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Supplementary material

Derivation of equations (4)-(6)

The population size is =S+ 1 +V and thereforen/dt =dS/dt+dl /dt +dV /dt and
eqguation fom is obtained by taking sum of (1), (2), and (3):

% =b(n)n-m(n)n-hn-pl .

The disease prevalenceiis | /n, thereforel =in, and after the substitution we obtain
Eq. (4).

To derive equation far, we use its definition again,
i=1/n or Ini=Inl-Inn.

Differentiating the last equality lty we obtain
1di _1d 1dn

idt 1dt ndt
Taking into account thadl /dt)/1 is Eq. (2) divided by, and(dn/dt)/n is (4) divided
by n, we obtain

LS =[p(n)s )= h]=[oln) - m{n) -1 h] =
=B(n )S M- b(n)+ui-
Taking into account tha®=n-1-V = (1—i —v)n , after multiplying byi, we obtain (5).

Finally, using relationyy =V /n, Inv=InV -Inn, andlﬂ—ld—v Ldn , Similar to

vdt V dt ndt
the previous case we obtain

lav_| S_ il yS .
L= v~ mlo)=h|-[ole) )i =kl =y - ble) 1
SubstitutingS/V = (1-i —v)/v and multiplying by we obtain (6).

Estimate of Ry at the disease-free equilibrium

We can estimatB, right from its definition, the average number etsndary infections
produced by an infected individual in a non-infeigp®pulation (survival function
method in [1]). Let the system be at the stateqoilibrium S=S), V=V,, 1=0,

n=n=S+Vo, and thereforés(n,) = m(n,)+h. At t=0 introduce small numbés of



infected individuals (primary infections). They will die at raméwo) + W +h and transmit
the infection to susceptibles at rfin,)S,! (t) and generate secondary infections. The
number of primary infections depends on time as

Ds = i)+t L(O)= 10, 1,()= 1oexpl=(m{n, )+ ).

dt
The rate of secondary infections produced by these primary ones is

D2 =pn)s,). 1,(0)=0

dt
By )Sol o
0= Bl = - 1oel-rfn)ep+nk)
Therefore,
R, = |2(°°) - B(no)so - B(no)(no _Vo) - B(no)no(l_vo) v, = Vo

m(ng)+p+h mlng)+p+h min)+p+h’ N,

Taking into account the equilibrium conditidfn, )= m(n,)+h, it can be written also as
R, = B(no)no(l_vo) '
b(n,) +p
It allows us to estimate the immunity threshejdabove which the disease cannot get
established:

Rl) =1=[1-v)R,(0). v, =1-1/R,(0) R,(0)=

the well-known relation in the epidemiological literature.

Derivation of the critical value B, (Fig. 1)

Substituting the equilibrium vaccinated proportign= y/(y+ m+ h) for the fixed
vaccination ratg into the expression fd#, in case of FD transmission we obtain
__ B m+h
= m+h+pm+h+y’
The minimum harvest and vaccination rates alloviingtop the disease spread
correspond t&y=1, that is

m+h+v_BO(m+h) BO 1_L .
m+h+u m+h+p
Therefore, the minimum necessary vaccination riadendn is

- I e
y—B{l m+h+uj m-nh.

The expression in the brackets is a growing fumotith, saturating to 1 for large and
the last term is a decreasing functiooThe behaviour of/(h) nearh=0 depends on




the value of3y: for smallfo y(h) is a decreasing function, for larfeit can increase for
smallh values. The boundary between the two caSesff()) corresponds to the case
when ath=0 y(h) is neither growing, nor a decreasing functiont tha'(0) = 0.
'(h) = H
h)=B, ——— —1,
y(h)=B, CTIr;
therefore, for3 = fﬂo

y'(O):BO(ﬁj_]_:O, 5 = (meu)

Endemic equilibrium n,, i., v. for the model (4)-(6) in presence of
harvest and vaccination, y>0

We assumen(n) = m (DB regulation).
FD transmission, B(n) =f,, and At the endemic equilibrium, assuming0, n,i,v

satisfy the following system of equations:
b(n)=m+h+pi,

Bo(1-v-i)-p(L-i)-b(n)=0,
¥{L-v=i)=(b(n)-pij =0.

