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ABSTRACT

W

L

1

ﬁlengths_(BR) are investigated.

y
y

!his—thesie—is—a—theoretical—study—ofﬁconventional—and—unconven—
tional potentfalnngdils for proton inelastic scattering.‘ The unconven-
tionalﬂpotengial‘results from a reduction of the Dirac equation, with
scalar and vactor complex nuclear potentials, to a Schrodinger—type

3

equation. At intefmediate energies the’ potential 1s found to have an
unconventiOnal shape, namely the Wine Bottle Shape. This potential is
generalized to an extended optical potential appropriate for a treat-

ment of inelastic excitations of.oollective states. The.generalized

potential is found to-have a deformed spin dependent interaction of

tﬁ;\full Thomas form. Comparisons are made between predictions for

inelastic scattering observables calculated using this potential and

s

those based on a non-relativistic Schrodinger equatibn based optical
potential of the Standard form. Results of these comparisons forjgoth
cross—sec&ion and analyzing power will be discussed;

.The effects of using tﬁe deformed spin-orbit interactions, the

. %

deformed Coulomb interaction, relativistic versus non~relativistic kine~-

matics and equal deformation parameters (B) ,versus equal deformation

The main cdnclusion of this work is that the unconventional poten-

tial (Dirac model)lpredictions for proton inelastic scattering cross-
V ;\\ a ! . . B
sectioniaﬁa\polarization, for some low-lying collective states, are

either comparable or snperior to those of the conventional potential

(Standard model). We have found that the deformation length BR, deter- ’

mined from a comparison of experimental and calculated cross-sections,
o :

decreases with increasing proJectlle ‘energy.

— \

3
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‘T._ INTRODUCTION

One of the most important concerns in nuclear physics is to under-
stand the structure of the nucleus as well as the mechanisms of nuclear
reactions. ;n practice one ca% find the properties of nuclei By appro-
priate scattering and reaction measurements. However, the interaction

of nuclear projectiles with nuélei is.a complicated many-body problem.

.

Because of this complexity one often relies on simplified models to

N

describe.che phenomena. ,

' One of these phenomenological approaches is the optical model

-

potential based on Schrodinger equation with Woods-Saxon form factors),

which seeks to'descfibe‘the~interaction of, say, a nucleon with a tap;//;/
get nucleus by means of a cqﬁplex potential. This hodel has been: suc-
cgséful in desérfﬁing proton eléstic_scattering at-low énergies and

few hundred MeV energies. We will caliAthis.approéch "The Standard
Model" throughout.this work. . | ,

.. In recent years, another optical\modgl potential based on the
‘Dlrac‘equation has bgen constf;cted from a Lorentz scalar term and .a
tiﬁe;like Lorentz vecﬁor term. It has been found that this model is
successful in describing the préton e1astic scattering at intermediate
enefgieé~(Ar§l, Ar82, Co8l). One of the interesting results of this
model is the discovery'of the "wine bottle shaped” real central poten-
tial.” It is found that when one reduces the Dirac potential to "Schro-

dinger equivalent potentials" that the real central potential turns

repulsive in the interior at energies between 100-200 MeV with attrac-—

€

tion in the outer region (Ja79,~Ja80). It becomes progressively more

repulsive as the energy increases. This is in contrast with.thestandard
(« 3

s

-



-~
Woods=Saxon potentials where the-real central-potential-weakens-but—re=-

\ mains totally attractive as the energy increases, then turn repulsive.

\
\
at some energy. (In this work, we will call the latter optical model

approach "The Dirac Model'".)

The parameters of both potentials can be treated complétely
phenomenologically and thus determined from the data, or the number of
free parameters can be reduced by invoking nuclear structure informa-
tion on charge and matter density. *

Both potentials have beep generalized to describe the inelastic
scattering processes leading to the excitation of collective surface
modes of target nuclei. In this'generalization:the normal spherical
potential is extended by including terms\that explicitly contain dyna— .

© mical nuclear coordinates describing the displacement of the nuclear
surface. This is usually achieved by lettlng, R-*R-Fq(r), where R is
the radius parameter of a typical spherical optical potential o(f) is
the;displacement of the nuclear surface in the direction T. All parts
of the potential are then deformed and expanded in powers of a(f) and
only terms to firet‘order in a(?) are retained (B164). The calcula-

tions of the 1nelast1c scattering cross-section and polarization are

done in the framework of the distorted wave Born approximation.

In a recent work Satchler (Sa83) has studied the inelastic cross- -5

section for low-lying collective states in 40Ca and 208Pb for proton

energies near 200 MeV. His atudy was. based on extending two spin inde-
pendent optical potentials, that provide the same elastic scattering
cross-section, to describe the inelastic scattering section. One of
vthese potentials is a potential of standard Woods-Saxon shape, while
_ the other is of awine bottle bottom shape generated through the addit:ion



of Ta~derivativé term to the potential. Satchler did not include spin- .

orbit interactions in his analysis of inelastic scattering.
. LY

In the present work we will carry out a similar investigation of

the consequences '6f the unconventional shape of the nuclear optical po-

tential at intermediate energies for proton inélastic scattering. Our
apbroach is based on comparing the calculations resulting fromboth the
standard and the Dirac models. Our investigétion diffe&s from that of
Satchler in one additional respect, namely, that "the spin—orbit effects
»

*are fully taken into account.

In chapter II, we describe the standard optical potential model
for proton elastlc scattering. In chapter III, we describe the extended
standard opticai model for proton inelastic scattering.; In ehapter v,
we describe the Dirac opticalfmodel for proten.elastic scatéeting. In
chapter V, we describe the’extended Dirac optical quel for éroton in-
elastic scattering. In.chapter VI, fits to elastic scattering data ftgm
both models aqd comparisons of the cogventional ah& the unconveri- ig‘i
tioggl botentials wil;:be shown. :In chapter VII,”theoretical predic:
tions of the present work fof ineiestic scattering ere compared to ‘i_

experimental data, and to Satchler's predictions when possible. A

conclusion is given in chapter VIII. A. ‘ - ‘ : i
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. jectile and terget; H(£) is the internal Hamiltoni

II. THE OPTICAL POTENTIAL MODEL

If a nucleon'enters a nuclear field of a target nucleus, it will
interact with the tatget in its path and will be either absorbed or
emerge| on the other stoe after some considerable buffeting. At each
encounter it may’chenge‘gts direction and spin'state, and
several such collisions ﬁay‘take place as the incident particle crosses
the nucleus. The intetection of a single nucleon with a nucleus is a
complicated many—body probleT The optical model replaces the many-
body interaction by a complex nucleon-nucleus potential In optlcal
model phenomenology the potential 1s written in terms of certain model

\
parameters whlch are determined from comparison with experimental data.

\
A formal theory is.needed to relate these model parameters to the pro-:

perties of the many~body system.- \\

iI.l Formal Theory of the Optical,Model Potential:
We will summarise here the formal kheory of the optical model deve-
oo N .
\ .
loped by Feshbach (Fe58) as it was describﬁi by Jackson (Ja70).

. If we consider a nucleon interacting w\th a nucleus, the total

Hamiltonian' of the system could be written as

= H, + H(E) + V(%,E) (I1.1)

" where Ho is the kinetic energy operator of the relative motion of pro-

of the target nu-
cleus-which has co-ordinates £, and V is the interaction pc - 21 bet-
ween the projectile and the target nucleons. The Schtéﬁingt wuation

we have to solve here is

JHY(T,E) = E¥(T,8) o o (11.2)



where Y(¥,£) 18§ the total wavefunction of the projectile-target system. :

The target states QA(E) are solutions of the equation

H(E)O) (6) = €,0,.(E)

where €y is the energy eigen valite of the target Hamiltonian H(§) which

'1s assumed to be hermetian. The states ¢A(£) are completely antisymme-

(I1.3)

tric and form a complete orthogonal set with the ground state denoted by

¢0(£). The total wavefunction Y may be written as an expansion .in ¢A

¥(r,8) = [ ¥, (Do, ()
A

(I1.4)

where. “’x(;) describes 'the« motion of the projectile relative to the target.

The elasticBChanpel in the above expansion is represented by

L
wo(r)¢o(€). If we define P as an elastic channel projection operator:

PY(T,E) =y (DO (B).. ‘

and if we introduce another projection operator Q such that it projects

out all states except the elastic channel, we have

P+Q=1
|
22 p
2
Q/=Q

then one/can write the following

= (1-P)¥(%,8)

fo]
€,
TTRY
ym
I

¥(r,E) - P¥(T,E) -

-> ->
¥(T,8) - ¥, (D)0 (&)
We 1. construct these projectionvoperators as follows

s

4

(I1.5) -

(11.6)

(11.7)

v



. P = |¢o(€)><¢>o(€)| | o - (11.8)
Q= ) |o><0 | . SR | (1I.9)
Ao M A : ‘ :

Equation (II.2) can now be rewritten as-

(E-H)(P+QV¥ = 0 S (1.10)

N

if we multiply on the left by P, we.get
(E - PHP)PY = (PHQ)QY P | - .y
on the other hand, multiplication by Q yields

(E - QHQ)QY = (QHP)PY ';,:(’I’I.lz_)'

' s / L
where we have used the properties of the projection operators as given'

- by equation (II.6)..-We can rewrite equation (II.12) as follows. 7< j
Q¥ = === qHP PY | 2 T 5 (11.13)
. E - QHQ y | o TILD)
. . vy 5 o

.outgoing waves in these c ennels. If we substitute equatibn (II.13)

If there are open non-elastic channels it is necessary to replace E—QHQ T o
: . . o . “@

in equation (II.13) by E QHQ +ie, in order to ensure that QY has oq}y ﬂ

into equation (II.ll)'wg get the following equation for PY

(E - PHP - PHQ QHP)PY = 0 . S | (I1.14)

1
E-QHQ

Since we are interested only in elastic scattering we have to reduce

equation (II.l4) to an équation for wo(¥)f This can be done by multi-
plying from the left by <®OI and infegrating over the target co-ordinate

£. 'Then one can write edhation_(II.l4) as follows

<o |E|PY> - <¢_|PHP[P¥> - <¢_|PHQ

s

1 o .
E-—QESH.PIW?:O , (I1.15)

and hence
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- <¢_|pHQ ETQm QHE_{ch >ug (r) = 0w \ (11.16)
the last term can be reduced as folloys. f
<@ IEHQ =7 <¢O|PHI'¢'A><¢AI
o' A#0- S (
=] < IH + H(&) + V(rv5)|¢ 240, |
A#O- - g .
= 7 <o IV(r,g)lcp ><¢. | , '
A#0 ‘ i _
:'<¢§lv<?,£>Qg ST (11.17) -

o

. where  the first two termg drop Qut because of orthogonality, since .

