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5. MODEL FOR CONCRETE CONFINED EXTERNALLY BY STEEL 

COLLARS 
 

5.1 Introduction 

 
Numerous experimental and analytical studies into the behaviour of concrete confined by 

conventional reinforcing steel ties have been reported (e.g., Richart et al. (1928, 1929), Chan 

(1955), Iyengar et al. (1970), Vallenas et al. (1977), Ahmad and Shah (1982, 1985), Sheikh and 

Uzumeri (1980, 1982), Park et al. (1982), Scott et al. (1982), Mander et al. (1988a, 1988b), 

Chung et al. (2002), Saatcioglu and Razvi (1992), Cusson and Paultre (1995), and Légéron and 

Paultre (2003)). Since the 1990s, a large number of researchers have focussed on the 

confinement of concrete by composite materials (e.g., Sadaatmanesh et al. (1994), Nanni and 

Bradford (1995), Mirmiran and Shahawy (1996, 1997), Seible et al. (1997), Samaan et al. (1998), 

and Fam and Rizkalla (2001)). In most of these studies, concrete material models have been 

proposed that account for the confinement of concrete based on the behaviour of the confining 

elements.. 

 

External confinement by simple bolted or welded collars made from steel hollow structural 

sections (HSS) has proved through experimental study at the University of Alberta to be an 

effective seismic rehabilitation scheme for square reinforced concrete columns. The experimental 

program consisted of two phases: in phase 1, the behaviour of externally confined columns under 

concentric axial loading was studied (Chapter 3); and in phase 2, the behaviour of externally 

confined columns under cyclic loading was studied (Chapter 4). 

 

The existing confinement models for both conventional rebar confinement and for confinement of 

concrete by composite materials are unable to predict the behaviour of concrete columns 

confined externally by HSS collars under concentric monotonic axial loading because of either 

one or more of the following reasons: 

 

(1) The flexural stiffness of the confining elements affects the behaviour of confined concrete 

significantly, as has been demonstrated experimentally by Khaloo and Bozorgzadeh 

(2001) and through finite element analysis by Hussain and Driver (2001), and all of the 

aforementioned existing confinement models lack an explicit flexural stiffness parameter. 

 

(2) Most of the models for the confinement of concrete by conventional steel ties assume 

yielding of the confining steel at the peak stress of the confined concrete and hence, for 
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simplicity, assume constant confining pressure throughout the axial load history of the 

confined columns. However, because the steel collars are often either elastic or only 

partially yielded at this point, the variation of the confining pressure under the collars 

must be accounted for, as has been demonstrated by Hussain and Driver (2003) through 

finite element study. 

 

(3) Most of the models for conventional rebar confinement base their results on the yield 

strength of the confining steel without taking into consideration the shape of the stress vs. 

strain relationship which is known to be influential for collared columns (Hussain and 

Driver, 2003). 

 

The modified Kent and Park model (Park et al., 1982) and the models proposed by Sheikh and 

Uzumeri (1982), Mander et al. (1988b), and Saatcioglu and Razvi (1992) assume that complete 

yielding of the confining steel has taken place at the peak stress of the confined concrete and 

strain hardening is neglected. The models proposed by Ahmad and Shah (1982), Chung et al. 

(2002), Cusson and Paultre (1995), and Légeron and Paultre (2003) for the confinement of 

concrete by conventional ties do not assume yielding of the confining steel at the peak stress of 

the confined concrete and, hence, in these models confining pressure is not considered to remain 

constant. The models proposed by Ahmed and Shah (1982), Madas and Elnashai (1992), 

Cusson and Paultre (1995), and Légeron and Paultre (2003) take into consideration the complete 

stress vs. strain curve of the confining steel by making use of an incremental—iterative procedure 

to trace the stress vs. strain relationship of the confined concrete. All of these models lack an 

explicit flexural stiffness parameter. Generally, the confinement models are either based on or 

validated by the test results of columns confined by elements having small flexural stiffness. 

Therefore, the omission of this parameter from the confinement models has no adverse 

consequence on their performance if used for columns confined by confining elements with 

negligible flexural stiffness. However, their performance would be questionable if used for 

columns confined by elements with significant flexural stiffness in addition to axial stiffness. 

Moreover, none of the above mentioned confinement models have the ability to take into account 

the initial active confining pressure that may be present in the concrete confined with steel collars 

having bolted corner connections due to the pre-stressing of bolts.  

 

5.2 Predictions by Existing Confinement Models 
 
In order to demonstrate that the existing confinement models are unable to predict the behaviour 

of concrete confined by HSS collars, the following models are chosen to predict the behaviour of 

column C06 (Chapter 3), which is considered typical: modified Kent and Park model (Park et al., 
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1982); Sheikh and Uzumeri (1982); Mander et al. (1988b); Saatcioglu and Razvi (1992); and 

Légeron and Paultre (2003). The resulting confined stress vs. strain curves are depicted in 

Figure 5-1. The column is 300 x 300 mm in cross-section and is confined with collars made from 

steel hollow structural sections (HSS 51 x 51 x 6.35 mm) with welded corner connections. The 

centre-to-centre spacing of collars is 122 mm. The yield stress and modulus of elasticity of collars 

are 497 MPa and 203 400 MPa, respectively. The cylinder strength of concrete, , is 34.8 MPa. 

It is clear from Figure 5-1, that none of these confinement models are able to provide a good 

prediction of the behaviour of this collared column. Other column configurations lead to similar 

results. Therefore, in order to predict the behaviour of concrete columns confined by HSS collars, 

finite element methods were used in combination with a new confinement model, as described in 

the next sections. 

cf ′

 

5.3 Finite Element Analysis 
 
Finite element analysis of the columns was carried out using the general purpose finite element 

program ABAQUS (HKS, 2004a, 2004b). Three dimensional finite element models were 

developed to predict the behaviour of externally confined columns under concentric loading. The 

formulation of the numerical model was based on small displacements and infinitesimal strains 

and material nonlinearities were taken into consideration. The analyses were conducted 

incrementally with equilibrium established in each increment. 

 

5.3.1 Geometric Modelling 
 
Figure 5-2 shows a typical three-dimensional finite element model of a mid-height slice of an 

axially loaded concrete column confined externally with steel HSS collars having either bolted or 

welded corner connections. All of the columns were 300 x 300 mm in cross-section and uniform 

finite element meshes were used throughout the models. For mesh refinement studies, three 

meshes—12 x 12 x 13, 16 x 16 x 13, and 20 x 20 x 13—were tried and the same results were 

obtained. Hence, a mesh of 12 x 12 x 13 (as shown in Figure 5-2) was chosen for modelling all of 

the collared columns. 

 

Eight node solid elements with reduced integration (C3D8R) were used to model the concrete. At 

each node, there were three translational degrees of freedom. The vertical reinforcement was 

modelled using two-node three-dimensional truss elements (T3D2) with three translational 

degrees of freedom per node. The truss elements of the vertical bars were connected to the 

nodes of the concrete elements (C3D8R) and hence no bond slip was assumed. HSS collars 

were modelled with two-node shear flexible three-dimensional beam elements (B33) with six 
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degrees of freedom per node (three translational and three rotational). The links between collar 

beam elements and concrete cube elements (outriggers) were also modelled using truss 

elements T3D2. The area of the cross-section of these links was chosen high enough to render 

them as axially rigid. As the collars are connected to the concrete with truss element links (T3D2) 

with no rotational degrees of freedom at the nodes, the collars were unstable in the vertical 

direction. Therefore, the vertical stability of the collars was obtained by constraining the vertical 

degrees of freedom of the four corner nodes of the collar to the central node of the concrete 

surface in the plane of the collar. By these constraints, the vertical displacements of the collars 

and those of the respective central nodes of the concrete remain equal. 

 

In the present study, two types of collars made from hollow structural sections (HSS) were used, 

as described in Chapter 3. The collar beam elements were placed at the centreline of the collars. 

In the case of collars with rigid (welded) corner connections, the unsupported lengths of the 

elements at the collar corners affect the collar stiffness significantly. This problem was overcome 

by providing rigid diagonal elements in the corners of the collars, as shown in Figure 5-2. In the 

case of collars with bolted corner connections, the bolts were relatively flexible elements; 

therefore, the confining behaviour of the collars with bolted corner connections was highly 

dependent on the length of the corner bolts (threaded rods). In order to achieve the desired 

behaviour, measured bolt lengths between the undersides of the nuts were used in the models. 

The collars used in the experimental work were made from standard steel HSS. The HSS has 

round corners but in the finite element model, rectangular box sections with sharp corners were 

used to model the HSS. The thickness of the webs and flanges of the box sections were selected 

to provide the moment of inertia and area of cross-section equal to that of the actual HSS cross-

section with round corners. As the HSS collars are 51 mm wide and they therefore cover a 

51 mm depth on the concrete column surface, lumping the stiffness of collars in just one line was 

not considered appropriate. Therefore, each collar was modelled using two layers of beam 

elements (one at each of the two limits of contact with the concrete), as depicted in Figure 5-2. 

 

5.3.2 Boundary Conditions and Loading 
 
Rigid surfaces were defined at the top and bottom ends of the model. All three degrees of 

freedom of the central node at the bottom surface of the model were fully restrained. The two 

horizontal degrees of freedom of the central node on the top surface were also fully restrained, 

leaving its third (vertical) degree of freedom unrestrained to apply axial load to the column using 

displacement control. The degrees of freedom of all the remaining nodes of the top and bottom 

surfaces were constrained to the central node of the respective surface. 
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The behaviour of the confined concrete columns is described in terms of load vs. axial strain 

relationships. The vertical load on the model is obtained from the vertical reaction of the central 

node at the bottom surface. The axial strain is determined from the relative displacements of two 

nodes on the vertical centreline of the model that are situated two layers away from the 

boundaries at either end. The reason for selecting nodes away from the boundaries is to exclude 

any effect of boundaries on the confining behaviour.  

 

5.3.3 Solution Strategy 
 
Displacement control with a Newton-Raphson iterative scheme was used for solving the finite 

element models. In the full Newton-Raphson’s method, the tangent stiffness matrix [K] is updated 

in all equilibrium iterations, making this nonlinear solution scheme expensive in terms of total 

solution time. In the modified Newton-Raphson’s Method, the stiffness matrix is updated only at 

the beginning of every load or displacement increment, potentially resulting in a significant 

reduction of total solution time. ABAQUS automatically moves back and forth between 

Newton-Raphson’s method and the modified Newton-Raphson’s method based on the difficulties 

in updating [K] and the convergence rate (HKS, 2004a, 2004b). 

 

5.3.4 Material Properties 
 
The finite element models consisted of concrete, reinforcing bars, steel HSS, and threaded rods. 

The collars with welded corner connections were grouted onto the columns using epoxy grout. 

However, the thickness of the grout layer was small (5 to 6 mm), so its effect on the behaviour of 

the confined columns was deemed negligible and it was not included in the finite element models 

(the inner faces of the collars were assumed to bear directly against the concrete). The material 

properties were taken from the experimental program. Properties that were not measured directly 

were estimated, as discussed below. 

 
5.3.4.1 Concrete 
 
For plain concrete, a constitutive model implemented in ABAQUS under the option of “concrete” 

was used. This material model encompasses tension as well as compression behaviour of 

concrete. For computational efficiency, several simplifications are included in the model. The 

response of concrete under compressive stresses is modelled with an elastic-plastic constitutive 

theory using a yield surface consisting of equivalent compressive stress and von Mises deviatoric 

stress (generally known as the Drucker-Prager yield surface). When the stress-state of the 

concrete reaches the yield surface, isotropic hardening and associated flow rules are used. The 

assumption of associated flow for concrete has not been justified by experiments. In addition, this 
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material model cannot take into account the inelastic response of concrete under high 

compressive stresses. This model works well for uniaxial and biaxial compression cases; 

however, due to the lack of third stress invariant in the failure surface and due to the inadequacy 

of plasticity hardening parameters, this material model cannot accurately predict the behaviour of 

concrete under tri-axial compression and tri-axial tension (HKS, 2004a). 

 

In tension, cracking is assumed to occur in the concrete when the stress level reaches a failure 

surface called the “crack detection surface.” The model uses a smeared crack approach, which 

means that it does not track individual “macro cracks. ” In the smeared crack approach, the 

localized deformation of each crack is smeared over a characteristic length and the response in 

tension is described as a continuum in terms of stress vs. strain relationships. After the 

appearance of the cracks, the postfailure behaviour of the concrete is described by a damage 

elasticity model and a bilinear stress-crack opening relationship is used to define the tensile 

softening behaviour of the concrete (HKS, 2004a). 

 

Some basic properties of concrete for phases 1 and 2 columns such as cylinder strength, 

modulus of elasticity, strain at peak stress, and Poisson’s ratio are reported in Chapters 3 and 4, 

respectively. 

 
5.3.4.2 Reinforcing Bars, Steel HSS, and Threaded Rods 
 
Tension tests were performed to determine the material properties of the rebars and threaded 

rods (bolts). Stub column tests were performed to find the material properties of the HSS. These 

material properties were reported in Chapters 3 and 4. The constitutive behaviour of the steel was 

defined by an elastic-plastic model with the von Mises yield criterion, associated flow rule, and 

isotropic strain hardening. 

 
5.3.5 Preliminary Finite Element Results and New Direction 
 
While conducting the finite element analyses, difficulties arose in tracing the descending branch 

of the confined concrete material curves and comparisons between the finite element and 

experimental results were not satisfactory due to the limitations of the program for modelling the 

concrete under tri-axial compression, as described above. Initially, attempts were made to 

overcome this problem by modifying the descending branch of the input concrete material curve 

as has been suggested by Johansson and Gylltoft (2002) and modelling explicitly the spalling of 

concrete between the collars by removing the cover elements during the axial loading history 

based on the observed behaviour in the experimental study (Chapter 3). The slope of the straight 
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line descending branch of the input material concrete material curve was decreased (i.e., the 

descending branch was raised)—to obtain a good agreement with the test results—to 

compensate for the lack of the third stress invariant in the concrete material model available in 

ABAQUS and it seems logical to relate the modification of the descending branch to the 

magnitude of the confining pressure on the columns. In the experimental study reported in 

Chapter 3, columns with different levels of confining pressures were tested because of 

differences in the size, spacing, and corner connections of the collars. In addition, some of the 

collars with bolted corner connections were pre-stressed and had active confining pressure in 

addition to passive confining pressure, which is produced due to the expansion of the concrete 

during the axial load history of the columns. The question remains, however, of how much the 

descending branch of the input concrete material model should be modified to produce an 

accurate representation of the confined behaviour. In addition, it has been shown elsewhere 

(Hussain and Driver, 2003) and again it will be shown later in this chapter that the dilation rate of 

the concrete material model available in ABAQUS is quite different than that of an existing 

empirical concrete dilation model used in the present study (See Section 5.4.3). 

 

Because of these reasons, it was decided not to use the ABAQUS concrete material model for 

predicting the confining behaviour of the collared columns. Therefore, a different approach was 

developed for this purpose, which requires as input the confining behaviour of the steel HSS 

collars in terms of confining pressure vs. lateral strain obtained through finite element analysis. 

The use of the confining pressure vs. lateral strain relationship from the finite element analysis 

reduces substantially the dependence of the results on the concrete material model because the 

results are related primarily to the collar behaviour itself. 

 
5.3.6 Confining Pressure vs. Lateral Strain Relationships 
 
Although the finite element model described above is unable to predict the behaviour of concrete 

confined by steel HSS collars due to its various limitations, it is nevertheless useful to determine 

the behaviour of collars in terms of average confining pressure vs. average lateral strain. It seems 

reasonable to assume that this relationship, which is predominantly related to the restraining 

action of the collars themselves (i.e., as a collar strains outward due to the laterally expanding 

concrete, the confining pressure increases by an amount that is a function of its stiffness), is 

largely independent of the concrete properties used as input. However, in order to assess the 

effect of the input concrete material curve on the confining behaviour of collars, different curves 

were used in the finite element analysis and it was confirmed that the resulting confining 

behaviour of collars is practically independent of the input concrete material curves. This is 

demonstrated by studying the dependency of the confining behaviour of the bolted collars of 
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column C01 and the welded collars of column C06 on the input concrete material curves. Five 

different input curves of normal strength concrete with modified (enhanced) curvilinear 

descending branches are shown in Figure 5-3. Using these input concrete material curves, the 

confining pressure versus lateral strain curves for column C01 (bolted collars) and C06 (welded 

collars) are determined through finite element analysis and are shown in Figures 5-4 and 5-5, 

respectively. The variations in the input concrete material curves have no effect on the confining 

behaviour of the bolted collars of column C01. This is because the bolts are relatively flexible 

components in the collars and most of the deformation takes place there. However, the confining 

behaviour of the welded collars of column C06 is slightly affected by the change in the input 

concrete material curve because welded collars tend to apply high confining pressure in the 

corners as compared to the mid-depth of the column.  

 

The discrepancy for the welded collars can be solved by using an iterative procedure similar to 

the one used by Hussain and Driver (2003). In this method, the confining behaviour of collars is 

established with an input material curve similar to the ones shown in Figure 5-3, which is then 

used to determine the confined concrete material curve using the empirical model described later 

in this chapter. Using this confined material curve as a reference, the input concrete material 

curve for the finite element analysis is modified in such a way that the output confined concrete 

material curve obtained from FEM matches with the confined concrete material curve obtained by 

the empirical model. The level of accuracy can be improved by using the revised confining 

behaviour of collars in each iteration for the determination of confined concrete material curve by 

the proposed empirical model, which is used as the reference to compare the confined concrete 

material curve obtained from the finite element analysis. This procedure is repeated until the 

confined concrete material curve obtained by the finite element analysis is the same as that 

obtained by the proposed empirical model. Although this procedure is more accurate, it requires a 

large number of finite element runs just for one column and is therefore not considered to be 

practical for general use. 

 

For simplicity and to make the procedure practical, it is assumed that the confining behaviour of 

welded collars is not affected by the change of the input concrete material. To assess the impact 

of this assumption, a sensitivity study is done on column C06. The selection of the particular 

curves given in Figure 5-3 was based on experimental experience (Chapter 3). Using the 

resulting confining pressure versus lateral strain curves 1 and 5 (Figure 5-5) of column C06, the 

confined concrete material curves of this column are determined using the empirical model. 

These curves are nearly identical, as shown in Figure 5-6. Using these confined concrete material 

curves, the column load versus axial strain curves of the column were obtained, which are also 

virtually identical (Figure 5-7). Hence, for normal strength concrete and for practical sizes of 
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collars, the assumption that the confining behaviour of collars is independent of the input concrete 

material curve is justified. For all subsequent studies presented in this chapter, as well as in 

Chapter 6, material curve No. 5 given in Figure 5-3 was used. It is expected that this curve will 

give very good results for typical concrete strengths and levels of collars confinement. 

 

In some of the columns with bolted collars, an initial confining pressure was applied through pre-

stressing. This pre-stressing force was generated in ABAQUS by applying a negative 

temperature change to the corner bolts of the collars. When the finite element model is loaded in 

the axial direction, the four sides of the confining collars are deformed laterally due to the dilation 

(i.e., lateral strain) of concrete. In response, the confining collar applies confining pressure onto 

the concrete due to its restraining action. Although the confining pressure for columns with bolted 

collars is a combination of active and passive pressures, the pressure on the columns having 

collars with welded corner connections is purely passive. A behavioural curve of a typical steel 

HSS collar in terms of average confining pressure vs. average lateral strain is shown in 

Figure 5-8, where  is the average confining pressure and  is the average lateral strain 

corresponding to . 

ctσ ctlε )(

ctσ

 
The average confining pressure is obtained by dividing the total force in the outriggers located in 

a strip having a length equal to the column width and a depth equal to the centre-to-centre 

spacing, s, of collars, by the strip area. The average lateral strain is obtained by dividing the 

average horizontal displacements of the concrete surface nodes at which outriggers from the 

collars are connected, by half the width of the column. The finite element study showed that the 

collars remain in contact with the column during the great majority of the axial load history (see 

Chapter 6). Only at very high levels of axial strain may the collar and the concrete at mid-width of 

the column may break contact. For the practical range of axial strain, it is assumed that the 

contact between the concrete and the collars remains intact. This assumption has been justified 

by the testing of the columns in phase 1 of the project where no gap was observed in any of the 

tests (Chapter 3). 

 

As noted previously, the confining pressure vs. lateral strain curve depends essentially on the 

behaviour of the steel HSS collar, although the influence of the profile in which the collars are 

pushed outward is also present in this curve. Moreover, because the curve is based on the finite 

element analysis, the effects of axial as well as flexural stiffness of the collars are present in 

these curves. The effect of flexural stiffness of the confining elements has largely been neglected 

in previous finite element models. 
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5.4 Proposed Model for Confinement of Concrete 
 
A confinement model is proposed for the prediction of material curves for columns confined 

externally by HSS collars that takes into account active as well as passive confining pressures, 

variability of the confining pressure through the axial load history of the column, flexural stiffness 

of collars, axial stiffness of collars, spacing of collars, stress vs. strain behaviour of the collars, 

and properties of concrete such as strength, modulus of elasticity, Poisson’s ratio, and strain at 

peak stress. The model uses certain features of existing confinement models. The proposed 

generalized stress vs. strain relationship of concrete confined externally by HSS collars is shown 

in Figure 5-9, where  is the peak stress of the confined concrete,  is the strain at peak 

stress, and  is the strain corresponding to 85% of the peak stress in the post-peak region. 

The methods for constructing the various segments of this curve are described subsequently. 

ccf ′ ccε

85ccε

 

The confining pressure under the collars varies through the axial load history of the externally 

confined columns as is demonstrated subsequently. Similar to the models of Ahmad and Shah 

(1982), Madas and Elnashai (1992), Cusson and Paultre (1995), Fam and Rizkalla (2001), and 

Légeron and Paultre (2003), the proposed model also makes use of an incremental-iterative 

procedure to trace the stress vs. strain curve of confined concrete. During each increment, 

constant confining pressure is assumed. The confining pressure under the steel collars can be 

purely passive or it can have both active and passive components, and the passive confining 

pressures become dominant in the latter stages of the tests. It is assumed that active and passive 

confining pressures produce the same confined concrete material curve (Richart et al. 1928, 

1929; Iyengar  et al. 1970).  

 

A typical reinforced concrete column with HSS collar confinement is shown in Figure 5-10(a). For 

simplicity, the discrete collars are not modelled individually but are assumed smeared over the 

height of the column equivalent to a continuous tube as shown in Figure 5-10(b). This assumption 

does not seem valid if the confining pressures under the collars and between the collars at the 

surface of the column are compared. However, this assumption becomes viable for relatively 

closely spaced collars if the confining pressure is considered a short distance away from the 

surface of the column. Similar assumptions have been made in the existing confinement models 

for columns with conventional transverse reinforcement (Sheikh and Uzumeri (1982); 

Mander et al. (1988b); Saatcioglu and Razvi (1992); and Légeron and Paultre (2003)). 
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The equivalent tube is assumed made of an orthotropic material having zero stiffness in the 

direction of column axis. The flexural stiffness of the tube in the direction normal to the 

longitudinal axis of the column should match the total flexural stiffness of all collars, over the 

height of the column, in the same direction. A similar argument applies to the axial stiffness of the 

equivalent tube and discrete collars. It is further assumed that the column with equivalent tube 

confinement expands uniformly over its height without bulging. Similar assumptions were made 

by Légeron and Paultre (2003) in the development of their confinement model for normal- and 

high-strength concrete, and by Caner and Bažant (2002) while applying their computational 

model with smeared confinement to columns confined by spiral reinforcement. 

 
5.4.1 Lateral Displacement Compatibility 
 
Lateral displacement compatibility at the interface between the concrete prism and the confining 

tube is used to formulate the interaction between them. Consider the unconfined concrete column 

with square cross-section shown in Figure 5-10(c). When an axial strain, , is applied to the 

concrete column, it is assumed that free uniform lateral expansion of the concrete takes place 

over the height and width of the column. As the prism is free to expand laterally, the lateral 

displacement, , can be evaluated as: 

cε

hcou

 

[5.1]                                    
2

cc
hco

εhν
u =  

 

where cν  is Poisson’s ratio of the material; and  is the lateral dimension (width) of the square 

concrete prism. 

h

 

When the expansion of the concrete takes place due to the Poisson’s effect, the confining tube 

resists this expansion by developing confining pressure on the concrete column through its axial 

and flexural stiffness. For simplicity, it is assumed that the confining pressure under the tube is 

uniformly distributed along the height and width of the column. If the concrete prism is subjected 

to external bi-axial uniform confining pressure, hσ , as shown in Figure 5-10(d) (the equivalent 

confining tube is not shown in the figure for clarity), the inward displacement, , at any face of 

the column is determined for elastic behaviour using the following constitutive relationship (Young 

1989): 

hciu
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[5.2]                                     h
c

c
hci h

E2
1

u σ
ν−

=  

 

where is the modulus of elasticity of the concrete. cE

 

Now consider the lateral expansion of the confining tube as shown in Figure 5-10(e). (There is no 

axial strain applied to the confining tube that is analogous to  for the concrete due to the 

discontinuous nature of the collars in the real structure.) For equilibrium, the outward pressure 

from the concrete on the confining tube must be equal in magnitude to the inward pressure 

applied by the tube on the concrete, i.e., 

cε

hσ . It is assumed that the outward pressure on the 

confining tube causes uniform expansion of the tube along the width and height of the column as 

shown in Figure 5-10(e). The outward displacement of any side of the confining tube caused by 

this pressure is denoted by . The compatibility condition requires that the equivalent confining 

tube and the column concrete surface remain in contact throughout the axial load history. 

