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Abstract

Antenna selection reduces the system cost and complexity by reducing the number o f ra

dio frequency (RF) chains while still retaining full diversity. Despite extensive research 

on receive antenna selection (RAS), the analysis o f transmit antenna selection (TAS) and 

transmit and receive antenna selection (T-RAS) encounters problems due to statistical diffi

culties. In this thesis, performance analysis using a simple measurement known as amount 

o f fading (AF) is provided. Approximations and bounds for the AF as well as methods 

to derive the exact AF calculations for TAS on Rayleigh fading channels are derived. A 

simple approximate formula for the relationship between the AF and the coding gain in 

a TAS system is achieved. Furthermore, the average bit error rate (BER), average sym

bol error rata (SER), outage probability and ergodic capacity are derived by utilizing the 

characteristic function (CF) o f the joint output signal-to-noise ratios (SNR) in generalized 

T-RAS systems. This approach can be used for both independent and arbitrarily corre

lated Rayleigh, Nakagami-m and Rician fading channels. The effects o f  the antenna array 

configuration and the operating environment (fading, angular spread, mean angle-of-arrival 

(AOA), mean angle-of-departure (AOD)) on the average BER performance are illustrated. 

The simulation results are provided to validate the numerical calculations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

I would like to take the opportunity to thank all the people who have supported me through

out my master study.

First, I would like to thank Dr. Tellambura, my supervisor, for his great support for the 

past two years. I cherish all the help he had given me. He has led me into this promising 

field and offered much o f his insight as well as kindness to a beginner as me. I will bear in 

mind all the things I have leamt here including the attitudes towards different things. They 

are also a priceless treasure for my future endeavor.

I like to thank Dr. Sergiy Vorobyov and Dr. Janelle Harms for their precious time and 

effort to be my committees.

A great gratitude goes to Wei Zhang, who was my co-researcher in most o f  the works 

and offered me much help. I would also like to thank all iCORE Wireless Communications 

Laboratory members, who helped me in one way or another with their warmheart and 

sincerity.

I also wish to thank the Alberta Informatics Circle o f Research Excellence (iCORE) for 

their financial support.

From the deepest o f  my heart, I would give special thanks to m y family who are always 

there supporting me, reminding me and encouraging me. I am really grateful for their 

caring and understanding.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents

1 Introduction 1

1.1 M otivation......................................................................................................................  1

1.2 C o n tr ib u tio n s ...............................................................................................................  2

1.3 Thesis O u tlin e ...............................................................................................................  3

2 MIMO Systems with Antenna Selection 4

2.1 In tro d u c tio n ................................................................................................................... 4

2.2 System M o d e l s ...........................................................................................................  5

2.2.1 Statistical Models o f MIMO Fading C h an n e ls ........................................  5

2.2.2 Spatial Fading C o rre la tio n ..........................................................................  8

2.3 Performance M e a s u re s ..............................................................................................  10

2.3.1 Average Error R a t e ........................................................................................  10

2.3.2 Outage p ro b a b il i ty ........................................................................................  11

2.3.3 Diversity G a i n ............................................................................................... 11

2.3.4 Coding G a i n ..................................................................................................  13

2.3.5 M o m e n ts .........................................................................................................  13

2.3.6 Amount o f Fading (AF) .............................................................................  13

2.4 Antenna S elec tio n ........................................................................................................  14

2.4.1 Antenna Selection S c h e m e ..........................................................................  15

2.4.2 Orthogonal Space-time Block Codes (O ST B C s).....................................  17

2.4.3 OSTB-Coded MIMO Systems with Antenna S e le c t io n ........................ 18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.5 S u m m a r y .......................................................................................................................  19

3 Amount of Fading Analysis in MIMO Systems with TAS 20

3.1 In tro d u c tio n ...................................................................................................................  20

3.2 Order Statistics and System M o d e l .............................................................................. 22

3.3 AF for i.i.d. Rayleigh Fading Channels ....................................................................23

3.3.1 (T V ,;T V ,-) with i.i.d. Rayleigh Fading C h a n n e ls ...........................................23

3.3.2 ( T V , ,M , ;T V ,- )  with i.i.d. Rayleigh Fading C h a n n e ls ....................................24

3.4 AF for Fading Channels with Correlation .................................................................27

3.4.1 (T V ,;T V r ) with Receiver Antenna C o rre la tio n ..............................................27

3.4.2 (T V ,, Mt \TV,.) with Receiver Antenna C o rre la tio n ....................................... 29

3.4.3 (Nt ,Nr) and ( T V ,,Mt;Nr) with general c o r re la t io n ....................................30

3.5 Relationship Between AF and the Average SER at High S N R .......................... 32

3.5.1 (N,;Nr) with i.i.d. Fading C h a n n e ls .......................................................  33

3.5.2 ( T V ,,Mt \Nr) with i.i.d. Fading C h a n n e ls ................................................. 33

3.5.3 (TV,;Nr) with Receiver Correlation Fading C hannels............................  35

3.5.4 (T V ,, Mt ;TV,.) with Receiver Correlation Fading C h an n e ls..................... 36

3.6 Conclusion ...................................................................................................................  37

3.7 Appendix A

General moments for i.i.d. Rayleigh fading channels ......................................  37

3.8 Appendix B

The lower bound o f AF for correlated Rayleigh fading ................................... 39

3.9 Appendix C

General moments for receiver-correlated Rayleigh fading c h a n n e ls .................. 40

4 Performance Analysis of T-RAS with OSTBC 42

4.1 In tro d u c tio n ........................................................................................................................42

4.2 System and Channel M o d e l............................................................................................44

4.3 The CF o f T -R A S ............................................................................................................. 45

4.3.1 Rayleigh fading ch an n els ................................................................................ 47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.3.2 Nakagami-m fading channels ......................................................................  50

4.3.3 Rician fading c h a n n e ls ................................................................................. 50

4.4 Performance A n a ly s is ...................................................................................................... 51

4.4.1 BER Analysis ............................................................................................... 52

4.4.2 SER Analysis ............................................................................................... 53

4.4.3 Outage P ro b a b il i ty ........................................................................................  54

4.4.4 Ergodic c a p a c i ty ...........................................................................................  54

4.5 Numerical R esu lts ......................................................................................................... 54

4.5.1 Correlated Rayleigh fading ch an n e ls ......................................................... 55

4.5.2 Correlated Nakagami-m fading ch an n els .................................................. 57

4.5.3 Correlated Rician fading c h a n n e ls ............................................................  57

4.6 Conclusion ...................................................................................................................  58

5 Conclusions and Future Work 66

References 68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

2.1 Antenna Selection S c h e m e ........................................................................................ 16

2.2 Transmit Antenna Selection S c h e m e ....................................................................... 17

3.1 ^Fjjd&ts f° r an i-i-d. (8, Mt;4) s y s te m ...........................................................................25

3.2 The approximate value o f a  for different Nt and A , - ............................................... 26

3.3 AFlc with different correlation coefficients in a (4,3) s y s t e m ..............................29

3.4 /lFrc&Ls with different correlation coefficients in a (4 ,AT,;3) system with

constant receiver c o r re la t io n ...................................................................................  31

3.5 AFgC&ts with different p  in a (4,M ,;3) system with constant transmit and

receiver correlation, a  =  0 . 4 ...................................................................................  32

3.6 The average SER of 4-QAM using Alamouti Scheme in a (4,2;1) system . . 35

3.7 The average SER o f 4-QAM  with in (4,1; 1) and (4,3; 1) systems ................... 36

4.1 Two possible antenna selection su b se ts ........................................................................45

4.2 Average BER versus transmit SNR over independent Rayleigh fading chan

nels ................................................................................................................................... 59

4.3 Average SER versus transmit SNR over independent Rayleigh fading chan

nels ................................................................................................................................... 60

4.4 Outage versus transmit SNR over independent Rayleigh fading channels . . 61

4.5 Average BER versus transmit antenna spacing over correlated Rayleigh

fading channels with transmit SNR=9 dB...............................................................  62

4.6 Average BER versus transmit angular spread over correlated Rayleigh fad

ing channels with transmit SNR=9 dB ..................................................................... 63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.7 Average BER versus transmit SNR over correlated Nakagami-w fading 

channels with m — 0 .7 ,1 ,2 .1 ......................................................................................  64

4.8 Average BER versus transmit antenna spacing over correlated Rician fad

ing channels with transmit SNR=9 dB and K  =  0 ,4 ,1 0 ......................................  65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acronyms

Acronyms Definition

A/D analog to digital

AF amount o f fading

AOA angle-of-arrival

AOD angle-of-departure

AWGN additive white Gaussian noise

BER bit error rate

BFSK binary frequency shift keying

BPSK binary phase shift keying

CF characteristic function

CDF cumulative distribution function

D/A digital-to-analog

EGC equal gain combiner

GSC Generalized selection combining

i.i.d. independent identically distributed

LNA low noise amplifier

LOS line-of-sight

MGF moment generating function

M-PSK M -ary phase shift keying

M-QAM M-ary square amplitude modulation

MRC maximum ratio combining

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



MIMO multiple input multiple output

ML maximum-likelihood

OSTBC orthogonal space-time block codes

PDF probability density function

PSK phase shift keying

QPSK quadrature phase shift keying

RAS receive antenna selection

RF radio frequency

SC selection combining

SER symbol error rate

SISO single input single output

SNR signal-to-noise ratio

TAS transmit antenna selection

ULA uniform linear arrays

T-RAS transmit and receive antenna selection

W CDMA wideband code division multiple access

ZMCSCG zero mean circularly symmetric complex Gaussian

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Symbols

Notations Definition

6“{x) expectation of random variable x

var(x) statistical variance o f random variable x

Es energy per symbol

f ( x )  PDF o f random variable x

f ( x i , ■ • • ,x„) joint PDF o f random variables x \ , ■ ■ ■ ,x„

F(x)  CDF o f random variable x

M(x)  MGF o f random variable x

min(<2 , b) minimum of a and b

(A )1 / 2 the square root o f  matrix A

r(A) rank o f A

(•)* complex conjugate operator

(■) “ 1 matrix inverse operator

(■)T transpose operator

(■)H conjugate transpose operator

A (m,n)  the (m,n)- th entry o f A

det(A) determinant o f A

vec(A) vectorization o f A

||A ||^  Frobenius norm o f A

A ® B Kronecker product o f  the matrices A and B

j V ( H , o 2) a circularly complex Gaussian variable with mean /! and variance a 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a Gaussian variable with mean jU and variance O"
no the Gamma function

U - ) the m-th order modified Bessel function

£ ( ; ■ ) the first order Marcum Q-function

Q( 0 the Gaussian Q-function

7(t ) the complementary incomplete gamma function
c^mxn a m x /j-dimensional complex matrix space

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

Introduction

1.1 Motivation

The wireless communication industry has been experiencing phenomenal growth rates over 

the past several years. In many applications, wireless can eliminate the high costs o f in

stalling and maintaining traditional wired systems. Wireless services are accessible even 

in the most rural community. However, the largest obstacle facing designers o f wireless 

communication systems is the random nature o f the wireless propagation channel. The 

wireless channel is non-stationary and noisy due to fading and interference. Recent ad

vances have demonstrated that multiple-input-multiple-output (MIMO) wireless systems 

can significantly improve the system performance. MIMO technology has thus got the 

potential to provide the next major leap forward for wireless communications [1],

However, MIMO systems have increased complexity and cost compared to traditional 

single-input single-output (SISO) systems. While additional antenna elements (patch or 

dipole antennas) are inexpensive, the radio frequency (RF) elements are expensive. MIMO 

systems with Nt transmit and Nr receive antennas require Nt (Nr) complete RF chains at the 

transmitter and the receiver, respectively, including low-noise amplifiers, downconverters, 

and analog-to-digital converters.

Due to this reason, there is an increasing interest in antenna selection schemes, where

1
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the ’best’ antenna subset o f available antennas are chosen (either at one or both link ends), 

downconverted, and processed. This selection reduces the number o f required RF chains, 

and thus, leads to significant savings in cost and complexity. The savings come at the price 

o f a (usually small) performance loss compared to the full-complexity system [2],

Several types o f antenna selection are possible: Transmit Antenna Selection (TAS), 

Receive Antenna Selection (RAS), and Transmit and Receive Antenna Selection (T-RAS). 

Antenna selection attempts to choose the sub-channels that have the ’best’ performance 

in terms o f bit error rate (BER) or capacity. W hen orthogonal space-time block codes 

(OSTBCs) are used for transmission, the system is guaranteed to have full diversity but 

with a less system cost [2],

1.2 Contributions

In this thesis, we analyze MIMO antenna selection with OSTBCs under both independent 

and correlated fading channels.

•  The amount o f  fading (AF) is derived for general MIMO systems with independent 

and identically distributed (i.i.d.) Rayleigh fading channels. Methods o f deriving the 

exact AF for MIMO TAS systems are provided. Upper bounds and lower bounds are 

derived. A simple approximate AF formula is derived.