- f»q’.c,l_?o,liﬁf;\? = Ho<4’ol¢>\: and <¢_|H(E) |€,> = E,<¢_|0,> (11.18) ‘a’

. >
¢ ; y

if we assumé that € o’ the energ? of thé ground state, is Zero, and if
VA a . ¢ L

“we substltute equation (II lﬁ) into equation (II. 16), we can write the

ookl

N

‘:./ ’ ; PR .
latter as Epllows o “\: e
B 3 * T ' o - Pl
-*H ‘— < >._ % —1 >
o E- ¢ lvl<1> <I> IVQ E=cag 1% ]zp (x) =0 ) (11.19)

4
so we can formaliy define a generallzed optlcal potential as follows

= <p -5 1 ' . o
U:(r)“ j,@olyldzo + <<I>0|VQ Toom Qv|d>o> | (11.20)
theﬁ:We caﬁlwriteGEquatiqn (I1.19) ae ket
oo ) ’ > | o . .' ' ’ » ‘
L(ET- Ho - U(r))wo(r) =0 . 53 . . | (II.zl)

The leading tern* in equation (II.20), <¢6|V|®o>, yields the real parts

\

v.of the potential, and hence one can épproximate U as

<

U= <¢°]v|q>o> B (11.22)

where-



CovEvde - ] v G-T) o (11.23)
i*l

then one can write equation (II;ZZ) as

oy -+ .+ e
_<¢o|§ viﬁr?.ri)|¢o?_

IS
o

-

Jdr' v(T -2') 5‘%'; 6(?1 3f')]¢>6> . | E (1I.24)

T

But.by,definition
-+ - > > : . '
p(r') = <¢>O|§ §(r; ~x") [0 > | | | (11.2_53

’ where‘p is the matter distribution density, and for short range v one may
use the d-interaction and get the following

U= const 0(3). S - NII.26)

Thus the potential*follows the density in this approx1mat10n and hence

)
‘one is justified in using the Whods-Saxon functionS\at least at low

'

energies. B :

~

This model could he extended to describe the inelastic scattering.

’

This is usually done by deformlng the ' optical potential Since the -

i

potential followg the den31ty, one can take the spherical den31ty and

L !

.then deform the surface. This will be discussed in Chapter III.

II.2 vThe Phenomenological Optical Model
~ . This approach makes the optical model one of -the Slmplest and
most: successful.ofnuclear models., Thephenomenologlcal opticalpotentlal

which is used usually to describe nucleon-nucleus elastic scattering

has the following form : i - -: o

v



A\

A

U(r) =V _(x) - AR - L(W - 4w} d—i—)Fi

h )2 1 d 1.d > > '
* [m cJ Mso @ Tso * Msor ¢ ar Fsor! L (IL.27)
where _
' r-Ry -1 S
F . = [1 f exp{ Y ]] : (11.28)

is the Woods—Saxon function and R =rxAl/3, in'general the radius

and the diffuseness parameters r and a are different for different parts
of the potential Vc(r) denotes the Coulomb potential due to a uni-r
’formly charged sphere of-radius Rc and charge Ze, which‘is necessary.
for proton scattering‘to take account of the’interaction of the inbident
proton with the charge distribution due to the protons in the nucleus.

Y

It has the form - 2

N

_,Ze T2y : -
V@ =5 (3 - (5D? r <R,
c c ,
o 2 - : S . }
[ - EEa , " o r.z_Rc Ll '(II.29)

The quantity,V denotes the depth of the real central potential W

t

denotes tlat of the volume part of the central 1mag1nary potential

W denotes that of the surface peaked imaginary potential -and the spin- . .

orbit term is of the Thomas form with V O aS‘the strength of its real f

part, and Wr that of the imaginary part. The spin—orbit potential is

S0

AN

necessary for, particles with non-zero spin because it is needed to ex— S
plain the elastic polarization of the scattered partlcles, and also it
was: found that it 1mproves the calculated cross-section at backward

angles (Sh68)..

. A phenOmenologicalhopticalvpotential withﬁsuitably‘adjusted



Y

&

\parameters, is, able to give a good overall account of the experimental
data on elastic scattering. There are thirteen different’parameters_in
the potential, they could be varied in search for a_fit to'the experi;
mental data. In'practice‘one‘usually is restricted to a lesser number
of parameters to be . in search, this depends on the prdton}incident

energy. At-low energies, W iS'usually zero, and at intermediate .

SO
energies, Wb is zero, S0 in each case we excludevthree parameters from
'the search | These optical model parameters are generally smooth and -
slowly varying functions of energy and atomic weight of the target |
(Na8l) | | ' |

The final parameters are determined usually by minimum values of
the total Chi—square and sometimes by putting a constraint .on. the

-1search to. give a reasonable reaction cross-section. The total Chi—
square is given by o | H

'where O and P, denote'cross—section and polarizationﬂrespectively,.and

o, ®1)~a, (81) ]2 |

X5 = 2 [ " Ao__(61) - (IL.31)-
- : o Tex T

[
i
—

r“’f\swhere cex(ei), Oth<8i)'and Aoex<ei)vare.respectivelv thé.experimental
| : theoretical and experimental error values for'the cross?sectioniat-a
\center of‘mass angle Gi:' A Similar expreSSion holds for X , the X
_ associated with the polarization data. ;
The optical model has been useful in interpreting nuclear scatter—_
e ing at low and intermediate energies; In particular, the occurrence of
giant resonances, the total elastic scattering cross-section,Athe total

dreaction cross-section, polarization, and ‘the angular distribution of



T | .1

{1

, : — —— — —
elastically scattered protons, neutrons, deuterons, O-particles), He,

3H»and heavv ions;'can be understood in.terms of,the optical flodel.

The'uodel is-useful also in describing the.inelastic scattering and
Y ‘ ‘ :
-"various rearrangement collisions involving transfer of one; two or
more particles. In general the model is used extensively in studying
nucleonrnucleus scattering, llght ions_scatterlng,.heavy-lons ’

P ; , .
scattering,and other scattering prdcesses, Because,of these facts one
o o ’

can say that the optical model has. produced a con51derable anount of ¢

information about nuclear structure (Ho63) o ‘
We have used the optical model 1n descrlbing‘the proton nucleus‘

' elastic scattering from different target nuclei at various energles. dd,

’The results w1ll be analyzed and discussed in chapter VI.



Y

» ¥, III. THE NON-RELATIVISTIC EXTENDED OPTICAL

MODEL "THE STANDARD MODEL"

N

If h nucleus is. bombarded with a proton many things can happen.
" The most common occurrences are the following._ the proton can elasti-

cally scatter from the nucleus leaving the latter in its’ ground ‘state;

 the proton can give up some of its kinetic energy leaving the nucleus

'

1n a bound, exc1ted state, or else‘the proton can break the nucleus lf
it has high kinetic energy. In this chapter we will discuss the direct
proton nucleus inelastic scattering where the proton leaves thenucleus
in an excited state., We will con31der only the'excitations-ofthe low |
:lying collective states namely the v1brationalland rotational states.
_yThe dlSCUSSlon will be represented in the framework of the distorted
-wave Born approx1mation.d | - l |

ConSider the total Hamiltonian ior a nucleon interacting with ab

'target

~H=HT‘+H<g>+v(¥,£>. R Jes=55)
'where H ‘is the K.E. of relative motion, H(§) is the target Hamiltonian,

and V is the interaction potential of the inc1dent nucleon w1th the o
‘target and ‘it could be written in the%following’fashion S L {
V= Y v, E N ¢ 2.5 99 )
where A'is the'target.mass number,'and v, is the interaction of thé~
S = . o o R o o :
"projectile With the jthlnucleon in the target.
If we take Y as the total wavefunction of the target prOJectile

. system such that

l(H-mT=¢ G '.{u Ly
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/ .
Then the exact transition matrix for an inelastic process from an ini-

B

tial state i to a final state f is given by

- ®, e .
Tey = <¢(kf)¢f|V|Wi > | _ | | (I11.4)

where V is the interaction.potential in the outoing channel, the sub-
-scrlpt +)- ;efers to outg01ng boundary condltions Qf is thexwavefunc—
tion of ‘the target in. the’ final state, and ,

| ik -
¢f(k ) = e n o ) ' (III1.5)

" -

/
o " . - S
where n is the nucleon spin’ function, and kf is\the wave vector of rela-
tlve motlon in the final state (Jajo) Let us introduce a spherical
k' ‘ .

-OPtica} potentla} U, in an artificial way:- N

' Tfi.=';¢(if)éfl(V-Ud)'+,UOIW§f)> L  ' . (111:6)
The'optieel.modei.dietorted waves;are.def;nea by .

H, + 1, - E)X =.0‘._': ) :'t o (111{75'

"Using thejGell-menh-Goldberger relétion'for scattering from two

potentials, we get the exact T—matrix

T, =<x$ e IV-U IW(+)> + <Xf Vg Jduleedn>. . e

‘Because U0 is spherical .
<¢f]UOI§i> =0 ifi#£. R - . (I1L1.9)
Then for inelastic scattering

T, = <X§ ?@ ]v-Uo|w£*7$ T - (III.10)

‘e



,\\ »

‘

which is still. exact. We do not knova§+), so we| have to use approxi-
. . MRS .

mate methods, for example, the distorted wave Born approximation (DWBA).

. It is assumed‘that the dominant part of Wi represents elastic scattering.
This, is supported by the observation that in most cases, elastic scat-
tering is the dominant process. If U0 is'ﬁhe optical potential that

describes the elastic scattering of the projectile on the targét then

we may- write . e ‘ /
,/’\\, ) "
G +)
,,’Wgﬁ béixi' ‘
© Where this is expected to be a good approximation in the asymptotic re-

(‘“,M_,c_.;;;,-...l.;)

-~

‘gion but may be baﬁ in the interior (Ja70). The right hand side of
) ; ,

.equation (III.11) is also the leading term in a Born series expansion

NS @y | |
Teq —‘fo <I>f|v-uo|¢>ixi > . (II1.12) .

We'wéuld like  to épply this expressionrto the inelastic scattéring'
leading’to‘thé e#citétion of cblleétive states. The collective modei,
of'the nucleus allows for averysimple e#citation of the nucleus through
'a‘cﬁange in’the'collegjive state of £he system; ' The s£a£és most .strong-

: o ,

, _ b 4 . E
. ly excited by-inelast#é%scattering are those recognized as involving

. \ ’ o : y
- collective motion of some kind, vibrational or rotational. They usual-

ly have the highest crosé-sections, this is because of the strong over-
. : [ : 4
lap between the initial and final states of the nucleus. The excita~

tion of these states is most‘commonly represented by means of a macro-
scopic model (the extended optical model).. The first matrix element on

Il

"the right hand side of equation (II1.12) may be appfoximated as
g lvie;> = <o fup@o> ' - (I11.13)

. > . - ’
where UD(r) is the.deformed optical potential. This can also be written

s

as - o



0@ = U@ + W@ | | ammi,

spherical part of UD. It is clear from equation (III.12) that AU;now
| becomes the.transition operator for the.excitation of the stete ® We
can rewrite the T-matrix element (equation (11I. 12)) for a single exci-
tation of 2 -pole collective surface mode of.an even target nucleus as

(Au65 and Sab5):

~

1y = A @D <o au 005 x ) (& ,)> . (IIL.15)
wherej|00> describes the*ground state with spin parity 0+‘ IIM> des-

cribes a collective excited state with spin I and projection M. The

parity of the state is given by -

- ol o ' _ | - (III.1¢)
In this chapter there lS necessarily a lot of algebra.: ‘Not allvthev
steps are included however the interested reader may find eome of the
missing details 1n the thesis of Sherif (Sh68) It must be noted that
because of the spin—orbit interaction in equation (I1.1), the X's are

matirces in the particle spin space.  For example - b

P EL - le hy é” @,.%) o aman
i ,

1
e

‘'where ui is the spin projection of the incident particle ‘and [%—ui> is

the spin eigenfunction;' The quantization axis is taken to be along
‘the incident beam direction. Terms with u #;1 allow the possibility

of spin flip during the elastic scattering. The same thing holds for

x ()

- -One can write the matrix element as

@ &,

- (- )
£1° ) X (kf’r)l<_uf,<IM'AUloo>'_P>|Xuiu

' ATl
Hele HeMe

Where_Ua(r)Ais—theousual—spherical‘optical‘potential‘and—Aﬁ“iS‘thE“nﬁﬁ;v

, 1) > (III.18)-

15



where uf is the spin projectioh of the scattered particle. The X's are

distorted waves in the relative coordinate of the projectile and the

16.

