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Abstract

Artificial agents have been shown to learn to communicate when needed to

complete a cooperative task. Some level of language structure (e.g., com-

positionality) has been found in the learned communication protocols. This

observed structure is often the result of specific environmental pressures during

training. By introducing new agents periodically to replace old ones, sequen-

tially and within a population, we explore a new pressure — ease of teaching

— and show its impact on the structure of the resulting language.
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While in theory randomness is an intrinsic property, in practice, randomness

is incomplete information.

– Nassim Nicholas Taleb, The Black Swan, 2007.
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Chapter 1

Introduction

Communication among agents is often necessary in partially observable multi-

agent cooperative tasks. Recently, communication protocols have been auto-

matically learned in pure communication scenarios such as referential games

[12, 19, 35] as well as alongside behaviour polices [13, 24, 37, 56]. A referential

game usually consists of a speaker seeing a target object and sending a message

about it, and a listener, who needs to guess which is the target the speaker

sees from a set of candidate objects. It is widely used in the study of emergent

languages, and communication is the main focus of the task. Another line of

research learns a multi-agent cooperative task with or without a communica-

tion channel to see if adding this channel will enhance the performance.

In addition to demonstrating successful communication in different scenar-

ios, one of the human language properties, compositionality, is often studied

in the structure of the resulting communication protocols [1, 45, 53]. Many

works [31, 33, 34] have illustrated that compositionality can be encouraged

by environmental pressures. Kottur et al. [33] show that under a series of

specific environmental pressures, agents can be “coaxed” to communicate the

compositional atoms each turn independently in a grounded multi-turn dialog.

More general impact of environmental pressures on compositionality are inves-

tigated [7, 34], including different vocabulary sizes, different message lengths,

carefully constructed distractors, etc.

Compositionality enables languages to represent complex meanings using

meanings of its components [14]. It preserves the expressivity and compress-
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ibility of the language at the same time [31]. Moreover, often emergent lan-

guages can be hard to interpret for humans. With the compressibility of fewer

rules underlying a language, emergent languages can be easier to understand

by humans. Intuitively, a language that is more easily understood should also

be easier-to-teach as well.

This thesis focuses on investigating the structural properties of the re-

sulting protocols/languages, and how they are influenced by the environment

under a new pressure: ease-of-teaching. Specifically, we explore the connection

between ease-of-teaching and the structure of the language through empirical

experiments using simple referential games. Firstly, we show that a composi-

tional language is, in fact, easier to teach than a less structured one, given the

same agent architecture.

Secondly, to facilitate the emergence of easier-to-teach languages, we create

a new environmental pressure for the speaking agent, by periodically forcing

it to interact with new listeners during training. Since the speaking agent

needs to communicate with new listeners over and over again, it has an en-

couragement to create a language that is easier-to-teach. We explore this idea,

introducing new listeners periodically to replace old ones, and measure the im-

pact of the new training regime on the ease-of-teaching of the language and its

structure. We show that our proposed reset training regime, not only results in

easier-to-teach languages, but also that the resulting languages become more

structured over time.

Thirdly, the experiments sequentially introducing new agents suggest that

the key environmental pressure — ease-of-teaching — may come from learning

with a population of other agents (e.g., Jaderberg et al. [22]). Besides that,

an explicit (and large) population can also smooth out abrupt changes to the

training objective when new learners are added to the population. However, in

a second set of experiments we show that these advantages surprisingly actually

remove the pressure to the speaker. In fact, just the opposite happens: more

abrupt sequential changes appear to be key in increasing the entropy of the

speaker’s policy, which seems to be leading to increasingly structured, easier-

to-teach languages.
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In summary, the main contributions of this thesis include:

1. A connection between ease-of-teaching and compositionality, thus intro-

ducing ease-of-teaching as a factor to evaluate emergent languages;

2. A training regime of repeatedly teaching new listeners as a pressure to

increase ease-of-teaching (and compositionality) of the languages; and

3. A demonstration that incorporating new listeners abruptly instead of

smoothly is key to increasing the effect.

The structure of the thesis is arranged as follows: Chapter 2 gives a brief

review of the training algorithm we use and the related works people have done

in the emergent communication field. Chapter 3 introduces our experimental

setup, including the game context, agent architectures, training method and

evaluation metrics. Chapter 4 proposes that there is a connection between

ease-of-teaching and compositionality of the emergent languages and how in-

corporating a new listener sequentially into the training regime increases both.

Chapter 5 explores whether a population of listeners, which smooths out the

abrupt changes, could increase the pressure. Chapter 6 discusses how differ-

ent hyperparameters affect different training regimes and further explores the

impact of hyperparameters in a harder setting, with a binary vocabulary. The

conclusions we find and future work are included in Chapter 7.
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Chapter 2

Background and Related Works

2.1 Reinforcement Learning

Reinforcement Learning (RL) is goal-directed learning through interacting

with the environment [58]. Recently, reinforcement learning combined with

advances in deep neural networks [36] has achieved notable success in classic

Atari 2600 games [44], mastering the game of Go [50] and robotics [38].

2.1.1 Basic Concepts

The problem of RL is typically formulated as a finite Markov Decision Process

(MDP). A finite MDP is defined as a 4-tuple (S, A, p, r), where

• S is a finite set of states,

• A is a finite set of actions,

• p is the state transition probability, p(s′|s, a) = Pr(St+1 = s′|St =

s, At = a), and

• r is the expected immediate reward received after transiting from s to s′

under action a.

The agent is the decision maker or learner. It interacts with the environ-

ment in a sequence of discrete time steps. At each time step t, the agent

receives a representation of the environment state St, and selects an action At

based on St. Then at the next step, the agent receives a reward Rt+1 from
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the environment which transits to a new state St+1. The state transition of an

MDP satisfies the Markov property (i.e., the next state St+1 conditions only

on St and At, not any previous states and actions).

The goal of an RL agent is to maximize the cumulative reward received

over time, which is called the return Gt.

Gt =
∞∑
k=0

γkRt+k+1 (2.1)

where discount rate γ is a parameter, 0 ≤ γ ≤ 1.

A policy π(a|s) is a mapping from states to actions, specifying the prob-

abilities of the actions the agent selects in state s. Value functions are used

to decide how good a state or a state-action pair is under policy π. The value

function of a state s under a policy π is defined as

vπ(s) = Eπ[Gt|St = s] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s

]
(2.2)

Similarly, the value function of taking an action a in state s under a policy π

is defined as

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s, At = a

]
(2.3)

vπ(s) and qπ(s, a) are the state-value function and action-value function for

policy π, respectively. Importantly, vπ(s) and qπ(s, a) can also be defined

recursively through the Bellman equation [3]. Many algorithms are derived

from this recursive definition, giving the family of temporal-difference (TD)

learning methods [57]. We do not dive it into details here since most of the

methods in this thesis do not rely on this.

