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ABSTRACT

This study addresses the need to provide comprehensive historical climate data and climate change pro-

jections at a scale suitable for, and readily accessible to, researchers and resource managers. This database for

western North America (WNA) includes over 20 000 surfaces of monthly, seasonal, and annual climate

variables from 1901 to 2009; several climate normal periods; and multimodel climate projections for the 2020s,

2050s, and 2080s. A software package, ClimateWNA, allows users to access the database and query point

locations, obtain time series, or generate custom climate surfaces at any resolution. The software uses partial

derivative functions of temperature change along elevation gradients to improve medium-resolution baseline

climate estimates and calculates biologically relevant climate variables such as growing degree-days, number

of frost-free days, extreme temperatures, and dryness indices. Historical and projected future climates are

obtained by using monthly temperature and precipitation anomalies to adjust the interpolated baseline data

for the location of interest. All algorithms used in the software package are described and evaluated against

observations from weather stations across WNA. The downscaling algorithms substantially improve the

accuracy of temperature variables over the medium-resolution baseline climate surfaces. Climate variables

that are usually calculated from daily data are estimated from monthly climate variables with high statistical

accuracy.

1. Introduction

In the context of global climate change, spatial data-

bases of historical climate and predictions of climate

change have become increasingly important for resource

managers, scientists, and policy makers (Fowler et al.

2007). To support a broader community of nonspecialist

users, several efforts have been made to provide gridded

surfaces of climate data, Internet-based tools that visu-

alize projected climate change, and software packages to

query large climate databases. Examples include the

WorldClim program (Hijmans et al. 2005), the ClimateBC

software package (Wang et al. 2006a), the Climex model

(Sutherst et al. 2007), the Canadian Climate Change Sce-

narios Network (McKenney et al. 2006), the Parameter-

Elevation Regressions on Independent Slopes Model

(PRISM) Climate Group (Daly et al. 2008), and the Cli-

mate Wizard Internet tools (Girvetz et al. 2009).

An important problem that all these efforts face is that

the underlying climate databases come in various spatial

and temporal resolutions that need to be converted to
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scales meaningful for the end user. High temporal reso-

lution can be important for agricultural and engineering

applications that often require daily data to calculate

important variables—such as growing degree-days or the

length of the frost-free period—or to assess the probability

of extreme climate events that structures have to with-

stand or that may endanger a crop (Schlenker et al. 2007).

High spatial resolution climate data are often required

for ecological research in montane ecosystems where

climate conditions and species compositions can change

substantially at scales of a few hundreds of meters in el-

evation (Hamann and Wang 2006; DeLong et al. 2010).

Climate change projections from general circulation

models are typically provided at a coarse resolution with

spatial resolutions of 200 km or more and monthly time

steps. To provide climate data with higher spatial and

temporal resolutions for research and management ap-

plications, sophisticated downscaling methods have been

developed that include weather generators, statistical

approaches, or dynamic downscaling (Fowler et al. 2007;

Bürger et al. 2009; Maurer et al. 2009). However, down-

scaling to high spatial and temporal resolution produces

databases that are often inaccessible to nonspecialists

because of the file size associated with the thousands of

surfaces for multiple climate variables, historical periods

of interest, and multimodel projections for the future.

It is important to distinguish between downscaling

from general circulation models to finer spatial or tem-

poral scales (Fowler et al. 2007), and downscaling from

interpolated weather station data to improve estimates

of the climate in topographically complex environments

(Hamann and Wang 2005). The mountain ranges of

western North America (WNA) are perhaps one of the

climatically most heterogeneous regions of the world, with

environments that include temperate rain forests, deserts,

and dry parkland and subarctic, alpine, boreal, and Med-

iterranean chaparral ecosystems. While acknowledging

the need for improved downscaling algorithms for future

projections from general circulation models, our principal

objective in this paper is to provide accessible, high-res-

olution climate data that properly reflect the often large

climatic gradients that drive ecosystem differentiation at

small spatial scales in western North America.

We also attempt to strike a different balance with

respect to accuracy versus accessibility of climate data

than do other efforts. To take full advantage of the high-

resolution and high-quality baseline data generated

through our downscaling algorithms and to keep the

overall size of the database small, we rely on the ‘‘delta

approach,’’ where historical data and future projections

are expressed and interpolated as a difference (also re-

ferred to as ‘‘delta’’ or ‘‘anomaly’’) from a common

reference period (often the 1961–90 normals). The delta

surfaces are generated at relatively coarse resolution

and are then overlaid onto a high-resolution climate base-

line data corresponding to the common reference period.

This approach is not without issues, but has been suc-

cessfully applied particularly for regions or historical time

periods with sparse weather station coverage (Mitchell

and Jones 2005). For climate change projections, the

delta approach is considered a simple statistical down-

scaling method and it appears to perform as well as so-

phisticated downscaling methods in producing mean

characteristics (Fowler et al. 2007), which are what we

deal with in this study. We use the monthly climate data

to estimate biologically relevant climate variables that

are usually calculated from daily data. Finally, we use

partial derivative functions of temperature change along

elevation gradients to provide high-resolution climate

data for mountainous terrain.