(3

target. They 'are solutions of the Schrddinger equation, with appropri-
ate boundary conditions, for a spherical optical quel potential{

The interaction potential AU is capable of connecting the gfound
state to the colleetive states, and usually is obtained by déforming
the!optical pétentiai Uo(r). This could Be_achievgd by taking the
density function f(r,Rx,ax) (gee equation (II.28)) and allowing its

Y - :
" radial parametrs to depend on the nuclear orientation such that

R' + R + a(f) } ‘ ' (I11.19)
where R is the radius parameter of a typical spherical optical poten-
tial, 'and q(f) is the displacement of the nuclear surface in the direc-

tion £ and may be given the multipole expansion (Aub65):

*M

a(®) = Z B Y D) SRR (1II.20)

where gL'M is the dynamical coordinate which describes ﬁhé surface'dis-
b . B

.plécement. If we expand f(r,R+q(f),a) and keep terms to first order

in o(2) (B1l64), we get

ErR+a®),a) = £(,R) +a@® & . - oy

It is comvenient to write

« AU = AUC +:AUr + AUi + AUSO ‘ | " ' ‘ ’ : (II11.22)
referring to Cbulomb, real, imaginary and spin dependent parts, reé—
pectively. The contribution to AU in terms of the optical potential

parts are (see equation (1I1.27))

AUr = -V o% (f) 2 f(r R ,a ) - . | '(III.23)
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AU, = -, (?) (W=-4a ¥ 35 ) R f(r, Rysa;) (III.24)
‘ . of (r, R a_.)
- [h )2 > fs S0’“so 1
Mg = (m ] Vg0 V(O‘so(?) R } 37
TC : SO

of (r,R a )
= g g >7S0I’“so1 1l >
+ iw o V( SOI(f) R | J 1 V]

(II1.25)
/ . : SO :

wheré AU _comes from the deformation of the spin dependent potential,
(/
it is of the full Thomas form (°h69), and it could be split into-two

parts as follows

. =‘ B i . ,26
Mso = Us der(1y *Ug def(2) - L (I11.26)

where | | ' ) - ' o o

- _fn)2 A~ 18 [ af
Us,def(l)~7 Lm J [VSOaSO(r) r 9r (dR OJTW

et Ll [oE) e s
’ + iW o (%) ;-5;-[3 ]] o] "L _(III.27)

| _[1)2 o 0 af o .
Us,def(2) * [m J Vo 3Ry, [Viagy (£)) x5 V]
S0I aRaf V(g (8) X%V] - (111-23)
oI | C | |

It is found that the contributlon to. the deformed potentlal due "to AU 50 -

is 1mportant in th}s calculatlon. It 1mproves the calculated cross-
sections at backward angles, and also it is necessary to produce the

inelastic polarlzatlon (Sh69) - The Coulomb contribution to AU is given

by;

P i

RO rer

oo _ 32z2'e  c(D) *M
fIMlAUc|0°> TRt o Y ®
' c

R/t )I+l TR (_11'1';29)



where Z and Z' refer to the atomic numbers of projectile and target

respectively, and the spherical charge distribution is deformed by let-

-

ting R -+R +a (r), but maintaining the uniformity of the distribution.

The cortribution from the inner region (r<<RC) t6 equation (III.29) is

found to be very small. ‘
. . .

The nuclear structure.information is contained in the matrix element

<o [aufe,>. . . : , : (111.30{

If we consider the exictation of a rotational level in an' even-even .

'nucleus, i.e. (JI:=O+), then the wave functions are-éiven by
(1172 , L :
o, §L|00> = [ 2]_ wint NORE .~ (III.31)
8t . ‘ ,
o (2141)1/2 I, . o | gy
¢, = |0 = [8W J intDQM(e) | ‘ (III.32)v

where D' is a rotation matrix, € denotes the orientation of the body

a

axes w.r.t. the space’/ixed axes and w is’ the intrinSic wavefunction.v

Invoking axial symmetry one can rewrite equation (III.20) in the fol-

lowlng fashion

B o , _ : , _
@, =R g aLOYL(G N DI S . : (I11.33)

where o is real and normally written as BL’ where B is called the

deformation parameter and (6 0! ) refer to body fixed system. - Then in

the space fixed system one can write

] l__ .Lv *M.A' : Y
YL(e“,cp )‘- ) DOM(e)YL @ S : (III.34)

M



R

<o |a S (e)l Z—R B- D~~(e)

N ' 2 ll’lnt OM L OM

8m

( B0, oo(€)> _

_ @npt/? ] gt

()
g’ LM

LL
I, L 0 B ‘ ‘ o
<D0Mfge)LDOM(s)IDOO<e)? o . (L35

Since, (Ro57)

2 ‘
I : 0] - 8w O ‘
<D0Mf(€)l Doy (8) | Dy (€)> = 2141 GL,I‘GM,Mf y (II1.36)

.. then . ' . . . ‘ : .

R B o
o L *M A ’
—= Y. (£)6_ _§ -
_(21+1)l/2 L I,L'M_.,M '

<q)fl‘a{'ol(pi)_ £

C'(I)’YI (1) . ‘ . “(11I1.37)
Nd&, if we define a radial form. factor:

. R -
- ¢ - _9_
Fo(r) = Ro fc(r{Rc)‘ BR f(r R .3, )

""‘1(R /R ) (1 =4a, Wy 50 33 (xR ,a ) 0 (ILase)

,there f (r, R )Lfg obtalned from equation (III 29) by omlttlng the part -

C(I)YI , then . for ‘the Coulomb, real and imaglnary contributlons one gets:

_<IM|AU +AU + du |0o> = C(I)Fo(r)YI @ __.(111.33)

- Similarly, for the spinfdeﬁendent partéé

<mlus’def(i)|'00> »= (I)F (r)Y (r) A | (111:}40)
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L

-+ = %M l‘,\,-*- .
= o~ [V(Y x =V (III.41)
‘ <IM|Us,def(2)|OO> Coo (DFy (r) on[V(Y, ) i‘.\‘\] .
i
| ((n)2 1 2 '
B = [ﬁ} Vso © amor_ £(FrRgprag0)
ST T SO :
R -
T Wsor ¢ ameR_ - E(TRgapagep)] (III:42)
: 'S0 : 4 .

‘ h )2 3. W O £(r,Rgor>a )] (TII.43)
Fz(r):’[E;EJ [VSO BR f(r R O’aSO> Voot aRSOI 501’4501 ‘
The T-matrix element may now be written as:

:Tfi. = T, T+,
where ‘ ‘
. o (=) » - _]___ _ L SOOI F
T, = C(I) 'Z S (kf,r)|<2 uleo(r)YI _(r)]_2 ‘“1>|
H £ f T . .
"1°f
(+)(k +) [ ' O (IIT.44)
uiu SR , . , o i
] =) +,7. R L : o . ,\ _*._,_.
T = (I) Z Xuéuf(kf’r) [<3 '“lel(r)YI (®)o-L
(+) o - R C
l2 ui | (k ,T)> o o (IIL.45)
T, =c¢ (I) Z ( ) & ,r)]<—u |F @3 [Ty «2 7
2 Xy £ £ 1771
. u! uf Ef
|2 ui>lxu (k ,T )> . . 0 (1I1.46)

) : e . o
These'expressions are also valid for the excitation of .a.vibrational
© -state lIM?.

If we choose the z—axis along the vector\ 5 (see Figure 1), then.

- onme can write the following partlal wave expansion of ‘the distorted -
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Figure 1. Coordinate'system;a

waves '
(4) ) (4ﬂ) z 6(éz¥;ijl/2 <2lﬂou i. N
Xu u( i’ = ] 1 e - . 2) i Jui !
{ ky ,
iy ‘u (k, ,r) . . ‘
<22,u ¥ [Ju USRS VS S L (II1.47)
i 4 ST o
and
- t 10 .\)—u
CXQaun -y o S e
Hehg £ £2'5" A .
' 1 _ .W
<f 2,\)--]Jf uflJ U< 2,\) 1y quJ v
| *v-u"; (k) SR
x ¥, L@ 2—.—f—+ (III.48) -
Where 6 is the .scétterir_lg éngle, '<'2,s,m2;ms|jmj> denotes ‘the Clebsh-
" Gordan coefficients, 9. is the Coulomb‘phése sﬁift,
o, = arg T(4+1+in) - R C . (IIL.49)
. o H C ‘ Voo o B ' . . : ' :
- where . _
- 25 U : o (II1.49)
Ak T L .

éﬁd the.Fij are regular radial wave functions éﬁd are normalized such.that".
- o S RPN S o
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: T g
lim Flj = 7[H - (III,Sl)

Tpified _
~ ‘_’ . ) : . : : . //7
where ”23 are the reflection coefficients.Q;\Fcattering matrix elements

T30

' '\\‘ for the (2j) partial kfrave,’and HJL is the'ontgoing wave Coulomb functli'.o.n(HuSg)..
The final expreeSion for the T;matrix is given by equation (36)

in reference (Sn6§). In’terms of tne T;matrix element, which is writ-

ten'as'T(ui,df%M), we can:Write the ditferential croSs—section‘in the

~ following fashion

- %2k, o o, S e
O.m £L 5 rquuml|? o T (IIL.52)
@, 2h k2 iMe - ‘ :

4R i .ufMu‘ ‘ ' . :

L
* 1
where m is the reduced mass, and the. factor E—arlses from averaging

over initial splns. The summatlon over in equatlon (III;SZ):can‘be
taklng care of using the relatlon (Sh71) .
Z M@y%MI“ZZINﬂUmI - (II1.53) -
a
The inelastic polarlzatlon could be wrltten also in terms of the
fLmatrlx element. But before d01ng that ‘let us deflne a den31ty matrix

p in the following fashlon (W056)

+

’iP‘?,TT‘ (I11.55)

which is a matrlx 1n the spin space of the scattered partlcle.; If we

' {
‘wrlte T(u ,ufM) as a matrlx element TufLl (M) such:that
o : ‘ £ i
. A ‘ ‘ ..' ' * .' ) . “ . . . ‘ ‘,
(T(M)T (M)) = )T wr, @ " © . . (III.56)

© and making'an*incoherent sum over M, we can write the following

- T )T M '». | B , 5
i uz (u. Mg T (1 ,uf ) S S (IIL.57)
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The polarization vector P(8) is the expectation value of the g,operator

t tr TT+3' : ' | - : : S .
P(e) _ txpo =t . . . (I11.58)
trp tr TT : -

. tr . | /

where the denominator is given by

trp = tr TTT

LT su M)l R . (111.59)
M 1*7f A B - o '
HiHe . S . :
andlis thuslproportionalvto the differentialﬁcross—section‘.and the
- final: expression for the polarlzatlon could be wrltten as_

2In L T(3- 5oMT (3551 I
P@) = - Z o ‘ - - (III.60)

| Z lT( Z5u M)l LR A R

e

O
»

‘1It was found that this model is suceessful rn‘explalnlng the’ experlmen—'
tal data for: low-lylng exc1ted collectlve states ‘at low energles.' (Ba—‘
62 Fr65 Fr67 Fu68 Sh69 W168) : In the present work we have calcu— :
lated both the inelastlc cross-sectlon and polarlzatlon for dlfferent

; , : : iE : , .