Finding a policy that maximizes the expected return is the key problem

in RL. One way to obtain a policy is from estimated action-value functions or

state-value functions (e.g., using ε-greedy), and then using the policy to gather

data to improve the estimated value functions. These are called value-based

methods. For example, the class of Q-learning methods usually fall into this

category. Another approach is to parametrize the policy and directly optimize

the policy parameters, which are called policy gradient methods. My work

and most other works mentioned in this thesis use policy gradient methods.
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2.1.2 Policy Gradient Methods

Policy gradient methods directly parametrize π(a|s) = Pr(a|s, θ) and update

the policy parameters in the direction of an estimate of the gradient of the

objective. The policy objective function is defined differently in episodic tasks

with finite time steps, versus continuing tasks of infinite horizon. In episodic

cases, the policy objective function is typically defined as the value of the start

state

J(θ) = vπθ(s0) =
∑
s

µπθ(s)vπθ(s) =
∑
s

µπθ(s)
∑
a

πθ(a|s)qπθ(s, a) (2.4)

where µπθ is the stationary distribution of the Markov chain for πθ. In con-

tinuing tasks, we can define the objective in terms of the average reward per

time step.

J(θ) =
∑
s

µπθ(s)
∑
a

πθ(a|s)
∑
s′,r

p(s′, r|s, a)r (2.5)

Computing ∇θJ(θ) is tricky since it depends on the unknown state distri-

bution following πθ starting at s0. Thanks to Policy Gradient Theorem [59],

it follows that

∇θJ(θ) ∝
∑
s

µπθ(s)
∑
a

qπθ(s, a)∇θπθ(a|s)

=
∑
s

µπθ(s)
∑
a

πθ(a|s)qπθ(s, a)
∇θπθ(a|s)
πθ(a|s)

= Eπθ [qπθ(St, At)∇ ln πθ(At|St)]

(2.6)

Therefore, the gradient of the policy objective does not include the gradient

of the state distribution with respect to the policy parameters.

One of the classical policy gradient methods is REINFORCE [61] algo-

rithm. It uses the empirical discounted return γtGt as an unbiased sample of

qπθ(St, At) to update the policy parameters.

θt+1 = θt + αγtGt∇θ ln πθ(At|St) (2.7)

where α is the the algorithm’s step size.

Advantages of policy gradient methods include being capable of learning

stochastic policies, and being effective in high-dimensional and continuous ac-

tion spaces. They also work well in POMDPs (Partial Observable Markov
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Decision Process) [25]. In a POMDP, an agent cannot directly observe the

underlying state, instead it receives an observation o ∈ Ω with conditional

observation probability O(o|s′, a). In this case,

∇θJ(θ) = Eπθ [qπθ(Ot, At)∇ ln πθ(At|Ot)] (2.8)

One of the disadvantages of policy gradient methods is that the estimates

of policy gradients can have high variance. To reduce the variance, a baseline

value can be subtracted from the return without introducing bias [58]. A com-

mon choice for the baseline is an estimate of the state value. Another approach

is to combine a critic to estimate the action-value function, together with the

policy action selector (actor), resulting in the family actor-critic methods [32].

These methods are also often slow to converge and sensitive to choose the

learning rate. Therefore, an adaptive step-size stochastic gradient descent

optimization algorithm, like Adam [27] is commonly used in practice.

2.2 Communication in Reinforcement Learn-

ing

Successful communication requires a sender giving out a signal contingent on

its private information (i.e., only known to itself), and a receiver interpreting

it correctly. Communication can be in different forms, verbal or non-verbal,

sometimes with a cost considered. In environments involving multiple agents,

communication can be important in many different types of tasks — coopera-

tive, competitive, or mixed cooperative-competitive — by achieving coordina-

tion [24], covert/deception [41] and negotiation [6]. Fully cooperative tasks are

the most investigated setting, where all the agents share the goal of maximizing

the same expected return. Partially observable environments are also usually

considered to stress the necessity of communication. Challenging multi-agent

benchmarks that would benefit from agents having communication capabili-

ties, have been purposed, including Hanabi [2]. Real world applications like

self-driving cars could also directly benefit from communication capabilities.

Previous studies on multi-agent problems involving communication mostly

use predefined protocols, with a few exceptions using tabular RL approaches
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[16, 26, 60] or an evolutionary algorithm [15] to learn to communicate. Re-

cently, there have been a revival of research in automatically learning the

communication protocols using deep reinforcement learning. The field of devel-

oping communication protocols/strategies among agents without pre-defining

them has been dubbed emergent communication. Recent research on using

deep reinforcement learning in this field can be roughly divided into two lines,

depending on whether communication actions are the only action the agent

takes. One line is adding a communication channel alongside the behaviour

policy when communication does not directly affect the environment [13, 45,

56]. The goal is to enhance the behaviour performance via communication. In

the other line, achieving communication itself is the main goal, and thus the

emerged communication protocols are the main concern [7, 33, 34]. Related

works are introduced separately in the following based on this categorization.

The study of emergent communication is important for a number of rea-

sons. Agents with communication capabilities can enhance their performance

in multi-agent tasks. Explicitly learning communication by developing a lan-

guage/protocol can be beneficial when agents need to coordinate with humans

or making decisions that are more interpretable to humans [45]. It also pro-

vides a way to learn a grounding of language in a pragmatics perspective [20],

in contrast to modelling the statistical patterns of natural languages. It is also

in the scientific interest to provide insights to how the structure in the human

languages are originated and evolved.

2.2.1 RIAL and DIAL

In the first attempt at learning communication protocols with deep learning

approaches [13], two approaches were proposed, Reinforced-Inter-Agent Learn-

ing (RIAL) and Differential Inter-Agent Learning (DIAL). Fully cooperative

partial observable environments are considered. At each time step t, each

agent a selects an environment action u ∈ U that directly affects the environ-

ment and a communication action m ∈M observed by the other agents at the

next step, based on its private observation oat correlated with st.

In RIAL, behaviour actions and communication actions are separately
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learned with two deep recurrent Q-networks (DRQN) [18], which replaces a

feed-forward network approximating Q(s, u) in deep Q-networks (DQN) [44]

with a recurrent network Q(ot, ht−1, u) for partial observable settings. u and m

are selected separately from Qu and Qm by the action selector using ε-greedy.

Experience replay is disabled since the non-stationarity of the environment

can make the experience obsolete and misleading. Each agent is learned with

independent Q-learning, where each agent independently and simultaneously

learns its own Q-function. Learning and execution are the same and both de-

centralized. A parameter sharing option is also explored, where all the agents

share the same two Q-functions Qu and Qm. In this case, learning becomes

centralized since all the agents share the same value functions. Communication

actions m in RIAL are all discrete messages.

DIAL exploits the advantage of centralized learning. During learning, it

lets the gradients push back through the communication channel, which makes

the communication messages real-valued. Only u is selected by the action

selector, while the real-valued messages bypasses it to a discretise/regularise

unit. This unit regularises the messages during centralized learning, while

discretising it during decentralized execution. DIAL uses discrete protocols in

their experiments, but naturally handles continuous protocols as well.

The main difference between RIAL and DIAL is that DIAL passes messages

in continuous values during learning and lets gradients flow across agents, from

the receiver to the sender to get richer feedback. While RIAL is end-to-end

trainable within each agent, DIAL is end-to-end trainable across all agents.

