
1 

Wildlife disease elimination and density dependence 
 

Alex Potapov, Evelyn Merrill, and Mark A. Lewis 

Supplementary material 
 

Derivation of equations (4)-(6) 
 
The population size is VISn ++=  and therefore dtdVdtdIdtdSdtdn //// ++=  and 
equation for n is obtained by taking sum of (1), (2), and (3): 

 ( ) ( ) Ihnnnmnnb
dt

dn µ−−−= . 

The disease prevalence is nIi /= , therefore inI = , and after the substitution we obtain 
Eq. (4). 
 
To derive equation for i, we use its definition again, 
 nIi /=    or   nIi lnlnln −= . 
Differentiating the last equality by t, we obtain 

 
dt

dn

ndt

dI

Idt

di

i

111 −= . 

Taking into account that ( ) IdtdI //  is Eq. (2) divided by I, and ( ) ndtdn //  is (4) divided 
by n, we obtain  

 
( ) ( )( )[ ] ( ) ( )[ ]
( ) ( ) .

1

inbSn

hinmnbhnmSn
dt

di

i
µ+−µ−β=

=−µ−−−−µ+−β=
 

Taking into account that ( )nviVInS −−=−−= 1 , after multiplying by i, we obtain (5). 
 

Finally, using relations nVv /= ,   nVv lnlnln −= , and 
dt

dn

ndt

dV

Vdt

dv

v

111 −= , similar to 

the previous case we obtain 

( ) ( ) ( )[ ] ( ) inb
V

S
hinmnbhnm

V

S

dt

dv

v
µ+−γ=−µ−−−




 −−γ=1
. 

Substituting ( ) vviVS /1/ −−=  and multiplying by v we obtain (6). 
 

Estimate of R0 at the disease-free equilibrium 
 
We can estimate R0 right from its definition, the average number of secondary infections 
produced by an infected individual in a non-infected population (survival function 
method in [1]). Let the system be at the state of equilibrium S=S0, V=V0, I=0, 
n=n0=S0+V0, and therefore ( ) ( ) hnmnb += 00 . At t=0 introduce small number I0 of 
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infected individuals (primary infections). They will die at rate ( ) hnm +µ+0  and transmit 

the infection to susceptibles at rate ( ) ( )tISn 00β  and generate secondary infections. The 

number of primary infections depends on time as   

 ( )( ) ( ) ( ) ( )( )( )thnmItIIIIhnm
dt

dI +µ+−==+µ+−= 0010110
1 exp,0, . 

The rate of secondary infections produced by these primary ones is  
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Taking into account the equilibrium condition ( ) ( ) hnmnb += 00 , it can be written also as 

 
( ) ( )

( ) µ+
−β=

0

000
0

1

nb

vnn
R . 

It allows us to estimate the immunity threshold v0, above which the disease cannot get 
established: 

 ( ) ( ) ( ) ( ) ( ) ( )
( ) µ+
β=−=−==

0

00
0000000 0,0/11,011

nb

nn
RRvRvvR , 

the well-known relation in the epidemiological literature. 
 

Derivation of the critical value 0β̂  (Fig. 1) 

 
Substituting the equilibrium vaccinated proportion ( )hmv ++γγ= /0  for the fixed 

vaccination rate γ into the expression for R0, in case of FD transmission we obtain  

γ++
+

µ++
β=

hm

hm

hm
R 0

0 . 

The minimum harvest and vaccination rates allowing to stop the disease spread 
correspond to R0=1, that is 

( )









µ++
µ−β=

µ++
+β=γ++

hmhm

hm
hm 10

0 . 

Therefore, the minimum necessary vaccination rate given h is  

 hm
hm

−−








µ++
µ−β=γ 10 . 

The expression in the brackets is a growing function of h, saturating to 1 for large h, and 
the last term is a decreasing function of h. The behaviour of ( )hγ  near h=0 depends on 
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the value of β0: for small β0 ( )hγ  is a decreasing function, for large β0 it can increase for 

small h values.  The boundary between the two cases (0β̂=β ) corresponds to the case 

when at h=0 ( )hγ  is neither growing, nor a decreasing function, that is ( ) 00' =γ .  