Accordingly, the lateral displacement of the confining tube  and the net resultant lateral 

displacement of the concrete (

htu

htu

hcihco uu − ) are equal, i.e.: 

 

[5.3]                                     hcihcoht uuu −=  

 

Due to the interaction between the concrete and the confining tube, Equation 5.3 does not result 

in a unique solution for . Equations 5.1 and 5.2 taken together (right hand side of 

Equation 5.3) provide an expression for the lateral displacement of the column under a certain 

confining pressure and axial strain that is based on the concrete behaviour alone. In order to 

develop an analogous expression for the lateral displacement based on the steel behaviour alone 

(left hand side of Equation 5.3), use is made of a confining pressure vs. lateral strain curve based 

on the tube behaviour, such as the typical one depicted in Figure 5-11. The behaviour of the 

confining tube may be determined by finite element analysis, as described above. This curve is 

nonlinear and it starts from the origin. In the case of collars with bolted corner connections, some 

initial confining pressure may exist due to the pre-stressing force in bolts. The initial active 

confining pressure is treated separately. The behavioural curve of the confining tube itself is 

considered independent of the concrete behaviour. However, the particular point on the curve 

where equilibrium is achieved under a certain axial column force depends on both the lateral 

expansion of the concrete under the Poisson effect due to the applied axial strain as well as the 

lateral contraction of the concrete due to the confining pressure applied by the tube. In the 

htu
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present study, the general confining pressure from the curve based on the tube behaviour is 

denoted by ctσ , whereas the equilibrium confining pressure for a particular axial strain, which 

includes the response of the concrete, is denoted by hσ . 

 

For a particular lateral displacement (or lateral strain) of the confining tube, a characteristic 

secant line can be constructed. From Figure 5-11, the slope of the ith secant line, , is: ( ictE )
 

[5.4]                                        ( ) ( )
( )il

ict
ictE

ε
σ

=  

 

and the slope of a general secant line, , is: ctE

 

[5.5]                                          
l

ct
ctE

ε
σ

=  

 

where ( )ictσ  and ( )ilε  are the confining pressure and lateral strain, respectively, corresponding 

to the point of intersection of the ith secant line with the confining pressure vs. lateral strain curve 

of the confining tube and ctσ  and lε  are the confining pressure and lateral strain corresponding 

to the point of intersection of a general secant line with the confining pressure vs. lateral strain 

curve. It is to be noted that for a particular confining pressure or lateral strain,  is a 

characteristic of the confining tube only. 

ctE

 

It is assumed that a constant confining pressure, hσ , develops at the interface between the 

concrete and the confining tube in a certain increment. By setting the confining pressure ctσ  

equal to hσ , the displacement of the confining tube can be derived from Equation 5.5 to give: 
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By substituting the expressions for , , and  from Equations 5-1, 5-2, and 5-6, 

respectively, into Equation 5.3, the following expression for the unknown interfacial confining 

pressure,

hcou hciu htu

hσ , is obtained: 

 

[5.7]                                 

c

c

ct

cc
h

EE
ν

εν
σ

-11
+

=  

 
Similar compatibility equations have been used by other researchers such as: Fam and Rizkalla 

(2001) for FRP confined circular columns; Cusson and Paultre (1995) for confinement of 

high-strength concrete columns of rectangular/square cross-section; and Légeron and Paultre 

(2003) for normal- and high-strength concrete columns of rectangular/square cross-section. The 

confining pressure vs. lateral strain relationship is linear for FRP confinement, whereas the 

confining pressure vs. lateral strain relationship for steel ties and steel collar confinement are 

nonlinear in nature (see Figure 5-11). 

 
5.4.2 Effect of Unconfined Concrete in the Core 
 
In conventional columns, the core is generally defined as the region enclosed by the centreline of 

the ties. Figures 5-12(a) and 5-12(b) show the ineffectively confined regions between tie levels 

and at the ties that are approximately parabolic in shape, as described by, for example, Sheikh 

and Uzumeri (1982) and Mander et al. (1988b). In the confinement model by Sheikh and Uzumeri 

(1982), an expression for the strength enhancement factor was defined based on the core 

bounded by the centreline of the ties. It was assumed that the strength enhancement factor 

depends on the amount of transverse reinforcement, the stress in the transverse reinforcement at 

the peak stress of confined concrete, and the ratio of effectively confined concrete at the critical 

section to the core area bounded by the centreline of the ties, which in turn depends on the 

configuration and spacing of ties. Similarly, in the confinement model by Mander et al. (1988b), a 

confinement effectiveness coefficient was defined as the ratio of effectively confined concrete at 

the critical section to the concrete area in the core bounded by the centreline of the perimeter 

ties. The average confining pressure was calculated assuming yielding of the transverse 

reinforcement at the peak stress of the confined concrete. The average confining pressures on 

the sides of the column were then multiplied by the confinement effectiveness coefficients to 

obtain the equivalent confining pressure. The peak stress of the confined concrete was then 

determined under this equivalent confining pressure. Saatcioglu and Razvi (1992) also reported 

that the average confining pressure calculated by assuming yielding of the transverse 

reinforcement overestimates the confining pressure. A factor was therefore defined based on a 
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regression analysis of experimental data to convert the average confining pressure to an 

equivalent confining pressure. The model proposed by Chung et al. (2002) utilizes an effectively 

confined distance ratio, instead of area, to account for ineffectively confined regions in the core. 

The effectively confined distance ratio is defined as the ratio of the effectively confined width to 

the total width of the core concrete. This ratio takes the maximum value at the tie level and the 

minimum value at the critical section midway between two sets of ties. However, effectively and 

ineffectively confined regions were not dealt with separately. Instead, an expression for the 

strength enhancement factor was defined using regression in terms of the volumetric ratio of 

transverse steel, stress in the transverse steel at peak stress of the confined concrete, cylinder 

strength of the concrete, and effectively confined distance ratio. 

 

In contrast to the approaches described above wherein the ineffectively confined concrete is 

accounted for by a reduction factor, the proposed model for externally confined columns 

separates explicitly the behaviour of the effectively and ineffectively confined regions in the core. 

The core of the externally confined columns is equal to the gross dimensions of the columns. The 

load vs. strain curves of the effectively and ineffectively confined concrete regions in the core are 

defined, and are then combined to get the overall load vs. strain curve of the concrete in the core. 

The load vs. strain curves can be converted to stress vs. strain curves by dividing the load by the 

core area. Figure 5-12(c) shows the effectively and ineffectively confined regions between the 

collars and Figure 5-12(d) shows that there are no ineffectively confined regions at the collar level 

because of the considerable flexural stiffness of the sides of the collars, in addition to their axial 

stiffness. This assumption has been verified by both experimental and finite element studies. To 

model the behaviour of the effectively confined regions in the core, the collars are assumed 

smeared over the height of the columns, as described before, with confining pressure uniformly 

distributed on the side of the columns. The ineffectively confined concrete acts simply as a filler to 

transfer the confining force to the effectively confined regions. First, the behaviour of the confined 

concrete in the core will be determined and then the behaviour of unconfined concrete in the core 

region will be studied. 

 

5.4.3 Behaviour of Confined Concrete in Core 
 
Mander et al. (1988b) proposed a model for the stress vs. strain curve of concrete confined by 

conventional transverse steel reinforcement that assumes constant confining pressure through 

the axial load history. In this model, the stress vs. strain curve of confined concrete is represented 

by an equation proposed by Popovics (1973) for unconfined concrete. In addition, it utilizes the 

expression for strain at peak stress of the confined concrete proposed by Richart et al. (1928) 

based on the test results of cylinders under constant hydraulic confining pressure. In columns 
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confined externally by HSS collars, the confining pressure varies with the axial load history. 

Therefore, this model cannot be used directly to predict the stress vs. strain relationships of these 

columns. However, the model can still be utilized to predict the behaviour of these columns by 

applying only a small increment of axial strain over which confining pressure can be assumed 

constant. This leads to an incremental-iterative approach to predict the behaviour of externally 

confined columns similar to the approaches used by Ahmed and Shah (1982), Madas and 

Elnashai (1992), Cusson and Paultre (1995), and Légeron and Paultre (2003) for concrete 

confined by conventional rebar ties. Similarly, Fam and Rizkalla (2003) also used an 

incremental-iterative approach for concrete columns confined by FRP, a material that exhibits 

essentially elastic behaviour and results in varying confinement pressure as the column is loaded 

axially. During each increment, a different confined concrete material response forms with a 

different concrete secant modulus of elasticity, ( )
icE , corresponding to a general point i on the 

confined concrete material curve at which the axial strain is ( )icε . 

 

Dilation properties of unconfined and confined concrete under active confining pressures have 

been well established by Chen (1982) and Pantazopoulou (1995). Madas and Elnashai (1992) 

used a relationship for Poisson’s ratio in their model for conventional rebar confinement that was 

determined by performing a least square fit of a cubic polynomial on the test results of concrete 

under biaxial compression provided by Kupfer et al. (1969). Similarly, Fam and Rizkalla (2001) 

developed relationships for the dilation of concrete confined actively using hydrostatic pressure, 

based on the test results (triaxial compression tests) of Gardner (1969), for use with their model 

for FRP confinement. These relationships have been used in the proposed procedure for the 

confinement of concrete by steel collars. 

 

Similar to the secant modulus of elasticity of concrete, the secant Poisson’s ratio, , also 

changes with the increase in the axial strain of the column. In addition, the secant Poisson’s ratio, 

, is also dependent on the magnitude of the confining pressure present in an increment of axial 

strain. The secant Poisson’s ratio in the increment i can be represented by 

cν

cν

( )
icν . Gardner (1969) 

tested concrete cylinders and reported average lateral strain vs. axial strain curves at different 

levels of confining pressure. Using those results, Fam and Rizkalla (2001) developed the 

following relationship between the secant Poisson’s ratio, cν , and the axial strain of the confined 

concrete, cε , for different confining pressures: 
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where  and  are the initial Poisson’s ratio and strain at peak stress of confined concrete, 

respectively. It is clear from this equation that the Poisson’s ratio increases with the increase of 

axial strain of the confined concrete. An upper limit of 0.5 is imposed on the secant Poisson’s 

ratio in the present investigation as suggested by Madas and Elnashai (1992) because the 

Poisson’s ratio of conventional engineering materials cannot exceed 0.5. The bulk modulus of 

concrete will become infinity at Poisson’s ratio equal to 0.5. At the time of bursting of concrete, 

the Poisson’s ratio may be taken equal to 0.5. 

coν ccε

 

A linear expression for the constant C (it is considered constant within an increment) as a 

function of the confining pressure (again, assumed constant within an increment) was obtained by 

performing a regression analysis on the experimentally obtained values of C (Fam and Rizkalla 

2001): 
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For increment i, Equations 5.8 and 5.9 can be written as: 
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The lateral strain ( )ilε  in the increment can be calculated as: 

 

[5.12]                                   ( ) ( ) ( )icicil ενε =  
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Knowing ( )ilε , the confining pressure, ( )ihσ , can be found from the relationship between the 

confining pressure vs. lateral strain (similar to Figure 5-11) obtained from the finite element 

analysis by setting . Then, ictih σσ )(=)( ( )ictE  can be calculated as: 
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The confining pressure ( )ihσ  due to collar confinement in increment i can be calculated from the 

following equation, the derivation of which (Equation 5-7) has been given before: 
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If there exists both active and passive confining pressures, as shown in Figure 5-13 (active 

confining pressure remains constant but the passive confining pressure varies through the axial 

load history), Equation 5.14 is applied only to the passive component of the confining pressure. 

The passive confining pressure is then added to the active component of the confining pressure 

to get the total confining pressure ( )ihσ  in that increment.  

 

If ( )ihσ  is known in an increment i, various equations are available for calculating the peak 

stress of confined concrete ( )iccf ′ . However, the present model makes use of the following 

equation for this purpose that assumes constant confining pressure (also used by Mander et al. 

(1988b)): 
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This equation is based on the “five parameter” multiaxial failure surface of concrete under triaxial 

compression given by Willam and Warnke (1975) calibrated with test results of concrete under 

triaxial compression provided by Schickert and Winkler (1979). 
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Then, the strain at peak stress, ( )iccε , of the confined concrete material can be determined from 

the following equation (Richart et al. 1928): 
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Then, according to the procedure of Mander et al. (1988b), the Popovics (1973) equation is 

utilized to determine the confined concrete stress, ( )iccf , at axial strain ( )icε  as given below: 
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where: 
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Knowing the stress of confined concrete ( )iccf  at strain ( )
icε , the secant modulus of 

elasticity, ( , of the confined material in increment i can be calculated as: )icE
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The values for , , and  in the foregoing equations are based on the unconfined column 

concrete response curve and can be estimated using well-established methods based on 

standard cylinder test data. 

cof ′ coε coE
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Using the procedure described above, twelve unknowns are encountered in a particular 

increment on the axial strain of the confined concrete. Specifically, for a particular level of axial 

strain in the ith increment, ( )
icε , the following parameters are all initially unknown: the resulting 

confining pressure, ( )ihσ , the secant modulus of elasticity, ( )
icE , the Poisson’s ratio, ( )icν , the 

constant , the strain at peak stress of confined concrete, ( )iC ( )
iccε , the secant slope of the 

behavioural curve of the confining tube, ( )ictE , the lateral strain, ( )ilε , the peak stress of 

confined concrete, , the confined concrete stress, ( )iccf ′ ( )iccf , the confined concrete material 

curve parameters  and , and the secant modulus of elasticity at the peak of the confined 

curve, . Hence, the method of successive approximations is used on Equations 5.10 to 

5.21 to converge to the solution within each increment. The values of the unknowns are assumed 

arbitrarily in the first iteration in an increment. In subsequent iterations in the same increment, the 

values from the immediately previous iteration are used. Iterations are performed until the values 

of these variables converge. Then, the next increment in axial strain of the confined is taken and 

the process is repeated. In this way, the stress vs. strain curve of externally confined concrete is 

traced until some failure criterion is met. This process of tracing the confined material curve is 

path-independent because we can find the confined concrete stress, 

( )ix ( )ir

( iEsec )

( )iccf , at any level of axial 

strain, ( )
icε , in an increment i without knowing the trace of confined concrete material curves in 

the previous increments. A computer program C4P was written based on FORTRAN to perform 

these incremental-iterative calculations, the listing of which is given in Appendix L. 

 

5.4.4 Behaviour of Unconfined Concrete in Core 
 
Some portion of the concrete in the core of the externally confined column is not effectively 

confined. The depth of this unconfined concrete into the core was determined based on tests of 

externally confined columns under concentric axial loading (Chapter 3). The average depth of 

parabolic concrete spalling between the collars at the peak load was found to be 0.29 s′ , which is 

higher than the depth of concrete spalling between ties equal to 0.21 s′  reported by Chung et al. 

(2002) based on analytical derivations, where s′  is the clear spacing between the collars or ties. 

To simulate the behaviour of cover concrete, the following expression was proposed by Muto 

(1974) and is plotted in Figure 5-14: 
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where ,  and sc εεξ /= cf cε  are stress and strain of unconfined concrete, and sε  is the strain 

at which spalling of the unconfined concrete starts. The same expression is adopted to represent 

the behaviour of the parabolic concrete region between the collars in externally confined columns. 

Muto (1974) took  equal to the strain at peak stress of the unconfined concrete. For externally 

confined columns, the value can be determined more directly and it is recommended that  be 

taken equal to the average of experimentally observed strains at which concrete spalling started 

based on the externally confined columns tested under concentric axial loading (Chapter 3). The 

average value of this strain was found to be 0.0039. 

sε

sε

 

5.4.5 The Descending Branch 
 

The procedure for establishing the strain at peak stress, , (i.e., at point A in Figure 5-9) and 

the slope of the descending branch (line A–C in Figure 5-9) of the confined concrete material 

curve is presented in this section. The descending branch is established after calculating the 

confined concrete stress, , vs. axial strain, , relationship by the proposed model that does 

not in itself possess a failure criterion. 

ccε

ccf cε

 

The slope of the descending branch of the confined concrete material curve can be established 

by knowing the values of ,  and  of the confined concrete material curve, where ccf ′ ccε 85ccε ccf ′  

is the peak stress of the confined concrete,  is the strain at peak stress of the confined 

concrete, and  is the strain at 85% of 

ccε

85ccε ccf ′  in the post-peak region. For these variables, the 

influencing parameters are established from the literature and models are proposed for  and 

 for collared columns in terms of these parameters. The models are then calibrated using 

available experimental data. The value of 

ccε

85ccε

ccf ′  is determined from the confined concrete material 

curve, established by the model presented previously, at the strain corresponding to . ccε

 

In some of the confinement models established for conventional rebar confinement such as the 

modified Kent and Park (Park et al., 1982), Sheikh and Uzumeri (1982), and Saatcioglu and 

Razvi (1992), the equations for determining the strain at peak stress and the slope of the 

descending branch of the confined concrete material curves were obtained empirically by 
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performing a regression analysis on the test results of concrete columns confined by conventional 

rebar ties.  

 

In the modified Kent and Park model (Park et al., 1982), the strain at peak stress of confined 

concrete depends on the following: (1) strain at peak stress of unconfined concrete; (2) volumetric 

ratio of the confining steel; (3) yield strength of the confining steel; and (4) cylinder strength of the 

concrete. The model assumes that with an increase in the cylinder strength of concrete, the strain 

at peak stress of the confined concrete will decrease. This model does not take into account the 

effect of tie spacing and the effect of distribution of longitudinal steel on the strain at peak stress 

of the confined concrete material curve. According to this model, the slope of the descending 

branch will increase (will become steeper) with an increase in cylinder strength of concrete, and 

will decrease (will become less steep or will tend to be flat) with an increase of the volumetric 

ratio and yield strength of the confining steel and by decreasing the ratio of tie spacing to the 

width of the column. 

 

In the model proposed by Sheikh and Uzumeri (1982), the strain at peak stress depends on the 

following parameters: (1) volumetric ratio of the confining steel; (2) stress in the confining steel at 

peak stress of confined concrete; (3) cylinder strength of concrete; (4) strain at peak stress of 

unconfined concrete; (5) spacing of ties; and (6) distribution of the longitudinal bars of the column. 

According to this model, the strain at peak stress of the confined concrete will increase with an 

increase of the volumetric ratio and the stress of the confining steel at the peak stress of the 

confined concrete. The strain at peak stress of the confined concrete also increases with a 

decrease in spacing of transverse ties and with an increase of strain at the peak stress of 

unconfined concrete. Conversely, the strain at peak stress of confined concrete will decrease with 

an increase of centre-to-centre spacing of the longitudinal bars (this effect is related to both the 

distribution of longitudinal bars and the resulting tie configuration) and with an increase of cylinder 

strength of concrete. According to this model, the slope of the descending branch depends on the 

following two parameters: volumetric ratio of the confining steel and the ratio of tie spacing to the 

column width. In accordance with this model, the slope of the descending branch will decrease 

(will tend to become flat) with an increase of the volumetric ratio of the confining steel and with a 

decrease in spacing of transverse ties. 

 

In the confinement model by Saatcioglu and Razvi (1992), the strain at peak stress of the 

confined concrete depends on the following parameters: (1) strain at peak stress of unconfined 

concrete; (2) equivalent confining pressure; and (3) unconfined concrete strength of the column. 

The equivalent confining pressure, in turn, takes into account the effect of the following 

parameters: (a) spacing of ties; (b) distance between the longitudinal bars of the column 
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(distribution of longitudinal bars of the columns); and (c) the sectional transverse steel ratio. In 

accordance with this model, the strain at peak stress of confined concrete increases with an 

increase of strain at peak stress of unconfined concrete and the equivalent confining pressure 

and it decreases with an increase of the strength of the column concrete. For determining the 

slope of the descending branch, no equation was defined in this model. However, an empirical 

expression for the strain at 85% of the peak stress of the confined concrete in the post-peak 

region was given, which indirectly establishes this slope. According to this model, this strain 

increases with an increase in the sectional transverse steel ratio, the strain at peak stress of 

confined concrete, and the strain at 85% of the peak stress of unconfined concrete in the 

post-peak region. The strain at peak stress of the confined concrete depends on the effective 

confining pressure, which in turn is related to the ratio of tie spacing to the column width. Hence, 

indirectly it can be established that in this model also, the slope of the descending branch 

depends on the ratio of tie spacing to the column width. 

 

With this background from the literature, the proposed model for the confinement of concrete by 

HSS collars assumes that both the strain at peak stress and the slope of the descending branch 

of the confined concrete material curve depend on the following parameters: 

 

(1) the magnitude of the confining pressure at an axial strain of 0.10, ; 01hσ

(2) the strain at peak stress of unconfined column concrete, ; coε

(3) the strain at 85% of peak stress of unconfined column concrete in the post-peak region, 

;  85coε

(4) the strength of unconfined column concrete, cof ′ ; 

 

(5) the ratio of the clear spacing between the collars to the width of the confined concrete 

core (i.e., the column width for collared columns), 
columnh
s′

; the clear spacing between the 

collars is calculated as ( )collartss −=′ , where s is the centre-to-centre spacing of the 

collars and  is the width (parallel to the column axis) of the collar. collart

 

It is apparent that the confining pressure applied by the collar will affect the nature of the 

descending branch. This parameter includes the effects of the axial and flexural stiffnesses of the 

collar as well as the yield stress of the collar steel. In the confinement of concrete by steel collars, 

the confining pressure under the collars does not remain constant, as in the case of yielding rebar 

ties, but rather builds gradually with the increase of axial strain. A question arises, therefore, as to 
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what value of confining pressure should be used in developing equations for the strain at peak 

stress and the slope of the descending branch of the confined concrete material curve, although it 

must be at a level of strain within the descending branch of the confined material curve. The 

value of confining pressure at an axial strain of 0.10, , is chosen because in the testing of 

some of the columns with welded collars (Chapter 3), an axial strain of 0.10 would likely have 

been achieved had the corner welds of the collars not fractured prematurely. The second 

justification for choosing a confining pressure at this large axial strain is the presence of active 

confining pressure in some of the columns with bolted collars. The effect of the presence of initial 

active confining pressure diminishes under increasing deformations and is considered negligible 

at this level of axial strain. The relationships between the confining pressure and axial strain 

determined by the proposed model (i.e., the model used for the ascending branch) are utilized to 

determine the value of . 

01hσ

01hσ

 

It is widely recognized that the character of the unconfined material curve is reflected in the 

confined material curve. Therefore, , , and coε 85coε cof ′  are also included in the list of parameters 

that influence the descending branch. These parameters are consistent with those identified by 

other researchers, as described above. 

 

It is also reasonable to assume that the descending branch depends on the ratio of the clear 

spacing between the collars to the width of the column, 
columnh
s′

. The clear spacing has been 

observed experimentally (Chapters 3 and 4) to influence greatly the degree of spalling at large 

axial strains, which, in turn, has a fundamental effect on the effective material behaviour.  

The only parameter that was identified by the other research programs described previously as 

being influential for the descending branch of conventionally tied columns that has no equivalent 

in the list above is the spacing of the longitudinal reinforcing steel. This parameter has been 

neglected for collared columns because the efficiency of the collars in confining the column 

concrete tends to dominates the behaviour, making the spacing of the longitudinal bars less 

important. 

 

As shown in Chapter 3, the descending branches of the confined concrete material curves of four 

of the collared columns, C01, C02, C03, and C04, were obtained experimentally. In order to 

develop the model for the descending branch, the confined concrete material curves of these 

columns were idealized. 
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To get an idealized counterpart of the confined concrete material curve, a straight-line equation 

was fit to the portion of the descending branch of each of these columns between 60% and 95% 

of the peak stress as shown in Figures 5-15 through 5-18. The selection of these limits was 

based on judgement, so that the idealized confined concrete material curves give the best 

representation of their corresponding experimental counterpart. The upper limit (95%) was 

chosen to exclude the local sharp curvature just beyond the peak that is not representative of the 

overall character of the descending branch. The lower limit (60%) was selected because data 

were available to this point for all the curves considered. The straight-line equations for these 

columns, obtained through regression, are shown in these figures. 

 

Figures 5-19 through 5-22 show the experimental confined concrete material curves for columns 

C01 through C04, respectively, along with their idealized counterparts. The idealized curves were 

obtained by plotting horizontal lines at the peak stresses of the experimentally obtained confined 

concrete material curves and by plotting the equations for the descending branches obtained 

previously. The two lines intersect to define the beginning of the descending branch. The areas 

under the experimentally obtained confined concrete material curves were calculated up to 60% 

of the peak stress (in the descending branch) for each of these columns. The strains 

corresponding to this stress for columns C01, C02, C03, and C04 are 0.0672, 0.0721, 0.0521, 

and 0.0292, respectively. Vertical lines (called equal area lines) are also drawn in these figures to 

delineate this level of strain. Similarly, the areas under the idealized curves for these columns 

were also calculated up this level of strain. The areas under the experimental curves and the 

corresponding idealized curves were slightly different. Therefore, the idealized descending 

branch lines were shifted towards the left until the areas under the experimental and idealized 

curves became equal. The idealized confined concrete curves shown in Figures 5-19 

through 5-22 show the final location of inclined descending branches. (The second terms in the 

equations for the descending branches are very slightly different than those given in Figures 5-15 

through 5-18.) From the idealized confined concrete material curves, the values of  and  

were determined. The strain at peak stress, , corresponds to the point of intersection of the 

horizontal line drawn at the peak stress of the experimentally obtained confined concrete material 

curve and the inclined descending branch after area equalization (point A in the figures). From 

the idealized curves, the strains corresponding to 85% of the peak stresses, , (at point B) 

were also determined for these columns. The resulting values of  and  are reported in 

Table 5.1, which are used to calibrate the proposed generalized model for the descending 

branch. The following equations are proposed for  and  in terms of the confinement 

index, , and the characteristics of the unconfined concrete material curves: 

ccε 85ccε

ccε

85ccε

ccε 85ccε

ccε 85ccε

ω
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Substituting 
co

columnh

fs
h
′′

= 01σ
ω , 

co

cc

ε
ε

α = , and 
85

85

co

cc

ε
ε

β =  in the above equations, the following 

equations are obtained that represent, respectively, the non-dimensional enhancement in the 

strain at peak stress and the strain at 85% of the peak stress in the descending branch due to 

collar confinement: 

 

[5.25]                                     2
11 yωyα +=

 

[5.26]                                    4
31 yωyβ +=

 

The nature of Equations 5.23 through 5.26 is such that they will always remain dimensionally 

homogeneous and will not depend on the system of units for the constituent variables. The values 

of coefficients  through  were determined through regression based on the test results of 

columns C01, C02, C03, and C04; some key results are given in Table 5.1 and the remaining can 

be seen in Chapter 3. The strain at peak stress of the unconfined column concrete, , in the 

columns can be determined from the following common relationship that assumes a parabolic 

unconfined stress vs. strain response: 

1y 4y

coε

 

[5.27]                                    
c

co
co E

f ′
=

2
ε  

 

where coc fE ′= 3700  is the initial slope of the curve (with the coefficient determined from 

concrete cylinders). The computed values of this strain, , for the column concrete are given in 

Table 5.1. A comparison of the values of  with the values of , determined experimentally for 

coε

coε oε
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the associated concrete cylinder tests (Table 3.2; Chapter 3), provides further support for the use 

of Equation 5.27. 