’targets at 1ntermediate energles. The results of these calculatlons

‘accordlng to thlS model will be shown and compared w1th the results of

"the unconventhnal potentlal,calculatlons 1nvChapter‘VII,"

o



- IV, DIRAC PHENOMENOLOGY FOR NUCLEON ELASTIC SCATTERING

We have seen. in Chapter II how to do elastic_scattering according

to a nonfrelativistic model; i.e. the standard~opticalfmodel. In this
. chapter. we discuss another model for doing elastlc scatterlng also, but

,from a. different p01nt of view. A relativ1stic optical model 1s con- .

\
structed to be used for the analy31s of proton elastic scattering (Ar81)

The model is based on. the Dirac equatlon with a mixture of Lorentz sca-

"lar potential U o7 and the- tlme like component of a four—vector poten— -

‘ktial U The t1me 1ndependent Dirac equation which describes proton

elastic scatterlng is (ﬁ-—c-—l)
\

{a e B(m+U (r)) £, (r) +v (r)}w(r) 'Ew'(?.f)’ﬁ @

‘where a and B are the 4 by 4 Dirac matrices and

. 0t= [0 0} . : B= (0 ‘.'I] D o _(IV .2)

U 1s the. Pauli 2 by2 spin matrix IlS the 2 byZ u.nit matrix, p isthe _ :

momentum operator ‘of the 1nc1dent proton m is. the rest mass’ of the‘

‘.proton 1pls the Dirac spinor v '1s ‘the Coulomb potential (1t is de- .

termined from the empirlcal nuclear charge distribution given by elec—? o

¢

tron scattering experiments) and E lS the proton total energy. .

MaJor properties of the nucleon-nucleon 1nteraction can be repre— -

"‘jented by one boson exchange potentials employlng the known mesons (w

P, w,¢,...) plus theadditlon of'theJ —0 T—O"O" meson which.ispresently‘f“

_‘interpreted:ultermS(iftwo—pion exchange processes. Thedominant charac— . Lo

) terlstics of the nucleon—nucleus 1nteraction for a sp1n zero isospin
'zero target nucleus are . expected to be represented by the exchange of

v neutral scalar and vector mesons (Ar81)

24
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The—ma in*e f fec t-o f~usin'g.-’ a'—mbtture*o fa Eo'ren't z'scalarandt het imeL ike ‘
component of a four-vector potential in the Dirac equation uas original- ‘
1y discussed by Furry (Fu36) ‘He pointed out that to lowest order in |
.vv/c‘the sum U‘JFU contributes to the central potential while the dif—'ba'b
l< ference U —U‘ appears in the spin orbit potential This feature of ' |

. :the potential mixtures plays anessential role’ in the description of both

4 h

‘gelastic scattering and polarization data at intermediate energies (Ar81).v'

‘This model is quite successful in describing ‘the experimental data at
“1intermediate energy. \In particular/ for energies above 200 MEV, it
seems to be superlor than the standard optical model

In.order tobcompare withtheoon-relativ1st1copticalmodel it is-
conuenient to rewrite equation (IV l) in second order form. If'we
o write the Dirac spinor in- terms of an upper andba lower domponent as

.

"follows i'~‘
. l ' o . o ;?:‘_ : R SN
| and 1f we substitute equations (IV 2, . 3) 1nto equation (IV l)’ we::”

e

C[for . Fep) m+Us Lo fov.
LB 0 * 0 —(m+U) o U, +V_

IV
'This will lead to two coupled equations as follows _’.'
Ex"'-"“ b+ U) L S AT R (V.6
.'pqu‘ v e TR T s’wl.f_wz R A A R (Iv.6)



From equation (IV.6)‘we‘get‘.w ‘ 'J;f,. e '(A
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the latter ‘as follows

“To ellminate the Darw1n term

: ! T
-V T EFm T T v OP¥,
kg S TsL v e

_ %_g.; w . . .. e‘ v_.;4 | :'>~ | (IV-7)

:where .. = °

U- .
1

_‘Using.equationf(iv.7) in equation (IV.S) we'get .

E R P

Q+

* ]
G°p 3

After some mathematical maﬁipulation;\oné,can»write the_fdllowing'>

ay
T4
Nt
<

>

‘pY +

N (-

p) (o

Q+

)

. Q*f
ESYOE

Ule
"=
twl
HlU g
‘a4
t
{5+

g ‘ -
o.py, = (0~

_ s
. 0p 0

P Lol

1

D

: 1
: wu< _E'

H]l—‘ "U+
. Qo
EEE

H 4

g ¢

. Substitutlng equatlon (IV lO) in equatlon (Iv. 9), one can rewrlte ;_

[

Q+.o7

Lggy
r

P¢ +D0n+U +U, +v)w % 251y,

1. l
+ D r

.%1$

_U . H :
' 3D » =+
e

ar -

UIH
N

w (r) @) /'Qﬁ(;) {1»'*" S IR R ~(1v.12§.

Then the term P w could’be'written as

S, 5 o2 1/2
P
.,'wu-

(P 2 I/2 |
\. , v : u

ZE+m+U. - U -v . o RS o (av.8)
o . s v o o

T ]

Bw EDY. . '-h ST wa

pwu otie can make the substitytion

)@ + 2PD1/ P¢ -+ 1)1/2 2@ o . T _ = (Iv.13)
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P o o
. - v ' : . .
and after some algebra it could be rewritten as
2. 1 _-1/2 ‘ 1 =3/2 12 1 —l/2 "
= -=0D ' +-7D D 7o 5 4]
F l"u T S D g u -z?P u
“1/2_, 3%, G '
—pHEy Su 1)1/21)2@u - SRRERLE (IV.14)

o where (! ) and (") mean the flrst and the second derivatlves withrespect

a

'.. to r, respectlvely. Equatlon (IV ll) vcould be rewritten as '
2 YTy - =m! o
P ¢ (r) + 4 (D'/D) @ '§<D /D)¢u(r}: r(D /D)¢u(r)
+D@FU_+U_ V)0 (1) -0 /0318 (x) = EDE, (). (1V:15)
_m.s+v curv-r' ‘ .‘Ur.— Llr' ..

Since

D(m+U +U +V ) - ED 2E(U\+V )+m2_—AE2 ‘+2'mU-S'.”
.15 ]
2.

_+_US —‘_(Uv_fV~c') el  (1.16)

'I'hen’eqhatibn (IV;lS) ’reduces to.

Re 4 " /D) (D"/D) '(D'/D_) +ou0 4 2EQU_4V) o
. 2. 2 2 |
. U (U +V ) (D /D)o’ L}<I> () = & -u)e (1) . (W.17) .
‘If 'we“di\_.r,ide- equation (IV.l7) by, 2m, 'hoting' that . . \
2 2. .2 | ' .
Sl (Iv.18)
one ‘can’ rewrite (IV.17) ae foll’dws
. 2 2 :
P - k o
.(Zm _ eff(1:) +Uso(r)c _»)(b (r) —<I> (r) (IV.19)
where U ff(r) is the effective central potential deflned as follows
el 3 D521 DL D E |
Ueff(r,),_Zm- [4' (D) T2 (D) T (D)]+'Us+m (Uv+vc)
l 2 . 2% : . .
+ 2m W, - U, +V )] | - (Iv.20)

and U (r) is the spin orbit potential defined as follows »

e
\
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. USO(;)-;-———— L - , , (Iv.21)

Equation (Iv.19) looks like the non-relativistic-Schrodinger equation
which is usually written in the following fashion
me +VY = B . : - | ‘ S (VIL22)
Since'equations (Iv;i9) and (IV.22) produce equivalent eiastic‘scat-“
tering, equation (v. 19) 1s called- the Schrodinger equivalent equation.‘
It should be mentioned here that the wave function ¢ , even though it is
“not the upper component of the Dirac spinor, it has the same.asymptotic
b Haviour as w in the absence .of the Coulomb potential ‘this 1is because
Lt fhe- short range of U and Us' ’ ‘
Equations (IV.20, IVQZl) show that.if Uv'is.repulsive (as it wouid
be if it isvdue to'neutral vecto: meson exchange),iand US is attractive
_ (as it would be if its origin is neutral scalar meson exchange), then'
vUv and U tend to cancel in the effective central potential while they

add in the spin-orbit. Notice that there is no explicit spin depen—’

dence‘in the-optical potentials Uv and Us’ where those are usualiy writ-.

ten‘as o - ‘ .
ZUv(rl = va(r,Rv,av) + inf(r,va,aﬁv) S (IV.23)
‘ \ . N
. 0
and
- . . N . ’ " .
Us(r)v=‘st‘r,Rs3as? + i?sf(r?Rws’aws) , (IV.24)

4.

where.thefqnction f(f,Rx,ax)vis of the Woods-Saxon form. Note that the

B : o ' - , - :
» effective sﬁ?ﬁ4orbit potential is completely'specifiedby'thepotential.mix-

Q'

ture. We will call this type. of calcnlationw"the Dirac model" in the

present work.. The characteristics of the potentials and the elastic:

Il

LA
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- T scattering‘cr'oss—section and pdlarization predicted by this model will

29

~——?‘*bca_'di‘sc:‘ixS‘sed“an'd“‘s’hoW'n_1r'1“Clr’1'ap't"‘e’‘r‘VL, evmd' they will be compai‘ed with

‘their counterparts from the standard model. .= '



V. RELATIVISTIC INELASTIC SCATTERING (THE DIRAC MODEL)
' . \

'We have seen in chapter III howztovdo inleastic scattering accord-
ing to a non—relatiVistic model, namely the extended standard optical
f model. -This model haS‘been successful in describing the experimental
data at low energies, but its credibility becomes suspect ‘at intermedi—
ate and high energies.' The intermediate energy range attracts the in—v
»terest of many nuclear thSlC1StS these days, espeCially with the avail-
ability of faCilities like SACLAY‘ SIN, LAMF IUCF and TRIUMF. éince
the Dirac equation has been successful in describing proton elastic '
. scattering at intermediate'energies in recent years (ArSl 82), then theh_.
question arises as to whether there are serious implications for in—"
-elastic scattering as a result of. the unconventional shape of the real
central potential.‘\Satchler (Sa83) has recently studied the effect on
. the inelastic croSsesection for some lOWelying states near 200 Mev but
B his. calculations were based on varying the shapes of the potentials and
uSing the non—relatiVistic Schrodinger equation;: Inrthis chapter we
will discuss a model based on the use»of the Dirac)equationito describe
elastic_séattering as discussed'in'chapte; IV-: To allow for inelastic
' scattering, we have to deform the scalarvand the vector potentials
for this purpose we use the‘same method used earlier to deform the
vbynon—relativistic potentials (see chapter III) ‘The vector and scalar

potentils are - defined by equations (IV 23) and (IV 24) respectively.

we can write_the deformed vector potential in the following'fashion

\

Ug(;) v f(r R -+a (r) a ) + iW f(r R -%a (r) a ') ‘,f (V;l)

and again express this in terms of spherical and non—spherical parts.:

U (r) U (r) + AU (r) L -Js o "l"ll (v.z)v

A
S

30 .
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if we expand the function f and keep terms ofufifst_order in a(f)_we-

can write (see equation (lII;Zl))
e 3f | 9f | -
Allv(r) = 0L (r)V R, + W ( )W BR EEERRTI .(V.?)

and by the same method, we can write for the scalar potential

- ' 3f Ay OF - -
AU (r) a (r)V R +'1a (r)wsvaRwS . ;_ o ,(V'4) _

The effectlve central potentlal is defined by equatlon (IV 20), and it

could be Spllt into two parts ‘as follows

Ugge (™) = AGD) +3<f) D sy
Qhere -
: ~mey? 3 pi2 1 opv 1 opr. PRI '
A( ) = | [Z H -7 ) -7 P ‘ S (V.-.62
and AT S
R L i S B

-where D is defined by equatlon (IV 8). The defbrmation of B(r) follows
-as-a result of deformlng the scalar and vector potentlal and 1t could
be wrltten.aS’follows
D+ . Do . E D D';' oy 2L
B"(r) ‘,=_.U -(r) + —'(U ‘(r) +V_(r)) +~——'-[U- (r)

(r) - 20) (r)V @ v_v (r)] L (.8
~which mayloegwxitten as
e ) oL : ‘ : : : e . |

B'(r) = B(r) +8B(r) = - L .9,

where
. \



AB(r)_--AU (r) + [AU (r)-FAV“(r

*'E%ftzué(r)AUs(;) - zuv(r)guv(?) - 20 ()
AV:(;) -«2V~(r)AV k?)] . T (v.lo)”

The contrlbutlons to AB(r) due to Coulomb effects were investlgated and

found to be negllgible, S0 we dec1ded to leave these terms out, this.

will be dlscussed in chapter VII. ~We can then rewrite equation‘(V.IO)e

as follows»

AB(r) AU (r) + —AU (@) + = [U (r)AU (r)

h\

S "f’__-“'-.u'<r‘>Au Co) I S @.13)

The deformation of- A(r), depends on. the deformatton of D(r) and ‘its

derlvatlves, and it could be done in the same way mentloned before._”‘

PR \.