•  Upper bounds and lower bounds on the AF are derived for fading channels with 

correlation. Simple approximation formulas are derived for the constant correlation 

model at the receiver side.

•  A simple relationship between the AF and the symbol error rate (SER) is given under

i.i.d. fading channels and TAS. Correspondingly, a simple relationship between the 

AF and coding gain is provided.

•  By utilizing characteristic function (CF), the average BER, SER, outage probabil

ity, ergodic capacity are derived for correlated channels in T-RAS MIMO systems.

2
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Results are extended to Rayleigh, Nakagami-m and Rician fading channels.

•  The effects o f  the antenna array configuration and the operating environment (fading, 

angular spread, mean angle-of-arrival (AOA), mean angle-of-departure (AOD)) on 

the average BER performance are illustrated.

1.3 Thesis Outline

The thesis is organized as follows:

•  Chapter 2 provides an overview on general MIMO channels and antenna selection 

schemes.

•  Chapter 3 deals with AF analysis under both independent and correlated channels in 

M IMO TAS systems. A simple relationship between AF, SER and coding gain is 

also provided.

•  In Chapter 4, a general framework for analyzing antenna selection is introduced. It 

allows the derivation o f SER, BER, outage probability as well as ergodic capacity. 

The effects o f antenna array configuration and the operating environment are also 

illustrated. Numerical results are given to validate derived results.

•  Conclusions and future work are given in Chapter 5.

3
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Chapter 2

MIMO Systems with Antenna Selection

In this chapter, MIMO systems with antenna selection are briefly overviewed. Statistical 

assumptions and correlation models are presented in Section 2.2. In Section 2.3, common 

performance measures are discussed. Different antenna selection schemes are introduced 

in Section 2.4, along with a general system model under OSTBC.

2.1 Introduction

M IMO wireless systems, also known as multiple-antenna systems, have multiple antenna 

elements at both the transmitter and receiver [3], They were first analyzed in the 1980s and 

1990s [4-6], The interest in MIMO systems has exploded ever since. They are now being 

used for the third-generation cellular systems and for future high-performance modes o f 

the highly successful IEEE 802.11 standard for wireless local area networks [7].

Obtaining the full benefits o f  multiple transmit antennas may however require the use 

o f space-time signaling schemes such as OSTBCs, a class o f easily decodable space-time 

codes that achieves the full diversity order [8], The family o f OSTBCs simplifies the m ax

imum likelihood (ML) decoding. However, a major limiting factor in the deployment o f 

MIMO systems is the cost o f multiple RF chains (each RF chain requires an amplifier, 

mixer, analog-to-digital converters and so on) at both ends o f a wireless link. A power

ful solution is to select a subset o f the available antennas while keeping the advantages o f

4
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using all antennas [1], This results in a limited number o f RF chains being dynamically 

multiplexed between several transmit/receive antennas. In literature, RAS is a traditionally 

well-researched topic [1,9] and the study o f TAS is more recent [10-12],

2.2 System Models

2.2.1 Statistical Models of MIMO Fading Channels

Consider a wireless communication system with Nt transmit and Nr receive antennas. The 

quasi-static flat fading M IM O channel can be represented in a matrix form as [13]:

H  —

h \ t\ h i t2 h \ tN,

hl,\ ^2,2 ••• h,N,
(2.1)

^ N r ,  1 % r , 2  • • •  ^ N r .N,

where htj  (1 <  i < Nr, 1 <  j  < Nt) is the channel gain between the y-th transmit antenna 

and the z'-th receive antenna. Note that h j j  is the composite channel impulse response 

inclusive o f the pulse-shaping filter at the y'-th transmitter, the propagation channel and 

the i-th receiver matched-filter. The special case in which the elements h i j  are i.i.d. zero 

mean circularly symmetric complex Gaussian (ZMCSCG) with unit variance is called the 

spatially white channel H w [13].

The squared Frobenius norm o f H, i.e., ||H ||^ , is defined as

«=iy=i
(2.2)

Due to the randomness o f H, ||H ||^  is also a random variable. The statistics o f  ||H ||^  

determines the diversity performance. When H  =  H w, the probability density function 

(PDF) o f ||H ||^  is given by [14]

f i x )  -
^ , N r- \

{N,Nr -  I ) ! '
(2.3)
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Therefore, ||H ||^  is a chi-squared random variable with 2NtNr degrees o f freedom [15].

The channel gain h i j  for all i j  is commonly described using several different statistical 

models. Usually, to analyze the performance o f MIMO systems, the cumulative distribution 

function (CDF), PDF and the moment generating function (MGF) o f the fading amplitudes 

are often required.

Rayleigh Distribution

In urban and suburban areas, when fading is caused by the superposition o f a large number 

o f independent scattered components, the envelope o f the received signal can be modeled

as a Rayleigh distribution [13]. Let X  — yU f2 +  X \  w h e rea t andX 2 are independent zero- 

mean Gaussian random variables with common variance <72, i.e. X\ N ( 0 , a 2). Thus, 

X  is Rayleigh distributed with the PDF given by

=  x -  °- (2-4) <7

The squared-envelope is central chi-square distributed with two degrees o f freedom, i.e. 

X 2 ~  ^ 2 (0 , cr2) or exponentially distributed, whose CDF, PDF and MGF are given respec

tively by [14]

1
—~ ex
la2

1
M,<x2\ 1 + 2  a 2s

J - )
2 a 2-h

0A
l (2.5)

2 a 2
y >  0 (2.6)

, 5 >
1

~ 2 a 2 '
(2.7)

Rician Distribution

In rural regions, on the other hand, the received signal contains a direct line-of-sight (LOS) 

component; thus the envelope o f received signal follows the Rician distribution [13]. Let

X — ^ X 2 + X 2 where X\  and X 2 are independent Gaussian random variables with non-zero 

means m\,  m2 and common variance S[{X\  — m \ ) 2] =  ^{{Xj  — m 2 )2)} — a 2 and <p(x) rep

resents the expectation o f the random variable x, i.e. X\  ~  N ( m \ , a 2) an d ^ 2  ~  N (m 2 , a 2).
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Then X  is Rician distributed with the Rician factor K  =  2(j"'2 ’ avera8e power Q

S { X 2) =  m\  +  +  2 a 2, i.e. X ~  &  /  mi ±™z :m2 + m2 + 2c 2 ] ,  and its PDF is given by

f x ( x ) = X i  exP
x2 + m2 +  m21 

2 a 2 h x  >  0 (2 .8)

where 1q ( x )  is the zero-th order modified Bessel function o f the first kind, as given by

Io(x) =  — f K excosd dd.  (2.9)
n  Jo

The squared-envelope o f a Rician random variable is non-central chi-square distributed 

with two degrees o f freedom, i.e. X 2 ~  %2 ( \ J c 2), whose CDF, PDF, MGF are given 

respectively by [14]

Fx i(y ) = l - £ > ( v 2 K A f i X ^ ) ,  y >  0

t  I \  K + X

Mx i{s) =

- K -  

1 + K

( K + i  )y 
Q

- exp f -

/o ^ 2

sK Q  \

m + l ) y j

s >

, y > 0

1 + K

(2 .10)

(2 .11)

(2 .12)
l+AT +  ̂ f  ̂ 1 K s £ l  J  £2

where J2(a, b) is the first order Marcum Q-function. The m -th order Marcum Q-function is 

given by
m — \

exp
x 2 + a2

Im- \ ( a x ) d x (2.13)
J b  \ a /

where l m (x) is the m-th order modified Bessel function o f  the first kind. As expected, in the 

absence o f a direct path (K — 0), the Rician PDF reduces to a Rayleigh PDF, confirming 

that the Rayleigh distribution is a special case o f the Rician distribution [16, Apprendix B],

Nakagami-ra Distribution

The Nakagami-m distribution is a versatile statistical distribution which can accurately 

model a variety o f fading environments. It has greater flexibility in matching some em

pirical data than the Rayleigh, Rician distributions. It includes the Rayleigh distribution as

7
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a special case and can closely approximate the Rician distribution [17]. The PDF for this 

distribution is given by Nakagami [18]:

f x { r )  =  (2.14)
1 (m ) 12

where the average envelope power Q is defined as

n  = g ( X 2) (2.15)

r(m ) is the Gamma function which is defined by T ( j c )  =  J(“ tx~ xe~* and the parameter m, 

known as the fading figure, is defined as the ratio o f moments

m = s [ ( £ ~ m  m “ 1 A  <216)

When m =  1 Eq. (2.14) reduces to the Rayleigh distribution. The squared-envelope o f 

a Nakagami-m random variable is Gamma distributed with CDF, PDF, and MGF given 

as [14]

y ~ °  (2' 17)

S > - S  <2-19>

where y(a,x)  is the complementary incomplete gamma function as defined by

p o o

y(n,jc) =  /  tn~ xe~tdt, n >  0. (2.20)
J x

2.2.2 Spatial Fading Correlation

In H w no correlation between different entries o f the channel matrix is assumed. In practice, 

H  can deviate significantly from H w due to a variety o f reasons. For example, inadequate 

antenna spacing and scattering lead to spatial correlation [13]. Thus, the entries o f the

channel matrix are no longer i.i.d.. Therefore, analysis o f  correlated fading channels has

pratical significance.
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The NtNr x N,Nr correlation matrix R  is defined as

R  =  <?{vec(H) vec(H )H} (2.21)

where vec(A) stacks A into a vector column and superscript (.)//  is the Hermitian operator. 

The correlated channels can be expressed in terms o f the spatially-white channel:

vec(H) =  R 1/ 2 vec(H w) (2.22)

where Hvv is the spatially white Nr x Nt MIMO channel described earlier and (A )1//2 denotes 

the square root o f matrix A.

Note that R  is a positive semi-definite Hermitian matrix. I f  R  =  INrNt, then H  =  H w. 

When the correlation properties at the transmitter are independent o f those at the receiver, 

a simpler model is given by [13]

H  =  R ,1/2H m;R ,1/2 (2.23)

where R r is the Nr x Nr receive correlation matrix, R, is the Nt x Nt transmit correlation 

matrix. Note that R,. and R, are positive semi-definite Hermitian matrices. Since the to

tal correlation matrix is decomposed into transmit and receive parts, this model has fewer 

degrees o f  freedom than the model in Eq. (2.22). In this model, the receive antenna correla

tion R, is equal to the correlation o f the Nr x 1 receive vector when excited by any transmit 

antenna, and is therefore the same for all transmit antennas. This condition holds when the 

angle spectra o f the scatterers at the receive array for signals arriving from any transmit 

antennas are identical and happens if  all the transmit antennas are closely located and have 

identical radiation patterns [13]. The conditions can also carry over to the case o f transmit 

antenna correlation R,.

The three matrices R, R, and R, are related as

R  =  R / ® R r (2.24)

where superscript {.)T is the transpose operator and <g> is the Kronecker product. Thus, the

total channel correlation can be expressed as the Kronecker product o f  the transmitter and

the receiver correlation matrices.

9
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In the presence o f receive or transmit correlation, the rank o f H  is reduced from full 

rank to m in (r(R r) ,r (R ()), where r(A ) is the rank o f A.

For Rayleigh fading, the MGF o f the Frobenius norm o f the channel denoted by (s)

can be given [19]:

Y N ,N r j

=  de tf lA w + jR )  =  0  i + ^ ;(R ) ’ (2'25)

where det(A) is the determinant o f A and A,(R) (i =  1,2, • • • ,NtNr) is the ith eigenvalue o f 

R.

2.3 Performance Measures

To characterize the performance o f diversity systems in slow and flat fading channels, per

formance measures, such as the average SER, the average BER, the outage probability, and 

the AF, are commonly used in the literature [14,15]. Moreover, for MIMO systems, there 

are two other key measures, known as diversity gain and coding gain.

2.3.1 Average Error Rate

The average error rate is one o f the most commonly used performance criteria, which eval

uates the effectiveness o f  different diversity schemes in wireless fading channels. It is 

obtained by averaging the conditional error probability over the statistics o f  the fading 

amplitudes. Many approaches have been proposed to evaluate the average error rates o f 

MIMO systems under different fading assumptions. One o f the most popular is the PDF- 

based approach, which averages the conditional error probability over the PDF o f  the output 

signal-to-noise ratio (SNR):

Pe=  [  Pe{y)p{y)dy  (2.26)
Jo

where Pe(y) is the conditional probability o f error given the output SNR y  for a specific 

modulation scheme and p(y)  is the PDF o f the output SNR in a specified fading channel.

10
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Due to the difficulties o f  getting closed-form expressions o f the infinite integral, the MGF- 

based approach has been widely used to evaluate the error rate performance o f various 

coherent diversity schemes recently. The basic idea is to find an exponential-type repre

sentation for the conditional probabilities so that the average error rates can be expressed 

strictly in terms o f the MGF o f the output SNR [20-23].

