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Abstract 

Disease control by managers is a crucial response to emerging wildlife epidemics,  yet the 

means of control may be limited by the method of disease transmission.  In particular, it 

is widely held that population reduction, while effective for controlling diseases that are 

subject to density-dependent transmission, is ineffective for controlling diseases that are 

subject to frequency-dependent transmission. We investigate control for horizontally 

transmitted diseases with frequency-dependent transmission where the control is via 

culling or harvest that is nonselective with respect to infection and the population can 

compensate through density-dependent recruitment or survival.  Using a mathematical 

model, we show that culling or harvesting can eradicate the disease, even when 

transmission dynamics are frequency-dependent.  Eradication can be achieved under 

frequency-dependent transmission when density-dependent birth or recruitment induces 

compensatory growth of new, healthy individuals, which has the net effect of reducing 

disease prevalence by dilution. We also show that if harvest is used simultaneously with 

vaccination, and there is high enough transmission coefficient, application of both 

controls may be less efficient than vaccination alone. We illustrate the effects of these 

control approaches on disease prevalence for chronic wasting disease in deer where the 

disease is transmitted directly among deer and through the environment.  

Key words: disease modeling, disease management, chronic wasting disease, frequency-

dependent transmission 
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Introduction 

 

Control of any disease is related to thresholds, either in parameters or in population size. 

For example, a disease may be unable to spread if the population is below some critical 

size or the proportion of immune individuals is greater than a certain level. Such 

thresholds can be characterized by the basic reproduction number R0 [1-3]: if R0>1 the 

disease can spread. For wildlife diseases a manager’s set of possible control actions is 

limited: reduction in population density, removal of infected individuals, or a vaccination 

of susceptibles.  In the case of population reduction, a threshold must exist with respect to 

the population size at which the disease will die out. Population thresholds depend upon 

the disease transmission mechanism [4]. Typical mechanisms involve either density-

dependent (DD) or frequency-dependent (FD) transmission [5,6].  In the former, the 

number of per capita contacts grows with population size due to increased contact rates 

with infected individuals. In FD case the number of per capita contacts is constrained to 

be independent of population size, such as when contacts occur in social groups, and 

group size is independent from the overall population size [5].  In the case of DD, 

population reduction can eliminate disease spread by reducing the population below a 

critical population threshold.  In contrast,  a population threshold is not exhibited in the 

case of FD, so population reduction, by itself, is not considered to be appropriate for 

disease management, see e.g. [7].  Disease transmission mechanisms other than DD or 

FD are possible [5-9], but FD and DD mechanisms are the most commonly assumed in 

disease modeling. 

 

In this paper we present a Susceptible-Infected-Vaccinated (SIV) model for the infection 

dynamics of a disease that has FD transmission mechanisms that occur through direct and 

environmental contact and is coupled to DD population birth and survival rates and no 

recovery from the disease. We describe the model in terms of population size n and 

disease prevalence i.  We show that for the model there exists a population threshold in 

spite of FD disease transmission. It arises due to DD birth that allows populations to 1) 

withstand culling/harvesting at levels sufficient to remove diseased individuals before 

they, on average, infect new susceptibles, and 2) effectively dilute disease prevalence 
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with new, uninfected individuals. On the other hand, in populations exhibiting DD 

mortality non-selective harvest may not increase removal of diseased individuals, just 

fewer of them die from natural causes.  For this reason, DD birth or recruitment appears 

to be critical for harvest control of a disease that has FD transmission. 

 

We illustrate these effects by modeling chronic wasting disease (CWD) in deer [10]. 