 

No direct measurements were made for the strain at 85% of the peak stress in the post-peak 

region, , of the unconfined concrete material curve. Based on the available evidence in the 

literature, the strains  were conservatively assumed to be 1.75 times the strain . 

Saatcioglu and Razvi (1992) suggested that in the case of an absence of experimental data, the 

strain at peak stress of unconfined concrete, , can be assumed to be 0.002. They also 

suggested that the strains  can be assumed to be 0.0038. According to these suggestions, 

the ratio of  to  is 1.9, which is higher than 1.75 assumed in the present research. The 

computed values of  are also given in Table 5.1. The strength of unconfined concrete in the 

column, , in Equations 5.23 through 5.26, is taken equal to 85% of the cylinder strength of 

concrete, . 

85coε

85coε coε

coε

85coε

85coε coε

85coε

cof ′

cf ′

 

The values of α  are plotted with respect to the values of ω for columns C01, C02, C03, and C04 

in Figure 5-23. Through regression, the following expression is obtained for α : 

 

[5.28]                                 52031 ..+= ωα
 

Similarly, the values of  are plotted with respect to ω  for columns C01, C02, C03, and C04 

depicted in Figure 5-24. Through regression, the following expression was obtained for the values 

of : 

β

β

 

[5.29]                                   81031 ..+= ωβ

 

It is to be noted that Equations 5.28 and 5.29 were calibrated for the values of confinement index, 

, ranging from 0.76 to 1.79 (Table 5.1). These equations may not produce good results outside 

of this range. More experimental testing is recommended to increase the range of these 

equations. 

ω

 

Knowing the values of and  for a column, the slope of the descending branch of the confined 

concrete in the core can be determined by the following equation: 

α β
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Then the descending branch is traced as follows: 

 

[5.31]                            ( )[ ]ccccccc zff εε −−′= 1  

 

The descending branch A–C extends to the horizontal sustaining branch of the confined concrete 

material curve at a stress level of ccf. ′30  (Figure 5-9). This constant stress level of the sustaining 

branch has been assumed similar to the confinement models proposed by Vallenas et al. (1977), 

Sheikh and Uzumeri (1982), and Chung et al. (2002). However, more experimental data are 

required to justify this stress level. 

 
5.4.6 Application of the Proposed Model 
 
The proposed model was applied to determine the confined concrete material curves for collared 

columns (C01 to C09) tested in phase 1 of the project as well as collared columns (CL1 TO CL8) 

tested in phase 2. The phase 1 columns were tested under concentric axial loading and the 

phase 2 columns were tested under lateral cyclic loading, either with or without axial load. The 

details of the phase 1 columns are described in Chapter 3 and those of the phase 2 columns are 

given in Chapter 4.  

 

Confining pressure vs. lateral strain relationships for the collared columns were obtained through 

finite element analyses to establish the confining behaviour of the collars. Figures 5-25 and 5-26 

show the confining pressure vs. lateral strain relationships for the phase 1 (C01 to C09) columns. 

The curves for columns C02, C03, C04, and C05 are composite curves in that they consist of a 

combination of active and passive confining pressures. The initial active confining pressure was 

generated in the finite element models by inducing a negative temperature change in the bolts. 

Figure 5-27 shows the confining pressure vs. lateral strain relationships for the phase 2 (CL1 to 

CL9) columns with welded corner connections. The confining pressure vs. lateral strain curves 

are used to obtain the confined concrete material curves.  

 

It is interesting to compare the confining behaviour determined from the proposed procedure with 

that obtained directly from the finite element analyses to demonstrate the need for the proposed 

procedure. The proposed procedure can also convert the confining pressure vs. lateral strain 

relationships to confining pressure vs. axial strain relationships for the externally confined 
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columns. Figures 5-28 through 5-36 show the relationship between the confining pressure vs. 

axial strain for the phase 1 columns (C01 to C09). For comparison, the confining pressure vs. 

axial strain relationships for these columns obtained directly from the finite element analyses 

using ABAQUS are also shown in these figures. It is clear that at a particular level of axial strain, 

the finite element curves show higher confining pressure, which is a direct indicator of the higher 

dilation rate of the concrete material model embedded in ABAQUS as compared to the dilation 

behaviour in the proposed model. 

 

The proposed model was used to determine the confined concrete material curves for the 

reduced cores (i.e., reduced area due to spalling between the collars) of the phase 1 and phase 2 

columns (using the program C4P in the Appendix L) and these are depicted in Figures 5-37 

through 5-39. These curves represent the stresses attained at the smallest cross-section 

accounting for the presence of spalling. The behaviour of the spalling concrete has been 

modelled by the equation proposed by Muto (1974). Figure 5-14 shows the behaviour of the 

spalling concrete during the axial load history of a typical column C01 (phase 1). The behaviour of 

the reduced cores and the spalling concrete in the columns were then combined to obtain the 

confined concrete material curves of the collared columns for phase 1 and phase 2 (Figure 5-40 

and 5-41).  

 

The abscissa of the confined concrete materials curves of the columns, confined concrete 

material curves of the reduced cores, and the material curves of the spalling concrete are 

identical. Therefore, the following equation can be used to calculate the ordinates of the confined 

concrete material curves: 

 

[5.34]                        
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where: 

 

gA
 = gross cross-sectional area of column; 

rccA  = cross-sectional area of the reduced core; 

spcA  = cross-sectional area of the spalling concrete; 

stA  = total cross-sectional area of longitudinal steel bars in column; 

cf  = stress of unconfined concrete in the core; 
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ccf  = stress of confined concrete in core; 

ccrf  = stress of confined concrete in the reduced core; 

 

After determining the confined concrete material curves, the descending branches of these 

curves were established by the method proposed in Section 5.4.5.  

 

The values of the confinement indices, , for all the collared columns tested in phase 1 are 

given in Table 5.2. The values of the confinement index for columns C01, C02, C03, C04, and 

C09 fall in the range of confinement index over which the Equations 5.28 and 5.29 were 

developed. Hence, the descending branches can be established accurately only for these 

columns. Therefore, for the remaining columns, C05, C06, C07, and C08, the descending 

branches were not established, although the values of  and  that result from this method 

are also reported in Table 5.2. 

ω

ccε 85ccε

 

Similarly, the values of confinement indices, , for collared columns tested in phase 2 are much 

higher than the range over which the Equations 5.28 and 5.29 were calibrated (Table 5.3). 

Therefore, the descending branches for these columns are not established. The values of  

and  for these columns are reported in Table 5.3, although they may not be accurate.  

ω

ccε

85ccε

 

Figures 5-42 and 5-43 show the material curves of the longitudinal reinforcing bars of the phase 1 

and phase 2 columns. Using the confined concrete material curves, the load vs. strain curves of 

the columns can be obtained. The ordinates of the load vs. strain curves of the columns can be 

obtained by the following equation: 

 

[5.35]                          ( ) stsstgcc AfAAfP +−=  

 

The load versus strain curves for the phase 1 collared columns (C01 through C09) predicted by 

the proposed model and those obtained experimentally are shown in Figures 5-44 to 5-52. The 

predicted results show good agreement with the experimental results except for columns C07 and 

C08. The reason for this discrepancy is attributed to the considerably higher strength of concrete 

of these columns and the fact the column C07 was tested in two steps. 

 

Similarly, Figures 5-53 through 5-60 show the predicted load vs. strain curves for the phase 2 

columns (CL1 to CL8). No experimental load vs. strain curves are available for these columns for 

comparison. 

 409



 

The descending branches of the confined concrete material curves of columns C01, C02, C03, 

C04, and C09 show reasonably good agreement with that of the experimental curves.  

 

5.5 Summary and Conclusions 
 
It has been demonstrated experimentally in Chapter 3 that both the strength and ductility of 

concrete improve significantly through confinement by steel HSS collars. Previously existing 

confinement models are unable to predict the stress vs. strain behaviour of the concrete columns 

confined externally by steel collars because of one or more of the following reasons: (1) lack of an 

explicit flexural stiffness parameter of the confining elements; (2) inability to account for variability 

of the confining pressure through the axial load history of the columns; (3) results based on the 

yield stress of the confining steel without taking into account the complete stress vs. strain curve 

of the confining steel; and (4) inability to accommodate a combination of active and passive 

confining pressures. A general purpose finite element program, ABAQUS, was also used to 

predict the behaviour of externally confined columns but no satisfactory results were obtained 

because of various limitations in the concrete material model available in the software package. 

 

Columns of 300 x 300 mm were tested in phase 1 of the project (Chapter 3). Various parameters 

control the behaviour of the externally confined columns by steel HSS collars. Hence, there was a 

need to propose a confinement model that is able to predict the stress vs. strain behaviour of 

collared columns of different dimensions, collar spacing, and material properties. The proposed 

model makes use of an incremental-iterative procedure for which a computer program is required. 

The key component of the proposed confinement model is that the confining behaviour of the 

collars is expressed in terms of average confining pressure vs. average lateral strain. The 

confining pressure vs. lateral strain relationships of the collars are also important because the 

axial and flexural stiffness of the confining devices is incorporated into the proposed model 

through these relationships. Because the confining pressure was variable through the axial load 

history of the columns, the analysis was performed in increments and in each increment a 

constant confining pressure was assumed and the model of Mander et al. (1988b) was applied in 

that increment. For the dilation of the confined concrete, the relationships developed by Fam and 

Rizkalla (2001) based on the test results of Gardner (1969) were used. In each increment, there 

were initially several unknowns. They were set to arbitrary values and an iterative process was 

performed until the variables converged to unique values and then the next increment was taken 

and the process was repeated. In this way, the entire stress vs. strain curve of the confined 

concrete was traced. 
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The proposed model was validated by applying it to columns confined externally by steel HSS 

collars with bolted and welded corner connections tested in phase 1 of the project (Chapter 3). 

Some columns with bolted collars had initial active confining pressure due to the pre-stressing of 

the bolts. The results predicted by the model show good agreement with the experimental results. 

Equations for establishing the descending branches of the confined concrete material curves 

have also been proposed that show good results but they need more experimental data for 

calibration outside of the range of the confinement index considered. 
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Table 5.1: Measured and assumed properties of confined concrete columns for developing 
models for strain at peak stress and slope of descending branch 

C
ol

um
n 

 

 

 

 

 

 

 

 

 

 

s′  
(mm) 

 

cof ′  

(MPa) 

 

01hσ  

(MPa) 

 
 
ω  

 

coε  

 

85coε  

 

ccε  

 

85ccε  

 
α  

 

β  

C01 71 32.22 12.66 1.66 0.0031 0.0054 0.0377 0.0494 12.28 9.20 

C02 71 32.90 13.60 1.75 0.0031 0.0054 0.0414 0.0524 13.51 9.77 

C03 71 32.13 13.63 1.79 0.0031 0.0054 0.0397 0.0443 12.96 8.26 

C04 119 32.13 9.74 0.76 0.0031 0.0054 0.0078 0.0154 2.54 2.86 
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Table 5.2: Relevant data and computed values of  and  for phase 1 columns ccε 85ccε

 
ω  

 
α  

 

β  

 

coε  

 

85coε  

  

s′  
(mm) 

 

cof ′  

(MPa) 

 

01hσ  

C
ol

um
n 

ccε  

(MPa) 

 

85ccε  

C01 71 32.22 12.66 1.66 11.65 8.47 0.0031 0.0054 0.0361 0.0460 

C02 71 32.89 13.60 1.75 13.11 9.19 0.0031 0.0054 0.0406 0.0499 

C03 71 32.13 13.60 1.79 13.83 9.54 0.0031 0.0054 0.0429 0.0518 

C04 119 32.13 9.74 0.76 2.53 2.85 0.0031 0.0054 0.0078 0.0155 

C05* 44 30.94 17.10 3.77 83.70 33.67 0.0031 0.0054 0.2595 0.1827 

C06* 71 29.58 20.25 2.89 43.69 21.30 0.0029 0.0051 0.1267 0.1081 

C07* 71 39.95 28.26 2.99 47.34 22.53 0.0034 0.0060 0.1609 0.1341 

C08* 71 44.88 36.20 3.41 65.33 28.27 0.0036 0.0063 0.2352 0.1781 

C09 119 30.85 16.99 1.39 7.81 6.42 0.0030 0.0053 0.0234 0.0337 

Note: The confinement indices for the starred columns exceed the limit of calibration of the model for the 
descending branch 
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Table 5.3: Relevant data and computed values of  and  for phase 2 columns ccε 85ccε

C
ol

um
n  

s′  
mm 

 

cof ′  

MPa 

 

01hσ  

MPa 

 
 
ω  

 
α  

 
 
β  

 

coε  

 

85coε  

 

ccε  

 

85ccε  

CL1 50 10.45 23.03 13.22 1909.0 314.05 0.0017 0.0031 3.3358 0.9603 

CL2 100 13.52 19.24 4.27 113.96 41.90 0.0020 0.0035 0.2265 0.1457 

CL3 50 13.09 23.31 10.68 1119.9 214.18 0.0020 0.0034 2.1903 0.7330 

CL4 50 27.79 23.21 5.01 169.62 55.57 0.0028 0.0050 0.4833 0.2771 

CL5 50 22.35 28.58 7.67 490.17 118.49 0.0026 0.0045 1.2526 0.5299 

CL6 100 27.71 23.42 2.54 31.71 17.01 0.0028 0.0050 0.0902 0.0847 

CL7 50 30.09 30.50 6.08 274.47 78.30 0.0030 0.0052 0.8138 0.4063 

CL8 50 30.00 23.56 4.71 145.59 49.85 0.0030 0.0052 0.4310 0.2583 

Note: The confinement indices for all the columns exceed the limit of the calibration of the 
model for the descending branch 
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Figure 5-1: Prediction of confined concrete material curve for column 
C06 by existing confinement models 
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Figure 5-2: Plan and elevation of a typical finite element model for 
an externally confined column 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-3: Concrete material curves with modified descending 
branches 
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Figure 5-4: Effect of concrete material curve on the confining pressure 
versus lateral strain curve of collars of column C01 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-5: Effect of concrete material curve on the confining pressure
versus lateral strain curve of collars of column C06 
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Figure 5-6: Confined concrete material curves for column C06 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-7: Column load versus axial strain for column C06 
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Figure 5-8: A typical behavioural curve of steel collars 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-9: Proposed material curve for concrete confined 
externally by steel collars 
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Figure 5-10: Discrete and smeared collars on a concrete 
prism under different stresses 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-11: A typical confining pressure vs. lateral strain curve 
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Figure 5-12: Unconfined concrete: (a) between tie levels; (b) at tie level; 
(c) between HSS collars; and (d) at HSS collar level (fully 
confined) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-13: A typical relationship between confining pressure vs. 
lateral strain with confining pressure consisting of 
active and passive components 
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Figure 5-14: Behaviour of spalling concrete in column C01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-15: Slope of descending branch of column C01 
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Figure 5-16: Slope of descending branch of column C02 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-17: Slope of descending branch of column C03 
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Figure 5-18: Slope of descending branch of column C04 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-19: Idealized stress vs. strain curve for column C01 
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Figure 5-20: Idealized stress vs. strain curve for column C02 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-21: Idealized stress vs. strain curve for column C03 

 

 

 

 

 

 

 

 

 

 

 

 

 425



 

 

Figure 5-22: Idealized stress vs. strain curve for column C04 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-23:Relationship betweenα andω
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Figure 5-24:Relationship between β andω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-25: Confining pressure vs. lateral strain curves for collars with 
bolted corner connections (phase 1) 
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Figure 5-26: Confining pressure vs lateral strain curves for 
collars with welded corner connection (phase 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-27: Confining pressure vs. lateral strain curves for 
columns CL1 to CL8 (phase 2) 
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Figure 5-28:Confining pressure vs. axial strain for column C01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-29: Confining pressure vs. axial strain for column C02 
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Figure 5-30: Confining pressure vs. axial strain for column C03 

 

 

 

 

 

Figure 5-31: Confining pressure vs. axial strain for column C04 
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Figure 5-32: Confining pressure vs. axial strain for column C05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-33: Confining pressure vs. axial strain for column C06 
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Figure 5-34: Confining pressure vs. axial strain for column C07 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-35: Confining pressure vs. axial strain for column C08 
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Figure 5-36: Confining pressure vs. axial strain for column C09 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-37: Confined concrete material curve for reduced cores in 
the phase 1 columns with bolted collars  
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Figure 5-38: Confined concrete material curve for reduced cores 
in the phase 1 columns with welded collars 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-39: Confined concrete material curve for reduced 
cores in the phase 2 columns CL1 to CL8 
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Figure 5-40:Confined concrete material curves of columns 
C01 to C09. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-41: Confined concrete material curves of columns 
CL1 to CL8 
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Figure 5-42: Stress vs. strain curve for 20 mm dia. vertical 
bars of phase1 columns 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-43: Stress vs. strain curves for vertical bars of 
phase 2 columns 
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Figure 5-44: Load vs strain curves for column C01 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-45: Load vs. strain curves for column C02 
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Figure 5-46: Load vs. strain curves for column C03 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-47: Load vs.axial strain curve of column C04 
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Figure 5-48: Load vs. axial strain curve of column C05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-49: Load vs. axial strain curve of column C06 
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Figure 5-50: Load vs. axial strain curve of column C07 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-51 Load vs. axial strain curve of column C08 
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Figure 5-52: Load vs. axial strain curve of column C09 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-53 Load vs. axial strain curve of column CL1 
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Figure 5-54: Load vs. axial strain curve of column CL2  

 

 

Figure 5-55: Load vs. axial strain curve of column CL3 
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Figure 5-56 Load vs. axial strain curve of column CL4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-57: Load vs. axial strain curve of column CL5 
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Figure 5-58: Load vs. axial strain curve of column CL6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-59: Load vs. axial strain curve of column CL7 
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Figure 5-60 Load vs. axial strain curve of column CL8 
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6.  NON-DIMENSIONAL MODEL FOR COLUMN CONFINING BEHAVIOUR 

OF HSS AND SOLID COLLARS WITH RIGID CORNER CONNECTIONS 
 

6.1 Introduction 
 
Many concrete confinement models exist for columns with conventional reinforcing steel 

including those proposed by Kent and Park (1971), Sheikh and Uzumeri (1982), 

Mander et al. (1988), Saatcioglu and Razvi (1992), Légeron and Paultre (2003), and 

Chung et al. (2002). Other models for confinement by composite materials have been proposed 

by Samaan et al. (1998) and Fam and Rizkalla (2001). However, none are able to predict the 

behaviour of columns confined externally by steel collars with significant flexural stiffness 

because of the lack of an explicit flexural stiffness parameter of the confining elements in these 

models. Hussain and Driver (2001) demonstrated through finite element study that both axial and 

flexural stiffness of the confining elements play significant roles and therefore need to be 

included in a comprehensive confinement model. This chapter presents a numerical investigation 

into the confining behaviour of steel HSS and solid collars with rigid corner connections on 

square concrete columns in terms of non-dimensional parameters. A parametric study and 

multi-dimensional regression was performed on the data generated using the finite element 

model described in Chapter 5 to develop equations that are capable of predicting confining 

behaviour in terms of average confining stress vs. average lateral strain. 

 

A typical reinforced concrete column with collar confinement is shown in Figure 6-1(a). For 

simplicity, the discrete collars can be assumed smeared over the height of the column to form an 

equivalent continuous tube, as shown in Figure 6-1(b), provided the effect of smearing on the 

confining behaviour is taken into consideration. The tube is assumed to be made of an 

orthotropic material having zero stiffness in the direction of column axis. The flexural stiffness of 

the tube in the direction normal to the longitudinal axis of the column is the total flexural stiffness 

of all collars, over the height of the column, in the same direction. A similar argument applies to 

the axial stiffness of the equivalent tube as compared to the discrete collars. It is further assumed 

that the column with equivalent tube confinement expands uniformly over its height without 

bulging. Similar assumptions have been made by Légeron and Paultre (2003) in the 

development of their confinement model for conventionally reinforced normal- and high-strength 

concrete columns, and by Caner and Bažant (2002) while applying their computational model 

with smeared confinement to columns confined by spiral reinforcement. The equivalent confining 

tube is not shown for clarity in Figure 6-1(c), which depicts the lateral expansion of the concrete, 

hcou , under axial compressive stress. 
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Figure 6-2(a) shows a general relationship between the average confining stress and average 

lateral strain for a confining tube. These confining stress vs. lateral strain curves, generated for 

many cases using the finite element model described in Chapter 5, are used to determine a 

representative non-dimensional curve, as depicted in Figure 6-2(b). The variables shown in the 

figure that are used to define this curve are described subsequently. 

 

6.2 Confining Stress vs. Lateral Strain Relationship 
 
In conventional columns, the core is generally defined as the region enclosed by the centreline of 

the ties. Figures 6-3(a) and 6-3(b) show the ineffectively confined regions within the core 

between tie levels and at the ties, respectively, that are approximately parabolic in shape, as 

described by, for example, Sheikh and Uzumeri (1982) and Mander et al. (1988). In the 

confinement model by Sheikh and Uzumeri (1982), an expression for the strength enhancement 

factor was defined based on the core bounded by the centreline of the ties. It was assumed that 

the strength enhancement factor depends on the amount of transverse reinforcement, the stress 

in the transverse reinforcement at the peak strength of confined concrete, and the ratio of the 

effectively confined concrete area at the critical section to the core area, which in turn depends 

on the configuration and spacing of the ties. Similarly, in the confinement model by Mander et al. 

(1988), a confinement effectiveness coefficient was defined as the ratio of the effectively 

confined concrete area at the critical section to the concrete core area bounded by the centreline 

of the perimeter ties. The average confining stress was calculated assuming that yielding of the 

transverse reinforcement occurs at the peak stress of the confined concrete. The average 

confining stresses on the sides of the column were then multiplied by the confinement 

effectiveness coefficients to get the equivalent confining stress. The peak stress of the confined 

concrete was then determined under this equivalent confining stress. Saatcioglu and Razvi 

(1992) also reported that the average confining stress calculated by assuming yielding of the 

transverse reinforcement overestimates the effective confining stress by a significant margin. A 

factor was therefore defined, based on a regression analysis of experimental data, to convert the 

average confining stress to an equivalent confining stress. The model proposed by 

Chung et al. (2002) utilizes an effectively confined distance ratio instead of area ratio to account 

for ineffectively confined regions within the core. The effectively confined distance ratio is defined 

as the ratio of the effectively confined width to the total width of the core concrete. This ratio 

takes the maximum value at the tie level and the minimum value at the critical section midway 

between two sets of ties. However, effectively and ineffectively confined regions were not dealt 

with separately. Instead, an expression for the strength enhancement factor was defined using 

regression in terms of the volumetric ratio of transverse steel, stress in the transverse steel at 



 
 

 

 

452

peak stress of the confined concrete, cylinder strength of the concrete, and the effectively 

confined distance ratio. 

 
The core of externally confined columns is equal to the gross dimensions of the columns. In 

contrast to the approaches described above wherein the ineffectively confined concrete is 

accounted for indirectly by a reduction factor applied to the behaviour of the entire core, the 

proposed model for externally confined columns separates explicitly the behaviour of the 

effectively and ineffectively confined regions in the core. The load vs. strain curves of the 

effectively and ineffectively confined concrete regions in the core are defined, and are then 

combined to get the overall load vs. strain curve. The load vs. strain curves can be converted to 

average stress vs. strain curves by dividing the load by the core area. Figure 6-3(c) shows the 

effectively and ineffectively confined regions between the collars and Figure 6-3(d) shows that 

there are no ineffectively confined regions at the collar level because of the considerable flexural 

stiffness of the sides of the collars, in addition to their axial stiffness. This assumption has been 

verified experimentally in this research program and its numerical verification will be given 

subsequently. To model the behaviour of the effectively confined regions in the core, the collars 

are assumed smeared over the height of the columns, as described before, with confining stress 

uniformly distributed on the sides of the columns. The ineffectively confined concrete acts simply 

as a filler to transfer the confining force to the effectively confined regions. 

 

6.3. Finite Element Model 
 
The general-purpose finite element program ABAQUS (HKS 2004a; 2004b) was used to obtain 

the average confining stress vs. average lateral strain curves for the confining tube. Figure 6-4 

shows the plan and elevation of a typical finite element model of a column segment with collars 

having rigid corner connections. The collars are represented by beam elements located a 

distance of one-half the collar depth from the concrete surface and are connected to the concrete 

by axially rigid outriggers. The complete description of the finite element model has been given in 

Chapter 5. 