From the first equationb(n)—pi =m+ h, and substituting this into the last one, we abtai

y@d-i)=(y+m+h)y, v:ﬁ(l—i) :

Then, substitutingp andv into second equation
Bo-v—-i)=p(-i)+b(n)=p+m+h,

ao(l—Lj(l—i)w M pemeh

y+m+h y+m+h
. _ (u+m+h){y+m+h)
1-i1=
Bo(m-+h)
Therefore, the final expressions for the endemigliggium are
_y(u+m+h)
V. - 7 .\
By(m-+h)
ma-brmely ) L]
By(m-+h) By Lm+h



and n, should be determined from the relatiofm.) = m+h+pi, . It can be shown that
for B, > n. decreases with. However, sincen. does enter into the expressions for
i., V., they are always valid provided the solutian> eXists. Sinceb(n) attains its
maximum value ah = 0, the condition for existence of the solutiomis- h+ i, < b(0),
and we assume that it is satisfied.

Differentiatingi.,v. by h we obtain

% = _—W <0

TR

. . 2
di. 1/ w | gk>0ify>(m+h)l
)2

dh By (m+h dh u
Therefore, proportion of immune individuals at emiteequilibrium is always reduced
by harvest. However, the behavior of endemic disgaevalence depends on the
immunization ratey. For low immunization ratey < (m+ h)2 /1 harvest decreases the

endemic prevalence: decrease of lifespan of infeicigividuals, and hendg,, affects
the disease spread stronger than the loss of immdneduals. However for
y>(m+h)’/u, which corresponds to

(M+m+h)(m+h) _ m+h

BoH HR,(0)’
the situation becomes opposite, and disease s{geaate sensitive to the loss of
immune individuals. One can see that the threshalige v.. is inversely proportional to

B, or Ry of completely susceptible population, that is, ti@re contagious the disease is,
the more likely is hampering of vaccination by restv

V-k > V*C =

DD transmission, B(n): Boon - Repeating the above derivations, we come to aimil
formulas,

_ y(p+m+h)
Boon. (M+h)’
oy rmenfy emen)
Boon.(m+h)
b(n. )= m+h+i. .
Now the expressions far,v. containn,, which makes the analysis much more
complicated. For example, the endemic populatiose isow satisfies
b(n. )+ u{p+m+h)y+m+h)
Boon (m+h)
It can be shown that, like in FD cas®g, decreases with, and hence creates an
additional source of,. decrease. Now the condition forincrease witth becomes
v, |dn[](m+h)?
>11+(1-1. — )
Y { ( )BDD dh } u

It is not clear, whether it can be satisfied or. not

V*

=m+h+y.




Phase plane analysis of system with FD disease transmission and no
vaccination

Here we develop the phase plane analysis for the systenﬁiwth B,, Nno vaccination

andb(n) qualitatively similar to one described by (10). We also assume that theityortal
is a constantn and does not depend on densityThis is enough to apply phase plane
analysis to the system (4), (5) withO:

& = [b{n) - m{n) - i ~ln @

%= F(n0i)  F=Rn)-i)-pu-i)-bln)=@ -p)i-i)-b) G

We consider only nonnegative population numbers and disease prevalencas0,that
i=0. There are twa-isoclines along whickn/dt=0:
a) n=0;
b) b(n)-m(n)-pi—-h=0 or
)= b(n)-m-h

U
When0<i <i_(n,h) nincreases, and wheri_(n,h) n decreases. There are tivo
isoclines, along whichi/dt=0:
c) i=0;
d) F = (B, ~p)1-i)-b(n)=0 or

i(n)=1- Bb(”) . (A2)

i.(n,h (A1)

When 0<i <i,(n) i increases, and whér>i, (n) i decreases.

Equilibria of the system are the points where lattat=di/dt=0 and they correspond to
the points of intersection of the isoclines. Thenber, location, and stability of the
equilibria change with model parameters. We cardide effect of varying two
parameters: harvest intensitywhich is our way of disease control, and theugerent
potential or maximum recruitment rdig which is responsible for disease controllability
in case of FD transmission. All other parameteesfized. Depending on the value lwpf
the isoclines may intersect in three different walyswn in Fig. Al.

