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Abstract 

Modern technology-based assessments have the capacity to record every student-computer 

interaction in log files. Cluster analysis of log files could yield insights about students’ problem 

solving strategies and their misconceptions. However, current cluster analysis algorithms often 

rely on expert-selected features and they do not take the order of student actions into account. To 

address these limitations, this study proposes a novel deep learning approach to cluster student 

actions in log files. The proposed method, Long Short Term Memory (LSTM) cluster, first 

extracts features relevant to the problem from sequential data, and then clusters students based 

on the extracted features. In order to demonstrate and evaluate LSTM cluster, a real data study 

and a simulation study were conducted. In the real data study, LSTM cluster identified four 

different problem-solving strategies. A detailed examination of these strategies suggested that the 

order of student actions was indeed important. The simulation study suggested that LSTM cluster 

had good accuracy for large sample sizes. However, when sample size is small, the number of 

student actions needs to be reduced in order to prevent overfitting.  
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Chapter 1 Introduction 

The widespread use of advanced computer technologies has begun to revolutionize 

educational assessments. Starting from early elementary grades, newly developed educational 

assessments become more and more technology-based, game-like, and presenting real world 

problems in a more authentic way (e.g., Escueta, Quan, Nickow, & Oreopoulos, 2017). 

Compared with traditional assessments, new technology-based assessments have the advantages 

of being more engaging, and allowing students to explore, experiment, get automated feedback, 

and interact with other students within a virtual environment. In addition, most of these 

technology-based assessments can store every action a student takes into a log file, which 

provides rich information about the student’s thoughts and problem solving processes without 

interrupting the student’s problem-solving process. As a result, technology-based assessments 

are promising for assessing process-based, higher-order thinking skills that are crucial for 

students to succeed in the 21
st
 century. More specifically, the analyses of student log files have 

the potential to help answer the questions of how students solve problems, what strategies 

students use to solve problems, what common erroneous rules and/or misconceptions students 

have. While the log file provides comprehensive information in understanding students’ problem 

solving processes, its complexity also poses a number of challenges for analysis (García, Romero, 

Ventura, de Castro, & Calders, 2011).  

Kerr (2015) summarized the literature and pointed out three major challenges for 

analyzing data from log files (i.e., log data). First, log files contain huge quantities of information. 

For example, each participant can generate thousands of pieces of information in just half an 

hour of game play. Second, log files contain highly detailed information (e.g., “select Tool A,” 
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“move game character to the left,” etc.), and there is no initial theory to indicate which actions 

are relevant to the problem and which are not (Levy, 2012; also, Leighton & Chu, 2016). Third, 

there is often little overlap between students’ log files. In other words, log data are very sparse. 

Most of the information may not be directly relevant to the problem. In addition to these three 

challenges, it is also important to note that log file information is sequential in nature. That is, 

doing action A and then doing action B may be different from doing action B and then doing 

action A, even though the same actions are performed. The orders in which students perform 

certain actions may be crucial to understand their problem-solving strategies. 

 Traditional statistical methods designed for well-defined problems cannot be directly 

applied for the analysis of log data. Therefore, various data mining techniques have been applied 

to analyze log files. The detailed data mining techniques and examples of applications are 

summarized in Romero, Ventura, Pechenizkiy, and Baker’s (2011) Handbook of Educational 

Data Mining, which is discussed in the literature review section of this dissertation. There are 

three major categories of data mining methods: classification methods such as Bayesian Network, 

and Neural Network (Hӓmӓlӓinen, & Vinni, 2011), clustering methods such as k-means, self-

organizing map (Vellido, Castro, & Nebot, 2011), and sequential pattern analysis (Zhou, Xu, 

Nesbit, & Winne, 2011). Among these three categories, classification methods and clustering 

methods often ignore students’ orders of actions because they often use only action frequency as 

input (Hӓmӓlӓinen, & Vinni, 2011; Vellido et al., 2011). As a result, potentially important 

information regarding student problem solving sequences of student actions might be overlooked. 

While sequential pattern analysis considers the orders of student actions, it often fails to 

distinguish problem-relevant actions and problem-irrelevant actions (Zhou et al., 2011). 
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Consequently, sequential pattern analysis tends to produce too many sequential patterns that are 

difficult to interpret substantively for meaning. 

 In order to address the challenges of log file analysis and the limitations of current 

educational data mining methods, the goal of this study was to propose and evaluate an 

integrated three-step analysis approach for log data analysis. In step 1, I proposed to use a deep 

learning neural network, Long Short Term Memory Model (LSTM), to predict the problem 

solving outcomes based on students’ problem solving sequences. Deep learning neural networks 

are currently one of the most powerful machine learning algorithms for finding patterns in large 

data sets (Hinton et al., 2012). These networks work by extracting multiple layers of non-linear 

features from the raw input and using these features to predict the outcomes. The LSTM model, a 

specific type of deep learning neural network, can use sequential data to predict outcomes, and it 

has the ability to identify and ignore outcome-irrelevant input (Gers, Schmidhuber, & Cummins, 

2002). These properties make the LSTM a promising approach to analyzing log files. The 

purpose of analysis at step 1 is to extract problem relevant features from the problem-solving 

sequences. In step 2, cluster analysis is used to group the results (i.e., the extracted features) from 

the LSTM network. In this step, students who use similar problem-solving sequences/strategies 

are clustered together. In step 3, sequential pattern analysis is used to identify and interpret each 

cluster’s common sequences. The goal of step 3 is to identify what common problem solving 

strategy students in each cluster use. In addition, exemplar sequences that are close to the 

centroid of each cluster are identified to help interpretation. Therefore, the proposed method was 

named LSTM cluster. 
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In order to evaluate LSTM cluster, a real data study and a simulation study were 

conducted. The specific research questions are presented at the end of Chapter 3. 

 Only very recently have deep learning neural networks been applied in the field of 

educational data mining (Piech et al., 2015; Huang & Brusilovsky, 2016). This study is an 

attempt to bring powerful machine learning technology into educational data mining for the 

analysis of log data. It provides a way to integrate several current educational data mining 

methods in the analysis of log files to facilitate the classification of students’ problem solving 

strategies. The results from the analysis of log files can help identify students’ weaknesses in 

problem solving and have the potential to assist teachers in designing effective learning 

interventions.  

Organization of the Dissertation 

 Chapter 1 contains the introduction of the dissertation. Chapter 2 reviews the literature of 

current educational data mining methodology in log file analysis. Chapter 3 presents the 

proposed LSTM cluster method. Chapter 4 presents the method and results for the real data study. 

Chapter 5 presents the method and results for the simulation study. In chapter 6, the implications, 

limitations, and future directions are discussed. 
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Chapter 2 Literature Review 

This chapter begins by introducing technology-based assessments in general and 

reviewing game-based and simulation-based assessments in particular. Next, three major 

categories of techniques for analyzing log data in educational data mining are reviewed: 

clustering, classification, and sequential pattern analysis. In the end, the limitations of the current 

methods for analyzing log data are summarized. 

Technology-Based Assessments 

The field of Technology-Based Assessment is relatively new, and yet it is very diverse as 

it includes many different assessment formats, such as game-based assessments, simulation-

based assessments, group assessments, and automated diagnostic assessments (Mayrath, Clarke-

Midura, Robinson, & Schraw, 2011). In general, it reflects educational researchers’ attempts to 

use modern technology to break the limitations of traditional assessments (e.g., costly 

performance based assessments, difficulty to capture student problem solving processes, & less 

engaging). Despite the increasing diversity in technology-based assessments, a majority of 

modern technology-based assessments are computer-based assessments that have the potential to 

assess student problem solving processes via computer generated log files. As explained before, 

a log file is the history of everything a student does while solving tasks during a technology-

based assessment. Log files allow the capture of a rich amount of information about students’ 

problem-solving processes without any interruption, which is one major breakthrough that 

separates modern technology-based assessments from traditional assessments. Thus, in this 

dissertation, I am particularly interested in technology-based assessments that include log files to 

assess students’ learning/problem solving processes. Among different types of technology-based 

assessments, game-based and simulation-based assessments are the most commonly used 
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methods to capture students’ detailed problem solving processes. Since the goal of the 

dissertation is to develop a method to cluster problem-solving sequences, simulation-based and 

game-based assessments are the focus in the following subsections. 

 In game-based and simulation-based assessments, students need to apply their knowledge 

and skills to dynamically interact with computers in virtual environments to solve problems 

(Behrens, Mislevy, DiCerbo, & Levy, 2011; Quellmalz et al., 2011; Zapata-Rivera, & Bauer, 

2011). The major difference between game-based and simulation-based assessments is that 

simulation-based assessments involve realistic scenarios to frame the problems while game-

based assessments involve imaginative and engaging but not necessarily realistic scenarios to 

frame the problems (Quellmalz et al., 2011; Zapata-Rivera, & Bauer, 2011). In other words, 

simulation-based assessments are designed to test whether students can solve problems in 

realistic situations, while game-based assessments are designed to be more entertaining and 

motivate student to learn and solve problems while playing.  

In order to illustrate the two types of assessments, some examples are provided below. 

The Mystery Plants interactive computer task created by National Assessment of Educational 

Progress (NAEP; National Assessment of Educational Progress, 2009) is an example of a 

simulation-based assessment. An example screen shot is provided in Figure 1. In this particular 

task, students are asked to solve the problem of how much sunlight different plants need to grow 

well. In order to solve the problem, students need to conduct a series of virtual experiments by 

dragging different computer-simulated plants into different levels of a computer-simulated 

greenhouse and observe the plants’ growth. Students need to make hypotheses before conducting 

the experiments and keep revising their hypotheses until they think they have enough evidence 
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(i.e., experiment results in tables and figures) to support their hypotheses. Since this task requires 

students to apply their scientific inquiry skills and to dynamically interact with a virtual scenario 

that resembles a real scientific experiment, this is considered a simulation-based assessment.  

 

Figure 1. A screenshot of Mysterious Plants. 

An example of game-based assessment is the learning game, Save Patch, designed by 

Baker, Chung, and Delacruz (2011) to test students’ knowledge about rational numbers. An 

example screenshot is shown in Figure 2. In this game, students are required to help “Patch,” an 

in-game animal character, move from his starting position to the final destination. In this game, 

Patch can only move by bouncing on trampolines, and how far Patch can bounce depends on the 

value of the trampoline. Students can move trampolines onto the grid and energize them by 

adding coils, which are of whole and fraction unit values. Successful game play requires students 
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to apply fraction algebra. In this example game, fractional algebra problems are presented in 

imaginary and engaging set of scenarios for young children. While it is not realistic, it can 

motivate students to play more and practice their fractional algebra skills. In practice, some 

game-based assessments also use realistic scenarios, and there is no hard distinction between 

game-based and simulation-based assessments. Consequently, simulation-based and game-based 

assessments are often discussed together in the literature (e.g., Kerr, 2015; Kerr & Chung, 2012). 

From this point onwards, for the sake of simplicity, I will refer to both simulation-based and 

game-based assessments as Simulation-Based Assessments. This terminology is also commonly 

used in the literature (de Klerk, Veldcamp, & Eggen, 2015). 

 

Figure 2. A screenshot of Save Patch. 
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 There are many benefits and values associated with simulation-based assessments. In fact, 

the pedagogical value of simulation-based assessments has been the focus of several studies. For 

example, Slotta and Chi (2006) conducted an experimental study to examine the effects of a 

simulation-based assessment on student learning of electricity. In the experimental group, a 

simulation-based assessment was used to teach and assess students about electricity, and in the 

control group, only traditional teaching and assessments were used. They found that students in 

the experimental group had significantly better learning outcomes (i.e., measured by verbal 

explanation and problem solutions) than students in the control group. Ioannidou et al. (2010) 

created a collaborative simulation-based assessment program that required different students to 

control different simulated human organs. Students needed to understand how different organs 

worked to achieve homeostasis. The results showed that students in the experimental group 

significantly outperformed students in the control group in every learning outcome measured and 

expressed significantly more interest in health. Gee (2008) argued that video or learning games 

may help students think by promoting embodiment or situated cognition, which is supported by 

the idea that human thinking is shaped not only by the brain but by the agent’s full-bodied and 

self-regulated interaction with the external world, including many aspects of the body beyond the 

brain. Shaffer and Gee (2011) further listed many theoretical advantages of simulation-based 

assessments, including providing information for players to improve; assessing whether a player 

is ready for future challenges; and integrating learning and assessments. 

 Besides these pedagogical benefits, simulation-based assessments provide important and 

unique value in their ability to generate log files, which store the history of everything a student 

does while using the assessment system (Mayrath, Clarke-Midura, & Robinson, 2011). Log files 

are also known by many other names including logdata, tracedata, and clickstream data in the 
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literature. As discussed before, log files contain a rich amount of information about students’ 

problem solving processes, but at the same time, the complexity of log files also poses many 

challenges for psychometric analysis. In order to utilize simulation-based assessments as formal 

assessments in practice, educators or test developers need to extract important information from 

the complex log files and build a psychometric model to infer students’ proficiency. This is one 

reason that Evidence Centered Design (ECD; Mislevy, 2006) was proposed and used in modern 

simulation-based assessments. ECD formalizes the procedures generally undertaken by expert 

assessment developers (Shute, Hansen, & Almond, 2008), and provides a multi-layered 

systematic approach to design assessments.  

 ECD has many components, but from a psychometric perspective the most important 

component of ECD is the Conceptual Assessment Framework (CAF). CAF consists of three 

models: the student model, the activity model, and the evidence model (de Klerk, Veldcamp, & 

Eggen, 2015). The student model specifies what latent student variables (e.g., proficiency, 

knowledge, skills, attributes, or misconceptions) educators or test developers intend to measure, 

and the relationship among these variables. These variables are commonly referred to as the 

Student Model Variables (SMVs). The activity model specifies what activities, tasks, or test 

items are required to elicit student behaviors that reflect SMVs. In the context of simulation-

based assessments, the activity model includes all the tasks that are part of a simulation-based 

assessment. The evidence model combines the student model and the task model, and it describes 

the relationship between SMVs and Observable Variables (OVs), which are students’ behavioral 

indicators of the SMVs. It is important to note that the OVs of simulation-based assessments can 

be quite different from the OVs of traditional assessments. For example, in traditional multiple-

choice tests, the OVs are simply the item scores (e.g., 1 for correct and 0 for incorrect). In 



11 
LSTM CLUSTER 

simulation-based assessments, the OVs are more complicated. On one hand, log files from 

simulation-based assessments contain student behavior data that can be scored like traditional 

assessments. This type of data is often called the product data in the literature (de Klerk et al., 

2015). An example of product data in a simulation-based assessment would be a student’s final 

solution to a math problem. The scores of product data can be used directly as OVs. On the other 

hand, simulation-based assessments also store rich information about students’ problem solving 

processes in log files. This type of data is often called process data in the literature. Some 

process data can be used as OVs, while others are irrelevant. The challenge is to identify which 

part of the process data can be used as OVs for the SMVs. The process of identifying OVs from 

the raw data is called evidence identification in the ECD framework. There are two main ways to 

identify OVs in simulation-based assessments: expert judgment and data mining (de Klerk et al., 

2015). Often both are needed for evidence identification. A more detailed discussion of methods 

for evidence identification is presented in later sections. After identifying the OVs, the latent 

SMVs can be estimated using a psychometric model. This process of estimating SMVs from 

OVs is called evidence accumulation in the ECD framework. 

 The CAF in ECD provides a framework to construct psychometric models from log files. 

Within this framework, the psychometric properties of simulation-based assessments can be 

examined. De Klerk et al. (2015) conducted a comprehensive literature review of the 

psychometric analyses of simulation-based assessments. They identified and reviewed 31 current 

psychometric studies of simulation-based assessments, and classified these studies into two 

categories. The first category included studies that used educational data mining techniques to 

explore and identify students’ problem-solving patterns (e.g., Kerr & Chung, 2012). In ECD 

terms, these studies focus on evidence identification. The second category included studies that 
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used Bayesian networks (e.g., Mislevy et al., 2001; Shute and Ventura, 2013; Levy, 2014) or 

traditional psychometric models such as Item Response Theory (Quellmalz et al., 2012) and 

Confirmatory Factor Analysis (Quellmalze et al., 2013) to estimate student proficiency. In ECD 

term, these studies focus on evidence accumulation. It is under the second category, that familiar 

psychometric properties such as reliability and validity are examined. For example, Quellmalz et 

al. (2013) showed that simulation-based assessments had better reliability and validity than 

similar traditional assessments for assessing scientific inquiry. Since the goal of the current study 

is to explore and identify students’ different problem solving patterns in simulation-based 

assessments, the first category of studies reviewed by De Klerk et al. (2015) is more relevant. 

