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Abstract

The development of accurate models of drift resonance between H+ ions and

Alfvénic ultra-low frequency (ULF) waves is crucial for understanding particle

dynamics in the Earth’s inner magnetosphere. However, full solutions to the wave

equations are complex and approximations are required to derive numerical solu-

tions. This thesis investigates the results obtained from one such approximation,

focusing on the poloidal components of the wave, and reviews previously published

results using the same assumption. These results are recreated and disagreements

between the published results and the recreation are discussed. We use a full

Lorentz particle integrator for test particle motion along with our analytic solu-

tions to the field equations to analyze wave-particle resonance and the variation in

particle invariants. We conclude that the poloidal mode approximation can lead

to unrealistic magnetic fields aligned with the Earth’s magnetic field, and in some

cases, these fields can violate Faraday’s Law.
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Preface

This thesis is an original work by Guy Whittall-Scherfee.

Chapter 4 of this thesis follows the derivation of poloidal field components

as outlined by Chengrui Wang in his 2018 thesis, ”Numerical Modeling of Drift

Resonance and Drift-bounce Resonance between Ultra-low Frequency Waves and

Energetic Particles in the Inner Magnetosphere”. Both works are based on Rankin

2014.

Chapter 5 includes comparisons to the results reported in C. Wang, Rankin,

and Zong 2015 and C. Wang, Rankin, Y. Wang, et al. 2018. The recreation of

the fields was completed using fields left by the author for the explicit purpose of

recreating their results.
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Chapter 1

Introduction

The primary objective of space physics research is to develop a comprehensive un-

derstanding of the physics behind space weather. While this encompasses research

from the solar cycle and heliophysics down to Earth’s natural magnetic field. The

focus of this thesis will rest on the interaction between waves and particles in

the near-Earth environment. This introduction will help frame this work within

the larger scope of space physics, starting with the sun and solar wind. We will

then discuss the relevant areas of the magnetosphere and end with an overview of

geomagnetic storms and a brief summary of Ultra Low Frequency (ULF) waves.

1.1 The Solar Wind

The pressure differential between the hot solar corona and interplanetary space

drives plasma away from the Sun. This hot plasma is highly conductive and

remains “frozen” to the Sun’s magnetic field lines as they are forced out through
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Figure 1.1: Interplanetary magnetic field lines curved due to the rotation of the

Sun while plasma flows radially outward (Allan and Poulter 1992).

space due to the solar wind. As the sun’s magnetic field is carried out into the

heliosphere it forms the interplanetary magnetic field (IMF). Despite it’s radial

propagation the rotation of the sun causes the field to become curved as shown

in Figure 1.1. This curvature is know as the Parker-Spiral, named after Eugene

Parker, the first man to postulate the existence of the solar wind in 1958.

This spiral is also impacted by variation in the Sun’s magnetic field. If we

model the Sun’s magnetic field as a dipole perpendicular to the planetary plane,

the radial flow of the solar wind at the equator will stretch out the magnetic

field lines away from the Sun. These anti-parallel, magnetic field lines produce

a current sheet between them in the equatorial plane, known as the heliospheric

current sheet. However, the Sun’s rotational axis and its magnetic axis are not

perfectly perpendicular to the equatorial plane. This results in oscillations in the

2



Figure 1.2: Interplanetary magnetic field lines curved due to the rotation of the

Sun while plasma flows radially outward (Werner 1980).

current sheet formation that resemble a ballerina skirt, as seen in Figure 1.2

1.2 Earth’s Magnetic Structure

Similar to the Sun, the Earth generates its own magnetic field. This field can

be modeled as a simple dipole which decreases radially as r3. Further from the

Earth, the field begins to be distorted by the impact of the solar wind, compressing

the Sun-ward side and stretching the night side region out past the moon. The

interaction between these two fields generates a variety of complex structures, sum-

marized in Figure 1.3. This section will focus on the bow shock, magnetosheath,

radiation belts and the ionosphere.
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Figure 1.3: The interaction of the solar wind with the Earth’s magnetic field. Key

structures related to this thesis are labeled in the local magnetic environment.

Dotted lines represent the Earth’s unperturbed dipole field lines. The solid lines

represent the Earth’s magnetic field lines while interacting with the Solar wind.

Image credit to Andy Kale
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1.2.1 The Bow Shock and the Magnetosheath

As the solar wind streams towards the Earth it will impact the Earth’s magnetic

field. The boundary between the two fields is called the bow shock. The solar wind

travels at super sonic speeds and when it impacts the Earth’s field it results in a

shock. The disruption of the plasma by this barrier converts some of the velocity

of the particles traveling in the solar wind to thermal energy. This increase in

temperature creates a highly turbulent region directly Earth-side of the bow shock,

called the magnetosheath. The dynamics involved with shocks are complex and a

discussion is best left to Kivelson and Russell 1995.

The magnetopause is the barrier between the solar wind and the Earth’s mag-

netic field. This region is located around ten Earth radii away at the sub-point,

though the exact distance varies depending on the ram pressure of the solar wind.

The plasma can then travel around the Earth’s magnetic field like water around

the bow of a boat. The magnetopause is the boundary between solar and terres-

trial magnetic fields and is defined as the last closed magnetic field line from the

Earth.

The Dungey cycle is a widely accepted theory in near Earth plasma dynam-

ics. It states that the interactions between the solar wind and terrestrial magnetic

field drives the dynamics of the magnetosphere (J. W. Dungey 1961; J. W. Dungey

1965). The primary mechanism by which magnetic flux can be transferred is mag-

netic reconnection in the day side magnetopause and magnetotail. Magnetic recon-

nection occurs when two magnetic domains splice together, redirecting magnetic

flux. The Dungey cycle is depicted in Figure 1.4

Line 1 in Figure 1.4 marks the starting point of magnetic reconnection. The

newly spliced magnetic field lines are pulled back as far as 1000 earth radii, as

depicted by field lines 2-5. The motion of the anchor of these field lines is depicted

in the lower image of Figure 1.4. These fields end up in the nightside region of the

5



Figure 1.4: Over view of magnetospheric convection. 1) The Southward IMF

hits the Earth’s magnetic field, leading to dayside reconnection. 2-5) The IMF

pulls the magnetic field lines over the poles towards the magneotail. 6) Magnetic

reconnection occurs in the magnetotail. 7-8) The magnetic field is brought back

towards the Earth. 9) The field line returns to the dayside to repeat the cycle. The

motion of the fields lines at the poles is outlined in the bottom figure (Kivelson

and Russell 1995).
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Earth’s magnetic field which is referred to as the magnetotail. Due to the dipole

nature of the Earth’s magnetic field, there are two lobes that form in the northern

and southern region of the tail. Similar to the heliospheric current sheet, these

two regions of oppositely direction magnetic field create a dawn to dusk current

called the tail current sheet.

After the open field lines reconnect (field line 6 in Figure 1.4), magnetic tension

will cause the newly closed field lines to return to the Earth. During this process,

the field lines will rotate around the Earth returning to the dayside (9), where

the cycle can begin again. This discussion has focused on the motion of the field

lines but it is important to recall that the plasma is still fixed to these fields.

This is due to the high conductivity of the plasma which can be considered an

infinitely conductive fluid. As these particles move around the Earth the changes

in magnetic and electric fields will cause a variety of current systems to develop,

most notably for this thesis is the ring current. A full discussion of these dynamics

can be found in Section 2.2.

It is common when discussing the Earth’s magnetic field lines to talk about

distance in terms of L-shells. L-shells are used to label magnetic field lines by

measuring the equatorial crossing point of the field line from the Earth. For

example, most of the work done in this thesis is focused around L-shell value of

5.7, which corresponds to the magnetic field lines that are 5.7 Earth radii away

from the center of the Earth in the equatorial plane. We will be shortening L-shell

to L for this thesis.

1.2.2 The Radiation Belts

The radiation belts are a two band, toroidal structure of high energy charged

particles. They are also referred to as the Van Allen belts, after James Van Allen

7



who discovered them in 1959 (Van Allen, McIlwain, and Ludwig 1958). This

structure is a general formation that has been found around many planets with a

sufficiently strong magnetic field including; Mercury, Jupiter, Saturn, Uranus and

Neptune. The Earth’s inner belts result from charged particle interactions with

the planets magnetic field (Barth, Dyer, and Stassinopoulos 2003; Kivelson and

Bagenal 2014). The inner belt extends from around 1000km above the Earth to L

= 2, though the inner boundary can change due to variations in the ionosphere.

The outer belt extends from L = 3-6, with a slot region between theses two belts.

The inner radiation belt is home to protons with energies in the tens of MeV

range, and electrons with energies in the range of 100 keV, which orbit the Earth.

The main source of these high energy particles comes from the decay of neutrons

resulting from cosmic ray interactions with the ionosphere (Kivelson and Russell

1995). The outer radiation belt is made up primarily of very high energy electrons

in the MeV range as well as high energy ions. For example, oxygen and some

hydrogen ions have been found in this region in the 200-350 keV range (Oimatsu,

Nosé, Teramoto, et al. 2018; Oimatsu, Nosé, K. Takahashi, et al. 2018).

There are also times when there is a separation of the outer belt into two

separate belts. This forms a three belt structure that has recently been observed

from the Van Allen Probes. This new region is much more reactive to solar storms

with a 2013 observation lasting for only four weeks before an increase in the solar

wind wiped it out (Thorne et al. 2013). The three belts, as well as the slot region

can be seen in Figure 1.5.

1.3 Ionosphere

The ionosphere is the closest region to the Earth that we will be studying in this

thesis. In the ionosphere, the Earth’s magnetic field lines are the most dense and

8



Figure 1.5: Depiction of the three radiation belts. Credit to NASA’s Goddard

Space Flight Center/Johns Hopkins University, Applied Physics Laboratory

the impact of the ionosphere on particle dynamics is most apparent. The most

obvious interactions between space weather and the ionosphere are the aurora

which may result from particle acceleration. The ionosphere is the primary sink

and tether for the field lines and for the purpose of this thesis we will assume that

the ionosphere has infinite conductivity and that the magnetic field lines are fixed

at the ionosphere.

1.4 Geomagnetic Activity

We have hinted at variations in the interaction between the solar wind and the

Earth’s magnetic field. Here, we will discuss the connections between the two in

more depth. There are two categories of large scale events that impact the Earth’s

9



magnetic field, geomagnetic storms and substorms.

1.4.1 Geomagnetic storms

Geomagnetic storms result from increased coupling between the solar wind and

the magnetosphere, resulting in increased energy transfer. Coronal mass ejections

and similar solar eruptive events increase the dynamic pressure of the solar wind

which compresses and transfers energy into the magnetosphere. Here the energy

increases the intensity of the ring current. The ring current is an electric current

that is carried by ions and electrons that drift in opposite directions around the

Earth. These storms can be divided into three parts, the initial phase, the main

phase and the recovery phase.

The initial phase is noted by an increase in disturbance storm time (Dst),

a measurement of the change in the Earth’s magnetic field. This increase can

last between several minutes to several hours. The main phase is classified as a

period of rapid and sometimes drastic decrease in Dst as drifting particles in the

ring current move closer to the Earth as their energy increases. The main phase

normally lasts for only a few hours but last for days. The recovery phase occurs

over a period of 1-5 days as ions are lost to the solar wind and to charge exchange

with neutral hydrogen and the ring current decays. This results in a gradual

reduction in Dst to pre-storm levels. An example of a solar storm’s impact on Dst

is shown in Figure 1.6.

1.4.2 Substorms

As discussed previously in Section 1.2.1, southward IMF can couple to the Earth’s

magnetic field lines and transfer energy to the magnetotail by a process known
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Figure 1.6: Variation in Dst index during a storm between November 4-5, 2003.

The initial, main and recovery phase are labeled as well as the minimum Dst

(Echer, Gonzalez, and Tsurutani 2011).
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as magnetic reconnection. Following point 6 in Figure 1.4 the energy released

from the reconnection region in the tail will head Earthward. The Earthward

moving plasma injects energetic particles, causing the nightside magnetic field to

di-polarise. This causes brightening and dynamics in the nightside aurora in the

form of bright northern (aurora borealis) and southern lights (aurora australis).

Like the geomagnetic storms, substorms have three different phases. The first

phase is the growth phase which is tied to an increase in the size of the polar

cap as well as an increase in energy stored in the magnetotail. This energy is

released during the expansion phase which is then followed by a recovery phase.

The expansion phase is tied to enhancement and dynaimcs in the visible aurora.

