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Abstract. A vigor-structured model for mountain pine beetle outbreak dy-

namics within a forest stand is proposed and analyzed. This model explicitly
tracks the changing vigor structure in the stand. All model parameters, other

than beetle vigor preference, were determined by fitting model components

to empirical data. An abrupt threshold for tree mortality to beetle densities
allows for model simplification. Based on initial beetle density, model out-

comes vary from decimation of the entire stand in a single year, to inability

of the beetles to infect any trees. An intermediate outcome involves an initial
infestation which subsequently dies out before the entire stand is killed. A

model extension is proposed for dynamics of beetle aggregation. This involves

a stochastic formulation.

1. Introduction

Mountain pine beetles (Dendroctonus ponderosae Hopkins) are the single most
destructive pine forest pest (Logan and Powell, 2001; Logan et al., 2003). Although
mountain pine beetles occur naturally throughout the pine forests of western North
America, their range is spreading quickly, likely due to changing climate (Logan
et al., 2003).

1.1. Biological Background. Mountain pine beetle outbreaks range from iso-
lated attacks on single trees to mass attacks of virtually all trees in a stand. Mass
attacks can decimate forests stands in one or two years. While the exact determi-
nants of successful outbreaks are unclear, initial beetle attack density and host vigor
(as measured by wood production per unit of leaf area) are key factors (Figure 1).
When vigor is low or beetle density high, attacks are successful (tree is killed).
When vigor is high or beetle density low, attacks are only partially successful (strip
attack) or unsuccessful (tree repels attack).

The mountain pine beetle life cycle has been researched intensively, and is well-
understood. The beetles attack and breed in live host trees—a process that results
in host mortality. Most mountain pine beetle populations complete one generation
a year (Safranyik and Carroll, 2006) (Figure 2). Recently developed adults emerge
from their host trees in late summer, and take flight in search of new hosts.

The flight period for the entire population is brief, only about two weeks long.
Dispersal of flying beetles through the forest is guided by two kinds of chemical sig-
nals: kairomones, produced by trees, and pheromones, produced by beetles already
in the process of attacking new hosts. (See Logan et al. (1998); White and Powell
(1998) for models of these dynamics.)

Date: June 30, 2006.
1 Department of Mathematical and Statistical Sciences, University of Alberta, 2 Department

of Biological Sciences, University of Alberta.

1



2 M.A. LEWIS, W. NELSON AND C. XU

0 100 200

Host Vigor (gm
-2
 yr

-1
)

0 50 100

B
e

e
tl
e

 A
tt

a
c
k
s
  

(M
-2

)

0

50

100

150

200
a b

Figure 1. Empirical thresholds for attack success as a function
of host vigor. Each symbol is an individual tree. Solid circles indi-
cate trees were killed by beetles; open circles indicate trees resisted
attack and are alive; grey circles indicate trees had a strip attack.
The grey lines are empirically estimated thresholds for host mor-
tality. a) Data for mountain pine beetles attacking lodgepole pine
redrawn from Waring and Pitman (1985). The threshold is based
the maximum likelihood fit of equation (2) with β(ν) = β0 exp(β1ν)
(see Appendix B for details). b) Data for spruce bark beetles at-
tacking norway spruce from Mulock and Christiansen (1986). The
axes presented here are converted from the original axes to be com-
parable with panel (a) (see Appendix A for details). The threshold
is redrawn from the original work.

Given that attack success depends crucially upon tree vigor (Figure 1), and
that beetles can sense tree vigor through kairomones, it is natural to ask whether
beetles preferentially attack less vigorous trees over more vigorous. There is some
evidence of this so-called primary attraction in mountain pine beetle attacks (Moeck
and Simmons, 1991), although is important to note that this is only part of the
chemical ecology of mass attack.

Once beetles settle on a potential host, they attempt to bore through the outer
bark into the phloem tissue. Healthy trees can resist attacks by producing resin
to slow down or stop beetles from constructing tunnels (galleries) to lay eggs. If
sufficient beetles attack a particular host, then resin defenses can be overwhelmed,
and beetles successfully construct egg galleries in the phloem tissue. The density of
beetles required to overcome tree defenses can be measured empirically (Figure 1).
When the attack is successful, the eggs develop into larvae, which create feeding
galleries that girdle and often kill the host tree. Beetle populations often over-winter
as late instar larvae, and resume development in the spring. Pupation occurs in
early spring and adults emerge in late summer.

1.2. Models for Beetle Dynamics. Models for mountain pine beetle population
dynamics differ in their level of ecological detail—ranging from strategic models
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Figure 2. Life-cycle of the mountain pine beetle. New adults
emerge from last seasons hosts in late summer, and attack new
hosts over a 2-3 week period. If the hosts are killed, then the
attacking beetles lay eggs that develop through larval stages over
the fall, winter and spring. The major phases of the life-cycle are
shown in proportion to their duration over a season. The gray
loop indicates one year in the model, and the arrow represents the
transition point.

that phenomenalize the ecological interactions into a single replacement function for
the population (Berryman et al., 1984), to complex spatial models that explicitly
describe the processes of dispersal, aggregation and attack (Powell et al., 1996).
While more complex models are arguably more realistic, it is often difficult to study
them and disentangle the contribution of ecological features (White and Powell,
1997). Strategic models, on the other hand, are well suited to study the general
dynamics of a system, but often at the expense of realism.

Here we develop and analyze a strategic population model of the mountain pine
beetle to study how host selection and mass attack influence the dynamics of beetle
outbreaks. Our work is based on the models of Berryman (1979); Berryman et al.
(1984), but provides greater realism by explicitly incorporating how the attack
process depends on host vigor.

Early strategic models of mountain pine beetle populations were based on pro-
ductivity curves for the processes of attack and reproduction at the spatial scale
of a forest stand (Berryman, 1979). Productivity curves describe the density of
beetles emerging from a stand in a current year, based on the density of attacking
beetles in the previous year. While used to depict dynamics at the scale of a forest
stand, they are based on observations of per-capita beetle fecundity on individual
trees. For aggressive bark beetles, beetle fecundity curves are unimodal, reflecting
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the balance between overwhelming host defenses and reducing reproduction due to
overcompensatory competition. For example, if the number of beetles attacking a
host is too low, then attacks fail because of host defenses (Figure 1), but if the
number of attacks are too high, then reproduction is reduced because of intraspe-
cific competition. The density of attacking beetles giving rise to the maximum per
capita fecundity is the minimum density required to kill the host (Raffa and Berry-
man, 1983), which implies that hosts with different levels of vigor have different
fecundity curves. Thus, the productivity curve for the entire stand, which is the
sum of the fecundity curves over all trees, depends on the distribution of vigor in
the stand.