2.3.2 Outage probability

In addition to the average error rate, outage probability is another standard performance 

criterion o f diversity systems, which is defined as the probability that the instantaneous 

output SNR y falls below a certain given threshold yt-  Outage probability is a useful 

statistical measure o f the radio link performance in the presence o f interferences. The 

outage threshold yy is determined by many factors, such as the receiver structure and the 

propagation environment.

The outage probability o f a diversity combiner relates to the CDF (F(x))  o f  the combiner 

output SNR as follows [24]:

2.3.3 Diversity Gain

Diversity schemes at transmit and/or receive ends provide the receiver with multiple copies 

(or branches) o f the transmitted signal. With the increase in the number o f independent 

branches, the probability that all branches fade simultaneously reduces significantly. Thus 

diversity techniques stabilize the wireless link which will lead to a reduction o f the error 

rate.

To leverage diversity, the transmitter can send the same symbol across all links. With 

frequency flat fading across all branches, the receiver gets multiple independently faded 

versions o f the transmit symbol s, which are given by

P{Yt ) = # ( 0  < y < Y T ) = F ( y r ) - (2.27)

(2.28)

11
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where y, is the received signal corresponding to the /th diversity branch, Es/ N t is the symbol 

energy available to the transmitter for each o f the Nt diversity branches, ht is the channel 

response o f the /th diversity branch, and is additive ZMCSCG noise with variance N q. 

The additive noise samples are uncorrelated with each other. Given the multiple versions o f

.v at different receive antennas, the SNR y could be maximized by the so-called maximum

ratio combining (MRC). Let the average SNR at the receive antenna in a single fading 

channel be rj =  Es/ N q. Assuming perfect channel knowledge at the receiver, the received 

SNR y  after MRC combiners is given:

i n,
r = i r X l ^ i V  (2-29)

« ■ = 1

Using ML detection at the receiver, the probability o f symbol error is given by [15]:

P e V N e Q ^ l ^ j  (2-30)

where N e and dm\n are the number o f nearest neighbors and the minimum distance o f the 

underlying signal constellation, respectively, and Q(-) denotes the Gaussian Q-function. 

Applying the Chem off bound Q(x) <  e - *2/ 2, Pe can be upper-bounded by

N‘ x i m in
X l O -— x /  4 Nt

Pe < N ee '=1 . (2.31)

Averaging the probability o f symbol error over the statistics o f /?, which are independent 

ZM CSCG random variables with unit variance, Pe is upper-bounded by

_  -  N' 1
Pe < N e FT----- =—  . (2.32)

f= l 1 +  ^ ^ m i n / 4 ^

In the high SNR region, i.e., Es/ N q >  1, the upper bound can be simplified as

'71c/2 - \~ Nt I min 1P e < N ,
m

Eq. (2.33) relates to the Chem off upper bound on the probability o f the symbol error for the 

additive white Gaussian noise (AWGN) channel [25]. On a log-log scale, the magnitude

12
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o f the slope o f the SER versus SNR (t]) curve will demonstrate the effect o f  diversity. The 

diversity order is the magnitude o f the slope. Diversity gain G j  can be defined as

Gd =  - l i m - ^ .  (2.34)
f t l o g ( r j )

2.3.4 Coding Gain

I f  the average SER P e of an uncoded (or coded) M IM O system at high SNR is approximated 

by the expression

Pe «  c(Gc -ri )~Gd (2.35)

where c is a scaling constant dependent on the modulation type and the channel statistics,

then Gc represents the coding gain, and G j  represents the diversity order. While diversity

gain manifests itself in increasing the magnitude o f the slope o f  the error rate curve, coding 

gain (Gc) shifts the error rate curve to the left.

2.3.5 Moments

An alternative to the average error rate is to use moments o f the output SNR as the perfor

mance measures. A single moment, such as the average output SNR alone does not reveal 

enough information and the higher order moments can furnish additional information for 

system design. For example, if  the variance o f the output is small, large fades from the 

average is not likely. The moments o f the combiner output SNR can be obtained by the 

output MGF (M(s)) as

r°° d ^ M ( s )
mn = E ( f ) =  f P { y ) d y = —  ----- |J=0. (2.36)

Jo ds

2.3.6 Amount of Fading (AF)

In evaluating the performance o f diversity systems, sometimes it is difficult to get closed- 

form results especially for BER, SER since statistical analysis requires averaging the in

stantaneous results over the fading distribution. In such cases, a frequently used approach
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is to take advantage o f the transformed domain (e.g. by its MGF) in order to obtain a 

computational resolve. The amount o f fading (AF), as a measure o f  the severity o f fading, 

directly utilizes the moments o f the fading distribution itself. Thus it becomes a simple but 

effective way to quantify fading in both single and MIMO systems. For a single channel 

model, AF is defined by [26, eq. (2)]:

Var{ a 2 }
a f = ( # R F  (237)

where a  is the instantaneous fading amplitude o f a complex fading channel, Var{-} is the 

statistical variance. For a single Rayleigh fading channel, AF =  1. In Nakagami-m fading 

channels, AF =  1 / m  [18], where the range o f the AF is given by the interval [0, 2].

2.4 Antenna Selection

The MIMO systems provides higher data rates and the reliability without any additional 

bandwidth [27], Higher data rates are achieved by transmitting multiple data streams si

multaneously using spatial multiplexing techniques. Increased reliability is achieved by 

exploiting spatial diversity to significantly reduce the error probability caused by signal 

fading.

Although MIMO technology has many advantages, they come at the expense o f  higher 

hardware cost, higher signal processing complexity, more power consumption, and bigger 

component size at the transmitter and the receiver. For example every extra transmit/receive 

antenna pair requires its own dedicated RF chain (power amplifier, low noise amplifier 

(LNA), analog to digital (A/D) convertors, digital-to-analog convertor (D/A), etc.) [27]. 

The increase in complexity has inhibited the widespread adoption o f MIMO systems. For 

example, the third-generation cellular system specification (3GPP) currently supports only 

an optional two antenna space-time transmit diversity scheme and does not require the 

handsets to have more than one antenna element [28]. Therefore, cost-effective implemen

tation o f  MIMO technology remains a m ajor challenge. Antenna selection is a possible 

solution for the complexity drawbacks o f MIMO systems. It reduces the hardware com-
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plexity o f transmitters and receivers by using fewer RF chains than the number o f  antenna 

elements. The idea is that, while the antenna elements are typically cheap, the RF chains are 

considerably more expensive and therefore must be reduced. The transmission/reception is 

performed through a subset o f the available antenna elements, and selection helps in reduc

ing the implementation cost while retaining most o f the benefits o f  MIMO technology [29]. 

In antenna selection, a subset o f  the available antenna elements is adaptively chosen by a 

switch, and only signals from the chosen subset are processed further by the available RF 

chains.

2.4.1 Antenna Selection Scheme

A block diagram representation o f antenna selection at the transmitter and the receiver is 

given in Fig. 2.1.

An input bit stream is sent through an encoder and modulator. The space-time en

coder converts a single bit stream into symbol streams through a proper mapping and then 

converts the complex symbol vector into Mt parallel streams o f symbols. Each o f these 

streams is sent through a RF chain to produce signal for transmission through each trans

mit antennas. However, the number o f RF chains are smaller than transmit antennas (i.e. 

Mt <  Nt), thus the RF switch chooses the ’best’ Mt antennas out o f  Nt. At the receiver, 

the RF switch chooses the ’best’ Mr out o f  Nr receive antennas (Mr <  Nr). The channel 

seen by the selected subset o f transmit and receive antennas is the sub-matrix H  €  <tfMtxMr̂  

which is obtained by selecting the rows and columns o f the channel matrix H  that corre

spond to the selected receive and transmit antennas, where <tfmxn is a m x  ^-dimensional 

complex matrix space. There are ( ^ )  ( ^ )  possible sub-matrices o f H. The various selec

tion criteria include the system capacity maximization [30,31], SNR maximization [32], 

or union-bound on error rate minimization [33]. In this work, we do not propose new cri

teria or new methods for selecting antennas. Instead, we analyze the performance o f such 

systems.

15
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Fig. 2.1. Antenna Selection Scheme

2.4.1.1 Receive Antenna Selection (RAS)

Several receive antenna selection (RAS) algorithms to pick the best antenna subset have 

been proposed [2, 30 ,33-36]. Performance analysis for RAS space-time coded systems 

under both uncorrelated and correlated channels has been reported in [2,34] where only 

performance bounds were derived. In [30], Molisch et al. studied the effect o f  antenna se

lection from a channel capacity perspective. It was shown that only a small loss in capacity 

is suffered when the receiver uses a good subset o f the available receive antennas.

2.4.1.2 Transmit Antenna Selection (TAS)

Just as RAS, TAS is implemented to reduce the complexity at the transmitter. The idea o f 

using transmit diversity is motivated by the difficulty and cost o f placing multiple antennas 

on small mobile handsets. Therefore, multiple antennas are preferably placed at the base 

station for downlink transmission. Since TAS requires feedback from the receiver side, 

limited feedback methods are used to improve capacity and performance [37],

TAS has been studied recently. A TAS schematic diagram is given in Fig. 2.2. Joint 

transmit/receive antenna selection algorithms were presented in [9]. In [38], the authors 

proposed a new scheme that involves using hybrid selection/maximal-ratio transmission 

where the transmitter uses a good subset o f  the available antennas and the receiver uses 

MRC. They investigated this scheme in terms o f SNR, BER, and capacity. They demon-
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Fig. 2.2. Transmit Antenna Selection Scheme

strated the effectiveness o f their scheme relative to already existing schemes. The same 

scheme was also treated in [39] but the transmitter selects the best single antenna. Other 

schemes that use hybrid selection/MRC were also considered in [40-43]. A nice overview 

o f antenna selection for MIMO systems can be found in [7].

2.4.2 Orthogonal Space-time Block Codes (OSTBCs)

Space-time coding [13,44] is a coding technique designed for exploiting diversity when 

multiple transmit antennas are in use. Coding is performed in both spatial and temporal 

domains to jointly modulate signals transmitted from various antennas at various time pe

riods. The spatial-temporal modulation is used to exploit the MIMO channel fading and to 

minimize transmission errors at the receiver. Space-time coding can achieve transmit diver

sity and power gain over spatially un-coded systems without sacrificing the bandwidth [45]. 

Among all types o f space-time codes, space-time block codes with orthogonal designs are 

the m ajor focus in this thesis.

The Alamouti scheme is the first space-time block code to provide full transmit diversity 

for systems with two transmit antennas [46], Tarokh et al. [47] extended the Alam outi’s 

2-transmit diversity scheme to more than two antennas. A space-time block code is defined 

by the mapping o f the (9-tuple input signal s to the set o f signals to be transmitted from Mt 

antennas over T  time intervals, represented in a Mt x T  transmission matrix X as
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* 1,1 * 1,2 *1  ,T

x  =
* 2 ,1  * 2 ,2  * 2  ,T

(2.38)

*A /,,1  * M ,,2  * M , , f

where x Ll, 1 < i < M,, \ < t < T are functions o f the 0-tuple input sequence and their 

complex conjugates. At time slot t, x l t is transmitted from antenna i. Since Q  information 

symbols are transmitted over T  time intervals, the rate o f the code is defined as Rs =  Q /T .  

I f  the condition

holds, where I is the identity matrix, then the code is called an OSTBC. I f  the channel 

coefficients are constant over the T  symbols, the orthogonality properties o f OSTBC allow 

simple linear ML decoding by decomposing the MIMO enhanced into Q SISO channels.

The OSTBC codeword is formed from a set o f Q  symbols si , S 2 , • • • , s q  all taken from 

the same signal constellation. Space-time block codes can be constructed for any type o f 

signal constellation.

2.4.3 OSTB-Coded MIMO Systems with Antenna Selection

The MIMO system model with antenna selection employing OSTBC is given in Fig. 2.1. 

The received signals are expressed as

where the matrix Y £ (S'Mr /T  is the complex received matrix. H  is a submatrix o f H, 

X  £  x T is the complex transmitted matrix and N £  js ^  additive noise matrix

consisting o f i.i.d. entries with zero mean and N q variance. I f  we denote a circularly 

symmetric complex Gaussian variable with mean ji and variance cr2 as z  ~  a 2),

x x "  =  ( f  M 2) i (2.39)

H X  +  N (2.40)

then each element o f N is denoted as <̂ ^4/’(0,Ao). The coefficient J ^  ensures that the
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total transmitted power at each receiver is Es and is independent o f the number o f transmit 

antennas.

As shown in [13], if the Q symbols { s i, • • • , s q }  with the unit average power are used 

for transmission, the ML decoder can be simplified to a symbol-by-symbol decoder o f the 

following form:

where nq ~  r̂ './L (0. ||H |^A 'o). The OSTBC MIMO system is then equivalent to Q inde

pendent SISO systems [32],

2.5 Summary

In this chapter, MIMO antenna selection is briefly reviewed. Statistical assumptions, per

formance measures are introduced. Different antenna selection schemes are summerized, 

and the general system model with OSTBC is provided.