This work builds on previous research and climate

databases that we have developed for western Canada

(Hamann and Wang 2005; Wang et al. 2006a; Mbogga

et al. 2009). These databases and associated software

packages have been widely used to address problems in

natural resource management, urban development, en-

gineering, ecology, and genetics with over 80 scientific

papers published to date. In the current paper we pres-

ent a spatially expanded version of our software and

database that covers North America west of 1008 lon-

gitude, including the continent’s mountainous terrain

where our downscaling solutions provide the greatest

benefits. Conscious of the fact that not all aspects of the

climate database are meaningful at high spatial resolu-

tions, we contribute a discussion with examples of how

the database is used in various applications. We also pro-

vide an assessment of the statistical accuracy of derived

climate variables, downscaling algorithms, and climate

surfaces against observations from 3353 weather stations.

2. Methods

a. Baseline climate data

We primarily rely on monthly climate data for the

1961–90 normal period generated by PRISM (Daly et al.

2002) for our reference climate grid (2.5 arc min). The

PRISM data were developed using an approach that

incorporates weather station data, a digital elevation

model, and expert knowledge of climate patterns such as

rain shadows, coastal effects, orographic lift, and tem-

perature inversions over topographically delineated

‘‘facets’’ (Daly et al. 2002). PRISM data have clear ad-

vantages over other products in reflecting these effects.

However, we found that the pattern of temperature in-

version in some areas in the northern part of the prairies

in winter was not well predicted by PRISM. Also, PRISM
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data are not available for the Northwest Territories and

Nunavut. Therefore, the Australian National University

Spline (ANUSPLIN; Hutchinson 1989) was used to inter-

polate weather station records to create 2.5 arc min gridded

1961–90 monthly temperature and precipitation nor-

mals for these regions. To have seamless integration

with the PRISM data, PRISM data at the border regions

were also included as training data for the ANUSPLIN

surfaces. The complete baseline dataset comprised monthly

maximum and minimum temperatures and monthly to-

tal precipitation for a total of 36 basic monthly climate

variables, plus the mean elevation of each grid cell.

b. Historical data and future projections

Monthly temperature and precipitation data for 1901–

2002 used in ClimateWNA are based on Mitchell and

Jones’s (2005) interpolated historical data at 0.58 3 0.58

resolution [Climatic Research Unit Time Series, version

2.1 (CRU TS 2.1)]. We subtracted the 1961–90 average

from the gridded surfaces of individual years and months

to recover the original anomaly surfaces (deviations from

the 1961–90 normals). The same methodology was used

to develop the anomaly surfaces covering western North

America for 2003–06 (Mbogga et al. 2009) and up to 2009

(this paper). Temperature was expressed as a difference

in degrees Celsius, and the delta surfaces for precipita-

tion were calculated as percentage difference from the

1961–90 normal values; for example, 250% represents

half of and 200% represents 2 times the normal pre-

cipitation value for a particular month.

We use climate change projections of the phase 3 of

the Coupled Model Intercomparison Project (CMIP3)

multimodel dataset that represents Atmosphere–Ocean

General Circulation Models (AOGCMs) from the Inter-

governmental Panel on Climate Change (IPCC) Fourth

Assessment (Solomon et al. 2007). Three emission sce-

narios (A1B, A2, and B1) were included for most of the

12 AOGCMs used. As with the historical data, tem-

perature and precipitation were calculated as anomalies

from the 1961–90 reference period. We used anomalies

for 30-yr normal periods 2011–40, 2041–70, and 2071–

2100 (hereinafter referred to as 2020s, 2050s, and 2080s),

which were obtained from the Pacific Climate Impacts

Consortium (online at http://www.pacificclimate.org).

Because different climate models use different grids and

different spatial resolutions, we interpolated the gridded

anomaly data to a standardized 18 latitude by 18 longi-

tude grid using ANUSPLIN (Hutchinson 1989).

ClimateWNA uses the same algorithms as our pre-

vious software packages (Wang et al. 2006a; Mbogga

et al. 2009) to integrate both historical and future cli-

mate data with the delta method. Anomaly grids are

interpolated using bilinear interpolation in run time to

avoid step artifacts at grid boundaries, and the differ-

ence is added to the baseline climate normal data to

arrive at the final climate surface.

c. Downscaling of baseline data

ClimateWNA uses a combination of bilinear inter-

polation and elevation adjustment to downscale the

baseline climate data to specific points of interest with

known elevations (Wang et al. 2006a). For each point of

interest, the program first extracts the monthly tem-

perature, precipitation, and elevation for the four closest

grid cells and then calculates bilinear-interpolated cli-

mate and elevation values for that point. Subsequently,

a lapse-rate-based elevation adjustment is carried out

based on the elevation difference between the location

of interest [e.g., a recorded elevation or a high-resolution

digital elevation model (DEM) value], and the elevation

value interpolated from the four neighboring tiles of the

baseline dataset.

The appropriate lapse rates for this elevation adjust-

ment vary by spatial location, elevation, and climate

variable of interest. Following Wang et al. (2006a), poly-

nomial functions for lapse rates were developed for each

monthly temperature variable using the gridded baseline

dataset of 923 176 points (not weather station data)

based on latitude, longitude, and elevation and their com-

binations and transformations. The polynomial functions

were developed separately for three latitudinal bands:

north of 608N, between 478 and 608N, and south of 478N.