Therefore, the following sections focus on reviewing educational data mining techniques to 

identify students’ problem-solving patterns. It is important to note that the literature on 

educational data mining for simulation based assessment is relatively small, but educational data 

mining is widely applied in various other e-learning environments – such as Learning 

Management Systems (e.g., Moodle, eClass, Blackboard, etc), and Intelligent Tutoring Systems 

(e.g., Cognitive Tutoring System, Koedinger & Corbett, 2006). Although the goals of 

educational data mining in simulation-based assessments may be slightly different from that of 

other e-learning contexts, educational data mining techniques from other areas of e-learning can 

be modified and applied to simulation-based assessments. Thus, in the following subsections, I 

review studies that examined data mining techniques for the analysis of log files generated in 

various e-learning environments. Three major categories of data mining techniques are included: 

cluster analysis, classification (deep learning more specifically), and sequential pattern analysis. 
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Clustering Techniques in Educational Data Mining 

 The human brain naturally clusters reality into different groups (Vellido et al., 2011). For 

example, we naturally cluster animals into different categories (e.g., those that can fly, those that 

can swim, and those that walk on land) despite the fact that each animal is individually unique. 

Clustering helps human beings to more efficiently understand and interact with reality by 

providing a simplified model of reality. However, the human brain is not very efficient at 

clustering large amount of quantitative data. Therefore, many data mining clustering techniques 

have been developed to help human beings cluster and understand large sets of quantitative data. 

In the context of e-learning, the results obtained from clustering students based on their learning 

or problem solving behaviors can be used to provide specialized feedback to students belonging 

to each cluster (Zakrzewska, 2008). In addition, researchers can use the clustering results to 

evaluate and improve the e-learning or assessment software (Kerr, 2015). Furthermore, tools to 

cluster students based on their learning behaviors may be an efficient way to create online 

learning groups (Manikandan, Sundaram, & Babu, 2006).  

 In a very basic and simplified way, data clustering can be defined as assigning each of N 

data points to one of K possible clusters (Vellido et al., 2011). However, modern clustering 

techniques have more complexity than what this definition implies. There are many different 

types of modern clustering techniques. Vellido et al. (2011) classified these techniques into hard 

versus soft, partitional versus hierarchical, and probabilistic versus heuristic. Each of these 

dichotomies will be discussed shortly. Then, three popular cluster analysis techniques (i.e., k-

means clustering, finite mixture model, and agglomerative cluster analysis) will be discussed in 

detail. Lastly, current applications of cluster analysis in e-learning will be reviewed. 
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 Hard versus soft clustering techniques. Hard clustering techniques cluster each 

response vector (e.g., student) into one of the K possible clusters as the basic cluster definition 

describes. Examples of hard clustering techniques include k-means clustering (Vellido et al., 

2011) and agglomerative clustering (Everitt, 2011). In contrast, soft clustering techniques assign 

a probability measure of cluster membership to each data case. For example, suppose we are 

clustering students based on their problem-solving behaviours. Hard clustering techniques would 

produce results that specify to which cluster a student belongs (e.g., student A belongs to cluster 

2), but soft clustering techniques would produce results that specify the probability a student 

belongs to each cluster (e.g., student A has a 20% probability of being in cluster 1 but 80% 

probability of being in cluster 2). Examples of soft clustering techniques include mixture models 

(McLachlan, 2000) and fuzzy c-means cluster (Dunn, 1973). 

 Partitional versus hierarchical clustering techniques. Partitional clustering techniques 

assume a single common level for all clusters, while hierarchical clustering techniques assume 

that the cluster structure is nested or hierarchical. An intuitive example of hierarchical cluster is 

animal classification, in which animals are clustered into different species. Different species are 

nested within a genus, which is then nested within a family, and so on. In contrast, partitional 

clusters do not nest in higher order clusters. Common methods of partitional clustering 

techniques include k-means clustering, mixture model, and self-organizing maps (SOM, 

Kohonen, 2001), while examples of hierarchical clustering techniques include agglomerative 

cluster and bisecting k-means clustering (Pelleg & Moore, 1999). 

 Probabilistic versus heuristic clustering techniques. Probabilistic clustering techniques 

assume data in each cluster reflect a certain probability distribution (e.g., normal distribution or 
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multinomial distribution). Then, cluster membership probabilities are estimated based on the 

assumed probability distribution. Mixture models and generative topographic mapping (Bishop, 

Svensén, & Williams, 1998) are all examples of probabilistic clustering techniques. In contrast, 

heuristic clustering techniques do not assume that the data reflect any probability distribution, 

and clustering is based on heuristic algorithms. Examples of heuristic clustering include k-means 

clustering, SOMs, and agglomerative clustering. 

 Today, there are hundreds of clustering algorithms available. It is beyond the scope of 

this dissertation to review all of them. In the next subsections, three cluster analysis techniques 

(i.e., k-means clustering, finite mixture model, and agglomerative cluster analysis) will be 

discussed in detail. These cluster analysis methods were chosen because they 

represent/demonstrate the different types of cluster analysis previously discussed. K-means 

cluster analysis represents hard, partitional, and heuristic cluster analysis. Finite mixture model 

represents soft, partitional, and probabilistic cluster analysis. Agglomerative cluster analysis 

represents hard, hierarchical, and heuristic cluster analysis. Among these methods, k-means 

cluster analysis is the most basic cluster analysis, although finite mixture model is statistically 

more sophisticated. That being said, the efficiency of k-means may be more practical for large 

datasets. 

 K-means clustering. The idea of k-means clustering was first proposed by Steinhaus 

(1957). Since then, hundreds of clustering algorithms have been developed, but k-means 

clustering still remains one of the most widely used clustering algorithms due to its simplicity, 

efficiency, and empirical success (Vellido et al., 2011). As discussed before, k-means clustering 

is a hard, partitional, and heuristic clustering method. The goal of k-means clustering is to divide 
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a data set 𝐷 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} into K disjoint clusters, 𝐶 = {𝐶1, 𝐶2, ⋯𝐶𝐾}, where each continuous 

data case, 𝑥𝑖, is assigned to a unique cluster 𝐶𝑘. Researchers need to define the number of 

clusters, K, arbitrarily. The basic k-means clustering algorithm can be summarized as follows: 

1. Choose K random points as cluster centroids. 

2. Assign all observations to their closest cluster centroid according to a distance measure. 

3. Re-compute new cluster centroids. 

4. Repeat steps 2 and 3 until the cluster membership becomes stable. 

According to Vellido et al. (2011), the most commonly used distance measure is the 

Euclidean distance, which is suitable to detect ball-shaped clusters. Mahalanobis distance can be 

used to detect ellipse shaped clusters. The strength of k-means clustering lies in its simplicity. 

However, there are two weaknesses with k-means clustering. First, researchers need to choose an 

arbitrary number of clusters, K. There is no statistical test to help determine what number of 

clusters is the most appropriate. Second, k-means clustering is sensitive to the starting points of 

the cluster centroids. In other words, different starting cluster centroids may result in different 

cluster solutions, as k-means clustering does not guarantee that the solution will converge to a 

global minimum. 

 Finite mixture models. The initial idea of finite mixture models was proposed as early 

as 1846 (McLachlan, 2000). However, due to its computational difficulty, the method did not 

become widely used until the advent of modern computers and the popularization of the 

Maximum Likelihood (ML) parameterization (McLachlan, 1988). Finite mixture models are soft, 

partitional and probabilistic clustering methods. Finite mixture models assume that the observed 

data come from a mixture of probability distributions. Each cluster k has a probability 
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distribution 𝑔𝑘(�⃗�; �⃗�𝑘), where �⃗� is a p-dimensional random vector, and �⃗� is a vector of 

parameters of the probability distribution. All finite mixture models can be represented using the 

general formula: 

 𝑓(�⃗⃗⃗�; �⃗⃗⃗�, �⃗⃗⃗�) = ∑𝑝𝑘𝑔𝑘

𝐾

𝑘=1

(�⃗⃗⃗�; �⃗⃗⃗�𝒌), (1) 

where 𝑓(�⃗⃗⃗�; �⃗⃗⃗�, �⃗⃗⃗�) is the probability distribution of the observed data, and �⃗⃗⃗� = (𝑝1, 𝑝2, ⋯ 𝑝𝐾) is a 

vector of cluster proportions. When �⃗⃗⃗� is continuous, 𝑔𝑘(�⃗⃗⃗�; �⃗⃗⃗�𝒌) is often set to be the multivariate 

normal distribution and �⃗⃗⃗�𝒌 includes the mean vector and variance covariance matrix for cluster k. 

This model is often called the Gaussian Mixture Model or Latent Profile Analysis. When �⃗⃗⃗� is 

categorical, 𝑔𝑘(�⃗⃗⃗�; �⃗⃗⃗�𝒌) can be set to be the multinomial distribution and �⃗⃗⃗� includes a list of event 

probabilities. This model is commonly referred to as the Latent Class Analysis.  

 In order to estimate the probability that each data case, �⃗⃗⃗�𝒊, belongs to cluster k, the 

following formula can be used: 

 𝑃(𝑘|�⃗⃗⃗�𝒊) =
𝑝𝑘𝑔𝑘(�⃗⃗⃗�𝒊; �⃗⃗⃗�𝒌)

𝑓(�⃗⃗⃗�𝒊;  �⃗⃗⃗�, �⃗⃗⃗�)
. (2) 

In equation (1) and (2), �⃗⃗⃗� and �⃗⃗⃗� can be estimated using ML, and the Expectation 

Maximization (EM) algorithm is often used to find solutions to the ML equation. The detailed 

ML equations and EM algorithm can be found in Everitt, Landau, Leese, and Stahl (2011). 

However, the finite mixture model is also sensitive to the starting values of �⃗⃗⃗� and �⃗⃗⃗�. In practice, 

statistical software often randomly initializes many (e.g., 1000) sets of starting values of �⃗⃗⃗� and �⃗⃗⃗�. 

For each set of starting values, a model is estimated and its log likelihood is computed. The 
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model with the best log likelihood value will be selected. However, in order to ensure this is 

indeed the best model, researchers need to check whether the best log likelihood can be 

replicated with different sets of starting values (Geiser, 2010). 

 Agglomerative cluster analysis. K-means cluster analysis and infinite mixture model 

both use a top-down approach, which requires the specification of the number of clusters and 

estimation of cluster centers before assigning cases to clusters. In contrast, agglomerative cluster 

analysis uses a bottom-up approach, in which cases that are close to each other are combined 

together to form clusters (Everitt, 2011). More specifically, agglomerative cluster analysis starts 

with a collection C of N singleton clusters. Each cluster contains one data point. Next, the 

following procedures are repeated until only one cluster is left: a) compute distances between all 

clusters and store the distances in a matrix for efficiency; b) find a pair of clusters that has the 

shortest distance; c) combine the two clusters into a new cluster; and d) remove these two 

clusters from collection C and add the newly combined cluster into collection C. There are many 

ways to define the distance between two clusters (𝑐1, 𝑐2). Using different cluster distances can 

result in different solutions. Single-link distance is the distance between closest elements in 

clusters.  

 𝐷𝑠𝑖𝑛𝑔𝑙𝑒 𝑙𝑖𝑛𝑘(𝑐1, 𝑐2) = min
𝑥1∈𝑐1, 𝑥2∈𝑐2

𝐷(𝑥1, 𝑥2). (3) 

Using single-link distance tends to produce chain-like clusters. Complete-link distance is the 

distance between the farthest elements in clusters.  

 𝐷𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑙𝑖𝑛𝑘(𝑐1, 𝑐2) = max
𝑥1∈𝑐1, 𝑥2∈𝑐2

𝐷(𝑥1, 𝑥2). (4) 

Using complete-link distance tends to produce spherical shaped clusters. Average link distance is 

the average of all pairwise distances between points in clusters.  
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 𝐷𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑖𝑛𝑘(𝑐1, 𝑐2) =
1

|𝑐1|

1

|𝑐2|
∑ ∑ 𝐷(𝑥1, 𝑥2)

 𝑥2∈𝑐2𝑥1∈𝑐1

. (5) 

Using average-link distance has the advantage of being less affected by outliers. Average-link 

distance is the default distance in SPSS. Centroid distance is the distance between centroids of 

two clusters.  

 𝐷𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑙𝑖𝑛𝑘(𝑐1, 𝑐2) = 𝐷 ((𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑐1), (𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑐2)). (6) 

Centroid distance is the most intuitive approach. Finally, Ward’s distance is the sum of squared 

distance between all points shared in the two clusters and the centroid of the two clusters.  

 𝑇𝐷𝑐1∪𝑐2 = ∑ 𝐷(𝑥, 𝜇𝑐1∪𝑐2)
2

𝑥∈𝑐1∪𝑐2

. (7) 

Ward’s distance uses the same objective function that k-means used. To efficiently update 

distance matrix in agglomerative cluster analysis with any type of cluster distance, Lance and 

Williams’ (1967) formula is used, which is shown below. 

 𝑑𝑘(𝑖𝑗) = 𝛼𝑖𝑑𝑘𝑖 + 𝛼𝑗𝑑𝑘𝑗 + 𝛽𝑑𝑖𝑗 + 𝛾|𝑑𝑘𝑖 − 𝑑𝑘𝑗|, (8) 

where 𝑑𝑘(𝑖𝑗) is the distance between cluster k and a newly formed cluster by combining previous 

cluster i and j; 𝛼𝑖, 𝛼𝑗, 𝛽, and 𝛾 are coefficients that determine the type of cluster distance; 𝑑𝑘𝑖, 

𝑑𝑘𝑗, and 𝑑𝑖𝑗 are distances between cluster k and i, cluster k and j, and cluster i and j, respectively. 

The coefficients associated with different types of cluster distances are presented in Table 1. 

Table 1. Lance and Williams (1967) Formula Coefficients for Different Cluster Distances. 

Method 𝛼𝑖 𝛼𝑗 𝛽 𝛾 

Single link .5 .5 0 -.5 

Complete link .5 .4 0 .5 

Average link 𝑛𝑖
𝑛𝑖 + 𝑛𝑗

 
𝑛𝑗

𝑛𝑖 + 𝑛𝑗
 

0 0 
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Centroid Link 𝑛𝑖
𝑛𝑖 + 𝑛𝑗

 
𝑛𝑗

𝑛𝑖 + 𝑛𝑗
 

−𝑛𝑖𝑛𝑗

(𝑛𝑖 + 𝑛𝑗)
2 

0 

Ward distance 𝑛𝑖 + 𝑛𝑘
𝑛𝑖 + 𝑛𝑗 + 𝑛𝑘

 
𝑛𝑗 + 𝑛𝑘

𝑛𝑖 + 𝑛𝑗 + 𝑛𝑘
 

−𝑛𝑘
𝑛𝑖 + 𝑛𝑗 + 𝑛𝑘

 
0 

𝑛𝑖 , 𝑛𝑗 , 𝑎𝑛𝑑 𝑛𝑘 are the sample sizes for cluster i, j, and k. 

 Agglomerative cluster analysis produces a dendrogram that shows which clusters are 

combined in each iteration. An example of dendrogram of a five-case agglomerative cluster is 

shown in Figure 3. Researchers can choose the number of clusters based on criteria discussed in 

the next section. 

 

Figure 3. Example Agglomerative Cluster Dendrogram of five cases. Reprinted from Cluster 

Analysis (5
th

 Edition), by Everitt, B.S., (2011), Chichester, West Sussex, U.K: Wiley. 

 Determining the number of clusters. Many cluster analysis techniques (e.g., k-means 

clustering and finite mixture model) require the specification of the number of clusters, k, before 

model estimation. While other methods – such as different variations of hierarchical cluster 

analysis – do not require the number of clusters to be known before model estimation, the 
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number of clusters still needs to be determined after model estimation to interpret the results in a 

meaningful way. The correct choice of k is often ambiguous. Various methods have been 

suggested. Each method is based on unique assumptions and criteria, and may be helpful in 

particular situations. As recommended by Everitt (2011), researchers should not depend on a 

single rule for selecting the number of clusters, and instead synthesize the results of several 

techniques. In the following subsections, four popular approaches to determine the number of 

clusters are discussed. 

