
University of Alberta

Underwater Stereo Matching and its Calibration

by

Jason Gedge

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

©Jason Gedge
Fall 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies
of this thesis and to lend or sell such copies for private, scholarly or scientific research

purposes only. Where the thesis is converted to, or otherwise made available in digital form,
the University of Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in
the thesis and, except as herein before provided, neither the thesis nor any substantial portion
thereof may be printed or otherwise reproduced in any material form whatsoever without the

author’s prior written permission.

Abstract

A fundamental component of stereo vision is that of epipolar geometry. It shows

that the corresponding point of a pixel in one image is restricted to a line in

another image. When a refractive surface is introduced, such as in underwater

imaging, this constraint no longer holds. Instead, the corresponding point of a

pixel in one image is now restricted to a curve, not a line, in the other image.

In this thesis, we investigate the impact of a planar refractive interface on

stereo matching. We address the issue of 3D point projection in a refractive

medium, including cases where the refractive interface is not parallel with the

camera’s imaging plane. A novel method for calibrating the parameters of a

planar refractive interface is proposed. We show how to compute the refractive

epipolar curve for a pixel, which allows us to generate a matching cost volume

that compensates for the effects of refraction. We implement a multi-view stereo

algorithms to test the correctness of our matching cost volume. The experimen-

tal results show that our new approach can significantly improve the results of

underwater stereo matching over previous approaches using heuristic methods

to account for refraction.

Acknowledgements

First, I would like to thank my supervisors Dr. Herbert Yang and Dr. Minglun

Gong for all the help and guidance they have provided over the past two and a

half years. Through their wisdom I have been able to overcome many obstacles

to make it this far. Also, I would like to thank my committee members, Dr.

Martin Jagersand and Dr. Dil Joseph, for taking the time to read my thesis and

participating in my defense.

My labmates and fellow students – Cheng Lei, Xida Chen, Allen Shen,

Matthew Hamilton, and Omar Rodriguez – have also been a great help through-

out my studies. Many ideas and helpful tips have been provided through various

conversations we have had. I also thank them for taking the time to listen. Ad-

ditional thanks goes out to Xida Chen for his help with data acquisition in times

where I did not have access to the lab.

A big thanks also goes out to Steve Sutphen for all of his help with the

camera array and tank in the lab.

I would like to thank NSERC and Alberta Innovates (formerly iCORE and

Alberta Ingenuity) for their financial support throughout my studies. With this

support, I had the opportunity to attend the top conference in my area of re-

search.

Last, but not least, I would like to thank my family and friends that have

always been there, encouraging me and pushing me to do the best I can. I could

never have made it this far without their support.

Table of Contents

1 Introduction 1

2 Related Work 7

2.1 Binocular Stereo . 7

2.1.1 Terminology . 8

2.1.2 Local Methods . 9

2.1.3 Global Methods . 13

2.1.4 Cross-checking . 16

2.2 Multi-view Stereo . 16

2.2.1 Scene Representation 18

2.2.2 Photo-consistency Measure 19

2.2.3 Visibility Model . 20

2.2.4 Reconstruction Algorithm 20

2.2.5 Methods . 21

2.3 Underwater Stereo . 26

2.3.1 Calibration . 26

2.3.2 Stereo Matching . 30

2.3.3 Other Methods . 32

3 Refractive Imaging 37

3.1 Image Formation . 37

3.1.1 Pinhole Camera Model 37

3.1.2 Pixel Coordinates . 38

3.1.3 Lens Distortion . 40

3.2 Epipolar Geometry . 41

3.3 Refraction . 42

3.4 Refractive Projection . 43

4 Underwater Stereo 49

4.1 Refractive Interface Calibration 49

4.1.1 Method . 49

4.2 Stereo Matching . 54

4.2.1 Method . 54

5 Experiments 57

5.1 Binocular Stereo . 57

5.2 Multi-View . 62

6 Conclusions and Future Work 78

6.1 Conclusions . 78

6.2 Future Work . 79

Bibliography 80

A C++ Code For Normalized Cross-Correlation 86

B C++ Code For Refractive Projection 88

C C++ Code For Triangulating a 3D Point 90

D Computing The Midpoint of Two Rays 92

E C++ Code For Computing Geodesic Support Weights 94

List of Figures

1.1 8-camera array deployed at the Folger Pass station of the NEP-

TUNE project . 2

1.2 Example of a stereo camera observing figures in a water-filled

tank . 3

1.3 Epipolar geometry of two views 4

1.4 Comparison of our result to the result of a traditional approach . 5

2.1 Binocular stereo setup . 8

2.2 A comparison of a local and global binocular stereo techniques . 10

2.3 Comparison of adaptive and geodesic support weights 12

2.4 Comparison of adaptive and geodesic support weights in a local

stereo method . 13

2.5 Example of a graph cut . 15

2.6 Comparison of depth maps before and after cross-checking . . . 17

2.7 Four scene representations used in multi-view stereo reconstruc-

tion . 18

2.8 Samples to select for measuring photo-consistency 20

2.9 Visualization of the method of volumetric graph cuts 21

2.10 Aggregated correlation curves in the method of Vogiatzis et al. . 22

2.11 The patch representation used by Furukawa and Ponce 23

2.12 Multi-view reconstruction result. 25

2.13 Example results using the method of Campbell et al. 27

2.14 Refractive distortion . 28

2.15 Planar refractive interface model 29

2.16 Polarizing lens used by Schechner and Karpel. 32

2.17 Binary patterns used in a space-encoding method 34

2.18 Caustics . 34

2.19 Number of frames required versus true positive rate when using

caustics . 35

3.1 The nature of a modern camera lens 38

3.2 Pinhole camera model . 39

3.3 Two common forms of lens distortion 40

3.4 Epipolar geometry of two cameras 41

3.5 Illustrating refraction in a block of Perspex 42

3.6 Snell’s Law . 43

3.7 Cross section of a camera system under the influence of a planar

refractive interface . 44

3.8 Radial shift induced by a glass window 44

3.9 Comparison of the lines and epipolar curves in a synthetic scene 47

3.10 Effect of a focal length adjustment on the epipolar geometry . . 48

4.1 Refractive stereo setup . 50

4.2 Tank array . 51

4.3 Impact of refractive interface calibration. 53

4.4 Impact of sampling on epipolar curve 55

5.1 Binocular stereo experiment #1 59

5.2 Percentage of pixels with a depth hypothesis before and after

cross-checking for binocular stereo experiment #1 (Figure 5.1). 60

5.3 Binocular stereo experiment #2 61

5.4 Percentage of pixels with a depth hypothesis before and after

cross-checking for binocular stereo experiment #2 (Figure 5.3). 62

5.5 Binocular stereo experiment #3 63

5.6 Percentage of pixels with a depth hypothesis before and after

cross-checking for binocular stereo experiment #3 (Figure 5.5). 64

5.7 Three-dimensional renderings of depth maps produced for binoc-

ular stereo experiment #2 . 65

5.8 Impact of refractive interface calibration on stereo matching . . 66

5.9 Setup for multi-view experiments #1 and #2 67

5.10 Multi-view stereo experiment #1 68

5.11 Multi-view stereo experiment #2 69

5.12 RMS error plots for multi-view experiments on synthetic data . . 71

5.13 Reprojection of depth maps from multi-view experiments #1

and #2 . 72

5.14 Visualizing reprojection error 73

5.15 RMS error of reprojection when ignoring refraction 74

5.16 Multi-view stereo experiment #3 76

5.17 Reprojection of depth maps from multi-view #3 77

List of Algorithms

1 Projection of a global space point into image space 46

2 Computation of calibration error term 52

3 Sampling the epipolar curve. 56

9

Chapter 1

Introduction

Stereo vision is an age-old field in computer vision that concerns itself with the

computation of geometry from two or more images of a scene. It is related to

the image correspondence problem:

Given two images A,B of a scene and a feature f ∈ A, find the

corresponding feature f ′ ∈ B, if it is visible.

Stereo vision focuses on multiple viewpoints of the same scene, but generally

all images are taken at the same time. Once correspondence is established,

three-dimensional (3D) points can be obtained by triangulation, allowing us to

reconstruct the scene in 3D. A more recent area of interest is focused in re-

searching the impact of underwater environments on stereo vision. Underwater

stereo vision has various applications of interest, such as biological observation,

robot navigation, and reconstruction of underwater archaeological sites for the

purpose of digital archival.

Increasing interest in underwater observation has sparked research in under-

water imaging and stereo. NEPTUNE Canada has installed a large seafloor ob-

servatory off the west coast of Canada [8]. Their Folger Pass station is equipped

with an 8-camera array designed at the University of Alberta and will provide

3D reconstructions of living organisms1 (Figure 1.1). The Atlantic Innovation

Fund (AIF) provides financial support in Atlantic Canada for bleeding-edge in-

novation. Recently, AIF has provided $2.2 million of funding for work on vari-

ous underwater robotics and vision projects, including a vision system that will

be used for underwater observation [44]. VENUS is another project providing

1 The NEPTUNE Canada project has been the major motivation for our own work.

1

Figure 1.1: The 8-camera array deployed at the Folger Pass station of the NEP-
TUNE project. This camera array will be used to observe and reconstruct or-
ganisms in 3D. (Source: NEPTUNE Canada)

underwater observation data to scientists [48]. Other work has focused on pro-

ducing large-area photomosaics of the seafloor, often for the purpose of guiding

underwater robots [17, 41].

Underwater imaging itself poses many potential challenges. The harsh envi-

ronment lends itself to turbidity, making it far more difficult to observe features

in sufficient detail. Similarly, the effects of light attenuation and scattering are

stronger in water, making it very difficult to observe distant objects. Strong

currents pose a difficult engineering challenge when designing observational

stations that require rigidity and stability. Finally, it is necessary for scenes to

be artificially lit at large depth, since sunlight gets absorbed more and more the

deeper one travels. All of these challenges make underwater stereo vision diffi-

cult, but recent developments in underwater imaging will help pave the way for

improved underwater vision [23].

Besides for the challenges in imaging, another major problem exists in un-

derwater stereo vision: refraction. Refraction of light occurs when light changes

speed, such as when traveling from one medium to another2. Cameras will often

2 Although refraction is often associated with light traveling between two mediums, it can
also occur in the same medium when moving between areas of different salinity, temperature,
and pressure.

2

http://www.neptunecanada.ca/sensors-instruments/instrument-platforms/instrument-platforms.dot?inode=24560

Figure 1.2: Example of a stereo camera observing figures in a water-filled tank.

be placed in waterproof housings with a glass window or outside a tank, which

means light has to travel from water to glass, and glass to air before reaching

the camera sensor (Figure 1.2). The intrinsic geometry of a calibrated stereo rig,

known as epipolar geometry, is warped due to the nonlinear nature of refraction.

It is important to compensate for this warping to ensure the scene geometry we

compute is correct.

Stereo vision algorithms that rely on the underlying epipolar geometry to

establish correspondence fall into two major areas: binocular and multi-view.

Binocular techniques, as the name suggests, focus on just two views of the same

scene. Focusing on only two views naturally results in a computationally easier

problem, but less information is available for establishing correspondence. On

the other hand, multi-view techniques aggregate the information from three or

more views to help with establishing correspondence. Unfortunately more data

can also result in a higher chance of making false-positives, so more intelligent

outlier detection may be necessary.

In this thesis we present a novel method to address the issue of refraction in

stereo. The method consists of two major components:

3

Figure 1.3: Epipolar geometry of two views. A feature in the left view and
its corresponding epipolar curve in the right view. In traditional non-refractive
epipolar geometry this curve is actually a straight line. The nonlinear effect of
refraction warps this line into a curve.

1. a calibration component that uses feature correspondences to find the pa-

rameters of each refractive interface, and

2. a way to sample the epipolar geometry associated with a stereo system

under the influence of refraction.

We assume a planar refractive interface due to its practicality and mathematical

simplicity. Such an interface is common in tanks and aquariums, as well as in

camera housings used underwater. Also, as with many stereo algorithms before,

we assume a pinhole camera model in all of our derivations. Our calibration

component employs a nonlinear optimization to find the refractive interface pa-

rameters by minimizing an approximate image-space projection error. Given

these parameters, we use a ray-casting technique and refractive projection for-

mula to sample the refractive epipolar geometry imposed by these refractive

interfaces. Another major goal of this thesis is to show, using our own system

as an example, the importance of using a physical model for refraction when

performing stereo matching.

Existing underwater stereo matching techniques approach refraction in one

of three ways:

4

(a) Ground Truth (b) Focal Length Correction

(c) Radial Distortion Correction (d) Our result

Figure 1.4: A comparison of depth maps produced from our approach and two
traditional approaches (focal length correction and radial distortion correction).
Pixel brightness corresponds to depth, with white being the farthest and black
being the closest. Masked-out pixels are blue and invalidated pixels are pink.
Our result provides a dense, smooth depth map. Using a naive focal length
correction method which ignores refraction results in many maching failures.

5

1. ignoring refraction completely,

2. using approximations as a heuristic to guide search, and/or

3. modeling refraction as radial lens distortion.

Treibitz et al. show that all of these assumptions can be very erroneous and a

physically accurate model is necessary for correcting refraction [46]. Approxi-

mate methods usually note how the focal length of a camera is scaled underwa-

ter [12], yet these approximations are at a very high-level and still do not modify

the epipolar geometry correctly to compenstate for refraction. Two-dimensional

search is still necessary to help find correspondences [12]. Radial lens distor-

tion has also been used (e.g. [40]) to model refraction. These methods com-

monly “absorb” refractive distortions into the radial lens distortion parameters

of the camera during calibration. Unfortunately, as we will show in Chapter 2,

the projection of a point depends on its 3D location. Since lens distortion only

compensates for image-space distortions, it is insufficient for refraction correc-

tion.

Our method projects multiple samples of a refracted ray into the image to

obtain the refractive epipolar geometry. To ensure physical correctness, point

projection is also modeled with refraction. This allows us to obtain an accu-

rate representation of the refractive epipolar curve (Figure 1.3). One of the

advantages of this approach is that no refraction-specific algorithms need to be

developed; our refractive epipolar curve simply replaces the traditional epipolar

geometry used in any existing method. To showcase this advantage, we incor-

porate our refractive epipolar geometry into the method of Campbell et al. [7]

(Figure 1.4).

The remaining part of this thesis is organized as follows. Previous work

in binocular/multi-view stereo and work related to underwater stereo vision is

reviewed in Chapter 2. Chapter 3 introduces the theory of refraction and de-

rives the various expressions necessary for estimating the refractive epipolar

geometry. Interface calibration and underwater stereo matching are presented in

Chapter 4, followed by various experiments in Chapter 5. Finally, we conclude

our work and suggest possible avenues of future work in Chapter 6.