2.2.2 Works on Enhancing Behavior Policy with Com-
munication

We introduce seminal works on enhancing behavior policy with an explicit

communication channel in this section.

Sukhbaatar et al. [56] also explore continuous communication protocols.

They introduce CommNet, that coordinates agents learn to communicate be-

fore taking actions. CommNet is a deep feed-forward neural network that

maps observations to actions for all agents. It can be trained via backprop-
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agation and thus can be combined with reinforcement learning or supervised

learning. Each layer is considered one communication step, which calculates

a communication vector c and propagates a hidden state vector h for each

agent. Each agent j is modeled as a multi-layer neural network, which at each

time step t takes a hidden state vector hjt and a communication vector cj and

outputs hjt+1. Communication vectors cj are the mean of all the other agents’

hidden states. All agents share the same parameters. Though using con-

tinuous protocols, examining the protocols learned with CommNet in one of

the tasks shows that a sparse communication protocol is learned that conveys

meaningful information between agents.

A grounded communication environment (i.e., a physically-simulated world

with multiple landmarks) is proposed and a basic compositional language is

emergent with the following learning methods [45]. This paper models an

end-to-end differential model of all agents sharing the same policy, similar to

CommNet and DIAL/RIAL with parameter sharing. In addition, it learns a

model of the environment state transition dynamics. Discrete communication

symbols are sampled from a categorical distribution at test time. To make it

differentiable during training, a Gumbel-Softmax distribution [17, 42] is used,

which is a continuous relaxation of a discrete categorical distribution. An

auxiliary prediction reward [11, 49] is used for predicting the other agent’s

goal to help policy training avoid local minima. There are some investigations

into how variation in environments affects the communication strategies that

arise, which we will revisit in the next section.

Jaques et al. [24] show that rewarding agents for having causal influence

over other agents’ actions is effective for multi-agent communication. Causal

influence is evaluated via counterfactual reasoning. At each time step, an agent

simulates alternative actions it could have taken and computes their effect on

the behaviour of other agents. Actions that lead to bigger changes in other

agents’ behaviour are considered influential and rewarded. They show that

the influence reward is equivalent to rewarding agents for having mutual in-

formation between their actions, which results in more coordinated behaviour.

Enhanced coordination results are shown in challenging social dilemma envi-
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ronments with or without an explicit communication channel. Importantly,

the influence rewards for all agents can be computed in a decentralized way

by enabling agents to learn a model of other agents. This is an advantage over

the centralized learning methods mentioned before, which are unable to learn

diverse policies among agents.

The most widely used metric in this line of research for examining if com-

munication is emerging is an increase in reward after adding a communication

channel. Lowe et al. [40] examine a few intuitive existing metrics and show

some of them can be misleading. The authors conduct an experiment that

shows strong indicators of communication according to speaker consistency

[24] (quantifying the degree of alignment between an agent’s messages and

its actions) and qualitative analysis, but the message does not affect the other

agents’ behaviour. It turns out that positive signaling does not necessarily lead

to positive listening. In this case, the emergent messages seem to be redundant

compared to the payoff matrix provided in their experiment and suggests the

correlation between actions and messages emerge as a byproduct of optimiza-

tion. In this paper, a family of metrics called Causal Influence of Commu-

nication (CIC) are proposed to detect positive listening, which measures the

causal effect that one agent’s message has on another agent’s behaviour.

2.2.3 Related Works in Referential Games

Referential games are used widely in the emergent communication literature.

An illustration of a referential game is shown in Figure 2.1. Most referential

games are variants of the Lewis signaling game [39], which is used as an at-

tempt to develop a theory of convention and meaning by understanding the

equilibrium properties of the signaling game. Referential games are fully co-

operative games with two players, requiring that a sender signals about its

private state, and a receiver unaware of the state observes the signal and must

take some action on it. For each state, there is a unique action that is preferred

by both. There are often many Nash equilibria in this game [9, 47], where each

player is making one’s own best decision assuming others’ decisions remain un-

changed. A preferable one is when the sender sends a different signal in each
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Figure 2.1: An illustration of a referential game.

state, and the receiver takes the appropriate action in every state. There are

also pooling equilibria, where the sender sends the same signal in every state,

and the receiver does its best without any additional information. Partial

pooling equilibria exist when there are more than two states, signals, actions,

where some information is conveyed and some are pooled [52].

Most works studying emergent communication in referential games are in-

terested in what languages develop between agents [33, 34, 45]. Emergent

languages that are more aligned with human languages may be preferred since

they could be easier to be understood by humans. Moreover, emergent lan-

guages are learned in a grounded way, which means agents have mutual under-

standing about the task, could be preferred over capturing statistical patterns

from a large corpora of human languages.

Recent works mostly model agents as deep neural networks and use REIN-

FORCE as training methods so that a language consisting of discrete symbols

can be developed naturally. Some perform a differentiable relaxation to en-

able end-to-end training. Discrete symbols are sampled in the forward pass,

while a straight through Gumbel-softmax estimator [23] is used in the back-

ward pass [19]. Choi et al. [7] propose an obverter technique, a differentiable

learning algorithm for discrete communication. They assume others’ minds

are analogous to ours, thus maximizing the listener’s understanding can be

achieved by maximizing our own understanding. When the agent acts as a

speaker, through introspection it sends the message most consistent with its
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own observation. When it acts as a listener, parameters are updated via back-

propagating the cross-entropy loss between its output and the true label (i.e.,

whether the agents are seeing the same image). Other than reinforcement

learning techniques, Sirota [51] show that evolutionary search is viable for

emergent communication, where neuroevolution is used to automate network

design and find network weights of communicating agents.

Object representations in referential games are obtained differently as sym-

bolic input [33, 34], pixel input processed with pre-trained neural networks

[19, 34, 35], and pixel input trained together with the communication game

[7]. Different forms of protocols are explored: messages of one symbol [35], a

variable length sequence of symbols [7, 19], a dialog of a fixed number of turns

[33], or even an adaptive length dialog [12].

A bidirectional multi-modal multi-step referential game is proposed, where

the sender is exposed to visual modality and the receiver is exposed to tex-

tual description information [12]. Machine translation [37] can emerge from

referential games when each agent speaks in their native language but share

the same visual modality. Visual question answering and dialog agents can

be fine-tuned to have better performance through playing cooperative image

guessing games after supervised pretraining [10]. As an attempt to ground the

agents’ languages into human languages, combining the game with a super-

vised image labeling task encourages the protocols to be more interpretable

[35].

2.3 Structure in Emergent Languages

An important hallmark in human language is compositionality, where the

meaning of a complex expression is determined by its constituents [14]. There

is no single mathematical definition of compositionality. Compositionality can

be examined with qualitative measures [19, 34], quantitative measures [4, 34],

or task success on held-out compositions of attributes not seen during the

training [7, 33, 34, 45].

Environmental pressures play an important role in what kind of languages
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emerge. This is also true when considering the origin and the evolution of

human languages. Several works investigate the impact of environmental

pressures on compositionality in different environments, including referential

games [12, 34], a situated physical world consisting of multiple agents [45],

and multi-turn dialogs [33]. The following key factors are considered in the

current literature.