To avoid steps in predicted climate data at these bound-

aries, data used for developing the elevation adjustment

functions were extended to neighboring sections by 28 in

latitude. We took the partial derivative of each of these

functions with respect to elevation to obtain equations

for elevation adjustments, which are the rate of change

in a climate variable in response to a change in elevation

for any given latitude, longitude, and elevation within

these three latitudinal bands.

In agreement with our previous study (Wang et al.

2006a), precipitation is only adjusted by the bilinear in-

terpolation of the gridded data. This does not indicate

a lack of elevation precipitation gradients but rather that

they are at a larger scale than temperature and are al-

ready adequately captured within the PRISM data. This

is likely because in mountainous terrain the precipi-

tation is often dominated by the upper-level topography

(Daly et al. 2002).

d. Derived climate variables

In addition to the 36 basic monthly climate variables

described above, ClimateWNA produces 12 monthly, 16

seasonal, and 21 annual variables, derived from the 36 basic

variables. The monthly and seasonal variables include
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minimum, maximum, and average temperatures, and pre-

cipitation. Of the 21 annual climate variables, 8 are directly

calculated from the monthly data while the remainders

are derived by equations. The directly calculated variables

are mean annual temperature (MAT), mean coldest-

month temperature (MCMT), mean warmest temperature

(MWMT), continentality (TD, which is the difference

between MWMT and MCMT), mean annual precipitation

(MAP), mean May-to-September precipitation (MSP),

annual heat-to-moisture index (AHM), and summer heat-

to-moisture index (SHM). Climate variables representing

the winter period of a particular year are calculated based

on the monthly variables for January and February in year

of interest and for December in the previous year.

Climate variables such as degree-days and frost-free

periods are usually calculated from daily observations.

However, we previously obtained excellent agreement

between derived variables estimated from monthly data

and those calculated from daily data, at least for climate

normal periods and multiyear averages (Wang et al.

2006a). Similar success in calculating degree-days was

obtained by Schlenker et al. (2007). Because some of these

formulas were somewhat region specific, we develop new

formulas in this paper to estimate degree-days below 08C

(DD , 0), degree-days above 58C (DD . 5), degree-days

below 188C (DD , 8), degree-days above 188C (DD .

18), number of frost-free days (NFFD), frost-free period

(FFP), beginning of FFP (bFFP), ending date of FFP

(eFFP), estimated extreme minimum temperature over

a 30-yr normal period (EMT), and proportion of precipi-

tation as snow (PAS). Daily climate data to develop

equations for these climate variables were obtained from

the Daily Global Historical Climatology Network (http://

www.ncdc.noaa.gov). We used 1650 stations without

missing years for the 1961–90 normal period covering

the study area for the development of equations. An

additional 1196 stations that contained up to five missing

years were used for validation. Equations for the de-

rived climate variables are provided in the appendix.

This paper also includes two derived climate vari-

ables, reference atmospheric evaporative demand (Eref)

and a climatic moisture deficit (CMD), that were not

part of our previous publications. CMD is the sum of the

monthly difference between Eref and precipitation. CMD

is a useful measure of the moisture needed for vegeta-

tion growth that must be met from other sources than

rain (e.g., soil moisture, irrigation) to avoid the impact of

drought. If Eref is less than precipitation then the

monthly CMD is zero (in this case the precipitation

minus Eref is a climatic moisture surplus). The reference

evaporation is for a grass surface with no soil moisture

restriction (Allen et al. 1998) and is usually calculated

with the Penman–Monteith equation (Allen et al. 1998;

Shuttleworth 1993). However, this equation requires solar

radiation, wind speed, and humidity data, which are not

available in our database. We evaluated five temperature-

based approaches (Thornthwaite, Hargreaves, Linacre,

Hamon, and a vapor deficit method) for calculating

monthly Eref. Testing was done with the 1961–90 nor-

mals for 56 weather stations distributed across western

North America west of 1008W, chosen because they have

monthly normals of sunshine hours, or solar radiation,

as well as air temperature and precipitation data. A con-

stant wind speed of 2 m s21 was assumed for all stations

and if the average monthly air temperature was less than

08C, then Eref was assumed to be zero.

To assess the temperature-based methods for climate

conditions not currently observed, they were also eval-

uated against the Penman–Monteith equation under a

climate change projection of extreme warming, specifi-

cally the third climate configuration of the Met Office

Hadley Centre Unified Model (HadCM3) A2 run1 for

2080s. The projection has a 48–68C increase in mean

annual temperature depending on the location of the test

sites. The change in summer precipitation ranged from

225% to 125%.

e. Statistical evaluation

The accuracy of climate variables estimated with the

described methods and algorithms was assessed against

weather station observations. Observed monthly nor-

mals of the primary climate variables for the reference

period (1961–90) were obtained from 3353 weather sta-

tions across the entire study area (Fig. 1). Climate nor-

mals for 1921 stations in the United States were obtained

from the National Oceanic and Atmospheric Adminis-

tration (NOAA) and for 1432 stations in western Can-

ada from Environment Canada archives. We calculated

the amount of variance R2 as well as mean absolute er-

rors (MAE) for the interpolated baseline climate data

(2.5 arc min–resolution PRISM and ANUSPLIN grids),

as well as the enhanced climate estimates using the de-

scribed downscaling algorithms and elevation adjust-

ments of the ClimateWNA software package.