6

Chapter 2

Related Work

Stereo vision covers a large area of interest in computer vision, and much re-

search has been dedicated to improving results in both binocular and multi-view

stereo. This has been driven by the availability of existing datasets with ground

truths [37,39]. These datasets allow researchers to evaluate the accuracy and ro-

bustness of their techniques and to better compare their techniques against those

of other researchers.

Underwater stereo vision is an area that has been studied far less, with a

large portion of the research falling within the past decade. Various approaches

are taken, but most of them use some form of a high-level approximation, based

on heuristics, which does not properly take into account the refractive epipolar

geometry. In this chapter we introduce recent advances in binocular stereo and

multi-view stereo, followed by related work in the area of underwater stereo

matching.

2.1 Binocular Stereo

A method that concerns itself with reconstructing depths from exactly two views

is called binocular stereo. Binocular stereo methods commonly take one of two

approaches: local and global. In this section we begin by describing some

fundamental terminology for binocular stereo, which is followed by discussion

of the distinguishing features between local/global methods and various state-

of-the-art techniques.

7

Figure 2.1: Binocular stereo setup. A point X is projected to pixels p, q in two
views having a focal length of f . X has a depth of d with respect to the two
views.

2.1.1 Terminology

Figure 2.1 shows a typical binocular stereo setup with two cameras having par-

allel viewing directions. In particular, once lens distortion is removed and imag-

ing planes become coplanar (with the same orientation about the optical axis)

we have a set of rectified views1. Rectified views make the search for corre-

spondence simpler because corresponding points will lie in the same row of

both images.

Two important concepts in binocular stereo are depth and disparity2. The

depth of a point X is the perpendicular distance from the views’s center-of-

projection to X, i.e., d in Figure 2.1. The disparity of a point X is the shift in

pixel location between two views, i.e., xL − xR in Figure 2.13.

Now consider the pixel locations xL and xR. We can relate X to these loca-

tions by using similar triangle ratios:

xL =
fXL

d
, xR =

fXR

d
, (2.1)

1 If views are not initially rectified, methods exist to perform rectification (e.g., [14]).
2 The traditional notion of disparity does not apply in the situation where there is a refractive

interface, so we choose to use the more general concept of depth.
3 Consideration should be taken with regards to sign. For example, in Figure 2.1 XR is

negative, since it is to the left of the right view’s viewing direction.

8

where XL is the location of X from the left view’s frame of reference, and

similarly XR is the location of X in the right view’s frame of reference. From

(2.1) we get:

xL − xR = f
XL −XR

d
. (2.2)

As one can see from (2.2), if we increase the depth then the disparity will de-

crease, and vice versa. Hence, depth and disparity are inversely proportional to

each other.

2.1.2 Local Methods

Local techniques consider each pixel in isolation of all others. Computed depths

are not compared to neighbouring depths to enforce any continuity constraints or

smoothness. As a result, the depth/disparity maps computed using local meth-

ods are often noisier than those computed using global techniques (Figure 2.2).

Local techniques often employ a winner-take-all approach: for pixel p, given a

set a depth hypotheses, D, and a corresponding cost function, cp, we select the

depth hypothesis with the lowest cost:

arg min
d∈D

cp(d). (2.3)

One of the major distinguishing factors of local methods is the cost function

cp. Given a pixel p = {px, py} in one view, a given depth hypothesis d will cor-

respond to some pixel p′ in the other view. A common technique for computing

cp(d) is to compare the similarity of square windows centered at p and p′ [20].

This is just one possible approach to computing cost, but other techniques exist,

such as filtering and probabilistic measures [20].

With window-based techniques a trade-off has to be made with respect to

the window size. Smaller windows are more efficient and more likely to cover

the same surface, but may not contain enough information to disambiguate true

positive matches from false positive matches. Larger windows alleviate this

problem, but are more likely to extend beyond occlusion boundaries and other

depth discontinuities. State-of-the-art techniques provide excellent results. In

particular, segmentation-based schemes have proven to be effective [21, 55].

Segmentation is the process of grouping together similarly colored regions of

pixels. A typical assumption is that small regions of similar color share similar

depths, known as the gestalt principal of organization by similarity [55].

9

(a) Original Image (b) Ground Truth

(c) Local Technique [4] (d) Global Technique [25]

Figure 2.2: A comparison of a local and global binocular stereo techniques.
Disparity maps computed by local methods are more susceptible to noise since
the disparities of neighbours are not considered. Global methods use neigh-
bouring depth estimates to help “smooth” the result. Brighter pixels correspond
to regions of high disparity (i.e., small depth), ranging from the closest objects
(white) to the farthest (dark grey).

10

One approach to similarity grouping is to weight pixels in a window based

on their similarity to the color of the center pixel in the window. Yoon and

Kweon propose a weighting scheme they name adaptive support weights [55],

which is similar to the technique of bilateral filtering [45]. For every pixel p we

first compute a spatial Gaussian:

wspatial(p; q) = exp

(
−

∆d2pq
γspatial

)
, (2.4)

where q is the center pixel in a window, ∆dpq the Euclidean distance between

the location of pixels p and q, and γspatial a user-defined rate-of-decay parameter.

Also, a chromatic Gaussian is computed:

wchromatic(p; q) = exp

(
−

∆c2pq
γchromatic

)
, (2.5)

where ∆cpq is the color difference between pixels p and q, and γchromatic a user-

defined rate-of-decay parameter. The final weight of pixel p is then the product

of these two, i.e.,

w(p; q) = wspatial(p; q) · wchromatic(p; q)

= exp

(
−

∆d2pq
γspatial

)
exp

(
−

∆c2pq
γchromatic

)
= exp

[
−
(

∆g2pq
γspatial

+
∆c2pq

γchromatic

)] . (2.6)

Hosni et al. provide another approach to similarity grouping that results in

a robust local segmentation [21]. The cost d(p, q) of moving from pixel p to a

neighbouring pixel q is defined as the Euclidean distance between their respec-

tive color values:

d(p, q) =
√

(pr − qr)2 + (pg − qg)2 + (pb − qb)2, (2.7)

where pr, pg, and pb are the red, green, and blue values of pixel p, respectively.

Based on this distance metric we can develop the notion of shortest path

between two pixels. Given a window centered at pixel p, let S(q) be the length

of the shortest path from p to q given the distance metric in (2.7). Hosni et al.

specify the weight of pixel q to be:

w(q) = exp

(
−S(q)

γ

)
, (2.8)

where γ is a user-defined parameter to adjust the “sharpness” of the segmenta-

tion.

11

(a) (b) (c) (d) (e)

Figure 2.3: From top to bottom: five windows are taken from an image, zoomed
in versions of these windows, pixel weights with adaptive weights [55], and
pixel weights with geodesic support weights [21]. Brighter pixels indicate a
larger weight. Both of these weighting schemes seek to weight regions of similar
color higher, with respect to the center pixel, but the method of Hosni et al.
provides a harder cutoff.

12

(a) Original Image (b) Ground Truth Disparity

(c) Adaptive Weights [55] (d) Geodesic Support Weights [21]

Figure 2.4: Comparison of adaptive and geodesic support weights in a local
stereo method. The harder segmentation of geodesic support weights provides
better results, especially in areas with sharp depth discontinuities (highlighted
regions in (c)). Brighter pixels correspond to regions of high disparity (i.e.,
small depth), ranging from the closest objects (white) to the farthest (black).

Figure 2.3 visualizes adaptive and geodesic support weights for various win-

dows within an image. Adaptive support weights [55] often give higher weights

to background pixels, which are likely to have a true depth different from that of

the center pixel. On the other hand, geodesic support weights result in a harder

segmentation which is more likely to give very low weights to background pix-

els.

2.1.3 Global Methods

Global methods consider not only a cost for each pixel, but also the chosen

depths of neighbouring pixels. By enforcing constraints on how much neigh-

13

bouring depths can differ, one can “smooth” the computed depths (Figure 2.2).

State-of-the-art global methods are often formulated as Markov Random Field

(MRF) optimization problems [43]:

E =
∑
p

cp(lp) + λ
∑
{p,q}∈N

Vpq(lp, lq). (2.9)

lp represents a label corresponding to a pixel p. In the case of stereo matching,

a label maps to a depth hypothesis. The first term in the above sum is called

the data term, which is simply the cost function used in local methods. The

second term is called the smoothness term. Vpq(lp, lq) is a smoothness function

that returns a cost associated with assigning labels lp and lq to pixels p and q,

respectively. λ is a parameter to specify how much influence the smoothness

term has on the total energy. If λ = 0 then (2.9) reduces to the same problem as

(2.3). A recent survey of various methods to solve these optimization problems

was presented by Szeliski et al. [43].

Finding the global minimum of (2.9) is known to be NP-hard problem when

there are more than two labels [5]. This implies that unless P = NP, finding the

global minimum is computationally intractable in the general case. Neverthe-

less, many algorithms exist that efficiently find local minimums for (2.9). Two

well-known optimization algorithms are graph cuts and belief propagation.

Let G = {V , E , w : E 7→ R} be a graph with edges weighted by w, and let

{s, t} ⊂ V be the source and terminal vertices. A cut C = {Vs,V t} is then

defined as a partition of V (i.e., Vs ∩ V t = ∅) such that s ∈ Vs and t ∈ V t [25]

(Figure 2.5). Intuitively, we can see this as selecting a set of edges which sepa-

rates the source and terminal verticies when removed. The cost of C is defined

as:

|C| =
∑
e∈E

{
w(e) if e ∩ Vs 6= ∅ and e ∩ V t 6= ∅
0 otherwise

. (2.10)

A min-cut is simply a cut with minimal cost over all possible cuts. Boykov et al.

describe an algorithm that uses graph cuts to optimize (2.9) [5].

Belief propagation (BP) uses a message-passing paradigm for minimizing

(2.9), where message vectors are passed between adjacent pixels over a series

of iterations [11]. Max-product belief propagation focuses on maximizing the

probability that a pixel should have a specified label. To more easily fit into

14

Figure 2.5: Example of a graph cut. The cut C partitions the graph into two
groups: Vs, all vertices attached to the source s, and V t, all vertices attached to
the terminal t. The dashed lines correspond to those edges that were “cut”.

(2.9), the max-product formulation is often transformed into a negative log-

likelihood formulation, which in turn results in a minimum sum problem.

For (2.9), the message vectors are simplyK-dimensional vectors whereK is

equal to the total number of labels. Let mt
pq be a message passed from pixel p to

neighbouring pixel q at iteration t. The message vectors are initialized to zero,

i.e., m0
pq = 0. For iterations t = 1 . . . T the message vectors are:

mt
pq(lq) = min

lp

Vpq(lp, lq) + cp(lp) +
∑

s∈N (p)−{q}

mt−1
sp (lp)

 , (2.11)

where N (p) is the set of pixels that are neighbours of p. As Weiss describes,

the message mpq(lq) can be regarded as pixel p telling pixel q how it fits label

lq given the local information p has and q does not [52]. In particular, the local

information that only p has is its cost function cp and the messages sent to it

from its neighbours other than q (i.e., N (p)− {q}).

After T iterations, belief vectors bp are computed as:

bp(lp) = cp(lp) +
∑

q∈N (p)

mT
qp(lp). (2.12)

The term belief vector stems from the max-product formulation of BP. In such

a formulation we are dealing with probabilities, so bp(lp) represents the proba-

15

bility (i.e., belief) that p has label lp. Since we are working with negative log-

likelihoods, the probability is maximized when the sum is minimized. Hence,

the label l∗p selected for pixel p is the label which has the smallest belief value:

l∗p = arg min
lp

bp(lp). (2.13)

2.1.4 Cross-checking

Other techniques can be used in tandem with local/global methods. One partic-

ularly important technique is cross-checking, which is essentially a consistency

check between the left and right views to ensure that depth hypotheses in one

view correspond to similar depth hypotheses in the other view. Given a depth

hypothesis d in one image, we can obtain a 3D point x. Now if we project x

into the other view, we should get another depth hypothesis d′. Similarly, from

this hypothesis we can obtain another 3D point, x′. To ensure these depth hy-

potheses are consistent, the two points should be close together. In other words,

the points should satisfy:

‖ x− x′ ‖ ≤ α, (2.14)

where α is a user-specified constraint on the maximum distance between the

two depth hypotheses. If this check fails then we discard the depth hypothesis

d due to inconsistency. Note that the passing of this check does not offer any

correctness guarantees for our depth hypotheses, just that x and x′ are consistent

between views. Figure 2.6 shows the result of applying cross-checking to a pair

of depth maps. Since only three views were used, parts of the bunny were

occluded in some views. These occluded areas provided false positive matches

which were inconsistent across views, and hence were removed by the cross-

checking phase.

2.2 Multi-view Stereo

An area that is gaining recent popularity is that of multi-view stereo. A focus of

multi-view stereo is to reconstruct 3D models of objects from a set of calibrated

views [39]. As Seitz et al. describe in their survey, multi-view techniques are

incredibly diverse, with a large set of characteristics. Some important charac-

teristics include:

16

(a) Original images

(b) Before cross-checking

(c) After cross-checking

Figure 2.6: Comparison of depth maps before and after cross-checking. Cross-
checking removes inconsistent hypotheses (red pixels), which exist due to
matching failure. Note, white pixels outside of the silhouette of the bunny have
no depth hypothesis.

17

(a) Voxel Grid (b) Triangular Mesh (c) Level Sets (d) Surfels

Figure 2.7: Four scene representations used in multi-view stereo reconstruction.

• Scene representation: How is the result represented? Triangular mesh?

Surfels? Voxels?

• Photo-consistency measure: Given, for example, a point, how can we

measure its consistency across multiple views? In other words, how can

we determine from our images whether or not that point truly does belong

to a surface in the scene.

• Visibility model: How can we establish whether a points is visible in a

view, or whether it is occluded?

• Reconstruction algorithm: Given all of the above characteristics, how can

we put them all together to reconstruct a scene? Should we evolve a sur-

face from an initial estimate? Should we establish a sparse set of points

followed by expanding and filtering this set?

2.2.1 Scene Representation

The choice of representation for scene geometry is a matter of balancing var-

ious pros and cons. A voxel occupancy grid (Figure 2.7(a)) splits the visible

scene into cells where each cell is labelled as occupied or vacant [49]. One of

the major benefits of a voxel occupancy grid is its simplicity. Another benefit

is the built-in neighbouring relationship imposed by the grid structure. Unfortu-

nately, the quality of the result is highly dependent on the resolution of the grid.