On Earth, this activity is the main cause of different types of aurora. The

two primary types are discrete and diffuse aurora. Discrete aurora are caused by

electron acceleration along field lines and tends to have a more defined profile. This

is the type of aurora that most people think of when they hear the term. Diffuse

aurora are found on the edges of the auroral oval, towards the equator. They

tend to result from lower energy electrons that pitch angle scatter as the electrons

interact with plasma waves. A more complete discussion of the difference between

diffuse and discrete aurora can be found in Akasofu 1974.

1.5 ULF Waves

Ultra Low frequency (ULF) waves are electro-magnetic waves with frequencies

between 1mHz and 1Hz that appear in the magnetosphere and may result from

internal effects like plasma instabilities, and external effects like solar wind distur-

bances. The first observed recording of these waves was at the Kew Observatory

in 1861 (Balfour 1860).
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Over the next century, the theory surrounding these observations slowly de-

veloped. The study of these waves was limited to ground observations and the

research was restricted largely to taxonomy. The International Association of Ge-

omagnetism and Aeronomy created a modern system for classification based on

the period of the waves and whether it was continuous or impulse driven (Walker

2005).

Label Frequency range (mHz)

Pc1 5000 - 200

Pc2 200 - 100

Pc3 100 - 22

Pc4 22 - 7

Pc5 7 - 2

Pi1 5000 - 22

Pi2 22 - 7

Table 1.1: International Association of Geomagnetism and Aeronomy classification

of pulsations (Walker 2005)

The source of ULF waves is an active area of research in space plasma research.

These sources include, Kelvin-Helmoholtz (K-H) instabilities on the magneot-

pause, solar wind dynamic pressure pulses, ion cyclotron resonance, and substorm

particle injections (Hudson et al. 2004; Claudepierre, Elkington, and Wiltberger

2008; Fairfield et al. 2000; Hasegawa et al. 2004; Rae et al. 2005; C. Wang, Rankin,

and Zong 2015; C. Wang, Rankin, Y. Wang, et al. 2018). Different sources are

tied to different frequency ranges and whether the wave is continuous or impulse

driven. A mathematical description of these waves will be given late in Chapter 3.
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1.6 Thesis Outline

The primary objective of this thesis is to study the validity of certain assump-

tions in modeling drift-resonance between ULF waves and energetic ions in the

inner magnetosphere. Chapter 2 provides an overview of single-particle motion in

the near-earth environment. Chapter 3 discusses the magnetohydrodynamic wave

model and the coupling between these waves and the particles through drift and

drift-bounce resonance. Chapter 4 focuses on the derivation of analytic solutions

for the poloidal mode wave model. We also compare our field equations with other

simulations and discuss the validity of a poloidal mode model. The particle dy-

namics are covered in Chapter 5. An outline of the benchmarking used in our

model as well results for simplified fields are shown. We end with a study of the

particle trajectories that result from the fields in Chapter 4 and compare with

recently published results.
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Chapter 2

Single Particle Motion

Despite the initial complexity that the term suggest, we can begin studying plasma

physics using the same equations taught in introductory physics courses. Doing

so requires an important series of assumptions. The main assumption is that the

charged particles, and the fields they produced, have a negligible impact compared

to the external electric and magnetic fields. This allows us to study plasma behav-

ior by focusing on single particle trajectories rather than working with the entire

plasma system.

2.1 Charged Particle Dynamics

The Lorentz force describes the motion of a charged particle in a magnetic field

while the Coulomb force describes the force resulting from a charged particle in

an electrostatic field. These two effects can be combined into a single equation,

m
dv

dt
= q(E + v×B) (2.1)
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where m is the mass of the particle, v is the particles velocity, q is the charge of

the particle, E is the electric field and B is the magetic field.

For now, we will ignore the electric field. The solution to Equation 2.1, assum-

ing a constant magnetic field, is uniform gyromotion around the magnetic field with

a frequency ωg, called the gyrofrequency or the cyclotron frequency (Baumjohann

and Treumann 1997). This frequency is defined as,

ωg =
qB

m
(2.2)

which is charge and mass dependent. Not only will electrons and ions orbit in

opposite directions around this field, they will also orbit at different speeds with

electrons orbiting faster than ions. rg is the gyroradius associated with this motion

and is defined as,

rg =
mv⊥
qB

(2.3)

with v⊥ defined as the velocity component perpendicular to the magnetic field.

One important property of a charged particle that is of particular interest in

space physics is the pitch angle, α, which is defined as

tan(α) =
v⊥
v‖

(2.4)

where v⊥ is the velocity perpendicular to the magnetic field and v‖ is the velocity

along the field.

2.2 Particle Drifts

The equations previously derived have assumed a constant magnetic field and have

not taken into account the effects of electric fields. The resulting drift-motion from

the interaction between the magnetic and electric fields depends on the time and

spatial variation of the electric and magnetic fields.
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2.2.1 E × B Drift

The simplest form of drift motion is caused by isolated electric fields. We begin

by introducing two new terms, the plasma current density J, and the conductivity

of the plasma, σ which are related by,

J = σ(E + v×B) (2.5)

In a plasma, electrons are much more mobile than protons and will react quickly

to electric fields, cancelling their effects within the plasma. This means that we

can treat the conductivity as infinite in most cases. This simplifies Equation 2.5

to,

E = −v×B (2.6)

Solving for v leads to the generalized E×B drift equation

vE×B =
E×B

B2
(2.7)

which is charge independent meaning that ions and electrons will drift in the

same direction. Note that the variation in the magnitude of the drift velocity is

proportional to one over the magnetic field.

2.2.2 Gradient-B Drift

If there is a gradient in the magnetic field the particle’s gyroradius will be non-

uniform as the radius narrows in the stronger field and widens in the weaker field.

If the overall change in field strength over a single gyroperiod is small, we can
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begin by representing the magnetic field as a first order Taylor expansion and

breaking the velocity up into a drift along B0, v∇ and gyration perpendicular to

B0,vg, component,

B = B0 + (r · ∇)B

v = vg + v∇
(2.8)

as previously shown by (Baumjohann and Treumann 1997). This distinction be-

tween gyration and drift velocity components is important for modeling. The

model used in this thesis includes the gyration component and models the com-

plete trajectory of a particles motion. However, a guiding center model averages

over the gyration component and focus on the motion of the drift of the center of

this gyration.

We then return to Equation 2.1 for the E = 0 case and this time we will ignore

all gyromotion terms and assume that the magnitudes of vg � v∇

m
dv∇
dt

= q(v∇ ×B0) + q(vg × (r · ∇)B0) (2.9)

Since we are looking at drift effects that occur over timescales that are much longer

than a single gyroperiod we will average our entire equation over a gyroperiod,

eliminating our drift acceleration term on the left hand side. We then cross the

right hand side with B0/B
2
0 and find that

v∇ =
1

B2
0

(vg × (r · ∇)B0 ×B0) (2.10)

Assuming that the motion is harmonic we can then find that the general solution

to Equation 2.10 is

v∇ =
mv2
⊥

2qB3
(B×∇B) (2.11)
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This drift is a particularly important one due to the dipole nature of the Earth’s

magnetic field. A charged particle near the Earth tends to have its motion dictated

by this drift effect.

Magnetic Curvature Drift

The dipole model of the Earth’s magnetic field requires curved field lines. These

curves lead to a curvature drift. Curvature drift is a special case of generalized

force drift which is defined in Baumjohann and Treumann 1997 as

vF =
1

ωg

(F

m
× B

B

)
(2.12)

Particles moving along one of these curved field lines will experience a centrifugal

force related to vRc, the radius of curvature of the field, which is given by,

Fc = mv2
‖
Rc

R2
c

(2.13)

This can then be substituted into Equation 2.12 to find the curvature drift velocity

(Baumjohann and Treumann 1997; Roederer 1970),

vc =
mv2
‖

qR2
cB

2
Rc ×B (2.14)

The curved magnetic field lines are weakest at the equator and strongest at the

Earth’s poles where the density of magnetic field lines increases. This variation

in magnetic field strength can cause particles that travel along the field lines will

have it’s pitch angle increase. When the pitch angle reaches 90 deg the particle

reflect due to the gradient force. This point of reflection is referred to as the mirror

point.

The gradient and curvature drifts play an important role in forming the ring

current discussed in Chapter 1. Together, these two drifts are referred to as the

gradient-curvature drift or the total magnetic drift. However, this drift can act
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Figure 2.1: Ion particle drift motion in the equatorial plane. [Baumjohann and

Treumann 1997]

in combination with the E × B drift which gives a physical description for the

energization of ring current particles as show in Figure 2.1.

2.3 Adiabatic Invariants

As charged particles drift and bounce along the Earth’s magnetic field, their motion

can be grouped under three umbrellas; gyromotion around a field line, bounce

motion between two mirror points, and drift motion around the Earth, as depicted

in Figure 2.2. Each type of motion has an adiabatic invariant associated with it.

Adiabatic invariants, while not always constant, can be treated as such assuming

that the motion related to each invariant changes slowly over its associated time

scale. As long as changes in time and space relative to the motion of the particle

are small, each invariant will hold.
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Figure 2.2: (a) Diagram of guiding center approximated bounce motion along

a magnetic field line. (b) Visualization of the three adiabatic invariants. From

right to left, gyro, bounce, and drift orbits for electrons (figure adapted from Regi

2016).
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2.3.1 Gyromotion and the Magnetic Moment

We discussed in Section 2.1 that a charged particle in a magnetic field will gyrate

around a field line. This motion has an associated perpendicular kinetic energy

and magnetic field strength that governs the gyroradius and the gyrofreqeuncy.

The ratio between these two quantities defines the magnetic moment µ,

µ =
mv2
⊥

2B
(2.15)

µ is considered invariant only when the magnetic field varies slowly over time

compared to the gyroperiod and when the change in the gradient of the magnetic

field is small. These two assumptions allow us to model the gyromotion of the

particle as being a closed orbit, in the absence of an electric field.

In the case of an electric field, µ can still be conserved. This has already been

hinted at in mentioning magnetic fields varying in time. The same restrictions

apply as with magnetic fields, temporal and spacial variations must be smaller

than the variations associated with the particle. For a full derivation, see Section

2.5 in Baumjohann and Treumann 1997.

The conservation of µ is crucial in guiding center approximations. This approx-

imation averages a particles trajectory over a full gyroperiod in order to reduce

computational time. This is particularly valuable when computing backwards

traces using large numbers of particles.

2.3.2 Bounce Motion and the Longitudinal Invariant

We now move on to look at the motion of charged particles along the Earth’s

magnetic field lines. Assuming that a particle has a non-zero parallel velocity the

particle will move through an inhomogeneous magnetic field as it moves off of an
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equatorial position. Since the particle’s total energy cannot change, if E = 0, the

only way for µ to hold constant is if the direction of the velocity changes.

This brings us back to our discussion of mirroring particles at our reflection

point. This reflection occurs in both the Northern and Southern hemisphere. Over

time the particle will continue to bounce back and forth between these two points,

called mirror points. However, if the particle penetrates deeply enough into the

ionosphere, it will be lost due to collisions with neutral particles. This can lead

to certain types of aurora. The invariant associated with this bounce motion is

called the longitudinal or second invariant.

The longitudinal invariant is defined as,

J =

∮
mv‖ds (2.16)

where m is the mass of the particle and ds is a line segment along the magnetic

field. Note that there can be discrepancy between different definitions of J , with

some including a factor of 2 and removing the mass. J is conserved as long as the

bounce period is shorter than variations in the magnetic field.

The bounce period, τb, is defined as the time it takes a particle to leave the

equatorial plane bounce off of both mirror points and return to the plane and is

calculated from,

τb = 2

∫ +sm

−sm

ds

v‖(s)
(2.17)

with±sm representing the northern and southern mirror point, respectively [Roed-

erer 1970].

2.3.3 Drift Motion and Magnetic Flux

As previously mentioned, the gradient and curvature drift combine to form the

total magnetic drift. This drift is in the azimuthal direction around the Earth
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and is associated with the third adiabatic invariant. The inclusion of charge in

both of these drifts means that ions and electrons will orbit in opposite directions,

resulting in the westward ring current. Taking a surface of fixed area, S, we can

calculate the magnetic flux, Φ, at a given radial distance using,

Φ =

∮
dS ·B (2.18)

However, for single particle motion the magnetic flux can be derived another way.