( ) ( ) 1' 20 −
µ++

µβ=γ
hm

h ,  

therefore, for 0β̂=β   

( ) ( )
( )

µ
µ+=β=−








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µβ=γ

2

020
ˆ,01ˆ0'

m

m
. 

 

Endemic equilibrium *** ,, vin  for the model (4)-(6) in presence of 
harvest and vaccination, 0>γ  
 
We assume ( ) mnm =  (DB regulation).  

FD transmission, ( ) 0β=β n , and At the endemic equilibrium, assuming 0>i , vin ,,  

satisfy the following system of equations:  
 ( ) ihmnb µ++= , 

( ) ( ) ( ) 0110 =−−µ−−−β nbiiv , 

 ( ) ( )( ) 01 =µ−−−−γ vinbiv . 

From the first equation ( ) hminb +=µ− , and substituting this into the last one, we obtain 

( ) ( ) ( )i
hm

vvhmi −
++γ

γ=++γ=−γ 1,1 . 

Then, substituting b and v into second equation 
( ) ( ) ( ) hmnbiiv ++µ=+−µ=−−β 110 , 
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Therefore, the final expressions for the endemic equilibrium are 
( )
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and *n  should be determined from the relation ( ) ** ihmnb µ++= .  It can be shown that 

for µ>β0  *n  decreases with h. However, since *n  does enter into the expressions for 

** ,vi , they are always valid provided the solution 0* >n  exists. Since ( )nb  attains its 

maximum value at 0=n , the condition for existence of the solution is ( )0* bihm <µ++ , 
and we assume that it is satisfied.  
 Differentiating ** ,vi  by h we obtain 

( ) ,02
0

* <
+β

γµ−=
hmdh

dv
 

( ) 







−

+
γµ

β
= 1

1
2

0

*

hmdh

di
,    0* >

dh

di
  if  

( )
µ
+>γ

2hm
. 

Therefore, proportion of immune individuals at endemic equilibrium is always reduced 
by harvest.  However, the behavior of endemic disease prevalence depends on the 

immunization rate γ .  For low immunization rate  ( ) µ+<γ /2hm  harvest decreases the 
endemic prevalence: decrease of lifespan of infected individuals, and hence R0, affects 
the disease spread stronger than the loss of immune individuals. However for 

( ) µ+>γ /2hm , which corresponds to  

 
( )( )

( )000
** R

hmhmhm
vv C µ

+=
µβ

+++µ=> , 

the situation becomes opposite, and disease spread is more sensitive to the loss of 
immune individuals. One can see that the threshold value Cv*  is inversely proportional to 

0β  or R0 of completely susceptible population, that is, the more contagious the disease is, 

the more likely is hampering of vaccination by harvest. 
 
DD transmission, ( ) nn DDβ=β . Repeating the above derivations, we come to similar 
formulas, 

( )
( ) ,

*
* hmn

hm
v

DD +β
++µγ=  

( )( )
( )hmn

hmhm
i

DD +β
++γ++µ−=

*
* 1 , 

 ( ) ** ihmnb µ++= . 

Now the expressions for ** ,vi  contain *n , which makes the analysis much more 
complicated.  For example, the endemic population size now satisfies  

 ( ) ( )( )
( ) µ++=

+β
++γ++µµ+ hm

hmn

hmhm
nb

DD *
* . 

It can be shown that, like in FD case, *n  decreases with h, and hence creates an 

additional source of *i  decrease.  Now the condition for *i  increase with h becomes  

 ( ) ( )
µ
+








 β−+>γ
2

*
*11

hm

dh

dn
i DD .  