The system (4), (5) may have four types of equdibr

e Trivial equilibrium n=0, =0, intersection of isoclines (a) and (c).

* Disease-free equilibrium n=ng>0, i=0 corresponds to the intersection point of
isoclines (b) and (c) i.g, (n,,h) =0, or b(n,)=m+h.

» Extinction equilibrium n=0, i=ig>0, intersection of isoclines (a) and (d).
Biologically this is the same situation as triveguilibrium, no animal population
and hence no infected individuals too. Howeves,tto equilibria reflect the
existence of two ways to extinction, the trivialiddprium corresponds to
population disappearance in the absence of infeoti@. due to harvest. The
extinction equilibrium corresponds to populatiosagipearance in presence of the
disease, where a certain proportion of the poparias always infected.



* Endemic equilibrium corresponds to intersection of isoclines (b) and (d), that is
i.(n,h)=i,(n). It corresponds to coexistence of animal population and the disease.

The trivial equilibrium always exists. The other three may exist or disagdppanding
on the values df andby, and their stability can change too. Below we assume that Eq.
(7) holds at disease-free equilibrium fe10, that isf3, >p +b=m+p, and the disease

can get established in the non-harvested population. Then the disease free equilibrium
i=0, n=ny ath=0 is unstable, and the asymptotic state of the population depends on its
maximum recruitment rat& or recruitment potential. Stability of equilibria can be
investigated by a standard linearization technique. In particular, syst@ahow that
endemic equilibrium is always stable provided it exists, so graphically diseadication
means bringing isoclines (Al), (A2) to such a position that they do not intersaeDfor
i>0, but population remains nonzero. We omit linear analysis for brevity. Instead in Fig.
Al we show several example trajectories of the system which illestyatem behaviour

in different parts of the phase plane. There are three possibilities:

Case 1. Low recruitment potentl®t no endemic equilibrium, unstable disease-free
equilibrium (disease can get established), stable extinction equilibnghiesnce
population size eventually goes to zero, Fig. Al(a). Whemh) is always below, (n),

they never intersect far-0 and any. This happens whein(0,0) <i,(0) or
bO < bOcoll = % (m+ I'l)’ (A3)

0
that is the recruitment potential is less than the collapse threshold.

Case 2. Medium recruitment potentigl at no harvest the endemic equilibrium is stable,
and disease-free and extinction equilibria are unstable, Fig. A1(b). As haoresises,

the endemic equilibrium corresponds to lower and lower density, and eventually it
merges with the extinction equilibrium, which becomes stable, and situation turns to one
shown in Fig. Al(a). Therefore, there is population loss at too large a harvest. When at
smalln andh=0 i, (n,0)>i,(n) >0, the isoclines must have an intersection point because

atn=n they change ordering(n;)=0 andi_(n,,0)<0<i,(n,)=1. This happens when

i.(00)>i,(0)>0 or

Poh(
Bo

For too largeh the intersection point disappears, so there is a threshold in Harligst

in(o’ hmax) = ii (O) or

e = 220~ =, (A%)
Bo —H

above which the population collapses.

m+u)<b, <B, —H.

Case 3. High recruitment potenti®gl the extinction equilibrium does not exist. At zero
harvest there is stable endemic equilibrium and unstable disease-free iequilibg.

Al(c). As harvest increases, the endemic equilibrium corresponds to smalleradied s
disease prevalence, and at strong enough harvest the endemic equilibriumwitarges



disease-free one and then disappears and only stable disease-freelequiibrains,
Fig. A1(d). This happens Whé[(O) <0 or recruitment potential exceeds the disease
elimination threshold

By > Byejimn =Bo M- (A5)
There is also a harvest threshbkh,, and it corresponds to situation where the endemic
equilibrium occurs at=0. Then in (A1) and (A2) we havig(n,h,) =i,(n)=0 or
b(n)=m+h,, andb(n)=B, -, and eventuallyh, =B, —m-p. Forh>he the disease
cannot persist. However harvest should not be too strong to eliminate the population as
well. From Fig. 1 it is clear that the condition for thiiis b, —m. Sinceb, >3, -H,

h, <b, —m and at this harvest level the population persists.