As the particles precess around the Earth, assuming a constant field, they will

complete a full orbit in some time, τd, and assuming that the path is circular we

can calculate the average drift velocity as

〈vd〉 ≈
6L2W

qBERE

3LW (0.35 + 0.15 sinαeq) (2.19)

where BE and RE are the equatorial magnetic field strength at the surface of the

Earth and the Earth’s radius respectively and αeq is the pitch angle measured at

the equator. From this we can relate the magnetic flux to the drift velocity by,

Φ =

∮
vdrdφ (2.20)

This invariant has the longest time scale associated with it as drift periods tend

to be on the order of days while bounce periods are on the order of minutes for

protons and the gyroperiod is on the order of seconds for ions. These values will

vary depending on the energy and radial distance of the particle.
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Chapter 3

Magnetohydrodynaimcs and ULF

Waves

All of the equations previously defined focus on single-particle dynamics. Un-

fortunately, as we begin to study large populations of particles, not only does the

computational time required for these calculations make a single-particle approach

unrealistic, the results will not account for the interactions between particles. In

order to correctly model larger populations, we must move over to a magnetohy-

drodynamic (MHD) model.

3.1 The Foundations of MHD

MHD is a continuum approach to viewing plasma dynamics that gets its name

from the two foundations that the theory is based on, hydrodynamics and electro-

magnetism. The elctromagnetism has been introduced in the previous chapter but
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the hydrodynaimc aspect is just as important. We will be treating the plasma as a

conductive fluid and will use this assumption to derive equations for mass density

and other fluid dynamics. Before we jump into the equations that make up the

core of this theory, we will begin by looking at the assumptions that underlie it.

The first assumption is that the plasma can be considered quasi-neutral, meaning

that the average number of ions and electrons are the same. Obviously, there must

be regions where the charge is non-zero so we want to find the minimum distance

where this assumption is accurate. This length is called the Debye length, λD and

is defined as,

λD = (
ε0kBTe
nee2

)1/2 (3.1)

where ε0 is the free space permittivity constant, Te is the electron temperature, kB

is the Boltzmann constant, ne is the plasma density and e is the electron charge.

As long as we look at length scales longer than the Debeye length we can trust

that the plasma is quasinuetral.

For the other two limits that we place on MHD calculations, we return to

Section 2.3.1 and the first invariant. As long as changes in the system occur on

frequencies lower than the ion gyrofrequency and spatial scales longer than the ion

gyromotion, we can use MHD to model our plasma.

3.1.1 Electrodynamics in MHD

The fundamental equations that we will be using for an MHD model come from

electrodynamics and hydrodynamics. We will start with Maxwell’s equations for

the electrodynamics portion,

∇× E = −∂B

∂t
(3.2)

∇ · E =
ρ

ε0
(3.3)
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∇×B = µ0(j + ε0
∂E

∂t
) (3.4)

∇ ·B = 0 (3.5)

Where E and B are the electric and magnetic field vectors, j is the current

density, ρ is the charge density, and ε0 and µ0 are the permittivity and permeability

of free space, respectively. For space plasma, we will make a few simplifications to

these equations starting with Equation 3.3. The quasinuetral requirement requires

that the the plasma is neutrally charged, giving us,

∇ · E = 0 (3.6)

Previous calculations (Allan and Poulter 1992) have shown that as long as our

MHD limiting behavior is true, | ∇ × B |� ∂E
∂t

, and we can reduce Equation 3.4

to,

∇×B = µ0j (3.7)

In order to study the changes in the current, we will look at the generalized

form of Ohm’s law for a single-fluid magnetohydrodynamic plasma as derived in

Baumjohann and Treumann 1997,

E + v×B = ηj +
1

ne
j×B− 1

ne
∇ ·Pe +

me

nee2

∂j

∂t
(3.8)

The first term on the right is the resistive term, where η is the plasma resistivity.

The second term is the Lorentz force term or Hall term, where ne is the electron

number density. The third term is the anisotropic electron pressure term, where

Pe is the electron pressure. The final term is the contribution of electron inertia

to the current flow, where me is the mass of an electron.

Fortunately, we can make some simplifying assumptions. We start by assuming

that we are working with a near infinitely conductive plasma so the first term can
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be eliminated. This is valid as long as we are not looking at regions close to the

ionosphere. As long as variations in the plasma occur much more slowly than

the gyroperiod of ions in the plasma, we can also eliminate the second and fourth

term. Finally, the pressure gradient term must be similar in magnitude to the Hall

term to prevent the plasma for reducing to a simple hydrodynamic system, so it

can also be ignored. This leaves us with our simplified Ohm’s law,

E = −v×B (3.9)

This equation is often called the hydromagnetic theorem or more colloquially, the

frozen-in flux theorem. The equation shows that, if we take a reference frame

moving along with the plasma, the electric field is zero and plasma elements are

fixed to the field lines. Alternatively, it can be shown that this theorem is in

agreement with flux-conservation.

3.1.2 Hydrodynamics in MHD

The next set of equations come from hydrodynamics. The three main equations

that we need are the continuity equation,

∂ρm
∂t

+∇ · (ρmv) = 0 (3.10)

which ensures that the mass, is conserved, the equation of motion,

ρm(
∂v

∂t
+ v · ∇v) = j×B−∇p (3.11)

which relates the flow of the plasma to the change in plasma pressure and electro-

magnetic forces, and the equation of state,

p

ργs
= constant (3.12)

which, with Equation 3.9 closes the set of equations for MHD where v is the fluid

velocity of the plasma, ρm is the mass density, p is the plasma pressure, and γs is

the adiabatic index, which can be set to 5/3 for adiabatic cases.
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3.2 Waves in MHD

We will now use these equations to study and classify waves within the limits

of MHD. We will start by linearizing Maxwell’s equations by splitting each term

into a background term, denoted by a subscript 0, and a small perturbation term,

denoted by a subscript 1. However, our previous assumptions about our plasma

allow us to eliminate E0, j0 and v0, resulting in,

ρ = ρ0 + ρ1

B = B0 + B1

E = E1

j = j1

v = v1

(3.13)

The following sections regarding MHD wave equations are based heavily on the

work done by Allan and Poulter 1992. Their derivation of the field equations is

followed with additional justification for certain steps in the process.

3.2.1 Cold Plasma Waves

If we take the cold plasma approximation making the plasma pressure, p = 0, and

neglecting the change in the electric field as it occurs much more slowly than the

speed of light, we can rewrite Equation’s 3.2, 3.7, and 3.11 as,

∇× E1 = −∂B1

∂t
(3.14)

∇×B1 = µ0j1 (3.15)
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ρ0
∂v1

∂t
= j1 ×B0 (3.16)

Combining Equations 3.15 and 3.16 and including 3.9 we get,

∂E1

∂t
=

(∇×B1)×B0

ρ0

(3.17)

Taking the derivative of both sides with respect to time and using Equation 3.14

gives us the wave equation,

∂2E1

∂t2
+ v2

A∇× (∇× E1) = 0 (3.18)

Where vA = B0/
√
µ0ρ0 is the Alfvén speed. We will now use a standard Cartesian

coordinate system with a uniform background magnetic field in the ẑ direction in

order to rewrite Equation 3.2.1 as,

(
1

v2
A

∂2

∂t2
− ∂2

∂x2
− ∂2

∂z2
)Ey = −∂

2Ex
∂x∂y

(3.19)

(
1

v2
A

∂2

∂t2
− ∂2

∂y2
− ∂2

∂z2
)Ex = −∂

2Ey
∂x∂y

(3.20)

In order to solve these two equations we will need to define the form of the

perturbed quantities. Using the plane-wave form, exp i(kyy + kzz − ωt) and noting

that because we have not defined out coordinate system a priori, we can align our

axes with the y component of the electric field, ensuring that ∂/∂x = 0 we find

that the dispersion relation for Equations 3.19 and 3.20 are,

ω2

k2
z

= v2
A (3.21)

ω2

k2
= v2

A (3.22)
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with k =
√
k2
y + k2

z . These two dispersion relations relate to two different wave

modes for the cold plasma case.

Equation 3.21 has a phase velocity of w/kz = vA and a group velocity of

±vAẑ. Because the group velocity is limited to the z-axis, the flow of energy

for this wave mode must travel along the background field. This type of wave

is known as a shear Alfvén wave, with shear meaning that the wave experiences

transverse perturbations, not compressional ones, and Alfvén after Hannes Alfvén,

the first to propose the existence of such waves (Alfvén 1942). If the wave vector

k is not completely aligned with the background field, the current will have some

component along the field because the current and k-vector must be orthogonal.

This means that oblique waves generate field aligned currents.

The second dispersion relation, Equation 3.22, corresponds to the fast magne-

toacoustic mode and has a phase velocity of vA and a group velocity ±vAk̂ meaning

that the wave travels by compressing orthogonal to the field direction. While the

fast mode dispersion relation can be equal to the Alfvén mode dispersion relation

when ky = 0 the orthogonal condition on j and B0 means that no field aligned

currents can be generated by the fast mode. In the uniform cold plasma model it

is clear that the two modes we have derived are uncoupled. Figure 3.1 is included

to help visualize the direction of the components in the two modes.

3.2.2 Warm Plasma Waves

If the plasma is no longer cold, the plasma pressure now takes on a finite equilib-

rium pressure, p0 that we introduce to Equation 3.16. Because the temperature is

now non-zero we are forced to account for the sound speed of the plasma given by,

cs =

√
γsP0

ρ0

=

√
γkBT

m
(3.23)
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Figure 3.1: Relative directions of different components r different modes. Upper

Panel: The shear Alfvén mode. Lower Panel: The fast mode. (Allan and Poulter

1992)
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where γs is the ratio of the specific heats, kB is Boltzmann’s constant and P0 is

the pressure. The Alfvén mode is unaffected by this change but the fast mode

dispersion relation, Equation 3.22, is split into two equations,

ω2

k2
=
c2
s + v2

A

2

[
1±

√
1− 4c2

sv
2
A cos2 θ

(c2
s + v2

A)2

]
(3.24)

where θ is the angle between the wave vector k and the background magnetic

field B0. If the wave is propagating along the magnetic field then θ = 0 and the

solutions to Equation 3.2.2 are,
ω

k
= v2

A (3.25)

ω

k
= c2

s (3.26)

The first has the same form as the fast mode from the cold plasma case and is

defined as the transverse fast mode and the second is a compressional sound wave.

For the opposite limit, where k and B0 are nearly perpendicular, θ ' 90◦, the two

solutions now take the form,
ω2

k2
' c2

s + v2
A (3.27)

ω2

k2
' c2

sv
2
A

c2
s + v2

A

(3.28)

As the angle between k and B0 increase the magnetic compressional fast mode

more easily couples to the fluid compressional sound wave with two dispersion

relations. These two dispersion relations are tied to the fast, Equation 3.27 and

slow, Equation 3.28, magnetosonic modes. The difference between the two modes

has to do with the coupling between the magnetic and fluid pressure perturbations.

In the fast mode, these two perturbations are in phase and for the slow mode they

tend to cancel each other out.

It is clear that as the temperature approaches zero the fast magnetosonic mode

will decrease in speed until it is once again described by the fast mode. The slow

mode behaves similarly to the shear Alfvén mode with energy flowing along the
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Figure 3.2: Variation in the phase velocity between the fast, slow, and Alfvén

mode resulting from alignment of k and B0 (Baumjohann and Treumann 1997).

background field direction. However, neither the fast nor slow magnetosonic modes

interact with the shear Alfvén mode when the plasma is uniform. A comparison

of the velocities between the fast mode, slow mode and Alfvén mode are shown in

Figure 3.2 for two cases, vA > cs and vA < cs.

3.2.3 Field Line Resonance

We will now look at how these waves can interact with the Earth’s natural mag-

netic field and how they can transport energy from the solar wind to the inner

magnetosphere where the plasma is non-uniform. In order to do this, we will start

with a box model representation of the Earth’s magnetosphere, Figure 3.3. The

upper and lower boundaries correspond to the footprints of the magnetic field lines

in the ionosphere, which we will assume are fixed. The left side is the ionosphere

and the right side is the magnetopause, where our waves will be entering from.
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Figure 3.3: Box model of dipole field lines. Waves will travel in from the right side

of the diagram. (Cheng, Chao, and Hsu 1998).

This model features an overall gradient in the magnetic field in the x direction,

increasing towards the Earth. We do assume that the field lines have a constant

length which ensures that any variation in the Alfvén speed is due to the changes

in the magnetic field and the plasma density.