It is not clear, whether it can be satisfied or not.   
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Phase plane analysis of system with FD disease transmission and no 
vaccination 
 
Here we develop the phase plane analysis for the system with ( ) 0β=β n ,  no vaccination 

and b(n) qualitatively similar to one described by (10). We also assume that the mortality 
is a constant m and does not depend on density n.  This is enough to apply phase plane 
analysis to the system (4), (5) with v=0: 

 ( ) ( )[ ]nhinmnb
dt

dn −µ−−=        (4) 

( ) ( )( ) ( ) ( ) ( )( ) ( )nbinbiinFiniF
dt

di −−µ−β=−−µ−−β== 111,,0, 0  (5) 

We consider only nonnegative population numbers and disease prevalence so that n≥0, 
i≥0. There are two n-isoclines along which dn/dt=0: 
a) n=0;  
b) ( ) ( ) 0=−µ−− hinmnb  or  

 ( ) ( )
µ

hmnb
hnin

−−=,  .       (A1) 

When ( )hnii n ,0 <<  n increases, and when ( )hnii n ,>  n decreases.  There are two i-

isoclines, along which di/dt=0:  
c) i=0;  
d) ( )( ) ( ) 010 =−−µ−β= nbiF  or  

 ( ) ( )
µ−β

−=
0

1
nb

nii .        (A2) 

When ( )nii i<<0  i increases, and when ( )nii i>  i decreases.  

Equilibria of the system are the points where both dn/dt=di/dt=0 and they correspond to 
the points of intersection of the isoclines.  The number, location, and stability of the 
equilibria change with model parameters.  We consider the effect of varying two 
parameters: harvest intensity h, which is our way of disease control, and the recruitment 
potential or maximum recruitment rate b0, which is responsible for disease controllability 
in case of FD transmission.  All other parameters are fixed. Depending on the value of b0 
the isoclines may intersect in three different ways shown in Fig. A1.   
 
The system (4), (5) may have four types of equilibria:  

• Trivial equilibrium n=0, i=0, intersection of isoclines (a) and (c).  
• Disease-free equilibrium n=n0>0, i=0 corresponds to the intersection point of 

isoclines (b) and (c) i.e. ( ) 0,0 =hnin , or ( ) hmnb +=0 .  

• Extinction equilibrium n=0, i=i0>0, intersection of isoclines (a) and (d). 
Biologically this is the same situation as trivial equilibrium, no animal population 
and hence no infected individuals too.  However, the two equilibria reflect the 
existence of two ways to extinction, the trivial equilibrium corresponds to 
population disappearance in the absence of infection, e.g. due to harvest.  The 
extinction equilibrium corresponds to population disappearance in presence of the 
disease, where a certain proportion of the population is always infected. 
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• Endemic equilibrium corresponds to intersection of isoclines (b) and (d), that is 
( ) ( )nihni in =, . It corresponds to coexistence of animal population and the disease.  

The trivial equilibrium always exists. The other three may exist or disappear depending 
on the values of h and b0, and their stability can change too. Below we assume that Eq. 
(7) holds at disease-free equilibrium for h=0, that is µ+=+µ>β mb0 , and the disease 

can get established in the non-harvested population.  Then the disease free equilibrium 
i=0, n=n0 at h=0 is unstable, and the asymptotic state of the population depends on its 
maximum recruitment rate b0 or recruitment potential. Stability of equilibria can be 
investigated by a standard linearization technique. In particular, it is easy to show that 
endemic equilibrium is always stable provided it exists, so graphically disease eradication 
means bringing isoclines  (A1), (A2) to such a position that they do not intersect for n>0, 
i>0, but population remains nonzero. We omit linear analysis for brevity. Instead in Fig. 
A1 we show several example trajectories of the system which illustrate system behaviour 
in different parts of the phase plane. There are three possibilities:  
 
Case 1. Low recruitment potential b0: no endemic equilibrium, unstable disease-free 
equilibrium (disease can get established), stable extinction equilibrium, and hence 
population size eventually goes to zero, Fig. A1(a). When ( )hnin ,  is always below ( )nii , 

they never intersect for n>0 and any h.  This happens when ( ) ( )00,0 in ii <  or  

( )µ+
β

µ−β=< mbb
0

0
coll00 ,       (A3) 

that is the recruitment potential is less than the collapse threshold.   
 
Case 2. Medium recruitment potential b0: at no harvest the endemic equilibrium is stable, 
and disease-free and extinction equilibria are unstable, Fig. A1(b). As harvest increases, 
the endemic equilibrium corresponds to lower and lower density, and eventually it 
merges with the extinction equilibrium, which becomes stable, and situation turns to one 
shown in Fig. A1(a). Therefore, there is population loss at too large a harvest. When at 
small n and h=0 ( ) ( ) 00, >> nini in , the isoclines must have an intersection point because 

at n=nc they change ordering: b(nc)=0 and ( ) ( ) 100, =<< cicn nini .  This happens when   

( ) ( ) 000,0 >> in ii  or  

( ) µ−β<<µ+
β

µ−β
00

0

0 bm .   