Maximum Message Length. Messages can end with an ending symbol

in the vocabulary unless a maximum message length is achieved [12, 19, 34].

Different message lengths together with a same vocabulary size are explored

[34]. With a shorter message length, the unique messages used are very few

and show a high level of ambiguity (i.e., using the same message to represent

different concepts). When the message length gets larger, the number of con-

cepts per message are reduced and the communication accuracy gets higher.

However, the resulting longer messages are more challenging to analyze for

compositional patterns [12].

Vocabulary Size. A limited vocabulary is found to be essential to the

emergence of compositionality in the task of a multi-turn dialog [33]. In their

setting, objects have three attributes and each attribute has four possible val-

ues, where a minimum vocabulary of four is used. To have a compositional

dialog actually emerge, a specific pressure needs to be combined with a min-

imum vocabulary in this work, removing the answering agent’s memory each

turn so that it can answer the value of the attribute being asked in that turn.

Inspired by Kottur et al. [33], the vocabulary size is set to be smaller

than the size of objects [34]. A larger vocabulary is found to achieve high

communication accuracy easily, while the languages appear less structured

[12].

The emergence of compositionality requires the number of concepts to be

a factor of vocabulary size [46]. While Mordatch et al. [45] tested a smaller

vocabulary size they found the policy gets stuck in poor local minima where

concepts became conflated. Instead they use a larger vocabulary size limit and

a soft penalty function to prevent too many symbols from being used. The

penalty is done by making more popular words survive with a rich-get-richer
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dynamics. During training the larger vocabulary gives the policy optimization

the chance to explore, but an active smaller vocabulary size is found during

learning.

Carefully Constructed Data. Evtimova et al. [12] notice that randomly

sampling object pairs with different colors and shapes let agents focus only on

colors and ignore shapes. Note that in their experiment, the objects have 8

possible colors and 5 possible shapes. Thus, a carefully constructed mini-batch

of data are presented, with mixed combinations of specific percentages of same

and different colors and shapes.

The distractor selection process is also examined. A uniform selection of

distractors is usually considered in the literature, but it does not reflect the

context the object is in [34]. To tackle this, the authors experiment with a

non-uniform selection of context-dependent distractors mimicking the normal-

ized object co-occurrence statistics. This makes the ambiguous messages less

affected by the visual context co-occurrences.

The number of distractors and the balance between the number of possible

values for different attributes are also explored [34].

Physical Environment. The physically-simulated environment is con-

ceived as a pressure contributing to the syntactic structure in the emergent

languages [45]. The signal for a specific action always emerges first, since it

takes time to accomplish the action in the environment.

In a simulated environment with objects of different colors and shapes, a

strategy of communicating the absolute position of objects is developed [34].

Thus, different viewpoints can be involved in the experiment design to bias

against directly communicating the absolute position.

2.4 Relevant Works in Cultural/Language Evo-

lution

The idea of bringing uninformed learners into the learning process is investi-

gated in cultural/language evolution field.

Human languages are culturally transmitted at least to some extent, where
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children learn their languages by observing others’ use of language [28]. Based

on observational learning in cultural transmission, iterated learning [54], a

paradigm for studying the origins and evolution of structure in human lan-

guages, has been studied for decades [29, 30]. In iterated learning, the output

of a fully learned individual is the input for another uninformed one, and

the language transmission between an individual and next is incomplete and

partial. As a result of this repeated transmission bottleneck, compositional

languages emerge due to stimulus poverty.

In iterated learning, language learning and language use are separate.

Thus, the ease of language learning is solely connected to the compressibil-

ity of languages [31]. More compressed languages with simpler rules (e.g., a

language with only one word for all objects) are easier to learn but quite am-

biguous. Thus, compressibility and expressivity are seen together as competing

pressures for compositional language to emerge.

Similar phenomenon have been observed in behavioral ecology. For exam-

ple, in the pigeon route-navigation problem, partnering with an uninformed

pigeon after several flights is found to improve homing efficacy over succes-

sive generations [48]. This is a real example that animals further progress by

incorporating different members in the task and accumulating modifications

from more than one individual.

Concurrently with our work, Cogswell et al. [8] explicitly incorporate cul-

tural transmission into conversational agents modeled as deep neural networks.

They try out different strategies to replace a questioning bot and an answering

bot periodically in a single and multiple pair(s) of agents. Compositionality

is evaluated in a generalization test and changes of languages between gener-

ations are examined to see if cultural transmission happens.

2.5 Role of the Thesis

In this thesis, we learn communication policies between multiple agents with

partial observability using reinforcement learning. We adopt policy gradient

methods, specifically REINFORCE, as our training method. We use discrete
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symbols to communicate. Our training method is decentralized and does not

involve any parameter sharing. We explore emergent languages in a pure

communication environment without behaviour policies, i.e., referential games.

We are interested in the structure of the emergent languages, and how the

structure is influenced by a new environmental pressure of interacting with new

listeners. Our proposed training regime of introducing new agents is connected

to iterated learning in language evolution, although we do not explicitly create

generations between agents since we have only one speaker and the agents learn

only through interaction.
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Chapter 3

Experimental Setup

We explore emergent communication in the context of a referential game,

which is a multi-agent cooperative game and requires communication between

a speaker S and a listener L. We first describe the setup of the game and then

the agent architectures, training procedure, and evaluation metrics we use in

this work.

3.1 Game Setup

The rules of the game are as follows. The speaker is presented with a target

object t ∈ O and sends a message m to a listener using a fixed-length (l = 2)

sequence of symbols (m1,m2) from a fixed-sized vocabulary (mi ∈ V where

|V | = 8). The listener is shown candidate objects C = {c1, . . . , c5} ⊆ O where

t ∈ C along with 4 randomly selected distractor objects, and must guess t̂

which is the target object. If the listener guesses correctly t̂ = t, the players

succeed and get rewarded r = 1, otherwise, they fail and get r = 0.

Each object in our game has a color and a shape. There are 8 colors (viz.,

black, blue, green, grey, pink, purple, red, yellow) and 4 shapes (viz., circle,

square, star, triangle) in our setting, therefore 8 × 4 = 32 possible different

objects. For simplicity, each object is represented by a 12-dimension vector

concatenating a one-hot vector of color with a one-hot vector of shape, which

is similar to work by Kottur et al. [33].
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Figure 3.1: The architectures of the agents.

3.2 Agent Architecture

We model the agents’ communication policies πS and πL with neural networks

similar to related works [19, 34]. For the speaker, πS stochastically outputs a

message m given t. For the listener, πL stochastically selects t̂ given m and all

the candidates C. In the following, we use θS to represent all the parameters

in the speaker’s policy πS and θL for the listener’s policy πL. The architectures

of the agents are shown in Figure 3.1.