The quality of historical climate data generated with

the delta approach was evaluated through comparisons

between observed and predicted values for three temper-

ature and two precipitation variables for one year from

every 10 years starting from 1901 to cover the period be-

tween 1901 and 2009. In total, 12 years were evaluated. The

climate variables include minimum temperature in January

(Tmin01), maximum temperature in July (Tmax07), MAT,

MAP, and MSP. The amount of variance in observed

values from weather stations explained by ClimateWNA-

generated estimates was used to represent the agreement

between the observed and predicted values.

JANUARY 2012 W A N G E T A L . 19



3. Results

a. Lapse-rate-based downscaling

The effects of ClimateWNA’s downscaling algorithms

are illustrated for MAT for a mountain area in south

Washington State (Fig. 2a). Downscaling of MAT base-

line data (Fig. 2b) through bilinear interpolation (Fig. 2c)

increases the spatial resolution of the data, but does not

reflect climate gradients associated with the topography.

Elevation-adjusted MAT (Fig. 2d) reflects the effects of

topography but step artifacts at the boundaries between

adjacent tiles are clearly visible. This is because the dif-

ferences in climate data among the neighboring tiles are

not entirely driven by elevation (Daly et al. 2002). There-

fore, elevation adjustment alone cannot generate seamless

surfaces across tiles, and a combination of bilinear in-

terpolation and elevation adjustment (Fig. 2e) provides

the best results. The downscaled temperature estimates

reflect temperature gradients associated with topography

shown by the DEM and satellite image (Figs. 2a,f). This

run-time adjustment improves the accuracy of moderate-

resolution climate data in complex terrain without a large

increase in the size of the database.

These visual improvements are also reflected in sta-

tistical accuracy of climate estimates (Fig. 3). Improve-

ments in the variance explained in weather station data

relative to the 2.5 arc min–resolution baseline data are

most pronounced for average and maximum temperature

estimates. Improvements were greater during the sum-

mer months than for the winter months. ClimateWNA

eliminated the majority (between 57% and 65%) of the

variance unexplained in maximum temperatures for April

through October. While variance explained is a sensitive

measure to provide a relative comparison of the improve-

ment in accuracy, mean absolute errors describe the ac-

curacy improvements in the units of the climate variables.

In absolute terms, improvements in accuracy can be

seen in all variables. Mean absolute errors improved by

approximately 0.18, 0.38, and 0.28 for monthly minimum,

maximum, and average temperatures, respectively. This

represents an error reduction of up to 40% for monthly

maximum temperatures and 30% for monthly average

temperatures. Bilinear interpolation had also a small

positive effect on precipitation estimates.

b. Derived climate variables

The statistical accuracy for climate variables that are

usually calculated from daily data, but estimated from

monthly temperature and precipitation data in this study,

are shown in Table 1. This represents an independent

validation of estimates against weather stations that

were not included in model development. We found that

the formulas and algorithms for the expanded data cov-

erage presented in this paper required only minor ad-

justments in parameters for DD , 0, DD . 5, DD , 18,

NFFD, and PAS, while new estimation approaches had

to be developed for DD . 18, bFFP, eFFP, FFP, and

EMT (see appendix). The R2 values for the linear re-

lationships between derived and calculated variables

were generally very high and MAE values were very low

(Table 1). However, it should be kept in mind that this

evaluation represents estimates for a long-term 1961–90

period and not for individual years.

For DD . 18 and EMT, the nonlinear functions with

a single independent variable used in previous work

(Wang et al. 2006a) were not able to represent their

relationships with any of the primary climate variables.

However, using mean temperatures in June, July, August

and their transformations as predictors, we were able to

develop an accurate polynomial function to estimate

DD . 18. Similarly, a polynomial function was developed

for EMT using minimum temperatures in both December

and January as predictors (see appendix). The variables

bFFP, eFFP, and FFP were the most difficult variables to

derive using monthly data. Strong relationships were

obtained for bFFF with a polynomial function based on

FIG. 1. Coverage of ClimateWNA and the distribution of the 3353

weather stations used to evaluate the output of this program.
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NFFD and minimum monthly temperatures in April,

May, and June, and for eFFP with a polynomial function

based on NFFD and minimum monthly temperatures in

June, July, September, and October. FFP is calculated

by subtracting bFFP from eFFP.

For estimation of evaporation, the Hargreaves equation

(Hargreaves and Samni 1982; Shuttleworth 1993) had the

best agreement of the five temperature-based methods

tested (data not shown), which is in agreement with

Shuttleworth’s (1993) assessment. A latitude correction of

the reference evaporation Eref 5 EHar[(1.18 – 0.0067) 3

latitude] improved estimates further. Evaporation was

underestimated by up to 20% at two high-elevation

sites (near mountain tops). Here the surface layer climate

is strongly affected by the free atmosphere (Daly et al.

2008; McCutchan and Fox 1986), which reduces the

daily temperature range, a parameter in the Hargreaves

equation. On a monthly basis there was a tendency for

FIG. 2. Effects of the downscaling processes in ClimateWNA shown in a mountainous

area of south Washington State (centered on 458359N, 1218319W). (a) DEM at 90 m; (b)

MAT generated by PRISM at 4 km; (c) interpolated MAT using bilinear interpolation;

(d) elevation-adjusted MAT using nearest data values from PRISM data and elevation

adjustment function developed in this study; (e) ClimateWNA downscaled MAT using

a combination of bilinear interpolation and elevation adjustment; (f) ClimateWNA downscaled

MAT overlaid to a satellite image to show the trend of MAT along topography in the upper-left

part of this area.
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Eref to be overestimated in winter and spring and un-

derestimated in late summer and autumn because the

annual temperature does not fully follow annual trends

in solar radiation and humidity (cf. Donohue et al.