Because productivity curve models describe the density of beetles emerging from
a stand in a current year based on the density of attacking beetles in the previ-
ous year, they offer a straightforward way to predict beetle dynamics. However,
they implicitly assume the vigor structure of a stand remains constant through
time (Berryman, 1979). Such an assumption is unrealistic for mountain pine bee-
tles because outbreak dynamics alter the forest at a much faster rate than the forest
regenerates. A changing vigor structure in a forest implies a dynamic productivity
curve. In this paper we analyze the changing vigor in the forest stand, developing a
population model structured by host vigor. We extend the model to include beetle
aggregation on the tree hosts.

1.3. A Structured-Population Model for Mass Attack. As demonstrated in
Figure 1, host tree vigor plays a central role in the success or failure of beetle mass
attack. Indeed, the beetle density threshold for successful mass attack depends
explicitly upon host tree vigor. However, at the level of a forest stand, beetles are
likely to encounter variable host tree vigor, as it varies from tree-to-tree. Because
the time scale for beetle attack is much faster than the forest regeneration time
scale, beetle attack can modify the year-to-year vigor structure in a stand as the
attack progresses. If low vigor trees in a stand are attacked early, then the remaining
trees may be better able to withstand subsequent attack. In this way, changes in
the vigor structure of a stand will affect the year-to-year dynamics of attacking
beetle success.

To date, mathematical models for pine beetle attack have generally excluded the
vigor structure of the host tree population (but see Raffa and Berryman (1986)
and (Powell et al., 1996)). However, structured-population models have an estab-
lished history of revealing key details of processes governing population dynam-
ics (Caswell et al., 1997). A particularly useful outcome of structured-population
models is a simpified projection of overall population levels from one year to the
next Gurney and Nisbet (1998).

It is the purpose of this paper to investigate the interplay between attack success
and primary attraction of beetles to trees, when both of these are affected by the
host tree vigor. Specifically we will investigate conditions on beetle density and tree
host vigor required for a successful mass attack. We will use a vigor- and bark area-
structured model for attack. The model component will be based on a mixture of
an empirical evidence for the attack success, and theoretically-derived relationships
for the primary attraction to host trees. As explained in the next section, we will
refer to this structured-population model as a ‘structured-threshold model’, as it
couples curves of the sort shown in Figure 1 to beetle production in the subsequent
generation.
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Variable Definition and (units)
t time index in years (yr)
a bark area of a tree (m2)
ν vigor index of a tree (g m−2 yr−1)
ft(a, ν) distribution of trees, with respect to bark area and vigor of tree

(number per unit area per unit vigor, yr g −1)
Ft(a, ν) distribution of bark area from all trees with respect to bark area

and vigor of tree (per unit vigor, g−1 m2 yr)
χ(bt, ν) proportion of hosts killed for a given level of host vigor and

attacking beetle density (dimensionless)
bt(a, ν) density of attacking beetles (number per unit bark area, m−2)
p(bt, ν) number emerging beetles per attack (dimensionless)
et(a, ν) number of emerging beetles from a host tree (dimensionless)
Pt(bt, a, ν) total number of emerging beetles in the stand (dimensionless)
k(a, ν) preference kernel for trees of given area and vigor

(per unit vigor per unit area, yr g −1)
k̃(ν) preference kernel for trees of given vigor (per unit vigor, g−1 m2 yr)
φ(ν) bark area per unit vigor (area per unit vigor, g−1 m4 yr)

Table 1. Symbols and variables used the mountain pine beetle
production model and its simplification.

The model output will include a simplified projection of total beetle population
levels from one year to the next as the beetles modify the forest stand structure,
destroying trees that remain susceptible to attack at that year’s beetle density. We
will analyze the qualitative dynamics of the simplified projection model, showing
how threshold behavior and bistable dynamics in the beetle population levels arise
naturally from the underlying structured-population model.

2. Structured-threshold model

We develop a general model for host tree and beetle density, structured according
to host tree vigor and host tree bark area. We then simplify the model under the
assumption that beetles distribute themselves only according to host vigor and not
according to host tree bark area. The model variables, their definitions and their
units are given in Table 1.

2.1. Model Development. In our model we refer to a host as a single tree, and
a stand is a group of trees. From the perspective of the mountain pine beetle, host
vigor is described by a single index ν that characterizes the capacity for resinous
defenses. As shown in Figure 1, an appropriate measure is wood produced per unit
leaf area in the host tree. To remain consistent with the empirical evidence, density
here refers to the number of beetles per unit area of bark a.

The density of attacking beetles on a particular host i is represented by b(ai, νi),
which may vary with both the vigor and size (bark area) of a tree. The number
of emerging beetles per attack from host i is given by the function p(b(ai, νi), νi),
which depends on both attack density and host vigor. This function includes the
probability of host mortality, as well as the effects of intraspecific competition. In
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the early literature, it is referred to as the ’productivity curve’. Empirical evidence
suggests that the productivity curve is a threshold function over b(ai, νi) at any
particular value of ν. For example, we could use

(1) p(b(a, ν), ν) = χ(b(a, ν), ν)Ae−γb(a,ν)

where

(2) χ(b(a, ν), ν) =
(

1 + e−α(b(a,ν)−β(ν))
)−1

.

The function χ(b(a, ν), ν) represents the proportion of hosts killed for a given
level of host vigor and attacking beetle density, and β(ν) defines the line where
χ(b(a, ν), ν) = 0.5 (Figure 3). The maximum likelihood fit of β(ν) = β0 exp(β1(ν)
to attack data is shown in Figure 1. This curve gives a slightly better fit than the
original linear function of Waring and Pitman (1985).

The parameter α and the function β(ν) describe the expected probability of
host mortality χ. Empirical evidence suggests that the transition from low to high
probability of mortality is rapid, and that the function β(ν) is a monotonically
increasing function of host vigor (Figure 1).

The parameters γ and A reflect the effects of intraspecific competition in the
beetles. Researchers have found that the influence of competition begins at attack
densities greater than the attack threshold, and that the strength of competition
is independent of host vigor (e.g., Raffa and Berryman (1983)). This suggests
that the processes of host defense and intraspecific competition can be modeled
independently as shown in (1) (Berryman et al., 1984). Equation (1) gives a non-
monotonic growth function, with the possibility of overcompensation in the beetle
dynamics. In this paper we will estimate γ and A from the data in Raffa and
Berryman (1983) (Table 2, Appendix B).