One can write -

AD(r) AU (r) -AU (r) - T '» S (v12)

| AD'(?)_é AU;(;)i— AU$(¥)"_d o . h_‘,.d . ‘nidf.’ - ,<v.;3>
“and S '

Cwdee® b gan

. After some_etraightforward algebra‘one_canIWTite AAC;) as'follows

aacd = B3 ( Dyat -2 @24 ) in"c f,_’)-_
- ;‘— (AD") - L (——) + 1 D (—)] L " (v.15)

p
1if we uée.the.following_relation\‘
-

,-VrD =;;' '+ D" (V.16) R
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. then we can write _
. and. 1
" o_ N o~ 1 ‘ )
@o)" = Vo) -2 ;) D o owas

- Subetitdting equatiohs (V.l7); (V.iB) in eqﬂation'(V.lS) yields
EYYeS "hc) [-—( )<AD>' - <—>2<93>]

» ()? [v2 (A§> —:Vi(AD)-] B 2% )

4m
“Then the deformed piece of the effective central potential AUeff(r) is
juet the sum of equatiene (V.11) and (V.l9)'sihce’ ' » ‘l T

AU _.(r) = AA(r) + AB(Y) . . o s (v.20)

eff ; L M : , . -

CIf we’defiﬁé a fOrmféctor‘ ﬁ' , o
':?Fo<r) Vs x, ALY Tuhs ‘"[V £ aR " Wsfes 3R

' L v , » “wWs

S af i' .;afws o af"

+ il _3R +. Ehvsws(is 3R + i w BR )]
Ty S
- . - : "o . C . ;
S (Zc) ‘[3.(D—)3 R N (D) s I R T

/ m oD . D p? .
’then:~t' ' -
"<IMIAUeff(r)[00> = CF (@Y, @ . w2y

The deformation of the spin dependent part 1s more: 1nvolved than
that of the effective central potential but it is done by the same |

method The deformed spin-orblt potential is given by ',w'

go(+) ='-e.——‘,§_‘§’ —i Flody<s o wawn
N IR | |
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‘where,

T T — 1 . AD(D) | -
ot 5 = Sl o ' ' (v.24)
D(T) D(r)+AD(z)  D(¥) y e

Dz(r)
if we subStitute'equation (V.24) into equation (V.23), 'this yields
1 AD(D)

D(r) J Dz(r)

I« )3T +80@) x3] (v.25)

which could be rewritten ‘as follows

D ~ _ _(hc)f-‘l ,la_D—»—r- i >
Uso(r) - 2m [D(I.') r r o-L -+ D V(AD) XP
- 4—?3’-%’-(’D+AD) Xp 1. o (v.26)
D . . ',, . ’ ) . . . . . . :

1

"‘The first term\Bn the r h s. isthe spherlcalspln-orbit 1nteraction, and

- the other parts form the defbrmed splece,

W@ = 28 L3500y 7 L R T Fm) x5
v v : D
=8 0Tem <l L g
A e s w2

: _,where the last term drops out - if we keep AUSO(r) to first order in a(?%
k aand the second term is not hermetian when the potentials are real and

- we have found its effect on the calculations to be negligible 31nce it

' ils d1v1ded by Dz, so we decided to leave this term out _ Then_equation S

a _j(V 27) could be rewritten as follows ‘

(r) p Us def(l) , s.,d.ef(Z)"
where‘ ' ‘ »
- ‘ S P , 2
S RFE 8%
: (hC) : AL S . : ~. v o
Us def(l) 7' 2m D }[(as(f)vsraraRS f'“v(?)VV¢araRv )
' o 2g.. _fézfﬁv_ *"f" SR -
iy <r>Ws AR " GOy argg 0L (7.29)

and
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=' . (h C‘) _2_-_1_.,_{‘~_a fs e A 1

Us,def(2)™ ~2m 0 Vs or_ © - [Va, (r)"I'ﬁl
éfv"+ N
-V, g 0 e, (®) x—v1 |
Y, 3 ws . +'t ~ l‘ '
+ l.(W‘s 3Rws 0‘-,[_Vo¢w\s(r) x'i— -V}] ]

3f

v BR

- W, W‘f%-[%yf\,(é)xi—ﬁ)} B v.30)

. which 1s of the full Thomas form (Sh68) ¥ We can deflne the form—

‘.

factors for U Jde f(l) ano US de f(z) as follows

. _ M AL > » ) - ' T : o ’
emy ,de f(l)l00> - CoME @G s e
and oL NC - L e o DR
z . N T S A
<mfu d f(2>{00> _voso(I‘)F_‘z-(F)O:[V_(YI (x) xg V‘]‘ : Co
vwhere” ‘ » , o ," »f‘ o
: 2. .2 2l
COR%E T 8tE 9°f
(hC) - s v TTws
¥ (r) 2n D [Ys araR_ ~ Vv arar. T i 3o
: R s 0 T v T s
v araR Dl w3y
. ) \ ’ N . . .
“and-

: (hc) of 'I'af o P Of:
:“F (r) om _'[Vs 3®_ :VvvaRv * iiws R, "

Yy 3R
L WY

’_Then 1f we substitute equatlons (V 21), (V 33) and (V 34) in equatlons':

.f (III 44), (III 45) and (III 46) the calculatlons w1ll follow the same -

'Iorder as that of chapter III. (Jff"=’v'

. We have done the calculations for the 1nelast1c cross-section andf'

- polarization accordlng to thls model We will compare the results of -

'this model w1th those obtalned from the non—relat1v1stic calculatlons



’

___u__¢_-whlcg are-— based on-the- extended standard optlcal model-and with—the

36

' results of- another model (Sa83) for some cases in- chapter VII

.“’
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| VI.- ELASTIC SCATTERING FITS

In this chapter we shall discuss the elastic scattering fits for
different even-even nuclei at different bombarding energies. Two dif—

‘ferent codes were used in fitting the’ elastic cross—section and polari- .

.F.zationmdata.. The first code is a standard optical model potential

called Magali (Ra69), relativistic kinematics were used in this code,
i.e., we used an’ effective bombarding energy that ensurqd the relati-
vistically correcticentre‘of mass momentum The Dirac equation based
' jpotential has- beéen taken from the analysis of Cooper et al (C082)
.This analySis was done uSing the code Runt (1981) The code Magalill
‘ is- based on the optical potential described by equation (II 27) while' ;
githe code Runt is based on the optical potential described by equations
.(IV 20) and v, 21) “in both codes 12 parameters were used in an auto-
imatic search routine us1ng a chi—squared minimization technique‘T”:‘ |
vi(see equations(II 30) and (II 31)) These parameters were varied to
- fit the calculated proton elastic scattering cross-section Lnd polari-f‘ -
zation.to the" experimental data; The radius of the charge distribution-l
‘ R was held constant in both codes, Since.the fit is fairly insenSitive
't0-it The parameters obtained from the code Magali are listed in
Table I for different cases.~ We.show a sample of the parameters ob-
.7tained from the code Runt (C082) in Table II v In both tables we have '
listed the optical potential parameters for different target nuclei at -
‘different energies;- As can be seen from Table I the parameters'of the :
p'potentialﬁare energy'dependent they vary with increasing energy They
also depend on the target mass number as it was reported by Nadaseen

3.et al (Na81) and by van Oers et al. (Va74) We also show the calcu—

‘lated reaction cross section (o ) in millibarns for each case. .

'37‘
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 ~{ii/////.‘ -

OPTICAL MODEL PARAMETERS -

(THE STANDARD MODEL) -

| Target

12

24

2831

32

40

. Ca o

40 .
a

40

Ca-

40Cé’

,20§Pb

E (Me

V)

200

155

155

155 -

155 .

18l

300

500

200

| ‘Vo(ﬁeV)

T, F):

'aé(F):

| wew)

WMev) |

Ty (F)

2@ |
W |

[t

VSQ(E)

>’ ‘aé°(Fj.

Yso1

(MEV) ik

{Tsot

(F)

)|

SoI™

o _mB

14,18

1.30 |

0.68

'17.64

0.00
0.95

0.78

4,01 ( .

.0.88 |

0.66

=~2.09

0.37

194, 74

0.96

12.29

1.39

£0.57

22.31

0.00

0.98

0.81)

4.19

0.90

S 0.71

-1.65

. 0.96

. 0.57

402.5

13.96

©1.34

0.50

158.56

- 0.00.

0.78

10.78

14,1

0.42

-5.94
. 0.78
0.59

501.2

0.96

12,90

1.37

. 0.59

19.55
0.00
1.06-

0.80

1 0.93

0..70

-1.24

1.02

0.58

494 . 8

4072

13.68

1,37

0:61

- 6.00

©0.00)

1.26

. 0.60

1,06

0.58 |-

-1.61f

0.68

296.8

'4.8@5'

1.06 |

17.52

1.29

.0.70| 0.

13.81

~1.15

0.81

S
1.02

0.65

-2.25 "

0.56|

0.00

1.01]

25.72

20.26

0.62

' 0.94

-0.60

'41;69

:0.70{ "

- 0.79(

- 54,21

" 0.00{
S 1.04|"
0.79| -
C4.95|
s

| —4.15]

10.68]

591.5

1.08] -

,13,

25

0.