For too large h the intersection point disappears, so there is a threshold in harvest h=hmax: 
( ) ( )0,0 max in ihi =  or  

µ−−
µ−β

β= m
b

h
0

00
max ,        (A4) 

above which the population collapses. 
 
Case 3. High recruitment potential b0: the extinction equilibrium does not exist. At zero 
harvest there is stable endemic equilibrium and unstable disease-free equilibrium, Fig. 
A1(c). As harvest increases, the endemic equilibrium corresponds to smaller and smaller 
disease prevalence, and at strong enough harvest the endemic equilibrium merges with 



7 

disease-free one and then disappears and only stable disease-free equilibrium remains, 
Fig. A1(d).  This happens when ( ) 00 <ii  or recruitment potential exceeds the disease 

elimination threshold 
 µ−β=> 0elim00 bb .          (A5) 

There is also a harvest threshold h=he, and it corresponds to situation where the endemic 
equilibrium occurs at i=0. Then in (A1) and (A2) we have ( ) ( ) 0, == nihni ien  or 

( ) ehmnb += , and ( ) µ−β= 0nb , and eventually µ−−β= mhe 0 .  For h>he the disease 

cannot persist. However harvest should not be too strong to eliminate the population as 
well.  From Fig. 1 it is clear that the condition for this is mbh −< 0 .  Since µ−β> 00b ,  

mbhe −< 0  and at this harvest level the population persists. 

 
Analysis of these three cases show that only in case 3 population reduction can eliminate 
the disease without driving the population to extinction, that is this method of population 
management requires sufficient recruitment potential, that is large enough b0.  
 
Now we shall consider the dependence of the endemic disease prevalence on harvest 
intensity.  
 
When the endemic equilibrium n*,i* exists, it is easy to find endemic prevalence solving 
equation ( ) ( ) *** , inihni in == .  After simple transformations of these equalities we have  

( ) ( )( ) ( )**0** 1, nbihimnb =−µ−β+µ+=      (A6) 

or, solving this system for b(n*) and i*,  

 ( ) ( )( )
0

0
* β

µ++µ−β= hm
nb ,       (A7) 

 
0

* 1
β

µ++−= hm
i .        (A8) 

The maximum endemic prevalence corresponds to no harvest, h=0,  

0
max* 1

β
µ+−= m

i .        (A9) 

Eqs. (A7) and (A8) allow us to make two conclusions: a) the maximum endemic disease 
prevalence depends only on the ratio of mortality rate of infected individuals and 
transmission coefficient and does not depend on recruitment potential b0; b) an increase 
of harvest lowers the prevalence provided the population does not collapse. 
 
The endemic equilibrium exists only in cases 2 and 3, that is when (A7) has a solution, 
which is possible only if b(n*)<b0, or h<hmax, see (A3). Substituting the expression for 
hmax into (A8), we obtain minimum achievable endemic equilibrium under harvest 
control,  

 
µ−β

−=
0

0
min* 1

b
i    or   0*min =i  provided µ−β> 00b .   (A10) 
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Therefore, the three cases considered above give the following results for the prevalence 
ranges: 

1) with low recruitment potential, collbb 00 <  (A3), the population collapses; 

2) with medium recruitment potential, elim00coll0 bbb <<  (A3), (A5), the harvest can 

not make the endemic prevalence lower than *mini , and further harvest increase 
leads to population collapse; 

3) with high recruitment potential, elim00 bb >  (A5), the harvest can drive the disease 

prevalence down to zero.  
These three cases are shown in Fig. 3.  
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 a) 

 

 b) 
   

 c) 

 

 d) 
 