(2.41)
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Chapter 3

Amount of Fading Analysis in MIMO 

Systems with TAS

This chapter is organized as follows. The background is provided in Section 3.1. Section

3.2 introduces the system and the channel model based on order statistics. In Section 3.3, 

the AF is analyzed for i.i.d. Rayleigh fading channels. By utilizing the Kronecker model, 

the AF is analyzed for receiver correlation channels in Section 3.4. In Section 3.5, the 

average SER at high SNR is expressed in terms o f the AF. The main results are summarized 

in Section 3.6.

3.1 Introduction

Recently, MIMO TAS systems have received much interest [12,48-50]. In [48], the au

thors analyzed the performance o f space-time coded MIMO systems with antenna selection 

by deriving explicit upper bounds on the pairwise error probability (PEP) for quasi-static 

Rayleigh flat fading. The authors also described code design principles suitable for antenna 

selection schemes. Zhang et al. [49] proposed a geometrical framework for theoretically 

analyzing the diversity order achieved by TAS under spatial multiplexing systems. Further

more, the approach can be used to evaluate the diversity-multiplexing tradeoff in spatial

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



multiplexing systems with TAS. In [12] and [50], the authors derived the exact BER and 

capacity expressions for OSTB-coded TAS systems, respectively. However, the aforemen

tioned works provide considerably complex analysis and do not provide insights into the 

performance o f the proposed systems. This motivates our work to use a simpler perfor

mance metric known as amount o f fading (AF) [51,52], The performance measurements 

such as SER, BER, diversity, and coding gain can also be quantified by the AF measure. 

In [51], closed-form expressions for the AF o f the MIMO diversity systems are given for 

identically-distributed spatially-correlated Nakagami-m fading channels. In [52], the AF 

is obtained for the output o f the equal gain combiner (EGC) in equally correlated fading 

channels.

In this chapter, we present AF analysis results for both regular MIMO and TAS systems 

operating on Rayleigh fading channels. Our research is based on the assumption o f identi

cally distributed but possibly correlated channels. Rigorous derivation o f the AF generally 

leads to cumbersome results. Therefore in our work, only the methods for deriving the 

exact AF under different conditions are produced and detailed derivation will be omitted 

here. Besides that, we provide simple approximations and bounds in order to gain insights 

into the degree o f fading. Lower bounds and upper bounds o f the AF are derived under 

three different fading cases: independent distributed, receiver correlated and generally cor

related fading channels. Also, simplified approximations o f the AF are derived for both 

independent distributed and constant-receiver-correlated fading channels. By utilizing the 

OSTBC for the selected transmit antennas, the lower and upper bounds for the SER at high 

SNR are derived. An approximate calculation for SER is also given for the independent 

fading channels, which is more general than [10]. Based on the SER expression, the AF 

and SER at high SNR are shown to have a simple relationship. With the approximation, the 

coding gain can be easily obtained for constant correlated fading channels given the AF. 

M ajor results are presented in our paper o f  [53],
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3.2 Order Statistics and System Model

Suppose there are n independent random variables Xu i — 1,2, •• • ,n, each having the same 

PDF f { x )  and corresponding CDF F(x).  I f  they are arranged in ascending order o f m ag

nitude as X( | j <  X (2) <  • • • <  X (n}, then X ^ , i — 1,2, • • • , n is called the z'-th order statistic. 

W hen A) are i.i.d., the PDF o f the r-th order statistic is given by [54]:

n\
/ w W  =  (r _ 1) ! ( „ _ r ) , / ( x)F r  1 w i 1 - F W]" r (3-1)

and the CDF is

w = i  ( " W m 1 (3-2)
i = r  \  /

where (”) =  n \ / ( i \(n  — i)\).

To perform TAS, Mt antennas are selected out o f  Nt transmit antennas. Define the 

random vectors h , — (h \ j , h2j , • ■ •, h ^ j ) T, 1 < j < N t . The corresponding square Frobenius 

norm o f hy is hj ~  | |hy |\2H — \^ij\2- hj  are i-i-d. chi-squared variables with 2N r degrees

o f freedom and the PDF o f hj is given by [15]:

■h X )  =  j j j ^ r Y y hN' ~ ' ‘ - h’ h > 0  (3.3)

and the CDF is given by

Nr~l hk
Fhj(h) = h > 0. (3.4)

k=o K-

We arrange the different hj in descending order and denote them by > h(2) >  ■ • >  

/z(,v(), where is the yth largest. The Mt selected transmit antennas correspond to the 1 

to Mt -th largest h ^ y  ■ ■ ,h(Miy  Let H  =  (h (j),h (2), • • • , \ m,))T represent the Mt selected

columns o f H. From the theory o f order statistics, the joint PDF o f h y , h ( 2y  • • ■ >h(M,) is

given by [54]:

A i ) ’ ^M ,) — -  M,)\ ̂ f hMt M<) (^M,))N‘ M‘

=_____W_____ (Uh-Yr~l ( e - ^ M  hJ L \ N ' - M‘ ( 3  5 )
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where A( 1) >  /z(2) • • • > h ^ t) > 0 .

Consider a MIMO system with Nt transmit and Nr receive antennas. Correlation prop

erties can be modeled as the Kronecker product o f  the transmitter and receiver correlation

described in Section 2.1.2, when the receive antenna correlation is the same for all transmit

antennas and vice versa [55],

With OSTBC, the output SNR (per symbol) may be written as

y — — —— IlHll i  =  — —— C (3.6)
r NoMtRs llF N0MtRs ’

where C =  h {i) H-------1~h(Miy  Thus, the selection criterion maximizes the output SNR, i.e.,

yields the largest received signal power. According to the definition o f the AF in Eq. (2.37) 

and Eq. (3.6), the AF is independent o f N̂ Rs and can be written as

Var(y} Var {C}

(# {r}) ! one})2' (iJ>
In the remainder o f  this chapter, (Nt ,Mt\Nr ) denotes a MIMO system with Mt (Mt <  Nt) 

transmit antennas selected. In contrast, (.Nt \Nr) denotes a regular MIMO system without 

antenna selection, in which all the Nt transmit and Nr receive antennas are used.

3.3 AF for i.i.d. Rayleigh Fading Channels

This section analyzes the AF expressions for (Nt;Nr) and (Nt ,Mt ',Nr) systems when the 

channel elements h y  are independent o f  each other. An upper bound, a lower bound and an 

approximate calculation for AF in (Nt ,Mt ',Nr) systems are also derived. The results will be 

verified by simulation.

3.3.1 (Nt ',Nr) with i.i.d. Rayleigh Fading Channels

With a regular MIMO system (i.e., without antenna selection), the AF may be written 

as [51] (the case when m =  1):
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where { A ,} ^ ' are the eigenvalues o f  the NrNt x NrNt channel correlation matrix. W hen all 

the channels are independent, the correlation matrix R  reduces to an identity matrix; thus, 

all the A; are equal to 1. Therefore, the AF in the i.i.d. case (denoted as AFiid) is

3.3.2 (Nt ,Mt ;Nr) with i.i.d. Rayleigh Fading Channels

By using the jo in t PDF in Eq. (3.5), the general moments o f S { h axl ■ ■ -h^ ' } can be calcu

lated as a finite sum (Appendix A). The exact AF in i.i.d. fading channels with TAS can be 

expressed as

By expressing the variance as a sum o f moments o f  the form o f  S  {A"1 • • • t i f f  }, the AF is 

expressed as

By using the results in Appendix A, and substituting all the moments into Eq. (3.11), the 

exact AF can be derived. However, this process is too cumbersome to provide any direct 

insight.

The AF is a measure o f the severity o f fading. More generally, the AF is a measure of 

the randomness o f a random variable, so that, the higher the AF, the larger the spread o f 

the fading distribution [56], Therefore, the more i.i.d. \hij\2 included in C  in Eq. (3.6), i.e., 

the more randomness contained in C, the smaller the AF will be. This result is due to the 

multiplication o f  the denominator while the numerator remains largely unchanged. As a

AFjjd&ts —

AFiid&ts —
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result, the AF should decrease with the increasing o f the number o f the receive antennas Nr 

and the selected transmit antenna Mt. W hen M, reaches to the largest Nt, the AF reaches

the lowest value. Based on the analysis, the upper bound and lower bound o f  the AFjjd&ts

are

M  j. j  — AFjjd&ts ^  TTTT ■ (3-12)NrNt NrMt

Thus, the approximate value o f AFjjd&ts (denoted as AFapp) is given by

AFapp =  Nr(Mt + {Nt - M , ) a )  (3 ' 13)

where 0 <  a  < 1. When a  = 0, AFapp reaches the lower bound, and when a  =  1 AFapp 

reaches its upper bound.

— A —  U pper Bound 
*  S im ulation 

—  A pproxim ate V alue 
D Low er Bound0.7

0.5
05C
TDCO
LL
o  0.4
c
3OE
<

0.3

0.2

N um ber of S elec te d  T ransm it A n ten n a s ^

Fig. 3.1. AFjjd&ts for an i.i.d. (8 ,Mt;4) system

Fig. 3.1 shows the upper bound, the lower bound and the approximate value for the AF, 

obtained by using Eq. (3.12) andEq. (3.13) where setting a  =  0.6, for MIMO systems with
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8 available transmit antennas and 4 receive antennas. The simulation results are shown for 

comparison. The AF approaches the lower bound when Mt increases, as expected. The AF 

is closer to the lower bound than to the upper bound. This result shows that antenna selec

tion does not degrade much o f the system’s behavior in terms o f the AF. W hen Mt > \ N U 

the lower bound can be viewed as the approximation o f  the AF. The values o f parameter 

a  are determined for different Nr and N, in Fig. 3.2. As long as Mt is fixed, a  does not 

change under the same available antenna numbers. Therefore, Mt is set equal to 2. Fig.

3.2 shows that a  is smaller for larger Nt. This result means that the AF decreases with an 

increase in the number o f the available transmit antennas. W hen Nr increases above 4, a  

remains relatively the same.

0.9

r*

s
£  0 7  
E

Q.

0.5
N =16

0.4

0.3
2.5 3 3 .5  4

N um ber of R eceive A n tennas N
4.5 5.5

Fig. 3.2. The approximate value o f a  for different Nt and Nr
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3.4 AF for Fading Channels with Correlation

First consider the case where the channel is correlated only at the receiver side. This corre

lation implies that the elements within the columns o f H  are correlated but are uncorrelated 

between columns. Thus, hj, 1 < j <  Nt are i.i.d.. By utilizing this property, the exact value 

and bounds for both (Nr;Nt) and (Nt ,Mt;Nr) systems are derived. The analysis is extended 

to the most general case where the correlation exists in both the transmit and receive anten

nas.

3.4.1 (Nt ;Nr) with Receiver Antenna Correlation

Under the Kronecker model Eq. (2.24), let A,- (/ =  1, • ■ •, NrN ,) denote the eigenvalues o f 

the N rN t x N rN t matrix R. Then A; =  Xtj x  Xn , where Xtj and Xrk are the eigenvalues for R, 

and Rr, and i =  1, • ,N,-Nt; tj =  1, • • • , Nr; rk =  1, • • • , Nt.

Under the assumption o f receive antenna correlation, R t is an identical Nt x Nt matrix, 

and all Xtj equal 1. Therefore, the NrNt o f eigenvalues A, constitute N, of Ark, i.e., the 

multiplicity o f each A, is Nt. From Eq. (3.8), the AF in the receiver correlation case 

(denoted as AFrc) can be expressed as

In Appendix B, proof o f the lower bound for the AF in the general correlation case AFgc

a lower bound for the specific receiver correlation case analyzed here. The correlation be

tween each column o f the H decreases the randomness o f C  in Eq. (3.6) and thus increases 

the value o f the AF. Under the worst correlation scenario, Nt o f A, equals Nr and the other 

Nt (Nr -  1) eigenvalues equal 0. According to Eq. (3.14), the AFrc can be upper bounded

(3.14)

as jrj^i is given, which is the value for independent (A);A).) systems. This bound is also

by -fir. Therefore, the AF in the receiver correlation case could be upper and lower bounded

as
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Furthermore, the lower bound can be tightened according to the rank o f the receiver 

correlation matrix. If  r(R , ) =  rr, the lower bound can then be expressed by

1
AFrc >

Ntr /
(3.16)

Constant correlation is used as the model for the receiver correlation matrix to illustrate 

the relationship in Eq. (3.15). Constant correlation is applicable for an array o f  three 

antennas placed on an equilateral triangle or for closely spaced antennas other than linear 

arrays [51]. The correlation matrix Rr can be written as

Rr =

1 P 

P* 1

P* P*

P

P

1

(3.17)

where p  is the correlation coefficient. Under the constant correlation model, the eigenval

ues are given by [51 ]

Ai — • • • =  Aty-i =  1 -  p

XNr =  1 +  (IV, -  1) x p . (3.18)

For constant correlation at the receiver side o f the MIMO link, the AFrc is expressible 

as [51]

AFrc =
1 1 +  \p\ (Nr — 1)

(3.19)
N, Nr

Fig. 3.3 presents the simulation results and inequality Eq. (3.16) o f AFrc with different 

p  in constant receiver correlation, where the channel matrix is assumed fully ranked. Thus 

Eq. (3.16) is essentially the same as Eq. (3.15). As expected, AFrc equals when p  — 0 

and increases with p .
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Fig. 3.3. AFrc with different correlation coefficients in a (4,3) system 

with constant receiver correlation

3.4.2 (Nt , Mt ; Nr) with Receiver Antenna Correlation

Define the receiver correlation matrix R r =  h i ,h ^ )  — ■■■ =  (h^(,h ^ ) .  The PDF o f

h{y},0 <  j  <  Mt is given in Appendix C by using the inverse Z transform. The general 

moments o f & {h“' ■ ■ ■ h“̂ } can be calculated by using a finite sum based on the jo in t PDF 

in Eq. (3.5) (see Appendix C for derivation). By following the same procedure as in 

the (Nt ,Mt ;Nr) i.i.d. case, the exact AF can be derived by using Eq. (3.11). The exact 

calculation is again tedious. The approximation and bounds for the AF are thus analyzed 

first, and the simulation results are given for verification.