Analysis of these three cases show that only in case 3 population reduction caatelimi
the disease without driving the population to extinction, that is this method of population
management requires sufficient recruitment potential, that is large ebgugh

Now we shall consider the dependence of the endemic disease prevalence @n harves
intensity.

When the endemic equilibrium,i- exists, it is easy to find endemic prevalence solving
equationi, (n.,h) =i, (n.)=i.. After simple transformations of these equalities we have

b(n.)=m+pi.+h, (B, -p)L-i.)=b(n) (A6)
or, solving this system fda(n-) andi-,
b(n.) = (B, —p)m+h-+p)

: (A7)
Bo
i, = 1_Lh+“ . (A8)
Bo
The maximum endemic prevalence corresponds to no hanm6st,
i, =1-MTH (A9)
Bo

Egs. (A7) and (A8) allow us to make two conclusions: a) the maximum endemic disease
prevalence depends only on the ratio of mortality rate of infected individuals and
transmission coefficient and does not depend on recruitment potgnbtiqlan increase

of harvest lowers the prevalence provided the population does not collapse.

The endemic equilibrium exists only in cases 2 and 3, that is when (A7) has a solution,
which is possible only ib(n-)<bg, or h<hnay, see (A3). Substituting the expression for
hmax into (A8), we obtain minimum achievable endemic equilibrium under harvest
control,

i =1~ by or ., =0 providedb, >, - H. (A10)




Therefore, the three cases considered above give the following resultsgoevhkence
ranges:

1) with low recruitment potentiab, <b,, (A3), the population collapses;

2) with medium recruitment potentid,., <b, <by,., (A3), (A5), the harvest can
not make the endemic prevalence lower thgp , and further harvest increase
leads to population collapse;

3) with high recruitment potential, > b, (A5), the harvest can drive the disease
prevalence down to zero.
These three cases are shown in Fig. 3.
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Fig. A1l. Scheme of the three types of isocline behavieisoclines are shown as thick
black linesj-isoclines as thick gray lines, stable equilibria as black circles, and unstabl
equilibria as open circles. The behaviour of the system trajectories is skdiin black
lines with the arrows. a) i (n) is always higher thai) (n,h), these isoclines do not
intersect ah>0, there is no endemic equilibrium. If the infection can get established
(disease-free equilibrium is unstable), the population goes extinct. dfratrvest
(h=0) and smalh i_(n,h)>i.(n) andi_(n)>0, the then endemic equilibrium exists
(black circle). Harvest decreases endemic prevalence but can dastemdemic
equilibrium ifh is too largelf=h;); c and d) ifi, (0) < 0 then there is harvest threshold,
beyond which only a disease-free equilibrium exists, and disease can bateldy
population reductionh&hy).



Using SI model for a disease with environmental transmission:
effective exclusion of environment compartment

It is known that prion diseases including CWD can be transmitted indirectly via
environment (Miller et al 2004). However, at present there are no data as to how long
they may remain accessible to deer, what is the rate of prion loss, how quickly prions
decay (see e.g. discussion of prion mobility in soils by Schramm et al. (2006ycevide

of prion degradation by Rapp et al. (2006), and review of recent results by Smith et al
(2011)). We base our approach upon the results presented by Miller et al. (2006). In their
paper several models were compared against the data, and the best one wad thfe mode
environmental transmission. The second best was the SI model. From our point of view,
this is not coincidence because, as we show below, under certain conditions SI model can
effectively describe disease spread through the environment as well.

The best model in (Miller et al. 2006) is

ds

E:a—s(gE+m),

di

pradts S 1(m+ 1), (A11)
dE _

o8

HereSandl are the number of susceptible and infected deerthe amount of prions in
the environment is rate of deer birtm s the rate of healthy deer mortalityis the
mortality increase due to the disease, g is intdiransmission rate, is the per capita
rate of prion accumulation, ands the rate of its loss. The estimated values are
1=2.55 year; £=0.111 mass/year; g=0.787 mdysar’, p=0.57 year.

According to these results, if prions are introdug#o the environment &t0, their
amountE(t) decreases with time d&t) = E, exp(- 1t), see Fig. A2. This means that

after one year about 8% of original amount remaansl, in 2 years only about 0.6%. The
deer density changes slowly compared to this rfiapeion washout. For example, in
Alberta detected prevalence of CWD increased abdoid in 5 years after it was once
detected (Alberta SRD 2006-2011), which correspdodgowth exponent about 10
times less tham reported by Miller et al. (2006).