Concretely, for the speaker, fS(t; θS) obtains an embedding ut of the target

object t. This is processed by an LSTM [21] gS to produce a message. At the

first time step τ = 0 of gS, we initialize ut as the start hidden state hS0 and

feed a start token 〈S〉 (viz., a zero vector) as the input of gS. At the next step

τ+1, oS(hSτ+1; θ
S) performs a linear transformation from hSτ+1 to the vocabulary

space, and then applies a softmax function to get the probability distribution

of uttering each symbol in the vocabulary. The next token mτ+1 is sampled

from the probability distribution over the vocabulary and serves as additional

input to gS at the next time step τ+1 until a fixed message length l is reached.

For the listener, the tokens received from the speaker are input to an LSTM

gL(m,hL; θL) and all the candidate objects are represented as embeddings

uc using fL(c; θL). oL(hL; θL) transforms the last hidden state of gL to an

embedding and a dot product with uc1 , . . . , uc5 is performed. We then apply a
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softmax function to the dot products to get the probability distribution for the

predicted target t̂. During evaluation, we use argmax instead of softmax for

both S and L, which results in a deterministic language. The dimensionalities

of the hidden states in both gS and gL are 100.

3.3 Training

In all of our experiments, we use stochastic gradient descent to train the agents.

Our objective is to maximize the expected reward under the agents’ policies

J(θS, θL) = EπS ,πL [R(t̂, t)]. We compute the gradients of the objective by

REINFORCE [61] and add an entropy regularization [43] term to the objective

to maintain exploration in the policies:

∇θSJ = EπS ,πL [R(t̂, t) · ∇θS log πS(m|t)] + λS · ∇θSH[πS(m|t)]

∇θLJ = EπS ,πL [R(t̂, t) · ∇θL log πL(t̂|m, c)] + λL · ∇θLH[πL(t̂|m, c)]

where λS, λL > 0 are hyper-parameters and H is the entropy function, for the

speaker H = −
∑

m π(m|t) log π(m|t).

For training, we use the Adam [27] optimizer with learning rate 0.001 for

both S and L. We use a batch size of 100 to compute policy gradients. λS = 0.1

and λL = 0.05 are set in experiments in Chapter 4 and Chapter 5. Discussion

about the effect of different λS and λL is included in Chapter 6.

Emergent language experiments in Chapter 4 and Chapter 5 are repeated

1000 times independently with the same random seeds for different regimes.

Due to the computational constraints and that Chapter 6 mainly discusses the

effect of different hyperparameters on the problem, experiments in Chapter 6

are repeated 100 times. In all the figures, the solid lines are the means and the

shadings show a 95% confidence interval (i.e., 1.96 times the standard errors).

3.4 Evaluation

We evaluate the emergent languages in two ways, ease-of-teaching and the

degree of compositionality of the language.
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Figure 3.2: Topographic similarity is the negative correlation between dis-
tances in the feature space and in the message space of all object pairs.

To evaluate the ease-of-teaching of the resulting language (i.e., a new lis-

tener reaches higher accuracies with less training), we keep the speaker’s pa-

rameters unchanged and produce a deterministic language with argmax, and

then train 30 new randomly initialized listeners with the speaker for 1000

iterations and observe the ease-of-teaching of the languages.

There is not a definitive quantitative measure of language compositionality.

However, a quantitative measure of message structure, i.e., topographic simi-

larity, exists in the language evolution literature. Seeing emergent languages as

a mapping between the meaning space and the signal space, topographic sim-

ilarity is defined as the correlation between distances of pairs in the meaning

space and those in the signal space [5].

We use topographic similarity to measure the structural properties of the

emergent languages quantitatively [29, 34]. We compute this measure as fol-

lows: we exhaustively enumerate all target objects and the resulting messages

from the deterministic πS. We compute the cosine similarities s between all

pairs of objects’ vector representations and the edit distances d between all

pairs of objects’ messages. The topographic similarity is calculated as the

negative Spearman ρ correlation between s and d. The higher the topographic

similarity is, the higher the degree of compositionality in the language. Figure

3.2 shows how topographic similarity is computed.
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Chapter 4

Experiments with Listener
Reset

4.1 Compositionality and Ease-of-Teaching

In the introduction, we hypothesized that a compositional language is eas-

ier to teach than a less structured language. To test this, we construct two

artificial languages, a perfect language with topographic similarity 1.0 and a

permuted language. We create a perfect language by using 8 different symbols

(a-h) from the vocabulary to describe 8 shapes, and choose 4 symbols (a-d) to

represent 4 colors. The permuted language is formed by randomly permuting

the mappings between messages and objects from the perfect language. It still

represents all objects with distinctive messages, but each symbol in a message

may not have a consistent meaning for shape/color. For example, ‘aa’ means

‘red circle’, ‘ab’ means ‘red square’, ‘bb’ means ‘blue circle’, and ‘bc’ means

‘blue square’. An example of a perfect language and a permuted language are

shown in 4.1 and 4.2. We then teach both languages to 30 randomly initialized

listeners and observe on average how fast the languages can be taught. A lan-

guage that is easier-to-teach than another, means reaching higher accuracies

with less training.

We generated 1 perfect language and 100 randomly permuted languages,

which had an average topographic similarity of 0.14. The training curves for

both languages are plotted in Figure 4.3. We can see that the listener learns

a compositional language much faster than a less structured language.
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Is	a	language	easier-to-teach	than	another?

Perfect	language

aa ab adac

ba bb bdbc

ca cb cdcc

da db dddc

ea eb edec

fa fb fdfc

ga gb gdgc

ha hb hdhc

Figure 4.1: An example of a perfect language.

Is	a	language	easier-to-teach	than	another?

Permuted	language

ac gb faga

dc
a

ec ea
d

db

da fb fdgc

bd bb aahb
c

fc cb hdha

eb bc abed

ad cd gdhc

ca dd bacc

Figure 4.2: An example of a permuted language.
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Figure 4.3: Ease-of-teaching of the artificial languages.

4.2 Experiments with Listener Reset

After observing a compositional language is easier to teach than a less struc-

tured language, we now explore a particular environmental pressure for en-

couraging the learned language to favour one that is easier to teach. The basic

idea is simple, forcing the speaker to teach its language over and over again to

new listeners.

To facilitate the emergence of languages that are easier to teach, we design

a new training regime: after training a speaker S and a listener L to com-

municate for a fixed number of iterations, we reinitialize a new listener L′ to

replace the old one and have the speaker S and the new listener L′ continue

the training process. We repeat doing this replacement multiple times. We

name this process “reset”. Since the speaker needs to be able to communicate

with a newly initialized listener periodically, this hopefully gives the speaker

an environmental pressure to favour an easier-to-teach language.

We explore this idea by training a speaker with 50 listeners sequentially

using the proposed reset regime and a baseline method with only one listener
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Figure 4.4: Ease-of-teaching of the emergent languages.
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Figure 4.6: Comparison of topographic similarity under reset and no-reset
regime.

for the same number of iterations. In the reset regime, the listener is trained

with the speaker for 6k (i.e., 6,000) iterations and then we reinitialize the

listener. Thus, the total number of training iterations is 6k × 50 = 300k.

In the no-reset regime, we train a speaker with the same listener for 300k

iterations.