The best situation will occur when no correlation exists between the receive antennas, 

and every antenna is used; thus, the lower bound for the AF in this case is still The 

largest AF occurs when one o f Xrk equals Nr and the other equal 0, i.e., r(Rr) — 1. In this 

situation, the AF reaches an upper bound by canceling Nr in the right side o f Eq. (3.12).
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The range for Mt is [ 1,N t]; thus, we could tighten the upper bound to be Mt+(J 'LMt)a > w^ ere 

0 <  oc <  1. W hen a  =  1, the inequality reduces to that for the regular (Nt ; Nr) system with 

the receiver correlation expressed in Eq. (3.15). W hen a  =  0, the upper bound corresponds 

to the worst case o f . Now the AF in the receiver correlation case with the TAS (denoted 

as AFrc&ts) can be bounded by

1 < A F rc&ts 0 <  a  <  1. (3.20)
N,-N, -  ~  M, + {N, -  Mt) a

Similarly, for the constant correlation model at the receiver side o f  the MIMO link, the 

approximation for the AF (denoted as AFapprc) is given by substituting the right side o f Eq. 

(3.20) into Eq. (3.19):

A F  1 1 +  | P | 2W - 1 )
A f "’p,c M, + ( N , - M , ) a  N,  ' ’

Fig. 3.4 shows the simulation results and approximations ofA Frc&ts by using Eq. (3.21)

with different correlation coefficients in the constant correlation model when Nt — 4 , N r =

3. The approximation o f the AF in the worst case (when p  =  1) is well bounded by the

upper bound. As with the case o f (Nt; Nr), the AF also increases with p  when Mt is fixed.

This result again shows that the AF illustrates the severity o f fading.

The analysis for the case with correlation at the transmit side and no correlation at the

receiver side is similar to that for the derivation above. The bounds for the AF have similar

forms simply substituting Nr for A,.

3.4.3 (Nt ,Nr) and (Nt ,Mt;Nr) with general correlation

In the most general case, the channel is correlated at both the transmitter and the receiver. 

The AF can be calculated from Eq. (3.7). The lower bound is also which is the best 

situation for all cases. Since the AF increases with the correlation severity, the AF can be 

bounded as

1 <  AFgc <  AFgc&ts <  1. (3.22)
NrN,

If  r(R ) =  r  is given, the lower bound can also be tightened:

AFgc&ts >  I. (3.23)
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Fig. 3.4. AFIC&ts with different correlation coefficients in a (4,M ,;3) system with constant 

receiver correlation

Fig. 3.5 shows how the AF changes with a different Mt and different correlation co

efficient p , when both the transmitter and receiver correlations are modeled as constant 

correlation. Here, a MIMO system with Nr = 3,Nt =  4 is considered. W hen p  is less than

0.5, the AF decreases with Mt. However, when p  is larger than 0.5, the more transmit 

antennas are selected, the larger the AF is. This result contradicts our intuition that when 

the correlation is strong, more transmit antennas are selected, and the system will perform 

worse in terms o f the index AF. To explain this scenario, there seems to be an optimum 

number o f  antennas to select when the correlation is severe at the transmitter. However, as 

assumed, when M, is fixed, the AF decreases with the numbers o f available transmit and 

receive antennas.
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3.5 Relationship Between AF and the Average SER at High 

SNR

In this section, the average SER at high SNR is derived as a simple expression for an 

(Nt )M,\Nr) system operating on i.i.d. Rayleigh fading channels, when the OSTBC is used 

for the transmission over the Mt x Nr link. First, the relationship between the AF and the 

approximate SER is analyzed. As stated in Eq. (2.35), the diversity order determines the 

slope o f the average SER curve at high SNR in the log-log scale, whereas the coding gain 

determines the shift o f the curve in the SNR relative to a benchmark SER curve given by 

c {y)~Gc [5 i].
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3.5.1 (Nt ;Nr) with i.i.d. Fading Channels

First, reconsider a (Nt;Nr) system operating on i.i.d. Rayleigh fading channels. The cor

responding instantaneous SER is given by Eq. (2.30) assuming an ML receiver is used. 

Here, y  is determined by using Eq. (3.6), making H  =  H . By applying the Chem offbound,

Q(x) <  e 2 , Pe can be expressed as

Pe < N ee (3,24)

To determine the value o f the diversity, the instantaneous SER should be averaged over the 

statistics o f fading P e — S ’{Pe}. Given the correlation matrix R, the MGF o f the random 

variable ||H |)^, denoted as Mj|H ||2 (s), is given in Eq. 2.25. The P e can be upper bounded 

by setting 5 =  in Eq. (2.25); that is,

_  _  K R ) , d 1 ■ E  \  ~1

p' ^ n ( 1+ i w ; ^ (R)) ■ (3-25)

As assumed, when channels are i.i.d., all 2,, equal 1. Thus, at the high SNR, the Pe can be 

simplified by
-  -  /  d 1 - E s \  -NrN,
"  ' " I  m,n *-) . (3.26)

>/
dL-

P e < N e
^ N tRs N(),

Thus, the diversity order G j  equals NrNt, and the coding gain Gc equals Compared 

with Eq. (3.9) in the i.i.d. case, the AF equals the inverse o f the diversity order

AE-\\& — -pr ■ (3.27)
Gd

3.5.2 (Nt ,Mt;Nr) with i.i.d. Fading Channels

In a (N, , Mt ; Nr) system the largest Mt o f hj are selected, the following inequality holds:

||H ||p  ||H||2 | |H ||i
— • (3.28)Nt Mt Mt 

I f  Eq. 3.28 is combined with the definition o f  y in  Eq. (3.6), y  is bounded by

-— <  y <  U— Li£ _ £  (3 29)
NtRs No ~  MtRs N0 K }
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With the definition o f the average SER in Eq. (3.26), the error rate is bounded as

/  £  ■ F  \  - N tNr _  _  /  £  ■ E * \  ~ NtNrN ( < P  < N  (3.30)
\4 M tRs Nq)  ~  e ~  e \4 N tRs N 0J

This result clearly shows that the (Nt ,M,;Nr) system can achieve full diversity as in (Nt;Nr)

although only part o f the transmit antennas are selected for transmission. As 1 < M t < Nt,

the P e is approximated as

_ /  £  F \ ~ N,Nrp  ~  TV _________min__________I  13 311
e e y4 R s(M, +  (N, -  Mt)[i) N0)  }

1 d2where 0 <  J3 <  1. That is, the coding gain is approximated as Gc w ■ Com

pared with the /tTi1<J&ts for the (Nt ,Mt ;Nr) system under i.i.d. fading channels in Eq. (3.13), 

the coding gain can also be approximated as a function o f the A F :

£  ■rz ~  jmn A p (3.32)
4RsNr

Fig. 3.6 shows the upper bound, the lower bound and the approximate value o f SER, 

obtained by using Eq. (3.31) and Eq. (3.32), compared to the simulation results from using 

the Alamouti scheme with a 4-QAM signal constellation when Nr — 1,Nt = 4 and /3 =  0.5. 

With the increasing o f Nt and Nr, the upper bound and the lower bound converge, and the 

approximate Gc becomes more accurate. When Mt = Nt , the upper bound and the lower 

bound converge to the same value, which can be used as the approximate value for the SER. 

W hen only one transmit antenna is selected, the system is a special case o f the OSTBC, 

with Rs =  1 and Mt =  1.

Fig. 3.7 compares the average SER with the coding gain given by Eq. (3.31) and 

Eq. (3.32) with Nt =  4, Nr — 1 and Mt — 1, 3, respectively. The simulation results o f  the 

average SER are also shown as a reference. The diversity order o f both cases is 4. Thus, 

the diversity order depends on the number o f  the available antennas at the transmitter side 

and not on the number o f  the antennas selected. In both figures, the approximations Eq. 

(3.31) and Eq. (3.32) overlap with the simulation results in the large SNR. Thus, a simple 

relationship between the AF and coding gain is achieved by Eq. (3.32) in the high SNR 

region.
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Fig. 3.6. The average SER o f 4-QAM using Alamouti Scheme in a (4,2; 1) system

3.5.3 (Nt ;Nr) with Receiver Correlation Fading Channels

In this case, the Pe can also be upper bounded by Eq. (3.30). Further, at a high SNR, Pe 

can be simplified to

(3.33)

Linder the Kronecker model, the eigenvalues A, o f the correlation matrix R  equal the eigen

value K k o f the receiver correlation matrix R r, and the multiplicity o f each eigenvalue is 

Nt. The best situation occurs with no correlation at the receiver side. The worst situation 

occurs when only one o f the K k is Nr. Thus, the lower bound and the upper bound o f  Pe 

are provided as

_  / d 2 ■ EN  ( .  mm J
\4 N ,R SN0

-N ,N r

-  e -  e \4 N tRs N0J
(3.34)
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I f  r (R r) =  rn  the lower bound can also be tightened to

P e >  N e i
-  /  d 2 ■ E ' \ - N trrr{Pz) /
D M  n ( v . ( R .

\4 N ,R SN0 rk = \

- N ,
(3.35)

3.5.4 (Nt ,Mt ;Nr) with Receiver Correlation Fading Channels

Here, the analysis is similar to that in Section 3.4.3 except that the best case will be Mt — Nt , 

and the worst situation occurs when Mt — 1. By using Eq. (3.28), the lower bound and the 

upper bound o f P e are

N  (  ^min _ s- )  N'Nr < p  < N (  ^min E s )~n,n -n, 
\4 N tRs N q) ~  e '  e{4MtRs N 0} r '

(3.36)

Specially, when the receiver correlation is modeled as a constant correlation, the rank 

is Nr, and the eigenvalue is given in Eq. (3.18). In this case, the average SER can be 

approximated by
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4Rs{M, + (Nt - M , ) P ) N 0

\ -N,Nr / \ —A'i
)  ^(1 - p )  (1 +  (Arr ~  1)P)J • (3.37)

3.6 Conclusion

The AF is a simple measure to quantify the severity o f fading. However, exact AF cal

culations usually involve tedious formulas in TAS systems. In this chapter, the AF o f 

TAS systems under both independent and correlated channels is analyzed. Approxima

tions and bounds are provided for different cases, and a simplified relation between the AF 

and coding gain is derived. The simulation results show that in the high SNR region, the 

approximations are accurate.

3.7 Appendix A

General moments for i.i.d. Rayleigh fading channels

The closed-form solution for $ { h ax] h ^ ' } is now obtained where a \ , • • •, cim, are arbitrary 

indexes. Rewrite the joint PDF in Eq. (3.5) as follows:

f h u-  M  (h \ , • • • M ) =  (h i ) ' '  •fhM, (hM,) (Fhut {hM,) )

AT I M Nr—\ t, k
= _________________   ( T 7 A - ) jv' - 1(1 - e hM< Y  _M_V

( ^ , - M ) ! W - l ) ! } ^ 7 J  J) 1 t o  kl
(3.38)

where h\ > fi2 ■ ■ ■ > h^, > 0. Then

In the first Mt -  1 integrals, summations are applied as

(3.40)
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In the integral with respect to h^,,  the following part is binomially expanded:

f f H i J  N,-M, , N  (Nr- l ) l
( i -1 i  (-D'r ,MV‘« i  ftA, (3.4i)k\ ^  V 7

k = 0  / = 0  \  ‘ /  k = 0

where the coefficient j8*/ in Eq. (3.41) is computed by using [57]

P*»=  X  ^ r 7 p / [0,(»-i)(M -i)](i)-
i=k—Mt + \ V* lr

Here, /30o =  /3o« =  E Pk\ =  1 A h  /3i„ =  «, and

(3.42)

. 1, a  <  i <  b 
W 0 =   ̂ ~  (3-43)

0, otherwise

Substituting Eq. (3.38) into Eq. (3.39) and using Eq. (3.41) and Eq. (3.42) we will get:

f  AT \  |  / [ +14] \-N r — \ i2~\~Cl2-\-Nr — 1 lAl/ - 1  - 1  1

N , - M ( ^ t ) /  ^ ( N t - M t\ 0 (h +  a2+ N r - \ ) \ { i 2 +  a2 +  Nr - \ ) \

h  & ( H  i r — v . --------------- 2<.+5 « /,!