Considering this, a voxel occupancy grid is not applicable to large scenes.

A triangular mesh (Figure 2.7(b)) is a set of connected triangles, often form-

ing a closed surface [27, 50]. Although triangular meshes are one of the more

complicated representations to incorporate algorithmically, there are many ad-

18

vantages to using triangular meshes. In particular, since they directly represent

surfaces, visibility assessment is straightforward. Also, modern graphics pro-

cessing units use triangles as the basic rendering unit. Finally, meshes can have

a fine or coarse resolution as necessary to accommodate for the complexity of

the scene.

Level sets (Figure 2.7(c)) tessellate space in one dimension, and for each

two-dimensional slice of this tessellation a signed distance map is stored [34].

That is, for each point in the signed distance map, a value is stored which gives

its distance from an underlying surface. This is a very powerful and robust

representation, but has the downside of needing a large amount of memory.

This makes them less appropriate for high-resolution reconstruction. In spite

of that, since signed distances are stored, more intelligent reconstruction can be

performed than voxel occupancy grids.

Surface elements, otherwise known as surfels (Figure 2.7(d)), are simply

oriented patches or discs [13]. The sparsity of such a representation makes it

a robust representation that can handle any scene geometry effectively. The

downside is that if a set of surfels is too sparse, holes may exist in reconstructed

models. Depth maps can also be used in a similar fashion to surfels [6].

2.2.2 Photo-consistency Measure

Photo-consistency measures used in multi-view stereo are very much related to

those used in binocular stereo (e.g., cp in (2.3)). The major difference is that

there are a larger set of views to compare, so aggregation of these costs is of key

importance.

One other benefit of multi-view algorithms is that we often have an estimate

of scene geometry. This estimate can be used to select better samples for com-

paring photo-consistency [13]. Traditional binocular stereo algorithms often use

square windows in both views, but a square window in one view corresponds to

points that rarely project to a square window in another view (Figure 2.8). If

we take samples from estimated geometry and project these samples back into

images, we can more effectively measure the photo-consistency. This approach

is applicable only to algorithms that iteratively update the estimated geometry.

19

Figure 2.8: Corresponding samples (e.g., for measuring photo-consistency) to
select in the right image given the square window of samples in the left image.
The right side of the cube has been shaded in all views. Traditional binocular
stereo methods often use a square windows in both views, yet samples of a
square window in one view are often warped in another.

2.2.3 Visibility Model

Visibility models provide heuristics to multi-view algorithms so as to reduce

the number of images required for photo-consistency measurement, and also to

help filter geometry estimates. As mentioned previously, some scene represen-

tations allow one to explicitly assess the visibility of a point (e.g., triangular

meshes [50]). Other approaches are more heuristic, such as selecting views

that are nearby, using intelligent outlier detection, or even a combination of the

two [7].

2.2.4 Reconstruction Algorithm

The reconstruction algorithm, as its name suggestes, is the part of a multi-view

algorithm that reconstructs scene geometry. One approach is to formulate the

problem as a cost function over a 3D cost volume, and then optimize this cost

function [27, 49]. This is quite common when representing scene geometry

using a voxel occupancy grid. One can also take an initial surface estimate

and, over various iterations, evolve this surface so as to minimize some cost

20

Figure 2.9: A visualization of the method of volumetric graph cuts. A two-
dimensional slice is shown with the graph nodes for the slice. The cut removes
edges that cross the surface, i.e., separates the graph into subgraphs that reflect
areas “inside” and “outside” the surface.

function [50]. These methods generally operate on voxel occupancy grids, level

sets, and meshes [39]. One can also compute a set of depth maps, enforcing

consistency across multiple views, instead of just two as is the case in traditional

binocular stereo [6]. Finally, some methods focus on extracting features and

associating 3D points with these features [13].

2.2.5 Methods

Vogiatzis et al. introduce a method referred to as volumetric graph cuts. At a

high level, they construct a three-dimensional grid graph with a special weight-

ing on the edges such that edges that cross a true surface have low weight. A

min-cut (Section 2.1.3) on this volume can then be intuitively viewed as “carv-

ing” out the surface from this grid graph (Figure 2.9). This simple high-level

explanation makes volumetric graph cuts an excellent method for introducing

multi-view reconstruction.

The most important part of their method is supplying weights for the edges.

To ensure a high quality cut it is important to have low weights exist only near

the surface. To ensure this Vogiatzis et al. introduce a voting-based weighting

21

Figure 2.10: Aggregated correlation curves in the method of Vo-
giatzis et al. [49]. Simply averaging the curves does not take into account depth
discontinuities, and hence the peak of the average curve does not correspond to
the true depth. The sliding Parzen window technique used by Vogiatzis et al.
obtains a peak at the correct depth. (Source: [49])

scheme. They compute the photo-consistency measure ρ(x) of a 3D point x as:

ρ(x) = exp

(
−µ

N∑
i=1

VOTEi(x)

)
, (2.15)

where N is the number of images; µ, a user-defined parameter; and VOTEi(x),

the vote offered by image i for x. The vote is calculated in three steps. First, the

projection of x into image i is used to find epipolar lines in neighbouring views.

Normalized cross-correlation (NCC) curves are then computed along these lines

and aggregated using a sliding Parzen window (Figure 2.10). If the peak of this

aggreated curve occurs at a depth corresponding to x, then VOTEi is set to the

NCC correlation score at that point. Otherwise, VOTEi is set to zero. After

setting these weights to the edges in the 3D grid graph, a mininmum graph cut

is obtained to find the voxels that correspond to the surface.

One of the leading algorithms (with regards to the Middlebury evaluation [39])

is that of Furukawa and Ponce [13]. They emphasize several strengths of their

algorithm:

• there are no initialization requirements,

• a sparse scene representation that is robust, and

• intelligent outlier detection.

They represent the scene using a set of oriented rectangular patches (Figure 2.11).

In particular, a patch p is represented by:

22

Figure 2.11: The patch representation used by Furukawa and Ponce [13] (Left).
A uniform sampling grid on the patch is projected into the image (Right).
(Source: [13])

• cp, the center of patch p

• np, the normal of patch p, and

• Rp, the reference image for patch p.

Their algorithm works in three phases: initialization, expansion, and filter-

ing. In the initialization phase, various features are detected in all images, and

correspondence is established between these features. Given a correspondence,

a patch candidate is estimated. The photo-consistency of this candidate is then

tested, and if it is above some threshold then the candidate is stored for the

expansion and filtering stages.

The expansion phase, as its name suggests, attempts to expand the current

set of candidate patches so that there is at least one patch per cell in all of the

images. A cell is a β×β square of pixels in the image, where β is a user-defined

parameter. Hence, the smaller the cell size, the denser the reconstructed set of

patches. Empty cells are then initialized with patch candidates from neighboring

cells. The parameters of these candidates are then optimized so as to reorient

and relocate the candidates to fit the unknown geometry viewed within that cell.

The last phase filters this expanded set to remove outliers. The filtering is

based on several visibility heuristics. The expansion and filtering phase can

23

be repeated several times to remove erroneous patches. Figure 2.12 shows an

example of a reconstruction of the Stanford bunny from eight images.

In this thesis, we implement the method of Campbell et al. [7]. Camp-

bell et al. observe that an NCC peak along an epipolar line does not necessarily

indicate a correct correspondence. In particular, they focus on compensating for

two major issues:

1. repetitions in texture (leads to false positives), and

2. occlusion, distortion, and lack of texture (complete matching failure).

For the first issue, a spatial consistency constraint is imposed to ensure that

selecting an NCC peak in one pixel results in a depth hypothesis that is similar to

the chosen depth hypotheses of its neighbours. For the second issue, the authors

propose an “unknown” label into the optimization which identifies pixels as

having a depth that cannot be easily established.

Campbell et al. formulate their problem as an MRF (Section 2.1.3). In par-

ticular, for each pixel p in a reference image, the top K NCC peaks are obtained

from the epipolar lines in N neighbouring views. For each of these peaks, a

tuple (zp,k, cp,k) is stored, where zp,k is the depth and cp,k the NCC score for the

kth peak of pixel p. The MRF formulation of (2.9) is then optimized using these

peaks. K + 1 labels are used in the optimization: one for each of the possible

K peaks, and an additional label, U , identitfying the unknown state. They then

define the data term as:

c(lp) =

{
λe−βcp,k lp ∈ [1 . . . K]
φU lp = U

, (2.16)

where φU represents a fixed cost for selecting the unknown label, and λ, β are

tunable parameters. The smoothness term is defined as:

Vpq(lp, lq) =

2
|zp,lp−zq,lq |
zp,lp+zq,lq

lp ∈ [1 . . . K] lq ∈ [1 . . . K]

ψU lp ∈ [1 . . . K] lq = U
ψU lp = U lq ∈ [1 . . . K]
0 lp = U lq = U

, (2.17)

where ψU is a tunable pairwise cost when just one of the labels is U . The authors

suggest setting ψU to a small value so as to encourage larger regions of pixels to

be labelled as unknown. This can reduce a large amount of noise that is normally

24

Figure 2.12: Using eight views of a Stanford bunny model (top and bottom
rows), four different views of the reconstructed patches using the implementa-
tion provided by Furukawa and Ponce [13].

25

seen in regions of matching failure. Figure 2.13 shows various results achieved

from our implementation of the method by Campbell et al., with parameters

K = 9, N = 3, β = λ = 1, φU = 0.5, ψU = 0.002, and a 5 × 5 window for

NCC. In particular, it shows how a larger number of depth hypotheses can be

obtained by intelligently incorporating additional views.

2.3 Underwater Stereo

Underwater stereo vision is an area that has received a relatively low amount of

attention, but thhere are several significant works in the area. We separate this

section into related works of the two most relevant components of our system:

calibration and stereo matching.

2.3.1 Calibration

Calibration of an underwater stereo system is extremely important. As shown by

Treibitz et al., assuming a single viewpoint (SVP) model, i.e., improperly mod-

elling refraction, can be very erroneous [46]. The most prominent issue with

existing methods of underwater calibration (and underwater stereo matching),

is the assumption that cameras share the same refractive interface, a potentially

prohibitive assumption. This model is applicable in many cases, but there are

also many cases where it is not. For example, in Figure 1.1 each camera has its

own housing, which in turn means that each camera has a different refractive

interface.

An early work in calibration of an underwater stereo system is given by

Li et al. [30]. They place a stereo pair inside a waterproof housing where the

cover lens is hemispherical inside the housing and planar on the outside. They

derive a set of linear equations that can be optimized using least squares when a

known set of 3D points (in object space) are given. The process is separated into

two phases. In the first phase, traditional intrinsic (focal length, lens distortion,

etc.) and extrinsic (rotational + translation) parameters of the system are cali-

brated. In the second phase, the cover lens parameters and refractive indices are

obtained. The argument for separating these two calibrations is that refractive

distortion may accidentally be “absorbed” into the lens distortion parameters,

resulting in an incorrect calibration.

26

Figure 2.13: Example results from our implementation of the method of Camp-
bell et al. [7]. Two different views of the Stanford bunny model (top row) and the
resulting depth maps produced when using three (middle row) and eight views
(bottom row). More views provide better peaks, which reduces the number of
pixels being labelled as “unknown” (white pixels).

27

Figure 2.14: Refractive distortion is dependent on the 3D location of a point.
Two different points on a ray, P1 and P2, are projected onto an interface. Assum-
ing no refraction, both of these points project to p. Given a refractive interface,
P1, P2 project to points p1, p2, respectively. These two points have different
radial offsets, hence it is erroneous to model this as radial lens distortion.

Various other calibration methods completely ignore refraction, assuming

that its impact is purely radial, hence allowing it to be calibrated alongside ra-

dial lens distortion [28, 33, 40]. Although improvements can be acquired [28],

these approaches fail to take into consideration that the amount of radial dis-

tortion varies based on the 3D location of points in the scene (Figure 2.14).

Unfortunately, lens distortion only considers the 2D imaging location of points,

so it cannot properly compensate for refractive distortions. Yet, there are sce-

narios where a lens distortion model could compensate for refractive distortion.

Consider a scene where the range of depths is very narrow. Intuitively, the

dependence on depth is minimal in such a scenario, so lens distortion models

could compensate for most of the refractive distortion. This is a very restrictive

scenario, and we prefer to tackle the problem in general.

Modeling a single planar refractive interface requires three parameters: two

for the normal, and one for distance (Figure 2.15). A simple approach one might

take to calibrate the parameters of the interface would be to place a calibration

pattern on the interface itself, similar to the floating pattern used in [12]. If the

interface is relatively distant from the camera, this is indeed a straightforward

and simple approach to find interface parameters directly from existing cali-

bration techniques. Unfortunately, this is generally impractical for cameras in

small, watertight housings.

28

Figure 2.15: Modelling a planar refractive interface. Three parameters are nec-
essary to define a plane: angles θ and φ define the normal, n, and d specifies the
distance from the origin to the plane, in the direction of the normal.

A recent study in the importance of modelling refraction was presented by

Treibitz et al. [46]. They argue that assuming an SVP model, even with some

form of correction, can be very erroneous in systems with a flat refractive inter-

face. They present a means of calibrating a ray map, that is, a set of pixel/ray

correspondences such that any point on a given ray will project to its correspond-

ing pixel. The downside of their calibration method is that the planar refractive

interface has to be perpendicular to the optical axis.

Finally, Kunz and Singh investigate the error of planar and hemispherical

interfaces under simulated conditions [26]. The advantage of a hemispherical

interface is that, if the center-of-projection of a pinhole camera is placed di-

rectly at the center of the hemisphere the effects of refraction are completely

eliminated. Such placement can be difficult and may not always be practical.

They also show that radial lens distortion models can perhaps compensate for a

large portion of refractive distortion, but only for cases in which the camera’s

optical axis forms small angles with the normal of the refractive interface.

Although not directly related to calibration, the work of Morris and Kutu-

lakos has some significance [31]. They present a method of finding the positions

and normals of an arbitrary refractive surface. Knowing this information allows

us to compute the refracted ray for each pixel, but projection into a second view

29

becomes more difficult. To alleviate this problem, the authors choose to use an

easily detectable pattern to establish correspondence between two views. Hence,

this approach is not quite suitable for general underwater stereo. We believe that

choosing a simple geometric model for the refractive interface provides both a

simpler and more elegant solution to this issue, as will be seen in Chapter 3.