 Determining clusters graphically. Humans are good at discerning visual patterns. As 

Everitt (2011) suggested, “graphical views of multivariate data are important in all aspects of 

their analysis.”  When the data are continuous and have one or two dimensions, it is relatively 

easy to visualize the data using scatter plot. However, when the data have more than two 

dimensions, visualization is less straightforward. There are several approaches to reduce the 

dimensions of the data for visualization (Everitt, 2011). Principal Component Analysis (PCA) is 

the most basic and common approach. In PCA, eigenvalues and eigenvectors of the variance 

covariance matrix or correlation matrix are computed. The eigenvalues represent the variances 

extracted by each component. The eigenvectors are coefficients that can be used to combine the 

variables linearly to obtain the principal components. The first component extracts the largest 

amount of variance from the data. The second component is orthogonal to the first component, 

and it extracts the second largest amount of variance from the data. Using the first two 

components, multivariate data can be visualized, and the number of clusters can be determined 

visually. The disadvantage of this approach is that the first two components may not capture 

enough variance to account for the variability of the data. 
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 Information criterion approach. The information criterion approach uses relative model 

fit indices to determine the number of clusters. There are two commonly used information 

criteria: Akaike Information Criterion (AIC; Akaike, 1998), Bayesian Information criterion (BIC; 

Schwarz, 1978), and sample size adjusted BIC. All these information criteria consider the 

probability of observing the data given the assumption that a cluster model is true. In other words, 

these criteria involve using the model-implied probability distribution of the dependent variables. 

This means that researchers need to specify the probability distribution of the data within each 

cluster. Often, Gaussian distribution is used to model continuous data (e.g., Goutte, Hansen, 

Liptrot, & Rostrup, 2001). Consequently, the accuracy of these criteria depends on whether the 

data indeed follow the specified probability distributions. With this understanding, AIC and BIC 

are introduced in the following paragraphs.  

In AIC, the difference (measured using Kullback-Leibler divergence) between a model 

implied probability distribution and the true population distribution is estimated. More 

specifically, the AIC formula is: 

 𝐴𝐼𝐶 = 2𝑘 − 2 log(�̂�), (9) 

where k is the number of estimated parameters in the model and �̂� is the maximum value of the 

likelihood function for the model. Models with lower values of AICs are considered better 

because it means they are similar to the population model. In order to use AIC to determine the 

number of clusters, models with different number of clusters are run.  For each model, AIC is 

calculated. The number of cluster that gives the lowest value of AIC is chosen.  

In BIC, the probability that a cluster model is true given the data is estimated using the 

Bayes’ Rule, which involves the use of the model-implied probability distribution of the data. In 
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order to be consistent with AIC, a negative sign is applied to this estimated probability, so that 

lower BIC value represents better model fit. More specifically, the BIC formula is: 

 𝐵𝐼𝐶 = log(𝑛) 𝑘 − 2log (�̂�), (10) 

where n is the number of data points, k is the number of parameters in the model, and �̂� is the 

maximum value of the likelihood function for the model. To determine the number of clusters, 

models with different number of clusters are run, and the one with the lowest BIC is chosen. 

 Within cluster distance approach. As the name suggests, this approach depends on 

calculating the sum of the within-cluster distances between every data point in a cluster and the 

cluster centroid. The total within-cluster distance is: 

 𝑊𝐾 =∑∑‖𝑥𝑘𝑖 − 𝜇𝑘‖
2

𝑛𝑘

𝑖=1

𝐾

𝑘=1

, (11) 

where k is the number of clusters, 𝑛𝑘 is the number of cases in cluster k, 𝑥𝑘𝑖 is a point in cluster k, 

and 𝜇𝑘 is the cluster k’s centroid. Intuitively, if the true number of clusters is k, then setting the 

number of clusters to be smaller than k will lead to much larger 𝑊𝐾, and setting the number of 

clusters to be greater than k will only lead to minor decrease in 𝑊𝐾. Based on this intuition, 

several statistics have been developed. Tibshirani, Walther, and Hastie (2001) proposed the gap 

statistic, which attempts to standardize the comparison of log (𝑊𝐾) with a null reference 

distribution with no obvious clustering. Most of the time, the null distribution is a uniform 

distribution with the maximum and minimum values from the data as the boundaries. More 

specifically, the gap statistic is defined as: 

 𝐺𝑎𝑝(𝑘) = 𝐸[log (𝑊𝐾
∗)] − 𝑙𝑜𝑔(𝑊𝐾). (12) 
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To estimate 𝐸[log (𝑊𝐾
∗)], B copies of reference datasets are generated by sampling uniformly 

from the original dataset’s bounding box (i.e., maximum and minimum values). For each dataset, 

log (𝑊𝐾
∗) is calculated, then the average of these log (𝑊𝐾

∗) is used to estimate 𝐸[log (𝑊𝐾
∗)]. These 

log (𝑊𝐾
∗) have a standard deviation sd(K), which is biased by simulation error. After correcting 

the errors, it equals to 

 𝑠𝐾 = √1 +
1

𝐵
𝑠𝑑(𝐾). (13) 

Finally, the optimal number of clusters is the smallest k such that 𝐺𝑎𝑝(𝑘) ≥ 𝐺𝑎𝑝(𝑘 + 1) − 𝑠𝑘+1. 

Pham, Dimov, and Nguyen (2005) proposed the f(K) statistic, which is defined as follows: 

 

𝑓(𝐾) =

{
 

 
1                  𝑖𝑓 𝐾 = 1           

𝑊𝑘

𝛼𝑘𝑊𝑘−1
            𝑖𝑓 𝑊𝑘−1 ≠ 0, ∀𝐾 > 1 

1                  𝑖𝑓 𝑊𝑘−1 = 0, ∀𝐾 > 1

      

𝛼𝐾 =

{
 

 1 −
3

4𝑝
             𝑖𝑓 𝐾 = 2 𝑎𝑛𝑑 𝑁𝑑 > 1   

𝛼𝐾−1 +
1 − 𝛼𝐾−1

6
   𝑖𝑓 𝐾 > 2 𝑎𝑛𝑑 𝑁𝑑 > 1   

  

(14) 

where p is the number of variables in the data set and 𝛼𝐾 is a weight factor.  In order to 

determine the number of clusters, models with different number of clusters are run and the one 

with the lowest f(K) is chosen. 

 Significance tests.  For finite mixture models, there are several statistical tests available 

to help determine the number of clusters. Commonly-used tests include the bootstrap likelihood 

ratio difference test (Langeheine, Pannekoek, & van de Pol, 1996; von Davier, 1997) and the 

Vuong-Lo-Mendell-Rubin test (Lo, Mendell, & Rubin, 2001).  According to a simulation study 
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conducted by Nylund, Asparouhov, and Muthén (2007), the bootstrap likelihood ratio test is 

considered as more accurate than the Vuong-Lo-Mendell-Rubin test.  Thus, only the bootstrap 

likelihood ratio test will be reviewed here.  In the bootstrap likelihood ratio test, the original data 

are sampled with replacement many times (e.g., 1000).  For each dataset, a likelihood ratio is 

calculated between k and k-1 class.  Likelihood ratio is defined by the following formula: 

 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑟𝑎𝑡𝑖𝑜 = −2[log �̂�(𝜃𝑘) − log �̂�(𝜃𝑘−1)], (15) 

 

 where �̂�(𝜃𝑘) is the maximum likelihood value of model with k classes and �̂�(𝜃𝑘−1) is the 

maximum likelihood value of model with k-1 class. Finally, the p values of the likelihood ratio 

difference are estimated based on all the bootstrap sampled datasets. To determine the number of 

clusters, keep running models with more clusters until the bootstrap likelihood ratio is no longer 

significantly different. The cluster number is set to be k-1. 

 Applications of cluster analysis in educational data mining. Since the development of 

e-learning in the late 1990s, cluster analysis has been used in many educational data mining 

studies. In order to summarize these studies efficiently, three major aspects of these studies will 

be discussed: purposes of the studies, feature selection methods, and clustering analysis methods. 

 Purposes. In the context of e-learning, the most common purpose for using clustering 

analysis is to personalize students’ learning experience (Zakrzewska, 2008; Mylonas, Tzouveli, 

& Kollias, 2007; Lu et al., 2007; Tian, Wang, Zheng, & Zheng, 2008). Personalization stems 

from the idea that a good e-learning program should be able to adapt to different students’ 

learning preferences. However, since each student is unique, it is not feasible to create an e-

learning program that can adapt to each individual student. In order to deal with this problem, 



26 
LSTM CLUSTER 

students are clustered into groups based on their learning preferences and even personality. Then, 

the e-learning program can provide a specific learning environment for each group of students 

with common characteristics. It is believed that personalization can help improve students’ 

motivation and learning outcomes (Zakrzewska, 2008). 

 Another common application of cluster analysis in e-learning is to create online study 

groups (Tang & Chan, 2002; Christodoulopoulos & Papanikolaou, 2007; Talavera & Gaudioso, 

2004). Group learning is an effective way to promote greater academic achievement (Tang & 

Chan, 2002). However, the efficiency of group learning depends on the characteristics of the 

group members. While there are different theories on the effectiveness of group composition, 

cluster analysis can help create both homogeneous and heterogeneous groups based on students’ 

learning styles, and knowledge levels (Christodoulopoulos & Papanikolaou, 2007). 

 In addition to personalization and group formation, cluster analysis has also many diverse 

applications in e-learning including enhancing prediction (Khalil, Li, & Wang, 2008; Romero, 

González, Ventura, del Jesus, & Herrera, 2009); assessing motivation or ability (Hershkovitz & 

Nachmias, 2011; Mullier, 2003); classifying novice programmer errors (Sison, Numao, & 

Shimura, 2000); detecting circumstances under which students accessed help (Nilakant & 

Mitovic, 2005); and detecting service usage patterns (Harpstead et al. 2013). 

In the context of simulation-based assessments, cluster analysis has been used to analyze 

student solution strategies and error patterns (Kerr & Chung, 2012). Cluster analysis has also 

been used to improve simulation-based assessment design and visualize changes in problem-

solving strategies used across attempts (Kerr, 2015). Although the purposes of these studies seem 
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different, they all used cluster analysis to identify students’ problem-solving patterns as a first 

step.  

Feature selection methods. In order to apply cluster analysis to analyze log files, 

variables of interest must be first extracted from the log files. This process is called feature 

selection. A majority of the clustering studies have used action frequency and sometimes 

reaction time in log files as the input variables (e.g., Teng, Lin, Cheng, & Heh, 2004; Kerr, 2015; 

Rodrigo, Anglo, Sugay, & Baker, 2008; Amershi & Conati, 2011). In these studies, researchers 

need to determine which actions are important based on theory and/or qualitative analysis of a 

small sample of the log files. As in e-learning environments, different actions may reflect distinct 

levels of importance in the clustering process, action frequency variables are often normalized to 

have a value between 0 and 1 (Zhang, Cui, Wang, & Sui, 2007; Teng, Lin, Cheng, & Heh, 2004). 

Besides frequency and reaction time, psychological questionnaires are often used to supplement 

the log file clustering (Zakrzewska, 2008; Buckley, Gobert, & Horwitz, 1999). Most of these 

questionnaires measure students’ learning preferences, motivation, and personality.  

 Cluster analysis methods. In the sample of studies reviewed, k-means clustering still 

remains one of the most commonly used clustering methods (Khalil, Li, & Wang, 2008; 

Manikandan, Sundaram, & Babu, 2006; Rodrigo, Anglo, Sugay, & Baker, 2008; Harpstead et al., 

2013; Amershi & Conati, 2011). As explained before, this is mostly due to k-means clustering’s 

simplicity and computational efficiency. Especially, when the data set is large, computational 

efficiency may outweigh the advantages of other clustering methods. Fuzzy clustering methods 

such as fuzzy c-means clustering are also very commonly used in e-learning clustering studies 

(Christodoulopoulos & Papanikolaou, 2007; Kerr, 2015; Lu, Li, & Liu, 2007; Tian, Wang, 
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Zheng, & Zheng, 2008). Fuzzy clustering methods are often preferred when researchers expect 

there to be significant overlap between the clusters (Kerr, 2015). In this case, estimating each 

data case’s probability of belonging to each cluster is more informative than assigning each data 

case exclusively to one cluster. Besides these two popular clustering methods, various other 

clustering methods have been used in the e-learning literature, including hierarchical clustering 

(Mylonas, Tzouveli, & Kollias, 2007); self-organizing maps (Mullier, 2001); generative 

topographic mapping (Vellido, Castro, Nebot, & Mugica, 2006); and other newly proposed and 

less well-known clustering algorithms, such as matrix based clustering and incremental relational 

clustering (Zhang, Cui, Wang, & Sui, 2007; Sison, Numao, & Shimura, 2000). The final number 

of clusters is often determined based on the meaningfulness of interpretation (Kerr, 2015; 

Etheredge, Lopes, & Bidarra, 2013). 

 Overall, the literature review of clustering studies in e-learning suggests that there are 

many studies that examine how to cluster students based on their learning preferences and 

activity frequencies in log files; and k-means and fuzzy clustering are currently the most popular 

clustering methods. However, all current clustering studies ignore the sequence or order of 

students’ actions. Consequently, the current clustering methods may not be optimal for studying 

students’ problem solving strategies because the sequence of what a student does during problem 

solving may play an important role in determining the effectiveness, strengths, and weaknesses 

of different problem-solving strategies. 

Classification in Educational Data Mining 

 Classification means assigning an object into a category based on the object’s 

characteristics (Hӓmӓlӓinen, & Vinni, 2011). The term “classification” can lead to 
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misunderstanding in two ways. First, classification may sound similar to clustering, but the 

difference is that classification is learned through labelled data, while clustering is learned 

through unlabeled data. For example, when we learn to classify animals, we need to label which 

animals are dogs and which animals are cats in the data. In contrast, when we cluster animals, we 

can group animals based on any perceived similarity without the need of knowing any animal 

names. Second, the term classification often implies that the classification outcome variable is a 

categorical variable. However, in the context of educational data mining, the outcome variable 

can also be a continuous variable. Thus, classification can be seen as association and/or 

prediction. 

 There are many applications of classification in educational data mining. Hӓmӓlӓinen, 

and Vinni (2011) reviewed the literature and found three common areas of application. First, 

classification algorithms have been used to predict students’ academic performance or course 

outcomes. For example, Minaei-Bidgoli, Kashy, Kortemeyer, and Punch (2003) applied a genetic 

algorithm to log data generated from a web-based learning program to predict students’ 

academic performance. The results suggested that the genetic algorithm displayed over 90% 

accuracy at predicting student success/failure. This type of study is useful for identifying 

students who are at risk early in the course. Second, classification algorithms can be used to 

predict a student’s success in subsequent tasks. For example, Desmarais and Pu (2005) compared 

Bayesian networks, one of the classification algorithms, and item response theory in terms of 

accurately predicting students’ success in follow-up items based on their previous responses, and 

they found that Bayesian network revealed superior performance. Third, classification algorithms 

can be used to predict students’ strategy and metacognition. For example, Barker, Trafalis, and 

Rhoads (2004) applied a latent response model to log files generated from an Intelligent Tutor 
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program to predict whether students were gaming the system by abusing the flaws of the 

intelligent tutor program to pass different learning tasks. Fourth, classification algorithms can be 

used to predict students’ motivation. For example, Cocea and Weibelzahl (2006) applied a 

decision tree algorithm to log files generated from a web-based learning program to predict 

students’ motivation, and they found that the time students spent reading online was the best 

predictor of motivation.  

As can be seen, various classification algorithms are used in educational data mining. 

However, the most common classification algorithms include regressions, decision trees, 

Bayesian classifiers, support vector machines, k-nearest neighbor classifiers, and artificial neural 

networks (for a more detailed description of these algorithms see Witten and Frank, 2005). Each 

algorithm also has many variations. Most, if not all, of these classification algorithms are adapted 

from the field of data mining and machine learning. 