1827

17

:33;‘“v

.58
.90}

.00
13
.88
.38 -
.10

730
.69

.08

70

.7

495.5 [568.5




TABLE—TT-
OPTICAL MODEL PARAMETERS FOR “Oca AT;EPE;lsi MeV |

~ (THE DIRAC MODEL)

v em | e ®
295.184 - | 1.0416 | = 0.6017
e R E )

-89.7876 |  '1.0774 - | 0.6518

RNCUN ® | am
| -404.386- - | - 1.0288° | - o.6314 |

.WS(ME_V) S Tus (F)l‘ aWs(F) |
- 93.6447 . | 1.0870° |  o0.6262

[C A

oplas) = 5%
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o In the present work we will label the curves resulting from the stan-

dard model as STANDARD while those resulting from the Dirac model as,
DIRAC. The curve labeled Dirac is actually obtaihed using the Schrodinger
equivalent potential (the effective central potential U efel -(r), see equa—
tion (IV 20)) ‘as well as relatiVistic kinematics in the. Schrodinger equa--

,

tion. The wave function which satisfies the Schrodinger equation with
ff(r) differs from the upper component of the Dirac wave fuliction only
in the nuclear interior but they - have the same asymptotic behaViour. One,
.therefore expects the equivalent potential (U ff(r)) when used in a- .
Schrodinger equation based elastic scattering calculation to reproduce
_"the same elastic scattering obtained uSing the Dirac equation. This ,

. point has been checked by actual numerical calculations for targets up
‘to'ZOSPb by Cooper (Co8l1). | |

- We will show below a fewcases from the analySis of prOton elastic
scatterlng in this work | .- ce \ |

Cra e

: Figures 2 and 3 show the fits to vthe elastic‘scattering cross—I o
‘section and polarization data at 200 MeV The data are from vMeyer et
al (MeSl) The experimental data were reduced to 60 , Since there. 1s'

ia large disagreement i the fit according to the two models for- angles"‘_ -

“beyond that rBhe fit is comparable or equivalent to that of Meyer et

al. (Me8l) The reaction cross—section resulting from the calculation
" of the standard mod%l equals 292 7 milli barns (mb), while that of the‘z

Dirac model equals 236. 5 mb

v1.2,-24Mg L ; SRS e e T

Figures 4 and 5 show the fits to the elastic scattering cross—- :

sectio“ and polarization experimental data at 155 MeV The'data are
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STANDARD model S o- '
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from Willis et al. (Wi68).7The”fits according to the twomodels are nearly

equivalent. The Dirac model isslightly;u1better'agreement.withthe ex—

periment for the elastic polarization. ‘The reaction cross—section resulting
' from the calculations of the standard model equals 402 5 mb while that of

fthe Dirac model equals 349 2 mb.
v1.3 “Oca

4‘\ For calcium we havebanalysed the data from the four energies,

© 155 MeV 181 MeV 300 MeV and 500 MeV, .ﬁe show the fits to the elastic .
'scattering crossnsection ‘and polarization at 181 MeV in figures 6 and
7. The data are from Ingemarsson.etal‘ (In7l) Hsthe figuresshoW'the.

'agreement between the two models in fitting the experimental data is

_very good They are. approximately equ1valent The. reaction cross—

"fsection resulting from the calculatlons of the standard model equals

'495 5 mb while that of the Dirac model equals 594 5 mb and the experi—

mental value (J061) equals 524+14 mb.
VI 4 Potential Equivalence ‘

-1t is- known that the non—relativ1stic optical potentials, i e. the
.,fpotentials resulting from the standard model are energy dependent. The:'
- ~real central potential remains attractive'as the energy 1ncreases; then
'-turn repulsive at .some energy. While the imaginary part remains attrac-
: tive. The energy dependence comes out explic1tly in the Dirac model
l(see equation (IV 20» With 1ncrea31ng energy, the real central poten- ;»-b
htial changes slowly from attractive to repu151ve in .the interior, re—_‘
sulting in the "Wine Bottle Bottom shape,.in ‘the energy range 100~200
uev;_ Figure 8 shows the real central potential for the case of P-+40Ca
.:at 181 MeV as it 1s predicted by bo@h models, 1llustrating the above

mentioned properties of thls potential Figure 9 shows the prediction

_of- the imaginary central potential for ‘the same case mentioned above.
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Note that the Dirac ‘model prediction 1s much deeper than that of the

2 Standard model. In fact the 1maginary central potential geta,deeper » ‘:b' o
as energyfincteases: . : , , .

B g The spineorbit potentials'also have some energy dependence;ibut:

_.1t is much smaller than that of the central potential This too‘comes

about as a result of the energy dependent denominator of. equation

':(IV.Zl)a In figures lO and 11, we show both the real and 1maginary .

' ‘1'Spin—orbit potentials as predicted by both models. We can see that

.the predictions for thereal spln—orbitpotentlal ofbothlmodelshave the

.'Hsame general shape with only a slight difference in magnitude. ,For7

‘the imaginary part, on the other hand the difference 1n magnitude-gets“
: larger.' The Standard model prediction 1s higher than that of the Dirac
.model by a factor of nearly 3. l :, ;vpjfh | _L'x : f,‘v. ) i "?
! : o i _ ks

| Finally one ‘can say that the two potentials (the Standard and the
' Dirac models) do dlffer in shape, particularly near. 200 MeV, but inspite j
fyof this fact they Stlll can be regarded as equivalent, since they give :
',reasonably good agreement w1th the data at this energy range.i This
'1iaccord may not hold beyond this energy range due to the 1nab111ty of
the Standard model to provide an equivalent flt to the experimental

i ;.‘

“-data as' that of the Dirac model .Il_'<{ 'vu_lfﬂ7'yi_ h: ' '_f}) B :b_f1jp."’v

9

Y :
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VII. INELASTIC SCATTERING . .

In the preceding chapter we have shown ’comparisons_between the Stan-

':'dard model' and the Dirac modelfor'some el'a'stic scattering data. In this
chapter we shall carry out al discussion -about the extended optlcal model '

potential and its applications in inelastic scattering In particular we

- are ‘interested 1n finding out whether the near equivalence of the. 'Standard'

and 'Dirac’ models for elastic scattering does extend to the case of 1nelas—
lth scattering : In other words, we wish to investigate ‘the impact on-
1nelast1c scattering, of the differences iépotentials associated with
the two models partlcularly in the region near 200 MeV

- ‘We use the extended Standard model 1na non—relativistic distorted
wave Born approxi.mat.ion(DWBA) calculation for proton inelast,ic scat—
tering. : We have used aDWBA code (Sh68) for this purpose which 1s based
on the formalism given in chapter III The only ad_]ustable parameter in
_this calculation is the deformation parameter (B) We_ have, usedv equal
deformation l_ength (BR) ‘in ourj calculation‘s, since it gives" better pre- - ‘
diction ‘for.the p@larization thanus:.ng edual .deforma‘t.ion parameters.. |
(see below)‘ : ‘. K \ . o : | '. - ‘ P ' 1 e

We have modified the (DWBA) code mentioned above to carry out simi—.

‘e

lar. calculation for inelastic scattering based on the Dirac model
Three more subroutines were added- to the code to calculate the‘ relatl-;'
Vi,stic kinematics,.' the Dirac equatlon.based "equivalent'f potentials and
'heir associated form factors. The formalisms of these calculations
. ar‘e given in chapters IV and V. We have also used equal deformation
leng%ms for all parts of thelpotentials for the same reason mentioned'
,.above. For tfhe purpose of comparlsons between the two moc we have

v . ’

used the _same deformation length in both cases.

o -
o

53°



" Figures 12 to 17 show'comparisons of*the‘inelastic scattering

ot : Tl = ' S 40 ;
form factors for the excitation of the 3‘.state at 3.73 MeV in Ca at

-'lSl”MeV. It is clear that for the real central form factor (flgure 12)
"vthere lsba dlfference between the predictlons of the two models in the
interlor; reflectlng the W1ne Bottle Bottom shape in the.Dirac model.:
iFlgure l3 shows that the 1mag1nary'central form factor ‘is, much stronger
in ‘the Dlrac model but has the same - shape except.at very short distance.l
lThlS feature could be explalned by. relatlng 1t to the fact that the
» imaglnary central potentlal dn the Dirac model is much deeper than that
of the Standard model

The spin—orblt potentlal was deformedband included 1n;the calcula— ::
btion. In the present analysis we use the full Thomas form (Sh68a) for
the deformed sp1n—orb1t potentlal Spln—orblt l refers to the spln-

_orblt term ‘in equatlon (III 27) and its counterpart in eqUatlon (V. 29),5-

. whlle spln-orbit 2 refers to the spln—orbit term 'in equafzbn (III 28)

. and its counterpart in equatlon (V 30) ' We note from figures (14) to"

: (17) that the spln—orblt form factors 1n the ‘two models are s1milar 1n :, o

- v \ , o
'shape but vary in magnltude near peaks and min1ma.

.
We have found that the effect of includlng spln-orblt deformatlon -
lhin the transitron potentlal on.the calculated cross—sectlon 1s‘1mporel
‘-tan This is contrary to what Satchler (Sa83) had expected namely
*sthat the effect w1ll not be appreclable in. the energy range near 200
fheVrm Flgures 18 and l9 show an 1llustratlon for the above mentloned \;’
”eeffect calculated using both the Standard and the Dlrac models- for the
.case of inelastlc SCatterlng on 40Ca at 181 MeV, We can see'that the

fdlfferences are apprec1able, they are present both in” the magnltude of

ﬁthe peak in the cross—sectlon and in the- angular dlstrlbutlon itself



55

for P’ +
" "is the DIRAC modef and the dashed curve is the
“STANDARD model

e

0 } } $ { }- } { -+ $
o
— DIRAC 4
~ ~- STANDARD RK
fE.
N u_‘c
~ - -
T
o -
= a - 4
- e
- Q
L,
Jo
w
mv‘.-
o
'm.- -
K
s o ]
l ] R | 3 l.v l‘ l" T ] T T "_' - »
000 3.0 5.0 8.0 . 120 150
"'«jT" o Figﬁre-lZAf. Thé‘feal gart of - tﬁé'éentfal radial fdrﬁzfactor','
: - o Ca at"E_, = 181.MeV: - The solid curve :



. ?‘f"' X ‘

.
o . g o
N L 4
/
. Q“' R S ’
s —t————— ——t——t
- el : . 4, : R ‘
. . N o .. y
' FORM FACTOR: ~ ]
-4 ) .
2| . —DIRIC +
: | f{ oy S'I@NDFIRD RK
) - : . l -
~~
» &,o‘#r “n
sa £ EHL
S 3“, i
‘ ..(]: " 4 Y
. ; -.(%: ;i o
B Tl Sy
~ N »,'.:;a.- 1 B
, e 8 . -
) S et S R -
- H 4 ' . o -+
'.\':.,o - .
N . T 4
- ! B — ' ‘-
‘,D : . R
i . |
' T T T | A—— N oL
0.0 3.0 - 6.0 : .b"SF.U 12.0 18,0 - %,
Fi'g'.tu.;e' 13 The imaglnary lpart of the centra.l radial form .
. f?actor for P + “0ca at E, = 181 MeV. The solid
#turve is the DIRAC model and the dashed curve, is
the - STA.NDARD model, . .
£ | |




» CIR-Y/
. A
] . " _ ‘\
i ———————+ < F
. v : . ] \' i .
| I FHCTUH'_;* v
. g." ‘, . ;1 — DIRAC T
@nNDnRD R
gg:- i 1
2 | "
_0?' ’ 4 .
. O
o |-
Lot “
N :
a, \
. i . .
x ' T
B | | : T '
o a L
e . d
a‘_ ) " “:’1 : -
S | e, g
-l "
.o .t Ll 1] I - i T Ll

IR -T— — T
CFe s 000 6 a0 0 15

‘Figure 14 The real gart of spin orbit 1 form factor i
‘ . for P + “YCa at E; = 181 MeV. ' The solid

. curve is ‘the DIRAg model apd the dashed
. curve ' is the- STANDARD model 2




N N
\ - 58
| FUHM FHCTUR o
Zf ‘— DIRAC - i
é STF]NDRRD RK| .
N“;:n | | ) |
‘Eif. T }1 |
U | 4'1' 2
g, R
o
G |
@ T
' ‘.3’.-'0 T e s R R
- REeM R R

.The 1maginary part of spin orblt l form’ factor ‘for

P+ 40ca. at E; = 181 MeV., The solid curve is the

" DIRAG model and the dashed curve is the ' STANDARD ’
model I ' . o ‘



. y
. :hﬁ .