4.2.1 Ease-of-teaching under the Reset Training Regime

After training, both methods can achieve a task success rate around 98% when

teaching a new listener. In fact, after around 6k iterations agents can achieve

high communication accuracy, but in this work we are interested in how lan-

guage properties are affected by the training regime. Therefore, the following

discussion is not about the communication success, but the differences between

the emergent languages in terms of the ease of teaching and the degree of com-

positionality. We first evaluate the ease-of-teaching of the resulting language

after 300k iterations of training and show the results in Figure 4.4. We can

see that the languages emergent from the reset regime are on average easier
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Table 4.1: A learned language with topographic similarity 0.81 from the reset
regime

black blue green grey pink purple red yellow
circle dh bf be bb bc dg da dd
square fh ef ee eb ec eg ea ed

star hh hf ce cb hc hg ha hd
triangle ah gf ge gb gh gg ga gd

to teach than without resets.

We also test the ease-of-teaching of the emergent languages every 60k train-

ing iterations, to see the changes of ease-of-teaching during training. Results

are shown in Figure 4.5, although for simplicity we are showing the ease of

teaching for just one intermediate datapoint, viz., after 60k iterations. For the

reset regime, the teaching speed of the language is increasing with training.

For the no-reset regime, the teaching speed is in fact getting slower.

4.2.2 Structure of the Emergent Languages

But does the emergent language from the reset regime also have a higher

degree of compositionality? We compute the topographic similarity of the

emergent languages for both methods every 6k iterations (before the listener

in the reset regime gets reset), and show how the topographic similarity evolves

during training in Figure 4.6. In the reset regime, the topographic similarity

rises with training to 0.59; while in the no-reset regime the metric drops with

training to 0.51. This shows that not only are the languages getting easier to

teach with additional resets, but the languages are getting more structured,

although still not approaching a perfectly structured language.

Table 4.1 shows an example of one of the resulting languages from the

reset regime. This is from an above average outcome where the topographic

similarity is 0.81. In this example, each color is represented by a separate

unique symbol as m2 except that ‘pink’ reuses a different symbol ‘h’ once in

‘triangle’. Each shape is represented by a disjoint set of symbols as m1. {‘b’,

‘d’} can represent ‘circle’, {‘e’, ‘f’} can both mean ‘square’, {‘c’, ‘h’} for ‘star’

and {‘a’, ‘g’} for ‘triangle’.
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Table 4.2: A learned language with topographic similarity 0.71 from the no-
reset regime

black blue green grey pink purple red yellow
circle ff fd fa fe bd fg ff fe
square ea hd ha ee hd eg ea ee

star da dd dg dh dd dg da dh
triangle ga gd gg ge gd gg ga ge

The most structured language from the no-reset regime after 300k itera-

tions, with topographic similarity 0.71, is shown in Table 4.2. In this language,

the first letter m1 means shape, {‘f’, ‘b’} for ‘circle’, {‘e’, ‘h’} for ‘square’, ‘d’

for ‘star’, ‘g’ for ‘triangle’. However, as for the color, same m2 are shared by

different meanings, making the language structured though ambiguous. ‘black’

and ‘red’ are not distinguishable, so are ‘grey’ and ‘yellow’. 3 out of 4 ‘blue’

and ‘pink’ objects are ambiguous except for ‘circle’. 2 out of 4 ‘green’ and

‘purple’ objects are ambiguous.
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Chapter 5

Experiments with a Population
of Listeners

We have so far shown introducing new listeners periodically creates a pressure

for ease-of-teaching and more structure. One might expect that learning within

an explicit population of diverse listeners (e.g., each having experienced a

different number of training iterations) could increase this affect. Furthermore,

one might expect a larger population could smooth abrupt changes to the

training objective that occur when replacing a single listener. This is partly

the role that experience replay plays in DQN to stabilize learning [44], and so

we might see similar benefits.

5.1 Population Regime

We explore this alternative in our population training regime. We now have N

listeners instead of 1, and each listener’s lifetime is fixed to L = 6k iterations,

after which it is reset to a new randomly initialized listener. At the start,

each listener is considered to have already experienced a different number of

iterations, uniformly distributed between 0 and LN−1
N

, inclusive — maintaining

a diverse population of listeners with different amounts of experience. The

speaker’s output is given to all the listeners on each round. Each listener

guessing the target correctly gets rewarded R = 1, otherwise R = 0. The

speaker on each round gets the mean reward of all the listeners.
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5.2 Experiments with Different Population Sizes

We experiment with different listener population sizes N ∈ {1, 2, 10}. Note

that the sequential reset regime of the previous section is equivalent to the

population regime with N = 1.

The mean teaching accuracy of the emergent languages for each regime is

plotted in Figure 5.1. We can see that languages are easiest-to-teach from

the reset regime, then a population regime with 2 listeners, then a population

regime with 10 listeners, then the no-reset regime.

The average topographic similarity during training is shown in Figure 5.2.

Topographic similarity from the population regime with 2 listeners rises to

0.57, but not as much as the reset regime. For the population regime with 10

listeners, the topographic similarity remains almost at the same level around

0.56.

From the results, we see that although larger populations have more diverse

listeners and a less abruptly changing objective, this is not advantageous for

the ease-of-teaching and the structuredness of the languages. Moreover, the

population regime with a small number of listeners performs closer to the reset

regime, while with a relatively large number of listeners seems closer to the

no-reset regime.

5.3 Experiments with Resetting All Listeners

The sequential reset regime can be seen as resetting all listeners in a population

with N = 1. We further experiment with resetting all listeners at the same

time periodically and a baseline no-reset regime with a population of listeners

N ∈ {2, 10}.

The mean teaching accuracy and topographic similarity of the language

when N = 2 are plotted in Figure 5.3 and Figure 5.4. The ease-of-teaching

curve of resetting all listeners overlaps with resetting 1 listener in the popula-

tion. The languages from the no-reset regime are less easier-to-teach. While

the topographic similarity rises to 0.59 when resetting all listeners periodically,
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Figure 5.1: Ease-of-teaching of the languages under population regimes.
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Figure 5.2: Comparison of topographic similarity under population regimes.
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Figure 5.3: Ease-of-teaching of the languages when N = 2.

it decreases to 0.53 without resets. With a small population of 2 listeners, re-

setting all listeners and without resets show similar impact as N = 1.

As for a population of listeners N = 10, the mean teaching accuracy and

topographic similarity of the languages are plotted in Figure 5.5 and Figure

5.6. Languages are easier-to-teach when resetting all listeners, then resetting 1

of 10 listeners, then no-reset in the population. And the gap between resetting

all listeners and the no-reset regime in ease-of-teaching is smaller compared to

N = 2. The topographic similarity rises to 0.59 when resetting all listeners,

while it shows a similar trend of slight increase in resetting one of listeners

and without resets.

Whenever N = 1, 2, 10, languages are easier-to-teach when resetting all

listeners periodically than without resets. Moreover, the structuredness of the

languages is the highest from resetting all listeners comparing to the others.

Larger population of listeners are less likely to produce less easier-to-teach and

less structured languages when no listener gets reset.
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Figure 5.4: Comparison of topographic similarity when N = 2.
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Figure 5.6: Comparison of topographic similarity when N = 10.