At this point, I want to take a slight detour from educational data mining, and discuss a 

general research trend in the context of data mining and machine learning. That is, despite the 

diversity of classification algorithms, recently, one classification approach, deep learning neural 

networks, has become dominant in the field of machine learning and data mining. Deep learning 

neural networks consistently outperform other classification algorithms in different areas of 

applications, such as computer vision and automatic speech recognition (Ciresan, Meier, & 

Schmidhuber, 2012; Hinton et al. 2012; Deng, Hinton, & Kingsbury, 2013). In the field of image 

recognition, for example, Ciresan et al. (2012) compared the prediction error rates of their deep 

learning neural networks with other previous state-of-the-art algorithms at classifying various 

types of images, including handwritten digits, letters, Chinese characters, 3D model images, 
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traffic signs, and colored images of objects. They found that their deep learning neural network 

had significantly lower prediction error rates than other classification algorithms, and even 

outperformed human beings in traffic sign recognition. Similarly, in the field of speech 

recognition, Hinton et al. (2012) summarized the findings of four top research groups (i.e., 

University of Toronto, Microsoft research, Google, and IBM Research). The results showed that 

deep learning neural networks had significantly lower prediction error rates than previous state-

of-the-art-algorithms in various speech recognition tasks. Thus, rather than reviewing every 

classification approach, I will focus on reviewing deep learning neural networks in the following 

sections. First, a brief introduction to deep learning neural networks is provided. Then two 

popular deep learning models, the feedforward neural network and the recurrent neural network, 

are discussed in detail. Lastly, applications of deep learning in the field of educational data 

mining are reviewed. 

 Deep learning. According to Deng and Yu (2014, p. 199), deep learning neural networks 

can be formally defined as “a class of machine learning techniques that exploit many layers of 

non-linear information processing for supervised or unsupervised feature extraction and 

transformation, and for pattern analysis and classification”. Intuitively and simply, a deep 

learning neural network can be seen as an artificial neural network with multiple hidden layers. 

The earliest deep learning algorithm was proposed by Ivakhnenko and Lapa (1965). Between the 

1970s and 1990s, various deep learning neural networks were developed (e.g., Ivakhnenko, 1971; 

Fukushima, 1980; Hinton, Dayan, Frey, & Neal, 1995). However, due to the slow computational 

speed of early computers and the lack of large amounts of data to train the networks, these deep 

learning neural networks did not become popular until later in the 2000s. In 2006, Hinton and 

Salakhutdinov (2006) published an influential paper that explained how to train deep learning 
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neural networks with an algorithm called greedy layer-wise pretraining. Although similar 

algorithms had been proposed earlier by Schmidhuber (1992), the timing of Hinton and 

Salakhutdinov’s (2006) publication led to a resurgence of interest in deep learning neural 

networks. Since this resurgence, deep learning neural networks have become part of many state-

of-the-art systems in various disciplines (Ciresan et al., 2012; Hinton et al. 2012; Deng et al., 

2013). Besides having higher prediction accuracy than other classification algorithms, another 

important advantage of deep learning neural networks is that they can automatically extract 

meaningful features from raw data, and consequently depend very little on human expertise to 

extract features as inputs (LeCun, Bengio, & Hinton, 2015). Recently, deep learning has been 

applied in the field of educational data mining (e.g., Piech et al., 2015) to model students’ 

learning over time. In order to gain a more detailed understanding of deep learning, two common 

types of deep learning neural networks (i.e., Deep Feedforward Neural Network and Long Short 

Term Memory Model) are discussed in the following sub-sections. 

 Deep Feedforward Neural Networks. As mentioned earlier, a deep learning network 

can be viewed as an artificial neural network with multiple hidden layers. Thus, in order to 

understand deep feedforward neural networks, it is first necessary to understand feedforward 

artificial neural networks. The feedforward artificial neural network is the most basic or 

archetypal artificial neural network. It is also referred to as the Multilayer Perceptron 

(Goodfellow, Bengio, & Courville, 2016). Intuitively, it is loosely inspired by the human brain. 

Statistically, it can be seen as an extension of logistic regression. The conceptual diagram of a 

feedforward neural network is shown in Figure 4. 
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Figure 4. The conceptual diagram of a feedforward neural network. 

In Figure 4, the model network has three layers of units: the input layer (x), the hidden 

layer (h), and the output layer (y). The input layer represents the raw input data; the hidden layer 

represents important features the network extracts from the raw data, which are then used to 

predict the outcome (LeCun et al., 2015). Each triangle in the input layer represents an input unit 

or independent variable. Each circle in the hidden and output layers represents a processing unit, 

called a neuron. (In the following paragraphs, I will use the terms “neuron” and “unit” 

interchangeably.) A hidden neuron first linearly combines inputs from the previous layer using 

weights stored in the connecting arrows, and then transforms the linearly combined inputs using 

a non-linear function, called an activation function. The most commonly used activation function 
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for hidden neurons is the sigmoid function, which is also called the logistic function. Thus, each 

neuron can be seen as a logistic regression unit. For output neurons, researchers can choose the 

activation function based on the characteristics of the output variables. If the output variables are 

continuous, then no activation function is necessary for the output units. If the output variables 

are dichotomous, then sigmoid function can be chosen. If the output variables are categorical, 

then softmax function can be chosen as the activation function for the output units (Goodfellow 

et al., 2016). More formally, a feedforward neural network with sigmoid activation functions can 

be represented using the following equation: 

 𝑦 = 𝑓(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (�⃗⃗⃗�(𝟐) +𝑾(2) (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(�⃗⃗⃗�(𝟏) +𝑾(1) �⃗⃗⃗�))), (16) 

where 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑡) =
1

1+𝑒𝑥𝑝(−𝑡)
, �⃗⃗⃗�(𝟏) and �⃗⃗⃗�(𝟐) are the intercept (also called bias) vectors of the 

hidden layer and output layer respectively, 𝑾(1) and 𝑾(2) are the weight matrices for the hidden 

layer and output layer respectively, x is a vector of input variables, and y is a vector of output 

variables. Note that if there is no hidden layer in the model, or in other words, the input layer is 

directly connected to the output layer, then equation (16) reduces to 𝑓(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(�⃗⃗⃗�(𝟏) +

𝑾(𝟏) �⃗⃗⃗�), which is mathematically equivalent to a multivariate logistic regression. The bias and 

weight parameters (i.e., �⃗⃗⃗�(𝟏), �⃗⃗⃗�(𝟐), 𝑾(1) and 𝑾(2)) in equation 16 can be estimated using ML, 

and optimized using some variants of the gradient descent algorithm (e.g., rmsprop, and adadelta; 

see Goodfellow et al., 2016).  

Based on the above description of a feedforward neural network, a deep feedforward 

neural network can be simply understood as a feedforward neural network with more than one 

layer of hidden units. In general, the more hidden layers and hidden units a network has, the 
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more powerful the network is. For simple classification problems, however, one hidden layer is 

enough. Adding more hidden layers will create unnecessary computational burdens and increase 

computational time for a simple problem. For more complex problems, more hidden layers and 

hidden units can be added to capture the complexity of the data. There is no hard rule to 

determine the number of hidden layers and hidden units. In general, researchers can keep 

experimenting with the number of hidden layers and units until the network produces satisfactory 

accuracy for a specific classification problem (Goodfellow et al., 2016). However, one common 

optimization problem in deep learning is overfitting, which occurs when the deep learning 

network has high prediction accuracy for the training data, but low prediction accuracy for 

testing data. Here, training data are the data used to estimate the parameters of the network, and 

testing data are new data used to test the trained network’s prediction accuracy. In order to deal 

with the problem of overfitting, weight decay regularization (Goodfellow et al., 2016, p. 231-

234), the greedy layerwise pretraining algorithm (Hinton & Salakhutdinov, 2006), and the 

dropout algorithm (Hinton, Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2012) can be 

used. The basic idea of weight decay regularization is to make the overall length of the weight 

matrix (stringed into a vector) as small as possible when performing ML. Consequently, the 

weights of those hidden units that are less useful in predicting the outputs are forced to decay to 

0. In other words, weight decay regularization allows hidden units to compete with each other, 

and allows only the more impactful hidden units to have non-zero weights. Since extra hidden 

unit weights are forced to reduce to zero, extra hidden units cease to cause the problem of 

overfitting. There are many variations of weight decay regularization (for a detailed discussion 

see Goodfellow et al., [2016, p. 231-234]).  The greedy layerwise pretraining algorithm is a 

method to initialize the network parameter values. Having meaningful starting parameter values 
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will influence the meaningfulness of the features extracted by the hidden units. It first uses 

unsupervised learning (e.g., algorithms similar to principal component analysis) to initialize the 

weights in each layer, then it uses maximum likelihood and gradient descent to train the network. 

Dropout is a simpler algorithm designed to prevent overfitting. It works by randomly deleting 

half of the hidden units during each parameter estimation cycle. This is to ensure the hidden units 

represent independently meaningful features. The detailed optimization algorithms are not the 

focus of this dissertation, and they can be found in the original papers and Goodfellow et al.’s 

(2016) textbook on deep learning.  

 Long Short Term Memory Model. Feedforward neural networks are good for 

classifying cross sectional data (i.e., data collected at one time point), but they are not designed 

for classifying sequential or longitudinal data (i.e., time series). In order to analyze sequential or 

longitudinal data, recurrent neural networks were developed (Goodfellow et al., 2016). The 

major difference between a feedforward neural network and a recurrent neural network is that in 

a recurrent neural network, a hidden unit not only influences the output units, but it also 

influences itself. More specifically, this means a hidden unit’s state at time t depends on its (and 

other hidden units’) previous states. A conceptual diagram of a recurrent neural network is 

shown in Figure 5(a). For simplicity, each of the input, hidden, and output units in Figure 5(a) 

contains a vector of values rather than a single value as shown in Figure 4, and the connection 

arrows contain a matrix of weights rather than a single value of weight. There is another way to 

represent the recurrent neural network: the network can be unfolded over time as in Figure 5(b). 

In Figure 5(b), t represents time. As can be seen, input at each time point is fed into the network 

sequentially. Hidden unit values at time t, vector ht, depend on their previous values, vector ht-1, 
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and similarly vector ht+1 depends on vector ht. The output values at time t, vector yt, directly 

depend on hidden unit values at time t, vector ht, but also indirectly depend on vector ht-1 and xt-1.  
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Figure 5. Two ways to represent a recurrent neural network: (a) a folded representation of a 

recurrent neural network, and (b) an unfolded over time representation of (a).  

 There are many variations of recurrent neural networks. Currently, one of the most 

popular and powerful recurrent neural networks is the Long Short Term Memory Model (LSTM; 

LeCun, Bengio, & Hinton, 2015). LSTM was first proposed by Hochreiter and Schmidhuber 

(1997). Similar to a traditional recurrent neural network, LSTM hidden units also depend on their 

previous states, and the network can be unfolded overtime. However, LSTM has specialized 

hidden layers that allow the network to learn to ignore irrelevant input information, retain useful 

information over time, and forget information once it is no longer useful. Most importantly, 
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LSTM solves the optimization problem of diminishing gradient, which causes the traditional 

recurrent network to be unable to retain information for a long time (for more detailed 

mathematical definition and proof of the diminishing gradient problem and how LSTM resolves 

it, the reader should consult Hochreiter and Schmidhuber, 1997). The next sub-section focuses 

on LSTM’s hidden layer, commonly referred to as the LSTM unit. 

 Unlike a feedforward or traditional recurrent neural network hidden unit, information 

does not directly flow into and out of a LSTM unit. A LSTM unit has “gates” that determine 

whether information should be inputted, outputted or retained for the next time step (t+1). A 

conceptual diagram of a LSTM network is shown in Figure 6. 
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Figure 6. A conceptual diagram for a LSTM network unfolded over time.
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As can be seen, an LSTM network has similar input and output layers as a feedforward neural 

network. However, an LSTM network has a more complex hidden layer, which is called a LSTM 

unit. Inside an LSTM unit, there are several smaller processing units called gates. These gates 

control when and how much information flows in and out of the LSTM unit. In the center of a 

LSTM unit, there is a cell that stores hidden unit values in a vector. The relationships among the 

gates, cell, inputs, and previous LSTM unit outputs can be understood by examining the equation 

for each gate and cell. The equation for the input gate is: 

 𝒊𝒕 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑾𝒊 �⃗⃗⃗�𝒕 +𝑼𝑖 �⃗⃗⃗�𝒕−𝟏 + �⃗⃗⃗�𝒊), (17) 

where 𝒊𝒕 is the input gate’s value at time t, 𝑾𝑖 is the weight matrix for input units at time t, �⃗⃗⃗�𝒕 is 

the input vector at time t, 𝑼𝑖 is the weight matrix for LSTM unit outputs at time t-1, and �⃗⃗⃗�𝒊 is a 

vector of intercept or bias. The input gate first linearly combines input at time t and LSTM unit 

outputs at time t-1, and then transforms the linear combination using the sigmoid function. 

Consequently, the input gate’s output value ranges between 0 and 1. When it is equal or close to 

0, the gate can be considered closed, and no information will be able to flow into the cell of the 

LSTM unit. When it is equal or close to 1, the gate can be considered open, and the input 

information will be able to flow into the cell of the LSTM unit. The total input information of a 

LSTM unit is defined as follows: 

 �̂�𝑡 = 𝑡𝑎𝑛ℎ(𝑾𝑐�⃗�𝑡 + 𝑼𝑐 ℎ⃗⃗𝑡−1 + �⃗⃗�𝑐), (18) 

where �̂�𝑡 is the total input into the LSTM unit, tanh is the hyperbolic tangent function, 𝑾𝑐 and 

𝑼𝑐 are the weight matrices for �⃗�𝑡 and ℎ⃗⃗𝑡−1 respectively, and �⃗⃗�𝑐 is the intercept vector. Equation 

18 shows that the total input of an LSTM unit not only includes the input values at time t, but 

also includes the LSTM unit output values at the previous time step. Beside the input gate, there 
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is also a forget gate, which determines whether previous stored information should be erased. 

The forget gate equation is shown as follows: 

 𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑾𝑓 �⃗⃗⃗�𝒕 +𝑾𝑓 �⃗⃗⃗�𝒕−𝟏 + �⃗⃗⃗�𝒇) (19) 

where �⃗⃗�𝑡 is the forget gate value ranging between 0 and 1, and other variables can be interpreted 

as previously indicated. The relationship between the current state of the LSTM cell, �⃗⃗⃗�𝒕, and its 

past state, �⃗⃗⃗�𝒕−𝟏, the input gate value, 𝒊𝒕, and the forget gate, �⃗⃗�𝒕, is shown in the following 

equation: 

 �⃗⃗⃗�𝒕 = 𝒊𝒕⊙ �̂⃗⃗⃗�𝒕 + �⃗⃗�𝒕⊙ �⃗⃗⃗�𝒕−𝟏, (20) 

where ⊙ denotes element-wise multiplication. As can be seen, 𝒊𝒕 is multiplied by �̂⃗⃗⃗�𝒕 to control 

how much input information can flow into the LSTM cell. Similarly, �⃗⃗�𝒕 is multiplied by �⃗⃗⃗�𝒕−𝟏 to 

control how much previous information in the cell is retained. How much �̂⃗⃗⃗�𝒕 can be outputted 

depends on the output gate, which is shown in the following: 

 �⃗⃗⃗�𝒕 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑾𝑜 �⃗⃗⃗�𝒕 + 𝑼𝑜 �⃗⃗⃗�𝒕−𝟏 + �⃗⃗⃗�𝒐), (21) 

where �⃗⃗⃗�𝒕 is the output gate value, and other variables can be interpreted as previously indicated. 

Finally, the output of the LSTM unit, �⃗⃗⃗�𝒕, which is referred to as the LSTM Hidden Unit Value in 

this paper, can be obtained by the element-wise multiplication of the output gate value �⃗⃗⃗�𝒕, and 

the hyperbolic tangent transformation of the LSTM cell’s current state, �⃗⃗⃗�𝒕, as follows: 

 �⃗⃗⃗�𝒕 = �⃗⃗⃗�𝒕⊙ 𝑡𝑎𝑛ℎ(�⃗⃗⃗�𝒕). (22) 

 Overall, input information first flows into the LSTM unit through a hyperbolic tangent 

activation function. Then, it passes through the input gate to enter the cell. Next, information in 
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the cell passes through the output gate to the sigmoid activation function, the value of which then 

flows into the output unit, y. The information in the cell also passes through the forget gate to 

influence the cell state of the next time point.  