The total number of beetles that emerge from a given host tree with area a and
vigor ν is

(3) e(a, ν) = p(b(a, νi), ν)︸ ︷︷ ︸
beetles per attack

· a︸︷︷︸
bark area

· b(a, ν)︸ ︷︷ ︸
attackers per unit area bark

.

We define the distribution of host structure as f(a, ν), The total number of trees
in the stand is

(4) N =

∞∫
0

∞∫
0

f(a, ν) da dν

and f(a, ν)/N is a probability density function for the joint distribution of tree area
and vigor.

The total number of emerging beetles over the entire stand in any given year t
is e(a, ν) weighted by f(a, ν)

Pt =

∞∫
0

∞∫
0

ft(a, ν)︸ ︷︷ ︸
host type distribution

· a p(bt(a, ν), ν) bt(a, ν)︸ ︷︷ ︸
number emerging from host

da dν(5)

=

∞∫
0

∞∫
0

Ft(a, ν)︸ ︷︷ ︸
bark area density

· p(bt(a, ν), ν) bt(a, ν)︸ ︷︷ ︸
density emerging from host

da dν(6)
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Figure 3. The function χ(b(v), v), which is the proportion of trees
killed in vigor class v by attacking beetle density b(v). The di-
mensionless form (1)–(2) with the exponential function (β(v) =
exp(β1v)) is shown here for α = 10 and β1 = 1.5.

where Ft(a, ν) = aft(a, ν) is the distribution of total bark area with respect to the
bark area of a tree and vigor of a tree.

If we assume that the forest dynamics of growth, competition and non-beetle
caused mortality are very slow relative to the change caused by beetle attacks, then
the distribution of potential hosts is given by

(7) ft+1(a, ν) = ft(a, ν)(1− χ(bt(a, ν), ν))

In effect, we are modeling an epidemic moving through an otherwise static forest.
Multiplying equation (7) by bark area a yields

(8) Ft+1(a, ν) = Ft(a, ν)(1− χ(bt(a, ν), ν)).

Attack densities and distribution of host structure will change from year to year.
The balance equation for attack densities is the number of emerging beetles redis-
tributed over the new hosts in the stand.

bt+1(a, ν) = Kt+1(a, ν)Pt(9)

= Kt+1(a, ν)

∞∫
0

∞∫
0

Ft(a, ν) p(bt(a, ν), ν) bt(a, ν) da dν(10)
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where Kt+1(a, ν) is a function that redistributes the attacking beetles onto the
available bark area that is left after infestation. The hosts will have already suffered
damage from the beetle infestation at time t, and so the available bark area is
Ft+1(a, ν).

It is assumed that proportion S of the beetles survive the redistribution process.
Hence, the function Kt+1(a, ν) must conserve the number of attacking beetles so
that the density of attacking beetles, weighted by the total available bark area
equals the total number of emerging beetles

(11)

∞∫
0

∞∫
0

bt+1(a, ν)Ft+1(a, ν) da dν = SPt.

Multiplying both sides of (9) by Ft+1(a, ν), integrating, and applying equation (11)
yields

(12)

∞∫
0

∞∫
0

Kt+1(a, ν)Ft+1(a, ν) da dν = S.

If the beetles have no preference regarding tree bark area or vigor then the choice

(13) Kt+1(a, ν) =
S

∞∫
0

∞∫
0

Ft+1(a, ν) da dν

will distribute the beetles evenly with respect to these factors. In this case Kt+1 is
a constant in equation (10), and hence the density of beetles per unit area bark bt+1

is a constant. Note that the actual distribution of beetles, given by bt+1Ft+1(a, ν),
is nonconstant, and is equal to zero for those bark area and vigor values where
there are no trees (ft+1(a, ν) = 0).

Alternatively, we can define a preference function k(a, ν), with preference func-
tion values larger than one indicating more preferred tree bark area and vigor, and
preference function values less than one indicating less preferred tree bark area and
vigor. The modification of equation (13) that includes the preference function is

(14) Kt+1(a, ν) =
Sk(a, ν)

∞∫
0

∞∫
0

k(a, ν)Ft+1(a, ν) da dν
.

Here the preference function k(a, ν) appears both in the numerator and under the
integral sign in the normalization constant in the denominator. Equations (10) and
(14) become

(15) bt+1(a, ν) = k(a, ν)

∞∫
0

∞∫
0

Ft(a, ν)χ(bt(a, ν), ν) bt(a, ν)SAe−γb(a,ν) da dν

∞∫
0

∞∫
0

k(a, ν)Ft(a, ν)(1− χ(bt(a, ν), ν)) da dν
.

The model system of equations, (1)–(2), (8) and (15), is a nonlinear integrodiffer-
ence system. The unknown functions to be solved for are the density of attacking
beetles bt(a, ν) and the distribution of total total bark area not yet destroyed by
infestation Ft(a, ν).
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In reality, we expect that beetle aggregation as well as tree preference will play a
role in the distribution of beetles. We defer incorporation of this beetle aggregation
to Section 4.

2.2. Model Simplification. Although beetles can respond to size cues for trees (Cole
and McGregor, 1983), we focus on the minimal conditions under which outbreak
can occur and assume that attacking beetles distribute themselves only accord-
ing to host vigor, independently of tree size, and are able to attack the lower vigor
trees preferentially. Although this undoubtedly an oversimplification of dy-
namics of tree preference by beetles, it can be considered a “best-case”
establishment scenario, where by choosing low-vigor trees, beetles can
establish most easily. Then then the above system can be simplified.
Define φ(ν) as the distribution of bark area of live hosts as a function of host vigor,
so

(16) φt(ν) =

∞∫
0

Ft(a, ν) da

The total bark area of live hosts per hectare in the stand is given by

(17) Mt =

∞∫
0

φt(ν) dν

If we assume that emerging beetles only redistribute themselves by host vigor, then
the redistribution function Kt+1 depends only upon host vigor ν. Substitution into
equation (15) shows that bt+1 depends only upon host vigor ν. Therefore equation
(15) becomes

(18) bt+1(ν) = k̃(ν)

(∞∫
0

φt(ν)χ(bt(ν), ν)bt(ν)Ae−γbt(ν) dν
)

∞∫
0

k̃(ν)φt(ν) (1− χ(bt(ν), ν)) dν
.

Integration of (8) yields

(19) φt+1(ν) = φt(ν) (1− χ(bt(ν), ν)) .