 

When the finite element model is loaded in the axial direction, the confining tube is strained 

laterally due to the dilation of concrete. In response, the confining tube applies confinement 

stress onto the concrete due to its restraining action. The pressure on the columns is purely 

passive. It can be observed from the elevation of the model that an individual collar has been 

divided into a number of layers within the actual center-to-centre spacing, s, to represent the 

equivalent confining tube described above. Any reasonable number of layers could be selected, 

provided the effect of collar smearing (described later) is taken into consideration. Smearing is 

used in order to keep the ranges of the non-dimensional parameters relatively small to improve 
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the accuracy of the resulting equation, while still accounting for all realistic collar configurations. 

The average confining stress is obtained by dividing the total force in the outriggers located in a 

strip having a length equal to the column width and a depth equal to the centre-to-centre spacing 

s of collars, by the strip area. The average lateral strain is obtained by dividing the average 

horizontal displacements of the concrete surface nodes at which outriggers from the smeared 

collars are connected, by half the width of the column. 

 
6.3.1 Concrete Material Curve 

 
The confining behaviour of the collars deduced from the finite element model is expressed as the 

average confining stress vs. average lateral strain. It has been demonstrated in Chapter 5 that 

the confining behaviour of collars with rigid corner connections is affected slightly by making a 

significant change in the input concrete material curve. However, this marginal effect on the 

confining behaviour of collars has been neglected in the parametric study presented in this 

chapter. The concrete material curve No. 5 shown in Figure 6-5 is used in the present chapter. 

Additional discussion of the curves in this figure is presented in Chapter 5. 

 

6.3.2 Steel Material Curve 

 
The confining behaviour of the collars depends on material properties of the confining steel such 

as yield stress and modulus of elasticity, and the shape of the material curve. Stub column tests 

were performed to determine material properties of the HSS collars used in phase 1 (Chapter 3) 

and phase 2 (Chapter 4) of the project. The material curves of all the HSS were round-shaped 

because of the presence of residual stresses. In all of these curves, the 0.2% offset method was 

used to determine the yield stress. As the parametric study on confining behaviour covers HSS 

collars as well as solid collars, in which the behaviour of the confining steel plays a pivotal role, it 

was considered that the range of parameters should be selected in such as way that they cover 

most commonly occurring cases. For this purpose, reference values of yield stress and modulus 

of elasticity were required. The reference values need not be exactly central over the range of 

interest. In the present study, the reference values of yield stress and modulus of elasticity were 

obtained by averaging the results of yield stresses and moduli of elasticity obtained from the stub 

column tests given in Chapters 3 and 4. The average values of yield stress and modulus of 

elasticity were found to be 465 MPa and 203 250 MPa, respectively. The reference value of yield 

stress is denoted by yreff  and that of modulus of elasticity is denoted by srefE . 

 

Figure 6-6(a) shows the stress vs. strain curve for a typical HSS 76x51x6.35.obtained from a 

stub column test (phase 2). There are different conventions to define the yield stress of this type 
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of steel material curve. Among them, the most commonly used conventions are: (a) 0.2% offset 

method; and (b) the stress at a particular level of axial strain, pyε . The 0.2% offset method, 

widely used for civil engineering materials with round-shaped material curves, was used in the 

present study to determine the yield stresses of HSS. In this method, a line is drawn parallel to 

the initial slope of the curve beginning at a strain of 0.002. The stress at the point of intersection 

of this line with the curve represents the yield stress, yf , of the material. The yield stress and 

modulus of elasticity of steel material shown in Figure 6-6(a) are 512=yf  MPa and 

660206 Es =  MPa. 

 

The Ramberg-Osgood model can be calibrated to match the round-shaped steel material curves 

(Chen and Han 1988). The equation of the Ramberg-Osgood model using conventional notation 

is: 
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The shape of the material curve is controlled by four parameters: a , n , sE , and yf . These 

parameters can be selected by a trial-and-error procedure to produce a material curve that 

closely matches the experimentally obtained curve. However, if it is required that all of the 

generated curves have a yield stress, yf , at 0.2% strain, then the parameter a  must be set 

equal to 0.002. The generated steel material curve using the Ramberg-Osgood model shown in 

Figure 6-6(a) was obtained for the parameters set at the following values: 0020.=a , 11=n , 

206660=sE  MPa, and 512=yf  MPa. 

 

The confining steel material curves can therefore be generated for a constant value of 

0020.=a  (0.2% offset method) by varying the three other parameters: n , sE ,.and yf . 

 

6.3.3 Generation of Steel Material Curves for Parametric Study 

 

Using the three parameters required to define a steel material curve ( n , sE , and yf ), four 

groups of curves for confining steel can be generated: 
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(1) Figure 6-6(b) shows curves with different values of n, keeping yf  and sE  constant at 

their reference values, i.e., yrefy ff =  and srefs EE = . In these curves, n was varied 

from 10 to 20 using the following values: =n 10, 11, 12, 14, 16, 18, and 20. The initial 

slope of these curves are identical due to the invariance of sE . The rounded parts of 

these curves approaching the yield stress are affected only slightly by the variations in 

the value of n, which has been ignored in the present study for simplicity. Conversely, 

the second parts of these curves (beyond the yield stress) vary considerably with n. 

 

(2) Figure 6-6(c) shows the generated material curves with different values of yf  and sE  

for a constant value of n. The value of n can be set equal to its reference value, the 

choice of which is arbitrary as long as it is in the range over which it varies in the problem 

under consideration. For these curves, the reference value of n was taken equal to 11. 

The variation of yf  and sE  is done in such a way that their ratio ( sy Ef / ) remains 

constant. This approach leads to variation over the full extent of the curves, as seen in 

Figure 6-6(c). It will be noted in the subsequent parametric study that yf  and sE  

influence the behavioural curves of the collars in a distinct way. However, it was 

considered difficult to capture the effect of simultaneous variation of both yf  and sE  on 

the confining behaviour of collars. Moreover, the value of sE  would be expected to vary 

little for structural steel, while yf  can vary considerably. Therefore, the influence of the 

variation of yf  and sE  on the behavioural curves of collars are studied separately, 

which required the generation of two more sets of steel material curves described in (3) 

and (4) below. 

 

(3) Figure 6-7(a) shows curves with different values of yf , keeping n and sE  constant at 

their reference values. In this case, only the latter part of the material curve is affected 

significantly. 
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(4) Figure 6-7(b) shows curves with different values of sE , keeping n and yf  constant at 

their reference values. It is evident that varying the properties in this way has the 

greatest effect on the initial slope and the “knee” of the curve. 
 

6.4 Contact of Collars with the Concrete Column 
 
A total of nine collared columns were tested in phase 1 (see Chapter 3) of the project under 

concentric axial loading to very large strains. Although the collars deformed considerably during 

the axial load history, no gap was observed between the collars and the concrete of the column. 

Therefore, it is reasonable to assume that the pressures developed by the collars in the finite 

element model will always be compressive and gap elements are not required, nor is it 

necessary to distinguish between cases of collars installed with and without epoxy grout. This 

assumption was validated numerically using model 2 of group 1 given in Table 6.1. The average 

confining pressures on the respective elements at the surface of the column across its width are 

plotted in Figure 6-8(a) with respect to the average lateral strain of the column. There are 12 

concrete elements across the width of the column; element 1 is in the corner and element 6 is 

adjacent to the centreline of the column. The confining pressure at element 1 is high and it 

diminishes towards the column centerline. As shown in Figure 6-8(b), the pressure in the corner 

of the column increases with an increase of average lateral strain. No tension force was 

observed in the outriggers in the practical range of lateral strain, validating the assumption that 

no gap develops between the concrete and steel collars. 

 

6.5 Model for HSS Collars for Square Concrete Columns 

 

A model for the confining behaviour of HSS collars for square concrete columns has been 

developed in terms of non-dimensional parameters The output parameters of the parametric 

analyses, related to the confinement stress and lateral strain, represent the characteristic 

confinement curves. There are several equations that can be calibrated to approximate these 

curves. Of those considered, it was found that the Popovics equation (Popovics 1973) gave the 

best fit to the finite element results and was therefore used in the present study. 

 
6.5.1. Non-Dimensional Parameters 
 

The objective of the study is to develop equations to predict the confining behaviour of HSS 

collars. Based on the experimental work and finite element studies, it is assumed that this 

behaviour for square concrete columns depends on the following ten primary variables: 
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(1) area of cross-section of a side of a collar, collarA ;  

(2) moment of inertia of a side of a collar about an axis parallel to the axis of the column, 

collarI ;  

(3) width of the column (inside length of a collar side), columnh ;  

(4) depth of the collar (perpendicular to column axis), collarh ;  

(5) centre-to-centre spacing s ; 

(6) yield stress of the confining steel, yf ;  

(7) modulus of elasticity of the confining steel, sE ;  

(8)  value of n in the Ramberg-Osgood confining steel material model 

(9) average lateral strain, lε ; and  

(10)  average confinement stress, ctσ . 

It is to be noted that variables (6) to (8) ( yf , sE , and n) are related to the material curve of the 

confining steel. It should also be noted that since the depth, width, and wall thickness (horizontal 

and vertical wall thicknesses were varied independently to enhance the generality of the study) of 

the hollow steel tubes can all be varied, variables (1), (2), and (4) ( collarA , collarI , and collarh ) 

,are independent. (The corner rounds have been neglected for simplicity.) Conversely, since only 

square concrete columns are being considered, columnh , columnA , and columnI  represent only a 

single independent quantity symbolized by variable (3) ( columnh ). The confining behaviour of 

collars is represented by variables (9) and (10) ( lε  and ctσ ). These two variables are dependent 

and the rest are independent parameters.  

 

In order to perform a parametric study on ten parameters, a large number of analyses are 

required to study the effect of each individually on the confining behaviour of collars. The details 

of dimensional analysis are not presented here (see, for example, Taylor (1974)), however, in 

general the procedure is to relate groups of two or more primary variables to produce a reduced 

number of new non-dimensional variables (parameters) that reflect the effect of the variables 

combined. By dealing with combined non-dimensional parameters, the number of analyses 

required for the parametric study are considerably reduced and the scale effects can be 

eliminated. The dimensional analysis approach is suitable for this application because it leads to 

the development of simplified equations for the confining behaviour of collars with a reduced 
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number of independent parameters, but still takes into account the effects of all the primary 

variables. 

 

The confining behaviour of the HSS collars depends on the ten primary variables. Two of these 

are already dimensionless: lateral strain lε ; and the value of n in the Ramberg-Osgood model. 

Hence, remaining are eight variables to be combined to form dimensionless parameters. 

 

According to Taylor (1974), if the behaviour of a physical problem is represented by a set of m 

variables, 1A , 2A , 3A , … mA , the relationship between these variables can be expressed in 

terms of a homogeneous function: 

 

[6.2]                       0321 =)...,( ,, mAAAAF  

 

There are a variety of ways to reduce the primary variables and to develop a proper set of non-

dimensional parameters to characterize the behaviour of a physical problem. Among them, the 

most commonly used method is the Buckingham Pi theorem (Langhaar, 1951) which is stated 

below: 

 

If an equation is dimensionally homogeneous, it can be reduced to a relationship among a 

complete set of dimensionless products. 

 

Langhaar (1951) demonstrated that the number of non-dimensional parameters needed to 

correlate the variables in a given physical problem is equal to n-r, where r is the rank of the 

dimensional matrix of the variables 1A , 2A , 3A , … mA . The rank of a matrix is the largest order 

of any square sub-matrix that has a non-zero determinant. After developing the non-dimensional 

parameters ( 1β , 2β , 3β  … rm-β ) using the Buckingham Pi theorem, the homogeneous function 

[6.2] can be rewritten as follows: 

 

[6.3]                     0)...,( -,32,1 =rmF ββββ  

 

The dimensional matrix of eight primary variables (after taking out the two dimensionless 

parameters) in terms of fundamental units of mass, M, length, L, and time, T, can be written in 

the following form: 
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 collarA  collarI  collarh  columnh  s  yf  sE  ctσ  

M 0 0 0 0 0 1 1 1 

L 2 4 1 1 1 -1 -1 -1 

T 0 0 0 0 0 -2 -2 -2 

 

The rank of this dimensional matrix is two, therefore, six non-dimensional parameters are 

required (in addition to the two dimensionless parameters mentioned above) to describe this 

physical behaviour, i.e., the confining behaviour of the collars. For concrete columns confined by 

HSS collars, the following eight trial non-dimensional parameters were chosen (including the two 

that were already dimensionless): 

 

• 
column

collar

A
A
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• nβ =6  
 
• lεβ =7  
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s

ct

E
σ

β =8  

 
It is to be noted that 7β  and 8β  are output parameters and 1β  to 6β  are input parameters. The 

parameter 5β  is the ratio of yield stress, yf , to modulus of elasticity, sE , of the confining steel. 

The variation in 5β  can be obtained by varying yield stress, yf , and/or the modulus of elasticity, 
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sE . However, their effects on the relationship between the output parameters, 7β  and 8β , are 

different. In order to differentiate their effects, the notation 5β  will be used when varying yf , 

while keeping sE  and n constant. The constant value of sE  can be set equal to srefE  and the 

definition of the parameter becomes: 

• 
sref

y

E
f

β =5  

Figure 6.7(a) shows the resulting input steel material curves with different values of yf  for 

constant values of sE  and n: srefs EE =  and =n 11. Because these curves have a constant 

modulus of elasticity, sE , the initial parts of the curves coincide. However, the second parts of 

the curves differ significantly. The curves with higher values of yf  are higher and vice versa. 

 

The notation 5β ′  is used when varying sE , while keeping, yf  and n constant. The constant 

value of yf  and n are set equal to yreff  and 11, respectively; and the definition of 5β ′  becomes: 

• 
s

yref

E
f

=′5β  

Figure 6-7(b) shows a group of curves with different values of sE , while keeping yf  constant. 

The initial slopes of these curves differ, however, beyond the knee of the curves they converge. 

This means that a change in modulus of elasticity, sE , should not have a significant effect on the 

peak of the output curves generated by 7β  and 8β . In order to remove the dependence of the 

output parameter 8β  on sE , the value of sE  in the denominator of 8β  is held constant at a 

value of srefE , the reference modulus of elasticity. Therefore, the definition of 8β  is adjusted as 

follows: 

 

• 
sref

ct

E
σ

β =8  

 

6.5.2 Ranges of Parameters and Reference Model 
 
The reference model is an arbitrarily selected model for which the input parameters fall within the 

ranges over which the parametric study is performed. The ranges considered accommodate the 
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practical cases of columns and confining collars likely to be encountered. Attempts to capture the 

behavioural trends over wider ranges tend to lead to very complicated functions to achieve a 

good fit to the data points. In order to simplify the functions by reducing the ranges over which 

the parametric study is performed and regression equations are developed, collars of a practical 

size can be smeared into a series of smaller collars. 

 

The geometry of the columns confined by HSS collars is controlled by the following four 

parameters: 1β ; 2β ; 3β ; and 4β . The ranges of these parameters that have been used in the 

parametric study are: 

 

• =1β 0.00262 to 0.00527 

• =2β 2.48x10-4 to 5.56x10-4 

• =3β 0.00625 to 0.2125 

• =4β 0.20 to 0.31 

 

Small deviations from these ranges are acceptable while using the prediction equations (yet to 

be developed). However, large deviations might jeopardize the accuracy of predicted results. The 

nature of the prediction equation for a particular parameter gives insight into how much deviation 

from its range might be acceptable, while still maintaining the accuracy of predicted results. 

 

The other parameters are related to the material curve of the confining steel. The parameter a  

was set at 0.002. The effect of parameters 5β , 5β ′ , and 6β  on the confining behaviour of collars 

was studied over the following ranges: 

• =5β 0.001968 to 0.002952 

• =′5β 0.00177 to 0.00266 

• =6β 10.00 to 20.00 

This covers all the practical material curves for the confining steel. 

 

Model 6 in Table 6.2 is the reference model for the parametric study of HSS collars. This model 

recurs for the study of each individual variable. The values of the input parameters for this model, 

along with the ranges of parameters over which the parametric studies were performed, are 

given below:  

 

• =1β  0.00365 (Range: 0.00262 to 0.00527) 
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• =2β 0.0003634 (Range: 0.00024876 to 0.00055588) 

• =3β 0.075 (Range: 0.00625 to 0.2125) 

• =4β 0.25 (Range: 0.20 to 0.31) 

• =5β 0.002287 (Range: 0.001968 to 0.00295) 

• =′5β 0.002287 (Range: 0.00177 to 0.00266) 

• =6β 11.00 (Range: 10.00 to 20.00) 

The values of input parameters for the reference model do not necessarily fall in the middle of 

the ranges of the parameters for HSS collars. 

 

6.5.3 Scale Effect 
 
In order to verify that the non-dimensional parameters are independent of any scale effect, ten 

analyses were performed in two groups, the details of which are given in Table 6.1. The objective 

is to vary the constituent (primary) variables of the non-dimensional parameters, while keeping 

the non-dimensional parameters themselves constant. If the input parameters selected truly and 

fully represent the behaviour defined by the output parameters, the output curves will be identical 

over the full range of interest. It is to be noted that in order to keep 1β  through 4β  constant, the 

constituent variables of each non-dimensional parameter cannot be varied individually. This is 

because once the cross-sectional column dimension, columnh , has been selected, the associated 

area, columnA , and moment of inertia, columnI , are also set. The numerators of the respective non-

dimensional input parameters are therefore also unique in order to achieve specific values of 1β  

through 4β . Conversely, the constituent (primary) variables of 5β  and 5β ′  can be varied 

individually. In this scale effect study only the constituents of 1β  through 4β  are varied. The 

analogous effects of 5β  and 5β ′  are studied separately and presented subsequently. 

 

The two groups of models for assessing the scale effect are shown in Table 6.1. Group 1 

consists of six models and group 2 consists of four models. Although the primary variables are 

different for the various models in each of these groups, the values of the non-dimensional input 

parameters are the same within a group. The values of the input parameters for the models in 

group 1 are: 

 

• =1β 3.65x10-3 
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• =2β 3.634x10-4 

• =3β 0.075 

• =4β 0.25 

• =5β 2.288x10-3 

• =′5β 2.288x10-3 

• 00116 .=β  

 

The values of the input parameters in group 2 are: 

 

• =1β 7.979x10-3 

• =2β 7.495x10-4 

• =3β 0.20 

• =4β 0.25 

• =5β 2.288x10-3 

• =′5β 2.288x10-3 

• =6β 11.00 

The relationships between 7β  and 8β  for the analyses of models in groups 1 and 2 are depicted 

in Figure 6-9. The curves for the different models in each group overlap each other, confirming 

that the parameters are independent of scale effects. However, the two groups have different 

output curves because of the difference in the values of the non-dimensional input parameters. 

 

6.5.4. Parametric Study and Prediction Equation 
 
In order to capture trends in the confining behaviour of welded hollow collars, use of a 

generalized equation proposed by Popovics (1973), for unconfined concrete, has been made. 

This equation was selected because it tends to provide a better fit to the output curves than other 

common methods due primarily to the ability to control the curvature of the ascending branch. 

Moreover, the Popovics equation can be controlled by two simple variables, as described below. 

The relationship between 7β  and 8β  can therefore be expressed as: 
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A typical relationship between 7β  and 8β  is presented in Figure 6-2(b) to define the variables 

oγ , secγ , ( )
max7β , and ( )

max8β , where oγ  is the initial slope of the curve; secγ  is the secant slope 

of the curve to the point defined as the “peak;” and ( )
max8β  is the value of 8β  at ( )

max= 77 ββ . 

The shape of the curve obtained by Equation 6.4 can be controlled by three variables: oγ , 

( )
max8β , and ( )

max7β . The variable ( )
max7β  has been set equal to 1.0 to be used for obtaining 

the best fit to the finite element results. (It is to be noted that this point is arbitrary and the curve 

fitting exercise takes place only over the range of reasonable lateral strains (i.e., values of 7β ).) 

Hence, there are only two variables ( oγ  and ( )
max8β ) remaining to fully control the shape of the 

curve. The following relationships are hypothesised for ( )
max8β  and oγ : 

 

[6.5] 
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[6.6] 
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The functions )( 11 βλ , )( 22 βλ , )( 33 βλ , )( 44 βλ , )( 55 βλ , )( 55 βλ ′′ , )( 66 βλ , )( 11 βγ  )( 22 βγ , 

)( 33 βγ , )( 44 βγ , )( 55 βγ , )( 55 βγ ′′ , and )( 66 βγ  are determined by performing regression 

analyses on the data generated through parametric study using finite element models, the details 

of which is given in the following sections. Once these functions are established, the non-

dimensional output curve can be generated easily with Equation 6.4 for any values of the non-

dimensional input variables that are consistent with the parametric study. 

 

6.5.4.1 Overview of Regression Analysis 
 
The objective of a regression analysis is to determine the values of parameters for a function that 

cause the function to provide a best fit to a given set of data generated either numerically or 

experimentally. In the present study, it was found that power series could generally be selected 
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to provided a good fit to the data without becoming unduly complex. There are several 

procedures to check the quality of fitness of a function to the given numerical data; some of them 

are listed below: 

 

• Final Sum of Squared Deviations 

• Average and Maximum Deviations 

• Coefficient of Multiple Determination 

• Adjusted Coefficient of Multiple Determination 

 

In the present study, the “coefficient of multiple determination” method was used to check the 

quality of fitness by using the following deviation parameter: 

 

[6.7]                    
m

p

V
V

R −= 12  

where pV  is the variance using the predicted values, and mV  is the variance using the mean 

value. The variance using the mean value, mV , is defined as the sum of the squared differences 

between the mean value and the values of the dependent variable at all data points. The 

variance using the predicted value, pV , is defined as the sum of the squared differences 

between the values of the dependent variable predicted by the function and the actual values at 

all data points. 

 

The goodness of fit of a function to a set of numerical data is determined from the value of 2R , 

as defined in Equation 6.7. If the function fits the data perfectly, the value of 2R  is equal to 1.00. 

In the worst case, the value of 2R  can become equal to zero, which means that the function is 

no better than simply using the mean of the observed values. 

 

6.5.4.2 Effect of Parameter 1β  on the Confining Behaviour of HSS Collars 

 

Table 6.2 shows the details of the analyses to study the effect of variation of 1β  on the confining 

behaviour. It is to be noted that the model 6 in this table is the reference model. The collar 

dimensions are modified in such a way that only 1β  varies and the other input parameters 

( 2β , 3β , 4β , 5β , 5β ′ and 6β ) remain constant. Figure 6-10 shows the relationship between 7β  
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and 8β  for all the analyses for 1β  varying from 0.00262 to 0.00527. The values of the other 

parameters were set at the following values: 

 

• =2β 0.003634 

• =3β 0.075000 

• =4β 0.250000 

• =5β 0.002288 

• =′5β 0.002288 

• =6β 11.00 

 

The curves shown in this figure have essentially two parts, the first part (steep) and the second 

part (nearly horizontal), which are joined by a curve. The slope of the initial part of the curve is 

represented by oγ . The parameter ( )
max8β is the value of 8β  at ( )

max7β . Although the location of 

( )
max8β  is not on the graph of Figure 6-10, it can be concluded from the shape of these curves 

that both oγ  and ( )
max8β  increase with an increase of 1β . In order to capture the trends of these 

curves, Equation 6.4 was made to provide a best fit up to a practical value of lateral strain, 7β , 

and the resulting values of oγ  and ( )
max8β  are given in Table 6.2. A total of 11 models were 

used (see Table 6.2). By inspection, curve fitting to case 11 appeared to be worse as compared 

to the other 10 cases. The following values of R2 were calculated for this case up to different 

levels of lateral strains to quantify the level of curve fitting that could be achieved by this process: 

 

R2 = 0.9905 up to a lateral strain of 0.06 

R2 = 0.9924 up to a lateral strain of 0.05 

R2 = 0.9920 up to a lateral strain of 0.04 

R2 = 0.9901 up to a lateral strain of 0.03 

 

These values of R2 indicate very good curve fitting even for the worst case. Similarly, in other 

cases in the parametric study, approximately the same level of curving fitting was maintained. It 

was decided to use 0.03 as the limit of lateral strain for curve fitting procedures. 

 

The values of ( )
max8β and 0γ  listed in Table 6.2 are equivalent to 1λ  and 1γ , respectively, and 

they account directly for the effect of 1β  in Equation 6.4. The effects of the other input 
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parameters must therefore be formulated to account only for the required adjustments to these 

base values. Figure 6-11(a) shows the relationship between 1λ  and 1β . Using a power series 

function, the following equation was obtained for )( 11 βλ : 

 

[6.8]                   8420
111 02380 ..=)( ββλ  

 

Similarly, Figure 6-11(b) shows the relationships between 1γ  and 1β  and the following best fit 

equation was obtained for )( 11 βγ : 

[6.9]                      5470
111 2431 ..=)( ββγ  

 

6.5.4.3 Effect of Parameter 2β  on the Confining Behaviour of HSS Collars 

 

Table 6.3 shows the details of the models used to study the effect of variation of 2β  on the 

confining behaviour. Model 6 is the reference model. The collar dimensions are modified in such 

as way that only 2β  varies from 2.4876x10-4 to 5.5588x10-4 and the other input parameters 

( 1β , 3β , 4β , 5β , 5β ′ and 6β ) remain constant at the following values: 

 

• =1β 0.00365 

• =3β 0.07500 

• =4β 0.25000 

• =′5β 0.002288 

• =5β 0.002288 

• =6β 11.00 

 

The resulting output curves relating 7β  and 8β are shown in Figure 6-12 up to =7β 0.05. It is 

clear from these curves that the variation of 2β  affects the first part (initial slope) of the curves. 