(}Mt + aM,~ 1 +jVr ~  1)! (lUt +  aM, + N r — 1)!
(M, — l ) ' M ( - l + a W / - l  +Nr iMi I (A/) +  iyMi+aUt+Nr

where i\ =  0. For the special case when Nr =  1, Eq. (3.44) can be simplified as

(3.44)

/ at \ i *l+<2l i2~hct2 N(-Mt

'W  ■■■**> = W ^ y . Z  Z -  I  Zy 1 n 13 im, i=o
i ( N , - M t\ i i \  ( i2 +  a2)\

- 1 1 J  i2 l 2 ‘2+a2+> i3J 

(iM, +  Qm,-\ )! (iM,+aM,)'
(Mt -  l ) ' A / , - l + a ^ - i  +  l  i M  l ( M t + i y M , + a M, +  l 

When Mt reduces to 1, the simplified expression is

/to  V / 7 (M  + /)«.+1

(3.45)

(3.46)
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3.8 Appendix B

The lower bound of AF for correlated Rayleigh fading

Proposition: Assume a Rayleigh fading channel with a general correlation with Nr receive 

antennas and Nt transmit antennas. The AF could be lower bounded as AFgc >  .

Proof: For the general correlation, we rewrite Eq. (3.8):

NrN,

X V
=  <3-47)

( X A ;)2
/=i

Under the assumption o f the Knockner model, for the summation o f the eigenvalues A; 

o f the correlation matrix R, we have J ^ rN' A, =  Nr x Nt. Minimizing the AF reduces to 

minimizing the numerator o f Eq. (3.47). The Lagrange method is used with the condition 

that X f  'v' A, -  Nr x N, and

V — A2 H f  — cr(Ai -\------ 1- ^NrN, —Nr x N t). (3.48)

Partially differentiate V with respect to A], • • • , ANrN, and set them to be zero:

d V
j r r n l - a  = o,

! (3.49)
d V

=  l l NrN, -  a  =  0. (3.50)
<?ANrN,

The minimal AF is then achieved when = ■ ■ ■ = XNrNl =  1, and the minimum o f the AF 

is . The proof is complete.
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3.9 Appendix C

General moments for receiver-correlated Rayleigh fad

ing channels

The closed-form expression for S'{h“' ■ ■ ■ h ^ ' } is obtained when correlation exists at the 

receiver side. The MGF o f hj, where hj represents the sum o f magnitude square o f  y'th 

column o f H, can be written as

=  f t  n b  <3'51)

where rr is the rank o f R,-, 1 <  r, <  Nr, and Xu is the eigenvalue o f the correlation matrix 

o f the receiver.

By using the inverse Laplace transform o f <&/, (s), the PDF o f the hj is given by

fh { t)  =  X  X  r r r e - i ,  t >  0. (3.52)
U =  l v = l  ( V

Thus, the CDF o f hj is

Fh{t) =  X  X  K c w  • (1 - «  A" X  “ w ) ’ 1 > 0  (3‘53)
u =  1 v = l  k = 0  K -

where ru is the multiplicity o f each eigenvalue, rr =  Y!u= \ ru, and

c- = <3-54>

Note that the summation in Eq. (3.52) has a similar form to that o f  the MGF o f a chi-square 

distribution. By using the same integral as Appendix A, S { h ^ 1 ■ ■ ■ h^ ' } can be written as

s i h \ ( ( a / - , - 1 ) ! )M (V ,-M , ) ! 71 (3 '55)

where,

/  r u  1 ~ 1  ( :  i j u  r t  I ' l l

I  T -^ T T T T ! (,” ± v"  +  fli - 1) !----------  \ < m < M t - \

(3.56)
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I r u N ,- M ,

Im, = £  £  £  ( - ! ) ' ( " '  m ) ( £ £ w v) « - “ - ' - i ;  £  £
^ ,  =  1 ^  =  1 ^ = 0  ^ /  « =  l v = l  j ; i =  1 ^ i =  1 z i = («M = I

I ru I  r u v j

V  V  V  ~ Q ,}’, Ari' ‘ • ~
’^ i ^ T i ^ o  (VM — l) ! z i ! • ■ -Z/!

1 (*M, +  VM, +  a M, +  ZiH V Z f  —  1)!

Ai,1 -Ai' (r-H  \- ' - y M , + ' ’M ,+ ‘>Ml + z i+-+z»VA„, A„M('
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Chapter 4

Performance Analysis of T-RAS with 

OSTBC

This chapter is organized as follows. Overviews o f the related literature and the motivation 

o f the proposed work are summarized in Section 4.1. The joint T-RAS system model is 

briefly described in Section 4.2. An illustrative example is given in Section 4.3 to highlight 

the difficulties in analyzing the T-RAS systems. The CF for three types o f channel models,

i.e., Rayleigh, Nakagami-/« and Rician, are also given in Section 4.3. Section 4.4 derives 

the MGF o f the output SNR, the average SER, the average BER, outage probability and 

ergodic capacity. Numerical results are presented to validate the theory and address the 

effects o f various parameters on the BER performance in Section 4.5, followed by conclu

sions drawn in Section 4.6.

4.1 Introduction

Both RAS and TAS have been analyzed in detail. In particular, RAS performance in var

ious channel/correlation models has been comprehensively treated. Among many others, 

theoretical analysis for generalized selection combining receiver, an RAS scheme, with 

nonidentical fading was presented in [58], Other contributions include [59-61], For TAS,
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performance o f TAS was analyzed for selecting one antenna at the transmitter in [39]. Ref

erences [10] and [38] analyzed TAS for Alamouti-coded MIMO systems. The SER and 

BER o f TAS were derived in [11,12]. The exact capacity expressions were given in [50] 

for TAS with OSTBCs.

In performance analysis o f antenna selection, one needs the statistical distribution o f the 

maximum o f a set o f  branch SNRs or the sum o f some o f the largest branch SNRs. I f  the 

branch SNRs are statistically independent, then those statistics are readily derivable [54], 

This is actually the case for both TAS and RAS if  the actual channel gains are independent. 

Consequently, many analytical studies focus on independent fading channels. However, 

with T-RAS, the branch SNRs are not independent even if  the fading channels are i.i.d.. 

Although order statistics is a well-established branch o f statistics, there is surprisingly few 

available analytical results on correlated random variables [54], For this reason, the analysis 

is often made tractable by selection at either the transmitter or receiver -  but not both 

simultaneously [32],

To the best o f our knowledge, there is only one paper analyzing T-RAS to date. Cai 

and Giannakis [62] analyzed error rate performance for selecting one transmit antenna and 

arbitrary number o f receive antennas in independent Rayleigh fading channels. Thus the 

general problem o f analyzing the joint selection o f Mt out o f A, transmit antennas and Mr 

out o f N r receive antennas remains open.

In this chapter, a framework for performance analysis for the general T-RAS for an ar

bitrary number o f  transmit and receive antennas is presented. The MIMO channels are not 

restricted to independent ones but arbitrarily correlated Rayleigh, Nakagami-m or Rician 

fading channels [15]. The analytical framework introduced for an arbitrarily correlated 

multi-branch selection combining problem presented in [63] is leveraged to solve the prob

lem. M ajor work is presented in our paper o f [64],
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4.2 System and Channel Model

A MIMO system with Nt transmit antennas and Nr receive antennas is considered here. The 

class o f OSTBCs provides maximal diversity order in a fading channel and are amenable 

to low-complexity ML decoding. Assume that the fading channels vary slowly and the 

feedback delay is sufficiently small to render channel estimation errors negligible, and that 

the channel state information is perfectly available at the receiver. A subset o f  Mt transmit 

antennas and Mr receive antennas is selected and the decision is fed back to the transmitter 

where OSTBC signal matrices are activated for transmission.

By using OSTBC, the MIMO system is decomposed into several SISO channels as dis

cussed in Section 2.4. In this case, the selection criteria to maximize the channel Frobenius 

norm will also maximize the received SNR, and thus minimize the probability o f  error [32].

Now assume that H  is the actual Mr x M, transmission matrix and the received signals 

can be expressed by Eq. (2.40) as

Y =  W ^ - H X  +  N. (4.1)
V M

To maximize the total received signal power the subset o f transmit and receive antennas
N t \  ( N r

that yields the largest instantaneous output SNR is selected. There are N  =
\M t J  \ M r

alternates o f the selections o f transmit and receive antennas. Let H5 (1 <  s < N )  be the 

N  channel sub-matrice corresponding to the N  possible antenna subsets. Define ||H$||jr =  

Xm=i *Ln=\ l ^ u l2’ where h t] is the (m,n) th element o f H s and l < m < M t , l < n <  Mr. 

Using an OSTBC, the instantaneous output SNR for each antenna subset can be given by

* = i d b « i i y * - i s ' s *  <4-2)

where Rs is the symbol rate (symbol/s), Es is the symbol energy, and N q is the one-side

power spectral density o f the white Gaussian noise. The receiver selects antenna subset

with maximum instantaneous output SNR expressed by

y =  max{f l , - --  , ^ } .  (4.3)
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K h 1,2 h\,i

hi,i h2,i h2,3

Fig. 4.1. Two possible antenna selection subsets

W hen the transmitter side receives the selection information, the selected transmit an

tennas are connected to the available Mt RF chains and the actual transmission occurs 

through H.

4.3 The CF of T-RAS

In either TAS or RAS, order statistics o f independent fading channels can be employed 

to get the PDF o f the output SNR. However even in the case o f independent fading chan

nels, all possible subsets o f transmit and receive antennas involve correlation, where order 

statistics o f independent variables can no longer be used. First an illustrative example is 

given.

Consider an MIMO system with 3 available transmit antennas and 2 available receive 

antennas on independent fading channels and the channel matrix is given in Fig. 4.1. In 

TAS analysis, the output SNR sent from each transmit antenna is the transmit SNR m ul

tiplied by the square norm o f each column o f the channel matrix H, i.e., as for the first 

transmitter, y\ =  i'\h\ \ j2 +  h2 \ \2)Es/Nq.  Arrange y- where i — 1,2,3 in descending order 

and denote them by y^) >  y 2j >  7(3). I f  Y\,Yi, Yi are i.i.d., the jo in t or individual PDF o f 

7(5) can be given by order statistics [54], The SER or BER can be derived based on the 

known PDF o f Y(s) ■ On the other hand, the analysis o f RAS requires the distribution o f 

sorted output SNRs, the statistics o f which can also be obtained similarly.

Now, in generalized T-RAS scheme, if  2 transmit antennas and 1 receive antenna are 

selected, there are (2) - (f) — 6  different choices o f antenna subsets. The submatrices o f two 

possible antenna subsets are shown in Fig. 4.3. The left rectangle corresponds to the 1st and
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2nd transmit antennas and the 1st receive antennas being selected and the output SNR is 

given by 71 =  ( l/z^i |2 +  \h \^ \2)Es/2NQRs. The right rectangle corresponds to selecting the 

2nd and 3rd transmit antennas and the 1st receive antennas, where the output SNR is given 

by Yi =  {\h \,i\2 +  \hl3 \2')Es/2 N 0Rs. The other ys (3 <  s  <  6 ) are defined similarly. Even 

if  the channels are independent with each other, 71 and Yl are no longer independent since 

there exists a common term h\ j .  Thus, the case o f T-RAS does not satisfy the condition 

for the theory o f order statistics o f independent random variables.

For correlated channels, determination o f the statistics o f yv will become even more 

complicated since the correlation between different y? will be caused by the common terms 

as well as the underlying spatial correlation.

To solve this problem, Zhang’s analytical framework suggested in a multi-branch se

lection combining problem [63] is utilized, which expresses the jo in t PDF o f ys as multiple 

Fourier transform o f its CF. The CDF and PDF o f the maximum SNR 7  among all possible 

Ys are given by [63, eq. (8 )] and [63, eq. (9)]

1 poo N 1 _  e - j ts r
Fr( r )  =  — tn • • • /   V----- d h - - d t N (4.4)

i l K )  J - 0 0  J - 0 0  ,  1l s

and

1 f°° f°°
M r ) = — - N  • ■ • /  < & ( ' ! , • • - T v ) ] ! ( A ) - 1

( 2 k ) j - ° °  J = 1

N

X

(4'5)

where N  — ^  • bor brevity, we denote TN =  b\t\ -I F b ^ N  and ,bN

are binary variables that take values o f  0 or 1. In Eq. (4.4), 0 ( q , — , /jv) is the joint CF for 

Ys, which solely depends on the channel environment and is independent o f the modulation 

scheme.