We assume that the maximum vigor level possible is νm, and that the average
level of bark area initially available is φ̄0. The threshold location function β(ν) is
assumed to have the form β(ν) = β0 exp(β1ν). While it would be possible to use
the original Waring and Pitman (1985) straight-line function β(ν) = β0 + β1ν, this
function does not fit the data as well (Figure 1), and is no simpler in the subsequent
analysis. The initial number of beetles is given by

(20) N0 =

vm∫
0

φ0(ν)b0(ν) dν.

2.3. Nondimensionalization. To facilitate analysis we rescale the variables to be
dimensionless

(21) ν∗ =
ν

νm
, b∗ =

b

β0
, φ∗ =

φ

φ̄0
.
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Parameter Estimate (dimensionless) Source
α threshold steepness 0.21m2 (4.69) Waring and Pitman (1985)
A beetle growth 32.9 (32.9) Raffa and Berryman (1983)
S dispersal survival variable -
β0 attack threshold 22.34m−2(1) Waring and Pitman (1985)
β1 nonlinear threshold 0.0178 g−1 m2 yr1(2.1) Waring and Pitman (1985)
γ density dependence 0.0166 m−2(0.371) Raffa and Berryman (1983)
νm maximum vigor 116.4 g m−2 yr−1 (1) Waring and Pitman (1985)
AT average bark area 12.6 m2(–) He (2006)

Table 2. Parameters used in the mountain pine beetle model.
Details of calculation of the parameters are given in Appendix B.

Corresponding dimensionless parameters are given by

(22) γ∗ = γβ0, α∗ = αβ0, β∗1 = β1νm, N∗0 =
N0

νmβ0φ̄0
A∗ = SA

and functions by

(23) k̃∗(ν∗) = νmk̃(ν∗νm), χ∗(b∗(ν∗), ν∗) =
(

1 + e−α
∗(b∗−(exp(β∗1ν

∗))
)−1

.

Dropping asterisks for notational simplicity, we rewrite equation (18) in its dimen-
sionless form

(24) bt+1(ν) = k̃(ν)

(
1∫
0

φt(ν)χ(bt(ν), ν)bt(ν)Ae−γbt(ν) dν
)

1∫
0

k̃(ν)φt(ν) (1− χ(bt(ν), ν)) dν
,

with 0 < ν < 1 and the average initial bark density equal to one φ̄0 = 1. Equation
(19) remains unchanged.

3. A Population Projection Model

One mathematical approach for simplifying a structured-population model to
a simplified, non-structured population model is to use a method of population
projection (Powell et al., 1996) This entails assuming a particular form structured
variable (in this case tree host vigor) which then allows for simplification. In our
case, we restrict ourselves to the case where the distribution of vigor of the trees is
initially uniform (i.e., each possible vigor level 0 < ν < 1 is equally likely, so that
φ0 = 1). By way of example, we consider the case of an exponential preference
function, with attraction to the lower vigor trees k̃(ν) = c exp(−cν).

3.1. A recurrence relation for beetle density at low host vigor. In this
section we derive a recurrence relation for beetle density at low host vigor b̃t. We
assume that the beetles are initially distributed according to the preference function
k̃(ν) so that

(25) b0(ν) = b̃0 exp(−cν).
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where

(26) b̃0 = N0
c

1− exp(−c)

is chosen to ensure that
∫ 1

0
b0(ν) dν = N0. Here b̃0 can be interpreted as the

beetle density for low host vigor. To simplify the analysis we consider the case
where α → ∞ so that χ → H(b(ν) − exp(β1ν)) where H is the Heaviside step
function. In other words, for a given vigor level ν, the beetles are unsuccessful
(χ(b(ν), ν) = 0) if the beetle density is subthreshold (b(ν) < exp(β1ν)), and are
successful (χ(b(ν), ν) = 1) if the beetle density is superthreshold (b(ν) > exp(β1ν)).
Beetle success results in reproduction, and also in the killing of the host.

Under these assumptions, the condition for the beetle population to initially
reproduce is b0(ν) − exp(β1ν) > 0 for some value or ν. The value of ν which
gives the largest left hand side is ν → 0, and hence the condition for initial beetle
reproduction is b̃0 > 1. This is satisfied if either enough beetles are introduced (N0

sufficiently large), or the preference for low vigor trees is pronounced (c sufficiently
large).

If initial number of beetles introduced N0 is very large then the beetle population
may successfully reproduce for all vigor levels. This occurs when b(ν)−exp(β1ν) > 0
for all ν. The value of ν that gives the smallest left hand side is ν = 1. Hence, the
condition for successful reproduction for all vigor levels becomes b0(1) > exp(β1),
or equivalently, b̃0 > (exp(β1)) exp(c). When this condition is satisfied, the entire
stand is infested with beetles and destroyed in a single time step.

At intermediate values of N0 the low vigor trees will host beetles, and the high
vigor trees will not (Figure 4). In this case, there is threshold tree vigor level ν0,
below which the beetle reproduces (and also kills the trees), and above which the
beetle does not reproduce, and the trees are left unscathed. The threshold vigor
value ν0 is calculated as the value of ν satisfying b0(ν) = exp(β1ν). Using equation
(25) this is rewritten as b̃0 exp(−cν) = exp(β1ν). This can be solved explicitly

(27) ν0 =
1

c+ β1
log(b̃0).

Mathematically, the threshold function χ = 1 for 0 < ν < ν0 and χ = 0 for
ν0 < ν < 1. Using this idea we can rewrite (24) for t = 0 as

(28) b1(ν) = b̃1 exp(−cν),

where

(29) b̃1 =

ν0∫
0

b̃0c exp(−cν)Ae−γb̃0 exp(−cν) dν

1∫
ν0

c exp(−cν) dν
.

Integrating (28) with respect to 0 < ν < 1 yields the number of beetles in the stand
after one time step as N1 = b̃1(1− exp(−c))/c.

If we assume that the beetle population has grown and spread through increasing
vigor classes over successive generations, then φt+1(ν) is zero for 0 < ν < νt+1 and
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Figure 4. Host preference and attack success threshold. The at-
tack success threshold β(ν) (solid line indicating location of rapid
transition in Figure 3) increases with increasing host vigor, reflect-
ing that hosts with higher vigor require more beetles to be success-
fully attacked. Host preference (dashed line) decreases with host
vigor, reflecting the behavioral preference that beetles show for low
vigor trees. The vigor level (νt) where these two curves intersect
(dotted line) is the maximum vigor level where attacking beetles
in year t will successfully overwhelm host defenses. Beetles that
attack hosts with vigor levels greater than νt are killed without
reproducing. The dark solid curve shows the exponential attack
threshold β(v) = exp(β1v) with β1 = 1.5. The light solid curves
show the linear attack threshold β(v) = 1 + βν, with ν > 0 and
ν = 0. The dashed curve shows the host preference with c = 2,
and N = 1.

is one for νt+1 < ν < 1. Here νt+1 satisfies b̃t+1 exp(−cν) = exp(β1ν), and hence

(30) νt+1 =
1

c+ β1
log(b̃t+1).

where

(31) bt+1(ν) = b̃t+1 exp(−cν),

and

(32) b̃t+1 =

νt∫
νt−1

b̃tc exp(−cν)Ae−γb̃t exp(−cν) dν

1∫
νt

c exp(−cν) dν
.