Although the curves seems to be converging, the small variation in the so-called peak values 

(i.e., at 7β =1.0) has also been captured by fitting an equation. Equation 6.4 was fit to the finite 
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element curves relating 7β  to 8β  (Figure 6-12) up to 7β  equal to 0.03, and the respective 

values of oγ  and max)( 8β  are given in Table 6.3. Table 6.4 also lists the values of oγ  and 

max)( 8β  for all the models, in addition to the ratio of max)( 8β of all the models to the value of 

max)( 8β of model 6 (reference model). These ratios are denoted by 2λ . It is to be noted that the 

value of 2λ  for the reference model necessarily becomes equal to 1.0. Figure 6-13(a) shows the 

plot of values of 2λ  vs. 2β . A power series function was fit to these data points and the following 

expression is obtained for )( 22 βλ : 

 

[6.10]                  0396.0-
222 )(7331.0)( ββλ =  

 

Table 6.4 also shows the ratio of oγ  for all the models to oγ of reference model. These ratios are 

denoted by 2γ . The value of 2γ  for the reference model becomes equal to 1.0. Figure 6-13(b) 

shows the plot of 2γ  vs. 2β . A power series function was fit to these data points and the 

following expression is obtained for )( 22 βγ : 

 

[6.11] 320
222 512 ..=)( ββγ  

 

6.5.4.4 Effect of Parameter 3β  on the Confining Behaviour of HSS Collars 

 

Table 6.5 shows the detail of finite element models to study the effect of variation of 3β  on the 

confining behaviour. Model 10 in this table is the reference model. The collar spacing was varied 

to get variation in 3β  (from 0.00625 to 0.2125), while keeping the other input parameters 

( 1β , 2β , 4β , 5β , 5β ′ and 6β ) at the following constant values: 

 

• =1β 0.003650 

• =2β 0.036340 

• =4β 0.250000 

• =5β 0.002288 

• =′5β 0.002288 
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• =6β 11.00 

 

The curves between 7β  and 8β  for all the models given in Table 6.5 were plotted to study the 

effect of change of 3β  on the confining behaviour. The curves for models 1, 2, 4, 5, 7, 9, 11, and 

16 are depicted in Figure 6-14. The study of these curves showed that the change in 3β  has a 

large effect on both oγ  and max)( 8β . Equation 6.4 was made fit to all these curves, and the 

respective values of oγ  and max)( 8β  are reported in Table 6.6. The values of oγ  and max)( 8β  

thus obtained were normalized with respect to the respective values of oγ  and max)( 8β  of the 

curve of model 10 and the resulting normalized values of oγ  and max)( 8β , referred to as 3γ  and 

3λ , respectively, are also given in Table 6.6. The values of 3λ  were plotted with respect to 3β  

and the resulting curve is shown in Figure 6-15(a). A power series function was fit to this curve 

and the following expression for )( 33 βλ was obtained: 

 

[6.12]             850.0
333 1152.0)( −= ββλ  

 
Similary, the values of 3γ  were plotted with respect to 3β  and the resulting curve is shown in 

Figure 6-15(b). A power series function was fit to this curve and the following expression for 

)( 33 βγ was obtained: 

 
[6.13]                 939.0

333 0931.0)( −= ββγ  
 

6.5.4.5 Effect of Parameter 4β  on the Confining Behaviour of HSS Collars 

 

Table 6.7 shows the detail of models to study the effect of variation of 4β  on the confining 

behaviour. In this case, model 5 is the reference model. The collar depth collarh  was varied to get 

variation in 4β  (0.20 to 0.31), while keeping the other input parameters ( 1β , 2β , 3β , 5β , 

5β ′ and 6β ) at the following constant values: 

 

• =1β 0.003650 

• =2β 0.036340 
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• =3β 0.075000 

• =5β 0.002288 

• =′5β 0.002288 

• =6β 11.00 

 

The curves relating 7β  and 8β  for these models are shown in Figure 6-16. From these curves, it 

is clear that the variation in 4β  only affects max)( 8β , without affecting oγ . With the increase of 

4β , the value of max)( 8β  increases. Equation 6.4 was fit to these curves and the resulting 

values of oγ  and max)( 8β  for each case is given in Table 6.8. The values of oγ  and max)( 8β  

were normalized with respect to the values of oγ  and max)( 8β , respectively, of the curve of the 

reference model (model 5 in Table 6.8). The normalized values of oγ  and max)( 8β , denoted by 

4γ  and 4λ  are also given in the Table 6.8. The values of 4λ  were plotted with respect to the 

values of 4β and the resulting curve is shown in Figure 6-17. A power series function was fit to 

the data and the following expression was obtained for )( 44 βλ : 

 

[6.14] 213.0
444 3506.1)( ββλ =  

 

It is clear from Table 6.8 that the values of 4γ  are constant at 1.0 and therefore have no 

dependence on 4β , which leads to the following expression for )( 44 βγ : 

 

[6.15] 00.1)( 44 =βγ  

 

6.5.4.6 Effect of Parameter 5β  on the Confining Behaviour of HSS Collars 
 
The parameter 5β  represents the ratio of yield stress, yf , to modulus of elasticity, sE , of the 

confining steel. The effect of this parameter on the confining behaviour of HSS collars is studied 

in two ways: (a) variation in both yield stress, yf , and modulus of elasticity, sE , in such a way 

that 5β  remains constant; and (b) variation in yield stress, yf , or modulus of elasticity, sE , or 

both such that 5β  does not remain constant. The effect of variation of both yf and sE , such that 
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parameter 5β  remains constant, on the relationship between 7β  and 8β  is presented initially. 

This is analogous to the studies of 1β  through 4β  in the section on scale effect. Table 6.9 shows 

the detail of the finite element models used for this study with the following values of input 

parameters: 

 
• =1β 0.003650 
 
• =2β 0.036340 
 
• =3β 0.075000 
 
• =4β 0.250000 
 
• =5β 0.002288 

 

Based on the analyses of these models, the curves relating parameters 7β  and 8β  are 

shown in Figure 6-18. Although 5β  is constant for these curves, they do not coincide. This 

casts doubt on the validity of 5β  as a characteristic non-dimensional parameter. This 

discrepancy can be explained with the help of Figure 6.7, which shows material curves for 

HSS generated by the calibrated Ramberg-Osgood model: (a) with different values of yf  

and a constant value of sE  (Figure 6-7(a)); and (b) with different values of sE  and a 

constant value of yf  (Figure 6-7(b)). The initial parts of the curves shown in Figure 6-7(a) 

essentially overlap because these curves were generated for a constant value of sE . The 

variation in the values of yf  is reflected in the second parts of these curves. Similarly, 

Figure 6-7(b) shows material curves of confining steel with different values of sE  and a 

constant value of yf . The change in sE  is reflected in the initial parts of these curves but 

they tend to converge past the knee. Because of the distinct effect yf  and sE  show in the 

different curve regions, it seems preferable to vary these variables separately and this can be 

done by normalizing each with the reference values srefE  and yreff , respectively, as 

discussed previously.  

 

Table 6.10 shows the details of the finite element models to study the effect of variation of yf  

(i.e., variation of 5β ) on the confining behaviour of the collars with sE  set equal to the reference 
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value. Model 3 in this table is the reference model. The parameter 5β  was varied from 0.001968 

to 0.002952; the other input parameters ( 1β , 2β , 3β , 4β , 5β ′ , and 6β  ) were set at the following 

constant values: 

 
• =1β 0.003650 
 
• =2β 0.036340 
 
• =3β 0.075000 
 
• =4β 0.250000 

 
• =′5β 0.002288 

 
• =6β 0.250000 

 
 

The resulting curves between 7β  and 8β for these analyses are shown in Figure 6-19. The initial 

parts of these curves overlap each other but the second parts, or the so-called peak values of 

these curves, are affected significantly by changing yf . The Equation 6.4 was fit to all these 

curves and the resulting values of oγ  and ( )
max8β  are given in Table 6.11. These values of oγ  

and ( )
max8β  were normalized with respect to the values of oγ  and ( )

max8β  of the reference 

model. The normalized values of oγ  and ( )
max8β , denoted by 5γ  and 5λ , respectively, are also 

given in Table 6.11. 

 

The values of 5λ  are plotted with respect to the respect to 5β  and the resulting curve is shown 

in Figure 6-20. In this case, a power function was not required to obtain good accuracy and a 

linear function was fit to this curve by setting the y-intercept equal to zero, resulting in the 

following expression for )( 55 βλ : 

 

 [6.16] 555 435ββλ =)(  

 

The values of oγ  remains essentially unaffected by changing 5β . Therefore, the values of 5γ  

becomes 1.00 for all these curves, resulting in the following expression for )( 55 βγ : 
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[6.17] 00155 .=)(βγ  

 

6.5.4.7 Effect of Parameter 5β ′  on the Confining Behaviour of HSS Collars 

 

Table 6.12 summaries the details of the models used to study the effect of variation of sE  (i.e., 

variation in 5β ′ ) on the confining behaviour of collars with yf  set equal to the reference value. 

Model 3 in this table is the reference model. The parameter 5β ′  was varied from 0.00177 to 

0.00266, keeping the other input parameters ( 1β , 2β , 3β , 4β , 5β , and 6β ) at the following 

constant values: 

 

• =1β 0.003650 
 
• =2β 0.036340 
 
• =3β 0.075000 
 
• =4β 0.250000 

 
• =5β 0.002288 

 
• =6β 11.00 

 
Figure 6-21 shows the relationship between 7β  and 8β  for different values of 5β ′ . The study of 

these curves shows that the variation in sE  essentially affects the initial slope, oγ , of the curves, 

without affecting the second parts of the curves. The Equation 6.4 was fit to these curves and the 

resulting values of max)( 8β and oγ  are listed in Table 6.13. These values of max)( 8β and oγ  

were normalized with respect to the values of max)( 8β  and oγ , respectively, of the reference 

model (model 3). The normalized values of max)( 8β and oγ , denoted by 5λ′  and 5γ ′ , 

respectively, are also listed in this table. Although 5λ′  is affected by a change in 5β ′ , the effect is 

considered small enough to neglect. Therefore, the values of 5λ′  for all these curves become 

equal to 1.00, resulting in the following expression for )( 55 βλ′ : 

 

 [6.18]                 155 =′ )( βλ  
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The values of 5γ ′  are plotted with respect to the values of 5β ′  in Figure 6-22. A power series 

function was fit to this curve and the following expression was obtained for )( 55 βγ ′′ : 

 

 [6.19]               800
55 0.0077 .)( −′=′′ ββγ  

 

6.5.4.8 Effect of Parameter 6β  on the Confining Behaviour of HSS Collars 

 
The confining behaviour of HSS collars also depends on the shape of the material curves of the 

confining steel, which in turn depends on the value of n in addition to a, yf  and sE  

(Equation 6.1). The effect of a change in the value of n on the confining behaviour of collars is 

now considered. Table 6.14 gives the details of the finite element models used for this study. The 

Model 2 in this table is the reference. In these models, the value of 6β  is varied from 10 to 20 

and the other parameters were set at the following at the following constant values: 

 
• =1β 0.003650 
 
• =2β 0.036340 
 
• =3β 0.075000 
 
• =4β 0.250000 

 
• =5β 0.002288 

 
• =′5β 0.002288 

 
Figure 6-23 shows the relationship between 7β  and 8β  for different values of 6β . The study of 

these curves shows that the variation of 6β  affects essentially the second parts of the curves 

without affecting the initial slope, oγ . The Equation 6.4 was fit to all these curves and the 

resulting values of oγ  and ( )
max8β  are given in Table 6.15. These values of oγ  and ( )

max8β  

were normalized with respect to the values of oγ  and ( )
max8β  of the reference model. The 

normalized values of oγ  and ( )
max8β , denoted by 6γ  and 6λ  respectively, are also given in 

Table 6.15. Figure 6-24 shows the plot relating 6λ  and 6β . A power series function was fit to this 

curve with the help of regression, resulting in the following expression for )( 66 βλ : 
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[6.20] 170-
666 1.50 .)( ββλ =  

 

The values of 6γ  are constant with respect to 6β , which leads to the following expression for 

)( 66 βγ : 

 
[6.21] 00166 .=)(βγ  

 

6.5.4.9 Effect of Collar Smearing on the Confining Behaviour of HSS 
Collars 
 
Table 6.16 shows the detail of finite element models to study the effect of collar smearing on the 

confining behaviour. It is to be noted that model 4 in this table is the reference model. All of these 

models are equivalent in that although different degrees of smearing are present, the total axial 

and flexural stiffnesses of the collars are identical. Hence, all the model should give the same 

result in terms of the relationship between the output parameters 7β  and 8β  if there is no 

smearing effect. The models in Table 6.16 show variation of 3β  from 0.01875 to 0.30, 

accompanied by concomitant variations in parameter 1β  from 9.125x10-4 to 1.46x10-2 and 

parameter 2β  from 9.0841x10-5 to 1.4535x10-3 such that the models remain equivalent to each 

other. The other input parameters of these models were kept at the following constant values 

(i.e., the reference values): 

 
• =4β 0.250000 

 
• =5β 0.002288 

 
• =′5β 0.002288 

 
• =6β 11.00 

 
Only for Models 3, 4, and 5 do all of the parameters 1β , 2β , and 3β  fall within the ranges 

considered in the parametric study. It is important to note that it is the models with the higher 

numbers that have values for collar area, stiffness, and spacing that are closer to those that 

would be expected for real columns (i.e., “unsmeared”). Figure 6-25 shows that although the 

initial slope is unaffected by smearing, an effect on the peak of the curve is observed, primarily 

for Models 1 and 2. It is significant that smearing by a small amount has a relatively small effect 
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and only for the severe smearing of Models 1 and 2 is the effect highly pronounced. This effect 

over the range of Models 3, 4, and 5 is considered negligible, so smearing to any degree that 

falls within the ranges of the non-dimensional input parameters considered in the parametric 

study can be taken as equivalent.  

 

The effect of smearing can be related to any one of the three input parameters 1β , 2β , and 3β  

because of the equivalency in their variations. In the present study, the effect of smearing on the 

output behavioural curves of the collars is related to 3β . Equation 6.4 was fit to the curves in 

Figure 6-25 and the corresponding values of oγ  and max)( 8β  are given in Table 6.17. These 

values are then normalized with respect to the respective values of oγ  and max)( 8β  of reference 

model (model 4). The normalized values of max)( 8β  and oγ , denoted by sλ  and sγ , have also 

been given in Table 6.17. The values of sλ  are plotted with respect to 3β  and the resulting curve 

is shown in Figure 6-26. A power series function was fit to this curve, resulting in the following 

expression for )( 3βλs : 

 

[6.22]               05250
33 14181 ..=)( ββλs  

 

The values of sγ  for all the models are 1.00 in Table 6.17, which leads to the following relation 

for )( 3βγs : 

 

[6.23]   1.00)( 3 =βγ s  

 

The correction for smearing can be applied to the so-called peak values of the behavioural 

curves of the collars. If the 3β  parameters for the actual and smeared models are denoted by 

3β ′  and 3β , respectively, a factor sa is defined to account for the effect of smearing on the peak 

value of the confining behaviour (using Equation 6.22): 

 

[6.24] 0524.0

3

3 )(
β
β ′

=sa  

 

The value of this factor will be greater than 1 if the spacing of the collars in the actual model is 

bigger than that of the smeared model, which will always be true for practical cases. 
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6.5.4.10 Expressions for max)( 8β and oγ  for HSS Collars 
 
The expression for ( )

max8β  can be obtained by substituting the values of )( 11 βλ , )( 22 βλ , 

)( 33 βλ , )( 44 βγ , )( 55 βλ , )( 55 βλ ′′ , and )( 66 βλ  into Equation 6.5, and adding the smearing 

correction factor, sa . The resulting expression is: 

 

[6.25]                170
6

850
3

03960
2

5
2130

4
8420

1
8

771331
...

..

max

.
=)(

βββ
aβββ

β s  

 

Similarly, the expression for oγ  can be obtained by substituting the expressions for )( 11 βγ , 

)( 22 βγ , )( 33 βγ , )( 44 βγ , )( 55 βγ , )( 55 βγ ′′ , and )( 66 βγ into Equation 6.6. The resulting 

expression is:  

 

[6.26]                  80.0
5

939.0
3

32.0
2

0.547
10.0111384

ββ
ββ

γ
′

=o  

 

Equation 6.26 could be simplified somewhat without impacting the accuracy of the results 

significantly by treating the modulus of elasticity as a constant, as is often done for structural 

steel. Moreover, both Equations 6.25 and 6.26 could be simplified by eliminating the factors that 

have a very small effect on the output curves within the prescribed ranges, such as )( 22 βλ . 

Further simplification could be achieved by selecting linear functions that closely match some of 

the near-linear power functions selected, such as )( 11 βλ . Nevertheless, Equations 6.25 and 6.26 

are not onerous to evaluate and the following verification study is performed on these equations 

as presented. 

 
6.5.4.11 Verification of the Proposed Model for HSS Collars 
 
The proposed empirical confinement model has been verified using 14 case studies. It is to be 

noted that for verification purposes, collared columns of 300x300 mm in cross-section have been 

used, whilst the equations of the proposed model were developed based on the results of 

collared columns of 400x400 mm in cross-section. Table 6.18 shows the details of all the finite 

element models used for this purpose. These are not intended to represent real columns, 

however, they were developed in such a way that their non-dimensional parameters are close to 

those of real columns (i.e., they have not been smeared, as is required for the empirical 
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equation). The results of these models in terms of confinement stress vs. lateral strain are 

depicted in Figures 6-27 through 6-40.  

 

While using the proposed model to determine the confining behaviour of collars, it is possible to 

violate slightly the ranges used in the parametric study at the cost of accuracy of the predicted 

results. Through applying the proposed model to the 14 cases given in Table 6.18, it has been 

observed that the predicted results are more sensitive to the range of parameter 1β  (0.00262 to 

0.00527) than any other parameter. Therefore, while applying the proposed model, it is 

recommended that the parameter 1β  remain within its prescribed range, while other parameters 

can violate their ranges slightly without affecting the accuracy of predicted results drastically. In 

order to keep the parameter 1β  within its range, the real collars are smeared over the column at 

a relatively small spacing, although excessive smearing is not recommended. Only need-based 

smearing is recommended in order to bring the parameter 1β  within its range. Table 6.19 shows 

the details of models, equivalent to those given in Table 6.18, obtained through need-based 

smearing of the collars. The proposed empirical model was applied to these cases to determine 

their respective confining behaviour in terms of confinement stress vs. lateral strain, also 

depicted in Figures 6-27 through 6-40 for comparison with the respective finite element results. 

The curves are shown up to lateral strain of 0.06, which is a very high level of lateral strain. The 

coefficient of multiple determination, R2, was used to measure the accuracy of the predictions for 

each curve up to four levels of lateral strains, i.e., 0.06, 0.05, 0.04, and 0.03. The corresponding 

values of R2 are given in Table 6.20 for each of the 14 cases. A study of the values of R2 shows 

that very good agreement exists between the finite element results and those of the proposed 

model. In order to demonstrate the procedures used in the verification exercise, the details of 

one of the cases (Case 8) is given below. 

 

The finite element analyses for Case 8 were performed on a 300x300 mm column with steel HSS 

collars of 25.5x51 mm (web 3.175 mm and flange 6.35 mm thick) spaced at 61.00 mm on 

centres. These are hypothetical steel HSS sections without round corners and with varying wall 

thickness. The yield stress, yf , and modulus of elasticity, sE , of the confining steel are 

470 MPa and 210 000 MPa, respectively. The values of the non-dimensional parameters for this 

model are (note that the prime symbol is included on 3β  to signify the actual, rather than 

smeared, condition for consistency with Equation 6.24 that accounts for the smearing effect): 

 
• =1β 0.006306 
 
• =2β 0.000285 
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• =′3β 0.203333 
 
• =4β 0.170000 

 
• =5β 0.002312 

 
• =′5β 0.002214 

 
• =6β 11.00000 

 
As the value of parameter 1β  exceeds its specified range, in order to apply the proposed model 

the collars need to be smeared. (Although 4β  also falls outside of its prescribed range, the 

method is much less sensitive to this parameter.) After smearing, the collar size becomes 

12.75 x 51.00 mm (web 1.5875 mm and flange 6.35 mm thick) and the centre-to-centre spacing 

becomes 30.50 mm. The non-dimensional parameters of the equivalent model (Case 8 in 

Table 6.19) with smeared collars becomes: 

 

• =1β 0.0031500 
 
• =2β 0.0001424 
 
• =3β 0.1016600 
 
• =4β 0.170000 

 
• =5β 0.002312 

 
• =′5β 0.002214 

 
• =6β 11.00000 

 
Now the value of the non-dimensional parameter 1β  falls within the range over which the 

parametric study was performed. Using Equation 6.24 that accounts for the smearing effect, the 

value of sa  is calculated to be: 

 

• =sa 1.037 

 

Applying Equation 6.25, the value of max)( 8β  can be calculated: 
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• =)( max8β 0.0001517 

 

Applying Equation 6.26, the value of oγ  is calculated: 

 

• =oγ 0.03027 

 

Substituting the values of max)( 8β  and oγ  into Equation 6.4, the relationship between 7β  and 

8β  can be established. This curve is then converted to confinement stress, ctσ , vs. lateral strain 

by multiplying the values of 8β  by the constant =srefE  203 250 MPa. It is to be noted that the 

parameter 7β  represents the lateral strain of the collar directly. The relationships between 

confinement stress and lateral strain determined with both the finite element analysis and the 

empirical model using need-based smearing are shown in Figure 6.34. The curves can be 

compared with the help of the values of R2 in Table 6.20 The values of R2 for this curve up to 

lateral strains of 0.06, 0.05, 0.04, and 0.03 are 0.9971, 0.9968, 0.9965, 0.9961, respectively. 

 

6.5.4.12 Application of the Proposed Model to Real Cases 
 
In this section, the proposed model is applied to columns C06 and C09 tested under concentric 

axial loading in phase 1 of the project (Chapter 3). 

 

6.5.4 12.1 Column C06 
 
Column C06 is 300x300 mm in cross-section confined with collars of HSS 51x51x6.35 mm with 

welded corner connections, spaced at 122 mm on centres. The area of the cross-section of this 

HSS is 1085 mm2 and the moment of inertia of the collar about its major axis is 0.319x106 mm2. 

The material curve for the HSS was obtained from a stub column test and is shown in 

Figure 6-41. The Ramberg-Osgood model was calibrated to this curve and the best fit was 

obtained at the following values of material parameters: 

 

• =yf  497 MPa 

• =sE  203 400 MPa 

• =a  0.002 MPa 



 
 

 

 

481

• =n  12.80 MPa 

 
For establishing the confining behaviour of the collars of this column using finite element 

analysis, it is reasonable to approximate the actual condition by splitting each collar into two 

equivalent collars. This is necessary because the actual collars apply confining pressure across 

a 51 mm deep strip and in the model, pressure is applied along a line at the collar centreline. 

Hence, the collars of this column can be assumed to consist of HSS 25.5x51 mm (web 3.175 mm 

and flange 6.35 mm thick) spaced at 61 mm on centers, with cross-sectional area of 542.5 mm2 

and moment of inertia of 0.1595x106 mm4 taking into account the effect of round corners. 

 

With this information, the non-dimensional parameters of this column were calculated to be: 

 
• =1β 0.0060277 
 
• =2β 0.0002363 
 
• =′3β 0.2033333 
 
• =4β 0.170000 

 
• =5β 0.002445 

 
• =′5β 0.002286 

 
• =6β 12.80000 

 
The value of parameter 1β  exceeds the range (0.00262 to 0.00527) over which the parametric 

study was performed. In order to get the best results from the proposed model, it is required that 

the collars be smeared over the height of the column under consideration. For this purpose, each 

collar of the original column (i.e., with center-to-center spacing of collars of 122 mm) is divided 

into four smaller collars, resulting in the following values of the non-dimensional parameters: 

 
• =1β 0.0030139 
 
• =2β 0.0001182 
 
• =3β 0.1016667 
 
• =4β 0.170000 

 
• =5β 0.002445 



 
 

 

 

482

 
• =′5β 0.002286 

 
• =6β 12.80000 

 
Substituting the values of the non-dimensional parameters into Equations 6.25 and 6.26, and 
applying sa , the following values of max)( 8β and oγ  are found: 
 

• =)( max8β 0.00015145 
 

• =oγ 0.02861 
 
Using these values in Equation 6.4, the relationship between 7β  and 8β  can be obtained and 

transformed to a confinement stress vs. lateral strain curve, which is shown in Figure 6.42, by 

multiplying 8β  by srefE . This figure also shows the relationship between the confinement stress 

and lateral strain obtained directly from the finite element analysis. The coefficient of multiple 

determination was used to compare these two curves. The following values of R2 were found: 

 

• R2 = 0.9726 up to lateral strain of 0.06 
 

• R2 = 0.9780 up to lateral strain of 0.05 
 

• R2 = 0.9828 up to lateral strain of 0.04 
 

• R2 = 0.9852 up to lateral strain of 0.03. 
 
 
These values of R2 show that the two curves compare well with each other. The confinement 

stress vs. lateral strain curve obtained by the proposed model was used to determine the 

confined concrete material curve for the core concrete according to the procedure given in 

Chapter 5. The behaviour of spalling concrete and the longitudinal reinforcing bars was modelled 

separately. Combining the contributions of core concrete, cover concrete, and the longitudinal 

reinforcing bars, the axial load vs. axial strain curve for the column was obtained and is shown in 

Figure 6-43. The experimentally obtained load vs. strain curve of the column is also given in this 

figure for comparison. Very good agreement exists between the two curves, validating the 

proposed model. 

 

6.5.4.12.2 Column C09 
 
Column C09 is 300x300 mm in cross-section confined with collars of HSS 76x51x6.35 mm with 

welded corner connections, spaced at 170 mm on centres. The area of cross-section of this HSS 
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is 1375 mm2 and the moment of inertia of the collar about its major axis is 0.919x106 mm2. The 

material curve of the HSS for this column, obtained from the stub column test, is shown in 

Figure 6-44. The Ramberg-Osgood model was calibrated to this curve and the best fit was 

obtained at the following values of material parameters: 

 

• =yf  445 MPa 

• =sE  202 700 MPa 

• =a  0.002 MPa 
• =n  20.00 MPa 

 
For the confining behaviour of the collars of this column using finite element analysis, it is 

reasonable to split each collar of this column into two equivalent collars because the actual 

collars apply confining pressure on about a 51 mm width. Hence, the collars of this column can 

be assumed to consist of HSS 25.5x76 mm (web 3.175 mm and flange 6.35 mm thick) spaced at 

85 mm on centres, with a cross-sectional area of 687.50 mm2 and moment of inertia of 

0.4595x106 mm4. 