In general, the joint CF o f the N  possible output SNRs Ys is defined as the function [65, 

eq. (7-50)]

O {tw -- ,tN) = g { e i t'* +'"+j ,Nn }  (4.6)
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where ys (1 <  5 <  N )  are the output SNRs o f  each possible antenna selection defined in Eq. 

(4.2). The main difficulty in evaluating Eq. (4.6) is that ys does not correspond to one single 

fading channel but related to the Mt x Mr summation o f the square norm o f the elements o f 

the 5th channel matrix H v Thus, the CF for the output SNR ys in [63] is not suitable for 

jo in t antenna selection situation.

In order to overcome this problem, substituting Eq. (4.2) into Eq. (4.6) and we obtain

<I>(?1,--- J N ) =  S  |gay(l*ul2lf=iCrt+-+IH.V,|2l L l ct 4 ) |  (4.7)

Es
where a =  „  , „  and c \ . • • ■ , c;y are binary variables that take values o f 0 or 1. The num-

NqM,Rs

ber o f the terms in the summation for every ||/z,-,yH2 where c* =  1 will be Nc =  ( ^ i j )  *)

and the order o f t^ is determined by the arrangement order o f  different ys. The CF can be 

obtained by evaluating Eq. (4.7) with respect to \h jj\2. By using the vectorization o f the 

channel expressed as h =  vec[H], Eq. (4.7) can be rewritten as the Hermitian quadratic 

form o f h as

f f i ( r , , - - , ^ )  =  ^ { eh^ h } (4.8)

where Q is the diagonal matrix with the diagonal elements being the coefficients o f 

in Eq. (4.7), i.e.,

{ N  N

aj X  , X
k= 1 k=\

Notice that the form o f Q depends on the number o f the selected and available transmit and 

receive antennas. Examples will be given later to illustrate how to get the diagonal matrix

Q

4.3.1 Rayleigh fading channels

For correlated Rayleigh fading channels, the channel vector h follows complex Gaussian

distribution, h ~  iC /C (0 , y/), where y/ is the covariance matrix defined by

y / = l- £ [ ( h - £ { h } ) ( h - < ? { h } ) H}. (4.10)
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Note that the complex covariance matrix y/ also equals \j/j+ jy/Qi, where

Wi — Wq — &[ (h/ -  ^ {h /} )(h 7 -  S ‘{\vI } ) T)

Vqi =  -V iQ  = # [  (h / -  ^ { h /} ) (h Q -  £ { h Q} )r ] (4.11)

and h/ and hg  are the vectors composed by the real part and the imaginary part o f the 

channel vector h.

When the variance o f each element o f  h equals to 1, the covariance matrix equals to 

correlation matrix R  in Rayleigh fading channels. Note here, the definition o f the corre

lation matrix is the normalized covariance. The MIMO channel correlation matrix R  can 

be approximated by the Kronecker product o f the correlation matrix at the transmitter and 

the receiver Eq. (2.24). Note that the decomposition does not incorporate the most general 

case o f spatial fading correlation, but yields a reasonable compromise between analytical 

tractability and validity o f the channels model.

Several correlation models are available for different antennas configurations. Spe

cially, constant correlation model may be applicable for closely spaced diversity antennas 

or three antennas placed on an equilateral triangle. Circular correlation model applies to 

the case when antennas lying on a circle or four antennas placed on a square. Furthermore, 

when linear array o f antenna elements are equally spaced, exponential correlation can be 

used [66]. Although these models are good approximations in some cases, in reality the 

correlation matrix R  can take on any arbitrary Hermitian structure since it depends not 

only on the transmit and receive antenna array configuration but also on the operating en

vironment, such as the incident angle o f the arrival and departure, and the angular spread, 

etc.

The exponential in Eq. (4.7) can be viewed as the CF o f Hermitian quadratic forms in 

h. From [19] [16, eq.(B-3-14)], the joint CF o f output ys can be derived as

Of t , - - - , t o )  =  d e t ( I - R Q ) ~ 1 (4.12)

where (•)“ ' is the matrix inverse operator. An alternative expression to Eq. (4.12) is 

obtained by noting that the normalized fading power correlation coefficient pP°wer is the
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squared amplitude o f the complex channel correlation coefficients in R  [67], i.e., p power(m, n) 

|R (m ,«)|2 where R (m ,n) is the (m ,n )~th element o f R. Thus, each element o f R  can be 

taken by the square root o f the power correlation coefficients in Eq. (4.12). Therefore, the 

complex component correlation considered here allows the correlation to be evaluated in 

terms o f the transmit and receive antenna spacing, mean AOA, mean AOD and transmit 

and receive angular spread. The correlation o f the instantaneous power is more convenient 

for the analysis o f experimental data, where they can be easily measured from field data.

Next, the methods to obtain the diagonal matrix Q in Eq. (4.12) are provided. There 

are two steps. First, the N  output SNR ys corresponding to the N  possible antenna selec

tions are defined in a specific arrangement. Second, the fts are substituted into the general 

CF function in Eq. (4.6). The diagonal elements o f  Q corresponds to the coefficients o f 

the \ h j j \ 2 . Using the example illustrated before, still consider selecting 2 out o f 3 trans

mit antennas and 1 out o f  2 receive antennas, the number o f possible antenna selection is

(2) (2) =  6. If  the 6 terms o f {yi. ■ ■ ■, y6} is arranged as

n =o(|Ai,i |2 +  |Aii2|2), n  =  a(|Ai,i|2+|Ai,3|2),

Yi = « ( | ^ l , 2 | 2 +  |Al,3|2)) 74 =  tf ( |^2, l |2 + | / 22 ,2 | 2 ),

75 =  a {\hl, \ |2 +  1̂ 2,3 I 2 ) ,  76 =  <2(1̂ 2,2|2 +  1^2,312) (4.13)

substituting Eq. (4.13) into Eq. (4.6) the exponential in Eq. (4.6) becomes

j t \  7 1 4 by*676 = « {  1*21,1 l2y(*i +*2 ) + 1̂ 1,2 |2y(*i +*3 ) +  \h \ j \2 j{ t2 + ti)

+ 1*22.1 l2y(*4 + *5 ) + 1*22,2 12 / (*4 +  te) +  l*22,3|2y(*5 +*6)}- (4.14)

Thus, the diagonal matrix Q can be expressed as

Q =  diag {a j( t\  + t2) ,a j( t\  + t i ) ,a j ( t 2 +  t i ) ,a j ( t 4  +  t5) ,a j( t4  +  t6) ,a j( t5 + t6)} .  (4.15)

Note that the positions o f the diagonal elements o f Q are fixed by the position o f  h ij  in the 

channel vector h. With the knowledge o f Q, the joint CF for the output SNR ys o f  T-RAS 

can be obtained by Eq. (4.12) with the known correlation matrix R. W hen the channels are
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i.i.d., the jo in t CF can be expressed by

1
W x ' " ' , tN )~  ( \ - a ( h + t 2) j ) { \ - a { t x + t3) j ) { \ - a { t 2 + t3) j )

x ______________________ i______________________  (4.16)
(1 - a ( t 4 + t5) j ) ( l  - a ( t 4 + t6) j ) ( l - a ( t 5 + t6) j ) '

4.3.2 Nakagami-m fading channels

For Nakagami-m fading channels, we consider the case when the parameters m are equal 

for all Nt x Nr channels. Recall Eq. (4.6), the exponential term can be looked as MRC with 

defining Nr x N, output SNRs as \h ,j\2. For arbitrary correlated Nakagami-w fading chan

nels with integer m, the CF o f MRC is obtained by using the central Wishart distribution 

as [17]

O (o )  =  det(lNrXNl — j  (Da— )~m, (4.17)
m

Es
where a  = ------------and w is the covariance matrix. The variance o f each hi , is m. Thus,

N0MtRs Y lJ
the ^  in Eq. (4.17) equals the correlation matrix R and the joint CF o f T-RAS can be 

obtained by setting co =  1, i.e.,

3 > (? i,--- ,^ )  =  det(I —R Q )-m, (4.18)

where Q is the diagonal matrix we showed before. In [17], Luo et al. have shown that for 

Nakagami-w fading channels, the normalized power correlation coefficients is the squared 

amplitude o f  the complex channel correlation. Thus, an alternative expression o f CF can 

be obtained by substituting in the square root o f the normalized power correlations.

4.3.3 Rician fading channels

For correlated Rician fading channels, the channel vector h  follows the complex Gaussian 

distribution, h ~  \f/). The mean vector ji physically represents the direct-path

component, whereas the signal strengths o f  the diffused components are specified by the
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diagonal elements o f the covariance matrix y .  The Rician factor at the r'th element o f h can
In.!2

be given by K, — — wi t h jij being the zth element o f  fi.
\ y \ i f  I )

For Rician fading channels, the correlation matrix R, which depicts the correlation 

between the diffused components, can also be approximate by the Kronecker product of 

the transmit correlation matrix R, and receive correlation matrix R r [68]. If  the Rician 

factor K  is the same for all channels, the relationship between the covariance matrix y  and

the correlation matrix R is y  — —- — R. W hen the Rician factor K  are different for each
1 T  K

fading channels, the relationship o f y ( i , j ) and R ( i j )  can be expressed by

¥ { i J ) =  s/ ( i + m + Kj ) R i i ' J ) - < 4 ' 1 9 )

The jo in t CF o f output ys can be obtained with the help o f [19] and given as

0 (1 ,, • • • , tN ) =  det(I —R Q )_1exp [ ^ ( Q -1 -  YO"V)] (4-20)

The Rayleigh fading channel can be treated as a special case o f Rician fading with \x — 0 

or K  =  0.

In conclusion, the joint CF depends on two factors. One factor is the channel environ

ment, i.e., the channel model and the channel correlation matrix. The other factor is the 

numbers o f available and selected antennas (Nt ,M t;Nr,M r) together with the order, which 

determines the expression o f the diagonal matrix Q.

4.4 Performance Analysis

With the CF derived in section III, the PDF o f the output SNR y o f T-RAS can be obtained 

from Eq. (4.5), which can be further used to evaluate the system performance measure

ments. In this section, closed-form expressions for the average BER, average SER, outage 

performance and ergodic capacity are derived for MIMO systems with OSTBC, T-RAS and 

different modulation formats.
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4.4.1 BER Analysis

With the knowledge o f the PDF o f the output SNR y and using Eq. (2.26), the average error 

rate for a fading wireless system could be obtained as

p e = J ~ P e ( r )M r )d y  ( 4 .2 1)

where Pe(y) is the conditional error probability for either BER or SER given instantaneous 

output SNR y. Substituting Eq. (4.5) into Eq. (4.21) yields the average error probability 

expression

p o o  p o o

P e = ■■■ <E>(ti,---,W )w(ti,---,tN)dt\ ■■■dtN (4.22)
Jo Jo

with

=7^ T  wflU'O-'h-lP' 1  *  (4.23)
( 2 n )  J -° °  k=x /=1 bl+ - + b N= l ex^ J ^ l N )

In Eq. (4.22), the first factor <&(?!,■•■ ,w ) in the integrand is the joint CF o f ys de

pended solely on the channel characters and the number o f antennas. The second factor 

w (t\ . • • ■ Jhj) is the weighting function, which depends only on the modulation scheme. 

Such a decomposition makes the analysis o f  error performance systematic. For a given 

modulation scheme operating in a specified environment, these two factors should be de

termined and Eq. (4.22) is used to obtain the average error probability.

Consider a MIMO system modulated by M -ary square amplitude modulation (M-QAM) 

with Gray mapping. From [69,70], the conditional BER can be represented as a sum o f 

( \[M  -  1) Q functions, expressed by

_  Vm -  i ,

P  e!MQAVl(y) =  X  aiQ (V ^ iy )  (4-24)
1 = 1

where the coefficients a, and bt depend on the constellation size M. The conditional BER 

o f the binary phase shift keying (BPSK) and binary frequency shift keying (BFSK) can be 

looked as the special cases o f Eq. (4.24) with M  — 2, a\ = \ ,b \  = 2  and M  — 2, a\ —
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1, b\ — 1, respectively. Inserting Eq. (4.24) into Eq. (4.23) yields (similar to [71, eq,(12)]),

VM- 1 N  (  N  I ~h. \

w (tl , - - - , tN) =  X f t  ( 1 +  X ( - 1)7 X \  b + 2i TN ) '
i=\  2 ( 2 7 Z )  k = i  y  / = 1  b ] + ...+ b N = i  V ° i + 2 j 1n J

(4.25)

After substituting Eq. (4.25) into Eq. (4.22), the average BER o f the MIMO systems with 

T-RAS and modulated by M-QAM, BPSK, BFSK can be numerically calculated.