Similar to feedforward neural networks, LSTM parameter matrices are also estimated 

with maximum likelihood and optimized with some variants of the gradient descent algorithm 

(e.g., rmsprop and adadelta; see Goodfellow et al., 2016). The dropout algorithm is often used to 

prevent overfitting. 

 Applications of deep learning in educational data mining. Only very recently (i.e., 

after 2015) have researchers begun to apply deep learning in educational data mining. Currently, 

deep learning is the most commonly used algorithm to solve the problem of knowledge tracing 

(Piech et al., 2015; Huang & Brusilovsky, 2016; Khajah, Lindsey, & Mozer, 2016, Xiong et al. 

2016; Huang & Brusilovsky, 2016). The goal of knowledge tracing is to predict whether a 

student can correctly solve the next test item, based on the test items the student has already 

solved in previous steps. More formally, the problem of knowledge tracing can be defined as: 

“given observations of interactions 𝑥0⋯𝑥𝑡 taken by a student on a particular learning task, 

predict aspects of their next interaction 𝑥𝑡+1” (Piech et al., 2015, p 2).  Since the input of the 

knowledge tracing problem is sequential, LSTM is the most appropriate neural network 

modeling choice (Piech et al., 2015; Huang & Brusilovsky, 2016). Knowledge tracing can 

benefit e-learning by determining what test/practice item is the most appropriate for a student 

(i.e., the item’s difficulty should be slightly higher than the student’s ability) and determining the 

relationship between different concepts in a curriculum. Besides knowledge tracing, another area 

of deep learning application is automated essay scoring, or automated short answer grading 

(Zhang, Shah, & Chi, 2016). The goal of automated essay scoring is to train the computer to 
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automatically grade students’ essays or short answer responses. Zhang, Shah, and Chi (2016) 

showed that deep learning algorithm (i.e., Deep Belief Network) outperformed other 

classification algorithms such as support vector machines and Naïve Bayes, and achieved high 

consistency with human raters. There are a few other novel applications of deep learning in 

educational data mining.  For example, Sharma et al. (2016) used a deep convolutionary neural 

network to extract visual features from educational videos and used LSTM to combine visual and 

audio information to predict the liveliness of the videos. The results showed that this combined 

deep learning approach had significantly higher prediction accuracy than previous methods. 

Predicting the liveliness of educational videos can help e-learning programs to select and provide 

more engaging educational videos to students.  Another novel application is to use LSTM to 

predict human tutors’ verbal feedback based on students’ log files and facial action units (Min et 

al., 2016). The result of the study can help the intelligent tutoring system to provide more 

dynamic and realistic feedback. Overall, LSTM is currently the most commonly used deep 

learning algorithm in educational data mining despite the fact that deep learning application in 

educational data mining is still relatively a new area of research. 

Sequential Pattern Analysis in Educational Data Mining 

 Besides clustering and classification, sequential analysis is another major area in 

educational data mining (Zhou et al., 2011). The goal of sequential pattern analysis is to find 

common subsequence patterns in a set of sequences. For example, the log files generated by e-

learning programs contain all students’ problem solving sequences. Sequential pattern analysis 

can be used to discover the commonly used problem solving strategies by identifying the 

frequent subsequences in the log files. Sequential pattern analysis has been applied in 

educational data mining in two ways, including: helping to customize the e-learning environment 
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based on students’ activity patterns (Zaïane, & Luo, 2001), and identifying problem solving 

patterns that are markers of success (Kay, Maisonneuve, Yacef, & Zaiane, 2006). In the 

following subsections, sequential pattern analysis will be formally introduced, then the three 

stages of applying sequential pattern analysis in the analysis of log files will be discussed, and 

finally, studies that apply sequential pattern analysis in educational data mining will be reviewed. 

 An introduction to sequential pattern analysis. The concept of sequential pattern 

analysis was first proposed by Agrawal and Srikant (1995). To formally introduce sequential 

pattern analysis, some basic terminology is required.  First, a sequence is defined as an ordering 

of events and each event in the sequence is called an item. A sequence, α, is the subsequence of 

another sequence, β, if α can be formed from β by removing some items in β but without 

changing the relative positions of the remaining items in β. If α is a subsequence of β, we can 

also say, β contains α. For example, if 𝛼 = {𝐴, 𝐵, 𝐶, 𝐷} and 𝛽 = {𝐴, 𝐷, 𝐵, 𝐸, 𝐶, 𝐷}, then α is a 

subsequence of β because α can be formed by removing the first D and E in 𝛽. If 𝛾 =

{𝐴, 𝐵, 𝐷, 𝐶, 𝐸}, then α is not a subsequence of γ because there is no way to obtain α from γ 

without changing the order of the items in γ. Continuing with this basic terminology, given a set 

of sequences S, the support of a sequence α is defined as the number of sequences in S that 

contain α. Sequence α is a sequential pattern if α’s support is greater than the minimum support 

threshold set by researchers. For example, if a researcher sets the minimum support threshold to 

8, then there must be at least 8 sequences that contain α, in order for α to be considered a 

sequential pattern. Finally, the goal of sequential pattern analysis is to find all sequential patterns 

in set S. Various computer algorithms were developed to iteratively search for sequential patterns 

in a set. Zhou et al. (2011) reviewed various sequential pattern search algorithms and suggested 

PrefixSpan (Pei et al., 2001) as the currently most efficient searching algorithm. Again, the 
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optimization details are not the focus of this paper. Interested readers can check the original 

paper by Pei et al. (2001). Note that all the searching algorithms return the same results; they 

only differ in computational speeds. 

 Three steps of applying sequential pattern analysis. Zhou et al. (2011) illustrated a 

three-step approach to apply sequential pattern analysis to mine log data. The three-steps are 

preprocessing, pattern discovery, and pattern analysis. In the first step, log data need to be 

preprocessed because it contains too many problem-irrelevant actions, which can complicate the 

sequential pattern analysis. Thus, researchers need to create an action library that specifies all 

the action items that are of theoretical interest. According to Zhou et al. (2011), an action in an 

action library consists of a sequence of events from the raw log files. Researchers can group 

specific sequences of events in the raw log files into higher order actions based on theory. This 

allows researchers to change the grain size of sequential pattern analysis, and it simplifies the 

analysis complexity. Sometimes, it is necessary to compile a sequence of actions into a higher-

order action. For example, in order to add two-digit numbers, students may perform a sequence 

of actions. This sequence of actions can be combined into one higher-order action, namely, 

addition. This practice is done to prevent sequential pattern analysis from producing too many 

sequential patterns that cannot be meaningfully interpreted by researchers. Researchers need to 

write simple computer programs to compile the action library efficiently. An example code can 

be found in Zhou, Xu, Nesbit, and Winne’s (2011) book chapter. After the action library is 

compiled, the rest of the events in the log file can be eliminated to simplify the data mining 

process. 

 In the second step, researchers can apply sequential pattern mining algorithms to the 

sequences of actions created from the first step. In order to discover meaningful patterns, 
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researchers often need to add several constraints based on their research questions or prior 

knowledge. For example, if the research question is about strategies students adopt in the 

revision phase of essay writing, then researchers can constrain the sequential pattern analysis to 

extract only sequences within the last 15 minutes of the log files. Another example is when 

researchers are interested in identifying the antecedent and subsequent actions of a target action. 

In that case, researchers can constrain the sequential pattern analysis to extract sequences only 

within a certain distance from the target action. Besides adding constraints, researchers can also 

divide students into groups based on other psychological/demographic variables, and then 

conduct sequential pattern analysis within each group.  

 In the third step, the goal is to interpret the meaning of the patterns discovered in step two 

and then confirm the validity of the previously discovered patterns by conducting sequential 

pattern analysis and other statistical analysis using a new dataset. According to Zhou et al. 

(2011), step 2 may yield thousands of frequent patterns. In order to interpret which patterns are 

meaningful, researchers can filter the sequential patterns based on length, frequency, and 

particular actions contained in a pattern. Researchers need to rely partly on theoretical 

assumptions to complete this step. After researchers identify a set of meaningful patterns, 

researchers can conduct sequential pattern analysis again in a testing dataset to check if the 

previously identified patterns can be identified again. Researchers can also study the relationship 

between the identified patterns and other outcome variables to see which patterns can 

significantly predict the outcome variables. 

 Applications of sequential pattern analysis in educational data mining. In the 

educational data mining literature, sequential pattern analysis is often used as a feature extraction 

tool to improve classification (e.g., Kay, Maisonneuve, Yacef, & Zaiane, 2006; Romero, Ventura, 
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Zafra, & de Bra, 2009; Wang, Weng, Su, & Tseng, 2004). Usually, the procedure is to simplify 

the log data by constructing an action library, using sequential pattern analysis to extract patterns, 

creating binary pattern indicator variables that denote whether a pattern is present in each 

student’s problem solving sequence, and inputting these pattern indicator variables to a 

classification algorithm to predict outcome variables. The outcome variables could be 

activities/resources that best suit a student in terms of difficulty and preference (Romero, 

Ventura, Zafra, & de Bra, 2009; Wang, Weng, Su, & Tseng, 2004), or it could be the success in 

solving a problem (Kay et al., 2006; Luan, 2002). Besides improving prediction, sequential 

pattern analysis can also be used to evaluate whether students’ action sequences match with a 

desired or expert sequence (Pahl & Donnellan, 2003). Currently, the two major limitations of 

sequential pattern analysis include reliance on researchers’ prior knowledge to identify relevant 

actions and the inability to extract less frequent but important patterns (e.g., a novel problem 

solving strategy used by a small group of creative students). 

Research Problem 

 The central problem that this study attempts to solve is how to analyze log data of 

students’ problem-solving sequences in simulation-based assessments. There are many 

challenges to solving this problem. First, it is important to consider the order of student actions. 

To illustrate this, consider the following simple math problem, 2 + 3 × 4. Solving this problem 

by doing addition before multiplication will produce very different result than doing 

multiplication before addition. Second, many actions performed by students and recorded in the 

log files may be irrelevant to the problem (e.g., students can play around in a simulation-based 

assessment environment without really attempting to solve the problem), and there is currently 

no formal theory that accounts for relevance of actions. Third, a student can change and try 
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several strategies during the problem-solving process. The data mining methods in the literature, 

if used alone, are insufficient to address these challenges. Cluster analysis ignores student action 

order and relies on researchers’ subjective knowledge to determine which actions in log files are 

relevant. While some classification techniques such as LSTM do take student action order into 

account and can determine the relevance of the log file actions, they cannot cluster the sequences. 

Sequential pattern analysis does consider the order of the sequences but this procedure relies on 

researchers’ knowledge to rule out problem irrelevant actions. In addition, sequential pattern 

analysis may not be able to detect less frequent but nonetheless important problem-solving 

patterns (e.g., creative problem-solving strategies used by a few students). One solution is to 

integrate the three methods so they can complement each other in order to achieve the best result. 

More specifically, the problem of subjective feature selection in cluster analysis and sequential 

pattern analysis can be addressed by first extracting problem-relevant features using LSTM. That 

is, when an LSTM network is trained to predict the problem-solving outcome using problem-

solving sequences, the LSTM network extracts important features from the input sequences and 

stores these features as hidden unit values (i.e., cell values in an LSTM unit; LeCun, Bengio, & 

Hinton, 2015). In contrast to the subjective feature selection based on expert reviews, this 

procedure represents a data driven approach to extracting important features that best predict 

student problem solving outcomes. Then, cluster analysis can be applied to the statistically 

identified features, stored in the hidden units in the LSTM, to group students into different 

categories. Finally, sequential pattern analysis can be applied to interpret the meaning of each 

cluster. The detailed procedure of the proposed method is presented in the next chapter. 
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Chapter 3 Proposed Method: LSTM Cluster 

 The goal of the proposed method is to extract problem-relevant features from log files 

using LSTM, cluster the sequences based on LSTM extracted features, and interpret each cluster 

by examining exemplar sequences that have outcome probabilities close to the center of each 

cluster. Therefore, the proposed method has three main steps. Each of these steps is discussed 

next. 

LSTM Classification 

The goal of this step is to extract problem relevant features from the input sequences. 

That is, when an LSTM network is trained to predict problem solving outcomes using problem-

solving sequences, the LSTM network extracts important nonlinear features from the input 

sequences and later uses these features (i.e., hidden unit values, ℎ⃗⃗𝑡 in Equation 22, LeCun, 

Bengio, & Hinton, 2015) to predict the outcome. The proposed LSTM model used in the present 

study is shown in Figure 7. As can be seen, the major difference between Figures 6 and 7 is that 

Figure 7 has output units only at the end of the sequence (instead of at each time point). This 

design is to allow the network to process the entire problem-solving sequence (i.e., the input) 

before making a prediction about whether a student can successfully solve the problem (i.e., the 

output). To illustrate this with an example, a student may conduct a series of experiments (i.e., 

the problem-solving sequences) in a simulation-based assessment to reach a final conclusion 

about the relationship between the payload mass of a balloon and the altitude at which the 

balloon can fly; the latter is the problem-solving outcome, which can be scored as correct or 

incorrect. Some of the actions the student performs are relevant to the problem (e.g., constructing 

graph and tables), but others are trivial (e.g., random clicking). Also, the order of the actions can 

be important. The LSTM network processes all the actions in a sequence, and extracts important 
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non-linear features from these actions, before making a final prediction of the outcome. 

Assuming the problem-solving outcome is a binary variable, the output unit’s activation function 

can be set to be the sigmoid function, which outputs the probability of correctly solving the 

problem. This probability is referred to as the LSTM output unit probability in this paper. All the 

equations associated with the LSTM units are the same as discussed in the previous section. In 

practice, researchers need to determine the number of cells within an LSTM unit. This decision 

depends on the complexity of the problem to be solved by the network. In general, the number of 

cells can be set equal to the dimension of the input vector (Carrier & Cho, 2016). The idea is to 

include as many cell values in an LSTM unit as possible, and then use the weight decay method 

to eliminate extra cells (Goodfellow et al., 2016). 

 Before training the network, students’ problem-solving sequences need to be recoded. 

Each action is coded using one hot coding, which is similar to dummy coding in statistics. For 

example, suppose there are three total possible actions. Action 1 can be coded as (1 0 0), action 2 

can be coded as (0 1 0), and action 3 can be coded as (0 0 1).  That is, if there are three total 

possible actions, there will be three input variables. If there are too many actions (e.g., thousands 

of unique actions), then embedding can be used to recode the hot coding (Goodfellow et al., 

2016). Embedding is a technique that transforms binary one hot coding into continuous coding 

with smaller dimensionality. After recoding the raw data, the ML method can be used to estimate 

the parameters. A variation of the gradient descent algorithm, the Adadelta algorithm (Zeiler, 

2012), can be used to find the ML solution. It is also recommended to use the weight decay 

regularization and dropout algorithm to prevent overfitting. For a detailed explanation of these 

optimization techniques, see Goodfellow et al. (2016). To train the LSTM, data are divided into 

three datasets: training dataset, validation dataset, and testing dataset.  The training dataset is 
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used to estimate the parameters.  The validation dataset is used to assess whether the model is 

overfitting the data.  The model estimated in the training dataset is used to predict the testing 

dataset. If the model has low error rate in training dataset, but high error rate in validation dataset, 

then it indicates that the model is not generalizable. Thus, to avoid the problem of overfitting, a 

model with the lowest validation error rate is selected as the final model. This final model is then 

used to predict the test dataset. After selecting the best model, hidden unit values in LSTM are 

saved and then analyzed in the next step. 

  



52 
LSTM CLUSTER 

 

Figure 7. A conceptual diagram for a LSTM network unfolded over time. X = input, Y = output, Sig.=sigmoid function, Tanh = 

hyperbolic tangent function, Out. gate = output gate, In. gate = input gate, F. gate = forget gate, C =  cell, T = sequence size. 
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Cluster Analysis 

In this step, different cluster analyses techniques can be applied to cluster students based 

on LSTM’s hidden unit values. The rationale for this step is to use LSTM extracted features (i.e., 

LSTM hidden unit values) from student problem-solving steps as cluster analysis inputs to create 

more meaningful clusters of students’ problem-solving strategies. Since LSTM’s hidden unit 

values are continuous variables, k-mean cluster analysis or Gaussian mixture model (Vellido et 

al., 2011) can be used. To determine the number of clusters, different statistical tests as well as 

theoretical interpretation may need to be considered. The challenge here is that different clusters 

of student problem-solving strategies tend to form higher-order clusters.  For example, all the 

correct strategies may form one cluster and all the incorrect strategies may form another cluster.  