 

With this information, the non-dimensional parameters for this column can be calculated as: 

 
• =1β 0.007639 
 
• =2β 0.000681 
 
• =′3β 0.283333 
 
• =4β 0.253333 

 
• =5β 0.002189 

 
• =′5β 0.002294 

 
• =6β 20.00000 

 
The value of parameter 1β  exceeds the range (0.00262 to 0.00527) over which parametric study 

was performed, so the collars must be smeared. For this purpose, each collar of the original 

column (spacing equal to 170 mm) is divided into four smaller collars, resulting in the following 

values of the non-dimensional parameters: 
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• =1β 0.0038195 
 
• =2β 0.0003405 
 
• =3β 0.1416666 
 
• =4β 0.2533333 

 
• =5β 0.002189 

 
• =′5β 0.002294 

 
• =6β 20.00 

 
Substituting the values of the non-dimensional parameters into Equations 6.25 and 6.26, and 
applying sa , the following values of max)( 8β  and oγ  are found: 
 

• =)( max8β 0.0001203 
 

• =oγ 0.03336 
 
Using these values in Equation 6.4, the relationship between 7β  and 8β  can be obtained and 

then transformed to confinement stress vs. lateral strain, shown in Figure 6-45. This figure also 

shows the relationship between the confinement stress and lateral strain obtained directly from 

the finite element analysis. The coefficient of multiple determination was used to compare the 

two curves. The following values of R2 were found: 

 

• R2 = 0.9800 up to lateral strain of 0.06 
 

• R2 = 0.9785 up to lateral strain of 0.05 
 

• R2 = 0.9762 up to lateral strain of 0.04 
 

• R2 = 0.9725 up to lateral strain of 0.03. 
 
 
The values of R2 shows that the two curves compare well. The confinement stress vs. lateral 

strain curve obtained by the proposed model was used to determine the confined concrete 

material curve for the core concrete according to the procedure given in Chapter 5. Adding the 

contributions of core concrete, cover concretes and the longitudinal reinforcing bars, the load vs. 

axial strain curve for the column was obtained, as shown in Figure 6-46. The experimentally 

obtained load vs. strain curve of the column is also given in this figure for comparison. Very good 

agreement exists between the two curves, again validating the proposed model. 
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6.6 Model for Solid Collars 
 

In a manner similar to the procedure used for HSS (hollow) collars, a model for the confining 

behaviour of solid collars with rigid corner connections has been developed in terms of non-

dimensional parameters. The derivation of the model is provided in the following sections. 

 

6.6.1. Non-Dimensional Parameters for Solid Collars 
 
Based on the experimental work and finite element studies, it is assumed that the confining 

behaviour of the solid collars for square concrete columns depends on the following nine primary 

variables:  

(1) area of cross-section of a side of a collar, collarA  

(2) moment of inertia of the side of the collar, collarI  

(3) width of the column (inside length of a collar side), columnh  

(4) centre-to-centre spacing, s ; 

(5) yield stress of the confining steel, yf  

(6) modulus of elasticity of the confining steel, sE  

(7) value of n in the Ramberg-Osgood model 

(8) average lateral strain, lε  

(9) average confinement stress, ctσ  

 

It is to be noted that, the three ( yf , sE , and n) of above nine variables are related to the 

material curve of the confining steel. In case of solid collars, the quantities collarA  and collarI  can 

be varied independently. Conversely, since only square concrete columns are being considered, 

columnh , columnA , and columnI  represent only a single independent quantity, columnh .  

 

The dimensional matrix of seven primary variables (after taking out the two dimensionless 

parameters) in terms of fundamental units of mass, M, length, L, and time, T, can be written in 

the following form: 
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 collarA  collarI  columnh  s  yf  sE  ctσ  

M 0 0 0 0 1 1 1 

L 2 4 1 1 -1 -1 -1 

T 0 0 0 0 -2 -2 -2 

 

 

The rank of this dimensional matrix is two; therefore, five non-dimensional parameters are 

required (in addition to the two dimensionless primary variables) to describe this physical 

behaviour, i.e., the confining behaviour of solid collars. The following seven trial non-dimensional 

parameters were chosen: 

 

• 
column

collar

A
A

β =1   

  

• 
column

collar

I
I

β =2  

 

• 
columnh
s

β =3  

 

• 
s

y

E
f

β =5  

 
• nβ =6  
 
• lεβ =7  
 

•  
s

ct

E
σ

β =8  

 
For consistency, the same nomenclature has been used for the parameters for solid collars as 

was used for hollow collars. It is to be noted that parameter 4β  does not exist for solid collars. 

Again, 7β  and 8β  are output parameters and 1β , 2β , 3β , 5β , and 6β  are input parameters. 

The parameter 5β  is the ratio of yield stress, yf , to modulus of elasticity, sE , of the confining 
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steel. As was done for hollow collars and for the same reasons, this parameter is split into two 

parameters: 

• 
sref

y

E
f

β =5  

• 
s

yref

E
f

=′5β  

The definition of 8β  is again revised to: 

 

• 
sref

ct

E
σ

β =8  

 
6.6.2 Ranges of Parameters and Reference Model for Solid Collars 
 

The geometry of the columns confined by solid collars is controlled by three parameters: 1β ; 2β ; 

and 3β . The ranges of these parameters used in the parametric study are: 

 

• =1β 0.004 to 0.056 

• =2β 0.000096 to 0.0192 

• =3β 0.020 to 0.30 

 

These ranges cover most practical cases. The reference model is an arbitrarily selected model 

whose parameters fall in the ranges over which the parametric studies were performed. Model 5 

in Table 6.21 is the reference model for the parametric study of solid collars. The values of input 

parameters (including material and geometric parameters) for this model along with their ranges 

over which the parametric studies were performed are given below:  

 

• =1β 0.02083 (Range: 0.004 to 0.056) 

• =2β 0.001302 (Range: 0.000096 to 0.0192) 

• =3β 0.16667 (Range: 0.020 to 0.30) 

• =5β 0.002288 (Range: 0.001476 to 0.00344) 

• =′5β 0.002288 (Range: 0.00177 to 0.00266) 
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• =6β 11.00 (Range: 10.00 to 20.00) 

 

These ranges are sufficiently wide to accommodate practical sizes of solid collars without 

requiring collar smearing. However, the effect of collar smearing on the confining behaviour of 

solid collars was also studied; if required, it can be used to predict the behaviour of relatively 

larger solid collars. 

 

6.6.3 Scale Effect for Solid Collars 
 
In order to verify that the non-dimensional parameters are independent of any scale effect, 

eleven analyses were performed, the details of which are given in Table 6.21. The values of input 

parameters for all the models in this table are: 

 

• =1β 0.0208333 

• =2β 0.001302 

• =3β 0.16667 

• =5β 0.002288 

• =′5β 0.002288 

• 00116 .=β  

 

The relationships between 7β  and 8β  for the analyses of these models are depicted in 

Figure 6-47. The curves generated by the different models coincide exactly, confirming that the 

parameters are independent of scale effect. 

 

6.6.4 Parametric Study and Prediction Equation for Solid Collars 
 
In order to capture trends in the confining behaviour of solid collars, Equation 6.4 is again used. 

From the finite element study it was deduced that the variables ( )
max8β  and oγ  in this equation 

depend on the non-dimensional parameters 1β , 2β , 3β , 5β , 5β ′ , and 6β . Hence, the following 

relationships are hypothesised for ( )
max8β  and oγ : 

 

[6.27]  

( ) )()()()()()(),,,,,(max 6655553322116553218 βλβλβλβλβλβλβββββββ ×′′××××=′   
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[6.28]  )()()()()()(),,,,,(o 665555332211655321 βγβγβγβγβγβγββββββγ ×′′××××=′   

 

The functions )( 11 βλ , )( 22 βλ , )( 33 βλ , )( 55 βλ , )( 55 βλ ′′ , )( 66 βλ , )( 11 βγ , )( 22 βγ , )( 33 βγ , 

)( 55 βγ , )( 55 βγ ′′ , and )( 66 βγ  are determined by performing regression analyses on the data 

generated through parametric study using finite element models, the details of which is given in 

the following sections. 

 

6.6.4.1 Effect of Parameter 1β  on the Confining Behaviour of Solid Collars 

 

Table 6.22 shows the details of the 15 models used to study the effect of variation of 1β  on the 

confining behaviour. Model 6 in this table is the reference model. Figure 6-48 shows the 

relationship between 7β  and 8β  for all the analyses for 1β  varying from 0.004 to 0.056. The 

values of other parameters were set at the following values, which are same as those for the 

reference model: 

 

• =2β 0.001302 

• =3β 0.166666 

• =5β 0.002288 

• =′5β 0.002288 

• =6β 11.00 

 

The quantities oγ  and ( )
max8β  shown in Table 6.22 are equivalent to 1λ  and 1γ , respectively 

(without modification because the normalizing factor is 1.00). By inspection, curve fitting to 

case 4 appeared to be the least precise as compared to the other 14 cases. The following values 

of R2 (coefficient of multiple determination) were calculated for this case up to different levels of 

lateral strains in order to quantify the level of curve fitting: 

 

• R2 = 0.9935 up to a lateral strain of 0.06 

• R2 = 0.9936 up to a lateral strain of 0.05 

• R2 = 0.9947 up to a lateral strain of 0.04 

• R2 = 0.9938 up to a lateral strain of 0.03 
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These values of R2 indicate very good curve fitting even for the worst case. (In all the subsequent 

cases, a similar quality of curve fitting was maintained.) Figures 6-49(a) and 6-49(b) show the 

relationships between 1λ  and 1β  for two 1β  ranges: (a) 0.004 to 0.024; and (b) 0.024 to 0.056; 

respectively. Several trials were made to get a single expression for the complete range of 1β  

(0.004 to 0.056), but a satisfactory function could not be obtained. Therefore, it was decided to 

split the 1β  range into two parts and for each range, separate functions were obtained through 

curve fitting: 

 

[6.29]            7310
111 007690 ..=)( ββλ  for =1β 0.004 to 0.024 

[6.30]             6190
111 00490 ..=)( ββλ  for =1β 0.024 to 0.056 

 

Figures 6-50(a) and 6-50(b) show the relationships between 1γ  and 1β  for the same two ranges 

that lead to the following functions: 

 

[6.31]               6420
111 451 ..=)( ββγ  for =1β 0.004 to 0.024 

[6.32]               3680
111 53010 ..=)( ββγ  for =1β 0.024 to 0.056 

 

6.6.4.2 Effect of Parameter 2β  on the Confining Behaviour of Solid Collars 

 

Table 6.23 shows the details of models to study the effect of variation of 2β  on the confining 

behaviour. Model 6 in this table is the reference model. The collar dimensions are modified in 

such as way that only 2β  varies from 0.000096 to 0.0192 and the other input parameters ( 1β , 

3β , 5β , 5β ′ and 6β ) remain constant at the following values, which are same as those for the 

reference model: 

: 

• =1β 0.020833 

• =3β 0.16667 

• =′5β 0.002288 

• =5β 0.002288 

• =6β 11.00 
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The resulting output curves between 7β  and 8β are shown in Figure 6-51 up to =7β 0.05. It is 

clear from these curves that the variation of 2β  affects both the first part (initial slope) and the 

second part (so-called peaks) of the curves. Equation 6.4 was fit to these curves up to a strain of 

0.03 and the respective values of oγ  and max)( 8β  are given in Table 6.23. The same quality of 

fitness was maintained as was in the previous section. The values of oγ  and max)( 8β  for all the 

models were normalized with respect to the respective values of oγ  and max)( 8β of the reference 

model. These normalized values of oγ  and max)( 8β  are denoted by 2λ  and 2γ , respectively, 

and are given in Table 6.24. The values of 2λ  were plotted with respect to 2β  and several trials 

were made to get a single expression through regression, which gives best fit to the complete 

range of 2β  (0.000096 to 0.0192) but a satisfactory function could not be obtained. Therefore, it 

was decided to split the 2β  range into two parts and for each part a separate expression of 

)( 22 βλ  was obtained. Figures 6-52(a) and 6-52(b) show the plot of 2λ  with respect to 2β  for 

2β ranges: (a) 0.000096 to 0.00288; and (b) 0.00288 to 0.0192; respectively. A power series 

function was fit to the data points in each of these ranges and the following expressions for 

)( 22 βλ  were obtained: 

 

[6.33]              18550
222 4343 ..=)( ββλ  for =2β 0.000096 to 0.00288 

[6.34]              14330
222 74292 ..=)( ββλ  for =2β 0.00288 to 0.0192 

 

Similarly, Figures 6-53(a) and 6-53(b) show the plots of 2γ  with respect to 2β  for 2β the same 

ranges. Power series functions were fit to the data points in these ranges and the following 

expressions for )( 22 βγ  were obtained: 

 

[6.35] 3850
222 714512 ..=)( ββγ  for =2β 0.000096 to 0.00288 

[6.36] 20030
222 36554 ..=)( ββγ  for =2β 0.00288 to 0.0192 
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6.6.4.3 Effect of Parameter 3β  on the Confining Behaviour of Solid Collars 

 

Table 6.25 shows the details of the finite element models to study the effect of variation of 3β  on 

the confining behaviour. Model 9 in this table is the reference model. The collar spacing was 

varied to get a variation in 3β  (from 0.020 to 0.30), while keeping the other input parameters 

( 1β , 2β , 5β , 5β ′  and 6β ) at the following constant values, which are same as those for the 

reference model: 

 

• =1β 0.020833 

• =2β 0.001302 

• =5β 0.002288 

• =′5β 0.002288 

• =6β 11.00 

 

The curves relating 7β  and 8β  for all the models in this table were plotted. However, only a few 

of these curves are depicted in Figure 6-54 for clarity. A study of these curves shows that the 

change in 3β  has a large effect on both oγ  and max)( 8β . Equation 6.4 was fit to all the curves, 

and the respective values of oγ  and max)( 8β  are reported in Table 6.25. The values of oγ  and 

max)( 8β  thus obtained were normalized with respect to the respective values of oγ  and max)( 8β  

of model 9 (reference model) and the resulting normalized values of oγ  and max)( 8β , denoted 

by 3λ  and 3γ  respectively, are also given in Table 6.26. Figure 6-55(a) show a plot of 3λ  with 

respect to 3β . A power series function was fit to this curve and the following expression for 

)( 33 βλ was obtained: 

 

[6.37]            8860
333 2090 ..)( −= ββλ  for =3β 0.02 to 0.30 

 
Similarly, Figure 6-55(b) shows the plot of 3γ  with respect to 3β . A power series function was fit 

to this curve and the following expression for )( 33 βγ was obtained: 
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[6.38]              9670

333 1780 ..)( −= ββγ  for =3β 0.02 to 0.30 

 

6.6.4.4 Effect of Parameter 5β  on the Confining Behaviour of Solid Collars 

 

Table 6.27 shows the details of the finite element models to study the effect of variation of 5β  

(Range: 0.001476 to 0.00344) (due to varying yf ) on the confining behaviour of solid collars 

while keeping the other input parameters at the following constant values, which are same as 

those for the reference model: 

 
• =1β 0.020833 
 
• =2β 0.001302 
 
• =3β 0.166667 
 
• =′5β 0.002288 

 

Based on the analyses of these models, the curves relating parameters 7β  and 8β  are shown in 

Figure 6-56. A study of these curves shows that the initial parts of these curves overlap each 

other but the second parts are affected by the change of yf . Equation 6-4 was fit to all these 

curves and the resulting values of oγ  and ( )
max8β  are given in Table 6.28. These values of oγ  

and ( )
max8β  were then normalized with respect to the values of oγ  and ( )

max8β  of the reference 

model. The normalized values of oγ  and ( )
max8β , denoted by 5γ  and 5λ  respectively, are also 

given in Table 6.28. 

 

The values of 5λ  are plotted with respect to 5β  and the resulting curve is shown in Figure 6-57. 

A linear function was fit to this curve by setting the y-intercept equal to zero, resulting in the 

following expression for )( 55 βλ : 

 

[6.39] 555 435ββλ =)(  for =5β 0.001476 to 0.003444 
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The values of oγ  remain essentially unaffected by changing 5β ; therefore, the values of 5γ  

become 1.00 for all these curves, resulting in the following expression for )( 55 βγ : 

 

[6.40] 00155 .=)(βγ  

 

6.6.4.5 Effect of Parameter 5β ′  on the Confining Behaviour of Solid Collars 

 

Table 6.29 summaries the details of the models used to study the effect of variation of sE  (i.e., 

variation in 5β ′ ) on the confining behaviour of collars. Model 3 in this table is the reference 

model. The parameter 5β ′  was varied from 0.00177 to 0.00266, keeping the other input 

parameters ( 1β , 2β , 3β , 5β , and 6β ) at the following constant values, which are same as 

those for the reference model: 

 
• =1β 0.020833 
 
• =2β 0.001302 
 
• =3β 0.166666 

 
• =5β 0.002288 

 
• =6β 11.00 

 

Figure 6-58 shows the relationship between 7β  and 8β  for different values of 5β ′ . A study of 

these curves shows that the variation in sE  affects essentially the initial slope, oγ , of these 

curves, without affecting the second parts of the curves. Equation 6-4 was fit to these curves and 

the resulting values of max)( 8β  and oγ  are listed in Table 6.30. These values of max)( 8β  and oγ  

were normalized with respect to the values of max)( 8β  and oγ , respectively, of the reference 

model (model 3). The normalized values of max)( 8β and oγ , denoted by 5λ′  and 5γ ′  respectively, 

are also listed in this table. As the so-called peaks of these curves are not affected significantly 

by a change in 5β ′ , the values of 5λ′  for all these curves can be set to 1.00, resulting in the 

following expression for )( 55 βλ′ : 
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[6.41]   155 =′ )( βλ .0 

 

The values of 5γ ′  are plotted with respect to 5β ′  in Figure 6-59. A power series function was fit to 

this curve and the following expression was obtained for )( 55 βγ ′′ : 

 

 [6.42]        800
555 0.0077 .)( −′=′′ ββγ  for =′5β 0.00177 to 0.00266 

 

6.6.4.6 Effect of Parameter 6β  on the Confining Behaviour of Solid Collars 

 

Table 6.31 gives the details of the finite element models used to study the effect of a change in 

the value of n from the function representing the material curve on the confining behaviour of 

collars.. Model 2 in this table is the reference. In these models, the value of 6β  is varied from 10 

to 20 and the other parameters are set at the following at the following constant values, which 

are same as those for the reference model: 

 
• =1β 0.020833 
 
• =2β 0.001302 
 
• =3β 0.166667 

 
• =5β 0.002288 

 
• =′5β 0.002288 

 
Figure 6-60 shows the relationship between 7β  and 8β  for different values of 6β . The variation 

of 6β  affects essentially the second parts of the curves, without affecting the initial slope, oγ , of 

the curve. Equation 6-4 was fit to all these curves and the resulting values of oγ  and ( )
max8β  are 

given in Table 6-32. These values of oγ  and ( )
max8β  were normalized with respect to the values 

of oγ  and ( )
max8β  of the reference model. The normalized values of oγ  and ( )

max8β , denoted by 

6γ  and 6λ  respectively, are also given in Table 6-32. Figure 6-61 shows the plot of 6λ  versus 

6β . A power series function was fit to this curve with the help of regression, resulting in the 

following expression for )( 66 βλ : 
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[6.43]         170
666 1.50 .)( −= ββλ  for =6β 10.00 to 20.00 

 

The values of 6γ  are constant with respect to 6β  which leads to the following expression for 

)( 66 βγ : 

 

[6.44]          00166 .=)(βγ  

 

6.6.4.7 Effect of Collar Smearing on the Confining Behaviour of Solid 
Collars 
 
Table 6-33 shows the details of finite element models used to study the effect of collar smearing 

on the confining behaviour. Model 4 in this table is the reference model. All of these models are 

equivalent and should give the same relationship between output parameters 7β  and 8β . But in 

the present study, a slight reduction in confining pressure has been observed due to collars 

smearing. The models in Table 6-33 show a variation in 3β  from 0.0208 to 0.250, accompanied 

by concomitant variations in parameter 1β  from 2.5417x10-3 to 3.125x10-2 and parameter 

2β from 1.5885x10-4 to 1.9531x10-3 such that the models remain equivalent. The other input 

parameters of these models were kept at the following constant values, which are same as those 

for the reference model: 

 
• =5β 0.002288 

 
• =′5β 0.002288 

 
• =6β 11.00 

 
The relationships between 7β  and 8β  for all these models are given in Figure 6-62. Collar 

smearing only affects the so-called peak values of these curves, without affecting their initial 

slopes significantly. The effect of smearing can be related to any one of the three input 

parameters such as 1β , 2β , and 3β  because of equivalency in their variations. In the present 

study, the effect of smearing on the output behavioural curves of the collars is related to 3β . 

Equation 6.4 was fit to these curves and the corresponding values of oγ  and max)( 8β  are given 

in Table 6.34. These values of oγ  and max)( 8β  are normalized with respect to the respective to 

values of oγ  and max)( 8β  of reference model (model 4).The normalized values of max)( 8β  and 
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oγ , denoted by sλ  and sγ , have also been given in Table 6.34. The values of sλ  are plotted 

with respect to 3β  and the resulting curve is shown in Figure 6-63. A power series function was 

fit to this curve, resulting in the following expression for )( 3βλs : 

 

 [6.45]            05250
33 0971 ..=)( ββλs  for =3β 0.020833 to 0.25 

 

Table 6.34 shows that the values of sγ  for all the models are 1.00, which leads to the following 

relation for )( 3βγs : 

 

[6.46]               1.003 =)(βγs  

 

The correction for smearing can be applied to the so-called peak values of the behavioural 

curves of the collars. If the 3β  parameters for the actual and smeared models are denoted by 

3β ′  and 3β , respectively, a factor sa is defined to account for the effect of smearing on the peak 

value of the confining behaviour (using Equation 6.45): 

 

[6.47]               05250

3

3 .
s )(a

β
β ′

=  

 

The value of this factor will be greater than 1 if the spacing of the collars in the actual column is 

bigger than that of the smeared model, or vice versa. This factor may not be used very often for 

solid collars, because the prediction equations for solid collars were developed over a range that 

covers almost all the practically occurring solid collars. 

 

6.6.4.8 Expressions for max)( 8β and oγ  for Solid Collars 

 

The expression for ( )
max8β  can be obtained by substituting the values of )( 11 βλ , )( 22 βλ , 

)( 33 βλ , )( 55 βλ , )( 55 βλ ′′ , and )( 66 βλ  into Equation 6-27, and adding the smearing correction 

factor, sa . As discussed previously, the ranges of 1β  and 2β  were so wide that single and 

satisfactory expressions could not be obtained for these ranges. Therefore, both of these ranges 

were split into smaller ranges and separate functions were fit to the curves over each short 
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range. Hence, four expressions for ( )
max8β  are required to cover the full ranges of 1β  and 2β . 

The resulting expressions are given below: 

 

For =1β 0.004 to 0.024 and =2β 0.000096 to 0.00288 
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For =1β 0.024 to 0.056 and =2β 0.00288 to 0.0192 
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For =1β 0.004 to 0.024 and =2β 0.00288 to 0.0192 
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For =1β 0.024 to 0.056 and =2β 0.000096 to 0.00288 

 

[6.48d]                  170
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Similarly, the expression for oγ  can be obtained by substituting the expressions for )( 11 βγ , 

)( 22 βγ , )( 33 βγ , )( 55 βγ , )( 55 βγ ′′ , and )( 66 βγ into Equation 6.28.  The ranges of 1β  and 2β  

were split into two short ranges and the following four expressions are obtained to predict the 

values of oγ : 

 

For =1β 0.004 to 0.024 and =2β 0.000096 to 0.00288 
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For =1β 0.024 to 0.056 and =2β 0.00288 to 0.0192 

 

[6.49b]                    80.0
5

967.0
3
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For =1β 0.004 to 0.024 and =2β 0.00288 to 0.0192 
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γ
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For =1β 0.024 to 0.056 and =2β 0.000096 to 0.00288 

 

[6.49d]                 80.0
5
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γ
′

=o  

 

As discussed for hollow collars, simplifications of Equations 6.48 and 6.49 are possible. 

However, these equations are not difficult to evaluate and the verification study presented in the 

next section utilizes these equations as presented. 

 

6.6.4.9 Verification of the Proposed Model for Solid Collars 
 
In this section, the proposed empirical confinement model is verified with the help of 10 case 

studies. For verification purposes, columns with various cross-sectional dimensions have been 

used, whilst the equations of the proposed model were developed based on the results of 

collared columns of 500x500 mm in cross-section. Table 6.35 shows the details of all the finite 

element models used for this purpose. The results of these models in terms of confinement 

stress vs. lateral strain, as well as the associated curves using the proposed model, are depicted 

in Figures 6-64 through 6-73. The corresponding values of R2 are given in Table 6.36, showing 

that very good agreement exists between the finite element results and those of the proposed 

model. The details of one of the case studies (Case 5) is given below. 

 
The column in Case 5 is 400x400 mm in cross-section and confined by solid steel collars of 

50 mm width (parallel to column axis) and 85 mm depth, spaced at 100 mm on centres. The yield 
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stress, yf , and modulus of elasticity, sE , of the confining steel are 520 MPa and 202 000 MPa, 

respectively. The values of non-dimensional parameters for this model are calculated to be: 

 
• =1β 0.0265625 
 
• =2β 0.0011995 
 
• =3β 0.250 

 
• =5β 0.0025584 

 
• =′5β 0.0023019 

 
• =6β 12.00000 

 
Equation 6.48(d) was used to calculate the value of max)( 8β  and Equation 6.49(d) was used to 

calculate the value of oγ : 

 

• =)( max8β 0.0003994 

• =oγ 0.08981 

 

These values of max)( 8β  and oγ  can be substituted in Equation 6.4 to determine the relationship 

between 8β  and 7β , which can be converted to confinement stress vs. lateral strain by 

multiplying the values of 8β  by srefE , where =srefE  203 250 MPa. 