CWD is a prion disease, and, to date, it is not known how to control the disease.  Our 

previous modeling work [11] showed evidence that CWD transmission may result 

primarily from  FD mechanisms related to deer social organization for both direct and 

environmental transmission [12]. In case when the disease prevalence grows significantly 

slower than the rate at which prions decay or become inaccessible to deer [13], both 

mechanisms can be described within the framework of SI-type model without explicit 

environmental compartment. Here environmental prion content is approximately 

proportional to the current number of infected individuals due to the difference in the 

rates (see Supplementary Materials for the details of this approach). Deer also show  DD 

recruitment of new adults to the population [14].  Assuming FD transmission, we 

investigate disease dynamics, and whether culling/harvesting results in disease extinction 

via a parameter-based threshold. Finally, we consider the possibility of vaccination as an 

alternative strategy that can be coupled to control via culling/harvesting to control disease 

and estimate levels needed to control the disease. 

 

The model 

 

We use a simple population model, deriving conditions for disease eradication, in a 

manner that makes analysis transparent and shows the role of culling/harvesting and DD 

deer recruitment and survival in disease management.  We consider three adult disease 

classes: susceptible S, infected I, and immune after vaccination V with the total 

population size being n=S+I+V.  The per capita recruitment of young into the 

populations, b(n), is assumed to be a nonincreasing function of n, and the per capita 

natural mortality, m(n), is assumed to be a nondecreasing function of n. In other words, 
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both may be DD, but with no Allee effects present [15] .  The increase in mortality rate 

due to infection is denoted by , and hence the mortality rate for diseased individuals is 

m(n)+.  Here (m(n)+)
–1

 is the average duration of infection prior to death.  The disease 

transmission function is of a general form   SnIn / , where   nn DD  for DD 

transmission and   0 n  for FD transmission.  Susceptible individuals become immune 

at per capita rate , which accounts both for vaccination intensity and vaccine efficiency. 

Finally, susceptibles, immune and infected individuals are culled or harvested at the same 

rate h, i.e., animals are non-selectively removed from the population. 

 

The model takes the form:  

 



dS

dt
 b n  S  I V m n S   n  I /n S S  hS    (1) 

       hIInmSnIn
dt

dI
 / ,      (2) 

   hVVnmS
dt

dV
 ,       (3) 

For the subsequent analysis it is convenient to rewrite the system in terms of population 

size n, disease prevalence i=I/n and immune fraction v=V/n. (see e.g. [16,17]).  Then 

S=(1–i–v)n, I=in and V=vn, and, after some transformations,  

     nhinmnb
dt

dn
        (4) 

        nbiivnFivniF
dt

di
 11,,,     (5) 

     vinbiv
dt

dv
 1        (6) 

 

(Supplementary Material). This new form yields interesting insights:  (a) culling or 

harvesting does not directly influence disease prevalence i — culling/harvesting intensity 

h does not enter into (5) because nonselective harvest takes an equal proportion out of all 

classes (see similar conclusion in [17]); and (b) culling/harvesting drives down the 

population size n and affects the disease prevalence indirectly by modifying the DD 
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contact rate  n  and birth rate  nb . In turn, DD contact rate and birth rate can play a 

major role in determining the disease prevalence i in  (5). 

 

The basic reproduction number R0 for this system can be obtained by standard methods at 

disease free equilibrium 00 ,0, vvinn   (see Supplementary Material), and the 

condition for the disease persistence is  

 
  

 
.1

1

0

00
0 






hnm

vn
R        (7) 

We interpret this as the rate of production of new infectives   00 1 vn   times the 

average life span of infective individuals    1

0


 hnmI . Vaccination increases v0 

and hence decreases the rate of new infections; selective harvest increases  and 

decreases I .  Both of these methods, when available, work regardless of the details of 

the disease and population dynamics.  However, when there is no vaccine and infected 

individuals are hard to find or to distinguish from healthy ones, the only practical 

measure is nonselective population harvest h.  As we will show, nonselective harvesting 

can influence 00,vn  and I , and its effect depends on the details of disease transmission 

and population self-regulation. 