This expression yields a positive b̃t+1 providing νt > νt−1. Thus equations (30)
and (32) are valid so long as νt is an increasing sequence with values below 1. This



A STRUCTURED THRESHOLD MODEL FOR MOUNTAIN PINE BEETLE OUTBREAK 13

generates a corresponding, increasing sequence of b̃t values. When νt ≤ νt−1 the
population dies. When νt ≥ 1 the entire stand has been invaded.

Equation (32) also satisfies equation (29) for the case t = 0. If the substitution
b̃−1 = 1 is made, then equation (30) yields ν−1 = (c+β1)−1 log(b̃−1) = 0, indicating
that prior to the infestation outbreak there are no infected trees. As above, b̃t can
be translated into the total number of beetles in the stand Nt by integrating (31)
from νt to 1 to yield

(33) Nt =
b̃t

(
b̃
−c/(c+β1)
t − e−c

)
c

.

Perhaps surprisingly, equation (32) can be integrated exactly. However, the cases
with and without density-dependence (γ greater than zero and equal to zero) must
be treated separately. In the next section we analyze the density-independent case
(γ = 0). In the following section we analyze the density-dependent case (γ > 0).

3.2. Linear growth model. When γ = 0, integration of equation (32) yields

(34) b̃t+1 = A
b̃t (exp(−cνt−1)− exp(−cνt))

exp(−cνt)− exp(−c)
.

Equation (30) allows us to rewrite the right hand side in terms of b̃t and b̃t−1

(35) b̃t+1 = A

b̃t

(
b̃
β1+c
c

t − b̃
β1+c
c

t−1

)
b̃
β1+c
c

t−1

(
1− b̃

β1+c
c

t exp(−c)
) .

Equation (35) is a discrete-time dynamical system that describes the progression
of disease through a stand structured according to vigor. Starting with the initial
condition b̃−1 = 1 and b̃0 given by equation (26), we can evaluate b̃t+1 for succes-
sive time steps, calculate the corresponding spread through the vigor classes from
equation (30) and the corresponding total beetle numbers from (33).

What are the possible outcomes of such a calculation? If the beetle population
is reproducing, it must be above threshold (χ(b(ν), ν) = 1) in a region where bark
density φ(ν) is nonzero. Because the beetle destroys all available trees at all vigor
levels where it is above threshold, and this is not replaced, a reproducing population
has b̃t+1 > b̃t. In other words, in each time a reproducing beetle population invades
and destroys higher vigor classes. Hence, if the sequence of b̃t values from equation
(35) starts to decline, then the beetle population has gone extinct. This can happen,
even when the growth rate A is much larger than unity, because the beetle is
destroying its resource, the forest bark, as time progresses.

This excludes the possibility of an endemic population. However, an endemic
population may be possible in a more complex model where trees change vigor
classes as they mature. This is a subject for further research.

If the beetle population does not die out before the entire stand is consumed,
the alternative is that the b̃t values grows monotonically past the critical value
b̃t = exp(c + β1). At this point the entire structured stand (as described by all
vigor classes of size less than or equal to the maximum value, one) is destroyed.
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Figure 5. Forest damage as a function of initial beetle density and
host preference predicted by the structured threshold model. The
cumulative proportion of trees killed at the end of an infestation
is shown by the gray-scale, where white represents zero host mor-
tality and black represents the mortality of all trees in the stand
(colorbar). The dashed black line depicts the minimum beetle den-
sity required to successfully kill the weakest hosts, and the dashed
white line depicts the density above which all hosts are killed in the
first year of the infestation. The solid white line in panel (a) shows
the initial beetle numbers guaranteed to eventually kill the entire
stand, calculated from equation (42). Axes values that are above
and to the right of the solid line give rise to populations that grow
in the second year. a) Dynamics with a constant attack threshold
(A = 2, γ = 0.8, and β = 0) b) Dynamics using empirically derived
parameters (A = 33, γ = 0.37, and β = 2.1). Initial beetle abun-
dance can be translated back to dimensional units using equation
(22).
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3.3. Nonlinear growth model. Integration of (32) for the case γ > 0 yields

(36) b̃t+1 =
A

γ

e−γb̃t exp(−cνt) − e−γb̃t exp(−cνt−1)

exp(−cνt)− exp(−c)
.

Note that, even though this is undefined for the linear model (γ = 0), it converges
to the solution of the linear model (34) as γ → 0. This calculation can be facilitated
by Taylor expansion of the exponential terms in the numerator to leading order in
γ. Equation (30) allows us to rewrite the right hand side in terms of b̃t and b̃t−1

(37) b̃t+1 =
Ab̃

β1+c
c

t

γ

exp(−γb̃tb̃
− β1+c

c
t )− exp(−γb̃tb̃

− β1+c
c

t−1 )

1− b̃
β1+c
c

t exp(−c)
.

As before, we have a discrete-time dynamical system with initial condition b̃−1 = 1
and b̃0 given by equation (26), whose solution b̃t+1, calculated for successive time
steps, yields the extent of the spread through vigor classes from equation (30) and
the corresponding total beetle numbers from (33).

3.3.1. A Lower Bound For Mass Attack Shows Threshold Effects. To demonstrate a
threshold effect, we consider a simplified system where the attack success threshold
is constant (β1 = 0, see Figure 4). We can rewrite equations (35) and (37) in terms
of the ratio rt = b̃t/b̃t−1 to give

(38) rt+1 = A
rt − 1

1− b̃t exp(−c)
= f(rt, b̃t)

and

(39) rt+1 =
A

γ

exp(−γ)− exp(−γrt)
1− b̃t exp(−c)

= g(rt, b̃t)

The initial conditions to these equations are given by r0 = b̃0/b̃−1 = b̃0 > 1 (equa-
tion (26)).