Fig. A1.  Scheme of the three types of isocline behaviour. n-isoclines are shown as thick 
black lines, i-isoclines as thick gray lines, stable equilibria as black circles, and unstable 
equilibria as open circles. The behaviour of the system trajectories is shown by thin black 
lines with the arrows.  a) If ( )nin  is always higher than ( )hnin , , these isoclines do not 

intersect at n>0, there is no endemic equilibrium. If the infection can get established 
(disease-free equilibrium is unstable), the population goes extinct.   b) If at no harvest 
(h=0) and small n ( ) )(, nihni in >  and ( ) 0>nin , the then endemic equilibrium exists 

(black circle). Harvest decreases endemic prevalence but can destroy the endemic 
equilibrium if h is too large (h= h1);   c and d) if ( ) 00 <ii  then there is harvest threshold, 

beyond which only a disease-free equilibrium exists, and disease can be eliminated by 
population reduction (h=h1).  
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Using SI model for a disease with environmental transmission: 
effective exclusion of environment compartment 
 
It is known that prion diseases including CWD can be transmitted indirectly via 
environment (Miller et al 2004). However, at present there are no data as to how long 
they may remain accessible to deer, what is the rate of prion loss, how quickly prions 
decay (see e.g. discussion of prion mobility in soils by Schramm et al. (2006), evidence 
of prion degradation by Rapp et al. (2006), and review of recent results by Smith et al. 
(2011)).  We base our approach upon the results presented by Miller et al. (2006). In their 
paper several models were compared against the data, and the best one was the model of 
environmental transmission.  The second best was the SI model.  From our point of view, 
this is not coincidence because, as we show below, under certain conditions SI model can 
effectively describe disease spread through the environment as well.  
 
The best model in (Miller et al. 2006) is  
 

 

dS

dt
= a − S gE + m( ),

dI

dt
= gSE − I m + µ( ),

dE

dt
= εI −τE.

        (A11) 

Here S and I are the number of susceptible and infected deer, E is the amount of prions in 
the environment, a is rate of deer birth, m is the rate of healthy deer mortality, µ is the 
mortality increase due to the disease, g is indirect transmission rate, ε is the per capita 
rate of prion accumulation, and τ is the rate of its loss.  The estimated values are 
τ=2.55 year–1;  ε=0.111 mass/year; g=0.787 mass–1year–1,  µ=0.57 year–1. 
 
According to these results, if prions are introduced into the environment at t=0, their 
amount E(t) decreases with time as ( ) ( )tEtE τ−= exp0 , see Fig. A2.  This means that 

after one year about 8% of original amount remains, and in 2 years only about 0.6%.  The 
deer density changes slowly compared to this rate of prion washout.  For example, in 
Alberta detected prevalence of CWD increased about 6 fold in 5 years after it was once 
detected (Alberta SRD 2006-2011), which corresponds to growth exponent about 10 
times less than τ reported by Miller et al. (2006).    
 
Therefore, I(t) grows much shower than E(t) decays.  In such circumstances we can apply 
an approach described e.g. by Haken (1983), which is applicable when in the system 
there are variables with different relaxation rate, fast and slow. Then the slowly changing 
ones “enslave” the fast, and dynamics of the latter can be approximated by functions of 
just the slow variables. As a result, the original complex model can be replaced by a 
simpler one containing slow variables only. The accuracy of this approach depends on the 
difference between relaxation rates for slow and fast modes: the greater is the difference, 
the more accurate the method is. In other words, if the infection is washed out of the 
environment quickly enough, then the current amount of prions is proportional to the 
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number of infected individuals and a model of direct transmission (SI-type in our case) 
may be a good approximation of the indirect transmission one. 
 
If we assume that the number of the infected deer in (A11) is changing only slightly in a 
single year, then the value of E practically converges to its asymptotic value εI/τ before I 
changes.  Hence, we may assume that approximately E≈εI/τ.  Substituting this relation 
into two remaining equations of (A11), we obtain   

 

dS

dt
= a − S

gε
τ

I + m
 
 
 

 
 
 ,

dI

dt
=

gε
τ

SI − I m + µ( ),
       (A12) 

which coincides with the SI model in (Miller et al. 2006) with β=γε/τ. If we substitute the 
above values of  g, ε, and τ, we obtain β=0.034 year–1, which is very close to 
β=0.0326 year–1 obtained by fitting the SI model to data in (Miller et al. 2006).  The 
difference in model performance detected by ∆AICc is most probably due to the effect of 
delay: when an infected deer appears in the area, accumulation of the prion in the 
environment takes some time, and new infections appear slightly later than required by SI 
model.  Otherwise the disease pattern predicted by both models should be very close.   
 