 

First we analyze the case when 0v  is fixed.  Though potentially such control policy could 

be implemented, we consider it as a simplification allowing us to avoid interaction of 

several factors. Then changes in R0 may be only due to  0n  and I .  Harvest decreases 

0n , and in case of DD transmission   nn DD  it reduces the rate of new infections as 

well. In case of FD transmission   0 n  harvest does not change the rate of new 

infections, which for some models implies no disease control [4].  

 

The dependence of I  on h is determined by the population self-regulation mechanism.  

There are two extreme cases (e.g. [18]): 

a) density-dependent birth (DB) and density independent mortality: m is 

independent from n, and b(n) is a decreasing function of n; 
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b) density-independent birth and density dependent mortality (DM): b is 

independent from n and m(n) is an increasing function of n. 

At disease-free equilibrium ( 0i ) the following equality always holds, 

    hnmnb  00 ,        (8) 

see (4).  Therefore in case (a)  we have   hmnb 0 ; that is an increase in h is 

compensated by an increase in births of new healthy individuals. Total mortality hm  

increases, which causes decrease of I  and decrease of R0. Therefore, there exists 

population threshold below which the disease cannot persist provided the population 

survives harvest of the required intensity.  

 

In case (b) we have   hnmb  0 ; that is an increase in harvest reduces the equilibrium 

population size n0 and natural mortality m(n0), but does not change total mortality. This 

means more individuals die of harvest, but fewer die of natural causes.  The average life 

span of infective individuals I  also remains unchanged.  

 

Therefore we have four combinations of disease transmission and population self-

regulation: DD+DB, DD+DM, FD+DB, FD+DM.  Only in the latter case there is no 

population threshold due to nonselective harvest because both the rate of new infection 

and average life span of infective individuals are independent from population size n0. 

 

Taking in account (8), we can rewrite (7) as  

 
  

 
1

1

0

00
0 






nb

vn
R ,        (9) 

which makes the above statements more obvious. Note that the same condition for 

disease persistence     nbvn  1  can be obtained from (5) as a requirement of 

positive prevalence growth rate F(n,v,i) at i=0, but (5) does not require the system to be at 

equilibrium, and hence (9) is valid even when the population is in a transient regime after 

some perturbations.  In particular, it shows that local culling events that lower population 

size enough to decrease  0n  or increase  0nb  can temporarily slow down the disease 

progression. 
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From now on we consider only the case of DD birth (DB) for population regulation with 

m being constant.  One of the forms of DB dependence has been used in [18],  

      const,/10 


mnnbnb c ,      (10) 

where  takes values between 1 and 7, depending on species (note that nc is greater than 

carrying capacity). In case 1  it is possible to obtain analytical estimates for 

population thresholds n0T corresponding to R0=1 (9) or     cTT nnbvn /11 0000   

in DD and FD cases: 

DD transmission:   nn DD  and      cDDT nbvbn /1/ 0000  . 

FD transmission:   0 n  and     00000 /1 bvbnn cT  . 

In both cases the threshold is a decreasing function of transmission coefficient.  However, 

in DD case the threshold always exists, while in FD case it exists only in case of a 

moderate transmission coefficient or a large enough b0, i.e., maximum population growth 

potential.  Below we analyze conditions for b0 in more detail.  We also point out that in 

the case of DD, dependence of b on n decreases the threshold, which agrees with [19]. 

 

Disease management: harvest and vaccination 

 

The above analysis has been done under the assumption that 0v  is fixed.  A more realistic 

assumption is that the vaccination rate  is fixed and simultaneous use of both vaccination 

and harvest causes their interaction.  On the one hand, nonselective harvest may hinder 

the disease spread, but on the other hand it removes a part of vaccinated individuals and 

hence may facilitate the disease.  At  the disease-free equilibrium proportion of immune 

individuals is  hmv  /0 . We characterize competition of harvest and vaccination 

by the value of vaccination rate er(h) needed to make R0=1 and eradicate the disease at 

the given intensity of harvest h.  In the case of FD transmission, there is a critical value of 

the transmission coefficient    /ˆ 2

0 m , such that for 00 ̂   er(h) is strictly 

decreasing, and an increase in harvest means that vaccination efforts can be reduced (Fig. 
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1).  However, for 00 ̂   er(h) is increasing for small h, reaches its peak value at 

 mh 0 , and only then it starts to decrease. We conclude that there are 

parameter regions where combinations of two control measures may be less effective 

than vaccination alone. In the case of DD transmission the qualitative behaviour of er(h) 

is similar to FD transmission, although expressions become more complicated. 