This could make many of the cluster evaluation statistics less accurate. To illustrate the impact of 

such a data structure on different cluster evaluation statistics, consider the following: a two 

dimensional dataset with five clusters nested within three higher-order clusters. The data set is 

visualized using scatterplot in Figure 8. 

 

Figure 8. Scatterplot of simulated dataset with five clusters nested in three bigger clusters. 

Different evaluation statistics were run on this dataset. AIC, BIC, f(k), and bootstrap likelihood 

ratio test identified three clusters, while gap statistics identified only one cluster. However, by 
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examining the scatterplot visually, it is not hard to see that there are four or five clusters. This 

example demonstrates the advantage of applying a graphical method over current statistical 

methods when cluster structure is nested. That being said, LSTM hidden unit values often have 

more than two dimensions. To use the visualization method, the dimensions of LSTM hidden 

unit values need to be reduced. It is important to note that the LSTM output unit automatically 

combines LSTM hidden unit values into one dimension, the LSTM output unit probability. 

While combining LSTM hidden unit values, regularization decay weights are applied. As 

discussed earlier, decay weights can eliminate hidden units that are not important for predicting 

the outcome. This property makes LSTM output unit probability more desirable than other 

methods such as PCA discussed in the literature review. Therefore, I propose to use an LSTM 

output unit probability histogram to help visually determine the number of clusters. However, it 

is important to note that when we reduce the dimensions of the LSTM hidden unit values, 

information loss is inevitable. If two different problem-solving strategies lead to the same 

probability of correctly answering the question, this method would lead to an underestimation of 

the number of clusters. In practice, it is better to determine the number of clusters based on 

several criteria as well as the meaningfulness of interpretation. 

Interpretation of the Clusters 

 Due to the sequential nature of the log files, the meaning of each cluster cannot be 

determined simply by looking at action frequency statistics. In this study, I propose to use 

exemplar sequences and sequential patterns to represent and interpret the meaning of each cluster. 

For exemplar sequences, the basic idea is rooted in the Prototype (Rosch, 1975) and Exemplar 

theories (Smith & Medin, 1999) of concepts in cognitive psychology. The prototype theory 

suggests that people represent a concept using an average of all instances that belong to that 
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concept. In contrast, exemplar theory suggests that a concept is represented by the most frequent 

instances of that category. Regardless of which theory is most appropriate, we can borrow the 

idea that a cluster/concept can be represented by a few of the most representative instances. In 

statistical terms, we can identify problem-solving sequences that have LSTM hidden unit values 

closest to the centroid of each cluster and use these sequences to represent the cluster. These 

sequences are thus named as the exemplar sequences. 

 Sequential patterns for each cluster can be obtained from sequential pattern analysis 

discussed in the literature review section. Since a sequential pattern is a subsequence of the 

original sequences, direct interpretation can be difficult. However, sequential patterns can be 

useful at checking the representativeness of the exemplar sequences. Ideally, exemplar sequences 

should contain all sequential patterns. If exemplar sequences do not contain all sequential 

patterns, then it is necessary to identify other exemplar sequences that contain the rest of the 

sequential patterns. This is to ensure the exemplar sequences do not miss any frequent patterns in 

the corresponding cluster by chance. To do this, sequences within a cluster are sorted based on 

their distance from the centroid. Sequences that are closet to the centroid and contain the missing 

sequential patterns are chosen. Then exemplar sequences are inspected to identify the strategy 

used to solve the problem and its strengths and weaknesses in problem solving.  

In order to demonstrate the procedure of the LSTM cluster, I applied the proposed 

method to log files of students solving a series of problems in a National Assessment of 

Educational Progress (NAEP) simulation based assessment, the Technology Rich Environment 

(TRE) Science Laboratory (Bennett, Persky, Weiss, & Jenkins, 2007). A simulation study was 

also conducted to evaluate the accuracy of the LSTM cluster. The methods and results of the real 

data study and the simulation study are presented in Chapters 4 and 5, respectively.  
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Chapter 4 Analysis of Real log files with the LSTM Cluster 

 In this chapter, LSTM is demonstrated with a real dataset from Chu’s (2016) study. 

Before LSTM cluster was applied to the dataset, a review of the real dataset was conducted to 

explore whether LSTM cluster was suitable for analyzing this dataset. The major goal of this 

chapter was to examine whether the LSTM cluster results could be meaningfully interpreted. 

More specifically, the following research questions were addressed: 

1) What student problem-solving strategies were identified by reviewing the real data? 

2) Did review of the real data suggest that the orders of student actions were important in 

solving the problem? 

3) Can LSTM accurately predict the training, validating, and test data sets? 

4) How many clusters of problem-solving strategies were identified using LSTM cluster? 

5) Can the clusters be meaningfully interpreted using exemplar sequences and sequential 

pattern analysis? 

6) Did LSTM cluster and qualitative review identify the same strategies? If not, what are the 

differences? 

Method 

Participants. The data used in this study were initially collected by Chu (2016) where 

298 8
th

-grade science students from Alberta, Canada were asked to solve problems in a National 

Assessment of Educational Progress (NAEP) simulation based assessment, the Technology Rich 

Environment (TRE) Science Laboratory (Bennett, Persky, Weiss, & Jenkins, 2007). Out of these 

298 students, 30 students did not provide consent to use their log files, and 75 students 

encountered technical difficulty during the experiment. Thus, the data from only 193 students 

were kept in the final analysis. Out of these 193 students, 49% were male, 46% were female, 5% 
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did not disclose their gender. The largest ethnicity group was Caucasian (38%) followed by 

Filipino (24%), African American (10%), Latin American (10%), East Asian (4%), Southeast 

Asian (3%), South Asian (3%), and others (4%). Majority of the students (97%) reported that 

they used computer at home. 

Description of the TRE science laboratory problem. In the TRE science laboratory, 

students were asked to design and conduct a series of three experiments to deduce the 

relationship between payload mass, the amount of starting helium, and the altitude of a balloon. 

Note that although balloon science is not explicitly covered in the Alberta grade 8 Science 

curriculum, the contents were considered conceptually related to the local science program (Chu, 

2016). Thus, although it was expected that the students did not have any explicit prior knowledge 

about balloon science, they had the general science knowledge to design experiments to deduce 

the relationship. 

More specifically, in the TRE science laboratory, students were first told that they would 

use a simulation tool to solve a set of problems related to balloon science. Then, a brief 

introduction of the simulation as a scientific tool was provided. Next, a tutorial of the computer 

based simulation tool was provided. The tutorial explained the location of the research questions, 

how to design simulation experiments by selecting different amount of payload mass, how to 

make predictions before conducting the simulation, how to run the experiments and observe the 

results, and how to construct tables and graphs to visualize the results. After the tutorial, the first 

research question was presented to students: “How do different payload masses affect the 

altitude of a helium balloon?” In order to solve this problem (assuming students had no prior 

knowledge about this problem), students need to correctly identify the independent variable (IV; 

payload mass) and dependent variable (DV; altitude of the balloon), conduct at least three 
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experiments by choosing three numbers of payload masses ranging from 10 lbs. to 90 lbs., run 

these experiments, construct a table or graph with variable payload masses as the independent 

variable and altitude as the dependent variable, and finally answer the multiple-choice question 

in the conclusion section. The multiple-choice question at the end of the assessment is presented 

below, and b is the correct answer. 

Based on your experiments, which statement most accurately and completely describes how 

different payload masses affect balloon altitude? 

a) The less the payload mass, the lower the altitude reached by the balloon. 

b) The greater the payload mass, the lower the altitude reached by the balloon. (Key) 

c) Changing the payload mass does not change balloon altitude. 

d) Increasing payload mass increases balloon volume and therefore balloon altitude. 

e) The greater the payload mass, the greater the altitude reached by the balloon for any 

amount of helium. 

f) The less the payload mass, the greater the altitude reached by the balloon for any amount 

of helium. 

A snapshot of the TRE simulation software is presented in Figure 9. In total, there are 22 

relevant actions in the log files and their meanings are presented in Table 2. Note that action 

glossary, science help, and computer help were not included in Table 2 because few students 

used these options. Some students clicked these buttons, but they immediately exited the help 

screen without really clicking any subtopics. Hypothesis related actions were also not included 

due to majority of the students choosing the “I don’t know” option when making a hypothesis. 

After solving problem 1, there were also problems 2 and 3. Since the purpose of the analysis was 
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to demonstrate the proposed method, problems 2 and 3 were not the focus of the study and will 

not be further discussed. 

 

Figure 9. A snapshot of the TRE science laboratory.  

Table 2. Actions from TRE simulation log files. 

Action name in log file Meaning 

Begin_problem1 Students click this button to begin problem 1 

selectedMass_10 Students click this button to set the payload 

mass of the balloon to be 10 lbs 

selectedMass_20 Similar as above 

selectedMass_30 Similar as above 

selectedMass_40 Similar as above 

selectedMass_50 Similar as above 

selectedMass_60 Similar as above 

selectedMass_70 Similar as above 

selectedMass_80 Similar as above 

selectedMass_90 Similar as above 

tryIt Students click this button to run the simulation 

and observe how high the balloon can fly 
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makeGraph Students click this button to start generating a 

graph 

vertAxis_altitude Select altitude as the y variable of the graph 

horizAxis_mass Select payload mass the x variable of the graph 

horizAxis_helium Select helium volume as the x variable of the 

graph 

vertAxis_time Select time to final altitude as the y variable of 

the graph 

Make_Table Initialize the table 

selectedTableVars_Altitude_(ft.) Select altitude as one of the table variable 

selectedTableVars_Payload_Mass_(lbs.) Similar as above 

selectedTableVars_Amount_of_Helium(cu.ft.) Similar as above 

selectedTableVars_Time to 

Final_Altitude_(min.) 

Similar as above 

Problem1Question2 Initialize the multiple choice item in the end 

 

Analysis.  Before applying LSTM cluster to student log files, it was helpful to explore 

student problem-solving sequences and strategies by conducting a review of the log files.  For 

example, to understand students’ problem-solving strategies, frequent sequence patterns were 

identified (i.e., just like identifying themes from qualitative data). While the results from this 

review could be considered informal, they provide some insights into whether the orders of 

student actions were indeed important in solving the TRE science laboratory problem, which 

helped justify the use of LSTM cluster in analyzing the data and assisted in the interpretation of 

the clustering results. Additionally, this review also provided a useful basis for the following 

simulation study.  

After reviewing the log files, LSTM cluster was applied to analyze the data. Since the 

sample size was relatively small for a rather complex statistical model such as the LSTM, I 

decided to reduce the complexity of the log files by removing irrelevant actions and grouping 

theoretically or procedurally related actions. More specifically, all selectedMass_X actions in 

Table 2 were combined with the tryIt action. That is, if any selectedMass_X action was followed 
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by the tryIt action, then the two actions were combined to form the new experiment action. It was 

also assumed that the actual quantity of mass a student selected did not matter very much as long 

as student ran multiple unique experiments. For example, both {selectedMass_10, tryIt} and 

{selectedMass_30, tryIt} were considered to be the experiment action. Next, the makeGraph 

action in Table 2 was grouped with other select-graph-variable actions (i.e., vertAxis_altitude, 

horizAxis_mass, horizAxis_helium, & vertAxis_time). If the combination included makeGraph, 

vertAxis_altitude, and horizAxis_mass, then the combined action was labeled correct graph. 

Otherwise, the combined action was labelled wrong graph. Finally, table-related actions were 

combined in a similar way. If the combined table actions included Make_table, 

selectedTableVarselectedTableVars_Altitude_(ft.), and selectedTableVars_Payload_Mass_(lbs.), 

then the combined action was labelled as correct table. Otherwise, it was labelled wrong table. 

The other actions in Table 2 were removed from the sequences. After data preprocessing, each 

student’s problem-solving sequence contained only five possible actions (i.e., experiment, 

correct graph, wrong graph, correct table, and wrong table), although the five actions could be 

repeated and placed in different orders.  

Then, the LSTM cluster was applied to analyze the cleaned log data. In the first step, 

LSTM was applied to model the data, which was randomly divided into three sub datasets: 

training dataset (n=135), validation dataset (n=29), and testing dataset (n=29). The LSTM neural 

network (programmed using the theano package in Python 2.7; available upon request from the 

author) had five input units, three cells, and one output unit. The number of hidden units (cells) 

was experimentally determined. The number of hidden units that led to the lowest error rate in 

the validation dataset was chosen. For example, in order to determine the number of hidden units, 

the dataset was split into three sub-datasets: training, validation, and testing datasets. Next, 
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LSTM networks with 2 to 20 hidden units were trained, and their prediction error rates in 

validation dataset were recorded. Since the validation dataset error rates flattened after applying 

the 3 hidden unit model, the number of hidden units was set to 3. Adadelta and drop out 

algorithms were used to optimize the neural network weights. The regularization decay factor 

was set to be .01. Maximum number of iterations to convergence was set to 1000.  

In the second step of LSTM cluster, cluster analysis of the LSTM hidden values was 

conducted using three cluster analysis algorithms: k-mean, Gaussian mixture model, and 

agglomerative cluster analysis. K-mean cluster analysis was conducted using the scikit-learn 

package in python 2.7 (Pedregosa et al., 2011). The number of clusters was set based on the 

number of peaks in the LSTM output unit probability histogram. Gaussian mixture model or 

latent profile analysis was conducted using Mplus 7 (Muthén & Muthén, 1998-2015). 

Agglomerative cluster analysis with average link distance (between-groups linkage in SPSS) was 

conducted using SPSS version 24. The ML estimation method was used to estimate the model 

parameters. To ensure global maximum was obtained, 2000 sets of start values in the first step of 

optimization were used. In the second step of optimization, the 50 start value sets that showed 

the largest log likelihood values in the first step were picked and optimized until convergence 

was achieved (Geiser, 2010). Bootstrap log ratio difference test was used to test the relative 

model fit and determine the number of clusters. Five hundred bootstrap samples were used based 

on the recommendation of Geiser (2010).  

In the third step of LSTM cluster, sequential pattern analysis was conducted using the 

pymining package (Dagenais, 2015) in Python 2.7. The minimum support threshold was set to be 

50% of the cluster size. For example, if a cluster has 10 cases, then the minimum support 

threshold is set to 5. Redundant subsequences were removed from the final results. That is, if 
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sequence ABC and AB both met the minimum support threshold, sequence AB (which is a 

subsequence of ABC) will be removed.  These decisions are made to reduce the number of 

sequential patterns, so that it is easier to interpret them. 

Results and Discussion 

Review of the log files.  

RQ1. What student problem-solving strategies were identified by review of the real data? 

Through the review of the log files, five major problem-solving strategies were identified. 

The first type of strategy was labelled as the Table Strategy. Students who used the table strategy 

tended to conduct more than 5 experiments and rely on tables for solving the problem. They may 

or may not also produce graphs.  When they produced a graph, they could not correctly identify 

the right variables. The common feature of students who used the table strategy was that they 

produced a table with all five variables. The correct table was produced either at the beginning of 

their attempts or after several failed attempts. The second strategy that was identified was labeled 

as the Graph Strategy. Students who used the graph strategy conducted at least three experiments 

and solved the problem using graphs. The most defining feature of this group of students was 

that they could produce a graph with the correct IV and DV. Most of these students did not use 

the table at all. The third strategy was labeled as the “Try-Them-All” Strategy. Students often 

conducted many experiments (more than 5), and they typically produced both a graph with the 

correct IV and DV and a table with all the variables. The fourth strategy was labeled as the 

Random Try Strategy. Students often conducted more than five experiments, and they would try 

to produce the table or graph but with incorrect variables. The fifth strategy was labeled as the 

Guess Strategy. Students often conducted a very few number of experiments (less than three), 
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and sometimes produced the correct table or graph. The most apparent feature of the guess 

strategy was the short lengths of the log files.  

RQ2. Did the review of the real data suggest that the orders of actions were indeed important in 

solving the problem? 