We begin by explicitly writing out the x-dependence of our new model into our

Alfvén speed and the Ex and Ey,

vA = vA(x)

Ex = Ex(x)exp[i(kyy + kzz − ωt)]

Ey = Ey(x)exp[i(kyy + kzz − ωt)]

(3.29)

and then rewriting Equations 3.19 and 3.20,

( ω2

v2
A(x)

− k2
y − k2

z

)
Ex = iky

dEy
dx

(3.30)
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( ω2

v2
A(x)

− k2
z

)
Ey = iky

dEx
dx
− d2Ey

dx2
(3.31)

If we assume that the wave vector has no y-component we can decouple the Ex

and Ey terms to get,

( ω2

v2
A(x)

− k2
z

)
Ex = 0 (3.32)

( ω2

v2
A(x)

− k2
z

)
Ey = −d

2Ey
dx2

(3.33)

Where Equation 3.32 corresponds to the shear Alfvén mode as shown in Equa-

tion 3.19. Similarly, Equation 3.33 is related to Equation 3.20 with the addition

of a spatial variation in the x direction. We assume that the ratio, ω2/v2
A(x) is

increasing monotonically with x. An important characteristic of these new equa-

tions is the relationship between ω2/v2
A(x) and k2

z in Equation 3.33. There must

be some critical value, xr where the ratio between the frequency and Alfvén speed

is equal to k2
z . This value of x is known as the turning point or reflection point,

where the refractive index of the magnetosphere goes to zero. Here the fast mode

waves associated with Ey will reflect while their evanescent component continues

past this point towards the Earth’s ionosphere. This reflection can result in radi-

ally standing structure if the reflected wave is once again reflected at some point

x > xr which can occur at the magnetopause.

However, these solutions are only for the special case where ky = 0, we will

now look at the behavior of these waves for the case of general ky. Now we can

combine Equations 3.30 and 3.31 to get,

C =
k2
yω

2dv−2
A (x)/dx

(ω2/v2
A(x)− k2

z)(ω
2/v2

A(x)− k2
y − k2

z)
(3.34)

We still have a turning point at xr due to the right hand side of the denominator

but the left hand side also gives us a new point of interest, xc where ω2/v2
A(x) = k2

z .
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The new point xc must be closer to the ionosphere than xr since we have assumed

a non-zero ky. At xc the phase velocity of the fast mode wave in the field aligned

direction is equal to the local Alfvén phase velocity. This allows energy to transfer

from the inward traveling fast mode waves to standing Alfvén waves.

This interaction is known as field line resonance and is illustrated in Figure

3.4. As an incident fast mode wave approaches the Earth from the magnetosphere

it will eventually reach the reflection point, labeled xt in the figure, where the fast

mode will reflect but the evanescent portion of the wave continues towards the

Earth. As this portion of the wave moves closer to the Earth the frequency of the

standing Alfvén waves increase. At the resonance point, labeled xr in the figure,

the frequencies between these two waves match and energy can be transferred to

the wave, denoted by a large peak in the magnitude of By. This concludes the

summary of MHD wave behavior outlined by Allan and Poulter 1992.

3.3 Drift and Drift Bounce Resonance

As electrons and ion drift around the Earth in the Van Allen belts they interact

with wave fields. This interaction was first outlined by Southwood, J. Dungey, and

Etherington 1969, who discussed the possible energy transfer between field line

resonances (FLR) and drifting particles. The basic idea is analogous to pushing

a child on a swing. As energetic particles orbit around the Earth they may be

accelerated by a poloidal mode with an electric field parallel to the particles drift

motion. If the FLR ”pushes” the particles at the right speed the particles will

gain a large amount of energy. This condition is embodied by the drift-bounce

resonance equation,

ω −mωd = Nωb (3.35)
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Figure 3.4: Figure showing the increase in the Alfvén speed along the x-axis with

reflection point marked as xt and the resonance location is labeled as xr. Z is

the field-aligned direction and y is the azimuthal direction (Rankin, Samson, and

Frycz 1993).
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Figure 3.5: Drift and Drift Bounce resonance for a fundamental mode ULF wave.

(Yang et al. 2011)

where ω is the frequency at which the FLR is driven, m is the azimuthal wave

number of the wave, ωd and ωb are the drift and bounce frequencies of the particle,

and N is an integer representing the number of wavelengths covered over a full

bounce period.

The simplest form of this resonance occurs where the azimuthal velocity of the

particle is identical to that of the wave, resulting in drift motion, N = 0. This

drift motion is similar to a surfer riding a wave. If the surfer has to travel at

the speed of the wave in order to stay on top of it. As long as the particle stays

in-phase with the wave it will continue to gain energy, as shown in (b) of Figure

3.5. The positive and negative signs correspond to a positive and negative electric

field, with the density of the signs representing the strength of the field. In this

case the particle will gain the most energy at the equator. The resonance energy

associated with a given wave for fundamental drift resonance is,

Wres =
ωR2

eqBe

3mL
(3.36)

where ω is the wave frequency, Be is the earth’s magnetic field, and m is the
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azimuthal wave number.

But drift resonance is a special condition and in general the particle’s velocity

will not match perfectly with the wave. Even when it does, the energization will

cause the velocity to change and the particle will begin traveling through regions

of varying electric field as shown in (a) of Figure 3.5. The dotted line shows a case

where the particle experiences a symmetric positive and negative acceleration over

one bounce period as it gains energy in the first half and loses the energy in the

second half, resulting in no net change in energy. The blue shows the case for a

positively accelerated particle. As the particle moves through the positive field, it

is close to the equator and experiences a large positive acceleration. It enters the

negative potion of the field off the equator where the acceleration is weaker. This

results in a positive net change in energy over a bounce period.

If the particle population has a lower average energy than the wave the ULF

waves accelerates more particles than it decelerates. This results in an overall in-

crease in the particles energy from the wave. The reverse can also occur, whereby

the wave gains energy from interacting with the particles. This process is a po-

tential source of giant pulsation events in the inner magnetosphere (Green 1979;

Green 1985).

Chapters 2 and 3 have outlined the fundamental equations for particle dynam-

ics and the definitions and behaviors of MHD waves. This theoretical background

will be used in Chapters 4 and 5. The dipole field model and adiabatic invariants,

outlined in Chapter 2, will have a key role in the modeling of the particle tra-

jectories in Chapter 5. The MHD wave assumptions previously discussed in this

chapter will be used to derive new field equations for poloidal mode Alfvén waves

in the next chapter.
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Chapter 4

Poloidal Mode Wave Model

This chapter will describe the analytic ULF mathematical model that is used

for the simulations that make up the rest of this thesis. We outline the dipole

coordinate system that we used before going into detail about the assumptions

used in defining the fields. Previous derivations of the field components have

used a finite difference calculation for the compressional field. Here, we show one

derivation of a fully analytic poloidal field model. This model is compared with a

similar model (C. Wang, Rankin, Y. Wang, et al. 2018).

4.1 Analytic ULF Wave Model

We start by defining the coordinate system that we will be using in the derivation

of our fields. We also provide a justification for assuming an infinitely conductive

ionosphere. We first derive the wave equation for the poloidal mode wave. A driver

term is introduced and analytic solutions for the electric and magnetic fields are
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calculated.

4.1.1 Dipole Coordinate System

As previously mentioned, the Earth’s magnetic field can be approximated as a

dipole and we have already made use of this in our calculation of drifts. However,

in solving for a set of analytic solutions to the dipole field it will benefit us to use

a dipole coordinate system x1, x2, x3 as previously defined (Radoski 1967; Swisdak

2006), in terms of spherical polar coordinates (r, θ, φ),

x1 =
cos θ

r2

x2 =
r

sin2 θ

x3 = φ

(4.1)

where r is the radial distance from the center of the Earth divided by the Earth’s

radius, θ is colatitude, and φ is the longitude direction. For a dipole coordinate

system x1 is along the field line, x2 is radial, and x3 is longitudinal. x1 and x3 are

also referred to as the compressional and azimuthal direction, respectively. The

metric terms associated with this orthogonal coordinate system are,

h1 =
r3

√
1 + 3 cos2 θ

h2 =
r2

√
1 + 3 cos2 θ sin θ

h3 = r sin θ

(4.2)

We will also define frequently used vector operations using generalized curvilinear

definitions. Here the divergence is defined as,

∇ · F =
1

h1h2h3

[ ∂(F1h2h3)

∂x1

+
∂(h1F2h3)

∂x2

+
∂(h1h2F3)

∂x3

]
(4.3)
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for a general vector F, and the curl is,

∇× F =
1

h1h2h3

∣∣∣∣∣∣∣∣
h1e1 h2e2 h3e3

∂/∂x1 ∂/∂x2 ∂/∂x3

h1F1 h2F2 h3F3

∣∣∣∣∣∣∣∣
The above definition of dipole coordinates and metric terms can be rewritten

in terms of the the field line position, s = cos θ and the mirror point location,

sm =
√

1− 1/L.

4.1.2 Decoupling the Poloidal and Toroidal Mode

The toroidal and poloidal modes refer to two different polarizations of the wave

and are distinguished by the electric field component associated with each. The

toroidal mode corresponds to the radial electric field, E2 and the the poloidal mode

corresponds to the azimuthal electric field, E3. These three fields are components

of the field while the mode classifies them collectively. Previous research (Allan and

Knox 1979) found evidence that these two modes interact through the ionosphere

via the Hall current.

The ionosphere has a finite conductivity meaning that the “frozen-in” condition

discussed in Section 3.1.1 is not valid. As such, we are forced to consider the

currents associated with the Hall and Pedersen conductivity, labeled as σH and

σP respectively. These currents can be written as,

j2 = σPE2 + σHE3

j3 = σPE3 + σHE2

(4.4)

Using Equation 3.7 and integrating from the bottom to the top of the iono-

sphere along the field line we find,

43



± 1

µ0

B0
3 = ΣPE

0
2 + ΣHE

0
3

∓ 1

µ0

(B0
2 − B1

2) = ΣPE
0
3 + ΣHE

0
2

(4.5)

where ΣH and ΣP the height-integrated conductivity and the superscripts 0 and 1

refer to the top and bottom of the ionosphere, respectively. We have also assumed

that B1
3 = 0 as the displacement currents below the ionosphere are negligible over

wave periods in the Pc 3-5 range (2-100 mHz). The upper symbols in these equa-

tions are used for calculations in the southern hemisphere and the lower symbols

are used for the northern hemisphere. Using Equation 3.14, it is clear that the E2

and E3 terms are coupled,

± i

µ0ω

[
1

h1h2

∂

∂x1

(h2E2)

]0

= ΣPE2 + ΣHE3

∓ 1

µ0

{
i

ω

[ 1

h2h3

∂

∂x1

(h3E3)
]0

+B1
2

}
= ΣPE3 + ΣHE2

(4.6)

These two equations are decoupled when the Hall conductivity is assumed to

be zero. This assumption is used in our model in order to simplify the derivation

of the fields.

4.1.3 Free wave Equation for the Poloidal Mode Alfvén

Wave

The poloidal mode is made up of the compressional magnetic field (B11), radial

magnetic field (B2), and the azimuthal electric field (E3) with subscripts corre-

sponding to the coordinate system defined above. The compressional magnetic
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field is defined as such to prevent confusion with the background magnetic field

(B10) and the total magnetic field along the field lines (B1). Starting from Fara-

day’s law we can focus on the radial component,

[∇× (v×B)] 2 =
∂B2

∂t
(4.7)

We can then use Equation 4.1.1 to expand this as,

[∇× E] 2 =
1

h1h2h3

[
∂

∂x1

(h3E3)− ∂

∂x3

(h1E1)]h2ê2 (4.8)

Using the definition of the poloidal mode we can remove the second term on the

right hand side as E1 = 0. The first term can be rewritten, using Equation 3.9

and noting that v1 = 0, we obtain,

E3 = v2B1 (4.9)

Finally we can multiply both sides by h2 and substituting our fields into Faraday’s

Law yields,
h2∂B2

∂t
=

h2

h1h3

∂

∂x1

(h3v2B10) (4.10)

We will use the poloidal mode components of the equation of motion, Equation

3.11, assuming that the change in plasma pressure is negligible,

ρ
∂v2

∂t
=

(∇× B1)× B10

4π
(4.11)

By simplifying the right hand side and multiply both sides by h3B10/ρ we get,

∂

∂t
(h3B10v2) =

v2
Ah3

h1h2

∂

∂x1

(h2B2) (4.12)

where vA = B10/
√
µ0ρ0 is the Alfvén speed. We can then combine Equation 4.10

with the time derivative of Equation 4.12 to get

∂2

∂t2
(h2B2) =

1

h2
3

∂

∂x1

v2
A

h2
2

∂

∂x1

(h2B2) (4.13)

45



The eigenfunction of Equation4.13 is,

h2B2 = bN(x2, t) exp i(ωN t−mφ)SN(x1) (4.14)

Where bN is the amplitude of the field, ωN is the eigenfrequency, mφ corresponds

to the azimuthal propagation of the wave, and SN is the N-th order eigenfunction

of the field line resonance. Since we have assumed that the ionosphere is perfectly

conductive we can simplify ∂2B2/∂t
2 as −ω2

N , giving us,

d

dx1

[
v2
A

h2
2

dSN
dx1

] + h2
3ω

2
NSN = 0 (4.15)

In order to normalize the solution to SN we look at the relationships between

different eigenmodes. To do so, we multiply both sides by a different eigenmode,

SM and integrate along the field line,

∫ x+

x−

dx1SM [
d

dx1

(
v2
A

h2
2

dSN
dx1

) + h2
3ω

2
NSN ] = 0 (4.16)

x− and x+ correspond to the northern and southern hemispheres, respectively.