5.4 Discussion

In this section we investigate the behavior of the different regimes and give

some thoughts on what might cause the emergent languages to be easier-to-

teach and more structured.

To get a better view of what the training procedure looks like when re-

setting a single listener in different sizes of populations, we show the training

curves of these regimes in Figure 5.7. In all the regimes, the speaker achieves

communication success rate over 85% with listener(s) within 6k iterations. In

the reset regime with N = 1, every 6k iterations the listener is reset to a

new one, therefore the training accuracy drops down to 20%, a chance of a

randomly guessing 1 target from 5 objects correctly. For a population of 2

listeners, every 3k iterations 1 of the 2 listeners gets reset, which makes the

training accuracy drop down to around 55%. As for a population of 10 listen-

ers, every 600 iterations 1 new listener jumps in the population while others

still understand the current language, which makes the accuracy drop down

to around 82%. For the no-reset regime, the agents maintain a high training
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accuracy about 90% almost all the time.

When a new listener is introduced, the communication success is lower and

the speaker gets less reward and benefits from increasing entropy in its policy

due to the entropy term H[πS(m|t)] in the learning update. This explicitly

created pressure for exploration may have the speaker unlearn some of the pre-

built communication convention and vary the language to one that is learned

more quickly. We plot the speaker’s entropy during training in Figure 5.8,

which backs up this explanation. We can see that there is an abrupt entropy

change when a new listener is introduced to a population of 1 or 2 listener(s),

which could possibly alter the language to be easier-to-teach. For the popu-

lation regime with a large number of listeners, we cannot see abrupt changes

in the entropy. Although 1 listener gets reset, the majority of the population

maintain the communication with the speaker. Thus, the speaker is less likely

to alter the communication language to one that the new listener is finding

easier to learn.

This explanation also aligns with the result that resetting all listeners in

different sizes of population will have a better performance. Since resetting all

listeners will create a high abrupt entropy instead of being smoothed out by

the others in the population when resetting one of the listeners. It would seem

that the improvement comes from abrupt changes to the objective rather than

smoothly incorporating new listeners.
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Figure 5.7: Training curves of the agents in different regimes.

Figure 5.8: Speaker’s entropy in different regimes.
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Chapter 6

Further Experiments

Further experiments are presented in this chapter to understand how sensitive

the ‘reset’ regime is to hyperparameters, and how it works in a harder setting.

6.1 Sensitivity to Hyperparameters

The previous chapters present some intriguing results with the same hyper-

parameter in different regimes. We discuss how sensitive the impact is with

respect to different hyperparameters.

Successful communication between agents is often achieved relatively quickly

and consistently when hyperparameters λS and λL (i.e., weights on the speaker’s

and the listener’s entropy terms) are from {0.05, 0.1}. We run experiments

of training 1 listener with or without resets using different combinations of λS

and λL. We evaluate the ease-of-teaching and the topographic similarity of

the languages after training using the same approach as before.

The ease-of-teaching curve of the languages with and without resets when

λS = 0.05 and λS = 0.1, are shown respectively in Figure 6.1 and Figure 6.2.

We find that with any hyperparameter combination the languages from the

reset regime are easier-to-teach. However, when λS = 0.05 the curves with

resets are closer to those without resets, compared to λS = 0.1. The impact

of resets is smaller since exploration in the objective is weighted less. We can

find some evidence for this by examining the speaker’s entropy with different

λS and λL in Figure 6.3 and Figure 6.4. We can see that when λS = 0.05 the

entropy spikes are smaller, and so there is less opportunity for the policy to
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Figure 6.1: Ease-of-teaching of the languages when λS = 0.05.

explore.

Topographic similarity with different λS and λL are shown in Figure 6.5

and Figure 6.6. In both figures, with more resets topographic similarity rises

at first, however, when λS = 0.05 the topographic similarity drops to the initial

level eventually. We do not know why the measure goes down when λS = 0.05.

Without resets, when λS = 0.05 topographic similarity stays at the same level,

when λS = 0.1 it drops down.

We do not find much difference in performance between λL = 0.05 and

λL = 0.1 in this setting, except that training deteriorates occasionally after

220k iterations without resets when λS = 0.1 and λL = 0.1.

6.2 Experiments with a Limited Vocabulary

We further experiment in a harder setting with a limited vocabulary (i.e., only

‘0’, ‘1’ characters). Are the emergent languages still easier-to-teach and more

structured using the reset regime in this setting? Can we find “words” made

up by multiple bits of “characters” in the language? In this section, we will
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Figure 6.2: Ease-of-teaching of the languages when λS = 0.1.

Figure 6.3: Speaker’s entropy when λS = 0.05.
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Figure 6.4: Speaker’s entropy when λS = 0.1.
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Figure 6.5: Comparison of topographic similarity when λS = 0.05.
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Figure 6.6: Comparison of topographic similarity when λS = 0.1.

explore these questions by reproducing the experiments with the reset and the

no-reset regime in a binary vocabulary.

Since the vocabulary size is 2, the message length has to be at least 5 to be

able to decode all 32 objects into different messages. We use message length

l = 5 in the experiment. All the other settings stay the same as in the fourth

chapter.

6.2.1 Compositionality and Ease-of-teaching

We first replicate the experiment whether compositionality and ease-of-teaching

are related in the binary vocabulary setting. We compose two languages, a

perfect language and a permuted language. The perfect language uses three

bits to represent 8 colors and two bits for 4 shapes. The permuted language

randomly permutes the mappings between messages and objects. We also

experiment with constructing the perfect language in different ways, express-

ing shape first, color next (short as ‘sc’) or color first, shape next (short as

‘cs’). We teach each differently constructed artificial language with 30 listen-
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Figure 6.7: Ease-of-teaching of the artificial languages with a binary vocabu-
lary.

ers independently for 1000 iterations. For permuted languages, results are also

averaged over 20 random permutations. The training curve is shown in Fig-

ure 6.7. We can see that perfect languages are easier-to-teach than permuted

ones. Expressing color first, shape next is slightly better than the other way

around, although we do not have a good explanation for why this would be

true. For simplicity, we only retain the results of ‘cs’ in the following figures

as comparison.

6.2.2 Hyperparameters Search

Two hyperparameters need to be tuned, λS and λL before the entropy regular-

ization term. We find hyperparameter search crucial in this setting since with

some hyperparameters agents’ strategies might converge to a (partial) pooling

equilibrium. In these cases, the speaker finds a unitary language (i.e., uses the

same message for all objects) or nearly unitary (i.e., uses the same message

for all but one object). Thus, the communication success is low and we call

such languages as degenerate languages [31].

We sweep λS and λL respectively over {0.1, 0.05, 0.02} and train agents
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Figure 6.8: Hyperparameter sweep over λS and λL.

for 6k iterations without reset. Training curves of the 6k iterations with dif-

ferent hyperparameters are plotted in Figure 6.8. Each line is averaged over

100 randomly initialized trials with the same seeds. The average topographic

similarity after training for 6k iterations is also shown in the legend. If any

trial contains degenerate languages, the topographic similarity is ‘nan’. Note

that topographic similarity is undefined when there is a unitary language or a

same message for all except one [29]. From this figure, since when λS = 0.05

and λL = 0.05 communication success is achieved fastest, we use those for the

experiments.