We consider an approximations to the dynamical equations (38) and (39) which
provides a lower bound rt for rt. The approximation is

(40) rt+1 = f(rt, rt) = A
rt − 1

1− rt exp(−c)
for equation (38) and

(41) rt+1 = g(rt, rt) =
A

γ

exp(−γ)− exp(−γrt)
1− rt exp(−c)

for equation (39). To show that rt is a lower bound for rt observe that f and g

are increasing functions of their second argument b̃t. In turn b̃t = rtrt−1 . . . r1r0 is
bounded below by rt because the increasing sequence b̃s implies rs = b̃s/b̃s−1 > 1
for 0 < s < t− 1.

The equations can be analyzed graphically using cobwebbing (Figure 7). For
each system there is a unique positive unstable steady state r∗ which is larger
than one. For equation (40) the steady state is r∗ = (

√
(A− 1)2 + 4 exp(−c) −

(A−1)/(2 exp(−c)). For equation (41) the steady state must be found numerically.
Providing r0 > r∗, the cobwebbing shows rt > r∗ for all t. This also holds true
for b̃0: if b̃0 exceeds r∗ it also will remain larger than r∗ for all t. This is because
b̃0 = r0 and rt is a lower bound for rt. The implication is that when b̃0 exceeds
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Figure 6. Forest damage as a function of initial beetle density and
host preference predicted by the structured threshold model. See
Figure 5 for legend details. a) Dynamics with increased intraspe-
cific competition (A = 33, γ = 0.8, and β = 2.1) b) Dynamics with
decreased maximum fecundity (A = 10, γ = 0.37, and β = 2.1).

r∗ the beetle will eventually destroy the entire stand. Employing (26) to translate
this to a constraint on N0 yields a critical number beetles required to eventually
destroy the entire stand as

(42) N0c = r∗
1− exp(−c)

c
.
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Figure 7. Cobwebbing the nonlinear threshold model (41). rt
denotes the ratio of beetle densities from one time step to the
next. The initial value is r0 = b̃0 = N0(1 − exp(−c))/c where N0

is the total number of beetles and c is vigor preference parameter.
If rt drops below one, the population dies out.

This is an upper bound for the number of beetles required to destroy the entire
stand. As can be seen in Figure 5(a), fewer beetles may also suffice to destroy the
entire stand.

When r0 lies between 1 and r∗, the ratio rt declines to an rt value below one.
The threshold for declining rt lies below r∗ because rt is a lower bound for rt. This
threshold is calculated numerically in Figure 5(a) for the linear model.

4. A stochastic model with beetle aggregation

In this section we modify the simplified beetle density model (24) to account
for nonuniform density of beetles due to aggregation. Here we simply propose the
model, leaving its analysis and application to beetle outbreaks for future work.

The simplified beetle density model (24) assumes that, for a given vigor level ν,
the density of beetles (number per unit area of bark) at time t is given precisely by
bt(ν). Whether a local outbreak is successful depends on whether bt(ν) exceeds the
outbreak threshold (Figure 1), yielding a value of χ near one. In reality, the density
of beetles in a given unit of tree bark will vary, depending on whether the unit of
tree bark contains a local aggregation of beetles. Even when average beetle levels
are low, outbreaks of beetles can succeed locally if aggregations of beetles drive the
local level of χ close to one.

One approach to modeling insect aggregation is to simulate its spatial structure
explicitly using partial differential equations or related models (Powell et al., 2000).
Another approach describes variation in the insect densities using the ideas of ran-
dom variables: noninteracting insects are Poisson distributed on their hosts, while
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aggregating insects are overdispersed (variance exceeds the mean). This second
approach has been widely used in the context of host-parasitoid dynamics (Hassell,
1978) where the host is an insect larvae, and the aggregating insect is the para-
sitoid fly or wasp. We follow this second approach for modeling mountain pine
beetle aggregation. In our case the host is in a given unit area of tree bark, and
the aggregating insect is the pine beetle.

We describe density of beetles on bark with vigor ν as a random variable Bt(ν)
with expected value bt(ν). Recall that the nondimensionalization (21) calculates the
units for bt(ν) as density relative to the low-vigor threshold density β0. In other
words, a value of Bt(ν) exceeding one is sufficient to kill a tree, providing ν is very
small. The random variable Bt(ν) can be translated into the number of beetles
on a tree host of area AT . This is through multiplication by the dimensionless
scaling factor β0AT to give Bt(ν)β0AT . If beetles act independently of one another,
the number of beetles on a tree of area AT should be Poisson distributed, with
mean bt(ν)β0AT , and a corresponding variance also equal to bt(ν)β0AT . However,
beetle aggregation will cause the beetles to overdisperse so that the variance exceeds
the mean. This additional variation in beetle levels will translate into increased
variation in outbreak success for any given value of bt(ν). Translating back to the
dimensionless beetle density, a Poisson distributed beetle population will have a
mean of bt(ν) and corresponding variance equal to (β0AT )−1, and an overdispersed
beetle population will have variance exceeding (β0AT )−1.

Classical approaches to insect aggregation use a negative binomial random vari-
able for the number of overdispersed insects on a host (Hassell, 1978). While this
approach would be possible for mountain pine beetle, we adopt a more flexible ap-
proach, using a continuous random variable Bt(ν) with probability density function
g(b; bt(ν), θ) that has mean bt(ν) and dispersion parameter θ.

Equation (24) is interpreted as the equation for the expected density of beetles,
and is rewritten as

(43) bt+1(ν) = k̃(ν)

(
1∫
0

φt(ν)
∫∞
0
g(b; bt(ν), θ)χ(b, ν)bAe−γb db dν

)
1∫
0

k̃(ν)φt(ν)
(
1−

∫∞
0
g(b; bt(ν), θ)χ(b, ν) db

)
dν

,

As the threshold function χ becomes steep (α→∞) is it

(44) bt+1(ν) = k̃(ν)

(
1∫
0

φt(ν)
∫∞
exp(β1ν)

g(b; bt(ν), θ)bAe−γb db dν
)

1∫
0

k̃(ν)φt(ν)G(exp(β1ν); bt(ν), θ) dν
,

where G(b; bt(ν), θ) is the cumulative density function for b. The corresponding
equation for the distribution of bark area of live hosts as a function of host vigor
(19) becomes

(45) φt+1(ν) = φt(ν)G(exp(β1ν); bt(ν), θ).

One possible form for g(b; bt(ν), θ), consistent with observations of beetle densi-
ties of zero in uninfested trees and approximately 60 m−2 in infested trees, would
be bimodal, with peaks at b = 0 and b = bm ≈ 3 (in nondimensional variables).
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While this appears to be a fruitful avenue for development, we leave it for future
research.