After integrating by parts we find,

ω2
N

∫ x+

x−

dx1h
2
3SMSN + SM

v2
A

h2
2

dSN
dx1

∣∣∣∣x+
x−

−
∫ x+

x−

dx1
v2
A

h2
2

dSM
dx1

dSN
dx1

= 0 (4.17)

This integration is repeated, by switching M to N and subtracting, giving the

orthogonality condition,

(ω2
N − ω2

M)

∫ x+

x−

dx1h
2
3SMSN = Const · δN,M (4.18)

Therefore, the normalized solution of SN is,
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∫ x+

x−

dx1h
2
3SN = 1 (4.19)

The eigenfunctions and their eigenfrequencies can be solved numerically using

this equation. However, an analytic solution to this equation can also be found.

4.1.4 Analytic Solution to the FLR Wave Equation

To solve for the eigenfunction we start with Equation 4.15. However, we will

use a change of variables to express our derivatives in terms of s rather than x1.

However, since we are working in dipole coordinates, x1(r, s) , it is important to

be clear about what variable is being held constant during the change.

∂

∂x1

=
∂

∂s

( ∂s
∂x1

)
r

=
(1− s2)2h2

2

r2

∂

∂s
(4.20)

Now Equation4.15 can be written as,

(1− s2)2h2
2

r2

∂

∂s
[
v2
A

h2
2

(1− s2)2h2
2

r2

∂SN
∂s

] + h2
3ω

2
NSN = 0 (4.21)

In order to simplify this equation to a simple harmonic oscillator form we need

to assume some variation of vA and SN . Following methods previously established

(C. Wang, Rankin, and Zong 2015), we assume the shape of our profile to be similar

to SN = A sin(fNs+ δ), where A and δ are constants and fN is a normalized

frequency. A variety of wave forms were tested but in order to get an analytic

solution to the wave equations we used,

SN = sin [fN(s+ s3)] (4.22)
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We can define our density profile such that vA = vA0/(1 + 3s2), where vA0 is the

normalized Alfvén speed to simplify our wave equation to,

∂2SN
∂s2

= −v
2
A0f

2
N

LRe

SN (4.23)

In order to find the value of fN we look at the boundary conditions on the

eigenfunction. At the ionosphere the eigenfunction must equal unity while s =

smax. In order to satisfy Equation 4.22,

fN =
π

2(smax + s3
max)

(4.24)

4.1.5 Poloidal Wave Model with an External Driver

We have previously looked at solving for the free wave equation eigenfunction.

However, in order to add energy into the system we must introduce a driver defined

as, D = ρωNvD sinωDt, where vD and ωD are the driver velocity and frequency.

We repeat the steps outlined in Section 4.1.3 but with a new momentum equation

defined as,

ρ
∂v2

∂t
=

B10

4πh1h2

∂

∂x1

(h2B2) +D (4.25)

By repeating the steps between Equations 4.11 and 4.12, we find

∂

∂t
(h3B10v2) =

v2
A

h2
2

∂

∂x1

(h2B2) + h3B10ωDvD<(ie−iωDt) (4.26)

Using Equation 4.10, we find
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∂2

∂t2
(h2B2) =

1

h2
3

∂

∂x1

[
v2
A

h2
2

∂

∂x1

(h2B2)

]
+

1

h3
2

∂

∂x2

[h3B10ωDvD<(ie−iωDt)] (4.27)

Using our previous definition of the eigenfunction from Equation4.14 and defin-

ing ∆ω = ωN − ωD, we can rewrite Equation 4.14 as,

h2B2 = b0<(e−i∆ωt)<(e−iωDt)SN = bN(t)<(e−iωDt)SN (4.28)

with bN = b0<(e−i∆ωt) and b0 is a constant. Assuming that we are looking at

behavior near the resonant position we can use ∆ω2 << ω2
D to write,

−ωDbN(t)SN−2iωD
∂bN(t)

∂t
SN =

bN(t)

h2
3

∂

∂x1

(
v2
A

h2
2

∂SN
∂x1

)+ i
ωD
h2

3

∂

∂x1

(h3B10vD) (4.29)

This can be simplified by using Equation 4.15 to obtain,

− ωDbN(t)SN − 2iωD
∂bN(t)

∂t
SN = −ω2

NSNb(t)N + i
ωD
h2

3

∂

∂x1

(h3B10vD) (4.30)

Isolating the derivative in the field-aligned direction, multiplying both sides by

h2
3SN , and integrating along the field line allows us to use Equation 4.19.

− ω2
DbN(t)− 2iωD

∂bN(t)

∂t
+ ω2

NbN(t) = iωD

∫ x+

x−

dx1SN
∂

∂x1

(h3B10vD) (4.31)

Integrating by parts and requiring vD(x−) = vD(x+) = 0 leads to,

− (ω2
D − ω2

N)bN(t)− 2iωD
∂bN(t)

∂t
= −iωD

∫ x+

x−

dx1(h3B10vD)
∂SN
∂x1

(4.32)
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We isolate ∂bN (t)
∂t

to find,

∂bN(t)

∂t
=

(ω2
D − ω2

N)

−2iωD
bN(t) +

ωD
2ωD

∫ x+

x−

dx1(h3B10vD)
∂SN
∂x1

(4.33)

Using the assumption that the area of interest is near the resonance position

this reduces to,

∂bN(t)

∂t
∼ −i∆ωbN(t) +

ωD
2
RD (4.34)

where RD = 1
ωD

∫ x+
x−

dx1(h3B10vD)∂SN

∂x1
and is the amplitude of the driver. It is a

constant parameter in our model and is in units of nT. Our next step is to solve

for b0. Assuming bN(t = 0) = 0 we find,

− i∆ωbN(t) +
ω

2
RD =

ωD
2
RDe

−i∆ωt (4.35)

Isolating bN(t) and taking the real portion of it leaves,

bN =
ωDRD

∆ω
sin (

∆ωt

2
) (4.36)

4.1.6 Analytic Poloidal Field Equations

Now that we have defined the amplitude of our eigenfunction, we can derive our

analytic field equations for the poloidal mode. We begin with a solution for the

radial magnetic field. Evaluating Equation 4.14 and converting sin to sinc , which

we define as sinc (x) ≡ sin (x)/x,

B2 =
tωDRDSN

2h2

cos (ωN t−mφ) sinc (
∆ωt

2
) (4.37)
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Since we have assumed that ∆ω2 << ω2
D and ω2

D < 1, we find that h2B2 ∝ ωDt.

This means that the wave will grow linearly with respect to time.

Using Equation 4.10,

∂

∂t
(h3B10v3) =

v2
A

h2
2

∂

∂x1

tωDRDSN
2h2

2a
cos (ωN t−mφ) sinc (

∆ωt

2
) (4.38)

and integrating over time we find,

− (h3B10v3) =
−v2

A

h2
2

1
2
ωDRD

∆ω/2

∂SN
∂x1

cos (mφ− ωN t+ ∆ωt
2

)

2ωD −∆ω
−

cos (mφ− ωN t− ∆ωt
2

)

2ωD + ∆ω
(4.39)

Multiplying both sides by h3 and using Equation 4.9, and simplifying using

∆ω2 << ω2
D we get the azimuthal electric field,

E3 = − v2
A

h2
2h3

tωDRD

2

∂SN
∂x1

sin (ωN t−mφ) sinc (
∆ωt

2
) (4.40)

Next, we use the definition of Faraday’s Law to find the compressional field,

B11 based on the azimuthal electric field, E3 and assuming that the radial electric

field, E2 is zero.
∂B11

∂t
= − 1

h2h3

∂

∂x2

(h3E3) (4.41)

where E3 has been defined as,

E3 =
v2
A

h2
2h3

ωD
∆ω

∂SN
∂x1

sin (ωN t−mφ) sin (
∆ωt

2
) (4.42)
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In order to make some of the calculations simpler we have returned to the sine

form of E3.

Since the metric factors have no time dependence we can integrate both sides

of the Equation and move the integral through the spatial derivative. The Alfvén

speed, derivative of the eigenfunction, and the change in frequency are also time

independent so we can begin our derivation by integrating the two sine terms in

E3. ∫ t

0

sin (ωN t−mφ) sin (
∆ωt

2
)dt =

1

ω2
N − ∆ω2

4

[
∆ω

2
cos

∆ωt

2
sin (ωN t−mφ)− ωN sin

∆ωt

2
cos (ωN t−mφ)]

(4.43)

Here we make an assumption about the form of the wave. We expect the

wave to be smooth and finite with a peak at the resonance location. This criteria

requires us to have a waveform that can be modeled using the sinc function. This

requires us to focus on the second term in brackets.

We can now return to Faraday’s law and define our compressional magnetic

field as,

B11 =
t

2

1

h2h3

∂

∂x2

[
v2
A

h2
2

∂SN
∂x1

ωN

ω2
N − ∆ω2

4

cos (ωN t−mφ) sinc
∆ωt

2
] (4.44)

From here we assume that the variation in h2 dominates, ignoring the variation in

the eigenfrequency, the Alfvén speed, and the sinc function. These assumptions are

made because in h2
2 is of higher order than the other terms found in the equation.

We also assume that for dynamics near the resonant location , ∆ω << ωN .

B11 =
4

h2h3

[
v2
A

r3

∂SN
∂x1

tωN
2ω2

N

cos (ωN t−mφ) cos (1 + 3 cos2 θ) sinc
∆ωt

2
] (4.45)
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This definition for B11 was then checked using ∇ · B = 0. However, this check

was done using the same assumptions regarding leading order terms. This means

that the check only validates our solution for B11 as mathematically correct, not

that our assumptions are valid.

4.2 Comparison With Previous Models

We will be comparing the fields derived in the previous section with previous

published results (C. Wang, Rankin, Y. Wang, et al. 2018). Both models are

derived from the same assumptions of driven linear shear Alfvén Waves (Rankin

2014). The key difference between the two models is that my model uses a fully

analytic compressional magnetic field while Wang’s uses a finite difference method.

In order to compare our fields, we looked at the variation in the poloidal mode

components as a function of latitude. We used the same wave parameters as

C. Wang, Rankin, Y. Wang, et al. 2018 including wave-number, wave frequency,

and resonance location. The fields are plotted again a quarter of a wave period

later to show the time dependent component of the fields and highlight the phase

relationship between the components. C. Wang, Rankin, Y. Wang, et al. 2018 did

not specify the driver strength or the time at which the figure was captured. We

attempted to recreate the fields focusing on the B1 and E3 components, however,

we were unable to recreate a similar B2 component.

Figure 4.1 shows the result obtained from the derivation included in this thesis

while Figure 4.2 shows the fields published in C. Wang, Rankin, Y. Wang, et al.

2018. Both of these figures show the variation in field strength as a function of

latitude. The right column in each figure is a quarter of a wave period later in

time.
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Figure 4.1: Eigenmode for a m = -35, 10mHz poloidal mode excited at L = 5.7

using our model. The fields in the right column are taken a quarter of a wave

period after those on the left. The compressional magnetic field (blue) and radial

magnetic field (red) are in phase. The magnetic fields (top panels) and azimuthal

electric field (bottom panels) are 90 degrees out of phase.
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Figure 4.2: Figure 1 from C. Wang, Rankin, Y. Wang, et al. 2018. Eigenmode

for a m =-35, 10mHz poloidal mode excited at L = 5.7. B1 is referring to the

compressional field component, not the total magnetic field. The fields in the

right column are taken a quarter of a wave period after those on the left. The

compressional magnetic field (top left panel in blue) and azimuthal electric field

(bottom left panel in black) are in phase. The radial magnetic field (top right

panel in red) is 90 degrees out of phase with the other two components.
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The primary difference between the models is the difference in phase between

the three field components. The results from C. Wang, Rankin, Y. Wang, et al.