 

 In case of FD transmission and intensive vaccination, harvest can increase the endemic 

disease prevalence of (4)-(6) 
  

 hm

hmhm
i






0

* 1 .  For    /
2

hm   

0/* dhdi , that is *i  increases with h.  Similar counterintuitive behaviour of prevalence 

has been observed in [20] for a disease with an immune recovered class. The reason for 

the effect, as in our case, is the removal of immune individuals due to harvest and 

replacing them by new susceptibles due to DB population regulation (see Supplementary 

Materials for mathematical details). 

 

If harvest is the only available measure, assuming no vaccination (=0, v=0), it can be 

applied as a control measure only if the population were not to go extinct due to 

harvesting. The ability of the population to survive harvest of the given intensity h 

depends on its maximum possible growth rate b0 (10).  We estimate the maximum 

possible effect of harvest in case of frequency-dependent disease transmission   0 n  

and identify conditions for population collapse, disease control, and disease eradication in 

terms of b0.  Our analysis does not require an exact form of DD recruitment; we focus 

only on some of the qualitative properties of the effect.  We assume that b(n) is 

qualitatively similar to (10), i.e., it has a maximum b0 at n=0 and decreases 

monotonically until it equals zero at n=nc, in particular  can take any positive value. This 

is sufficient to apply phase plane analysis to the system represented by Eqs. (4), (5) 

(Supplementary Material). The results can be presented as a bifurcation diagram that 

plots the equilibrium disease prevalence i* as a function of the maximum recruitment rate 

b0 and the culling/harvesting rate h (Fig. 2). Three qualitative outcomes pertain.  Low 

maximum recruitment rates coll00 bb  ,    00coll0 / mb , results in population 
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collapse even without harvest. Intermediate recruitment rates elim00coll0 bbb  , 

 0elim0b , allow for reduction of disease prevalence via culling/harvesting. 

Prevalence can be maintained between   0max* /1  mi  and   00min* /1 bi , 

further harvest increase above    mbhm 000ax /  causes population collapse. 

Finally, if elim00 bb  , recruitment allows for complete disease eradication via 

culling/harvesting at harvest intensity  mh 0e . 

 

The expression for eh  has a simple interpretation. In the beginning of the epidemics, 

when   hmnbvi  ,0,1 , (5) can be rewritten as  

 hmidtdi  0/ .       (11) 

This has the solution    tti exp~  where hhhm e  0 . The exponent of the 

prevalence growth   can be experimentally determined from prevalence data. This gives 

a simple management rule: to eradicate the disease it is necessary to increase harvest rate 

by the value of  .  Assuming FD transmission and DB regulation, (11) allows one to 

estimate R0 in terms of   as well, provided mortality and harvest rates are known:  

 hmR  /10 . 

 

Application: Chronic Wasting Disease 

 

To show how these theoretical results can be applied to a specific disease of great 

concern, we consider CWD in white-tailed deer.  In the case of CWD,  we use a SI-type 

model for a prion disease that can spread among individuals or through the environment.   