Therefore](t) grows much shower thdt(t) decays. In such circumstances we can apply
an approach described e.g. by Haken (1983), wkiclpplicable when in the system

there are variables with different relaxation ré&st and slow. Then the slowly changing
ones “enslave” the fast, and dynamics of the lat@rbe approximated by functions of
just the slow variables. As a result, the origic@nplex model can be replaced by a
simpler one containing slow variables only. Theuaacy of this approach depends on the
difference between relaxation rates for slow amstl fimodes: the greater is the difference,
the more accurate the method is. In other wordbkgiinfection is washed out of the
environment quickly enough, then the current amadiptions is proportional to the

10



number of infected individuals and a model of direct transmission (Sl-type in our case)
may be a good approximation of the indirect transmission one.

If we assume that the number of the infected deer in (A1l) is changing onlyshiggat
single year, then the value Bipractically converges to its asymptotic vatlie beforel
changes. Hence, we may assume that approxintatelyt. Substituting this relation
into two remaining equations of (A11), we obtain

ds g€
E =a- 7| +mj,

(A12)
d g¢

- T 1(m+ 1),
which coincides with the SI model in (Miller et al. 2006) wWithye/t. If we substitute the
above values of g, andt, we obtair3=0.034 year', which is very close to

$=0.0326 year obtained by fitting the SI model to data in (Miller et al. 2006). The
difference in model performance detectedMyC. is most probably due to the effect of
delay: when an infected deer appears in the area, accumulation of the prion in the
environment takes some time, and new infections appear slightly later thaeddnuii
model. Otherwise the disease pattern predicted by both models should be very close.

Therefore, if the hypothesis of a quick prion loss is valid, the model (A12) can be a good
approximation to the model of environmental transmission (A11).

Here we apply this approach in deriving equations (1)-(3), where there is tislppss

of frequency-dependent infection from environmental contamination. Deer areifiving
social groups, and direct contacts within a group are much more intensive than between
groups. This is the reason why direct transmission should be primarily model&d by F
transmission. However, similar reasons may work for environmental transméssi

well: members of the same group are staying close to each other, and have hig
probability to pick up the infection after the member of the same group. Then, assuming
that the environmental transmission mainly occurs within areas whereotisdare, it is
possible to show that paramegein (A11) should be replaced igyn. The model with
within-group environmental transmission has the form

% =b(n)(S+1 +V)-m(n)s- @ (n)(1 /n)+ gE/n)S-yS-hS (A13)
% = (B (n)(1 /n)+ gE/n)S— (m(n) + )i ~hi , (A14)
‘jj_\t’ =yS-m(n\V -hv, (A15)
(fj—'tz = - IE. (A16)
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Then, assuming=¢l/1, one obtains the model (1)-(3) wiffn) =B'(n)+ g/ 1, where the
first term corresponds to direct transmission drediast one to environmental
transmission. Further details of the approachgasen in [11].
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Estimates of harvest effect for the model of Choisy & Rohani [20]

Here we derive some values important for the comparison of the effects found in [20]
with the results of our paper. To simplify the estimates we 1) use the samenubtati

all parameters equal to it; 2) denbtegH. Then the version of the model system used for
the analysis of the steady state has the form

S=(b-dN({t-1))N-(dN+h+A)S,
E'=AS-(dN +h+0)E,

I'=0E - (dN +h+y+V)l,

R=yl —(dN +h)R,

A:&#, N=S+E+I+R

The parameters are
B =2000year", y=73year’, o =456year”,
b=02year,d ~10°, v=0.
Sincef,y,0 >>b,dN, h, it is possible to do approximate calculationshef equilibrium
state:
0=(b-dN(t-1))N-(dN +h+]A)S,
0=AS-(dN +h+0)E,
0=cE—(dN +h+y)I,
0=yl —(dN +h)R
Summing up the equations gives
N=(b-h)/2d, dN+h=(b+h)/2
Then,
AS

ST dN+h+o’
| = oE  _ o N BS /N
dN+h+y dN+h+o dN+h+y’
or, up to linear terms ih,
S:N@N+h+®wN+h+w:XN@ﬁdN+h+dN+h}
Bo B y o