2010). For the 1961–90 normals, the standard errors for

EHar and CMD were 31 and 26 mm, respectively, when

compared with calculations from the Penman–Monteith

equation. Under the large climate warming scenario the

annual Eref had a standard error of 50 mm with a 12-mm

underestimate bias, while values for the CMD were 46

and 23 mm, respectively.

c. Historical and future periods

The delta approach we use to add low- or medium-

resolution anomalies to high-resolution climate baseline

data is illustrated in Fig. 4. For historical data, we use

0.58 gridded anomalies, while for future projections the

original resolution of the GCMs output varies. For ex-

ample, the Canadian model GCM3 has an approximately

300-km resolution (Fig. 4a). ClimateWNA uses a standard-

ized 18 to import GCM anomalies as comma-separated

text files, and further downscales the data to the target

resolution with simple bilinear interpolation to avoid

step artifacts (Fig. 4b). Then, the anomalies are added

onto the baseline data at the same resolution (Fig. 4c) to

generate the final surface (Fig. 4d). With this approach,

the original baseline data (absolute values for 1961–90

normal period) of the historical data and future pro-

jections are replaced by scale-free climate data gener-

ated by ClimateWNA.

To assess the accuracy of the delta approach for his-

torical data, we have to rely on a nonindependent test

because the same weather station data that were used

for developing the climate baseline data as well as the

historical anomalies are used for the evaluation. This

FIG. 3. Reduction in (top) variance unexplained and (bottom) mean absolute errors for (left to right) monthly maximum (Tmax),

minimum (Tmin), and average (Tave) air temperatures, and monthly total precipitation (Prec). The gray plus black bars represent the

accuracy of the 2.5 arc min–resolution baseline data (PRISM). The black bars represent estimates from ClimateWNA, and gray indicates

the improvement.

TABLE 1. Accuracy of the annual values of derived climate

variables estimated from monthly data vs calculations from daily

weather station data. Variance explained by the estimated data

(R2) as well as MAE in the same units as the variable are shown.

Climate variable R2 MAE

Degree-day , 08C (8C 3 days) 0.998 41

Degree-day . 58C (8C 3 days) 0.999 46

Degree-day , 188C (8C 3 days) 0.999 39

Degree-day . 188C (8C 3 days) 0.993 33

No. of frost-free days (days) 0.992 6

Beginning date of frost-free period (yearday) 0.947 8

Ending date of frost-free period (yearday) 0.971 5

Frost-free period (days) 0.969 12

Extreme min temperature (8C) 0.958 2.5

Precipitation as snow (mm) 0.920 75
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test still allows for a relative comparison of whether the

delta method results in comparable accuracy to the

1961–90 normal period. Historical years between 1901

and 2009 were in good agreement with observations

from weather stations (Fig. 5). For the three tempera-

ture variables examined (Tmin01, Tmax07, and MAT);

R2 values were above 0.9 for most cases, particularly for

MAT; R2 values were all above 0.95, suggesting a high

quality of predicted temperature variables. The R2 values

varied between 0.74 and 0.91 for MSP and 0.79 and

0.97 for MAP, which were generally lower than that for

temperatures. The quality of predicted historical data

varied with time, with the best quality between 1961–90,

which was associated with the number of weather sta-

tions available for generating the interpolated historical

anomalies.

4. Discussion

a. Lapse-rate-based downscaling

Downscaling of temperature data to high-resolution

based on environmental lapse rates had consistently

positive effects on the accuracy of estimated climate data.

Environmental lapse rates vary spatially and temporally

and also depend on the type of climate variable measured

FIG. 4. An illustration of the delta method for GCM data for minimum January temperature (Tmin01) in the 2050s predicted by

the Canadian model GCM3 A2 run1. (a) Predicted anomalies at original resolution (3.758 3 3.70688); (b) interpolated anomalies to

0.008338 grid resolution to avoid step artifacts; (c) high-resolution climate data for the 1961–90 reference period; and (d) overlay of (b) and

(c) to arrive at predicted minimum January temperature for the 2050s.

FIG. 5. The amount of variance explained (R2 values) in observed annual values by ClimateWNA predictions for

(a) minimum temperature in January (Tmin01), maximum temperature in July (Tmax07), and MAT, and (b) MAP

and MSP. Number of weather stations for data comparison for each year is also shown.
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(Sinha 1995). The improvement in monthly minimum

temperatures is relatively small in terms of variance

explained and mean absolute error compared to maxi-

mum temperatures (Fig. 3). Improvements were also

generally more pronounced over the summer months.

This implies weaker environmental lapse rates for mini-

mum temperatures and winter temperatures. Presumably,

winter temperature inversions and cold air drainage may

help moderate the minimum temperatures at higher el-

evations relative to those at lower elevations, resulting

in weaker environmental lapse rates for those variables.

We derive regional lapse rates for individual tem-

perature variables directly from surfaces of interpolated

temperature data by calculating partial derivatives of

climate values as they change along elevation gradients.