We assume a rate of decay in prion availability obtained in [13] is faster than the rate of 

CWD prevalence growth, and hence the amount of prion in the environment is 

proportional to the current number of infected individuals deposition.  Details of this 

approach are given in the Supplementary Materials.  The deer population is primarily 

regulated by DD juvenile mortality, i.e. DD recruitment of new adults [14].  There is no 

current vaccination for CWD but one is anticipated to be available in the future. 
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Transmission coefficients for this species in Wisconsin have been estimated by 

Wassenberg et al. [21].  For purposes here, if we assume that CWD transmission is FD 

and using the estimate 64.10   infections/year from [21], and the estimate of 

1year57.0   as measured in captive mule deer [13], we obtain the condition of disease 

persistence (9) for a completely susceptible population as 

 )(57.064.1 nb    or     1year07.1 nb   

(assuming there is no difference in  CWD duration between species). Because CWD is 

mostly evident in adult deer [22], we can interpret b as recruitment of new adults, which 

accounts for both birth rate and survival of juveniles during their first year.  White-tailed 

deer have high fertility and, on average, adult females bear close to 2 or more fawns each 

year. Assuming buck:doe ratio as approximately 1:3, 2 fawns per year per adult female 

results in 2 fawns per 4/3 adults or 1.5 fawns/adult. However, typically only about 40% 

of the fawns survive until adulthood [23], which gives b(n)0.6 year
-1

<1.07 year
-1

.  From 

the equilibrium condition   hmnb   and typical values for h~0.1–0.3 year
-1

 and 

m~0.1 year
-1

, the estimate is even lower, b(n)~0.2–0.4 year
-1

.  Therefore, our analysis 

shows that, according to condition  (9), CWD prevalence should increase among free-

ranging white-tailed deer under these conditions, assuming no or moderate harvest.  

 

Using the values of 0  and  used in [21] we obtain 1

elim0 year07.1 b . To estimate the 

collapse threshold we need the deer natural mortality rate m. In [21] the estimate of 

survival is 0.97 (per half a year), which corresponds to 1year06.0 m , and gives 

1

coll0 year41.0 b . With this information it is possible to determine the effect of harvest 

on CWD prevalence, once the maximum recruitment rate b0 is known (Fig. 2). At present 

there are limited data on b0 for white-tailed deer. However, there is evidence that juvenile 

survival can increase by 1year16.0   in population with reduced density [24], which 

would increase the above estimate for b(n) to 1year76.0  , so we may assume this value 

as a low estimate of b0. An upper estimate of b0 should correspond to the highest possible 

survival of fawns. For mule deer the highest registered fawn survival rate is close to 0.8 

[25], so we can assume that 1

0 year20.1 b .  Therefore most probably coll00 bb  , and the 
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deer would not die out due to CWD.  An assumption elim00 bb   does not seem unrealistic, 

but practical use of this inequality would require an increase of juvenile survival to about 

0.72 via release from density-dependence. Such high survival is unlikely to occur except 

in very productive environments where deer densities are kept far below food-based 

carrying capacity by harvest and in years of mild environmental conditions.  The most 

plausible assumption is that elim00coll0 bbb  , and we conclude that under these 

conditions the modelled deer population is in the middle domain in Fig. 2 where harvest 

can reduce the disease prevalence, but it cannot eradicate the disease. Therefore, disease 

eradication would require vaccination as well as harvest.  

 

In the absence of vaccination (v=0) and low harvest, we obtained a value of basic 

reproduction number at disease-free equilibrium for CWD    1.24.1/00  nbR
 

(9), which agrees with the values reported by Miller et al. [13] for mule deer.  Thus an 

effective immunity level of 6.03.00 v  yields a basic reproduction number of 10 R . 

Hence immunity of about a half of adult population would be necessary to stop CWD 

spread under the assumption of FD transmission with negligible vertical transmission, 

and for the assumed parameter values above.  An estimate of the critical value of FD 

transmission coefficient in Fig. 1 is 70.0ˆ
0  . Thus harvest may increase the required 

vaccination efforts for disease eradication. 

