6.

[41] M. U. Usman, J. Ospina, and M. O. Faruque, “Fault classification and location
identification in a smart dn using ann and ami with real-time data,” The Journal
of Engineering, vol. 2020, no. 1, pp. 19–28, 2020.

[42] M. Guo, X. Zeng, D. Chen, and N. Yang, “Deep-learning-based earth fault
detection using continuous wavelet transform and convolutional neural network
in resonant grounding distribution systems,” IEEE Sensors Journal, vol. 18,
no. 3, pp. 1291–1300, 2017.

[43] W. Li, D. Deka, M. Chertkov, and M. Wang, “Real-time faulted line localization
and pmu placement in power systems through convolutional neural networks,”
in 2020 IEEE Power Energy Society General Meeting (PESGM), 2020, pp. 1–1.

[44] M. Zhao and M. Barati, “A real-time fault localization in power distribution
grid for wildfire detection through deep convolutional neural networks,” IEEE
Transactions on Industry Applications, vol. 57, no. 4, pp. 4316–4326, 2021.

[45] Z. Lin et al., “One-class classifier based fault detection in distribution systems
with varying penetration levels of distributed energy resources,” IEEE Access,
vol. 8, pp. 130 023–130 035, 2020.

[46] S. Theodoridis and K. Koutroumbas, Pattern recognition. Elsevier, 2006.

[47] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, “Deep learning [http://www.
deeplearningbook. org],” MIT Press, Cambridge, MA, 2016.

[48] C. Cortes and V. Vapnik, “Support-vector networks,”Machine learning, vol. 20,
no. 3, pp. 273–297, 1995.

[49] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE transac-
tions on information theory, vol. 13, no. 1, pp. 21–27, 1967.

68

https://doi.org/10.1109/BigData47090.2019.9006377


[50] S. Bhattacharya et al., “Deep learning and medical image processing for coro-
navirus (covid-19) pandemic: A survey,” Sustainable cities and society, vol. 65,
p. 102 589, 2021.

[51] L. Deng and D. Yu, “Deep learning: Methods and applications,” Foundations
and trends in signal processing, vol. 7, no. 3–4, pp. 197–387, 2014.

[52] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan,
“Gan-based synthetic medical image augmentation for increased cnn perfor-
mance in liver lesion classification,” Neurocomputing, vol. 321, pp. 321–331,
2018.

[53] S. Mehtab and J. Sen, “Analysis and forecasting of financial time series using
cnn and lstm-based deep learning models,” in Advances in Distributed Comput-
ing and Machine Learning, Springer, 2022, pp. 405–423.

[54] H. Qassim, A. Verma, and D. Feinzimer, “Compressed residual-vgg16 cnn model
for big data places image recognition,” in 2018 IEEE 8th Annual Computing
and Communication Workshop and Conference (CCWC), IEEE, 2018, pp. 169–
175.

[55] P. Swietojanski, A. Ghoshal, and S. Renals, “Convolutional neural networks
for distant speech recognition,” IEEE Signal Processing Letters, vol. 21, no. 9,
pp. 1120–1124, 2014.

[56] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Advances in neural information processing
systems, vol. 25, 2012.

[57] L. Medsker and L. C. Jain, Recurrent neural networks: design and applications.
CRC press, 1999.

[58] S. Hochreiter and J. Schmidhuber, “Lstm can solve hard long time lag prob-
lems,” Advances in neural information processing systems, vol. 9, 1996.

[59] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural networks: Lstm
cells and network architectures,” Neural computation, vol. 31, no. 7, pp. 1235–
1270, 2019.

[60] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual
prediction with lstm,” Neural computation, vol. 12, no. 10, pp. 2451–2471, 2000.

[61] H. Hatta, M. Asari, and H. Kobayashi, “Study of energy management for de-
creasing reverse power flow from photovoltaic power systems,” in 2009 IEEE
PES/IAS Conference on Sustainable Alternative Energy (SAE), IEEE, 2009,
pp. 1–5.

[62] K. Clement-Nyns, E. Haesen, and J. Driesen, “The impact of charging plug-in
hybrid electric vehicles on a residential distribution grid,” IEEE Transactions
on power systems, vol. 25, no. 1, pp. 371–380, 2009.

[63] Z. Wang and T. Yan Weizhong dnd Oates, “Time series classification from
scratch with deep neural networks: A strong baseline,” in 2017 International
joint conference on neural networks (IJCNN), IEEE, 2017, pp. 1578–1585.

69



[64] A. H. Sparks, “Nasapower: A nasa power global meteorology, surface solar en-
ergy and climatology data client for r,” The Journal of Open Source Software,
vol. 3, no. 30, p. 1035, 2018. doi: 10.21105/joss.01035.

[65] F. C. Trindade and W. Freitas, “Low voltage zones to support fault location in
distribution systems with smart meters,” IEEE Transactions on Smart Grid,
vol. 8, no. 6, pp. 2765–2774, 2016.

[66] M. Abdel-Akher and K. M. Nor, “Fault analysis of multiphase distribution sys-
tems using symmetrical components,” IEEE Transactions on Power Delivery,
vol. 25, no. 4, pp. 2931–2939, 2010.

[67] T. Tieleman, G. Hinton, et al., “Lecture 6.5-rmsprop: Divide the gradient by
a running average of its recent magnitude,” COURSERA: Neural networks for
machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[68] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[69] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” in International conference on machine
learning, PMLR, 2015, pp. 448–456.

[70] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on deep
transfer learning,” in International conference on artificial neural networks,
Springer, 2018, pp. 270–279.

[71] P. Singh, V. K. Verma, P. Mazumder, L. Carin, and P. Rai, “Calibrating cnns for
lifelong learning,” Advances in Neural Information Processing Systems, vol. 33,
pp. 15 579–15 590, 2020.

[72] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” Journal of artificial intelligence
research, vol. 16, pp. 321–357, 2002.
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