Therefore, if the hypothesis of a quick prion loss is valid, the model (A12) can be a good 
approximation to the model of environmental transmission (A11).  
 
Here we apply this approach in deriving equations (1)-(3), where there is the possibility 
of frequency-dependent infection from environmental contamination.  Deer are living in 
social groups, and direct contacts within a group are much more intensive than between 
groups.  This is the reason why direct transmission should be primarily modeled by FD 
transmission.  However, similar reasons may work for environmental transmission as 
well: members of the same group are staying close to each other, and have higher 
probability to pick up the infection after the member of the same group.  Then, assuming 
that the environmental transmission mainly occurs within areas where the groups are, it is 
possible to show that parameter g in (A11) should be replaced by g/n.  The model with 
within-group environmental transmission has the form  

 ( )( ) ( ) ( )( )( ) hSSSngEnInSnmVISnb
dt

dS −γ−+β−−++= //'   (A13) 

 ( )( )( ) ( )( ) hIInmSngEnIn
dt

dI −µ+−+β= //' ,    (A14) 

 ( ) hVVnmS
dt

dV −−γ= ,       (A15) 

 
dE

dt
= εI −τE .         (A16) 
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Then, assuming E≈εI/τ, one obtains the model (1)-(3) with ( ) ( ) τε+β=β /' gnn , where the 
first term corresponds to direct transmission and the last one to environmental 
transmission.  Further details of the approach are given in [11]. 
 
Additional references to this section 
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Fig. A2 
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Estimates of harvest effect for the model of Choisy & Rohani [20] 
 
Here we derive some values important for the comparison of the effects found in [20] 
with the results of our paper. To simplify the estimates we 1) use the same notation d for 
all parameters equal to it; 2) denote h=qH. Then the version of the model system used for 
the analysis of the steady state has the form 
 

 

( )( ) ( )
( )
( )
( )

.,

,'

,'

,'

,'

RIESN
N

I

RhdNIR

IvhdNEI

EhdNSE

ShdNNtdNbS

+++=β=λ

+−γ=
+γ++−σ=

σ++−λ=
λ++−τ−−=

 

The parameters are  

.0,10~,year2.0

,year6.45,year73,year2000
91

111

==
=σ=γ=β

−−

−−−

vdb
    

Since hdNb ,,,, >>σγβ , it is possible to do approximate calculations of the equilibrium 
state: 

( )( ) ( )
( )
( )

( ) .0

,0

,0

,0

RhdNI

IhdNE

EhdNS

ShdNNtdNb

+−γ=
γ++−σ=
σ++−λ=

λ++−τ−−=

 

Summing up the equations gives  
 ( ) ( ) .2/,2/ hbhdNdhbN +=+−=  
Then,  

 ,
σ++

λ=
hdN

S
E  

,
/

γ++
β×

σ++
σ=

γ++
σ=

hdN

NSI

hdNhdN

E
I  

or, up to linear terms in h, 

 
( )( )

,1 








σ
++

γ
++

β
γ≈

βσ
γ++σ++= hdNhdN

N
hdNhdN

NS  

On the other hand 

 ,, I
hdN

EI
hdN

R
σ

γ++=
+

γ=  

 ,RIESN ++=−  

 ,111 I
hdN

hdN
N

hdNhdN







+
γ+

σ
γ+++=

















σ
++

γ
++

β
γ−  

Neglecting the term ( ) 1/2 <<σ+ hdN , we have 
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( ) ( ) ,11111 I
hdN

IhdNNhdN
hdN










γ
+










σ
γ++γ=







 +








σ
γ++γ=+









β
+










σ
γ+−

β
γ−  

Substituting here ( ) 2/hbhdN +=+  and taking into account that up to linear terms  

,
2

11
2

11
1

γ
+










σ
γ+−≈









γ
+










σ
γ++

−
hbhb

  

and neglecting quadratic terms in ( )hb +  and terms ~b/β, after simple but bulky algebra 
we come to population proportions under harvest: 