No weather station records are involved in the deriva-

tion of local lapse rates, and therefore our evaluation

against station records represents an independent vali-

dation of improvements in statistical accuracy. We rec-

ommend that lapse-rate-based elevation adjustments

should always be used when temperature-based climate

values are estimated at point locations of interests with

a well-documented elevation value. Examples may be

latitude, longitude, and elevation records for species

census data in ecology. Even if latitude and longitude

are not recorded with high accuracy (e.g., only to the

nearest minute), the lapse-rate-based elevation adjust-

ment can still yield more accurate climate estimates for

such sample points than could be accurately character-

ized by gridded data of any resolution.

b. The delta approach for historical data

With the delta approach, we overlay low- to medium-

resolution anomalies onto high-resolution 1961–90 base-

line climate data to generate estimates for individual

years or periods. This approach allows us to take the full

advantage of the interpolated and lapse-rate-adjusted

baseline data to produce thousands of high-resolution

derivative surfaces for historical time periods (as well as

for future periods) without massively increasing the size

of the database. Because their original baseline data (at

a resolution of 0.58) are replaced with the spatially more

accurate interpolated and lapse-rate-adjusted baseline

data, the amount of error associated with their baseline

data is expected to be reduced, which is relatively large

and more difficult to model than with anomalies (Mbogga

et al. 2009; Mitchell and Jones 2005). Although we did

not carry out an explicit comparison in this paper,

Mbogga et al. (2009) have previously shown that this

improves the statistical accuracy of historical data. As-

sessment of annual variables for individual years in this

paper as well as the previous study (Mbogga et al. 2009)

showed that prediction accuracy is high for temperatures,

except for the first third of the twentieth century. However,

precipitation variables showed considerable variation

in statistical precision among individual years. Predic-

tions for longer periods (5, 10, and 30 years) are expected

to be more reliable than those for individual years where

stochasticity in weather conditions plays a much greater

role.

To implement the delta approach, we chose the 1961–

90 normals as a common reference period because this

time interval corresponds to the period with the most

extensive weather station network (Fig. 5). The 1961–90

normals also represent a reference period prior to the

recent pronounced anthropogenic warming signal. More

recent climate normal grids are therefore not neces-

sarily superior to serve as reference period for the delta

method, just because they are more recent. Note that

alternate normal periods can easily be generated at high

accuracy for all climate variables with this approach by

overlaying a medium-resolution anomaly surfaces rep-

resenting other normal periods.

c. Downscaling of future projections

The realism of climate change projection for the fu-

ture, including various downscaling approaches, cannot

be directly validated. It is possible that climate change

may fundamentally alter local weather patterns at small

scales (Fyfe and Flato 1999; Fowler et al. 2007), and such

changes are obviously not accounted for with the delta

approach or other statistical downscaling methods. Our

main objectives are to reduce the errors associated with

GCM baseline data for the reference period 1961–90 and

to avoid large step artifacts at boundaries of large-scale

GCM grid cells. Although our approach does not ‘‘im-

prove’’ the GCM-projected changes at the local scale,

our delta approach can substantially reduce the amount

of error associated with the GCM baseline data. For

example, the average in MAT of 20 GCM predictions

for Vancouver is 6.08C cooler than the observation

from weather stations for the reference period 1961–90

because of the low resolution. Consequently, the av-

erage projection of these GCMs for 2020s is still 4.18C

cooler than the observation for the reference period.

ClimateWNA can eliminate the majority of this error

and generate reasonable projections for future periods.

Many studies use the GCM-predicted changes (anom-

alies) to avoid this error; however, projections with

absolute values are important for many climate-change-

related studies including projections of bioclimate enve-

lopes for ecosystems and species ranges in future periods.

In addition, the ClimateWNA software package pro-

vides a convenient platform to integrate downscaled

GCM data from other downscaling methods including

dynamical [regional climate model (RCM)] or statistical
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approaches (e.g., Maurer et al. 2007, 2009; Bürger et al.

2009). Users can add other gridded data as text files in

data directories for anomaly products of both 0.58 and 18

resolution; this is explained in more detail in the next

section.

d. Software and data access

The software package ClimateWNA that we provide

can be used interactively to query climate data for a single

location. Second, multiple locations can be processed

based on a comma-separated values (CSV) text file that

contains the geographic coordinates and elevation for

multiple locations. Third, the program can generate time

series data for single or multiple locations of interest.

The ClimateWNA software and the associated climate

database are available at no charge and can be down-

loaded anonymously (http://www.genetics.forestry.ubc.ca/

cfcg/climate-models.html). No installation is required

and the program has been tested on all versions of Mi-

crosoft Windows. With relative limited use of disk space

(approximately 500 MB for the uncompressed database),

ClimateWNA provides easy access to over 20 000 scale-

free surfaces of monthly, seasonal, and annual climate

variables from 1901 to 2009; multiple climate normal pe-

riods; and future climate projections from 12 GCMs and

three emission scenarios for the 2020s, 2050s, and 2080s.

An Internet-based application, restricted to single loca-

tion processing, is also available (http://www.genetics.

forestry.ubc.ca/cfcg/ClimateWNA_web).

The multilocation processing function can be used to

generate custom climate surfaces at any resolution and

any projection by advanced users (e.g., Fig. 6). This re-

quires some basic GIS work that involves the conversion

of a DEM to a text file consisting of latitude–longitude–

elevation triplets for processing by ClimateWNA. The

resulting tabular climate data can be imported to GIS

applications.