‘“““JFigurel6 L 'I'he real gart of spin orbit 2 ,fo‘ Sy

13
-*-
-
i
-
1
1
1
L =]

S - . .
. ‘irl . )
Ty i -

. ‘ - 'j -‘ B

FORM FACTOR |
— e
-~ STANDRRD RK

. *L

(MeV-/FM‘) o
- l.‘oA

el

REAL FORF
o g.ae

»

-10.0°

S X B X IR TR 1 R o
| ‘RFm '."=  S

for P+ “0Ca at E = 181 MevV. Ihe-»éo'lz.; s

" curve is the DIRA% model and the dasheds \,"“w »

curve is the_STANDARD model. _ MRS &



ool

60

g
few

1

18.0

(MeV/FM):
YO

FORF

0.0

IMAG.

-10.0

L o

-t

.

F@ﬁﬂ FHCIUH I
— DIRAC 1
SU%MN%]RK

Figure i?

3.0

-




61

X—SECTIONth/SRJ o

— N - —
RO L L

£ -

[Way

10"

-

. Figure 18;.

n .t

,__,,
0

10-‘

”OCH 181 MEV

STQND WITH S.0

~-----STAND. NO SO.

B e R —T T — ; o
g:  .10- 20 ‘30 . - 4o 50 60

| _FINGLE' (DEGREES) |

The effect of the deformed spin orbit term on the
calculated cross-section 'The calculations are

‘the : standard model predictions for “OCe (3' state,

 Ex = 3.73 Mev) at Ep = 181 MeV.

Pt




" a2

103 |

.1(325- o
" s -- DIRAC NO SO.

10!

X~SECTIONMB/SR)
% _

107

Figure‘l9 :

ot

T T T

T

. o
L l_jlml {1 WAL

v‘l_. J Ij ""I
P

- |

A 181 MEV
—_— DIRQC WITH S(]

ﬂlfl‘unu Loy

1Lt l‘lllll

1.1 m;ul

) ?nuul |

- a

10 - 20 30 w0 -fso 80

HNGLE (DEGREES)

fThe effect of the deformed spin orblt term on the

calculated ¢ross—-section. The calculations are

- the DIRAC model predictions for 40ca (37 state,umb C
.Ex = 3. 73 MeV) at E, = 181 MeV. ,

REP A



63 .

The prediction of the ‘two models for the cross-section drops off more

:;_rapldly and oscillates more sharply as the angle increases.f Be51des
rthese observations, it is known that the spin—orbit deformation is
' mportant and crucial in the calculation of 1nelastic polarizatlon. -

-

Eelow we will discuss some other effects on the calculations namely

'

' t_e effects of using equal deformation length the effects of the kine-

'andOthe effects of Coulomb deformations. _ v‘ .

VII 1 The Effect of Using Equal Deformation Length
We have done the calculations of the Standard model with equal

deformation parameter B, which means all parts of the form factors get7
rmultiplied by the same number B then we‘repeated the whole.calcula— |
tions with equal deformation length BR which means that’all parts of
the form factors get multiplied by BR where R 1sfthe—radius_of'thelb-

real part of the central potential We have foundothat the prediction‘.

H"l

:~'"

.of the Standard model for the proton inelastic polarization is inbe t
. ‘ :V

: K
agreement with experimental data when equal deformation length BR 1s
v'used So we have considered the calculations of both models w1th equal

deformation length BR in our analysis,_and we kept BR equal for both

':'models for purposes of comparison. _
- VII 2 “The Effect of Kinematics. L e
; . e ) . g
We have studied the role of kinematics in the close accord between ) R

NS

the predictions of the two models. We have carried out the entire_f ,~}_idl

Standard model calculations w1th non—relat1v1stic and w1th relativistic

o
. U i .

By kinematics. We have compared the results and we found that there are

Y

a7

IR .. minor: dlfferences and one can say that the two types of calculations fg-

v"73é%§éaf% basicaily the same‘ﬁ% the energy range- of 200 MeV aside £rom . a
N ) S T \ ‘ - . o "

-
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slight change in normalization..'

IR

'VI1.3 The Effect of Coulomb Deformation. R
o We have alsofstUdiednthe»effectshof including the deformation“oﬁ;
“rtheféoulomb.potential5 andlwe haveffound that the effeots are-yery .sf
small and do not affect the calculations except for QOSQB,V We have, S
g o . i .
‘;ﬂihenefore' left these effects out of the calculations for both models

Below we will show comparisons Between the predictions of the
‘J,", . -
Dirac model and the Standard model as well as compare these to the_

o exp rlmental results whenever available.
. , lzf# . .h.p- f
VII 4 C(p, ) C 2 State (Ex 4,43 be) at. Ep 200 MeV " -

Figures 20 and 21. show the prediction of the two models foﬂ?both BN

. ¥
1nelast1c cross—sectlon and analysing power ‘ The agreement between the

. two types of calculatlons is satlsiactory. The“agreement with the'ex4 :

perlmental data is not that good but lt is comparable w1th other ana- ‘.Lf
lYSes (MESl) The Dirac model lS in sllghtly better agreement with the,:” - 5
data especially at forward angles.’ The datavare from (ME81) We-have. N
normalized ‘the Dirac calculatlons to the experimental data, then we -
extracted B 0. 60, and 0. 439 for the Dirac model and the Standard model

[y

respectively, and BR 1.30° F for both models. If we - normalize the'

Standard model calculations to the data we get 8 O 56 and O 41 for’ the

Dirac model and the Standard model, respectively w1th BR l 21 F for‘

L SR

both models.
&y k4 SRR s
’ VII.S Mg(p p ) \g L2 State (Ex==l.37 MeV)'at Ep =155 MeV,,

' Flgures 22 and '3 show comparisons between the predlctions of the H;b’hf_ -

-',v Lo

Standard model and the Dirac model for 1nelast1c scattering cross-”

sectlon and pOlarlzatlon and the experimental data.' The data-are from'_

- =l



(Wi68)t»_The agreementnbetween_the prediCtion of the two models is ‘ ﬂd

‘model Sherif (Sh68) in his analy51s of the. same case using the’ Stan'

"fangular range (i e. up to 8 6033 while it is good for the polarization . £
‘both models. From prev1ous analyses for the same case, Sherif (Sh68)

imation and obtained B 03 29 and BR = 1 12 F

:VII.7 ‘40Ca(p,p ) 3 State (Ex 3. 73 MeV) at Ep l 1 MeV

',1nelast1c croas-section ‘and polarization comparing,them

\

'satisfactory ‘ They do predict the general shape of the experimental .

LA

"'data.. We have used equal deformation lergth in both models, (BR 1.364

fm§ where B 0.34 for the Standard model while B 0. 482 for the Dirac L

dard model obtained B O .353 and Bh l 30 fm

‘32

'v11;6_"’3-.zs(p,P 1y325* ot spate (Bx =2,24 MeV) at Ep 155 My, T

v
Figures 24 and 25 show comparisons between the predictions of the

Standard and the Dirac models for the ineIastic cross-section and pola—

;rization._ We also show the experimental data of Willis et al (Wi68);

for comparison.' The agreement between the two types of calculations is
. ‘\m .

very good Where the agreement betweeﬁ he{calculations and the'experi—'y

\-4-:‘ : ;, 3

& K33

V 'mental data is quite good for .the inela-"ic cross-section over thexahor

'-only up to 6 = 40 We get a deformation parameter B = 0 23 for the.- Coe lv@
- Standard model and B 0 31 for the Dirac model and a BR l 033 F for _kf'“'j;g

’.‘A .

[

obtained O 24 and BR=1. 15 F while Haybron (Ha66) got a Ilt to an- bf) L

,other set of data USing collective model DWBA Without spin—orbit defor—‘-:

.

e

~ (J\)

Figures 26 ‘and 27 show the predictiOns of the two models for, both .

ith the experi—

. mental data. ‘The data are from (In7l) : The agreement between the pre-

S

_hdictions of the two models is very good j The- results of the present

N

’ work,are superior to that of Satchler (Sa83) in fitting the experimental

..,

a\J".'
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data, since he neglected the effects of the deformed Spin-orbit poten—
Lo

‘tial whlch were shown .to be important for this energy range., We get‘aw

1

74

e L

£,
%

T

, Dirac model and hence BR =1.014 F for both models.. Satchler (Sa83)

N\ e

\ used equal deformation parameter B O 35 ‘in his analysis and BR 1. 464
¥ ‘

and 1.398 F for the W—S model and the WBB model respectively. If ve,

carry out our calculations without lncluding the effrtt of ‘the deformed

4 ) - }Yx P l-.u -
spin—orbit interaction we get B=0.27 and B O 336 for the Standard

model and the - Dirac model resdgttiyely and BR 1.19. F for both of them.:

.

"The ratio of‘the peak cross—section of the Standard model to that of

~~ . V. \

. the Dirac mode; w1th and , g&thout 1nclud1ng the spin—orblt interaction

: g3
f_1n the calculation is l 093 and 1. l68 respectively if. we use. equal de-

Ly .“’ . -

formation length. If we use equal ‘deformation parameter\ﬁ 0 27 for ,i'

. '..w‘
the calculations without incldgang théﬁgpln—orbit the ratio will be-
) '”

l 81 ‘where according to Sgtchler (Sa83) the ratio w1§l be 2 if we use
\
equal deformatien parameter (B), and 1.5 if we use equal %eformation '

-

Qu‘- § T A : R
1ength (BR) ‘ .- . S ' ‘ K o . 5’_..' Sy

.

c Figﬂres 28 and 29 show "the predlctions of both models for inelas— ’

.-3. B . 5

tic scattering and polarizatlon.. We don t have expetimental data for :“L

this case to compare with the theoretical calculatlons, but we note’b'
that the two models are- in good agreement. We‘have used B 0 23 for u
LA

t the Standard model and B'-O 2§5 for the Dirac model and‘BR l 014‘? for

@0 peak crbsﬁ-_ ectzgon for the Standard wdel is 15.57- mb/sr Whlle. it is ‘

e ? En

. both,modelsgu Satchler (Sa83) used B 0 254 for both W—S and WBB,models
. 0o . #' y ‘-H .

o,

and BRI 09"1

3. i

12 75 mb/sr for the Dirac modelSn Satchler (Sé83) obtained a value of
X A " . "?" L . . ’.'vA : v

N - R .
e ARy

F for- the W—S model and 0 981 for the WBB model The .

P

R A
At

O S
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114 9 mb/sr for the W-S model and 7. 9 mb/sr for the WBB model

[

VII.9 '4 Ca(p,p ) Ca 3~ State "(3.73 MeV)_ at Ep =300 MeV.
'&Q' . Figures 30-andb3l show the predictions of both models for the in-
elasticpcross~section and polarization.z The agreement between the- two

-
»

models is good in cross-section, while large differences appear in p0—=

. : ~ -
[ ‘,, .

Jlarization, There is n’ experimental data for this case to test-the
twoumdels predictions. It should be mentioned here that the two models
. .; . -D ' . i
do not predict the ~same elastic scattering, the Dirac,model is superior

to the Standard model We believe that the differences in the inelastic

PR . \":' «” ~G,.. R

S 3catter1ng relations are due to those of the elastic scattering.r' Lo

VII 10 T4 Ca(p,p )4 a; 3" State .73 MeV) at 500.

b
id

. .
L.
o )

1.

.'vparticularly for the polarization. It should be mentioned her‘_w‘.