 The review of the log data suggested that the orders of actions were important in solving 

the problem, but at the same time, revealed variability or flexibility in allowing for different 

paths to solutions. This means that unlike solving a well-defined math problem, in which there 

was one (or few) fixed order of actions to solve it, there was no fixed order of actions to solve 

the TRE science laboratory problem. Students could perform different actions in different orders 

to solve the problem. In the TRE science laboratory problem, orders of actions mattered in a 

subtler way. For example, when students made predictions about the outcome of the current 

experiment, they needed to make a judgment about whether the balloon would rise to a higher, 

lower or equal altitude than in the previous experiment. The correctness of the prediction 

depended on the payload mass students selected in the previous experiment as well as the 

payload mass they selected in the current experiment. Another example would be related to 

students’ learning process.  Students in one group failed to make the correct tables/graphs in the 

initial attempts, but after they conducted a series of experiments, they correctly created the 

tables/graphs. Consequently, they could correctly answer the question.  Students in a second 

group created the correct tables/graphs initially in their attempts, but then they started to generate 

the wrong tables/graphs before they conducted enough experiments. As a result, they failed to 

correctly answer the question. Yet, another group of students created the correct tables/graphs 

initially in their attempts. But after conducting several experiments, they began to explore other 

variables not directly related to the research questions by creating tables/graphs that were not 
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correct or unrelated to the research question. Since they conducted enough experiments with the 

correct tables/graphs, they could still correctly answer the question. The three groups of students 

performed similar actions, but in different orders which led to different outcomes. Thus, the 

review of log files suggested that in order to understand students’ problem-solving behaviors in 

the TRE science laboratory environment, it is important to consider the order of actions, and 

sequential analysis techniques such as the LSTM are needed to analyze the problem.   

LSTM cluster.  

RQ3. Can LSTM accurately predict the training, validating, and testing the data set? 

The LSTM network training took 45.1 seconds. The prediction error rates for training, 

validation, and testing datasets were 19%, 10%, and 14%, respectively. This result may seem 

unusual as, in general, training error rates tend to be smaller than validation and testing error 

rates. This unexpected result is likely due to the small sample sizes of the validation and testing 

datasets. It is expected that with larger validation and testing sample sizes, validation and testing 

error rates will approach the training error rates. However, since the validation and testing error 

rates were relatively low and consistent with each other, it provides some evidences for the 

validity of these estimates.  

RQ4. How many clusters of problem-solving strategies were identified using LSTM cluster? 

To determine the number of clusters, LSTM output unit probability histogram, AIC, BIC, and 

bootstrap LR test were used. The output unit probability histogram is shown in Figure 10. As can 

be seen, the output probability histogram seemed to be a mixture of four unique distributions. 

The distribution with the lowest mean probability had a peak at 0.17. The second, smaller 

distribution had a peak at 0.29. The third major distribution peaked around .54. The fourth 
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distribution centered around .72. AIC, BIC, and bootstrap LR test also provided evidence for a 

four-cluster solution as the values for AIC and BIC for four-cluster solutions (AIC=-318.55, 

BIC=-292.448) were lower than for the three-cluster solutions (AIC=-288.193, BIC=-268.617). 

Moreover, the bootstrap LR test showed that a four-cluster model fitted the data significantly 

better than three-cluster model (p<.001). However, the five--cluster Gaussian mixture model led 

to convergence issues. Consequently, AIC, BIC, and bootstrap LR tests could not be computed. 

 
Figure 10. LSTM output unit probability histogram for real data. 

 

 Since both the histogram and the Gaussian mixture model suggested that there were four 

clusters of student strategies, a four-cluster k-mean analysis was also conducted on the LSTM’s 

hidden unit values. The resulting cluster membership was similar to the Gaussian mixture model 

cluster membership, with only 4 cases being assigned into different clusters. The k-means cluster 

membership was also very similar to agglomerative cluster membership, with only 3 cases being 

assigned into different clusters. Since k-mean cluster analysis is a simpler algorithm with less 

convergence issues than Gaussian mixture model with faster computational speed than 

agglomerative cluster analysis, I will focus on the k-mean cluster analysis results in the following 
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sections.  The mean probabilities to correctly answer the multiple-choice question for each 

cluster and number of cases in each cluster are presented in Table 3.  

Table 3. Cluster descriptive statistics.  

Cluster Probability to correctly answer multiple-choice 

questions  

Number of cases in each 

cluster 

1 .29 11 

2 .17 72 

3 .54 48 

4 .72 62 

 

RQ5. Can the cluster be meaningfully interpreted using exemplar sequences and sequential 

pattern analysis? 

In order to interpret the clusters, three exemplar sequences and all the sequential patterns 

for each cluster are shown in Table 4. Exemplar sequences are sequences with LSTM hidden 

values close to the center of each cluster. Cluster centers here can be represented using the 

cluster centroids. As shown in Table 4, cluster 1’s exemplar sequences consisted of really short 

problem-solving sequences. Students in cluster 1 conducted very few (less than 3) experiments 

before they proceeded to guess the answer. The sequential pattern extracted was similar as the 

exemplar sequences. Overall, they had a mean probability of 0.29 to correctly answer the 

multiple-choice question. Thus, we labelled cluster 1 as the Guess Strategy.  

In contrast to cluster 1, the exemplar sequences in cluster 2 showed that these students 

conducted significantly more experiments than students in cluster 1. However, students in cluster 

2 had an even lower probability in correctly answering the final question (.17). A detailed 

examination of the cluster 2 sequences suggested that although these students conducted more 

experiments, they failed to make the correct table or graph. They produced tables/graphs using 
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the wrong variables, which led them to produce the wrong answer. This is probably why they 

had an even lower probability in answering the question correctly than students in cluster 1. It is 

important to note that in one exemplar sequence ([0, 2, 3, 4, 0, 0, 0], which means that the 

student first did an experiment (coded as 0), then constructed an incorrect graph (coded as 2), 

next constructed a correct table (coded as 3), followed by an incorrect table (coded as 4), finally 

completed the sequence by three experiments (0)), the student seemed to make the correct table 

in the beginning, but then immediately changed the correct table to the wrong table before 

conducting further experiments. Consequently, the student failed to answer the question correctly. 

If the student had produced the correct table at the end of the sequence, the student may have 

solved the problem. In this case, LSTM correctly used the order of action to predict the outcome 

probability. All of cluster 2’s sequential patterns were subsequences of the exemplar sequences, 

indicating that the exemplar sequences were indeed representative for cluster 2. Since students in 

cluster 2 appeared to persevere but could not produce the correct table or graph, cluster 2 was 

labeled as the Random Try Strategy.  

In cluster 3, the exemplar sequences (as well as the rest of the sequences) suggested that 

students in this group conducted two or more experiments, along with producing the correct table 

or graph. However, for some reason, after conducting a number of experiments and constructing 

the correct tables or graphs, these students decided to make the wrong table or graph at the end 

of the sequence. This could mean that after figuring out the problem with a sufficient number of 

experiments and the correct table or graph, the students decided to try the wrong graph out of 

curiosity; or it could mean that these students were confused but their attempts allowed them to 

deduce the correct answer anyway.  As a result, students in cluster 3 had a moderate probability 

of correctly answering the question (.54). All the sequential patterns except for one, [0,1], were 
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subsequences of the exemplar sequences, indicating the representativeness of the exemplar 

sequences. The sequential pattern [0,1] indicated that students in cluster 3 also were able to 

construct the correct graph after an experiment. Some example sequences including [0,1] were: 

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2], and [0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 4, 3]. Note that 

these students constructed the correct graphs (coded as 1_ in the beginning of the sequences, 

after a number of experiments, but they also constructed some incorrect graphs and/or tables near 

the end. This pattern was consistent with the general pattern of cluster 3. Thus, cluster 3 was 

labeled the Curious Strategy.  

Finally, cluster 4 exemplar sequences showed that students in this group tended to conduct a 

large number of experiments, and they could produce the correct tables or graphs in their final 

attempt to solve the problem.  They may have conducted more experiments after they produced 

the correct table or graph, but unlike cluster 3, they did not produce incorrect tables or graphs 

after the correct ones. Not surprisingly, these students had the highest probability of correctly 

answering the question (.72). As seen before, most of the sequential patterns were subsequences 

of the exemplar sequences, with the exception of [0,1], and [1, 0, 0]. Some example sequences 

include [0,1], and [1, 0, 0] are [0, 1, 0, 0], and [0, 4, 1, 0, 0, 0, 0, 0]. In these examples, students 

did not make wrong tables or graphs after they produced the correct graph. Consequently, cluster 

4 was labeled as the optimal group. 

Table 4. Exemplar sequences and sequential patterns for each identified cluster. 

Cluster Exemplar sequence Sequential patterns 

1 [0] [0] 

 [0]  

 [0]  

   

2 [0, 2, 3, 4, 0, 0, 0] [2, 0]  

 [0, 2, 4, 2, 4, 4, 2, 0, 2, 0, 0, 0, 0] [0, 4, 2] 
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 [0, 2, 4, 4, 4, 0, 0] [0, 0, 0, 0] 

  [0, 4, 0] 

   

3 [0, 4, 2, 4, 0, 3, 3, 2, 2] [0, 4, 2] 

 [0, 0, 0, 4, 3, 2, 0] [3, 0] 

 [0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 2] [0, 1] 

  [0, 0, 0, 0, 2] 

  [0, 4, 0] 

  [0, 3, 2] 

  [0, 0, 0, 0, 0] 

   

4 [0, 0, 3, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0] 

 [3, 0, 0, 0, 0, 0] [0, 1] 

 [0, 4, 2, 4, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0] [0, 3, 0, 0, 0] 

  [1, 0, 0] 

  [3, 0, 0, 0, 0] 
Note: 0: select a payload mass and run the experiment; 1: make a correct graph; 2: make an incorrect graph; 3: make 

a correct table; 4: make an incorrect table 

 The results of the analysis suggested the importance of order when clustering students’ 

problem-solving sequences. If the frequency or occurrence of the actions was examined, cluster 

2, 3 and 4 might appear to be similar to each other, since they all conducted several experiments, 

made the correct as well as incorrect graphs and tables. However, in cluster 2, students often 

made the correct tables or graphs initially, but immediately changed to generating incorrect 

tables/graphs. In cluster 3, students tended to produce the correct table/graph initially, and then 

they would conduct several experiments before they switched to generating the incorrect 

tables/graphs. In cluster 4, students seemed to make incorrect tables/graphs in their initial 

attempts, but then they produced the correct tables/graphs in the end. The order of the actions 

determined the probability of correctly answering the question. 

RQ6. Did the LSTM cluster and review identify the same strategies? If not, what are the 

differences? 

 Similar to the review, LSTM cluster identified the same incorrect strategies (i.e., random 

try & guess strategy), but unlike the review, LSTM cluster grouped correct strategies in different 
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ways. Instead of clustering students based on their use of graphs and tables, LSTM cluster 

grouped students based on the order they used these tools. While this difference could be 

attributed to the instability of small sample size estimation, it could also be due to the fact that 

the review done by the author was based on intuitive understanding not statistics, and 

consequently, the clusters were formed based on surface features rather than statistically 

important features. 

 The results also have implications for the technical usage of the Gaussian mixture model 

and sequential pattern analysis. Although Gaussian mixture model can be used to help determine 

the number of clusters, convergence can be an issue. This is likely due to the fact that LSTM 

hidden unit values may not meet the assumptions of the Gaussian mixture model. 

Multicollinearity, small variance, and violation of multivariate normality could all cause 

convergence issues for Gaussian mixture model. These problems are likely to exist because we 

have little control over the properties of LSTM hidden units, which are part of the “black box” of 

neural networks. Despite the estimation difficulties of Gaussian mixture model, its results were 

consistent with the visual inspection of the LSTM output unit histogram and k-mean cluster 

analysis. Therefore, in practice, one recommendation would be the use of the LSTM output unit 

histogram to determine the number of clusters, and k-mean cluster analysis to determine the class 

membership of individuals.  

The results also showed that for sequential pattern analysis, the resulting sequential 

patterns may not be interpretable if they are examined in isolation.  However, they become more 

interpretable when they are examined together with exemplar sequences.   
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Chapter 5 A Simulation Study 

 In order to evaluate the accuracy of the proposed LTSM cluster under different 

conditions, a simulation study was conducted as it offers the flexibility of specifying and 

manipulating values of various parameters and examining their effects on the accuracy of the 

LTSM cluster. To mimic the real aspects of student problem solving, the simulation was 

designed based on the real log files discussed previously. Artificial log data were generated 

based on the five strategies identified from the review of the real log files (discussed in Chapter 

4). I chose to simulate the five strategies identified from the review instead of the four strategies 

identified from the LSTM cluster analysis because the five strategies reflect more complexity, 

and consequently result in more difficult simulation tasks. However, this decision is arbitrary. 

The goal was to test the accuracy of LSTM cluster at recovering the true cluster membership of 

students using known strategies. More specifically, the research questions were: 

7) How does sample size and number of actions influence the LSTM training, validating, 

testing, and clustering error rates? 

8) What are the practical recommendations for using LSTM cluster based on the simulation 

results? 

Method 

In this simulation study, two factors were considered: sample size and problem 

complexity (i.e., the number of possible actions for solving the problem). The goal was to 

explore the sample size requirement for the LSTM cluster and how this is related to the problem 

complexity as reflected by the number of possible actions in solving the problem. I manipulated 

3 levels of sample sizes (i.e., 100/strategy, 500/strategy & 1000/strategy) to reflect small, 

medium and large sample sizes. It is important to note that for each dataset, there were three sub-
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datasets: training, validation, and testing sub-datasets. For each sub-dataset, five strategies were 

simulated. Each strategy had a sample size corresponding to its simulation condition. For 

example, in the 100/strategy condition, with a total of five strategies and three sub-data sets, the 

full dataset would contain 100*5*3=1500 samples. While in practice, the validation and testing 

datasets do not have to be as large as the training dataset, in this simulation study, the same 

sample size was chosen to ensure the accuracy of the estimation of validation and testing dataset 

error rates. The number of actions was set at 23 (the list of possible actions shown in Table 2) or 

5 (the combined actions used in the above LSTM cluster analysis). In total, there were six 

simulation conditions. For each simulation condition, one hundred sets of log data were 

generated based on the five problem-solving strategies identified from the review of log files. 

The detailed data generation procedure for each type of problem-solving strategy is described in 

the following sections. 

 Graph strategy. Graph strategy was operationalized as problem-solving sequences that 1) 

contain 4 to 12 experiments with at least 3 unique experiments, and 2) contain the correct graph 

subsequence after any incorrect graph or table subsequences. To add more complexity to the 

dataset, the graph strategy may include the correct table subsequence at the beginning of the 

sequence, but it must be immediately followed by an incorrect table subsequence. This is 

because in the real data study, it was observed that if a correct table is immediately followed by 

an incorrect table at the beginning of the problem-solving sequence, then students cannot deduce 

the answer from the correct table. More specifically, in the 23 action conditions, each experiment 

was represented using the subsequence, [selectedMass_X, tryit] (i.e., select a specific pay load 

mass and conduct the experiment; for detailed meaning of these codes, see Table 2), where the X 

in selectedMass_X can take any value from the list, [10, 20, 30, 40, 50, 60, 70, 80, 90]. The 
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correct graph subsequence was [makeGraph, vertAxis_altitude, horizAxis_mass]. The incorrect 

graph subsequences included the action ‘makeGraph’ and any combinations of two elements 

from the list, [‘vertAxis_altitude’, ‘horizAxis_mass’, ‘horizAxis_helium’, and ‘vertAxis_time’] 

that are not [vertAxis_altitude, horizAxis_mass]. The correct table subsequences included the 

‘make_table’ action and any combination of ‘selectedTableVars_Altitude_(ft.)’, 

‘selectedTableVars_Payload_Mass_(lbs.)’, ‘selectedTableVars_Amount_of_Helium(cu.ft.)’, and 

‘selectedTableVars_Time to Final_Altitude_(min.)’ that are the supersets of 

[selectedTableVars_Altitude_(ft.), selectedTableVars_Payload_Mass_(lbs.)]. The incorrect table 

subsequences included the action ‘Make_Table’ and any combinations of 

‘selectedTableVars_Altitude_(ft.)’, ‘selectedTableVars_Payload_Mass_(lbs.)’, 

‘selectedTableVars_Amount_of_Helium(cu.ft.)’, and ‘selectedTableVars_Time to 

Final_Altitude_(min.)’ that are not the supersets of [selectedTableVars_Altitude_(ft.), 

selectedTableVars_Payload_Mass_(lbs.)]. All sequences must also include the ‘Begin_problem1’ 

action in the beginning, and ‘Problem1Question2’ action in the end.   