 

The parameter estimates we are using are only preliminary and require additional and 

better data on deer and CWD [26] before they can be used to guide management, 

particularly with respect to prion dynamics in the environment and their accessibility over 

time. To show that predicted outcomes of our modeling depend crucially upon parameter 

estimates, we considered a set of alternative parameters that may apply to white-tailed 

deer populations like in Wisconsin.   If we use exponential fit to CWD prevalence and 

deer harvest data from [27], then (11) gives a different estimate of transmission 

coefficient 1

0 year08.1 -  (Supplementary Materials), which corresponds to 

1

coll0 year30.0 b  and 1

lime0 year51.0 b .  These values are well below the estimated 

recruitment rate for white tailed deer b(n)=0.76, and this, in turn, is below the value b0. 
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For this scenario eradication via harvesting could be a possibility.  Deer mortality also 

may contribute to uncertainty in results: e.g. the estimate of survival rate for deer in 

North-eastern Minnesota [28] is m=0.21 year
–1

, and in [29] there is the estimate of 

decrease in lifespan due to CWD as 0.63, which corresponds to 1year43.0  .  Hence, 

detailed information on parameters related to deer population dynamics and disease 

dynamics is required for determining efficient control measures for region-specific CWD 

management. 

 

Discussion and conclusions 

In this paper we have studied a model of fatal disease with frequency-dependent 

transmission.  We have shown that non-selective population harvest (i.e., removal of 

infected and uninfected animals at equal rate) may still be a useful disease management 

tool even under FD transmission, when population self-regulates through DD birth or 

recruitment, but it may not be possible when population self-regulates through DD adult 

mortality. Under the former conditions, the most important population characteristic for 

applicability of the harvest control is its maximum recruitment rate at low population 

density.  Harvest may both facilitate and impede disease management by vaccination, 

depending on the disease transmission coefficient, so the optimal management policy 

depends on the disease.  To the best of our knowledge, the harvest control of diseases 

with FD transmission has not been considered in detail previously, perhaps because it 

potentially can be applied only to species having the corresponding population regulation 

mechanism and high recruitment potential. 

 

For a disease with FD transmission harvest alone may be insufficient for disease 

eradication, or an intensive harvest may be socially unacceptable.  Then harvest must be 

combined with vaccination, which may lead to counterintuitive synergistic effect: when 

vaccination has to be intensive, or, in other words, a big enough proportion of population 

should be vaccinated, harvest may enhance disease spread and increase the disease 

prevalence due to removal of immune individuals; see [20] and Supplemental Material as 

well.  When immunity is only temporary, a large proportion of immune individuals may 
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cause big disease outbreaks in the future [30].  Another harvest effect may arise in 

structured population models with DD juvenile survival: the increase in juveniles due to 

release of density-dependence may exceed the removal of adults, and harvest may 

actually temporarily increase the total population size.  In the case of DD transmission 

this may increase  n  and enhance the disease transmission (see also modeling results in 

[19]).  Thus efficient management of a disease with DD transmission may even reqiure 

fertility reduction [31].  Ecological data also show possibility of complicated population 

response to harvest, i.e., increased litter size, or change in animal spatial movement 

[32,33]. While possible, no such factors have yet been identified for deer and CWD. 
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Figure Legends 

 

Fig. 1.  Examples of vaccination rate necessary to eradicate the disease   er h  as a 

function of harvest rate h under frequency-dependent disease transmission and density-

dependent recruitment. For the values of transmission coefficient    /ˆ 2

00 m  

there is an interval of h values where joint use of two controls is worse than vaccination 

alone. 

 

Fig. 2. Minimum equilibrium disease prevalence i*min(b0) that can be achieved by 

population harvest as a function of maximum population fecundity or recruitment b0 

(dotted line), and the required harvest rate h (dashed line) to achieve it for the case of FD 

transmission. For too small b0 population collapses after disease introduction; at medium 

b0 values population harvest can only reduce the prevalence, and too intensive harvest 

also causes population collapse; at high b0 values harvest allows to eradicate the disease 

at ehh  . 
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