 

The resulting curve is shown in Figure 6-68, along with the curve generated directly using finite 

element analysis. These curves are compared using the coefficient of multiple determination, R2, 

given in Table 6.36. The values of R2 for this curve up to lateral strains of 0.06, 0.05, 0.04, and 

0.03 are 0.9960; 0.9974; 0.9975; and 0.9970; respectively. From these values of R2, one can 

conclude that the two curves show very good agreement, validating the proposed model for the 

confining behaviour of solid collars. 

 

6.7 Comparison of Equations for HSS and Solid Collars 
 

It is of interest to compare the equations for predicting the behaviour of HSS and solid collars. As 

one might expect, the equations related to the geometry of the collared columns are different for 
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HSS and solid collars. However, the equations for the behaviour of both HSS and solid collars 

based on the material properties of the confining steel are the same. For example, Equation 6.16 

is the same as Equation 6.39; Equation 6.19 is the same as Equation 6.42; and Equation 6.20 is 

the same as Equation 6.43. Moreover, the remaining equations based on material properties 

(Equations 6.17, 6.18, 6.21, 6.40, 6.41, and 6.44) show no dependence on the respective non-

dimensional parameters. 

 

To explain the apparent lack of dependence on the cross-sectional shape of the various material-

based parameters for predicting the confining pressure vs. lateral strain behaviour of the collars, 

it is helpful to consider each case separately. Consider the case of varying sE  only. The initial 

slope of the confining pressure vs. lateral strain curve is dependent only on the elastic collar 

stiffness. Furthermore, both the axial and flexural stiffnesses of the collars are linearly related to 

sE  (i.e., proportional to sE A or sE I, respectively). Therefore, increasing sE  by a specific 

amount will increase the initial slope of the confining pressure vs. lateral strain curve by an 

amount that does not depend on the shape of the cross-section. As a result, the expression for 

)( 55 βγ ′′  does not depend on cross-sectional shape. 

 

It is interesting to note also that an increase in sE  does not result in an equal increase 

(proportionally) in the initial slope of the confining pressure vs. lateral strain curve because only 

the average values are used in establishing this curve. This phenomenon occurs because the 

stress distribution on the collar sides actually depends on the flexural stiffness of the collars 

themselves, which is clearly affected by a change in sE . Consequently, the deflected shapes of 

two collars with different flexural stiffnesses are different at the same average lateral strain, 

which affects the resulting average pressure. However, this effect is relatively small since the 

axial stresses are dominant in the initial part of the curve. 

 

Consider now the case of varying yf  only. In assessing the effect on the "peak" of the confining 

pressure vs. lateral strain curve, it can be assumed that yielding in the collar is extensive under a 

combination of axial force and bending moment. The confining pressure arises due to the axial 

force, developed in the collar though "membrane" action, and the bending moment, developed 

through "bulging" between the column corners. The near-fully plastic stress distribution at the 

peak can be resolved into an axial force and bending moment combination. Neglecting the small 

elastic zone, by increasing the yield stress the axial force and bending moments both increase by 

the same amount (proportionally), regardless of the cross-sectional shape. Therefore, the 
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expression for )( 55 βλ  does not depend on cross-sectional shape. Similar arguments can be 

made for the case of the material parameter n. 

 

6.8 Summary and Conclusions 
 
A confinement model for use with concrete columns confined with collars having significant 

flexural stiffness has been proposed in Chapter 5. The proposed model requires as input the 

confining pressure vs. lateral strain curve, which is primarily a function of the behaviour of the 

collar alone. One method of obtaining these curves is to conduct finite element analyses of 

detailed models. However, to eliminate the need for finite element modelling, empirical models 

have been developed in terms of non-dimensional parameters for predicting the confining 

behaviour of collars fabricated from steel hollow structural sections (HSS) and solid steel 

sections for square concrete columns. In both cases, the corner connections of the collars are 

assumed rigid. 

 

In order to eliminate the scale effect, non-dimensional parameters for the confining behaviour of 

HSS collars and solid collars were identified and validated. Then, a comprehensive parametric 

study was performed in terms of these parameters using finite element models. Based on the 

analytical results, non-dimensional empirical equations were developed through nonlinear 

regression for predicting the confining behaviour of collars in terms of the non-dimensional 

parameters. 

 

The proposed empirical models for the confining behaviour of HSS and solid collars were verified 

with the help of several case studies, including physical tests conducted as part of this research 

program. The results predicted by the proposed empirical models were found to correlate very 

well with the finite element and test results. Therefore, the empirical models represent a viable 

alternate to the more onerous finite element analyses for predicting confining pressure vs. lateral 

strain curves. 
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Table 6.1: Detail of finite element models to study the effect of scale on the confining behaviour of HSS collars 
 

G
ro

up
 

 
 

No. 
 
 
 

columnh  
 

(mm) 
 

columnA  
 

(mm2) 

columnI  
 

(mm4) 

collarA  
 

(mm2) 

collarI  
 

(mm4) 

collarh  

(mm) 
 

s  
 

(mm) 
 

yf  
 

(MPa) 
 

sE  
 

(MPa) 
 

1 300 90 000 0.675x109 0.3285x103 0.2453x106 75 22.5 465 203 250 
2 400 160 000 2.133x109 0.5840x103 0.7752x106 100 30.0 465 203 250 
3 500 250 000 5.208x109 0.9125x103 1.8930x106 125 37.5 465 203 250 
4 600 360 000 10.80x109 1.314x103 3.9240x106 150 45.0 465 203 250 
5 700 490 000 20.00x109 1.789x103 7.2700x106 175 52.5 465 203 250 

1 

6 800 640 000 34.13x109 2.336x103 12.400x106 200 60.0 465 203 250 
1 300 90 000 0.675x109 0.7181x103 0.5059x106 75 60.0 465 203 250 
2 400 160 000 2.133x109 1.276x103 1.5990x106 100 80.0 465 203 250 
3 500 250 000 5.208x109 1.994x103 3.9040x106 125 100.0 465 203 250 

2 

4 600 360 000 10.80x109 2.872x103 8.0950x106 150 120.0 465 203 250 
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Table 6.2: Detail of finite element models to study the effect of variation of 1β  on the confining behaviour of HSS collars 

No. 

 

columnh  

(mm) 

columnA  

(mm2) 

columnI  

(mm4) 

collarA  

(mm2) 

collarI  

(mm4) 

collarh  
 

(mm) 

s

(mm) 

 

1β  
 
 

 

0γ  

 

max)( 8β  

1 400 160 000 2.133x109 419.1 775.2 100 30 2.6196x10-3 0.0465 0.0001605 
2 400 160 000 2.133x109 456.9 775.2 100 30 2.8557x10-3 0.0500 0.0001719 
3 400 160 000 2.133x109 488.5 775.2 100 30 3.0532x10-3 0.0530 0.0001809 
4 400 160 000 2.133x109 520.2 775.2 100 30 3.2515x10-3 0.0550 0.0001907 
5 400 160 000 2.133x109 552.0 775.2 100 30 3.4504x10-3 0.0571 0.0001999 
6 400 160 000 2.133x109 584.0 775.2 100 30 3.6500x10-3 0.0587 0.0002105 
7 400 160 000 2.133x109 616.1 775.2 100 30 3.8504x10-3 0.0601 0.0002220 
8 400 160 000 2.133x109 648.2 775.2 100 30 4.0515x10-3 0.0615 0.0002330 
9 400 160 000 2.133x109 680.5 775.2 100 30 4.2534x10-3 0.0630 0.0002440 
10 400 160 000 2.133x109 778.1 775.2 100 30 4.8634x10-3 0.0665 0.0002700 
11 400 160 000 2.133x109 843.8 775.2 100 30 5.2742x10-3 0.0694 0.000284 

Note: Model No. 6 is the reference model 
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Table 6.3: Detail of finite element models to study the effect of variation of 2β  on the confining behaviour of HSS collars 

No. 

 

columnh  

(mm) 

columnA  

(mm2) 

columnI  

(mm4) 

collarA  

(mm2) 

collarI  

(mm4) 

collarh  

(mm) 

s  

(mm) 

2β  
 
 

0γ  ( )
max8β  

1 400 160 000 2.133x109 584 530.69x103 100 30 248.76x10-6 0.0497 213.0x10-6 
2 400 160 000 2.133x109 584 581.73x103 100 30 272.69x10-6 0.0521 212.8x10-6 
3 400 160 000 2.133x109 584 632.40x103 100 30 296.44x10-6 0.0539 212.7x10-6 
4 400 160 000 2.133x109 584 682.70x103 100 30 320.02x10-6 0.0554 212.5x10-6 
5 400 160 000 2.133x109 584 732.66x103 100 30 343.43x10-6 0.0565 212.6x10-6 
6 400 160 000 2.133x109 584 775.18x103 100 30 363.37x10-6 0.0587 210.0x10-6 
7 400 160 000 2.133x109 584 859.44x103 100 30 402.86x10-6 0.0595 210.0x10-6 
8 400 160 000 2.133x109 584 942.64x103 100 30 441.86x10-6 0.0616 208.0x10-6 
9 400 160 000 2.133x109 584 1024.8x103 100 30 480.36x10-6 0.0650 207.8x10-6 
10 400 160 000 2.133x109 584 1105.9x103 100 30 518.37x10-6 0.0660 207.6x10-6 
11 400 160 000 2.133x109 584 1185.9x103 100 30 555.88x10-6 0.0675 2.077x10-6 

Note: Model No. 6 is the reference model 
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Table 6.4: Relationship between: (a) 2γ  and 2β ; and (b) 2λ  and 2β  for HSS collars 

No. 2β  oγ  ( )
max8β  2γ  2λ  

1 248.76x10-6 0.0497 213.0x10-6 0.8467 1.0143 

2 272.69x10-6 0.0521 212.8x10-6 0.8876 1.0133 

3 296.44x10-6 0.0539 212.7x10-6 0.9182 1.0130 

4 320.02x10-6 0.0554 212.5x10-6 0.9438 1.0119 

5 343.43x10-6 0.0565 212.6x10-6 0.9625 1.0124 

6 363.37x10-6 0.0587 210.0x10-6 1.0000 1.0000 

7 402.86x10-6 0.0595 210.0x10-6 1.0136 1.0000 

8 441.86x10-6 0.0616 208.0x10-6 1.0494 0.9905 

9 480.36x10-6 0.0650 207.8x10-6 1.1073 0.9895 

10 518.37x10-6 0.0660 207.6x10-6 1.1244 0.9886 

11 555.88x10-6 0.0675 207.7x10-6 1.1499 0.9890 

Note: Model No. 6 is the reference model 
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Table 6.5: Detail of finite element models to study the effect of variation of 3β  on the confining behaviour of HSS collars 

No. 

 

columnh  

(mm) 

columnA  

(mm2) 

columnI  

(mm4) 

collarA  

(mm2) 

collarI  

(mm4) 

collarh  

(mm) 

s  

(mm) 

3β  
 
 

oγ  ( )
max8β  

1 400 160 000 2.133x109 584 775 180 100 2.5 0.00625 0.7300 2070.0x10-6 
2 400 160 000 2.133x109 584 775 180 100 5.0 0.0125 0.3550 1037.0x10-6 
3 400 160 000 2.133x109 584 775 180 100 7.5 0.0188 0.2300 702.0x10-6 
4 400 160 000 2.133x109 584 775 180 100 10.0 0.0250 0.1730 533.9x10-6 
5 400 160 000 2.133x109 584 775 180 100 12.5 0.0313 0.1350 437.5x10-6 
6 400 160 000 2.133x109 584 775 180 100 15.0 0.0375 0.1130 373.0x10-6 
7 400 160 000 2.133x109 584 775 180 100 17.5 0.0438 0.0970 327.5x10-6 
8 400 160 000 2.133x109 584 775 180 100 20.0 0.0500 0.0850 292.0x10-6 
9 400 160 000 2.133x109 584 775 180 100 25.0 0.0625 0.0675 244.0x10-6 
10 400 160 000 2.133x109 584 775 180 100 30.0 0.0750 0.0587 210.0x10-6 
11 400 160 000 2.133x109 584 775 180 100 35.0 0.0875 0.0517 185.0x10-6 
12 400 160 000 2.133x109 584 775 180 100 40.0 0.1000 0.0450 167.5x10-6 
13 400 160 000 2.133x109 584 775 180 100 45.0 0.1125 0.0414 153.0x10-6 
14 400 160 000 2.133x109 584 775 180 100 50.0 0.1250 0.0385 141.7x10-6 
15 400 160 000 2.133x109 584 775 180 100 55.0 0.1375 0.0358 132.0x10-6 
16 400 160 000 2.133x109 584 775 180 100 60.0 0.1500 0.0334 123.5x10-6 
17 400 160 000 2.133x109 584 775 180 100 65.0 0.1625 0.0319 118.0x10-6 
18 400 160 000 2.133x109 584 775 180 100 70.0 0.1750 0.0289 110.5x10-6 
19 400 160 000 2.133x109 584 775 180 100 75.0 0.1875 0.0275 105.0x10-6 
20 400 160 000 2.133x109 584 775 180 100 80.0 0.2000 0.0260 99.00x10-6 
21 400 160 000 2.133x109 584 775 180 100 85.0 0.2125 0.0260 95.00x10-6 

Note: Model No. 10 is the reference model 
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Table 6.6: Relationship between: (a) 3λ  and 3β ; and (b) 3γ  and 3β  for solid collars 

No. 3β  oγ  ( )
max8β  3γ  3λ  

1 0.00625 0.7300 2070.0x10-6 12.4361 9.8571 
2 0.0125 0.3550 1037.0x10-6 6.04770 4.9381 
3 0.0188 0.2300 702.0x10-6 3.9182 3.3428 
4 0.0250 0.1730 533.9x10-6 2.9472 2.5424 
5 0.0313 0.1350 437.5x10-6 2.2998 2.0833 
6 0.0375 0.1130 373.0x10-6 1.9250 1.7762 
7 0.0438 0.0970 327.5x10-6 1.6525 1.5595 
8 0.0500 0.0850 292.0x10-6 1.4480 1.3905 
9 0.0625 0.0675 244.0x10-6 1.1499 1.1619 
10 0.0750 0.0587 210.0x10-6 1.0000 1.0000 
11 0.0875 0.0517 185.0x10-6 0.8807 0.8809 
12 0.1000 0.0450 167.5x10-6 0.7666 0.7976 
13 0.1125 0.0414 153.0x10-6 0.7053 0.7286 
14 0.1250 0.0385 141.7x10-6 0.6559 0.6747 
15 0.1375 0.0358 132.0x10-6 0.6099 0.6286 
16 0.1500 0.0334 123.5x10-6 0.5690 0.5881 
17 0.1625 0.0319 118.0x10-6 0.5431 0.5619 
18 0.1750 0.0289 110.5x10-6 0.4923 0.5262 
19 0.1875 0.0275 105.0x10-6 0.4685 0.50000 

20 0.2000 0.0260 99.00x10-6 0.4429 0.4714 

21 0.2125 0.0260 95.00x10-6 0.4429 0.4524 

Note: Model No. 10 is the reference model 
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Table 6.7: Detail of finite element models to study the effect of variation of 4β  on the confining behaviour of HSS collars 

No. 

 

columnh  

(mm) 

columnA  

(mm2) 

columnI  

(mm4) 

collarA  

(mm2) 

collarI  

(mm4) 

collarh  

(mm) 

s

(mm) 

4β  
 
 

oγ  ( )
max8β  

1 400 160 000 2.133x109 584 775 180 80 30 0.200 0.0587 202.0x10-6

2 400 160 000 2.133x109 584 775 180 85 30 0.213 0.0587 204.0x10-6

3 400 160 000 2.133x109 584 775 180 90 30 0.225 0.0587 206.0x10-6

4 400 160 000 2.133x109 584 775 180 95 30 0.238 0.0587 208.0x10-6

5 400 160 000 2.133x109 584 775 180 100 30 0.250 0.0587 212.0x10-6

6 400 160 000 2.133x109 584 775 180 105 30 0.263 0.0587 214.2x10-6

7 400 160 000 2.133x109 584 775 180 110 30 0.275 0.0587 216.0x10-6

Note: Model No. 5 is the reference model 
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Table 6.8: Relationship between: (a) 4γ  and 4β ; and (b) 4λ  and 4β  for HSS collars 

No. 4β  oγ  ( )
max8β  4γ  4λ  

1 0.200 0.0587 202.0x10-6 1 0.9619 

2 0.213 0.0587 204.0x10-6 1 0.9714 

3 0.225 0.0587 206.0x10-6 1 0.9810 

4 0.238 0.0587 208.0x10-6 1 0.9905 

5 0.250 0.0587 212.0x10-6 1 1.0000 

6 0.263 0.0587 214.2x10-6 1 1.0200 

7 0.275 0.0587 216.0x10-6 1 1.0286 
Note: Model No. 5 is the reference model 
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Table 6.9: Detail of finite element models to study the effect of variation of yf and sE  keeping 5β constant on the confining 
behaviour of HSS collars 

No. 

 

columnh
 

(mm) 

columnA  

(mm2) 

columnI  

(mm4) 

collarA  

(mm2) 

collarI  

(mm4) 

columnh  
 

(mm) 

s

(mm) 

yf  
 

(MPa) 

sE  
 

(MPa) 

5β  
 

1 400 160 000 2.133x109 584 775 180 100 30 400 174 838 2.2878x10-3 

2 400 160 000 2.133x109 584 775 180 100 30 450 196 693 2.2878x10-3 

3 400 160 000 2.133x109 584 775 180 100 30 465 203 250 2.2878x10-3 

4 400 160 000 2.133x109 584 775 180 100 30 500 218 548 2.2878x10-3 

5 400 160 000 2.133x109 584 775 180 100 30 550 240 403 2.2878x10-3 

6 400 160 000 2.133x109 584 775 180 100 30 600 262 258 2.2878x10-3 

Note: Model No. 3 is the reference model 
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Table 6.10: Detail of finite element models to study the effect of variation of yf , keeping sE and n constant on the 
confining behaviour of HSS collars 

No. 

 

columnh  

(mm) 

columnA  

(mm2) 

columnI  

(mm4) 

collarA  

(mm2) 

collarI  

(mm4) 

columnh  
 

(mm) 

s

(mm) 

yf  
 

(MPa

sE  
 

(MPa) 

5β  
 

1 400 160 000 2.133x109 584 775 180 100 30 400 203 250 1.968x10-3 

2 400 160 000 2.133x109 584 775 180 100 30 450 203 250 2.214x10-3 

3 400 160 000 2.133x109 584 775 180 100 30 465 203 250 2.288x10-3 

4 400 160 000 2.133x109 584 775 180 100 30 500 203 250 2.460x10-3 

5 400 160 000 2.133x109 584 775 180 100 30 550 203 250 2.706x10-3 

6 400 160 000 2.133x109 584 775 180 100 30 600 203 250 2.952x10-3 

Note: Model No. 3 is the reference model 
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Table 6.11: Relationship between:  (a) 5γ  and 5β ; and (b) 5λ  and 5β  for HSS collars 

No. 5β  oγ  ( )
max8β  5γ  5λ  

1 1.9680x10-3 0.0587 183.0x10-6 0.8714 1 

2 2.2140x10-3 0.0587 202.5x10-6 0.9643 1 

3 2.2878x10-3 0.0587 210.0x10-6 1.0000 1 

4 2.4600x10-3 0.0587 225.5x10-6 1.0738 1 

5 2.7060x10-3 0.0587 246.0x10-6 1.1714 1 

6 2.9520x10-3 0.0587 267.0x10-6 1.2714 1 

Note: Model No. 3 is the reference model 
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Table 6.12: Detail of finite element models to study the effect of variation of sE , keeping yf  and n constant on the confining 
behaviour of HSS collars 

No. 

 

columnh  

(mm) 

columnA  

(mm2) 

columnI  

(mm4) 

collarA  

(mm2) 

collarI  

(mm4) 

columnh  
 

(mm) 

s  

(mm) 

yf  
 

(MPa) 

sE  
 

(MPa) 

5β ′  
 

1 400 160 000 2.133x109 584 775 180 100 30 465 174 838 2.6596x10-3 
2 400 160 000 2.133x109 584 775 180 100 30 465 196 693 2.3641x10-3 
3 400 160 000 2.133x109 584 775 180 100 30 465 203 250 2.2878x10-3 
4 400 160 000 2.133x109 584 775 180 100 30 465 218 548 2.1277x10-3 
5 400 160 000 2.133x109 584 775 180 100 30 465 240 403 1.9343x10-3 
6 400 160 000 2.133x109 584 775 180 100 30 465 262 258 1.7731x10-3 

Note: Model No. 3 is the reference model 
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Table 6.13: Relationship between: (a) 5γ ′  and 5β ′ ; and (b) 5λ′  and 5β ′  for HSS collars 

No. 5β ′  oγ  ( )
max8β  

 

5γ ′  
 

5λ′  

1 2.6596x10-3 0.0514 213.0x10-6 0.8756 1.0143 

2 2.3641x10-3 0.0565 211.5x10-6 0.9625 1.0071 

3 2.2878x10-3 0.0587 210.0x10-6 1.0000 1.0000 

4 2.1277x10-3 0.0617 208.0x10-6 1.0511 0.9904 

5 1.9343x10-3 0.0669 207.0x10-6 1.1397 0.9857 

6 1.7731x10-3 0.0720 206.0x10-6 1.2266 0.9809 

Note: Model No. 3 is the reference model 
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Table 6.14: Detail of finite element models to study the effect of variation of 6β  on the confining behaviour of 
HSS collars 

No. 

 

columnh  

(mm) 

columnA  

(mm2) 

columnI  

(mm4) 

collarA  

(mm2) 

collarI  

(mm4) 

columnh  
 

(mm) 

s

(mm) 

yf  
 

(MPa) 

sE  
 

(MPa) 

6β  
 

1 400 160 000 2.133x109 584 775 180 100 30 465 203 250 10 
2 400 160 000 2.133x109 584 775 180 100 30 465 203 250 11 
3 400 160 000 2.133x109 584 775 180 100 30 465 203 250 12 
4 400 160 000 2.133x109 584 775 180 100 30 465 203 250 14 
5 400 160 000 2.133x109 584 775 180 100 30 465 203 250 16 
6 400 160 000 2.133x109 584 775 180 100 30 465 203 250 18 
7 400 160 000 2.133x109 584 775 180 100 30 465 203 250 20 

Note: Model No. 2 is the reference model 
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Table 6.15: Relationship between: (a) 6γ  and 6β ; and (b) 6λ  and 6β  for HSS collars 

No. 6β  oγ  ( )
max8β  

 

6γ  
 

6λ  

1 10 0.0587 215.0x10-6 1 1.0238 

2 11 0.0587 210.0x10-6 1 1.0000 

3 12 0.0587 206.0x10-6 1 0.9810 

4 14 0.0587 200.0x10-6 1 0.9524 

5 16 0.0587 194.5x10-6 1 0.9262 

6 18 0.0587 192.5x10-6 1 0.9167 

7 20 0.0587 189.0x10-6 1 0.9000 

Note: Model No. 2 is the reference model 
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Table 6.16: Detail of finite element models to study the effect of smearing on the confining behaviour of HSS collars 

No. 