The data generation algorithm can be briefly described as follows: 1) generate n experiment 

subsequences with at least 3 unique experiment subsequences, where n is an integer ranging 

from 4 to 12; 2) generate x incorrect graph subsequences, where x is an integer ranging from 0 to 

2; 3) generate y incorrect table subsequences, where y is an integer ranging from 0 to 2; 4) 

randomly shuffle the generated subsequences; 5) insert the correct graph subsequence anywhere 

after the last incorrect graph or table subsequence; 6) randomly generate a binary number using 

Bernoulli distribution with a probability of 0.50, and if the number equals to one, insert the 

correct table in the first or second position in the sequence, followed by inserting an incorrect 

table subsequence; 7) insert the ‘Begin_problem1’ action in the beginning of the sequence and 
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the ‘Problem1Question2’ action in the end of the sequence. The multiple-choice item scores for 

the graphing strategy sequences were generated using a Bernoulli distribution with a probability 

of 0.73. In the 5-action conditions, the actions in each subsequence described above (i.e., 

experiment, correct graph, incorrect graph, correct table, & incorrect table) were combined to 

form a single action, and action ‘Begin_problem1’ and ‘Problem1Question2’ were removed 

because every student performed these actions.  There were only five possible actions: 

‘experiment’, ‘correct graph’, ‘incorrect graph’, ‘correct table’, and ‘incorrect table’. The same 

data generation algorithm was used to generate the data. 

 Table strategy. The table strategy was operationally defined as any sequences that 

include 4 to 12 experiments with at least 3 unique experiments and the correct table subsequence 

after any incorrect graph or table subsequences. Again, to add complexity to the simulation, the 

table strategy sequence could include the correct table subsequence at the beginning but it 

needed to be immediately followed by an incorrect table subsequence. This way, the first correct 

table was ‘erased’ by the second table, and it is equivalent to producing no correct table.  The 

procedure to generate the table strategy was the same as the procedure to generate the graph 

strategy, except that correct graph was replaced by the correct table subsequence. The multiple-

choice item scores for the table strategy sequences were generated using a Bernoulli distribution 

with a probability of 0.50. 

 Try-them-all strategy. The try-them-all strategy was operationally defined as any 

sequences that include 4 to 12 experiments with at least 3 unique experiments and both correct 

table and correct graph subsequences after any incorrect graph or table subsequences. The try-

them-all strategy sequence could include the correct graph or table subsequences at the 

beginning of the sequence, but it needed to be immediately followed by the corresponding 



76 
LSTM CLUSTER 

incorrect graph or table subsequences. The data generation procedure was similar to the graph 

and table strategy data generation procedure described previously except that in step 5, both the 

correct table and correct graph subsequences were randomly inserted after the last incorrect table 

or graph subsequence. The multiple-choice item scores for the try-them-all strategy sequences 

were generated using a Bernoulli distribution with a probability of .96. 

 Random try strategy. The random try strategy was operationally defined as any 

sequences that included 4 to 12 experiments with at least three unique experiments, 1 to 2 wrong 

graphs or tables, and zero or one correct graph or table that occurred at the beginning of the 

sequence but was immediately followed by an incorrect graph or table. The data generation 

algorithm was similar to the previous algorithms except that no correct graph or table was 

generated near the end of the sequence. The multiple-choice item scores for the random try 

strategy sequences were generated using a Bernoulli distribution with a probability of 0.27. 

 Guess strategy. The guess strategy was operationally defined as any sequences that 

included 0 to 2 experiments, 1 to 2 wrong graphs, 0 to 2 wrong tables, and 0 to 1 correct graphs. 

The data was generated using the following algorithm: 1) generate 0 to 2 experiment 

subsequences, 2) generate 1 to 2 wrong graphs, 3) generate 0 to 2 wrong tables, 4) generate 0 to 

1 correct graph, 5) randomly shuffle the generated sequence, 6) insert the ‘Begin_problem1’ 

action at the beginning of the sequence and the ‘Problem1Question2’ action at the end of the 

sequence. The multiple-choice item scores for the guess strategy sequences were generated using 

a Bernoulli distribution with a probability of .04. 

 Analysis. The generated data were analyzed using the first two steps of LSTM cluster 

(i.e., LSTM and cluster analysis). For 23-action conditions, 12 LSTM hidden units/cells were 
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used. For 5-action conditions, 10 LSTM hidden units/cells were used. These numbers were 

experimentally determined using trial datasets. The number of hidden units that led to the lowest 

error rate in the validation dataset was chosen. For example, in order to determine the number of 

LSTM hidden units for 23-action conditions, a trial dataset with sample size of 1000 per strategy 

was first simulated. Each trial dataset contained three sub-datasets: training, validation, and 

testing datasets.  

Next, LSTM networks with 2 to 20 hidden units were trained, and their prediction error 

rates in validation dataset were recorded. Since the validation dataset error rates flattened after 

12 hidden unit model, the number of hidden units was set to 12. The adadelta mini-batch gradient 

descent algorithm was used to optimize the LSTM. Dropout algorithm and weight decay 

regularization algorithms were used to prevent overfitting. The decay parameter for the weight 

decay regularization was set to 0.01.  

After training the LSTM, k-mean cluster analysis was applied on the LSTM output unit 

probabilities to cluster the sequences. The number of clusters was set based on examples of 

LSTM output unit probability histograms. This is because it was not feasible to produce 

histograms for every simulation dataset. As shown later in the chapter, since most of the 

examples of LSTM output unit probability histograms suggested that there were 5 clusters, the 

default number of clusters was set to be 5. Also, K-mean cluster analysis was chosen over 

Gaussian mixture model because of its faster computational speed and that real data study 

revealed that the two procedures were comparable.  

 Evaluation criteria. To evaluate the accuracy of the proposed LSTM cluster method, the 

prediction error rates of the training, validating, and testing datasets were examined. Since in 
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data generation, each strategy was associated with a probability to correctly answer the multiple-

choice question, the expected prediction error rate can be calculated. For the strategies that were 

more likely to lead to the correct answer to the final task (i.e., graph, table and try-them-all 

strategies), the probability for a correct response were set at .73, .50, and .96, respectively. 

Therefore, their expected prediction error rates were 27%, 50%, and 4% respectively. For the 

two strategies (i.e., random try strategy & guess strategy) that are more likely to result in the 

wrong answer to the final task, the probability for a correct response was set at .27 and .04 

respectively. Therefore, their expected prediction error rates were 27% and 4% respectively. In 

total, the overall expected error rate was (27%+50%+4%+27%+4%)/5=22.4% given that the five 

strategies were manipulated to be equally distributed. This means ideally, LSTM’s prediction 

error rates in the training, validating, and testing datasets should be close to 22.4%. In addition to 

LSTM prediction error rates, the clustering error rates for the entire dataset (i.e., training + 

validation + testing sub-datasets) were also examined. Since k-mean cluster analysis algorithm 

only clusters simulated problem-solving sequences into groups without assigning names to 

clusters, each cluster need to be named according to the five strategies initially used in the 

simulation design. This is required to determine the number of cases that were correctly clustered. 

To name the clusters resulting from the cluster analysis, a two-step algorithm was used. 

First, a 5-by-5 frequency matrix was calculated for each simulated dataset. The 5 rows of the 

frequency matrix represented the memberships of 5 expected clusters. The 5 columns of the 

frequency matrix represented the memberships of the five 5 observed clusters. The elements in 

the matrix were frequency counts. For example, the element in the first row and second column 

of the matrix represented the number of simulated cluster 1 sequences that were clustered as 

belonging to observed cluster 2. It is important to note that at this stage, it was unclear which 
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observed cluster corresponded to which expected cluster. In the next step, five elements with 

unique row and column numbers from the frequency matrix were selected so that their sum was 

larger than any other sets of such elements. Since there were only 5!=120 possible combinations, 

we simply calculated the sums for each of the 120 possible combinations, and identified the 

combination with the largest sum. This sum represents the number of cases that were correctly 

clustered. Using this max sum, the cluster error rate was defined by the following formula: 

 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = 1 −
max 𝑠𝑢𝑚

𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
. (23) 

Results 

RQ1. How did sample size and number of actions influence the LSTM training, validating, 

testing, and clustering error rates? 

 The means and standard deviations of LSTM prediction error rates and clustering error 

rates were reported in Table 5. As can be seen, the prediction error rates for the training, 

validating, and testing datasets were close to the expected error rate 22.4% for the 500 and 

1000/strategy sample size conditions. However, in 100 sample size 22-action condition, the 

prediction error rate for the training dataset was lower than 22.4% (16.8%), and the prediction 

error rates for validation and testing datasets were higher than 22.4% (24.6% and 26.1% 

respectively). This indicated that with small sample size, LSTM is vulnerable to overfitting. The 

problem of overfitting was reduced in the 5-action condition: the prediction error rate for the 

training, validating, and testing datasets were 19.8%, 22.4% and 23.4%, respectively. Although 

overfitting did occur, the degree was smaller than that in the 100 sample size and, 22-action 

condition. 
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 Examples of LSTM output unit probability histograms for each simulation condition are 

shown in Figure 11. As can be seen, most histograms showed five major peaks corresponding to 

the five clusters of strategies. The trend was that as sample size increased and action number 

decreased, the peaks became sharper. It is important to note that under the conditions with the 

sample size of 100 and 23 actions, there were only two major peaks, indicating that the LSTM 

network did not capture the differences among the five clusters. Since the majority of the 

histograms showed five major peaks, in k-mean cluster analysis, the number of means was set to 

five. 

 Consistent with the trends seen in LSTM prediction error rates and LSTM output unit 

probability histograms, the mean clustering error rates decreased as the sample size increased 

and action number decreased. The highest mean clustering error rate was seen in the 100 sample 

size and 23 action condition (45.3%), and the lowest mean cluster error rate was observed in the 

1000 sample size 23 action condition (11.2%). The standard error of the mean tended to increase 

as sample size and number of action decreased. 

RQ2. What are the practical recommendations for using LSTM cluster based on the simulation 

results? 

 Overall, the simulation suggested that LSTM cluster worked well with large sample sizes 

(n=1000 per group).  With small sample sizes, it is recommended to reduce the complexity of the 

problem by eliminating nonessential actions, or combining actions closely related to each other. 
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Table 5. Mean prediction and cluster error rates for all simulation conditions. 

Complexity Sample size Train error Valid error Test error Cluster error 

5 actions 1000 22.2 (.009) 22.4 (.005) 22.8 (.006) 12.1 (.056) 

5 actions 500 22.0 (.010) 22.4 (.008) 22.9 (.008) 16.3 (.062) 

5 actions 100 19.8 (.037) 22.4 (.016) 23.4 (.019) 31.8 (.090) 

22 actions 1000 21.3 (.007) 22.4 (.005) 22.8 (.006) 11.2 (.030) 

22 actions 500 21.0 (.011) 22.5 (.007) 23.2 (.008) 20.9 (.058) 

22 actions 100 16.8 (.043) 24.6 (.018) 26.1 (.022) 45.3 (.061) 
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Figure 11. Examples of LSTM output unit probability histograms for all six simulation 

conditions.  
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Chapter 6 Discussion 

Implications 

Only very recently have researchers begun to apply deep learning neural networks in the 

field of educational data mining (Huang & Brusilovsky, 2016; Piech et al., 2015). This study is 

an attempt to bring deep learning technology into educational data mining for the analysis of log 

data. It provides a way to integrate several current educational data mining methods in the 

analysis of log files to facilitate the classification of students’ problem-solving strategies. The 

results of the simulation and real data studies suggested that the proposed method, LSTM cluster, 

is a viable approach in clustering students’ problem-solving sequences. 

In order for the LSTM cluster to be effective, however, researchers need to evaluate 

whether the sample size is sufficient relative to the complexity of the problem. Ideally, like any 

other deep learning neural networks, LSTM cluster should be used when large samples are 

available. When only a small sample size is available (e.g., a few hundreds), content experts 

should reduce the complexity of the log data by removing theoretically irrelevant actions and 

combining theoretically closely related actions prior to the use of LSTM cluster. Researchers can 

roughly estimate the “fit” of LSTM cluster by comparing training dataset prediction error rates 

with testing dataset prediction error rates. If the error rates were similar between the training and 

testing datasets, and the errors are reasonably low, then LSTM can be applied. If there is a large 

discrepancy (e.g., >5%) between the training and testing prediction error rates, then researchers 

can choose to collect more samples, or reduce the complexity of the log files.  If the prediction 

error rates are high in general, then researchers can increase the number of hidden nodes to 

improve the prediction accuracy. 
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This study demonstrated that a classification tool such as LSTM (or other neural 

networks) not only is useful for predicting the outcome variables, but also can be indirectly used 

to solve clustering problems. This can be achieved by clustering the hidden units (extracted 

features) of the neural network. To understand the differences among clusters, the exemplar 

input for each cluster could be identified and examined, which can serve as a simple way to 

understand the “black box” of the artificial neural networks and other machine learning 

techniques. 

 In addition, the findings of this study suggested that order of student problem-solving 

steps is indeed important for understanding the problem-solving strategies. Traditionally, when 

analyzing log data, only action frequencies are concerned. While this approach may work in 

some situations, analyses that ignore order could potentially produce misleading results. Action 

order matters because the meaning of an action could depend on what happen before and after 

the action. For example, in this study, a graph with the correct IV and DV is only helpful when 

the student conducts enough experiments before or after creating the graph. If a correct graph is 

immediately replaced by a wrong graph, then it has little impact on the problem-solving outcome. 

However, unlike solving a math problem, the order to solve a science simulation problem is 

much less restricted. This makes heuristic-based sequence analysis methods such as sequential 

pattern mining less effective because they reply on fixed orders of actions.   

Limitations and Recommendations for Future Research 

 There were three limitations to this study. First, at the time the study was conducted, 

there was no other sequence cluster methods for log files. However, at the end of the study, 

several comparable sequence cluster methods were proposed at the 10
th

 International Conference 

on Educational Data Mining, including dynamic time warping (Shen & Chi, 2017) and hidden 
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Markov Models (Hansen et al., 2017). Future studies are needed to compare different sequence 

cluster methods and evaluate the strengths and weaknesses of these methods.  

 Second, the small sample size for the real data study weakened the validity of the results. 

As suggested by the simulation study, LSTM tended to be less generalizable (as indicated by low 

training error rates & high testing error rates) with small sample size conditions. Although this 

problem can be alleviated to a certain degree by reducing the complexity of the data (e.g., 

number of actions), the small sample size could still lead to larger cluster error rates. 

Consequently, the real data study needs to be interpreted with caution. In future research, more 

participants are needed to test the validity of the results. 

 Third, LSTM cluster may need even larger sample sizes if there are a large number of 

clusters of student strategies. This is because with a large number of clusters, the cluster means 

are more likely to be close to each other. In order to accurately separate two clusters, a larger 

sample size may be required. Alternatively, different cluster analysis methods such as 

hierarchical cluster may be used for this situation. In this simulation study, “number of clusters” 

was not manipulated. Consequently, it was unclear how the number of clusters may impact the 

sample size requirement. In future simulation study, the effect of number of clusters on accuracy 

of LSTM cluster can be tested.  

Significance 

 This study proposed a comprehensive method to cluster student log files, which is 

important for several reasons. First, it helps researchers and instructors better understand students’ 

problem strategies/processes. Second, it provides a data driven approach to identify important 

indicators and latent constructs, which are essential for any measurement model. This data driven 
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approach can be combined with theory driven approach to develop better measurement model.  

Third, clustering students is essential for personalizing the digital learning environment for each 

student. More specifically, clustering students’ problem solving strategies can help the computer 

education program to provide more relevant feedbacks, and make more meaningful 

recommendations.  Last, the clustering results can be used to evaluate the validity of the 

assessment (i.e., does the assessment indeed elicit behaviors the assessment intends to elicit from 

students). This information can be used to improve the assessment. 
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