On the other hand
Y E= M|

dN+h '’ o
N-S=E+I| +R,

%_%@ﬁdN+h+dN+hﬂN=deN+h+y+ Y }L

y o o dN +h
Neglecting the ter{dN +h)* /o <<1 , we have
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{1—2 —(1+1j dN + h}(dN + h) {y+(1+ yj(dN + h)} v{l+[1+ 1) dN + h}l ,
B o) B o)y
Substituting herelN + h=(b+h)/2 and taking into account that up to linear terms
b+h]" b+h
1+(1+1j =1—(1+1j ,
o) 2y o) 2y

and neglecting quadratic terms(tm+ h) and terms b/[3, after simple but bulky algebra
we come to population proportions under harvest:

S_y,y+o .

R B AN 0037, § = 65x10°

N"p e TR tsh 8= S =

R_j_y_(yro)y (1 v Mh:ro—rlh, r, = 096, r, =0.018
N B 2yo B) 2yo

|1 o _

N =2—y(b+ h)=i, +i,h, i, =0.0013 i, = 0.0066

% —b+h)=¢+en, e =00021 ¢ =001L

We can see that the strongest relative effect saheaes on the disease prevalence,
however the strongest absolute effect it has optbpeortion of recovered individuals.
Harvest removes immune individuals, they are requldny new susceptibles due to
increased birth rate, and since the disease isyhigintagious, the susceptible class
almost does not grow. Almost all additional susitdgs go straight into the exposed and
infected classes, which noticeably grow, but cafr@abme very big because of short
disease duration.

Harvest reduces the lifetime of the infected indiils, but sincg is very large, they
still leave behind too many secondary infectionsafooticeable effect on the decrease of
the disease spread rate.

Repeating the derivations of RO for the model @))f¢r the case of the model [20], one
obtains the following.

The disease-free equilibrium is
S=N, E=I=R=0.
Then primary infectives,(t), 1,(0)=1, << N satisfy the equation
=—(dN+h+y+v)l,,  1,(t)=1,exp-(dN +h+y+vk).
Secondary exposef,(t), E,(0)=0 satisfy

E2'=B|1W(t)8—(dN +h+0)E,

Ez(t):y_w c;[exy:( (AN +h+o)t)-exp(- (dN +h+y+v)t)]
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The growth rate for the number of secondary infectiofg, 1,(0)=0 is oE,(t), and
hence the total number of secondary cases is

(0] _oo = BO-
H )_J;GEZ(t)dt_ 'o (0+dN +h)(y+v+dN +h)’

and, taking into account that + h=(b+h)/2, we obtain

_ Bo ~E _b+h b+h - _
|:zo_(0+(b+h)/2)(y+v+(b+h)/2) y(l 20 2(y+v)j 27:3-05h.

We can see that harvest can slightly decreasesatie teproduction number, but the
relative effect is much weaker than that of therdase of the number of immune
individuals.

Estimate of transmission coefficient from deer population and
harvest data for Wisconsin

According to Wisconsin Department of Natural Reseaf{WI1], deer population is

about 1 million of individuals, and about 350,0@Gdare harvested per year. Therefore,
about 30% of population is removed, and harveshsity for Wisconsin can be
estimated as

h=log(1- 0.3)/lyear= 036year".

The CWD prevalence growth rate in Wisconsin is shawWI2], separately for males
and females, with the average exponkrt0.087year" (growth about two times in
2002-2010). Assuming = 057year" andm= 006year", we obtain from (11)

A =B, —H—-m-h=0.087year",
or

B, =A+u+m+h=108year".
Assuming that Wisconsin deer population is nearliégum, we obtain the estimate of
the recruitment rate for disease free population,

b(n) = m+h = 042year*
and in case of CWD prevalence near 10%

b(n)=m+h+iu= 048year’.

[WI1] Wisconsin's Deer Management Program,
http://dnr.wi.gov/org/land/wildlife/hunt/deer/deerk.pdf

[WI2] CWD in Wisconsin, Prevalence & Surveillance,
http://dnr.wi.gov/org/land/wildlife/whealth/issu€3ND/prevalence.htm
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