In some cases, the integrands in equation (44) can be simplified. For example, if
the probability density function g is chosen as the gamma distribution with mean
bt(ν) and variance b2t (ν)/θ

(46) g(b; bt(ν), θ) =
bθ−1e−θb/bt(ν)

Γ(θ) (bt(ν)/θ)θ
,

with corresponding cumulative density function

(47) Pr (Bt < b) = G(b; bt(ν), θ) = 1− Γ(θ, bθ/bt(ν))
Γ(θ)

,

where Γ(·) is the gamma function and Γ(·, ·) is the incomplete gamma function
(Figure 8), then in the limit θ →∞, g(b; θ, bt)→ δ(b−bt) and G(b; θ, bt)→ H(b−bt)
and model (24) is regained (Figure 8). Using the cumulative density function (47),
the numerator of (44) can be rewritten as

(48) A

∫ 1

0

φt(ν)h(bt(ν)) dν

where

h(bt(ν)) =

bt(ν)
(

θ

θ + γbt(ν)

)θ+1(
1−G

(
eβ1ν ,

(θ + 1)bt(ν)
θ + γbt(ν)

, θ + 1
))

.(49)

The variance of the gamma distribution is given as b2t/θ and hence the population
is overdispersed when b2t/θ > (β0AT )−1, or equivalently θ < b2t (ν)β0AT . For a
beetle population near attack threshold density bt(ν) ≈ 1, and the inequality for
an overdispersed population is given approximately by θ < β0AT ≈ 281 (Table 2).

Figure 8 shows the gamma distribution for various θ values, and demonstrates
that this distribution (solid line) also closely approximates the non-aggregating
Poisson model (dots) for the appropriate value of θ (θ = 281). For this value of
θ the probability density function approaches a delta function and the cumulative
density function approaches a step function, indicating that the behavior of this
non-aggregating model will be close to that of the deterministic model (24).

The gamma distribution allows for the possibility that, even under heavy bee-
tle attack, the most common observation (mode) would be trees with no attacks
(Figure 8, long-dashed line). This arises in the limit θ → 1 as (46) becomes an
exponential distribution g. The lower panel of Figure 8 illustrates how, when the
average beetle density lies below that threshold level for attack success, higher levels
of aggregation (lower θ) mean that a larger fraction of attacks are successful.

Even with the simplification of a gamma distribution for g, equation (44)–(45)
must be solved numerically using quadrature. The numerical solution of these
equations, for varying values of beetle aggregation (θ), is shown in Figure 9. The
θ values for beetle aggregation are as illustrated in Figure 8. The top row of
Figure 9) shows no aggregation (θ = 281), while the second and third rows of
the figure show increasing levels of aggregation (θ = 10 and θ = 1, respectively).
(The corresponding probability density and cumulative density functions for the
aggregation functions are shown in Figure 8.) All other parameters in the model are
chosen to be identical to the top panels of Figure 5 (left column) and Figure 6 (right
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Figure 8. The gamma function can be used to describe beetle
aggregation. The probability density function (46) (top panel)
and cumulative density function (47) (bottom panel) for a gamma
distribution of beetles are shown for mean beetle density bt(ν) = 1.
Dispersion parameters are θ = 1 (exponential, long dashed), θ =
10 (dashed) and θ = 281 (solid). Lower θ levels indicate higher
aggregation levels. At θ → ∞ the beetle density is given by its
mean, and the model becomes deterministic. The dots indicate
the Poisson distribution rescaled to correspond with the θ = 281
case. This is approximated closely by the solid line arising from the
gamma distribution. To observe the effect of aggregation, observe
that for β1 = 2.1 and ν = 0.25 the threshold for successful attack,
exp(β1ν) = 1.86 is exceeded by about 15% of the beetles with
dispersion parameter θ = 1, but almost none of beetles with larger
θ.
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column). Note that the top panel of the left column of Figure 9 (stochastic model
with linear dynamics and no aggregation) is similar to the top panel of Figure 5
(deterministic model with linear dynamics and no aggregation), and that the top
panel of Figure 9 (stochastic model with nonlinear dynamics and no aggregation) is
similar to the top panel of Figure 6 (deterministic model with nonlinear dynamics
and no aggregation).

As with the previous figures, the black dashed, solid white, and white dashed
lines show threshold beetle abundances, as calculated for the deterministic models.
They are simply reproduced in this figure for reference. Lines in the left column
are identical to those in the top panel of Figure 5. The black dashed line indicates
the minimum beetle abundance required to kill the weakest hosts in the deter-
ministic model with no aggregation; the solid white line indicates the minimum
beetle abundance guaranteed to eventually kill the entire stand in the deterministic
model with no aggregation; and white dashed line indicates the minimum beetle
abundance guaranteed to kill the stand in a single year in the deterministic model
with no aggregation. In a similar manner, lines in the right column are identical to
those in the top panel of Figure 6.

Note that the grey area in each panel increases with increasing aggregation. This
can be seen as one moves from the top row to the bottom row in either column.
This means that increased aggregation makes it more likely that a stand will be
successfully attacked (white areas are replaced by grey), but also makes it more
likely that a fraction of the stand will escape being killed (black areas are replaced
by grey). We interpret this result as follows: at low beetle abundance, aggregation
helps ensure that the attack threshold is exceeded in some trees, and hence that
some individuals in a stand become infected. However, at high abundance, aggre-
gation means that certain trees fall below the attack threshold as the beetles move
to other trees, and hence the entire stand is not infected at levels above threshold.

5. Discussion

Previous productivity curve models have modeled beetle production in an en-
tire stand. This does not easily account for the changing vigor structure as the
beetle infestation progressed. In this paper we have modeled and analyzed a vigor-
structured model for beetle dynamics within a stand. This model explicitly tracks
the changing vigor structure in the stand. All model parameters, other than vigor
preference c and dispersal survival S, were determined by fitting model components
to empirical data (Table 2). The closest existing model to the one developed here
is the computer simulation model of Raffa and Berryman (1986). However, that
model did not provide an explicit mathematical formulation, such as the one given
here. We hope that our explicit mathematical formulation provides a foundation
for basis further insight and analysis by other researchers.