2.3.2 Stereo Matching

Underwater stereo matching is an area that has received little attention. Perhaps

one reason for this is that radial lens distortion models are believed to suffi-

ciently compensate for refractive distortion and hence, traditional stereo meth-

ods can be readily applied. Also, depending on the stereo setup, it is possible

that traditional epipolar geometry is sufficient [54].

Queiroz-Neto et al. take a photometric approach to underwater stereo [36].

In particular, they acknowledge the impact of light attenuation and scattering in

underwater imaging. Their focus is the removal of these effects to improve hy-

pothesis costs in regular stereo, so refraction is completely ignored. Although

they show improvements for matching, it is likely that their experiments pre-

sented little refractive distortion. Also, since they used a global algorithm, the

lack of detail in their scenes perhaps allow the smoothing terms to give nice

results. In other words, a more complex scene and setup will require additional

corrections beyond radiometric correction.

Other methods consider high-level approximations to a physically-inspired

model. Snell’s Law relates a ray’s incident angle, θi, with its refracted angle, θr,

as such:

ni sin θi = nr sin θr, (2.18)

where ni, nr are known as the refractive indices for the incident and refractive

mediums, respectively. For example, water has a refractive index of approx-

imately 1.333. Ferreira et al. [12] use Snell’s Law to relate an incident ray

vi =
[
vxi vyi vzi

]T, with its refracted ray, vr:

vr =

n · vxi
n · vyi

−
√

(1− n2)
(

(vxi)2 + (vyi)
2
)

+ (vzi)
2

 , (2.19)

30

where n =
ni
nr

. A first-order Taylor series approximation of (2.19) (in an appro-

priate neighbourhood) shows that:

vr ≈

 n · vxin · vyi
vzi

 . (2.20)

Equation (2.20) manifests itself as a scaling of a camera’s focal length, which

has been previously observed, for example, by Lavest et al. [28]. As Fer-

reira et al. point out, this does not truly fix the problem, but rather hides it

somewhat. To compensate for refractive distortion, a two-dimensional search

centered on the epipolar line is performed. The larger number of window com-

parisons made increases the computationally complexity and also increases the

potential for establishing false positive matches. Nevertheless, once a match is

established they triangulate a 3D point without any approximation. This latter

point is important because, as we will show in Chapter 5, ignoring refraction for

stereo matching and triangulation has a twofold impact on error.

Perhaps one of the more significant works in the area of underwater stereo

vision is the theoretical analysis of refractive epipolar geometry given by Chari

and Sturm [9]. Given the nonlinear nature of refraction, establishing this geom-

etry requires a notion of lifted coordinates. As the name suggests, lifted coor-

dinates involves “lifting” a vector to a higher-dimensional space. In particular,

given a vector v =
[
vx vy vz

]T the lifted vector v̂ is:

v̂ =
[
v2
x vxvy v2

y vxvz vyvz v2
z

]T
=

[
v̂1 v̂2 v̂3 v̂4 v̂5 v̂6

]T . (2.21)

Through a series of derivations, Chari and Sturm are able to derive an equa-

tion that resembles that of the traditional epipolar constraint. Given a point

correspondence {u,v}, the following condition is satisfied:[
v̂

v̂ · v2
z

]T
F
[

û
û · u2

z

]
= 0, (2.22)

whereF is a 12×12 matrix, the refractive fundamental matrix [9]. The equation

F
[

û
û · u2

z

]
= 0 represents a quartic curve, the refractive epipolar curve for u.

In any case, Chari and Sturm’s derivations are for a shared interface. As we

have argued before, this model is not always applicable. It would be interesting

to see if this framework could be extended to multiple interfaces, although such

a direction is not taken in this thesis.

31

(a) Corrected/uncorrected image (b) Range image

Figure 2.16: (a) Schechner and Karpel [38] use a polarizing lens and a detailed
image formation model to reduce the impact of attenuation and scattering. (b)
With their image formation model depths can be approximated. (Source: [38])

2.3.3 Other Methods

Although not a stereo matching method, it is of interest to introduce the work of

Schechner and Karpel [38]. They dig into the image formation process, mod-

elling attenuation and backscattering effects. By installing a polarizer on their

cameras, they can dramatically improve the quality and viewing range of under-

water images (Figure 2.16(a)). Although not the primary intent, they are also

able to estimate depths from their correction (Figure 2.16(b)). Unfortunately,

they suggest a hemispherical interface, instead of a planar one, and that the cen-

ter of projection of the camera is at the center of this hemisphere. As mentioned

previously, this is less practical and difficult to achieve.

The previous section dealt with stereo methods which use regular images

and epipolar geometry to establish correspondence. This is commonly referred

to as passive stereo. Another approach to the correspondence problem is to

project controlled patterns of light onto the scene. These methods are called

structured light methods and fall under what is known as active stereo.

One issue in typical passive stereo techniques is that of matching ambiguity.

This occurs, for example, in occluded and textureless areas (no clear match) and

for repeated texture (multiple good matches). Structured light methods over-

come these ambiguities by introducing additional information into the scene

(i.e., projected light patterns).

32

Unfortunately, many structured light methods have the downside that mul-

tiple patterns have to be projected, or several images must be grabbed over a

period of time. This means that many structured light methods are not appro-

priate for highly dynamic scenes, but there are various structured light methods

that can perform a “one-shot” approach (e.g., de Bruijn patterns [47], colored

patterns [56]).

Various structured light methods have been proposed for underwater stereo.

Narasimhan and Nayar [32] focus on the analysis of scattering media and its

impact on structured light methods. They introduce two methods: light stripe

scanning and photometric stereo. Light stripe scanning involves sweeping a

plane of light across a scene. The intersection of this plane of light and surfaces

of objects results in a curve, which can be detected and used to simplify the

correspondence problem. Light stripe scanning is a slow process, which makes

it only useful in static scenes.

Photometric stereo takes a different angle on reconstruction: finding surface

normals4. Three images are sufficient for reconstructing surface normals in the

absence of scattering, and five are sufficient when scattering is present [32].

Narasimhan and Naya formulate their work based on an orthographic camera,

in which case – as long as the refractive interface is parallel to the imaging

plane – refraction plays very little role. The perspective pinhole model is more

common when modelling a typical camera.

Kawai et al. use a space encoding method to establish correspondence. In

particular, space-encoding methods project various patterns onto a scene (Fig-

ure 2.17). These patterns light up points of a scene differently, in such a way

that each point obtains a unique signature that can be used for simplifying the

search for correspondence. Given this, highly dynamic scenes are still problem-

atic since multiple patterns need to be projected.

Swirski et al. [42] observe a natural phenomenon that can provide the same

disambiguation power as space-encoding methods: caustics. Caustics are natu-

rally occurring, random patterns that illuminate the scene. Underwater caustics,

such as those in a pool, are often seen as “web-like” patterns of bright light

(Figure 2.18). These areas of bright light are simply areas where light becomes

4 By integrating over a set of normals, one can reconstruct a surface.

33

Figure 2.17: Binary patterns used by the method of Kawai et al. [22]. These
patterns allow one to encode a pixel with a unique identifier. Correspondence
then becomes the task of finding a geometrically consistent pixel with the same
identifier. (Source: [22])

Figure 2.18: Caustics illuminate the bottom of a pool (left). Caustics are formed
when light rays are concentrated in an area (right). This concentration of light
rays is often caused by a refractive/reflective surface. (Source: [42])

concentrated due to an irregular refractive surface. Given a refractive surface

that is disturbed, the variation in the surface’s shape will change the caustics

over time. These temporally varying regions of brightness give us the ability to

disambiguate stereo matches, similar to structured light methods.

Swirski et al. show how, given enough frames, they can establish correspon-

dence with a high degree of confidence. In particular, they aggregate the pixel

intensities over time into a single vector, and perform normalized cross correla-

tion. Let X be the mean vector of X, that is, a vector in which every element is

equal to the average of all elements in X. Let

X̂ = X−X (2.23)

be the mean-subtracted vector of X. The normalized cross-correlation [29] of

vectors A and B is defined as

NCC(A,B) =

〈
Â

‖ Â ‖
B̂

‖ B̂ ‖

〉
, (2.24)

where 〈·〉 is the inner product of two vectors and ‖ · ‖ the L2 norm [53].

34

Figure 2.19: The number of frames required versus the rate of true positive
matches when using the method of Swirski et al. [42]. By incorporating a small
support window around a pixel (i.e., spatiotemporal correlation), a much smaller
number of frames can be used to achieve a high correspondence rate when com-
pared to just temporal correlation. (Source: [42])

Now, let IL(xL, j) be the intensity of pixel xL in the jth frame of the left

image. Denote

IL(xL) =

IL(xL, 1)
IL(xL, 2)

...
IL(xL, N)

 , (2.25)

the aggregation of the intensities of pixel xL over N frames. Consider a candi-

date match, xR, in the right image with IR(xR) defined similarly as in (2.25).

Swirski et al. call NCC (IL(xL), IR(xR)) as the temporal correlation, as it cor-

relates the same pixel over time. To reduce the number of frames required, they

suggest using spatio-temporal correlation as an alternative. That is, correlate not

only the same pixel over time, but include the support of neighbouring pixels as

well (Figure 2.19).

This method shares the same issues as structured light methods that project

multiple patterns onto the scene. In particular, there is the issue of dynamic

scenes; if caustics are available and the scene is static, the approach taken by

Swirski et al. is quite effective. Yet, there are many situations when caustics

may not be available, or are of insufficient intensity to provide reliable results.

These situations include:

35

• any parts of the scene that lie in the shadow of an object from above (as

suggested by Swirski et al.),

• nighttime scenes, due to the lack of lighting, and

• at depths where light is mostly attenuated.

In these situations another approach would have to be taken. In any case, our

refractive epipolar geometry can still provide extra support for this approach, by

restricting the domain of candidate pixels to search through.

36

Chapter 3

Refractive Imaging

In this chapter we begin by introducing the concepts of the pinhole camera

model and epipolar geometry. We follow this with the mathematical founda-

tion necessary to understand the behaviour of refraction. We reformulate image

projection under the influence of a planar refractive interface so that it can be

used in a stereo matching framework. Using these formulations we show how

traditional epipolar geometry is no longer valid, and how captured images no

longer have a single center-of-projection.

3.1 Image Formation

3.1.1 Pinhole Camera Model

Modern camera lenses are incredibly complex, often being the composite of

several intermediate lenses (Figure 3.1). The interactions of these lenses helps

to reduce various undesirable effects, such as lens distortion and chromatic aber-

ration.

Modelling such a lens mathematically is difficult for computer vision re-

search1, so many people model the system as a pinhole camera. A pinhole

camera considers all light rays that pass through a single point in space (Fig-

ure 3.2), known as the center-of-projection (CoP). Suppose the pinhole camera

has a focal length of f , that is, the camera’s imaging plane is at a distance f

from the CoP. Given a point x =
[
xx xy xz

]T, we can find its projection to

pixel p using similar triangles:

f

xz
=
px
xx
, (3.1)

1 More complex models exist, such as thick/thin lens models.

37

Figure 3.1: The nature of a modern camera lens. Lenses are often composed of
multiple sub-lenses that act together to produce a higher quality image.

and similarly for py. We can formulate this as a matrix product:

p̂ =

 f 0 0
0 f 0
0 0 1

x, (3.2)

where p̂ =
[
p̂x p̂y p̂z

]T is the homogeneous representation of pixel p. The

image coordinates of p can be obtained from p̂:

p =

[
px
py

]
=

1

p̂z

[
p̂x
p̂y

]
. (3.3)

3.1.2 Pixel Coordinates

Section 3.1.1 outlines the basis for projection in the pinhole camera. It is com-

mon to map projected points into image-space, i.e., pixel-based coordinates. For

example, (3.2) does not take into consideration the fact that pixels in an image

are often contained in [0, w]× [0, h], where w, h are the width and height of the

camera, respectively. There are typically five parameters that take a 3D point

and map it into image-space [19]:

• σx, σy, scale factors in the x, y-coordinate directions, respectively2,

• s, the pixel skew, and
2 Note that σx and σy can be regarded as the focal length multiplied by scale factors that

convert regular units into image-space units.

38

Figure 3.2: The pinhole camera model. A 3D point x is projected to point p,
where the camera has a focal length of f .

•
[
x0 y0

]T, pixel coordinates of the principal point.

These five parameters are the intrinsic parameters of the camera, and can be

combined into a 3× 3 matrix:

K =

 σx s x0
0 σy y0
0 0 1

 ·
 f 0 0

0 f 0
0 0 1

 , (3.4)

known as the intrinsic matrix. Projection into image-space then is simply matrix

multiplication:

p̂ = Kx. (3.5)

Note that (3.1–3.5) deal with points in a frame of reference such that the

camera’s CoP is at the origin and x, y, z-axes correspond to image x, y axes and

the viewing direction, respectively. We can generalize this to different coordi-

nate bases by incorporating a rotation and a translation that bring a 3D point

into the camera’s local basis. For the rest of this thesis we will refer to the cam-

era’s frame of reference as the local space and a general frame of reference as

the global space. Given a rotation matrix R and a translation vector t, we can

translate x from global space to local space:

x′ = Rx + t =
[
R t

]
x̂, (3.6)

where x̂ =
[
xT 1

]T is the homogeneous representation of x, and x′ is the

local space representation of x.

39

(a) Barrel Distortion (b) Pincushion Distortion

Figure 3.3: Two common forms of lens distortion. Barrel distortion “pushes”
pixels away from a central point. Pincushion distortion “draws” pixels towards
a central point.

Putting (3.5) and (3.6) together we obtain the pinhole projection model:

p̂ = K
[
R t

]
x = Px, (3.7)

where P is the projection matrix.

3.1.3 Lens Distortion

Section 3.1.2 provides a means of bringing projected points into image-space

coordinates, but only under an ideal lens. Unfortunately, given the complex

nature of lenses (Figure 3.1), distortions are often present. This is due to the re-

fraction that occurs when light strikes the lens, and is more significant in lenses

with smaller focal lengths [19] since higher degrees of bending will occur. Fig-

ure 3.3 shows two of the simpler forms of distortion: barrel and pincushion.