2018 show the B1 and E3 component in phase while the B2 component is a quarter

period out of phase. Our results have B1 and B2 in phase while the E3 component

is a quarter period out of phase. In order to check the correct phase between these

components, we return to the definitions of the fields and Faraday’s Law.

Since both methods are based on Rankin, Samson, and Frycz 1993 we look at

the time-varying terms found there. A quarter period phase difference between

these terms is due to a difference in the trigonometric term that describes the

variation of the field in time. Here the magnetic field components are defined in

terms of cosωt while the electric field is defined in terms of sinωt. This definition

leads us to believe that the two magnetic fields should be in phase and the electric

field should be out of phase by a quarter wave period.

In order to compare the fields using Faraday’s Law we begin be restating the

poloidal mode approximation used at the beginning of our derivation. This leaves

us with a background field-aligned magnetic field B11, radial magnetic field B2,

and an azimuthal electric field E3. Using Faraday’s Law in dipole coordinates

gives us

1

h1h2h3

∂h3E3

∂x2

= −∂B11

∂t
(4.46)

which requires that E3 and B11 are out of phase with each other. This proves that

the fields shown in Figure 4.2 are not physical and cannot correctly model ULF

waves. Our fields do satisfy this initial validation using Faraday’s Law.

The violation of Faraday’s law by the field equations derived C. Wang, Rankin,

Y. Wang, et al. 2018 is not obvious. The phase difference between the electric and

magnetic field components is only required because of the poloidal mode assump-
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tion and the field components we are interested in. This means that there is no

reason to assume that the fields would generally be out of phase. Looking at

observational results will not show this phase difference preventing a verification

through comparison. In order to find this error, we re-derived his field equations

from the MHD equations outlined in Section 3.1.1.

Despite this error in Figure 4.2 we believe that the single particles dynamics

presented in C. Wang, Rankin, Y. Wang, et al. 2018 is accurate but not correct

due to improper fields. The model displays characteristics which appear to be

consistent with observations (Kazue Takahashi et al. 2018; L. Li et al. 2018) but

is quantitatively inaccurate due to the errors in the calculations of the fields.

4.3 Errors in Poloidal Mode Modeling

This settles the phase disagreement of the compressional magnetic field but the

magnitude of the field in both results is also troubling. There are two reasons for

this. The first is in both models the compressional magnetic field grow linearly

with time, leading to large B1 components that are not limited by any physical

field component. Instead, both models use the artificial driver RD to limit this

component following the growth phase; which limits the validity of the model.

The second, and more important reason, is tied to the removal of the toroidal

field components, E2 and B3. If we look at Faraday’s Law in dipole coordinated,

Equation 4.47, we see that there is a balance between the variations of E2 and E3

that limits the growth of the compressional magnetic field.

1

h1h2h3

(
∂h3E3

∂x2

− ∂h2E2

∂x3

) = −∂B11

∂t
(4.47)
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Since both models have assumed that E2 = 0, any radially narrowing E3 com-

ponent will result in a growing B11 field. For waves of constant width this may be

an appropriate assumption but both models simulate the narrowing of the wave

using sinc ∆ωt
2

. This narrowing is time dependent, meaning that the radial width

of the fields decreases over time leading to larger variations in the B11 component

over time. This effect is evident in both Figures 4.2 and 4.1. After three wave

periods, B11 can as high as half of the earth’s background magnetic field at the

equator. This limits the application of both models to the point of irrelevance.

Any attempt to model this kind of behavior must include a toroidal, E2 6= 0, in

order to limit this growth.

In nature, this growth is limited by the toroidal mode which acts as an initial

sink for the energy in the wave. This explains why the growth of the toroidal

mode components occurs after the poloidal mode component and can be seen in

the modeling done in Degeling et al. 2019. Future attempts to isolate the poloidal

mode should include some threshold for the compressional magnetic field in order

to artificially limit the strength of the field. However, I recommend that this be

avoided entirely by modeling both field components or focusing on the toroidal

rather than the poloidal mode.

4.4 Summary

We derived an analytic solution for the poloidal mode of a ULF wave. Comparisons

were made with the results found in C. Wang, Rankin, Y. Wang, et al. 2018 which

showed that their fields violated Faraday’s Law and cannot be accurate. How-

ever, based on the particle trajectories and comparisons with observations shown

later in the paper, the model still displays characteristics which are consistent

with observations, but is not accurate because the fields do not satisfy Faraday’s
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Law. Regardless of this phase difference between the fields, the magnitude of the

compressional magnetic field is unrealistic. This large magnetic field is a result of

isolating the poloidal mode which prevents the development of an azimuthal mag-

netic field that could act as a sink. Future work should include both the toroidal

and poloidal mode components. Additionally, by deriving the field components

starting from their potentials, the concern regarding the satisfaction of Faraday’s

Law can be entirely avoided. One example of these kinds of fields can be found in

Degeling et al. 2019.
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Chapter 5

Test Particle Models

We have previously compared simulated ULF wave fields with other models in

the literature. However, by studying the trajectories of particles interacting with

these waves, the accuracy of fields can also be tested. These test particle simu-

lations offer an additional perspective on the source of inaccuracies in the fields

we model. Here we will outline the framework of our model and demonstrate

the bench marking used to verify it. We highlight the impact of radial limiting

of the wave on conserved quantities in both our fields and those reported in C.

Wang, Rankin, and Zong 2015. This chapter concludes with a discussion of proper

modeling assumptions that should be used going forward.

5.1 Particle Trajectory Modeling

We begin by defining the forces that will govern the motion of our particles. For a

charged particle, its motion is completely governed by the Newton-Lorentz Force,
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m
dv

dt
= q(E + v×B) (5.1)

where m is the mass of the particle, v is the the particles instantaneous velocity,

E is the electric field and B is the magnetic field the particle experiences. For

our simulations we will not be concerned with any relativistic effects as the ion

velocities are much lower than the speed of light.

5.1.1 Runge-Kutta Integration

In order to compute the particle trajectories we used a fourth-order Runge-Kutta

method to integrate Equation 5.1. This is possible because our equations of motion

are ordinary differential equations. Each step in the integration process is defined

by a constant, h, which is the step size or time step. The time-dependent general

solution is expressed as,

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (5.2)

tn+1 = tn + h (5.3)

The next position in the particle trajectory is yn+1 and is based off the current

position yn plus weighted values for different possible increments, kn, with the

greatest weight being given to increments at the midpoint, k2 and k3.

k1 = hf(tn, yn)

k2 = hf(tn +
h

2
, yn + h

k1

2
)

k3 = hf(tn +
h

2
, yn + h

k2

2
)

k4 = hf(tn + h, yn + k3)

(5.4)

The advantage of single-step integration methods is that they do not require any

knowledge of the previous position of the particle, meaning that starting the in-

tegration does not require any special initialization, unlike a multi-step method.
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Additionally, the Runge-Kutta method was used due to its ease in implementation.

However, the two main limitations of this method are the increased computational

time required for similar accuracy compared to multi-step methods and compound

error that may result from each step taken, particularly for relativistic cases.

A fourth order Runge-Kutta method is used to integrate Equation 5.1 with

respect to time and is represented in Cartesian coordinates as,

dvx
dt

=
q

m
(Ex + vyBz − vzBy)

dvy
dt

=
q

m
(Ey + vzBx − vxBz)

dvz
dt

=
q

m
(Ez + vxBy − vyBx)

(5.5)

However, our model requires us to be able to convert these Cartesian coordinate

calculations into dipole coordinates, which are used in the calculations of the

electric and magnetic fields. This is handled by the following equation,


Fx

Fy

Fz

 =


−2 cos θ

δ
x
r
− sin θ cos θ cosφ

δ
− sin θ

δ
x
r

+ 2 cos2 θ cosφ
δ

− sinφ

−2 cos θ
δ

y
r
− sin θ cos θ sinφ

δ
− sin θ

δ
y
r

+ 2 cos2 θ sinφ
δ

cosφ

−2 cos θ
δ

z
r

+ sin2 θ
δ

− sin θ
δ

z
r
− 2 cos θ sin θ

δ
0



F1

F2

F3


where F1,2,3 corresponds to a vector in dipole coordinates as described in Section

4.1.1 and δ =
√

1 + 3 cos2 θ.

The advantage of using this Newton-Lorentz method is that no approximation

is needed in calculating the trajectory of a charged particle. The resolution of

our simulations is limited only by our time integration step size, Tstep. In our

simulations we define our step size in fractions of a gyroperiod, Tgyro. Specifically,

we use a hundredth of a gyroperiod, shown below,

Tstep =
1

100
Tgyro =

1

100

2πm

|qB|
(5.6)

62



This method is efficient for simulating the trajectories of ions, which have a

gyroperiod on the order of 0.01-1s in the inner magnetosphere. Electrons will

have much shorter gyro-periods, as low as 10’s of microseconds, due to the mass

dependence on the period. Any attempt to model electron dynamics should use a

guiding center model instead.

While improvements to computational time are always desired, for single-

particle simulations the run times are relatively short, on the order of tens of

seconds. Regarding relativistic cases, the ion energies we are currently focused

on are far below any need for relativistic corrections and the simulation times are

short. However, when dealing with electron calculations it may be necessary to

switch to a multi-step integration method like a Boris integrator. Using a Boris

integrator would improve the long term accuracy of these simulations which cur-

rently carry a 4th order error based on the time step used (Qin et al. 2013).

5.2 Benchmarking

5.2.1 Electric Fields

The first step in checking the validity of our particle integrator is to focus on the

interaction of the particle with a constant electric field. Using Equation 5.1 we

can compare the expected increase in particle energy and the distance the particle

should travel with our simulated results over a given time period. We started with

a test particle with no initial kinetic energy, an azimuthal electric field of 1mV/m,

and no magnetic field . This particle was traced over 24 seconds giving an expected

displacement of 4.49L, where L refers to L-shell, and an energy change of 28.6keV.

Our simulated results differed by 0.04% with an analytic integrated solution and

this error was not dependent on the step-sized used in our integration process.
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Figure 5.1: The motion of a hydrogen ion in a constant electric field set to 1mV/m.

The particle dynamics are superimposed over the electric field. The red circle

represents the particles starting location and the cross marks the particles current

location. The particles trajectory is represented by the white line.

The trajectory of our test particle in an azimuthal electric field with constant

amplitude can be seen in Figure 5.1. The image is a superposition of the particle

trajectory over the simulated field. The particles motion trajectory is in white

with a red circle representing the initial location and the red x representing the

particles current location at the time denoted in the bottom left corner. The

field is modeled in the azimuthal and radial direction with a Cartesian coordinate

labeling. The field is modeled between a radial distance of 4-8L, creating the green

band seen in Figure 5.1. This visualization is used throughout the remainder of

the chapter.

Next, we used a simple time varying azimuthal electric field with the form,

E = cos(ωt−mφ). The simplest case is shown in figure 5.2 for a wave with m =

-1 and a wave period of 100s. The negative sign in front of the wave number sets

the direction of the wave propagation which is clockwise or westward propagating.

The magnitude of the electric field strength is set at 0.1mV/m and is constant as
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Figure 5.2: Variation in the azimuthal electric field with m = -1 and a wave period

of 100s between L = 4 and L=8. Each panel is taken 25s after the previous, starting

at 25s.The dot and cross in each panel represent the start and current location of

the particle, respectively.

a function of radius. The color bar is set so that a positive and negative azimuthal

electric field is represented by orange and blue, respectively. We have plotted

the field using a 25s interval to highlight the motion of the wave in this simple

case. By following the positive section of the wave, it clearly completes a full

counterclockwise rotation in 100s. Additionally, it is clear that the strength of the

field is not radially dependent.

The particle dynamics are more obvious in figure 5.3. Each panel is taken

over 50s intervals, with a wave period of 100 seconds, highlighting the moments of

maximum negative and positive field strength. As the particle is accelerated off

of the y-axis the x component of the azimuthal electric field pushes the particle

radially outward. This re-occurs as the particle moves in the negative y direction
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Figure 5.3: Variation in particle trajectory in an azimuthal electric field with m

= -1 and a wave period of 100s between L = 4 and L=8. Each panel is taken 50s

after the previous, between t = 50s and t = 200s. The dot and cross in each panel

represent the start and current location of the particle, respectively.

since the particle has a negative velocity and is moving in a negative electric field.

However, because the particle started in a positive field the net displacement is

negative, as the particle velocity is greater during the second half of the wave

period. Running the same electric field offset in phase by 50s yields a particle with

an overall positive displacement for the same reason.