Another feature of ClimateWNA for advanced users

is that all underlying climate databases are provided in

plain text files in CSV format that can be opened in

Excel or any other software package. For example,

custom historical periods can be generated by averaging

the anomaly values of individual years; Gray et al.

(2011) used a custom 1997–2006 period relevant to their

study. Similarly, AOGCM anomalies files can be aver-

aged to arrive at mean climate projection. ClimateWNA

accepts custom anomaly files at 0.58 and 18 resolution

that can be placed in separate folders and appear auto-

matically as menu choices based on the file name, For

example, Roberts and Hamann (2011) created anoma-

lies for periods between 6000 and 21 000 years before

present for a paleoecology study.

e. Applications

Like its predecessors, ClimateWNA has numerous

applications in ecology, hydrology, agriculture and ur-

ban studies. For example, estimating the effect of cli-

mate change on heating and cooling demand, which is

FIG. 6. Maps of three major climate variables in WNA for 1971–2000 normals created from data produced by ClimateWNA. Presented are

(left to right) MAT, MAP, and mean AHM.
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proportional to heating degree-days (DD , 188C) and

cooling degree-days (DD . 188C) (Christenson et al.

2006), is readily accomplished with the software. Simi-

larly, estimates of growing degree-days, chilling degree-

days, and the frost-free period that are important in ag-

ricultural applications are readily available. We have

used our methodology to provide visualization of pro-

jected future climates to aid in community planning and

for informing the general public about climate change

(http://pacificclimate.org/tools-and-data/plan2adapt).

Climate-informed resource management applications

that have used our software include the delineation of

forest seed planning zones (Wang et al. 2006a; Hamann

et al. 2011), mapping forest site index (Coops et al.

2011), and assessing the probability of pest outbreaks

(Campbell et al. 2007).

Other ecological research applications include bio-

climate envelope modeling to investigate how species

habitat may shift geographically under projected climate

change (e.g., Hamann and Wang 2006; Mbogga et al.

2010), ecosystem classification (DeLong et al. 2010), and

habitat conservation (Rose and Burton 2011). Genetic

studies that investigate how organisms are adapted to the

environments in which they occur rely on accurate climatic

characterization of the source environment of sampled

material (Wang et al. 2006b, 2010; O’Neill et al. 2008). The

time series functionality of our software packages also

provides a convenient tool for historical biological re-

search, which relies on past climate fluctuations and bi-

ological records to establish correlative relationships

between climate and species response, for example, in-

terpretation of tree ring chronologies or pollen assem-

blages to detect and predict plant–climate relationships

(Goring et al. 2009; Miyamoto et al. 2010; Messaoud and

Chen 2011; McLane et al. 2011a,b).

f. Limitations

While the software package provides convenient ac-

cess to climate data at any resolution, it is important to

discuss limitation of the database for end users. Mean

absolute errors of climate estimates for all monthly,

seasonal, annual, and derived climate variables are small

for 30-yr normal periods, but the error increases for

shorter time periods as previously discussed. A second

note of caution applies to areas with sparse coverage of

weather stations (Fig. 1). It is impossible to assess the

statistical accuracy of climate surfaces for areas that lack

station coverage, such as high montane and Arctic en-

vironments. It has been pointed out that different in-

terpolation techniques applied to northern Canada and

montane environments produce rather different climate

surfaces that nevertheless converge at weather station lo-

cations to produce identical statistical accuracies (Mbogga

et al. 2010). Finally, all interpolated climate surfaces used

in this study are ultimately based on standard weather

stations (shaded temperature sensors located at 1.5-m

height in open areas). Consequently, microclimate driven

by small-scale topography such as aspect, slope, and frost

pockets, and geographic features such as rivers and lakes

are not captured. Vegetation cover can also influence

the local climate; for example, forest canopies are usually

cooler during the day and warmer during the night than

open areas. The reference evaporation is calculated for

a grass surface with no soil moisture restrictions. Values

for other surfaces such as forest or lakes and for loca-

tions with limited soil moisture storage capacity or topo-

graphic shading will likely be different. Therefore, when

ClimateWNA is used to generate climate data at fine

scales and for specific locations, it is necessary to be aware

that while temperature changes along elevation gradi-

ents may be accurately captured, other effects of local

topography and vegetation are not.
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APPENDIX

Equations for Estimation of Derived Variables

The equation for DD , 08C (DD0) is

DD0 5 �
12

m51
(0 2 Tm) 3 Nm for Tm # 08C

DD0 5 DD0 3 0:9661 1 179:37.

If T1 or T12 $ 0, then

DD0 5 184:79 2 64:13 3 T1 1 7:7103 3 T2
1

2 3:165 3 T3
1 ,

where Tm is the average temperature for month m (8C),

and Nm is the number of days in month m. These also

apply to the following equations.
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For DD . 58C (DD5),

DD5 5 �
12

m51
(Tm 2 5) 3 Nm for Tm $ 58C

DD5 5 DD5 3 0:982 1 136:05:

For DD , 188C (DD_18),

DD_18 5 �
12

m51
(18 2 Tm) 3 Nm for Tm # 188C

DD_18 5 DD_18 3 0:9875 1 105:92.