4.4.2 SER Analysis

By defining Pe(y) in Eq. (4.21) as the conditional symbol error rate on the statistics o f the 

output SNR, the average SER can be derived. Here, the MGF-based approach is used to 

derive the average SER [72],

From the PDF o f y in Eq. (4.5), the MGF o f the output SNR can be derived as

My^  = Io e~Syh ^ dy

=  7 T W  r - r  ■ - . < * )  n U h ) ~ x i  ( - 1 )/+1 x(2;r) 7—  7-00 k=x l=x bl+.“ bN=ll + jT N

(4.26)

Using the MGF o f y, the average SER o f M-PSK, square M-QAM, and M-ary pulse am

plitude modulation (M-PAM) can be calculated by

(M-lpr , .

W M  = ~l  " * ( % % ) * >  (4-27)

(4-28)

P«|mpam(o) =  Mr( f̂)M (4.29)

where gMPSK =  sin2( |) ) ,  g MQAM =  3 /2 ( M -  1), an d g MPAM =  3/ (M 2 -  1).
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4.4.3 Outage Probability

The conditional capacity on the output SNR y can be given by [13]

C(y) =  log2( l  +  y). (4.30)

For a given transmission rate R r,  the probability that the realized T-RAS can not support 

R t with the output SNR y is [71, eq,(15)]

Pouter) =  P{log2(l +  7) < M  -  Fy {2r t -  1)
\  r°° r°° N  J _ e - A ( 2 * r - l )

=  T T T v /  " /     dt\ --dtN. (4.31)
( 2 7 r )  7 - o o  7 - o o  Jtfc

The outage probability expression can be derived in a similar manner with that o f  BER.

4.4.4 Ergodic capacity

The ergodic capacity o f a MIMO channel is the ensemble average o f the information rate 

over the distribution o f the elements o f the channel matrix H [13]. Conditional capacity is 

given in Eq. (4.30) and the weighting function is [71, eq,(18)]

,tN) = \\{jtk)_1 X (_ 1 )/+1 X jTN*(tu-,tN) [ C (y)e~jyTNd y
k =  1 / = 1  b i  +  - + b N = l

(4.32)

where 7# — b\t\  h b^thj is the same as in Eq. (4.5). The ergodic capacity can be

derived by using the same approach as Eq. (4.22).

In general, the calculation o f error rate, outage probability and ergodic capacity can 

not be simplified and relied on numerical methods. Gaussian quadrature integration was 

suggested in [63].

4.5 Numerical Results

In this section, 4-QAM is used for all numerical examples. Fig. 4.2 depicts the simulation 

and theory results o f the average BER in two T-RAS MIMO systems over independent
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Rayleigh fading environments. Alamouti codes are employed on the selected transmit an

tennas. One MIMO system chooses M, — 2 out o f  3 transmit antennas and Mr — 2 out of 

2 receive antennas, and the other chooses Mt =  2 out o f  3 transmit antennas and Mr =  1 

out o f 2 receive antennas. Integrals in Eq. (4.22) are approximated by using truncated 

Riemann sum o f points with equal space 0.2 between -10 and 10. Extending the summa

tion limits will not get different values since the integrant is highly concentrated within the 

range [—8, 8], In Fig. 4.2, the derived formulas o f both systems match very well with the 

M onte-Carlo simulation results. The system using both two receive antennas outperforms 

the MIMO with one receive antenna selected. This again implies the tradeoff between the 

performance and complexity as in [62],

Fig. 4.3 demonstrates the derived formulas o f the average SER in a T-RAS MIMO 

system where Mt — 2 are chosen out o f  3 transmit antennas and Mr — 2 out o f  2 receive 

antennas. Simulation results are shown to compare with the derived results. The outage 

probability for this system is shown in Fig. 4.4, where calculation results are obtained by 

Eq. (4.31). In both figures, the calculated values match well with the simulation results.

The dependence o f the bit error performance on the spatial correlation is o f  interest. 

The correlation depends on the antenna configuration and the operation environment (i.e., 

fading model, the spacing o f antenna elements, mean AOA, mean AOD, transmit and re

ceive angular spread). A series o f numerical results are presented to illustrate the effects 

o f  these parameters on the average BER over various fading channels. In the following, 

a MIMO system choosing Mt =  2 out o f 3 transmit antennas and Mr = 2 out o f  2 receive 

antennas is considered.

4.5.1 Correlated Rayleigh fading channels

The transmit correlation matrix R, and the receive correlation matrix Rr are generated by 

using the practical channel model presented in [68,73,74]. The model assumes that there 

are uniform linear arrays (ULA) at both the transmitter and receiver, and that the angular 

spectrum at both sides follows a Gaussian distribution. Let us denote the relative antenna
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spacing between adjacent antennas as dr at the receiver and dt at the transmitter. dr and 

dt are measured in units o f  wavelengths X = j-  , where f c is the center frequency o f the 

narrowband signal. We also define 9r, 9t, o r and ot as the mean AOA, mean AOD, receive 

angle spread and transmit angle spread, respectively. Thus, the actual random AOA (Qr) 

and AOD (0t) can be expressed by 9r =  6r + 9r and Qt — 9, +  9t with 9r ~  .yK(0, o })  and 

9t ~  -/V (0, a,2). With these definitions, the (p, <y)th entry o f Rr and Rt can be given by

R r ( p ,  q) =  exp { - j l n  (p  -  q )  drcos (9r) }exp |  -  Q  { In  {p -  q) 4 s in (0 r ) a r

R t(p ,q )  =  e x p { -y 2 ^ ( /7 -^ r )c / ,c o s (^ ) } e x p |-  Q  (2 n {p  -  q )d ,sm (9 t) j .  (4.33)

The correlation matrix R is given by the Kronecker product o f R* and Rr. As mentioned 

in [68], the correlation function is essentially Gaussian with spread inversely proportional 

to the product o f the antenna spacing and angle spread. This agrees with the intuition 

that smaller antenna spacing or angle spreads will generally lead to higher level o f spatial 

correlation. Substituting the correlation matrix R and the diagonal matrix Q (depends on 

the number o f selected and available transmit and receive antennas) into the CF Eq. (4.18) 

and the average BER Eq. (4.22), the effects o f the parameters on the average BER in 

correlated Rayleigh fading channels can be observed.

Fig. 4.5 illustrates the effect o f transmit antenna spacing dt on the average BER with 

fixed receive antenna spacing dr — 1/5A and 1/3A, 9r — 9t =  n / 2 ,o r = a t — n /6  for 

transmit SNR = 9 dB. Increasing the transmit antenna separation dt between the transmit 

antenna elements reduces their correlation and hence improves the bit error performance. 

However, once the transmit antenna spacing dt is increased beyond A, the BER starts ap

proaching its maximum achievable performance. The systems also benefit from increasing 

the receive antenna separation.

The effect o f  angular spread on the bit error performance is also given. Fig. 4.6 shows 

the average BER versus the transmit angular spread with d, = 1, dr =  1 /4 A, 0 =  t t /2  and 

k / 6, 9r =  7t/2, o r — n /6  for transmit SNR = 9 dB. Both BERs decrease noticeably as the 

transmit angular spread increases but less than 30°. The larger the mean AOA is, the better
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BER performance with the same angular spread will be. I f  the transmit angular spread is 

fixed, BER has similar relationship with receive angular spread and mean AOD. All these 

are consistent with the fact that the correlation is inversely proportional to the angle spread.

4.5.2 Correlated Nakagami-w fading channels

For Nakagami-m fading channels, the influence o f  the fading index m  on the average BER 

is demonstrated. Though how to determine the correlation matrix at the transmit or receiver 

side are given in literature, to the best o f our knowledge, there is no model to describe the 

general channel correlation R. The correlation matrix used for the Rayleigh distribution 

is hence borrowed here with fixed correlation coefficients obtained by dt = 1, dr =  1/4A, 

8 =  7t/2 and n /6 , 9r — n /2 ,  and a r = n /6 .  For numerical calculation, if  the error is less 

than 10-4 , the spacing o f the Riemannn summation should be smaller. Here, the error bit 

at the transmit SNR = 9 dB and the space decreasing from 0.2 to 0.1 is calculated.

Fig. 4.7 shows the average BER versus the transmit SNR with m = 0.1, 1, 2.1. It is 

observed that as the fading parameter m increases, the average BER decreases as expected 

since larger m implies less severe fading.

4.5.3 Correlated Rician fading channels

For brevity, the same model Eq. (4.33) is used to generate the transmit correlation matrix 

R ; and receive correlation matrix R r . The correlation matrix, which depicts the correlation 

o f the diffused component, is also the Kronecker product o f  R, and R f . I f  the Rician factor 

K  is the same for all channels, the covariance matrix yr =  \ J y ^ R -  The zth elements o f 

mean vector j±t take the value o f / i ( =  ĵ y-^R (/'. z). By inserting the ji, y/ and the diagonal 

matrix Q into Eq. (4.20) the CF can be obtained. The average BER can be calculated by 

inserting the derived CF and Eq. (4.25) into Eq. (4.22).

Fig. 4.8 illustrates the effect o f  transmit antenna spacing dt on the average BER with 

dr =  1/4A, 6r = 6t = n /2 , a,- — n /6  for transmit antenna SNR = 9 dB and K  = 0, 4,

10. As in the Rayleigh fading channels, the system benefits from the increasing o f transmit
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antenna space. In the figure, a larger Rician factor achieves a better bit error performance. 

A larger antenna spacing is needed for a smaller Rician factor. The reason is that a large 

Rician factor corresponds to a large direct-path component.

4.6 Conclusion

This chapter presents a framework to analyze the performance o f the MIMO systems with 

generalized transmit and receive antenna selection. The main difficulty is the correlation 

between the different antenna subsets comes from antenna selection as well as the spatial 

channel correlation. The problem can be conquered by expressing the PDF o f the m ax

imum output SNR as a function o f the joint CF o f all possible output SNRs. Thus, we 

derived several PDF-based performance measures, including average BER, average SER, 

outage probability and ergodic capacity. Numerical examples are given to illustrate the 

effect o f  antenna array configuration and the operating environment on the average BER 

performance through the correlation coefficient. Our framework can be applied in a wide 

range o f channel models, such as correlated Rayleigh, Nakagami-m and Rician fading chan

nels. Furthermore, the conventional RAS and TAS can be calculated as the special cases o f 

T-RAS.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-  a  -  Simulation for M(=2 M=2
Theory for Mt=2 Mf=2

— A—  Simulation for M =2 M =1 
"  t r
x  Theory for M =2 M =1

oi

0 2 4 6 8 10 12
SNR (dB)

Fig. 4.2. Average BER versus transmit SNR over independent Rayleigh fading channels .
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Fig. 4.3. Average SER versus transmit SNR over independent Rayleigh fading channels .
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Fig. 4.4. Outage versus transmit SNR over independent Rayleigh fading channels .
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channels with transmit SNR=9 dB and AT =  0 ,4 ,10.
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Chapter 5

Conclusions and Future Work

Antenna selection reduces the number o f RF chains and consequently reduces the cost as 

well as the complexity o f system without degrading the diversity performance. Therefore, 

performance analysis o f antenna selection is extensively treated, especially under RAS sys

tems. For T-RAS systems, the main difficulty comes from the correlation between the dif

ferent antenna subsets as well as the original channel correlation. Therefore, many previous 

work on both TAS and T-RAS systems are limited within independent cases.

In this thesis, the system models o f general MIMO and antenna selection schemes are 

introduced. Different channel assumptions and statistical measures are given in Chapter 2. 

Research on MIMO systems with antenna selection are reviewed.

In Chapter 3, the AF o f TAS systems under both independent and correlated channels is 

analyzed. We provide approximations and bounds for different cases which could be used 

as easy references for different fading channels. A simplified relation between the AF and 

coding gain is derived. The SER can be simply related to the AF for TAS systems with i.i.d. 

channels. The simulation results show that in the high SNR region, the approximations are 

accurate.

Chapter 4 introduces a framework to analyze the performance o f the MIMO systems 

with T-RAS. The average BER, average SER, outage probability and ergodic capacity are 

derived by utilizing the CF o f the joint output SNR. This approach can be used not only
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on independent but also arbitrarily correlated Rayleigh, Nakagami-m and Rician fading 

channels. Simulation results are provided to validate the numerical calculations. The effect 

o f  antenna array configuration and the operating environment (fading, angular spread, mean 

AOA, mean AOD on the average BER performance are investigated. Both RAS and TAS 

can be treated as special cases o f T-RAS.

Future research topics are as follows:

As an indirect performance measure, AF can offer insights into system performance. 

However, the analysis o f AF under general correlation case is not easily simplified. Also, 

analysis extended to Nakagami-w or rician channels for the most general case o f T-RAS 

could be worked on.

Although the analysis in Chapter 4 could be applied to any antenna selection schemes 

under any fading channels, possible future work about how to simplify the multi-dimension 

integral in Eq. (4.22) should be considered. This is useful because the dimension o f the 

integral increases with the number o f the selected antennas.

There are other aspects in antenna selection system that could also be considered. For 

example, in literature performance analysis with imperfect channel estimation is restricted 

within independent fading cases. To the best o f our knowledge, performance analysis with 

imperfect channel estimation is not given in literature for TAS and T-RAS systems.
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