This analysis was repeated for the same electric field strength and period but

m =-35 as shown in figure 5.4. The more drastic vertical drift of the particle is

due to the larger wave number. As the particle accelerates in the positive field, it

moves against the direction of propagation and quickly enters an area of negative

electric field. The large wave number reduces the width of the individual wave

fronts highlighting the asymmetric motion of the particle in the field.
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Figure 5.4: Variation in the particle trajectory in an azimuthal electric field with

m = -35 and a wave period of 100s between L = 4 and L = 8. Each panel is taken

50 seconds after the previous, between t = 50s and t = 200s. The dot and cross

in each panel represent the start and current location of the particle, respectively.
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These tests ensure that the particle-wave interactions are consistent with the

electric component of the Lorentz force equation. The test conducted with varying

wave numbers also ensure that the wave period and wave number are correctly set

in the model. The next step is to look at the magnetic component of the Newton-

Lorentz force.

5.2.2 Magnetic Fields

The next series of tests focused on ensuring the magnetic field was accurately

modeled, starting with a constant magnetic field and removing the electric field.

We used a H+ ion as our test particle to study the gyro-period and radius. We

selected a 16nT field which has an expected gyro-period of 4.1s and a gyro-radius

of ∆L = 0.52. This test also confirmed that the mass of the test particle was

correctly implemented as the gyro-radius is mass dependent. In figure 5.5 the

particle follows the right hand rule and completes a gyro-orbit in just over 4s with

a gyro-radius of approximately half an L-shell. All of these results show agreement

with expected theoretical values.

This was followed by ensuring that the dipole magnetic field was correctly

implemented based on the dipole field equation, 5.7.

B10(L, θ) =
BE

L3

(1 + cos(θ)2)1/2

sin(θ)6
(5.7)

where B10 is the Earth’s background magnetic field as a function of L and θ, where

theta is the co-latitude angle. BE is the equatorial magnetic field at the Earth’s

surface, approximately 3.11 × 10−5T. This thesis is only interested in the motion

of particles in the equatorial plane and with 90 deg pitch angle, allowing us to

simplify the definition of the background field to,
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Figure 5.5: 133keV Hydrogen gyro-motion in a constant magnetic field of 16nT.

The magnetic field is directed out of the page and the particle starts with an initial

velocity in the positive y-direction. Panels range from 0s to 4s in intervals of 1s.

The dot and cross in each panel represent the start and current location of the

particle, respectively.
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B10(L) =
BE

L3
(5.8)

In order to confirm that the field was correctly implemented we first check the

magnetic field at the released location of L = 5.7 which agrees with the calculated

value of 167nT. We then compare the simulated drift period with the theoretical

value. The theoretical value for a particle at L = 5.7 and an energy of 133keV

is 3480s. Our simulated results agree with these values and also give us a chance

to compare the gyro-period and gyro-radius in this new magnetic field which also

agree. This motion is illustrated in figure 5.6.

The constant field tests confirmed that our particle’s mass and the background

magnetic field were correctly implemented in our model, while the dipole field

ensured that our dipole model was accurate and that drift motion is accurately

simulated.

5.3 Drift Resonance

Putting together the dipole field and the time varying electric field we can begin

to simulate drift resonance. The resonance energy was calculated from the drift

resonance equations outlined in Section 3.3. We expect to see the particle oscillate

in the wave profile as it gains energy from the positive E3 component of the

wave. This energization results in an outward radial drift and an increase in

azimuthal velocity which will put the particle out of phase with the positive field

and eventually place it in a negative phase. Here, it will lose energy and slow

down, drifting inward and entering a positive wave front.
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Figure 5.6: 133keV Hydrogen ion drift motion in a dipole magnetic field. Each

panel is a snapshot over 875s intervals between t= 0s and t= 3490s. The calculated

drift period is 3480s. The dot and cross in each panel represent the start and

current location of the particle, respectively.

71



5.3.1 Simplified Fields

In order to test our model we define a simplified version of the poloidal mode

fields. We start by defining the E3 so that the curl of E3 is zero in poloidal mode

components. This is most easily accomplished by defining the components as,

E3 = E0
Lres
L

cos(ωt−mφ)

B11 =
E0

c
sin(ωt−mφ)

(5.9)

These definitions ensure that Faraday’s law is obeyed and the divergence of the

magnetic fields is zero for all time. Additionally, it allows us to set the strength

of the electric field at the resonance location from our initial parameters. For

our test case we set a constant E0 at 3mV/m, m = -35, a wave period of 100s,

and a resonance location, Lres, at L = 5.7. Figure 5.7 shows the trajectory of a

133keV H+ ion with a 90° pitch angle. The 133keV ion appears to satisfy the drift

resonance condition and the motion of the particle agrees with the expectations

stated above. During the first 250s of the simulation, the particle loses energy to

the field and drifts outward. It then enters a positive wave front, visible at t=500s,

where it gains energy and proceeds to drift inwards as seen at t=750s. The particle

then enters an area of negative electric field and begins to drift outward again, t

= 1000s. Due to the large width of the fields and the constant field strength, the

particle will repeat this cycle for the remainder of the simulated time.

In order to further study the dynamics of the particle and ensure that the drift

resonance condition is truly satisfied we turn to Figure 5.8. The first plot shows

the change in the particle’s radial position with the width of the line corresponding

to the gyro-motion of the particle. The next two plots are the change in energy

and magnetic field which vary out of phase with the first plot as expected. The

variation in the change of energy is small over a gyroperiod which is why the width

of the energy plot is thinner than the other two. Both differences are calculated by
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Figure 5.7: Variation in 133keV hydrogen ion drift motion in a radial azimuthal

electric field with m = -35 and a wave period of 100s between L = 4 and L=8.

Each panel is taken 250s after the previous, between t = 250s and t = 1000s. The

dot and cross in each panel represent the start and current location of the particle,

respectively.
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Figure 5.8: From top to bottom, the radial position, change in particle energy,

change in magnetic field experienced by the particle, and change in conserved

quantity for a 133 keV hydrogen ion as a function of time. All wave parameters

are the same as those in figure 5.7.

finding the difference between the current value and the initial value at t = 0. The

variations in energy and radial position all agree with the equatorial plot shown

in Figure 5.7.

The final plot shows the differences between the normalized magnetic field and

energy. This is an alternate form of the first invariant, µ, which is normally used

to verify if motion is adiabatic. The reason that the magnetic moment is not used

is because the first invariant is calculated from the gyro-center of the particles

motion. The stand in used is derived form the definition of µ and assumes that

the variation in the first invariant is small when compared to the variations in the

magnetic field. This means that as long as variations in the magnetic field are

small over the time and length scales associated with the particles gyromotion,
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Figure 5.9: Poincaré plot of 5 hydrogen ions of various energies in the wave frame

with identical magnetic moments. The y-axis spans three consecutive wave fronts.

Particle energies span half to one and a half times the resonance energy in steps

of a quarter of the wave’s resonance energy. Here the resonance energy is set at

133keV. The resonant energy ion is the only one to form closed islands. All wave

parameters are the same as those in Figure 5.7.

our conserved quantity should be invariant.

This quantity should be centered around zero with the variations resulting from

the gyro-variations in the magnetic field. However, we used an average over the

gyro-period in order to eliminate this variation. This results in the variation seen

at t=750s which is a byproduct of this averaging but is not related to the physical

behavior of the particle. This error is visible in Figure 5.10 as well. The error is a

result of averaging over the gyroradius which becomes offset at t=750s and leads

to a large variation in the energy of the particle that is not physical.
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Figure 5.9 shows a Poincaré map for 5 hydrogen ions with energies from half

to one and a half times the resonance energy in steps of a quarter of the waves

resonance energy. The energies are plotted in the wave frame with the same

parameters as defined in Figure 5.7. The resonant energy particle executes closed

orbits which illustrates that they are trapped between wave fronts. This proves

that 133keV energy is in fact the resonance particle energy for this specific wave.

Additionally, we can see that the total energy variation of the resonant particle

is limited between 105-170keV. This corresponds to a variation of around 40keV

which agrees with the second panel in figure 5.8. The higher and lower energy

particles move between wave fronts which are represented by their movement across

the three wave fronts depicted.

In order to better understand the importance of preserving Faraday’s law we

will look at a specific case where it is violated. We will use the same fields defined

in equation 5.9 but we will remove the radial dependency in E3.

E3 = E0cos(ωt−mφ)

B11 =
E0

c
sin(ωt−mφ)

(5.10)

This specific definition is used for a variety of reasons. First, while Faraday’s law

is violated these equations maintain the divergence of the magnetic fields being

zero. Second, while these equations no longer satisfy Faraday’s law in a dipolar

coordinate system, they do satisfy Faraday’s Law in spherical coordinate system,

making it a simple mistake to make. Finally, the similarities between Equations

5.9 and 5.10 allow for a direct comparison that can highlight the errors in particle

trajectories that result from violations of Faraday’s law.

As above, for our test case we set a constant E3 at 3mV/m, m = -35, a

wave period of 100s, and Lres = 5.7L. Figure 5.10 shows the particle trajectory

parameters for a 133keV H+ ion with a 90° pitch angle. The first three panels
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Figure 5.10: From top to bottom, the radial position, change in particle energy,

change in magnetic field experienced by the particle, and change in conserved

quantity for av133 keV hydrogen ion as a function of time. The parameters of the

wave are: m =-35, Lres = 5.7Re, and a wave period is 100s. E3 is constant across

all L-shells.

show similar variation to those found in the corresponding panels in Figure 5.8.

However, the fourth panel shows that our conserved quantity is no longer constant.

This variation scales with the electric field strength and is a direct result of the

violation of Faraday’s law.

Figure 5.11 shows the Poincaré plot corresponding to this particle trajectory.

The closed islands still form at the resonant energy but the variations in the off-

resonant trajectories have a more drastic asymmetry when compared with Figure

5.9. This is most likely due to the radial variation of h3E3 in our new field defini-

tion. This test case shows that a resonant particle does not necessarily conserve

the first adiabatic invariant if the fields do not satisfy Faraday’s law. This allows
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Figure 5.11: Poincaré plot of 5 hydrogen ions of various energies in the wave frame

with identical magnetic moments. The y-axis spans three consecutive wave fronts.

Particle energies span half to one and a half times the resonance energy in steps

of a quarter of the wave’s resonance energy. Here the resonance energy is set at

133keV. All wave parameters are the same as those in Figure 5.10.

us to better understand why test particle simulations that seem to have reasonable

trajectory parameters could have large variations in their conserved quantities.

5.3.2 Simplified Fields with Radial Limiting

Another area of interest is the impact of radially limiting poloidal mode field on

the behavior of charged particles. The radial limiting effect is related to the cut-

off scale associated with phase mixing of the ULF wave. We once again return to

Equation 5.9 but this time we introduce a sinc function in order to limit the radial

width of the wave, resulting in the following equations,
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E3 = E0cos
Lres
L

(ωt−mφ) sinc(
∆ωt

2
)

B11 =
E0

c
sin(ωt−mφ) sinc(

∆ωt

2
)

(5.11)

The sinc function is used in order to more directly compare with the fields

discussed in Section 4.1.6 and those used in C. Wang, Rankin, and Zong 2015.

Two different cases were used in order to better understand this radial varia-

tion. The first is time-independent, with time, t, set to a constant value, T= 100s.

The radial variation of the wave is held constant, with the sinc function portion

defined as, sinc(∆ωT
2

. The second case is time-dependent and places no restrictions

on the time component of the sinc function. These two cases correspond to a wave

with radial width fixed at around 3Re and a narrowing field width. We will use

the same parameters as in the previous cases: we set a constant E0 at 3mV/m,

m = -35, a wave period of 100s, and Lres = 5.7. Figure 5.12 shows the particle

trajectory parameters for a 133keV H+ ion with a 90° pitch angle. The left panels

are for the time-independent case and the right panel shows the time-dependent

case. Both cases are shown at t = 500s and t = 1500s during the simulation.

As previously discussed in Section 4.3, the introduction of radial limiting will

result in an increasing background magnetic field. We expect that this increase in

B11 will cause the variation in our conserved quantities to increase. This is due

to the fact that our conserved quantity is defined in terms of the total magnetic

field. The large radial gradients in the electric field lead to a large B11 component.