To project points to the correct pixel it is important to compensate for these

distortions. In this thesis, OpenCV [2] was used for modelling distortion. Given

pixel p =
[
px py

]T from the local space projection in (3.3), OpenCV uses a

high-order polynomial model:[
p′x
p′y

]
=

[
px (1 + k1r

2 + k2r
4 + k3r

6) + 2t1pxpy + t2 (r2 + 2p2x)
py (1 + k1r

2 + k2r
4 + k3r

6) + 2t2pxpy + t1
(
r2 + 2p2y

)] , (3.8)

where r =
√
p2x + p2y, ki are radial distortion parameters, ti are tangential distor-

tion parameters, and p′ =
[
p′x p′y

]T is the undistorted pixel. This is just one of

40

Figure 3.4: The epipolar geometry of two cameras. The pixel p in one image
is restricted to the epipolar line l in another. All epipolar lines most go through
their corresponding epipoles (el and er). The epipoles are the intersections of
the line connecting the two centers-of-projection (CoPl and CoPr) with the cor-
responding image planes.

many proposed models of lens distortion (e.g., [10]). Once the radial/tangential

parameters are estimated, it is common to process an image to eliminate lens

distortion [19].

3.2 Epipolar Geometry

The correspondence problem is a fundamental problem in stereo vision, but it

has proven to be a challenge. In the most general case, a feature in one image

requires a two-dimensional search in another image to establish correspondence.

This makes the problem computationally complex and challenging, but a stereo

pair forms an intrinsic geometry that allows us to reduce this problem to a one-

dimensional search. This geometry is known as the epipolar geometry of the

pair (Figure 3.4).

Of particular importance is the epipolar constraint. Given an image point

correspondence {p̂, p̂′} the following holds:

(p̂′)
T
F p̂ = 0, (3.9)

41

Figure 3.5: Illustrating refraction in a block of Perspex. (Source: http://
en.wikipedia.org/wiki/File:Refraction.jpg)

where F is a 3 × 3 matrix which relates pixels in the two views, known as the

fundamental matrix. In particular, given a fixed p̂, the set of all points p̂′ that

satisfy (3.9) form a line in one image, known as the epipolar line. This is the

essence of epipolar geometry. Given a point in one image, p̂, we can reduce the

search for the corresponding point on the corresponding epipolar line.

3.3 Refraction

Refraction (of light) is the change in direction of light when it changes speed

(Figure 3.5). This change in speed can occur for many reasons, but is mostly

associated with instances where light moves from one medium to another with a

different refractive index. A medium’s refractive index is a measure of the speed

of light in that medium versus the speed of light in a vacuum. For example,

the refractive index of water is approximately 1.333, which means light travels

1.333 times faster in a vacuum than it does in water

Snell’s Law is a fundamental relation between the angles of incidence and

refraction of light. Given angles of incidence and refraction, θi and θr re-

spectively, and refractive indices ni/nr of the incident/refractive medium (Fig-

ure 3.6), Snell’s Law states:

ni sin θi = nr sin θr. (3.10)

It is important to be able to compute the refracted ray from a given ray and a

refractive interface. Suppose ~n is the normal of the surface and ~di the direction

of the incoming ray, then the direction of the refracted ray, ~dr, can be found

42

http://en.wikipedia.org/wiki/File:Refraction.jpg
http://en.wikipedia.org/wiki/File:Refraction.jpg

Figure 3.6: The theory of refraction is given by Snell’s Law (3.10).

by [16]:

cos θi = ~n · (−~di) (3.11)

cos θr =

√
1−

(
ni
nr

)2

(1− cos2 θi) (3.12)

~dr =

(
ni
nr

)
~di +

(
ni
nr

cos θi + cosθr

)
~n (3.13)

For most underwater imaging applications, cameras are placed inside water-

proof housings filled with air, in which case ni ≈ 1. Hence, for the rest of this

thesis we will write nr as n for simplicity.

3.4 Refractive Projection

Since a refractive interface will bend light in a nonlinear fashion, the traditional

projection formula given in (3.7) is no longer valid. Hence, results will be er-

roneous unless we physically model this bending [46]. We also neglect a glass

window between air and water (Figure 3.7) because a thin glass panel does not

change a ray’s final direction, but rather induces a radial shift (Figure 3.8) that

is generally negligible with regards to the distances of the scene objects [46].

For example, the tank in our lab has a glass thickness of approximately 5

mm. Given a camera with a field-of-view of 70◦ both horizontally and vertically,

the most extreme radial shift of a ray (in the image corners) is 0.45 mm, a value

43

Figure 3.7: Cross section of a camera system centred at V and under the influ-
ence of a planar refractive interface. When projecting points into the camera,
the only unknown is u.

Figure 3.8: When a glass window is introduced between the air-water interface,
the final direction of the ray is the same as without the panel, but is shifted
radially.

44

that was computed through simulation. Approximately 180 mm of an imaged

object covered 768 pixels, which means that there are roughly 4.3 pixels/mm.

This equates to a pixel offset of just under a pixel when working with half-

resolution images. This is the worst case offset, occurring in the corners of

an image. From our own experiments (Chapter 5), the impact has not been

significant enough to consider, and our method still provides superior results to

others that approximate refractive distortion. However, given a glass window of

sufficient thickness or a wide-angle lens, modelling such a radial shift would be

necessary.

Given the setup in Figure 3.7 we have:

u = D tanφ (3.14)

Using Snell’s Law, we can derive the following through trigonometric identities:

tan2 φ =
sin2 φ

1− sin2 φ
=

sin2 θ

n2 − sin2 θ
, (3.15)

sin2 θ =
tan2 θ

1 + tan2 θ
=

u2

u2 + d2
. (3.16)

Substituting (3.16) into (3.15) and simplifying we obtain:

tan2 φ =
u2

n2d2 + (n2 − 1)u2
. (3.17)

Substituting (3.17) into (3.14) we arrive at:

D =
√
n2d2 + (n2 − 1)u2. (3.18)

Now suppose we want to find the projection, Q, of M onto the refractive

interface given a viewpoint V. Using similar triangle ratios we obtain:

D

u
=

z

x− u
. (3.19)

If we then substitute D with the right-hand side of (3.18) and rearrange, we

obtain:

[n2(d2 + u2)− u2](x− u)2 − u2z2 = 0. (3.20)

Note that in (3.18) D is a function of pixel location, u, so rays no longer

converge to a single point. As a result, a single focal length adjustment [12]

cannot fully compensate for refractive distortion. Also, the presence of z in

45

Algorithm 1 Projecting a global space point, M, into image space, supposing
that the viewpoint V is at the origin.

1: Compute M′, the local space representation of M, using (3.6)

2: Compute z = ‖M′
proj ‖ − d, the length of the projection of M′ onto the

refractive interface’s normal, minus the distance from V to the interface

3: Compute x = ‖M′
proj −M′ ‖, the perpendicular distance between the re-

fractive interface’s normal and M

4: Solve (3.20) for roots ui, i ∈ {1, 2, 3, 4}

5: Find u = ui such that ui ∈ [0,My] (only one such root exists [15]).

6: Let d̂ be a unit vector in the same direction as Q′ − C, where Q′ is the

intersection point between the line VM and the refractive interface

7: Compute Q = O + ud̂,

8: Project Q into the image, i.e., KQ where K is the camera’s intrinsic matrix

(3.20) implies that u depends on the 3D location of M, hence applying radial

distortion correction will not work because radial distortion can only compen-

sate for image-space distortions [46].

Equation (3.20) is a fourth degree polynomial in u. Such a polynomial has

four roots, but only one root is meaningful. In particular, the root corresponding

to a Q whose y-coordinate lies in the interval [0,My] is physically meaning-

ful [15]. Once we have projected M onto the refractive interface to obtain Q,

we can project Q into the camera to find the actual image point for M. Similar

derivations can be found in other works [9, 12, 15, 46]. Algorithm 1 describes

in detail the process of projecting a point into an image under the influence of

refraction and Appendix B provides the corresponding C++ code.

Figure 3.9 shows examples of the refractive epipolar curve using (3.20).

Four features (center of the circled regions) have been selected in the left view.

Zoomed-in regions of the highlighted boxes in the right view show the corre-

sponding epipolar lines and curves. As one can see, when ignoring refraction,

the deviation from the selected feature is significant, up to 10 pixels in this

example. The deviation is severe enough to make stereo matching a difficult

problem when using any approach that ignores the effects of refraction.

Also of interest is the impact of the camera’s focal length on the epipolar

46

Figure 3.9: Selected features in the left view (top-left) with their corresponding
epipolar lines (dashed line, bottom) and curves (solid line, bottom) in the right
view (top-right) of a synthetic scene. Note that the refractive interface is not
parallel with the imaging plane. Without properly compensating for refraction,
the corresponding epipolar line misses the feature by up to 10 pixels.

47

 256

 320

 384

 448

 512

-512 -256 0 256 512

Y
 C

oo
rd

in
at

e
(p

ix
el

s)

X Coordinate (pixels)

18 mm
36 mm
72 mm

Figure 3.10: Effect of a focal length adjustment on the epipolar geometry. The
black horizontal line represents the standard epipolar line when no refractive
interface exists. Given a camera at a fixed location and a refractive interface
which is at a fixed distance from the camera and is coplanar with the camera’s
imaging plane, we can see how widening the field of view (i.e., decreasing the
focal length) warps the epipolar geometry significantly.

geometry. In particular, wider angle lenses permit light rays with larger angles.

The larger the angle, the greater the amount of bending imposed by the refrac-

tive interface. Figure 3.10 shows the significance of a focal length adjustment

given every other part of the system remains fixed. As we increase the focal

length, which in this case decreases the field-of-view, the epipolar curve starts

to straighten. This observation can be described using (3.18). In particular, sup-

pose the focal length of the camera and d are the same. As d increases, the first

term under the square root begins to dominate the second, and eventually (3.18)

becomes approximately nd. Since D is now fixed at nd, we essentially have

a single viewpoint camera, which in turn means our epipolar geometry will be

lines and not curves.

48

Chapter 4

Underwater Stereo

In this chapter, we introduce our adaptation of the previous chapter’s theory to

develop a method for underwater stereo matching. We begin by introducing our

method for calibrating the parameters of the refractive interface, followed by

our incorporation of epipolar curve sampling into a stereo matching framework.

4.1 Refractive Interface Calibration

4.1.1 Method

Figure 4.1 shows a general setup for underwater stereo matching. Before the

various equations in Section 3.4 can be used to project 3D points in water onto

the imaging planes of individual cameras, we must first know the parameters

which define the refractive interface for each camera. In our system we model a

plane P as:

P : ~n · x = d. (4.1)

This model has three free parameters: two specifying the normal of the plane

and one specifying the distance d from the origin to the plane (in the direction of

the normal). In particular, we choose a pixel pn on the imaging plane to define

the normal. The direction of a ray through this pixel will be equal to the normal

of the plane:

~n = K−1pn. (4.2)

Before calibrating the interface parameters we need to have our cameras cal-

ibrated in air so that we know their intrinsic and extrinsic parameters. This

allows us to map rays and points to and from global space to each of the cam-

eras’ local coordinate systems. One reason for separating these two calibrations

49

Figure 4.1: Refractive stereo setup.

is to avoid accidentally absorbing any refractive distortion into the lens distor-

tion parameters [30]. Also, by separating these two calibrations we reduce the

number of unknowns in both phases, keeping the complex nonlinear structure

of the refractive calibration separate.

Our calibration method performs a nonlinear optimization over a set of fea-

ture correspondences in two views. Let f = {p, q} be a feature correspondence

between two views, r(p;P, n) be the ray casted through pixel p and refracted

against refractive interface P with a refractive index ratio of n, and C(r1, r2)

be the smallest distance between rays r1 and r2 (see Appendix D). For a given

estimate of the parameters we define the error of feature correspondence f as

e(f ;P1, P2) = C(r(p;P1, n), r(q;P2, n)), (4.3)

or rather, the distance between the refracted rays of the features in a given corre-

spondence. To be as general as possible, each camera is modelled with its own

refractive interface, P1 = { ~n1, d1} and P2 = { ~n2, d2}. This can, for example,

handle situations when the cameras are in their own housings (Figure 1.1), or

50

Figure 4.2: Our tank array has a different side for each camera. Since cameras
do not share the same refractive interface, we need a model which takes into
account that each camera is behind a different refractive interface.

when viewing an underwater scene from different sides of a tank (Figure 4.2). If

both cameras share the same refractive interface then we can reduce the model

to a single plane (i.e., three parameters) and use the extrinsic parameters of the

cameras to map this plane into the local space of each camera.

We choose the distance between two rays for computational efficiency, since

an image-based error metric will require solving the quartic in (3.20). Suppose

τi is the perpendicular distance from the midpoint of r1 and r2 to image i. By

scaling the distance between the two rays by this value we can approximate an

image space distance metric. The total error over all feature correspondences is

then defined as:

E =
∑
f

(
e(f ;P1, P2)

2τ1
+
e(f ;P1, P2)

2τ2

)
. (4.4)

Pseudocode for computing (4.4) is given in Algorithm 2. We can find the param-

eters of P1 and P2 by minimizing E with any nonlinear optimization algorithm.

We use the Levenberg–Marquardt algorithm [35], with finite differences for ap-

proximating function gradients. The initial parameters are set such that the nor-

mal of the refractive planes are parallel to the optical axis of their corresponding

51

Algorithm 2 Computation of E in (4.4)

1: Let E = 0

2: for all feature correspondences f = p↔ q do

3: Cast a ray r1 through p and ray r2 through q

4: Find refracted ray r′1 using the refractive interface P1

5: Find refracted ray r′2 using the refractive interface P2

6: Let dist = C(r′1, r
′
2), the distance between rays

7: Compute midpoint m between rays r′1 and r′2 (Appendix D)

8: Compute τ1, perpendicular distance of m from left image

9: Compute τ2, perpendicular distance of m from right image

10: Let E = E +
dist

2τ1
+
dist

2τ2
11: end for

camera. That is,

ni = K−1

 x0y0
1

 , (4.5)

where x0, y0 are the pixel coordinates of the principal point, as defined in Sec-

tion 3.1.2. The distance to the interface is set to some fixed value, as selected by

the user.

Figure 4.3 illustrates the impact of the calibration process. To simplify the

detection of corresponding features, a planar checkerboard pattern is used in

our experiment. However, our calibration approach does not assume the corre-

sponding features are on the same plane, so any feature can be used. The two

stereo views are accurately rectified in the air so that any remaining distortion is

caused by the refractive interface only. The results clearly show the importance

and effectiveness of the proposed refractive interface calibration.

We have found that (4.4) is quite sensitive to the initial parameter estimates,

with the interface distance parameters (i.e., d1 and d2) being the most unstable.