4

the two models do not predict the,same elastic scattering at this ene»

~

,ldif‘_ the Dirac model is superior ‘to. the Standard model.‘ We: believe that ‘the

o 2 »

'”% differencésiin thé?predictions of the inelastic scattering observables
T - . . . $ . L \A LA ~ . "
&i‘ - )
T are a magnification ofmthose of ‘the’ elastic scattering.“ Co . e
- ‘,' o 0;. ,) ' ‘Eb‘“‘ ~ ) . - ] R : ,‘_‘ . . .. ‘Jch;
4 ! s:\ - P £, . . T
208 4 g &

- v11311 # Ph( ; ') Bn 3" State (2 62 Mevﬁ at Ep =200 Mev. r o s

-vFigures 34 and 35 show*thergredictiondizf the two models for in—
\ &
;. The experimen&al

eY

; L o - 41 »)ﬂ - T .
\ ilf they are?in 1ess agreement inothe‘polarization vl s
L Aia8 R - St —'
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| prediction. Ve used B =0.095 for the Standard model and 8=0.1132 for
the ‘Dirac model and BR O 745 F for both{models Satchler (Sa83)-used»

B O 116 in .his analysis for both. models, and BR = O 8405 fm for the E

W—S—model and BR=20., 8027 fm_. for_the_WBB_model___He did_ not include the -~

| \
effect due to the deformed spin~orbit’ potential which we found is im-

}'portant and necessary The pr diction for peak cross—section is (23 8f
. N

‘mb/sr) for the W-S model while that of the WBB is l6 70 mb/sr which

means that the ratio between the. predictions of the two models is 1.425.

~ ,@

In our‘analysis the Standard model-prediCts-a peak cross—section of

‘23 4 mb/sr while ‘the Dirac model predicts 16. 84 mb/sr, this means that’

!
i

the ratio between the predictions of the two models is l 39. If‘we do
hthe calculations‘uithout 1nclud1ng the deformed spin—orbitvinteraction
‘the Dirac model predicts a peak cross—section of\l4 675 mb/sr using
"the same BR as before but if we flt the calculations to the experimen—..
.tal data we. get B O 143 and BR = 0. 94 F The shape of the angular dis—'

: triBution will be different the effect is 1llustrated in Figure 36 .;.

i'From the above discuSSion, it is clear that the effect of us1ng the"

' \, o

deformed spin dependent interaction 1s 1mportant espec1ally 1n predic—
ting the shape of the angular distribution (see flgure 36) Ithas

less effect 1n.the%prediction.of the mbgnitude_of the peak crossfsection,

.

' ,than the case of 3 state- in’ QOCa at Ep 181 MeV | .
. . . L _
\The effects of Coulomb deformations for this case have been inves--
. . ,'q' . .
tigated We have done the calculatlons of the Standard model again,

~

but 1ncluding the deformed Coulomb potential We have found that the
Standard modenﬁpredicts a peak cross-section of 20 31 mb/sr Wthh
- means that the inclusion of the deformed Coulomb potential does reduce

TA

the peak.cross—section—by about 15/. The-effects~are.not_largevand they;_"



X—SECTIONmMB/SR).

—
S

4.

;ii:;'f

Lo . . X ' ’
- l l l I l

4.
—q-

208PB 200 MEV

 ——DIRAC UITH SO
- =~ DIRAC N0 0.

l'lnuu‘ 'l-'lnn'ul 1'1'11'|ml 1 lllll{LI Lol v
. - N e * B ) :

|
S _\ o . R . {
. ' ]

i

., Figure 36 .

T
K

L the .calculated cross-section..

'"120 : 3u TR sh
FINGLE (DEGREES)

50/70 | R
R

The effect of the' deformed spin orblt term on.’ .
The calculations
" are the Dirac ‘model predictlons for 2°8Pb (3
.state; Ex 2, 6l MeV) at. Ep 200 MeV '

'._ﬁ .



e | ' 1 |

L e

'ZWPB 20| MEV

o

AN

)

X—SECTIONmMB/SR)* - -

— ° . .
= ]

\.-—‘ ) | N

-

L B
Ny N .

-
.
A9

T N

: Figufe\37 '

REa - STRNDARD . COLL

‘~nNy en

~STANDARD-NO- coud

86

T T T — T

10 20 30 W0 S0 60 0. -

&

HNGLE (DEGREES)

The effect of the deformed Coulomb potential on =~
* . the calculated cross-section. The calculations ,
. are the Standard model predictions for 208pp (3‘
~ state, Exf=2 61 th) at 'Ep = 200" MeV,

L1 lllllJ L1 ll“lll L1 |||"J
e . ‘ .
p - L



.

do not change the shape of the distribution. The effect is 1llustrated

in Figure 370 . o - , . . - .u”‘v‘

Satchler (Sa83) calculates the values of B for some low-lying

)

collective states from electromagnetic transitions, but his values for

N

s

'the reasons forlthis‘is that‘Satchler”ﬁSa83) did not include the ef-

fects of the deformed spin-orbit interaction in his analysis which we
found would require higher B to fit. the experimental data. Osterfeld
et al. (Os79), in & recent investigation of the hadronic tran51tion
operator for inelast;c proton scattering from 208Pb (3 state, Ex 2.61
MeV), have found that the value of BR'calculated by that operator de-
riateskabout 247% from that calcnlated for the electromagnetic transi- '
tlon operator at Ep =40 MeV while the deviation reaches about 50% for -
the same case at Ep =156 MeV They also mentioned that the Value of

‘

BR decreases as the incident projectile energy- increases. As we can

S

 see from table III Osterfeld et al (Os79)'obtained these values for

BR = 0. 899, 0. 735 0. 638 0.474 F at Ep =24.55, 40.0, 54 o, 61 25 156 0

——

MeV respectively. Satchler (Sa83) has obtained R O 8405 0.8027 F

for the W-S model’ and the WBB model respectively at Ep 200 MeV for

i »

the same case. " In the present work we have obtained a BR =0.745 FAfdr ’

-~

'bethimodels: _Gruhﬁ/et al;;kGr72) aiso:ndticed the same feature of de-

creasing SR as projectile energy increases inltheir’analysis of inelas-
. S ' L '
tic protomn scattering from Ca at different projectile\energies. They

-

have obtained BR =1.44, 1.40, 1.32, 1.32 F for preton inelastic scatter-:

,ing from 40Ca (3" state; Ex =3.73'MeV) at Ep=17, 25, 40, 55 MeV res-

N _ A
pecfively. Sherif (Sh68) obtained BR=1.187 F at Ep =155 MeV for the

\-samé case. Satchler (Sa83) got BR'=1.464, 1.398 F for the W-S and the

\
\
4

B_were—higher—thanrthoseiof—the—present—workT——We—believe—thatuone_oﬁet

87
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TABLE III

THE VALUES OF BR(F) FOR INELASTIC PROTON

SCATTERING FROM >

08 (3™ STATE; Ex=2761MeV)
9 - : .

"?‘,8.

Ep (MeV) Osterfeld et al. Satchler’ Present Work
(0s72) (sa83) ‘ :
124.55 0.899 — —
>
40.0 0.725 — —_
54.0 0.732 _ —
61.25 0.638 — —
156.0 | 0.474 —- —
200.0 — 0.8405 (W-S) 0.545
-— 0.8027 (WBB) o




'TABLE IV

THE VALUES OF BR(F) FOR INELASTIC PRlN

+

SCATTERING FROM

O_Ca (3~ STATE; )};x =1.73 MeV).

‘| Gruhn et al.

Ep. (MeV) Sherif Satchler TPresent work
‘;(Gr 72) (Sh 68) .(5383)‘* , ‘
17.0, 1.44 — - —
25.0 1.40 x - - —
40.0 1.32 —— —_ —
55 .0 ‘1,.>32. —_— e R
155.0 —-— 1.187 - “ 1258
181.0 -— ] —— 1.464 (W=S) | 1.014

1.398 (WBB)




obtained BR =1.014 F for bath models at Ep =181 MeV.

L]

WBB thodels at Ep =181 MeV respectively. In the present work we have

.

Ul

Finally, we wouldliike to say that the values of BR obtainedbinﬁ

the présent work do agfee with the general behaviour of BR, mentioned

“in the above discussion, more than those of Satéhler (Sa83). Inspite

90

of that, the magnitude of Bremains an open question. . .



VIII. CONCLUSTION T

h)

—

The work described in this thesis wasvdone'to study both conven-
tional and unconventional optical potential models for proton inelastic

' . : . "
Scattering. We have carried out companisons, over a wide range of bom-

barding energies, between the predictions of two models, namely the

v

on the reduced Dirac equation, and experimental data whenevgf available
. . i - Pl , o~

at.the same or nearby energy.

Standard model bajed on Schrodinger equation and—the—Dlrac—m-del based

We have found in’ the present work that the deforﬁed spin-dependent
inferactions/invaddition to beiné crucial in the calculation of polari-
zation, are relatively impdrtant‘in the case of cross-section, in the
energy .fegion of 155-500 MeV. We have carried out calculationswith and |
-w%thoutinéludingthedéformedspin—depgndentinteractionéin.thiéenergy N
fanée and x;re haye'found that they ai‘e iﬁxpdrtant for predicting both the right
magnitude for the peak cross-section and the general shape of the ex-
‘pgrimental data. We.also concluded'that the kinematicéldo not crucial-
1y affect the results at this 4bergy ;side from a sliéht change.in
normélization;

We have used equal défqrmation iengths for the different parts of
the poteptials throughout this w;rk, and we have fbund that this is an
Vimportant and a-mnecessary ingredien£ for_tﬁe calculations, because the
results obtainéd for tﬁe inelastic polarizatibn are in a better agrge¥
ment with the d;ta.thanAtho§e using;eq%al deformation pafameters 8.

We would like to emphasize‘here that the change in the shape of
the potential does not crucially'affect'the calqplaéion-if all parts of =
the potential ;qcluéing the.spiﬁ—depéndent part are deformedzuuiinclﬁded

in a full consistent manner, with a necessary constraint that all of



“these parts have.the eame deformation length. This is contrary to
Sqtchler s calcu}ation (Sa83), where he found that the ratio between
the peak cross-section of Standard to Wine Bottle Bottom models pre-
'dictione is about 1.5 when equal deformation lengths are used while it

is about 2 when.equal deformation parameters are used. Our results

show that the two models are approximately equivalent in their predic-

tion of the inelastic cross- —section at this energy in spite of the fact
"that the shapes of the real central potentials are quite different in-
Jside fheunuclear volume. We have also compared the predictions of the
two modeis for the inelastic polarization. Although they differ some-

what they'stilllhave the‘same genefal shepe;
: -

Such accord however, ;ay not hold as the prOJectile energy is
increased. This would be mainly due to the 1nabillty of the Standard
‘model to provide as good a representation of the elastic data as the
Dirac model. 1In other werds, the two potentials are net eﬁpected to be
neerly equivalent except perhaps near 1 GeV“bomfarding energy whe&e
boch models yield completely.repulsive real central eofentials.

The quality of the fits to Lhﬁbangular disfribution predicted by
the Dirac eedel is either comparable or slightly in a better agreement'
with the experimental data to these'of the Staﬁdard mcdel. The agree-~
ment between the two'calcuiatione for the inelestic scattering observ-
ables depepds on’ that of.the elaetic scetteriﬁg. We believe that Ehe
‘differeﬁces Betweee the two calculations are somehow e_eagnification.ef
their differecces in fitting the elasticfdata, which‘meane»tﬁat-the
" two potentials -are not entirely equivalent. .Since thejﬁirac medel fits
elasfic scatteriﬁg better than the Standard model or at least the eame,

it is expected to do the same in the inelastic scaftering calculation

and this is what we coriclude from the present etddy.
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