In our assumption of our conserved quantity we have assumed that the variation

in B11 would be small over all time and space. As B11 grows to a similar order

of the background field the regions where the particle would normally be able to

move with it’s adiabatic invariant being constant are no longer physical. This

breakdown of adiabatic behavior due to large B11 components will occur in both

our conserved quantity and a guiding center µ calculation. Physically, the variation
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Figure 5.12: Drift resonance between a 133keV hydrogen ion and a radial azimuthal

electric field with m = -35 and a wave period of 100s between L = 4 and L=8. The

left column shows the trajectory in a wave front that has a fixed radial width that

is not time-dependent.The right shows the trajectory in a wave front that has a

radial width that decreases over time. The dot and cross in each panel represent

the start and current location of the particle, respectively.
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Figure 5.13: A comparison of the variation between the time independent, (A),

and time dependent, (B), radial width cases shown in figure 5.12. The overall

variation in the conserved increases as the radial width of the wave narrows.

of the fields over a gyroperiod will lead to non-uniform gyromotion. This means

that the invariants can no longer be considered constant which is required for these

quantities to be conserved.

Figure 5.13 shows the conserved quantity for both cases. The top panel, panel

A, shows the variation for the t = 100s case and the bottom panel, panel B,

shows the variation for the time dependent radial width case. As expected, we see

that case A with less radial limiting results in smaller variations in the conserved

quantity while case B shows larger variations.
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5.4 Poloidal Mode Model Comparisons

5.4.1 Comparison with Published Models

Now that we have established a foundation for the validity of the particle integra-

tor and have studied particle behavior using simplified fields we can move on to

comparison with more complete poloidal mode field equations. We begin by look-

ing at the fields defined in C. Wang, Rankin, and Zong 2015 and C. Wang, Rankin,

Y. Wang, et al. 2018. Recall that these fields have been derived using a poloidal

mode assumption that violates Faraday’s law, which means that they should suffer

from the same errors in the conservation of the first adiabatic invariant that we

saw in figure 5.13.

However, there are two significant variations between this model and the sim-

plified fields previously discussed. The first, and most important, is that the fields

are not constant with respect to time. These fields are made up of a growth, con-

stant, and a decay period. During the growth period, the fields grow linearly in

strength with respect to time, and are implemented using an artificial driver, RD.

During the constant phase, this driver is turned off and the fields remain constant.

Finally the waves experience an exponential decay during the decay phase.

Secondly, the radial dependency of the fields is far more complicated than the

simplified 1/r variation discussed in equation 5.9. Figure 5.14 shows the particle

parameters for a 133keV H+ ion with a 90° pitch angle in a poloidal mode field.

The 133keV satisfies the drift resonance condition for a wave with m = -35, Lres

= 5.7Re, and the wave period is 100s. The wave fields grow linearly for 800s and

then remain constant for 700s before it decays by 2500s.

The first panel shows a particle that drifts radially inward and outward with a

far higher frequency than previously seen. Regardless, the variation in the particles
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Figure 5.14: From top to bottom, the radial position, change in particle energy,

change in magnetic field experience by the particle, and change in conserved quan-

tity for 133 keV hydrogen ion as a function of time. The fields used are defined

based on the work of C. Wang, Rankin, and Zong 2015. The parameters of the

wave are: E3 = 3mV/m, Lres = 5.7Re, and the wave period is 100s. The waves

are set to grow for 800s, remain constant until t = 1500s, and then decay.
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motion suggests that it is still resonating with the wave. The second plot agrees

with the first, the maximums in energy correspond to minimums in radial position,

as expected. Crucially, the shape of the first two panels perfectly match the results

seen in figure 2, panel 1 of C. Wang, Rankin, Y. Wang, et al. 2018. Note that

the variation in energy during the constant phase is similar to the results from the

simplified model. The magnetic field agrees with the first panel but there are some

sharper structures that seem to develop after t = 600s. The fourth panel shows

a large variation in the conserved quantity that grows larger as the fields grow in

strength. As expected, the variation in the conserved quantity or the magnetic

moment, is similar in order of magnitude to those seen in Figure 5.13. There is

also a non-zero change in the conserved quantity by the end of the simulation, T

= 2500s. This suggests that the fields used in C. Wang, Rankin, Y. Wang, et al.

2018 and C. Wang, Rankin, and Zong 2015 suffer from the same growing B11.

Figure 5.15 shows the Poincaré plots associated with the field previously dis-

cussed. Here the resonant energy islands are still closed and the off resonance

trajectories are open but the resonance islands are sheared to the right. This

means that the particles are not constrained to a single wave front and are in fact

moving between three wave fronts rather one. For the center island, it reaches

a minimum energy while in phase with the wave behind its initial launch and a

maximum when it has accelerated into the wave front ahead of its initial position.

It is unclear why this would be the case. However, the change in particle energy

is limited between 100-150keV which agrees with both figure 5.14 and the results

from the simplified model.

5.4.2 Chapter 4 fields

We now return to the fields defined in section 4.1.6 and study the resulting particle

trajectories. The fields parameters are set as established in section 5.4.1. Figure
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Figure 5.15: Poincaré plot of 133keV hydrogen ions in the wave frame. All wave

parameters are the same as those in figure 5.14

5.16 shows the trajectory parameters as a function of time.

The first panel shows a particle that slowly begins to drift radially outward

before oscillating around L = 6 while the gyro-radius increases to almost 1Re.

The second panel shows an impossibly large increase in the particle energy up to

a threshold value. The magnetic field agrees with the first panel as it decreases

but continues to oscillate around a decrease of 25nT. The difference between the

changes in energy and magnetic field would lead us to expect that our invariant will

not be conserved which agrees with the fourth panel. Comparing the magnitude

of the variation with the results previously discussed, it is clear that this error is

far larger than we have seen resulting from radial limiting.

The exact cause of this large variation in our conserved quantity is not fully

understood. One possible source could come from our assumption of leading order

terms in Section 4.1.6. When we returned to those equations we found that some
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Figure 5.16: From top to bottom, the radial position, change in particle energy,

change in magnetic field experienced by the particle, and change in conserved

quantity for 133 keV hydrogen ion as a function of time. The fields used are

defined in Section 4.1.6. The parameters of the wave are: m = -35, Lres = 5.7Re,

and the wave period is 100s. The waves are set to grow for 800s, remain constant

until t = 1500s, and then decay.
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secondary terms that were assumed to be insignificant were of similar order to

our leading terms. This means that our current field equations are missing a

term that could have a significant impact on the variation on the B11 component.

This uncertainty, combined with the large B11 strength that developed from the

poloidal mode assumption could lead to large variations in our conserved quantity

and, consequently, energy. However, this theory has not been tested and should

be studied more closely.

The corresponding Poincaré plot, Figure 5.17, supports the theory that the

particle is initially energized outward but quickly loses resonance with the wave

and surfs the outer edge of the wave at higher energy. The particle begins with

a nearly closed island in the wave frame but continues to gain energy and move

ahead of the wave, represented by the progression of the particle to the right, over

the first three wave periods. After that, its increase in energy brings it out of the

wave frame where it is able to move between wave fronts, as if it were released

with a non-resonant energy. The particle dynamics and the width of the initial

islands are all consistent with figure 5.16.

5.5 Discussion

The fields derived in Section 4.1.6 and those used in C. Wang, Rankin, and Zong

2015 and C. Wang, Rankin, Y. Wang, et al. 2018 show variations in their conserved

quantities that is not consistent with adiabatic drift resonance. These variations

are also not consistent with observations of guided poloidal mode Alfvén waves.

These observations show that while high-m waves do exist they have far smaller

B11 components than those reported by both models. This small B11 is required

in order to accurately model these high-m guided poloidal mode waves (Mann,

Wright, and Hood 1997).
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Figure 5.17: Poincaré plot of 133keV hydrogen ions in the wave frame. All wave

parameters are the same as those in Figure 5.16

As previously discussed in Section 4.3, the large B11 fields are a result of the

poloidal mode approximation. This assumption requires that the E2 component

that would balance the phase mixing that results from the ∂h3E3

∂x2
portion of Fara-

day’s law, Equation 4.47, is zero. C. Wang, Rankin, and Zong 2015 claim that

they have limited the growth of the B11 component by limiting the driver term, RD

for a short period of time. However, there are several issues with this. First, even

using the limited growth period they report, allows the B11 component to grow

to over half of the Earth’s background magnetic field at the equator. This means

that even if limiting the time that the RD was active was an appropriate method

of modeling the system, the rate at which the field grows limits the validity of the

model and leaves the model unsuitable for use.

The second is that the limiting of RD is not sufficient to limit the growth of

the B11 component to the growth period of the wave. This error is evident in

both their fields and ours. We found that the B11 fields continued to grow over
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the constant and decay phase of the wave for both models. This means that even

if the driver were only active for a short period of time, the growth of B11 is not

limited by it. Again, the large compressional fields quickly becomes comparable to

the Earth’s magnetic field, which is unphysical and inconsistent with observations.

The time at which this occurs varies based on the driver strength but for the case

established in C. Wang, Rankin, and Zong 2015 it occurs after only a few wave

periods.

Finally, the use of an artificial driver to limit the growth of B11 does not ensure

that the fields satisfy Faraday’s law. It only acts to limit the violation to some,

hopefully small, value. Without introducing an E2 component, the system of fields

that is used in both C. Wang, Rankin, and Zong 2015 and Section 4.1.6 do not

accurately model the physical system of guided poloidal mode Alfvén waves. In

reality, the rotation of flux tubes by an E2 component prevents the compression of

the plasma and increase in B11. Without introducing the toroidal field components

any attempt to model particle dynamics risks using fields that violate Faraday’s

law. At best, the results from such models require validation from a secondary

model that is know to satisfy Faraday’s law.

5.6 Closing Remarks

Moving forward, we recommend that any attempt to model high-m Alfvén waves

include the toroidal field components in order to ensure that Faraday’s law is sat-

isfied without the need for artificial restrictions. Additionally, B11 needs to remain

small but finite in order to agree with observed results and prevent violations of

linear assumptions.

One example of a successful model that can be used for this kind of testing has

been outlined by Degeling et al. 2019. Their field components are derived from
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the potentials for each of the components which ensures that the resulting fields

satisfy Faraday’s law. Additionally, their model is well constructed for studying

high-m wave dynamics and could easily be implemented in a similar full Lorentz

particle integrator.

Finally, we recommend that all of the results found in C. Wang, Rankin, and

Zong 2015 and C. Wang, Rankin, Y. Wang, et al. 2018 be verified using fields that

are known to satisfy Faraday’s law.
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Chapter 6

Conclusion

Chapter 1 outlined the environment and large scale behavior that impacts obser-

vations and simulations of wave-particle interactions between the Earth and the

Sun. The Sun and solar wind are the primary source of disturbances in the Earth’s

magnetic field and the generation of Alfvén waves. We highlighted the key regions

of the Earth’s magnetosphere to help situate the reader with the areas of interest.

Geomagnetic storms and substorms are briefly discussed in an effort to explain the

type of IMF geomagnetic interactions that can result in ULF waves. We ended

this chapter with an overview of the goals of this thesis.

A review of the key aspects of particle and wave dynamics are discussed in

chapters 2 and 3. We reviewed the three adiabatic invariants, the derivation of

hot and cold MHD equations and drift resonance. This theoretical background was

used to derive the field equations and model particle trajectories in the following

chapters of the thesis.

Chapter 4 outlines the definition of poloidal mode field components for high-m

Alfvén waves in the inner magnetosphere. The key assumptions of the model and
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their validity are discussed in depth in the second half of the chapter. The chapter

concludes with a comparison to the results published in C. Wang, Rankin, and

Zong 2015. The chapter concludes with a critique of the assumptions based on

Faraday’s law and evidence of violations in both sets of field equations.

An outline of the modeling method begins chapter 5. A series of benchmarks

are discussed that are used to defend the validity of the charged particle numerical

integrator. Simplified fields are used to highlight irregularities in the first invariant

during drift resonance between high-m ULF Alfvén waves and H+ ions. We studied

the particle dynamics that result from drift resonance between H+ and the fields

derived in C. Wang, Rankin, and Zong 2015 and the fields derived in chapter 4 of

this thesis. We end with a discussion of the errors in poloidal mode assumptions

and possible solutions.

There are numerous studies that would benefit from the type of analysis dis-

cussed in chapter 5. However, any future work should begin with fields that

are known to satisfy both Faraday’s law and keep B11 limited to a reasonable,

physical value. Following this verification, we suggest analyzing the behavior of

drift-bounce ions for particle with a variety of pitch angles or non-linear drift res-

onance and comparing it with the results found in L. Li et al. 2018. One could

also look into comparing the relative energization of hydrogen and oxygen ion as

outlined in Oimatsu, Nosé, Teramoto, et al. 2018.
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