Of great importance is capturing data as close as possible to the refractive in-

terface. Such data will act as a constraint on the interface distance parameter,

preventing it from being too large or too small. In our own experiments we

found that the impact of this data is significant. In one scenario we placed our

stereo camera very close to the interface, which prevented us from capturing

52

(a) Left view (b) Right view

(c) Before calibration (d) After calibration

Figure 4.3: The epipolar curve (solid line) and epipolar line when ignoring
refraction (dashed line) for checkerboard corner feature #1 before and after cal-
ibration. Before calibration the interface parameters are initialized such that the
normal of the interface is the same as the camera’s optical axis and its distance
is a fixed value. Images (c) and (d) are zoom-ins of the highlighted area from
(b) and show the impact of a properly calibrated interface.

53

data with the checkerboard pattern near the interface. In this situation, we found

that the initial estimates for d1 and d2 had to be within a couple of centimetres of

the measured value so that the optimization routine would converge. In another

scenario, we placed the stereo camera further away so that we could place the

checkerboard pattern directly on the interface. In this scenario, the initial esti-

mates for d1 and d2 could be up to two metres off of the measured value. One

of the negative aspects of our calibration routine is that it is difficult to establish

feature correspondence between cameras which are very close to the interface.

4.2 Stereo Matching

4.2.1 Method

The various equations in Section 3.4 allow us to compensate for the effects of

refraction when performing stereo matching. The most important part of our

approach is how to sample the epipolar curve. First, a ray is casted through

a pixel and refracted against that view’s refractive interface. Multiple samples

from this ray are projected into the other view, using Algorithm 1.

This process could lead to both oversampling and undersampling. Oversam-

pling occurs when multiple samples project to the same pixel. In this case we

have many samples that would share a similar correlation score, since windows

would be centered on the same pixel. Instead of considering samples individ-

ually, we discard projected samples until we find two samples that are at least

a pixel apart. Undersampling occurs when projected samples are more than a

pixel apart. In this case we could potentially miss the true correlation peak, so

we sample all pixels along the line joining two samples. Figure 4.4 shows the

impact of the number of samples on the shape of the epipolar curve. In our own

work we have found that 25 or more samples sufficiently describes this epipolar

curve in the image.

As far as we can tell, no previous approach has incorporated (3.20) into a

stereo matching framework. Algorithm 3 details our approach to estimating the

epipolar curve imposed by a refractive interface. For a local stereo method,

we can simply compare each pixel q′ ∈ L to p, for example, using normalized-

cross correlation (NCC) over a small window. We then take the best result as

our hypothesis for pixel p, i.e., solve (2.3).

54

(a) k = 2

(b) k = 5

(c) k = 10

(d) k = 15

(e) k = 25

Figure 4.4: The impact of k in Algorithm 3. The sampled curve (white) is
superimposed over a densely sampled curve (green) where k = 1000. We have
found that k = 25 is sufficient for accurately sampling the epipolar curve in a
typical setup.

55

Algorithm 3 Piecewise-linear sampling of the epipolar curve L for pixel p in an
image (Figure 4.1).

1: Find the ray R passing through pixel p using (4.2).

2: Refract R at the camera’s local planar interface to get R′.

3: Intersect R′ with k depth planes, giving k sampled points Mi.

4: for all 1 ≤ i ≤ k do

5: Find qi, the projection of Mi into the other image using Algorithm 1

6: end for

7: L =
⋃

2≤i≤k

{qi−1qi}

In this thesis, we implement the method by Campbell et al. [7] as described

in Section 2.2.5. We simply substitute the epipolar line in their method with

our epipolar curve. Our implementation of this method uses the tree-reweighted

message passing method [24,51] provided in the Middlebury MRF optimization

framework [43]. We also use geodesic support weights [21] for weighting pixels

within windows (Appendix E).

56

Chapter 5

Experiments

In this section we outline some of our binocular and multi-view stereo experi-

ments. Unless otherwise stated, for all of our experiments we use the method

described in Section 4.2 with parameters K = 9, N = 3, β = λ = 1, φU = 0.5,

ψU = 0.002, and a 5× 5 window for NCC. We set α = 1 cm in (2.14) so that

a depth hypothesis in one view needs to be within one centimetre of its corre-

sponding depth hypothesis in another view. Finally, all depth maps color depth

values linearly, with black being the closest and white being the farthest.

5.1 Binocular Stereo

Our binocular experiments use the Bumblebee (BBCOL-40) from Point Grey

Research, imaging several figures and objects placed in a water-filled tank1.

The stereo matching methods we compare include:

• Focal length correction; The only adjustment made is to the focal length,

which is scaled by the refractive index ratio so as to produce depth values

that are more physically accurate [28].

• Radial distortion correction; a series of images are taken of a checker-

board calibration pattern submerged in water. The cameras are then cal-

ibrated using a traditional calibration technique [57], with the refractive

distortion being “absorbed” into the radial lens distortion parameters.

• Refractive correction; our own approach, as described in Section 4.2.

Cameras are initially calibrated in air using a traditional calibration tech-

1 To focus on just the objects and remove any background noise, we use binary masks for all
experiments.

57

nique [57]. Also, the refractive interface parameters are calibrated using

a set of images of checkerboard calibration patterns submerged in water,

as described in Section 4.1.

Figures 5.1, 5.3, and 5.5 show results from our two experiments. The setup

for Figure 5.1 involved placing the camera approximately 10 centimetres from

the tank, with the imaging plane approximately parallel with the side of the tank.

In figures 5.3 and 5.5 we placed the camera at an angle of approximately 20◦

with the tank. Our experiments consistently retain more depth hypotheses after

cross-checking.

In both experiments we obtain visibly better results, with larger “blobs” of

consistent depth hypotheses. In particular, the raised figures are far more dis-

tinctive in our depth maps. Since they are found closer to the boundaries of the

images, more refractive distortion exists. The other two approaches cannot find

the correct matches since the distortion is too severe.

Figures 5.2, 5.4, and 5.6 show the percentage of pixels with depth hypothe-

ses, verifying the visibly better results. In all cases we obtain roughly the same

number of depth hypotheses before cross-checking, but approximately 5-40%

more depth-hypotheses remain after cross-checking compared to focal length

correction, and 10-20% more depth-hypotheses remain after cross-checking com-

pared to radial distortion correction. Since the second experiment has a non-

parallel interface, more refractive distortion is present and hence we see that the

margin between our method and the other methods is even greater than that of

the first experiment, which had a parallel interface.

It is important to note several reasons why the obtained depth hypotheses are

not any denser. First, the data itself is challenging due to a lack of texture (e.g.,

figure with a black cloak). Also, refractive distortion is most significant in only

a small portion of the image. Regardless, there is still a noticeable improvement.

Figure 5.7 also shows how it is important to remember the difference between

consistency and correctness when reading figures 5.2, 5.6, and 5.4. In particular,

focal length correction and radial distortion correction both have roughly the

same percentage of consistent depth hypotheses, yet the raised figure is fare

more distinguishable with radial distortion corection.

58

(a) Original Images

(b) Focal Length Correction

(c) Radial Distortion Correction

(d) Refractive Correction

Figure 5.1: Depth maps produced from binocular stereo experiment #1. Pixel
brightness corresponds to depth, with white being the farthest and black being
the closest. Masked-out pixels are blue and invalidated pixels are pink.

59

Figure 5.2: Percentage of pixels with a depth hypothesis before and after cross-
checking for binocular stereo experiment #1 (Figure 5.1).

Also, of particular importance is the calibration of the interface, and its im-

pact on the matching process (Figure 5.8). The calibrated normals differ by

only a few pixels – which is equivalent to a shift of less than a degree – and the

interface distance parameters differ by about 1.5 millimetres. Nevertheless, a

significant increase in depth hypotheses can be seen.

60

(a) Original Images

(b) Focal Length Correction

(c) Radial Distortion Correction

(d) Refractive Correction

Figure 5.3: Depth maps produced from binocular stereo experiment #2. Pixel
brightness corresponds to depth, with white being the farthest and black being
the closest. Masked-out pixels are blue and invalidated pixels are pink.

61

Figure 5.4: Percentage of pixels with a depth hypothesis before and after cross-
checking for binocular stereo experiment #2 (Figure 5.3).

5.2 Multi-View

Our second set of experiments target multi-view stereo with synthetic data. One

of the major benefits in using synthetic data sets is to show how well a method

behaves in the absence of any external sources of error. In the case of stereo, real

data can introduce additional error from, for example, calibration error. Another

benefit to synthetic data is that a perfect ground truth can be used to establish

error both quantitatively and qualitatively.

For our synthetic data, 16 cameras were arranged uniformly along a unit

semi-circle ((Figure 5.9)). A model of the Stanford Bunny was placed near

the center and textured to allow for good correlation. An invisible refractive

interface was placed in front of the cameras in various configurations. POV-

Ray [3], a well-established ray tracing program, was then used to render the

scene.

Figure 5.10 shows the result when we introduce a refractive interface that is

parallel to every camera’s interface at a distance of 0.01 units2 (Figure 5.9(a)).

Two key observations can be made from this data set. First, our own method

2 Synthetic data sets were not rendered in a basis which has a physically meaningful unit,
hence we simply use the term “unit”.

62

(a) Original Images

(b) Focal Length Correction

(c) Radial Distortion Correction

(d) Refractive Correction

Figure 5.5: Depth maps produced from binocular stereo experiment #3. Win-
dow size was increased to 31 × 31 to better avoid matching failure due to the
lack of texture and repeated pattern of the checkerboard. Pixel brightness cor-
responds to depth, with white being the farthest and black being the closest.
Masked-out pixels are blue and invalidated pixels are pink.

63

Figure 5.6: Percentage of pixels with a depth hypothesis before and after cross-
checking for binocular stereo experiment #3 (Figure 5.5).

(Figure 5.10(e)) produces far more depth hypotheses than focal length correc-

tion (Figure 5.10(c)) and roughly the same amount as radial distortion correction

(Figure 5.10(d)). Second, since the interfaces are parallel to the imaging planes,

refractive distortion is most significant towards the boundaries, where we see

less depth depth hypotheses when using just focal length correction. Finally,

since most views of this scene fell into a relatively small amount of depths,

radial distortion correction provided good results (Figure 5.10(d)).

Our second experiment incorporates refractive interfaces that are not paral-

lel to the imaging planes of each camera. In addition, even- and odd-numbered

views have interface parameters that differ from each other. These two fac-

tors incorporate significant refractive distortion into various areas of the images

(Figure 5.9(b)). Figure 5.11 shows just how significant the problem of refrac-

tion can be. Focal length correction provides poor results, to the point that a

bunny is barely recognizable (Figure 5.11(c)). Radial distortion correction pro-

vides significantly better results (Figure 5.11(d)), but our refractive correction

still provides the best results (Figure 5.11(e)), comparable to that of Figure 5.10.

Figure 5.12 shows the root mean square (RMS) error values for all sixteen

64

(a) Focal Length Correction

(b) Radial Distortion Correction

(c) Refractive Correction

Figure 5.7: Three-dimensional renderings of depth maps produced for binocu-
lar stereo experiment #2. Focal length correction and radial distortion correction
provide roughly the same number of depth hypotheses (figures 5.2 and 5.4) yet
the lens distortion result is better. In particular, the shape of the raised figure
(indicated by arrow) is more defined.

65

Estimated Parameter Left View Right View
Normal (px, py) (746.57, 391.85) (746.57, 391.85)

Interface Distance (m) 0.0435 0.0116

(a)

Estimated Parameter Left View Right View
Normal (px, py) (741.51, 387.77) (748.55, 388.26)

Interface Distance (m) 0.0422 0.0101

(b)

Figure 5.8: The impact of refractive interface calibration on stereo matching.
Even though the calibrated interface in (a) is close to the calibrated interface in
(b), a much larger set of depth hypotheses was obtained in (b). Pixel brightness
corresponds to depth, with darker pixels being closer. Pixels with no depth
hypothesis are white.

66

(a) Multi-view Experiment #1

(b) Multi-view Experiment #2

Figure 5.9: Setup for multi-view experiments #1 and #2. Cameras are rep-
resented with their respective x-axes (red), optical axes (blue), and refractive
interfaces (black).

67

(a) Original Images

(b) Ground Truth Depth Map

(c) Focal Length Correction

(d) Radial Distortion Correction

(e) Refractive Correction

Figure 5.10: Multi-view stereo experiment #1, using synthetic data. Pixel
brightness corresponds to depth, with white being the farthest and black being
the closest. Masked-out pixels are blue and invalidated pixels are pink. Since the
interface is parallel, refractive distortion becomes more significant towards the
boundaries of the image. Less depth hypotheses are found near the boundaries
when only scaling the focal length, which ignores these distortions.

68

(a) Original Images

(b) Ground Truth Depth Map

(c) Focal Length Correction

(d) Radial Distortion Correction

(e) Refractive Correction

Figure 5.11: Multi-view stereo experiment #2, using synthetic data. Pixel
brightness corresponds to depth, with white being the farthest and black being
the closest. Masked-out pixels are blue and invalidated pixels are pink. With
non-parallel interfaces for each camera, refractive distortion is located through-
out the images. Unless properly corrected for, the significant impact of refrac-
tion reduces good candidate matches.

69

views:

RMS(β̂; β) =

√
1

n

∑
i

[
β̂i − βi

]2
, (5.1)

where ˆbetai is the ith observation and; β, the ground truth value for the ith ob-

servation; and n, the total number of observations. In the case of computing

RMS error values for depths maps, β are the ground truth depths, β̂ the com-

puted depths, and n the number of computed depth hypotheses. In Figure 5.12

we do not actually compare the difference in depth, but rather simply the differ-

ence in pixel intensity in the depth maps (which are directly proportional to the

depth). As expected, our refractive correction consistently has a lower error than

focal length and radial distortion correction. Also, the RMS error for refractive

correction in both the parallel and non-parallel cases are essentially the same.

Even if other methods can obtain nice depth maps, ignoring refraction when

reprojecting points will result in noise. In particular, reprojected points from

two different views will not align properly. Figure 5.13 shows how the reprojec-

tion of these depth maps results in a noisy 3D point set. Our own method pro-

duces high quality results in both cases, whereas focal length correction (Fig-

ure 5.13(a)) and radial distortion correction (Figure 5.13(b)) fail to produce a

good reprojection for the non-parallel case.

In particular, the noisier reprojections of focal length correction (Figure 5.13(a))

and radial distortion correction (Figure 5.13(b)) stem from two sources of error.

First, the depth hypotheses computed are more erroneous than refractive correc-

tion, as can be seen from the higher RMS errors (Figure 5.12(b)). Second, the

reprojection itself will be erroneous since we need to take into consideration the

fact that a depth hypothesis at a pixel will rarely ever fall on the (non-refracted)

ray cast through that pixel.