The added detail needed to track vigor structure has generated mathematical
complexity; the model model (1)–(2), (8) and (15) is a system of nonstandard non-
linear integrodifference equations. However, the assumption of an abrupt threshold
response (α → ∞) allowed for model simplification, given by reduction to a de-
layed discrete-time dynamical system for beetle population levels. Analysis of this
simplified model allowed for predictions of model outcomes (fraction of stand killed
by beetles) as a function of the two unknown quantities: initial number of beetles
introduced to the stand N0 (variable) and vigor preference c (see Figures 5 and 6).
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Figure 9. Forest damage as a function of initial beetle density
predicted by the stochastic threshold model. Dynamics parameters
in the left column are α = 2, γ = 0.8 and β = 0, and dynamics
parameters in the right column are α = 33, γ = 0.8 and β = 2.1.
Aggregation parameters are θ = 281 in the first row, and θ = 10
and 1 in the second and third rows. Note the grey area in each
panel increases with increasing aggregation, as one moves from the
top row to the bottom row.
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Our assumption that beetles respond precisely to the low tree vigor
is an simplification, as they cue on a large number of chemical signals
of which tree kairomones are just one. In addition, the beetles may
cue on larger tree size, which often corresponds with low tree vigor. As
mentioned in Section 2.2 our simplification can be considered a best-case
establishment scenario, where, by choosing low-vigor trees, beetles can
establish most easily. In our example, we consider a vigor distribution
that is initially uniform. Although this is a useful starting point, it likely
that the initial vigor distribution is structured, possibly with peaks at
low and high vigor. It is intriguing to consider whether such structure
could give rise to meta-stable dynamics, where beetles slowly build up
populations in a small number low-vigor hosts before breaking out and
attacking the high vigor hosts (c.f. Safranyik and Carroll (2006)).

A model extension to account for beetle aggregation used ideas from the models
for host-parasitoid dynamics with aggregating parasitoids (Hassell, 1978). This
model allows researchers to use empirically derived distributions of host selection
and aggregation to describe complex spatial processes. This stochastic formulation
is quite general, but adds an additional level of model complexity. One possible
approach would be to choose the bimodal aggregation function, described in Section
4, right after equation (45).

Although likely less realistic for mountain pine beetle than the bimodal distribu-
tion, the gamma distribution provides a flexible, but relatively tractable distribution
for aggregating beetle numbers on the host trees. Using this, the effect of aggrega-
tion on outbreak dynamics can be analyzed numerically, as shown in Figure 9. Here
the numerical results show that the effect of aggregation is to increase the likelihood
of successful attack of a stand, but to decrease the likelihood that the entire stand
is killed. Further work is needed to estimate the appropriate aggregation parameter
for the mountain pine beetle.

The work of Nelson et al. (2008) asks why current risk models fail, concluding
that the primary reason is because beetle density has been removed as a hazard
index in current risk models. As shown graphically in Figures 5, 6 and 9, our
model has provided a framework where beetle density is a key factor determining
forest damage. Our model has underscored the role of initial population levels N0,
as well as selective preference of beetles for low vigor classes c, and the nonlinear
attack threshold β1 in determining the attack success and, when successful, attack
outcomes (entire forest killed versus a fraction).

Our goal has been to develop a strategic model which can be used to relate risk
of forest damage to known quantitites. There are additional processes, not included
in our model, that govern dynamics in natural stands. These include competition
with other bark beetles (Safranyik and Carroll, 2006), variable redistribution
survivorship S (Burnell, 1997), evidence that host selection can change with
beetle density (Wallin and Raffa, 2004) and temperature-dependent beetle phenol-
ogy (Bentz et al., 1991). While strategic models that leave out too many ecological
factors may be unable to predict risk may be unable to predict risk (Nelson et al.,
2008), we believe that the next step is to validate the vigor-structured model against
mountain pine beetle infestation data. Based on the outcome of this, it may be
necessary to develop the model further. This will be the subject of further work.
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Parameter Estimate Description
H 18.5 m maximum attack height
H∗ 1850 cm maximum attack height
S∗ 25 cm average sapwood area
δ .322 g cm−3 wood density
L∗ 10 relationship between sapwood area and leaf area

Table 3. Parameters for converting the axes in Figure 1(b).
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Appendix A: Notes for converting axes in Figure 1(b)

The axes used is the original manuscript by Mulock and Christiansen (1986)
were Y = A20

D , where A is the number of successful attacks on the entire host and
D is the diameter at breast height of the tree, and X = B

S , where B is the yearly
increase in a trees basal area, and S is the sapwood area. We seek to transform
these data onto new axes of Y ∗ = A∗, where A∗ is the number of attacks per meter
square of bark area, and X∗ = M

L , where M is the yearly mass gain of the tree and
L is the leaf area of the tree. To convert each data point, we would need the height,
sapwood area, and diameter of each tree. Since this information is unavailable, we
instead transform the data using the average value of these quantities for the stand
as follows: Y ∗ = Y 100

20Hπ , where H is the maximum height of the attacks (Mulock
and Christiansen, 1986). The factor of 100 converts the diameter in meters to bark
area in meters. Host vigor is converted as X∗ = XS∗H∗δ

100L∗ , where S∗ is the average
sapwood area in a stand, δ is the density of wood, H∗ is the average tree diameter
in centimeters, and L∗ is the allometric relationship relating sapwood area to leaf
area in Norway Spruce (Stancioiu and O’Hara, 2006)

Appendix B: Methods for estimating parameters

Parameter estimates were derived from two studies on mountain pine beetles.
Beetle parameters were estimated from data in Raffa and Berryman (1983), and
host parameters were estimated from data in Waring and Pitman (1985).

Beetle parameters (A, γ). Raffa and Berryman (1983) report observations of
the number of pupae produced per attack as a function of attack density. If we
assume that the mortality from pupae to adult is small, then these data provide the
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necessary information to estimate A and γ for that particular stand, in the year that
the study was undertaken. The data were digitized and the parameters estimated
by fitting the following non-linear function p(b(a, ν), ν) = A exp(−γb(a, ν)) The
minimization was done using the nls library in the R statistical environment.

Host parameters (α, β0, β1, νm). Waring and Pitman (1985) present a data
set of host mortality as a function of attacking beetle density and host vigor for
mountain pine beetles in a lodgepole pine stand. We use this data to obtain esti-
mates for α, β0, and β1. A small number of the data were for strip-attacks where
only a portion of the tree is killed. Since the extent of the damage is not reported,
and since they only represent a small proportion of the data set, we exclude them
from the analysis. The expected probability of host mortality (πi) is given by
πi = (1 + exp(−α(yi − β0 exp(β1xi))))−1 where xi is the vigor of host i, and yi is
the density of attacking beetles. Since the response variable is binary (host is either
dead or alive), the parameters were estimated by minimizing the log-likelihood ob-
jective function (L) for binary data L = −

∑n
i=1(zi log( πi

1−πi )+log(1−πi)) where zi
is the observed host outcome (0 or 1). The minimization was done using the optim
library in the R statistical environment. To avoid numerical errors, the predicted
probability of host mortality was bound between 0.0001 and 0.999.

The maximum vigor (νm) was taken as the maximum vigor observed in the
stand.
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