When λS = 0.05 and λL = 0.05, we conduct the same experiment as before.

For the reset regime, we swap out a new listener every 6k iterations for 50 times.

For the no-reset regime, the speaker always talks to a same listener for 300k

iterations. We evaluate the teaching speed of the language after 60k, 180k and

300k iterations by freezing the speaker’s parameters and teaching the language

to 30 new listeners. The teaching speed of languages learned in both regimes

are in Figure 6.9. We also evaluate the topographic similarity measure every

6k iterations for both regimes and show in Figure 6.10. The teaching speed of

the languages gets slow with training for both regimes, which corresponds to

the decrease of the topographic similarity measure in both. For the no-reset

regime, topographic similarity measure decreases fast at first and gradually

slows down dropping. For the reset regime, the measure remains almost the
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Figure 6.9: Ease-of-teaching when λS = 0.05 and λL = 0.05.

same until 180k iterations, and then starts dropping.

The reasons why languages are getting less easier-to-teach may be that

we need more exploration for the speaker so that each time the listener gets

reset, the language could possibly vary to a simpler one. To have that degree

of exploration and keep each trial away from a pooling equilibrium at the

same time is hard to obtain in this binary vocabulary setting. With a larger

exploration hyperparameter, λS = 0.1 and λL = 0.05, for the reset regime

there are 4 out of 100 trials producing degenerate languages, 2 of 4 trials jump

out of this local optimum eventually. For the no-reset regime, 7 out of 100

trials stay in the local optimum of a pooling equilibrium eventually due to

the bad initialization and the lack of additional force to explore the language.

If we intentionally removed the runs that produce degenerate languages, and

average the remaining trials for both regimes. We draw such post-processed

teaching speed of the languages and the changes of topographic similarity in

Figure 6.13 and Figure 6.12. The topographic similarity and the teaching

speed both rise up for the reset regime, while drop for the no-reset regime.

This is similar to what we have shown in previous chapters.
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Figure 6.10: Topographic similarity when λS = 0.05 and λL = 0.05.
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Figure 6.11: Ease-of-teaching during training when λS = 0.05 and λL = 0.05.
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Figure 6.12: Topographic similarity when λS = 0.1 and λL = 0.05 (removed
degenerate ones).
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Figure 6.13: Ease-of-teaching when λS = 0.1 and λL = 0.05 (removed degen-
erate ones).
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Figure 6.14: Ease-of-teaching during training when λS = 0.1 and λL = 0.05
(removed degenerate ones).

6.2.3 Can We Find “Words” in the Emergent Languages?

From the reset regime experiments when λS = 0.1 and λL = 0.05, 16 out of

100 trials converge to a perfect language with topographic similarity about

0.67 after training for 300k iterations. Table 6.1 shows an example of such a

language. Every object is referred as different messages by the speaker in this

language. Each color is expressed by the same word as the middle 3 bits. The

first and the last bit are interpreted together as different shapes. Messages

starting with ‘1’ and ending with ‘0’ mean ‘circle’, and starting with ‘0’ and

ending with ‘1’ mean ‘square’, and starting with ‘0’ and ending with ‘0’ mean

‘star’, and starting with ‘1’ and ending with ‘1’ mean ‘triangle’. This suggests

that consecutive or inconsecutive bits of ‘characters’ can form together to

represent an integral meaning and function similar to “words”. Note that we

do not find such resulting languages from the no-reset regime when λS = 0.1

and λL = 0.05, nor from any regimes when λS = 0.05 and λL = 0.05.
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Table 6.1: A learned language with topographic similarity 0.67 in a limited
vocabulary

black blue green grey pink purple red yellow
circle 10110 11110 11100 11010 10000 10010 11000 10100
square 00111 01111 01101 01011 00001 00011 01001 00101

star 00110 01110 01100 01010 00000 00010 01000 00100
triangle 10111 11111 11101 11011 10001 10011 11001 10101

6.2.4 Discussion

In the binary vocabulary setting, we find that there exists a dilemma between

having large enough exploration for the speaker to vary languages and keep-

ing stability of not reaching a pooling equilibrium. With different entropy

hyperparameters, we get quite different results, which illustrates entropy hy-

perparameters affect the degree of impact. In this case, larger exploration

combined with incorporating new listeners can find compositional languages.

However, the drawback is large exploration may lead to a bad local minimum

occasionally.

Compositionality can be seen as rising from a trade-off between pressures

for compressibility and pressures for expressivity [31]. The appropriate pres-

sure for compositionality is to see if compositional languages are dominant

in the distribution of languages (including degenerate languages, holistic lan-

guages, compositional languages, and others). Degenerate languages are the

most compressible ones. Holistic languages are the most expressive ones, but

not compositional at all. Ease-of-teaching naturally considers both compress-

ibility and expressivity, which builds a connection with compositionality di-

rectly.

To get a reliable emergence of optimal signaling (i.e., unambiguous lan-

guage), a systemic bias against ambiguity is required after examining different

models used in game theory, artificial life, evolutionary linguistics [55]. We do

not encode such bias into our learning process, since it is out of the scope of

this thesis. It may be helpful to avoid getting into the bad local minimum.
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Chapter 7

Conclusions and Future Works

We propose new training regimes for the family of referential games to shape

the emergent languages to be easier-to-teach and more compositional. We first

introduce ease-of-teaching as a factor to evaluate emergent languages. We then

show the connection between ease-of-teaching and compositionality, and how

introducing new listeners periodically can create a pressure to increase both.

We further experiment with resetting a single listener and all listeners within

a population, and find that it is critical that new listeners are introduced

abruptly rather than smoothly for the effect to be pronounced.

As future work to the emergence of compositional languages in referential

games, a generalization test on held-out compositions of attributes can be con-

ducted. And to develop a compositional language consistently, a bias against

ambiguity should be considered. One idea is to incorporate curriculum learn-

ing, gradually increasing the difficulty of the referential tasks. We can increase

the number of distractors or present distractors that are harder to distinguish

to the agents.

Ease-of-teaching is a new metric to compare the communication protocols.

We implicitly optimize ease-of-teaching in this thesis. Explicitly optimizing

this measure should be considered, for example, using meta-learning to opti-

mize the accuracy of teaching a new listener after a few updates. The training

regime can be incorporated to develop compositional communication proto-

cols, which can be more easily understood by humans. The connection between

ease-of-teaching and compositionality should be explored when images as in-
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put instead of symbolic input. Abrupt changes in the objective are somewhat

helpful, and should be examined to what extent in a broader context.

This is the first work to consider the effect of introducing new agents in

communication between RL agents. We explore it in the context of referential

games. It would be interesting to examine if the effect of introducing new

agents holds when behaviour and communication actions coexist in the envi-

ronment. It may be used to produce simpler behaviour strategies other than

communication for multiple agents as well.
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