To emphasize this error, a 3D ray is imaged under the influence of a refrac-

tive interface that is parallel (Figure 5.14(a)) and non-parallel (Figure 5.14(b))

to the imaging plane. We visualize the reprojections of the image of this ray

when ignoring and compensating for refraction. One can see that ignoring re-

fraction results in an erroneous reprojection in both cases, but especially so in

the non-parallel case. The level of error is more significant in the non-parallel

case because the refractive distortion is far more significant. Figure 5.14 also

shows how ignoring refraction can result in misaligned reprojections, which

70

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
M

S
er

ro
r

View

focal length correction
radial distortion correction
refractive correction

(a) Experiment #1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
M

S
er

ro
r

View

focal length correction
radial distortion correction
refractive correction

(b) Experiment #2

Figure 5.12: Root mean square (RMS) error plots for multi-view experiments
on synthetic data.

71

(a) Focal Length Correction

(b) Radial Distortion Correction

(c) Refractive Correction

Figure 5.13: Reprojection of depth maps from multi-view experiments #1 (left)
and #2 (right). Not compensating for refraction when reprojecting depth hy-
potheses produces misaligned point sets. This misalignment is more pronounced
in experiment #2 because the non-parallel interfaces impose larger amounts of
refractive distortion.

72

(a) Parallel Interface (b) Non-Parallel Interface

Figure 5.14: Visualizing the reprojected samples of an imaged ray (black) from
two views (red/blue) when ignoring a refractive interface. The reprojected sam-
ples when ignoring refraction do not line up with the ground truth ray (erro-
neous reprojection). Also, the reprojected samples do not match each other
(misaligned reprojections).

again is more pronounced in the non-parallel case. Misalignment error is espe-

cially important in the case of multi-view algorithms that reconstruct the scene

with reprojected depth maps (e.g., [6]).

To see how this error changes with respect to a change in the interface’s

normal, we compute the RMS error of the reprojected samples using (5.1). In

particular, β corresponds to the samples taken from the 3D ray and β̂ the re-

projected samples. The squared difference of these two is computed using a

squared L2 norm (i.e., the squared Euclidean distance). First, we note how the

minimum occurs at∼7◦ and not at 0◦ (i.e., parallel interface). This characteristic

is specific to the ray that we used to produce this figure, whose image is straight-

est when the interface is at that angle. In general, the error grows as the angle

between the normal of the refractive interface and the optical axis increases.

Finally, our real-world experiments with a multi-view system have been less

successful. In particular, we have a setup in which cameras are very close to the

refractive interface (Figure 4.2). We have found that calibrating the refractive

interfaces under this setup has been a difficult task. Figure 5.16 shows results

from one of the data sets captured with this array. The poorly calibrated in-

terfaces resulted in radial distortion correction providing slightly more depth

73

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50

R
M

S
E

rr
or

Angle of Refractive Interface Normal (degrees)

Figure 5.15: RMS error of reprojection when ignoring refraction. The angle of
the refractive interface normal is with respect to the optical axis, in the direction
of the image diagonal. The leftmost error value corresponds to Figure 5.14(a)
and the rightmost to Figure 5.14(b).

74

hypotheses than refractive correction, and a better reprojection (Figure 5.17).

Given our tank setup, the range of depths that objects can fall within is very

small. As mentioned in Section 2.3, a small variation in observed depths is a

scenario in which radial distortion can provide satisfactory results.

75

(a) Original Images

(b) Focal Length Correction

(c) Radial Distortion Correction

(d) Refractive Correction

Figure 5.16: Multi-view stereo experiment #3, using real data. Pixel brightness
corresponds to depth, with white being the farthest and black being the closest.
Masked-out pixels are blue and invalidated pixels are pink. A poorly calibrated
set of interfaces prevented refractive correction from obtaining results that were
better than radial distortion correction.

76

(a) Focal Length Correction (b) Radial Distortion Correction

(c) Refractive Correction

Figure 5.17: Reprojection of depth maps from multi-view experiment #3.
Given the poorly calibrated set of interfaces, the reprojection of refractive cor-
rection is no better than that of radial distortion correction.

77

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have presented a novel approach to stereo matching in an un-

derwater environment. In particular, this approach consists of two major com-

ponents:

• a method for calibrating the parameters of a refractive interface, and

• a method for performing stereo matching in which epipolar geometry is

represented using a physical model of refraction.

Our calibration method minimizes an approximate reprojection error be-

tween point correspondences of two views. From this we obtain parameters

of the planar refractive interfaces local to each camera. Given these parameters

we can then provide a close approximation of the epipolar geometry imposed

by the refractive interfaces. We do so by first casting a ray through a pixel in

one image and refracting it against its associated interface. This is followed by

projecting points sampled on this ray into the other view. We then use these

projected samples to obtain a piecewise linear approximation of the epipolar

curve.

Through various experiments we have shown the effectiveness of our sys-

tem, and how important it is to use a physical model for refraction rather than

approximations. Our stereo matching method consistently provides a larger set

of depth hypotheses in all experiments.

78

6.2 Future Work

Although we have provided convincing results for why it is necessary to model

refraction properly, there are currently some limitations to our system.

First, calibration is quite sensitive to initial estimates. Oftentimes the cal-

ibration would produce spurious results when initialized with values that were

relatively far from the actual values. We have found that the error function con-

tains many local minima, making it easy for the optimization to get trapped.

Also, we have found parameter vectors which give a smaller total error than pa-

rameter vectors that are more physically correct. We believe that further investi-

gation into other optimization strategies is necessary to improve the robustness

of the calibration. Other possibilities include:

• Introducing a prior into the optimization to constrain parameter selection.

• Intelligently selecting multiple samples throughout the parameter space,

optimizing with each of these samples as initial estimates and taking the

best result.

Second, calibration is currently formulated for pairs of cameras. This pair-

wise process makes it tedious to calibrate refractive interfaces in a multi-view

system. Modifying the existing formulation to fit into a bundle adjustment prob-

lem would make this process simpler. Also, as mentioned in Section 4.1, it is

important to capture calibration data close to the interface. Requiring feature

correspondences makes this difficult, if not impossible, when cameras are close

to the interface. Another interesting avenue of research would be to investigate

single-view calibration, eliminating the need for feature correspondences.

Finally, although it works well, our approach to stereo matching requires

sufficiently dense sampling of a ray. A more effective approach would be to

have an analytic model of the epipolar curve in image-space, and sample that

curve accordingly. Chari and Sturm have provided a closed-form solution to a

situation in which a stereo pair have a shared refractive interface [9]. It would be

interesting to investigate their work and to see if it can be extended to the more

general model (i.e., non-shared refractive interface) proposed in this thesis.

79

Bibliography

[1] Distance between lines and segments with their closest point of approach.

http://softsurfer.com/Archive/algorithm 0106/algorithm 0106.htm.

[2] OpenCV. http://opencv.willowgarage.com/.

[3] POV-Ray. http://www.povray.org/.

[4] Kristian Ambrosch and Wilfried Kubinger. Accurate hardware-based

stereo vision. Computer Vision and Image Understanding, 114(11):1303–

1316, 2010.

[5] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimiza-

tion via graph cuts. IEEE Transactions on Pattern Analysis and Machine

Intelligence, pages 1222–1239, 2001.

[6] D. Bradley, T. Boubekeur, and W. Heidrich. Accurate multi-view recon-

struction using robust binocular stereo and surface meshing. IEEE Con-

ference on Computer Vision and Pattern Recognition, 2008.

[7] D. F. Campbell, G. Vogiatzis, C. Hernandez, and R. Cipolla. Using mul-

tiple hypotheses to improve depth-maps for multi-view stereo. European

Conference on Computer Vision, 5302:766–779, 2008.

[8] NEPTUNE Canada. NEPTUNE canada. http://www.neptunecanada.ca/,

2011.

[9] Visesh Chari and Peter Sturm. Multi-view geometry of the refractive plane.

In British Machine Vision Conference, 2009.

[10] D. Claus and A.W. Fitzgibbon. A rational function lens distortion model

for general cameras. In IEEE Conference on Computer Vision and Pattern

Recognition, volume 1, pages 213–219, 2005.

80

http://softsurfer.com/Archive/algorithm_0106/algorithm_0106.htm
http://opencv.willowgarage.com/
http://www.povray.org/
http://www.neptunecanada.ca/

[11] P.F. Felzenszwalb and D.R. Huttenlocher. Efficient belief propagation for

early vision. In IEEE Conference on Computer Vision and Pattern Recog-

nition, volume 1, pages 261– 268, 2004.

[12] R. Ferreira, J. P. Costeira, and J.A. Santos. Stereo reconstruction of a

submerged scene. In Iberian Conference on Pattern Recognition, 2005.

[13] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multi-

view stereopsis. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 99(1), 2009.

[14] Andrea Fusiello, Emanuele Trucco, and Alessandro Verri. A compact al-

gorithm for rectification of stereo pairs. Machine Vision and Applications,

12:16–22, 2000.

[15] G. Glaeser and H Schröcker. Reflections on refractions. Journal for Ge-

ometry and Graphics, 4(1):1–18, 2000.

[16] Andrew S. Glassner, editor. An Introduction to Ray Tracing. Academic

Press Ltd., 1989.

[17] N. R. Gracias, S. van der Zwaan, A. Bernardino, and J. Santos-Victor.

Mosaic-based navigation for autonomous underwater vehicles. IEEE Jour-

nal of Oceanic Engineering, 28(4):609–624, 2003.

[18] R. I. Hartley and P. Sturm. Triangulation. In ARPA Image Understanding

Workshop, pages 957–966, 1994.

[19] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, second edition, 2004.

[20] Heiko Hirschmüller and Daniel Scharstein. Evaluation of cost functions

for stereo matching. In IEEE Conference on Computer Vision and Pattern

Recognition, 2007.

[21] A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann. Local stereo match-

ing using geodesic support weights. In IEEE International Conference on

Image Processing, pages 2093–2096, 2009.

81

[22] Ryohei Kawai, Atsushi Yamashita, and Toru Kaneko. Three-dimensional

measurement of objects in water by using space encoding method. In IEEE

International Conference on Robotics and Automation, pages 2830–2835,

2009.

[23] Donna M. Kocak, Fraser R. Dalgleish, Frank M. Caimi, and Yoav Y.

Schechner. A focus on recent developments and trends in underwater

imaging. Marine Technology Society Journal, 42(1):52–67, 2008.

[24] V. Kolmogorov. Convergent tree-reweighted message passing for energy

minimization. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 28(10):1568–1583, 2006.

[25] V. Kolmogorov and R. Zabih. Computing visual correspondence with oc-

clusions using graph cuts. In IEEE International Conference on Computer

Vision, volume 2, pages 508–515, 2001.

[26] C. Kunz and H. Singh. Hemispherical refraction and camera calibration in

underwater vision. In OCEANS 2008, pages 1–7, 2008.

[27] P. Labatut, J.-P. Pons, and R. Keriven. Efficient multi-view reconstruc-

tion of large-scale scenes using interest points, delaunay triangulation and

graph cuts. In IEEE International Conference on Computer Vision, pages

1–8, 2007.

[28] J. Lavest, G. Rives, and J. Lapreste. Underwater camera calibration. Lec-

ture notes in computer science, pages 654–668, 2000.

[29] J. P. Lewis. Fast normalized cross-correlation. In Vision Interface, pages

120–123. Canadian Image Processing and Pattern Recognition Society,

1995.

[30] Rongxin Li, Haihao Li, Weihong Zou, R. G. Smith, and T. A. Curran.

Quantitative photogrammetric analysis of digital underwater video im-

agery. IEEE Journal of Oceanic Engineering, 22(2):364–375, 1997.

[31] N. J. W. Morris and K. N. Kutulakos. Dynamic refraction stereo. In IEEE

International Conference on Computer Vision, 2005.

82

[32] S. G. Narasimhan and S. K. Nayar. Structured light methods for underwa-

ter imaging: Light stripe scanning and photometric stereo. In OCEANS,

volume 3, pages 2610–2617, 2005.

[33] Nathalie Pessel, Jan Opderbecke, and Marie-José Aldon. Camera self-

calibration in underwater environment. International Conference in Cen-

tral Europe on Computer Graphics, Visualization and Computer Vision,

2003.

[34] Jean-Philippe Pons, Renaud Keriven, and Olivier Faugeras. Multi-view

stereo reconstruction and scene flow estimation with a global image-based

matching score. International Journal of Computer Vision, 72(2):179–193,

2007.

[35] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.

Flannery. Numerical Recipes in C++: The Art of Scientific Computing.

Cambridge University Press, 2002.

[36] J. P. Queiroz-Neto, R. Carceroni, W. Barros, and M. Campos. Underwater

stereo. In Brazilian Symposium on Computer Graphics Image Processing,

pages 170–177, 2004.

[37] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-

frame stereo correspondence algorithms. International Journal of Com-

puter Vision, 47(1):7–42, 2002.

[38] Y. Y. Schechner and N. Karpel. Clear underwater vision. In IEEE Confer-

ence on Computer Vision and Pattern Recognition, volume 1, pages 536–

543, 2004.

[39] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A

comparison and evaluation of multi-view stereo reconstruction algorithms.

IEEE Conference on Computer Vision and Pattern Recognition, pages

519–528, 2006.

[40] M. R. Shortis and E. S. Harvey. Design and calibration of an underwa-

ter stereo-video system for the monitoring of marine fauna populations.

83

International Archives Photogrammetry and Remote Sensing, 32(5):792–

799, 1998.

[41] H. Singh, J. Howland, and O. Pizarro. Advances in large-area photomo-

saicking underwater. IEEE Journal of Oceanic Engineering, 29(3):872–

886, 2004.

[42] Y. Swirski, Y. Y. Schechner, B. Herzberg, and S. Negahdaripour. Stereo

from flickering caustics. In IEEE International Conference on Computer

Vision, pages 205–212, 2009.

[43] Richard Szeliski, Ramin Zabih, Daniel Scharstein, Olga Veksler, Vladimir

Kolmogorov, Aseem Agarwala, Marshall Tappen, and Carsten Rother. A

comparative study of energy minimization methods for Markov random

fields with smoothness-based priors. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 30:1068–1080, 2008.

[44] today.mun.ca. $10.1 million in federal funds for research at memorial.

http://today.mun.ca/news.php?news id=6235, 2011.

[45] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images.

In International Conference on Computer Vision, pages 839–846, 1998.

[46] T. Treibitz, Y. Y. Schechner, and H. Singh. Flat refractive geometry. In

IEEE Conference on Computer Vision and Pattern Recognition, volume 2,

2008.