 

( ) ( )

( )

( ) .011.0,0021.0,
2

1

,0066.0,0013.0,
2

1

,018.0,96.0,
2

1
2

1

,105.6,037.0,
2

1010

1010

1010

4
1010

==+=+
σ

≈

==+=+
γ

≈

==−=
γσ

σ+γ









β
γ−−

γσ
σ+γ−

β
γ−≈

×==+=
βσ

σ+γ+
β
γ≈ −

eeheehb
N

E

iihiihb
N

I

rrhrrhb
N

R

sshssh
N

S

 

We can see that the strongest relative effect harvest has on the disease prevalence, 
however the strongest absolute effect it has on the proportion of recovered individuals.  
Harvest removes immune individuals, they are replaced by new susceptibles due to 
increased birth rate, and since the disease is highly contagious, the susceptible class 
almost does not grow. Almost all additional susceptibles go straight into the exposed and  
infected classes, which noticeably grow, but cannot become very big because of short 
disease duration.  
 
Harvest reduces the lifetime of the infected individuals, but since β is very large, they 
still leave behind too many secondary infections for a noticeable effect on the decrease of 
the disease spread rate.   
 
Repeating the derivations of R0 for the model (1)-(3) for the case of the model [20], one 
obtains the following. 
 
The disease-free equilibrium is  

.0, ==== RIENS  

Then primary infectives ( ) ( ) NIItI <<= 011 0,  satisfy the equation 

( ) ( ) ( )( )tvhdNItIIvhdNI +γ++−=+γ++−= exp,' 0111 . 

Secondary exposed ( ) ( ) 00, 221 =EtE  satisfy  

( ) ( )

( ) ( )( ) ( )( )[ ].expexp

,'

0
2

2
1

2

tvhdNthdN
v

I
tE

EhdNS
N

tI
E

+γ++−−σ++−
σ−+γ

β=

σ++−β=
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The growth rate for the number of secondary infections ( ) ( ) 00, 22 =ItI  is ( )tE2σ , and 
hence the total number of secondary cases is  

( ) ( ) ( )( ) ,0

0

22 hdNvhdN
IdttEI

+++γ++σ
βσ=σ=∞ ∫

∞

 

and, taking into account that ( ) 2/hbhdN +=+ , we obtain  
 

( )( ) ( )( ) ( ) h
v

hbhb

hbvhb
R 5.03.27

22
1

2/2/0 −≈








+γ
+−

σ
+−

γ
β≈

+++γ++σ
βσ= . 

 
We can see that harvest can slightly decrease the basic reproduction number, but the 
relative effect is much weaker than that of the decrease of the number of immune 
individuals. 
 
 
 

Estimate of transmission coefficient from deer population and 
harvest data for Wisconsin 
 
According to Wisconsin Department of Natural Resources [WI1], deer population is 
about 1 million of individuals, and about 350,000 deer are harvested per year.  Therefore, 
about 30% of population is removed, and harvest intensity for Wisconsin can be 
estimated as  

( ) 1year36.0year1/3.01log -h =−≈ .  
 
The CWD prevalence growth rate in Wisconsin is shown in [WI2], separately for males 
and females, with the average exponent 1year087.0 -≈λ   (growth about two times in 

2002-2010). Assuming 1year57.0 -≈µ   and 1year06.0 -m ≈ , we obtain from (11)  

 1
0 year087.0 -hm ≈−−µ−β=λ ,   

or 
 1

0 year08.1 -hm ≈++µ+λ=β .  

Assuming that Wisconsin deer population is near equilibrium, we obtain the estimate of 
the recruitment rate for disease free population, 
 ( ) 1year42.0 -hmnb ≈+=  
and in case of CWD prevalence near 10%  
 ( ) 1year48.0 -ihmnb ≈µ++= . 
 
[WI1] Wisconsin’s Deer Management Program, 
http://dnr.wi.gov/org/land/wildlife/hunt/deer/deerbook.pdf 
 
[WI2] CWD in Wisconsin, Prevalence & Surveillance, 
http://dnr.wi.gov/org/land/wildlife/whealth/issues/CWD/prevalence.htm 