If DD_18 , 0, then DD_18 5 0.

The equation for DD . 188C (DD18) is

DD18 5 152:19 2 15:281 76 3 T6 1 0:055 59 3 T3
6

2 2:100 12 3 T2
8 1 0:126 39 3 T3

8

2 2:812 3 1025 3 T5
7 .

If DD18 , 0 or T7 , 14, then DD18 5 0.

For EMT,

EMT 5 218:099 95 1 Tmin(1)
3 2:140 95

1 T2
min(1) 3 0:068 36 1 T2

min(12) 3 (20:047 71)

1 TD2 3 0:003 06,

where Tmin(1) and Tmin(12) are the average minimum

temperatures (8C) for January and December, respectively.

TD is the temperature difference (8C) between mean

warmest and coldest monthly temperature.

For NFFD,

NFFD 5 �
12

m51
h1/f1 1 1:15 3 e[20:43T

min(m)
]giNm

NFFD 5 3:3144 1 1:0114 3 NFFD

If NFFD , 0 then NFFD 5 0,

where Tmin(m) is the average minimum temperature

(8C) for month m.

The equations for FFP, bFFP, and eFFP are

bFFP 5 124:9495 1 Tmin(4)
3 (21:7581) 1 Tmin(5)

3 (211:879 34) 1 Tmin(6)
3 2:094 33

1 T2
min(4)(20:3746) 1 T3

min(4) 3 0:014 82 1 T3
min(5) 3 0:067 51 1 T4

min(4) 3 0:001 23

1 T4
min(5) 3 (20:002 66) 1 Tr(4)

3 5:219 34 1 T2
r(4) 3 (20:161 01)

1 NFFD3 3 (27:19) 3 1026 1 NFFD4 3 5:976 953 3 1028

1 NFFD5 3 (21:2266) 3 10210.

If bFFP , 0, then bFFP 5 0. For eFFP,

eFFP 5 231:6577 1 Tmin(9)
3 8:876 56 1 T2

min(6) 3 (20:059 96) 1 T2
min(7) 3 (20:0751)

1 T2
min(10) 3 0:201 23 1 T3

min(9) 3 (20:026) 1 T4
min(7) 3 9:435 3 1025

1 T4
min(9) 3 6:7816 3 1024 1 T4

min(10) 3 (22:9319) 3 1024 1 NFFD5 3 7:94 3 10212.

If eFFP . 365, then eFFP 5 365. For FFP,

FFP 5 eFFP 2 bFFP.

If FFP , 0, then FFP 5 0. If FFP . 365, then FFP 5 365,

where Tr(4) 5 Tmax(4) 2 Tmin(4).

For PAS,

PAS
(1)

5 1/[1 1 e2(T
1
12:9901)/(22:50353)] 3 P

(1)

PAS
(2)

5 1/[1 1 e2(T
2
11:3948)/(22:0004)] 3 P

(2)

PAS
(3)

5 1/[1 1 e2(T
3
20:5473)/(21:5719)] 3 P

(3)
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PAS
(4)

5 1/[1 1 e2(T
4
22:0928)/(21:6527)] 3 P

(4)

PAS
(5)

5 0:8/[1 1 e2(T
5
24:078)/(21:7428)] 3 P

(5)

PAS
(9)

5 1/[1 1 e2(T
9
21:4927)/(22:8948)] 3 P

(9)

PAS
(10)

5 1/[1 1 e2(T
10

20:8099)/(21:6612)] 3 P
(10)

PAS
(11)

5 1/[1 1 e2(T
11

11:5627)/(22:4907)] 3 P
(11)

PAS
(12)

5 1/[1 1 e2(T
12

12:5909)/(22:2108)] 3 P
(12)

PAS 5 �
12

m51
PAS

(m)
,

where PAS(m), T(m), and P(m) are the PAS (mm), aver-

age air temperature (8C) and the total precipitation

(mm) for the mth month.

The reference monthly evaporation from the Hargreaves

equation [EHar(m), mm] is (Hargreaves and Samni 1982;

Shuttleworth 1993) given by

EHar(m)
5 0:0023 3 d 3 S0 3 [Tm 1 17:8] 3T 0:5

r(m) Tm $ 0

EHar(m)
5 0 Tm , 0

,

where d is the number of days in the month; S0 is the

water equivalent of the radiation above the atmosphere

(mm day21) at the latitude of the site for the day of the

year in the middle of the month; Tm is the monthly mean

daily temperature (8C); and Tr(m) is the mean daily tem-

perature range (8C), that is, the difference between the

monthly mean maximum and minimum temperatures.

[Note that the square root on Tr(m) appears to have been

omitted in Shuttleworth (1993).]

Correction of EHar(m) for latitude to give monthly

reference evaporation Eref(m) is

Eref(m)
5 EHar(m)

3 (1:18 2 0:0065 3 latitude),

where the latitude is in degrees. The quantity Eref(m) is

summed over the months of the year to give Eref output

by ClimateWNA.

The annual climatic moisture deficit is the sum on

the monthly values [CMD(m), mm] calculated from the

monthly reference evaporation [Eref(m), mm] and pre-

cipitation [P(m), mm] as

CMD
(m)

5 0 Eref(m)
# P

(m)

CMD
(m)

5 Eref(m)
2 P

(m)
Eref(m)

. P
(m)

.
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