[47] A.O. Ulusoy, F. Calakli, and G. Taubin. One-shot scanning using De Bruijn

spaced grids. In IEEE International Conference on Computer Vision Work-

shops, pages 1786–1792, 2009.

[48] VENUS. What is VENUS? http://venus.uvic.ca/discover-venus/

what-is-venus/, 2011.

[49] G. Vogiatzis, C. Hernandez Esteban, P. H. S. Torr, and R. Cipolla.

Multiview stereo via volumetric graph-cuts and occlusion robust photo-

consistency. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 29(12), 2007.

84

http://today.mun.ca/news.php?news_id=6235
http://venus.uvic.ca/discover-venus/what-is-venus/
http://venus.uvic.ca/discover-venus/what-is-venus/

[50] H. Vu, R. Keriven, P. Labatut, and J. P Pons. Towards high-resolution

large-scale multi-view stereo. IEEE Conference on Computer Vision and

Pattern Recognition, 2009.

[51] M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky. Map estimation via

agreement on trees: message-passing and linear programming. IEEE

Transactions on Information Theory, 51(11):3697–3717, 2005.

[52] Yair Weiss. Belief propagation and revision in networks with loops. Tech-

nical report, 1997.

[53] Wikipedia. Cross-correlation. http://en.wikipedia.org/wiki/

Cross-correlation.

[54] Yoram Yekutieli, Rea Mitelman, Binyamin Hochner, and Tamar Flash. An-

alyzing octopus movements using three-dimensional reconstruction. Jour-

nal of Neurophysiology, 98:1775–1790, 2007.

[55] Kuk-Jin Yoon and In So Kweon. Adaptive support-weight approach for

correspondence search. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 28(4):650–656, 2006.

[56] Li Zhang, B. Curless, and S.M. Seitz. Rapid shape acquisition using color

structured light and multi-pass dynamic programming. In International

Symposium on 3D Data Processing Visualization and Transmission, pages

24–36, 2002.

[57] Z. Zhang. A flexible new technique for camera calibration. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 22(11):1330–1334,

2000.

85

http://en.wikipedia.org/wiki/Cross-correlation
http://en.wikipedia.org/wiki/Cross-correlation

Appendix A

C++ Code For Normalized
Cross-Correlation

C++ code for computing normalized cross-correlation [29] with support for

pixel-based weighting within a window of radius WINDOW RADIUS.

double cost ncc (
const Image &img1, const Image &img2,
int x1, int y1, int x2, int y2)

{
// Find neighboudhood means
double meanL = 0, meanR = 0;
double totalWeight = 0.0;
for (int row = −WINDOW RADIUS; row <= WINDOW RADIUS; ++row) {

for (int col = −WINDOW RADIUS; col <= WINDOW RADIUS; ++col) {
const RGB &lrgb = img1.pixel(x1 + col , y1 + row);
if (! lrgb . isValid ()) continue;

const RGB &rrgb = img2.pixel(x2 + col , y2 + row);
if (! rrgb . isValid ()) continue;

const double weight = weight(row, col) ;
if (weight > 1e−10) {

meanL += weight*lrgb.toGray() ;
meanR += weight*rrgb.toGray() ;
totalWeight += weight;

}
}
}

// No weights at all , consider this a non match
if (totalWeight < 1e−10)

return 0;

meanL /= totalWeight ;
meanR /= totalWeight ;

// Compute squares and variances
double sum1 = 0, sum2 = 0, sum3 = 0;
for (int row = −WINDOW RADIUS; row <= WINDOW RADIUS; ++row) {

for (int col = −WINDOW RADIUS; col <= WINDOW RADIUS; ++col) {

86

const RGB &lrgb = img1.pixel(x1 + col , y1 + row);
if (! lrgb . isValid ()) continue;

const RGB &rrgb = img2.pixel(x2 + col , y2 + row);
if (! rrgb . isValid ()) continue;

const double weight = weight(row, col) ;
if (weight > 1e−10) {

const double pixel gray l = weight*lrgb . toGray() ;
const double pixel gray r = weight*rrgb . toGray() ;
sum1 += (pixel gray l − meanL)*(pixel gray r − meanR);
sum2 += (pixel gray l − meanL)*(pixel gray l − meanL);
sum3 += (pixel gray r − meanR)*(pixel gray r − meanR);
}
}
}

// Prevent a divide−by−zero scenario
if (sum2 * sum3 < 1e−10)

return 0;

// Cross−correlation value
return sum1 / std :: sqrt (sum2 * sum3);
}

87

Appendix B

C++ Code For Refractive
Projection

C++ code for projecting a point p onto a refractive interface.

using namespace Eigen;

bool refractive projection (Vector3d &p, const Plane3d &P, double n) {
// Some values we will need
const Vector3d proj = project (p, P.normal()) ;
const double y = (p − proj) .y() ;
const double z = proj .norm();
const double r = (p − proj) .norm();
const double d = P.x0() .norm();
const double rr = r*r , nn = n*n, dd = d*d;

// The direction which when scaled by the proper root will
// give us the projected point under refraction
Vector3d dir = p − proj ;
dir . normalize () ;

// Find roots of quartic
double roots [4];
findRoots (

nn − 1,
−2*r*(nn − 1),
rr *(nn − 1) + dd*nn − (z − d)*(z − d),
−2*dd*nn*r,
dd*nn*rr,
roots [0], roots [1], roots [2], roots [3]) ;

// Find the root such that its corresponding projected point
// has a y−coordinate that is in the range [0, p y]
for (int index = 0; index < 4; ++index) {

if (! std :: isnan (roots [index])) {
const Vector3d pp = roots [index]* dir ;
const double py = pp.y() ;
if (py > −1e−3 && y > −1e−3) {

if (py < y + 1e−3) {
p = pp + P.x0() ;
return true ;
}

88

} else if (py < 1e−3 && y < 1e−3) {
if (y < py + 1e−3) {

p = pp + P.x0() ;
return true ;
}
}
}
}

return false ;
}

89

Appendix C

C++ Code For Triangulating a 3D
Point

C++ code for triangulating a point from a set of 2D projections in several views.

This is an implementation of the Iterative-LS method presented by Hartley and

Sturm [18].

using namespace Eigen;

const double NaN = std :: numeric limits<double>::quiet NaN();

Vector3d triangulate (const std :: vector<CameraPtr> &cameras,
const std :: vector<Vector2d> &pts,
const std :: vector<bool> &mask)

{
// Find the number of views that have a point
size t num points = 0;
for (size t index = 0; index < mask.size () ; ++index)

if (mask[index])
++num points;

if (num points < 2)
return Vector3d(NaN, NaN, NaN);

// Iterative −LS method
MatrixXd A(2*num points, 3);
VectorXd b(2*num points);
Vector4d x(0, 0, 0, 1) ;
for (int iteration = 0; iteration < 10; ++ iteration) {

for (size t index = 0, tindex = 0; index < pts . size () ; ++index) if (mask[index])←↩

{
const Vector2d pt = pts [index];
const ProjMat &P = cameras[index]−>P();

const double weight = (iteration == 0 ? 1.0 : 1.0 / P.row(2) . dot(x)) ;
const Vector4d t1 = weight*(pt .x() * P.row(2) − P.row(0)) . start <4>();
const Vector4d t2 = weight*(pt .y() * P.row(2) − P.row(1)) . start <4>();

A.row(tindex + 0) = t1 . start (3) ;
A.row(tindex + 1) = t2 . start (3) ;

90

b[tindex + 0] = −t1[3];
b[tindex + 1] = −t2[3];

tindex += 2;
}

// Solve the linear system
Eigen :: Vector3d xt ;
A.svd() . solve (b, &xt);

// Break if new solution isn ’ t much different from previous
if (iteration > 0 && (x. start<3>() − xt).squaredNorm() < 1e−10)

break;

x. start <3>() = xt;
break;
}

return x. start <3>();
}

91

Appendix D

Computing The Midpoint of Two
Rays

The midpoint of two rays can intuitively be regarded as the point which is as

close as possible to both rays. More specifically, consider raysR1 = {s1, ~d1}, R2 =

{s2, ~d2}, where si are the sources of the rays and ~di are their directions. We

compute the following values [1]:

w0 = s1 − s2 (D.1)

a = ~d1 · ~d1 (D.2)

b = ~d1 · ~d2 (D.3)

c = ~d2 · ~d2 (D.4)

d = ~d1 · w0 (D.5)

e = ~d2 · w0 (D.6)

t1 =
be− cd
ac− b2

(D.7)

t2 =
ae− bd
ac− b2

. (D.8)

If we consider the extensions of the rays R1, R2 to infinite lines, the point p1 on

R1 which is as close as possible to R2 is computed from t1:

p1 = s1 + t1~d1. (D.9)

Similarly, the point p2 on R2 which is as close as possible to R1:

p2 = s2 + t2~d2. (D.10)

The midpoint m of R1 and R2 is then the midpoint of points p1 and p2:

m =
p1 + p2

2
. (D.11)

92

Note how we consider the extension of the rays to infinite lines. In the case that

t1 < 0 or t2 < 0 we are outside of the domain of the ray. Special care needs to

be taken for these boundary cases [1].

C++ code corresponding to the above:

Point midpoint(const Ray3d &R1, const Ray3d &R2) const {
Point w0 = R1.source() − R2.source() ;

double a = R1. direction () . dot(R1. direction ()) ;
double b = R1. direction () . dot(R2. direction ()) ;
double c = R2. direction () . dot(R2. direction ()) ;
double d = R1. direction () . dot(w0);
double e = R2. direction () . dot(w0);

double den = 1.0 / (a*c − b*b);
double t1 = (b*e − c*d) * den;
double t2 = (a*e − b*d) * den;

Point p1 = R1.source () + t1*R1. direction () ;
Point p2 = R2.source () + t2*R2. direction () ;
return (p1 + p2)*0.5;
}

93

Appendix E

C++ Code For Computing Geodesic
Support Weights

C++ code for computing geodesic support weights [21] in a window with a

radius of WINDOW RADIUS.

namespace {
// Sigma value used in weighting
const double GEODESIC SIGMA = 25.0;

// Num iterations for sweeping shortest−path method
const int NUM ITERS = 3;

// Offsets kernel for sweeping shortest−path method
const int KERNEL SIZE = 8;
const double K1[] = {−1, −1, 0, −1, 1, −1, −1, 0}; // forward pass
const double K2[] = {−1, 1, 0, 1, 1, 1, 1, 0}; // backward pass
}

// 2D array type containing weights
typedef std :: vector<std:: vector<double> > Weights;

Weights compute geodesic weights(const VectorImage &img, int cx, int cy) {
const int WINDOW SIZE = 2*WINDOW RADIUS + 1;

// Initialize distances to large values , and center pixel to zero
Weights weights(WINDOW SIZE);
for (int y = 0; y < WINDOW SIZE; ++y)

std :: fill (weights[y]. begin () , weights[y]. end() , 1000000.0);

weights[WINDOW RADIUS][WINDOW RADIUS] = 0.0;

// Approximate geodesic distance using sweeping method
for (int iter = 0; iter < NUM ITERS; ++iter) {

// Forward pass
for (int y = −radius; y <= WINDOW RADIUS; ++y) {

for (int x = −WINDOW RADIUS; x <= WINDOW RADIUS; ++x) {
const RGBA &rgb1 = img.pixel(cx + x, cy + y) ;
if (! rgb1. isValid ())

continue;

94

double &weight = weights[y + WINDOW RADIUS][x + WINDOW RADIUS];
for (int ind = 0; ind < KERNEL SIZE; ind += 2) {

int dx = K1[ind + 0];
int dy = K1[ind + 1];
if (x + dx > WINDOW RADIUS || y + dy > WINDOW RADIUS || x + dx < ←↩

−WINDOW RADIUS || y + dy < −WINDOW RADIUS)
continue;

RGBA rgb2 = img.pixel(cx + x + dx, cy + y + dy);
if (rgb2. isValid ()) {

rgb2 −= rgb1;
double diff = std :: sqrt (rgb2. r*rgb2. r + rgb2.g*rgb2.g + rgb2.b*rgb2.b)←↩

;
double cost = weights[y + dy + WINDOW RADIUS][x + dx + ←↩

WINDOW RADIUS];
weight = std :: min(weight, cost + diff) ;
}
}
}
}

// Backward pass
for (int y = WINDOW RADIUS; y >= −WINDOW RADIUS; −−y) {

for (int x = WINDOW RADIUS; x >= −WINDOW RADIUS; −−x) {
const RGBA &rgb1 = img.pixel(cx + x, cy + y) ;
if (! rgb1. isValid ())

continue;

double &weight = weights[y + WINDOW RADIUS][x + WINDOW RADIUS];
for (int ind = 0; ind < KERNEL SIZE; ind += 2) {

int dx = K2[ind + 0];
int dy = K2[ind + 1];
if (x + dx > WINDOW RADIUS || y + dy > WINDOW RADIUS || x + dx < ←↩

−WINDOW RADIUS || y + dy < −WINDOW RADIUS)
continue;

RGBA rgb2 = img.pixel(cx + x + dx, cy + y + dy);
if (rgb2. isValid ()) {

rgb2 −= rgb1;
double diff = std :: sqrt (rgb2. r*rgb2. r + rgb2.g*rgb2.g + rgb2.b*rgb2.b)←↩

;
double cost = weights[y + dy + WINDOW RADIUS][x + dx + ←↩

WINDOW RADIUS];
weight = std :: min(weight, cost + diff) ;
}
}
}
}
}

// Exponential weighting
for (int y = 0; y < WINDOW SIZE; ++y)

for (int x = 0; x < WINDOW SIZE; ++x)
weights[y][x] = std :: exp(−weights[y][x] / GEODESIC SIGMA);

return weights ;
}

95

	Introduction
	Related Work
	Binocular Stereo
	Terminology
	Local Methods
	Global Methods
	Cross-checking

	Multi-view Stereo
	Scene Representation
	Photo-consistency Measure
	Visibility Model
	Reconstruction Algorithm
	Methods

	Underwater Stereo
	Calibration
	Stereo Matching
	Other Methods

	Refractive Imaging
	Image Formation
	Pinhole Camera Model
	Pixel Coordinates
	Lens Distortion

	Epipolar Geometry
	Refraction
	Refractive Projection

	Underwater Stereo
	Refractive Interface Calibration
	Method

	Stereo Matching
	Method

	Experiments
	Binocular Stereo
	Multi-View

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	C++ Code For Normalized Cross-Correlation
	C++ Code For Refractive Projection
	C++ Code For Triangulating a 3D Point
	Computing The Midpoint of Two Rays
	C++ Code For Computing Geodesic Support Weights