 

columnh
 

(mm) 

columnA  

(mm2) 

columnI  

(mm4) 

collarA  

(mm2) 

collarI  

(mm4) 

s

(mm) 

1β  
 
 

2β   
 
 

3β   
 

1 400 160 000 2.133x109 146 193.79x103 7.5 0.9125x10-3 90.841x10-6 18.750x10-3 

2 400 160 000 2.133x109 292 387.59x103 15.0 1.825x10-3 181.68x10-6 37.500x10-3 

3 400 160 000 2.133x109 438 581.38x103 22.5 2.738x10-3 272.52x10-6 56.250x10-3 

4 400 160 000 2.133x109 584 775.18x103 30.0 3.650x10-3 363.37x10-6 75.000x10-3 

5 400 160 000 2.133x109 730 968.97x103 37.5 4.563x10-3 454.21x10-6 93.750x10-3 

6 400 160 000 2.133x109 876 1162.8x103 45.0 5.475x10-3 545.05x10-6 112.50x10-3 

7 400 160 000 2.133x109 1022 1356.6x103 52.5 6.388x10-3 635.89x10-6 131.25x10-3 

8 400 160 000 2.133x109 1168 1550.4x103 60.0 7.300x10-3 726.73x10-6 150.00x10-3 

9 400 160 000 2.133x109 1460 1937.9x103 75.0 9.125x10-3 908.41x10-6 187.50x10-3 

10 400 160 000 2.133x109 1752 2325.5x103 90.0 1.095x10-3 1090.1x10-6 225.00x10-3 

11 400 160 000 2.133x109 2336 3100.7x103 120.0 14.60x10-3 1453.5x10-6 300.00x10-3 

Note: Model No. 4 is the reference model 
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Table 6.17: Relationship between: (a) sγ  and 3β ; and (b) sλ  and 3β  for HSS collars 

No. 3β  oγ  ( )
max8β  

 

sγ  
 

sλ  

1 0.01875 0.0587 188.0x10-6 1 0.8952 

2 0.03750 0.0587 200.0x10-6 1 0.9524 

3 0.05625 0.0587 207.0x10-6 1 0.9857 

4 0.07500 0.0587 210.0x10-6 1 1.0000 

5 0.09375 0.0587 213.0x10-6 1 1.0143 

6 0.11250 0.0587 214.5x10-6 1 1.0214 

7 0.13125 0.0587 216.0x10-6 1 1.0286 

8 0.15000 0.0587 217.0x10-6 1 1.0333 

9 0.18750 0.0587 219.0x10-6 1 1.0429 

10 0.22500 0.0587 220.5x10-6 1 1.0500 

11 0.30000 0.0587 221.1x10-6 1 1.0529 

Note: Model No. 4 is the reference model 
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Table 6.18: Detail of finite element models to check the proposed equations 

Case 

 

columnh  

(mm) 

collarb  

(mm) 

collarh  

(mm) 

wT  

(mm) 

fT  

(mm) 

s  

(mm) 

yf  
 

(MPa) 

sE  
 

(MPa) 

 
n 
 
 

1 300 25.5 51 3.175 6.35 61.00 465 203 250 11 

2 300 25.5 51 3.175 6.35 61.00 500 203 250 11 

3 300 17.0 51 2.117 6.35 40.67 465 203 250 11 

4 300 17.0 51 2.117 6.35 40.67 500 203 250 11 

5 300 25.5 51 3.175 6.35 61.00 465 196 693 11 

6 300 17.0 51 2.117 6.35 40.67 465 196 693 11 

7 300 25.5 51 3.175 6.35 61.00 400 200 000 11 

8 300 25.5 51 3.175 6.35 61.00 470 210 000 11 

9 300 25.5 76 3.175 6.35 61.00 465 203 250 11 

10 300 25.5 76 3.175 6.35 61.00 500 203 250 11 

11 300 8.5 76 1.058 6.35 20.33 465 203 250 11 

12 300 25.5 102 3.175 6.35 61.00 465 203 250 11 

13 300 25.5 102 3.175 6.35 61.00 500 203 250 11 

14 300 6.375 102 0.794 6.35 15.25 465 203 250 11 
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Table 6.19: Detail of equivalent models obtained after collar smearing in order to apply proposed equations for the 
confining of HSS collars 

Case 

 

columnh  

(mm) 

collarb  

(mm) 

collarh  

(mm) 

wT  

(mm) 

fT  

(mm) 

s  

(mm) 

yf  
 

(MPa) 

sE  
 

(MPa) 

 
n 
 
 

1 300 12.75 51 1.5875 6.35 30.50 465 203 250 11 

2 300 17.00 51 2.1167 6.35 40.66 500 203 250 11 

3 300 17.00 51 2.1167 6.35 40.66 465 203 250 11 

4 300 17.00 51 2.1167 6.35 40.66 500 203 250 11 

5 300 12.75 51 1.5875 6.35 30.50 465 196 693 11 

6 300 12.75 51 1.5875 6.35 30.50 465 196 693 11 

7 300 12.75 51 1.5875 6.35 30.50 400 200 000 11 

8 300 12.75 51 1.5875 6.35 30.50 470 210 000 11 

9 300 12.75 76 1.5875 6.35 30.50 465 203 250 11 

10 300 12.75 76 1.5875 6.35 30.50 500 203 250 11 

11 300 12.75 76 1.5875 6.35 30.50 465 203 250 11 

12 300 12.75 102 1.5875 6.35 30.50 465 203 250 11 

13 300 12.75 102 1.5875 6.35 30.50 500 203 250 11 

14 300 12.75 102 1.5875 6.35 30.50 465 203 250 11 
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Table 6.20: Coefficients of multiple determinations R2 up to various level of lateral strains for 

columns confined by HSS collars 
 

R2 
Cases 

0607 .=β  0507 .=β  0407 .=β  0307 .=β  

1 0.9967 0.9953 0.9958 0.9949 

2 0.9885 0.9883 0.9873 0.9854 

3 0.9742 0.9765 0.9774 0.9767 

4 0.9879 0.9878 0.9869 0.9850 

5 0.9962 0.9958 0.9952 0.9941 

6 0.9960 0.9957 0.9950 0.9939 

7 0.9741 0.9780 0.9803 0.9806 

8 0.9971 0.9968 0.9965 0.9961 

9 0.9813 0.9810 0.9820 0.9851 

10 0.9710 0.9721 0.9751 0.9809 

11 0.9819 0.9804 0.9798 0.9812 

12 0.9857 0.9842 0.9832 0.9832 

13 0.9833 0.9821 0.9818 0.9832 

14 0.9915 0.9911 0.9898 0.9891 
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Table 6.21: Detail of finite element models to study the effect of scale on the confining behaviour of solid collars 

 
No. 

 
 

columnh  
 

(mm) 
 

columnA  
 

(mm2) 

columnI  
 

(mm4) 

collarA  
 

(mm2) 

collarI  
 

(mm4) 

s  
 

(mm) 
 

yf  
 

(MPa) 

sE  
 

(MPa) 

1 300 90.00x103 0.675x109 1875 0.879x106 50.00 465 203 250 
2 350 122.5x103 1.251x109 2552 1.628x106 58.33 465 203 250 
3 400 160.0x103 2.133x109 3333 2.778x106 66.67 465 203 250 
4 450 202.5x103 3.417x109 4219 4.449x106 75.00 465 203 250 
5 500 250.0x103 5.208x109 5208 6.782x106 83.33 465 203 250 
6 550 302.5x103 7.626x109 6302 9.929x106 91.66 465 203 250 
7 600 360.0x103 10.80x109 7500 14.06x106 100.00 465 203 250 
8 650 422.5x103 14.88x109 8802 19.37x106 108.33 465 203 250 
9 700 490.0x103 20.01x109 10210 26.05x106 116.66 465 203 250 
10 750 562.5x103 26.37x109 11720 34.33x106 125.00 465 203 250 
11 800 640.0x103 34.13x109 13330 44.44x106 133.33 465 203 250 

Note: Model No. 5 is the reference model 
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Table 6.22: Detail of finite element models to study the effect of variation of 1β  on the confining behaviour of solid collars 

No. 

 

columnh  

(mm) 

columnA  

(mm2) 

columnI  

(mm4) 

collarA  

(mm2) 

collarI  

(mm4) 

s  

(mm) 

1β  
 
 

0γ  max)( 8β  

1 500 250 000 5.208x109 1000 6.782x106 83.33 0.004 0.042 130x10-6 
2 500 250 000 5.208x109 2000 6.782x106 83.33 0.008 0.064 235x10-6 
3 500 250 000 5.208x109 3000 6.782x106 83.33 0.012 0.085 315x10-6 
4 500 250 000 5.208x109 4000 6.782x106 83.33 0.016 0.103 378x10-6 
5 500 250 000 5.208x109 5000 6.782x106 83.33 0.020 0.117 439x10-6 
6 500 250 000 5.208x109 5208 6.782x106 83.33 0.02083 0.120 448x10-6 
7 500 250 000 5.208x109 6000 6.782x106 83.33 0.024 0.132 485x10-6 
8 500 250 000 5.208x109 7000 6.782x106 83.33 0.028 0.142 540x10-6 
9 500 250 000 5.208x109 8000 6.782x106 83.33 0.032 0.150 579x10-6 
10 500 250 000 5.208x109 9000 6.782x106 83.33 0.036 0.158 630x10-6 
11 500 250 000 5.208x109 10000 6.782x106 83.33 0.040 0.164 665x10-6 
12 500 250 000 5.208x109 11000 6.782x106 83.33 0.044 0.170 710x10-6 
13 500 250 000 5.208x109 12000 6.782x106 83.33 0.048 0.174 750x10-6 
14 500 250 000 5.208x109 13000 6.782x106 83.33 0.052 0.177 790x10-6 
15 500 250 000 5.208x109 14000 6.782x106 83.33 0.056 0.180 818x10-6 

Note: Model No. 6 is the reference model 
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Table 6.23: Detail of finite element models to study the effect of variation of 2β  on the confining behaviour of solid collars 

No. 

 

columnh  

(mm) 

columnA  

(mm2) 

columnI  

(mm4) 

collarA  

(mm2) 

collarI  

(mm4) 

s  

(mm) 

2β  
 
 

oγ  ( )
max8β  

1 500 250 000 5.208x109 5208 0.50x106 83.33 0.096x10-3 0.045 275.3x10-6 
2 500 250 000 5.208x109 5208 1.00x106 83.33 0.192x10-3 0.054 317.0x10-6 
3 500 250 000 5.208x109 5208 2.50x106 83.33 0.480x10-3 0.079 373.3x10-6 
4 500 250 000 5.208x109 5208 4.00x106 83.33 0.768x10-3 0.097 405.3x10-6 
5 500 250 000 5.208x109 5208 5.00x106 83.33 0.960x10-3 0.106 422.6x10-6 
6 500 250 000 5.208x109 5208 6.782x106 83.33 1.302x10-3 0.120 448.0x10-6 
7 500 250 000 5.208x109 5208 15.00x106 83.33 2.880x10-3 0.160 521.1x10-6 
8 500 250 000 5.208x109 5208 30.00x106 83.33 5.760x10-3 0.188 594.3x10-6 
9 500 250 000 5.208x109 5208 40.00x106 83.33 7.680x10-3 0.199 619.7x10-6 
10 500 250 000 5.208x109 5208 50.00x106 83.33 9.600x10-3 0.208 638.0x10-6 
11 500 250 000 5.208x109 5208 60.00x106 83.33 11.520x10-3 0.216 650.2x10-6 
12 500 250 000 5.208x109 5208 70.00x106 83.33 13.440x10-3 0.222 665.4x10-6 
13 500 250 000 5.208x109 5208 80.00x106 83.33 15.360x10-3 0.226 674.6x10-6 
14 500 250 000 5.208x109 5208 90.00x106 83.33 17.280x10-3 0.230 682.7x10-6 
15 500 250 000 5.208x109 5208 100.00x106 83.33 19.200x10-3 0.235 685.7x10-6 

Note: Model No. 6 is the reference model 
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Table 6.24: Relationship between: (a) 2γ  and 2β ; and (b) 2λ  and 2β  for solid collars 

No. 2β  oγ  ( )
max8β  2γ  2λ  

1 0.096x10-3 0.045 275.3x10-6 0.3750 0.6145 

2 0.192x10-3 0.054 317.0x10-6 0.4500 0.7075 

3 0.480x10-3 0.079 373.3x10-6 0.6542 0.8333 

4 0.768x10-3 0.097 405.3x10-6 0.8083 0.9048 

5 0.960x10-3 0.106 422.6x10-6 0.8833 0.9433 

6 1.302x10-3 0.120 448.0x10-6 1.0000 1.0000 

7 2.880x10-3 0.160 521.1x10-6 1.3333 1.1632 

8 5.760x10-3 0.188 594.3x10-6 1.5667 1.3265 

9 7.680x10-3 0.199 619.7x10-6 1.6583 1.3832 

10 9.600x10-3 0.208 638.0x10-6 1.7333 1.4240 

11 11.520x10-3 0.216 650.2x10-6 1.8017 1.4512 

12 13.440x10-3 0.222 665.4x10-6 1.8517 1.4853 

13 15.360x10-3 0.226 674.6x10-6 1.8833 1.5057 

14 17.280x10-3 0.230 682.7x10-6 1.9167 1.5238 

15 19.200x10-3 0.235 685.7x10-6 1.9583 1.5306 

Note: Model No. 6 is the reference model 
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Table 6.25: Detail of finite element models to study the effect of variation of 3β  on the confining behaviour of 
solid collars 

No. 

 

columnh  

(mm) 

columnA  

(mm2) 

columnI  

(mm4) 

collarA  

(mm2) 

collarI  

(mm4) 

s  

(mm) 

3β  
 
 

oγ  ( )
max8β  

1 500 250 000 5.208x109 5208 6.782x106 10.00 0.0200 0.950 3180x10-6 
2 500 250 000 5.208x109 5208 6.782x106 15.00 0.0300 0.630 2133x10-6 
3 500 250 000 5.208x109 5208 6.782x106 20.00 0.0400 0.480 1625x10-6 
4 500 250 000 5.208x109 5208 6.782x106 30.00 0.0600 0.320 1117x10-6 
5 500 250 000 5.208x109 5208 6.782x106 40.00 0.0800 0.240 848.3x10-6 
6 500 250 000 5.208x109 5208 6.782x106 50.00 0.1000 0.195 690.8x10-6 
7 500 250 000 5.208x109 5208 6.782x106 60.00 0.1200 0.169 584.1x10-6 
8 500 250 000 5.208x109 5208 6.782x106 70.00 0.1400 0.145 513.0x10-6 
9 500 250 000 5.208x109 5208 6.782x106 83.33 0.1667 0.120 448.0x10-6 
10 500 250 000 5.208x109 5208 6.782x106 90.00 0.1800 0.110 421.6x10-6 
11 500 250 000 5.208x109 5208 6.782x106 100.00 0.2000 0.099 391.1x10-6 
12 500 250 000 5.208x109 5208 6.782x106 110.00 0.2200 0.092 360.6x10-6 
13 500 250 000 5.208x109 5208 6.782x106 120.00 0.2400 0.086 338.3x10-6 
14 500 250 000 5.208x109 5208 6.782x106 130.00 0.2600 0.078 320.0x10-6 
15 500 250 000 5.208x109 5208 6.782x106 140.00 0.2800 0.075 300.7x10-6 
16 500 250 000 5.208x109 5208 6.782x106 150.00 0.3000 0.068 286.5x10-6 

Note: Model No. 9 is the reference model  
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Table 6.26: Relationship between: (a) 3γ  and 3β ; and (b) 3λ  and 3β  for solid collars 

No. 3β  oγ  ( )
max8β  3γ  3λ  

1 0.0200 0.950 3180x10-6 7.9167 7.0975 
2 0.0300 0.630 2133x10-6 5.2500 4.7619 
3 0.0400 0.480 1625x10-6 4.0000 3.6281 
4 0.0600 0.320 1117x10-6 2.6667 2.4943 
5 0.0800 0.240 848.3x10-6 2.0000 1.8934 
6 0.1000 0.195 690.8x10-6 1.6250 1.5419 
7 0.1200 0.169 584.1x10-6 1.4083 1.3039 
8 0.1400 0.145 513.0x10-6 1.2083 1.1451 
9 0.1667 0.120 448.0x10-6 1.0000 1.0000 
10 0.1800 0.110 421.6x10-6 0.9167 0.9410 
11 0.2000 0.099 391.1x10-6 0.8250 0.8730 
12 0.2200 0.092 360.6x10-6 0.7667 0.8050 
13 0.2400 0.086 338.3x10-6 0.7167 0.7551 
14 0.2600 0.078 320.0x10-6 0.6500 0.7143 
15 0.2800 0.075 300.7x10-6 0.6250 0.6712 
16 0.3000 0.068 286.5x10-6 0.5658 0.6395 

Note: Model No. 9 is the reference model 
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Table 6.27: Detail of finite element models to study the effect of variation of yf  keeping sE  and n constant on the confining 
behaviour of solid collars 

No. 

 

columnh  

(mm) 

columnA  

(mm2) 

columnI  

(mm4) 

collarA  

(mm2) 

collarI  

(mm4) 

s  

(mm) 

yf  
 

MPa 

sE  
 

MPa 

5β  
 

1 500 250 000 5.208x109 5208 6.782x106 83.33 300 203 250 1.476x10-3 
2 500 250 000 5.208x109 5208 6.782x106 83.33 350 203 250 1.722x10-3 
3 500 250 000 5.208x109 5208 6.782x106 83.33 400 203 250 1.968x10-3 
4 500 250 000 5.208x109 5208 6.782x106 83.33 450 203 250 2.214x10-3 
5 500 250 000 5.208x109 5208 6.782x106 83.33 465 203 250 2.288x10-3 
6 500 250 000 5.208x109 5208 6.782x106 83.33 500 203 250 2.460x10-3 
7 500 250 000 5.208x109 5208 6.782x106 83.33 550 203 250 2.706x10-3 
8 500 250 000 5.208x109 5208 6.782x106 83.33 600 203 250 2.952x10-3 
9 500 250 000 5.208x109 5208 6.782x106 83.33 650 203 250 3.198x10-3 

10 500 250 000 5.208x109 5208 6.782x106 83.33 700 203 250 3.444x10-3 

Note: Model No. 5 is the reference model 
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Table 6.28: Relationship between: (a) 5γ  and 5β ; and (b) 5λ and 5β  for solid collars 

No. 5β  oγ  ( )
max8β  5γ  5λ  

1 1.476x10-3 0.12 298.7x10-6 1 0.6667 

2 1.722x10-3 0.12 344.4x10-6 1 0.7687 

3 1.968x10-3 0.12 388.8x10-6 1 0.8679 

4 2.214x10-3 0.12 433.8x10-6 1 0.9683 

5 2.288x10-3 0.12 448.0x10-6 1 1.0000 

6 2.460x10-3 0.12 482.5x10-6 1 1.0771 

7 2.706x10-3 0.12 523.2x10-6 1 1.1678 

8 2.952x10-3 0.12 571.9x10-6 1 1.2766 

9 3.198x10-3 0.12 619.7x10-6 1 1.3832 

10 3.444x10-3 0.12 665.4x10-6 1 1.4853 

Note: Model No. 5 is the reference model 
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Table 6.29: Detail of finite element models to study the effect of variation of sE  keeping yf  and n constant on the confining 
behaviour of solid collars 

No. 

 

columnh  

(mm) 

columnA  

(mm2) 

columnI  

(mm4) 

collarA  

(mm2) 

collarI  

(mm4) 

s  

(mm) 

yf  
 

(MPa) 

sE  
 

(MPa) 

5β′  
 

1 500 250 000 5.208x109 5208 6.782x106 83.33 465 174 838 2.6596x10-3 
2 500 250 000 5.208x109 5208 6.782x106 83.33 465 196 693 2.3641x10-3 
3 500 250 000 5.208x109 5208 6.782x106 83.33 465 203 250 2.2878x10-3 
4 500 250 000 5.208x109 5208 6.782x106 83.33 465 218 548 2.1277x10-3 
5 500 250 000 5.208x109 5208 6.782x106 83.33 465 240 403 1.9343x10-3 
6 500 250 000 5.208x109 5208 6.782x106 83.33 465 262 258 1.7731x10-3 

Note: Model No. 3 is the reference model 
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Table 6.30: Relationship between: (a) 5γ ′  and 5β ′ ; and (b) 5λ′and 5β ′  for solid 
collars 
No. 5β′  oγ  ( )

max8β  5γ ′  5λ′  

1 2.6596x10-3 0.1073 451.0x10-6 0.8942 1.0068 

2 2.3641x10-3 0.1173 448.5x10-6 0.9775 1.0011 

3 2.2878x10-3 0.1200 448.0x10-6 1.0000 1.0000 

4 2.1277x10-3 0.1269 447.4x10-6 1.0575 0.9987 

5 1.9343x10-3 0.1375 441.9x10-6 1.1458 0.9864 

6 1.7731x10-3 0.1480 438.9x10-6 1.2333 0.9796 

Note: Model No. 3 is the reference model 
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Table 6.31: Detail of finite element models to study the effect of variation of n on the confining behaviour of solid 
collars 

No. 

 

columnh  

(mm) 

columnA  

(mm2) 

columnI  

(mm4) 

collarA  

(mm2) 

collarI  

(mm4) 

s  

(mm) 

yf  
 

(MPa) 

sE  
 

(MPa) 

n 
 

 
6β  
 

1 500 250 000 5.208x109 5208 6.782x106 83.33 465 203 250 10 10 
2 500 250 000 5.208x109 5208 6.782x106 83.33 465 203 250 11 11 
3 500 250 000 5.208x109 5208 6.782x106 83.33 465 203 250 12 12 
4 500 250 000 5.208x109 5208 6.782x106 83.33 465 203 250 14 14 
5 500 250 000 5.208x109 5208 6.782x106 83.33 465 203 250 16 16 
6 500 250 000 5.208x109 5208 6.782x106 83.33 465 203 250 18 18 
7 500 250 000 5.208x109 5208 6.782x106 83.33 465 203 250 20 20 

Note: Model No. 2 is the reference model 
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Table 6.32: Relationship between: (a) 6γ  and 6β ; and (b) 6λ and 6β  for solid collars 

No. 6β  oγ  ( )
max8β  6γ  6λ  

1 10 0.12 294x10-6 1 1.0181 

2 11 0.12 339x10-6 1 1.0000 

3 12 0.12 382x10-6 1 0.9841 

4 14 0.12 427x10-6 1 0.9569 

5 16 0.12 441x10-6 1 0.9388 

6 18 0.12 475x10-6 1 0.9184 

7 20 0.12 515x10-6 1 0.9048 

Note: Model No. 2 is the reference model 
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Table 6.33: Detail of finite element models to study the effect of collar smearing on the confining behaviour of solid collars 

No. 

 

columnh  

(mm) 

columnA  

(mm2) 

columnI  

(mm4) 

collarA  

(mm2) 

collarI  

(mm4) 

s

(mm) 

1β  
 
 

2β   
 
 

3β   
 

1 500 250 000 5.208x109 635.4 8.274x105 10.42 2.5417x10-3 0.1588x10-3 20.833x10-3 
2 500 250 000 5.208x109 1271 1.655x106 20.83 5.0833x10-3 0.3177x10-3 41.667x10-3 
3 500 250 000 5.208x109 2604 3.391x106 41.67 10.417x10-3 0.6510x10-3 83.333x10-3 
4 500 250 000 5.208x109 5208 6.782x106 83.33 20.833x10-3 1.3021x10-3 166.67x10-3 
5 500 250 000 5.208x109 6510 8.477x106 104.17 26.042x10-3 1.6276x10-3 208.33x10-3 
6 500 250 000 5.208x109 7813 10.17x106 125.00 31.250x10-3 1.9531x10-3 250.00x10-3 

Note: Model No. 4 is the reference model  
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Table 6.34: Relationship between: (a) sγ  and 3β ; and (b) sλ  and 3β  for solid collars 

No. 3β  oγ  ( )
max8β  sγ  sλ  

1 20.83x10-3 0.12 398.22x10-6 1 0.8889 

2 41.67x10-3 0.12 418.03x10-6 1 0.9331 

3 83.33x10-3 0.12 434.79x10-6 1 0.9705 

4 166.67x10-3 0.12 448.00x10-6 1 1.0000 

5 208.33x10-3 0.12 452.67x10-6 1 1.0104 

6 250.00x10-3 0.12 453.89x10-6 1 1.0131 

Note: Model No. 4 is the reference model 
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Table 6.35: Detail of finite element models to test the proposed equations for the confining behaviour of solid collars 

No. 

 

columnh  

(mm) 

collarb  

(mm) 

collarh  

(mm) 

s

(mm) 

yf  
 

(MPa) 

sE  
 

(MPa) 

n 
 

 

1 250 25 75 45 430 203 250 11 
2 325 25 75 45 430 203 250 11 
3 350 25 80 60 500 202 000 12 
4 350 25 80 65 500 203 250 12 
5 400 50 85 100 520 202 000 12 
6 400 50 85 100 520 202 000 12 
7 450 50 85 100 520 202 000 12 
8 500 50 85 100 520 202 000 12 
9 600 50 85 100 520 202 000 12 
10 700 50 85 100 520 202 000 12 
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Table 6.36: Coefficients of multiple determinations R2 up to various level of lateral strains for 
column confined by solid collars 

R2 
Cases 

0607 .=β  0507 .=β  0407 .=β  0307 .=β  

1 0.9834 0.9911 0.9950 0.9960 

2 0.9879 0.9917 0.9924 0.9910 

3 0.9959 0.9955 0.9948 0.9949 

4 0.9919 0.9909 0.9905 0.9917 

5 0.9960 0.9974 0.9975 0.9970 

6 0.9728 0.9724 0.9743 0.9798 

7 0.9977 0.9983 0.9982 0.9979 

8 0.9978 0.9984 0.9984 0.9981 

9 0.9941 0.9963 0.9977 0.9982 

10 0.9798 0.9851 0.9892 0.9921 



 
 
 
 
 

Figure 6-1: Confinement mechanism 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-2: (a) Typical confining stress vs lateral strain curves; (b) 
relationship between 7β  and 8β  

(a) (b) 
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Figure 6-3: Unconfined concrete: (a) between tie levels; (b) at tie 
level; (c) between collars; and (d) at collar level (fully 
confined) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-4: Plan and elevation of a typical finite element model for a 
column confined externally by steel collars 

(a) Plan (b) Elevation 

Collars 

Collars  
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Figure 6-5: Concrete material curves without 
descending branches 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-6: (a) Calibration of Ramberg-Osgood model; (b) variation of n keeping yf
and sE  constant; and (c) variation of yf and sE such that their ratio
remains constant at constant value of n 
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Figure 6-7: HSS steel material curves: (a) having different values of yf  

keeping sE  and n constant; and (b) having different values of 

sE  keeping yf  and n constant. 
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Figure 6-8: (a) Average confining pressure on elements vs. average 
lateral strain; (b) Distribition of confining pressure along 
the width of the column 
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Figure 6-9 The dimensionless parameters independent of scale effect 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-10: Effect of 1β  on the confining behaviour 
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Figure 6-11: Relationship between: (a) 1λ and 1β ; and (b) 1γ  and 1β  

(a) (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-12:  Effect of variation of 2β  on the confining behaviour 
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Figure 6-13: Relationship between: (a) 2λ  and 2β ; and (b) 2γ  and 2β  

(a) (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-14:Effect of variation of 3β  on the confining behaviour 
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Figure 6-15: Relationship between: (a) 3λ  and 3β ; (b) 3γ  and 3β  

(a) (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-16: Effect of 4β  on the confining behaviour 
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Figure 6-17: Relationship between 4λ  and 4β  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-18: Effect of variation of yf and sE  such that 5β  remains 
constant 
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Figure 6-19: Effect of variation of yf keeping sE  constant on the 
confining behaviour 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-20: Relationship between 5λ  and 5β  
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Figure 6-21: Effect of change of modulus of elasticity sE keeping 

yf constant on the confining behaviour 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-22: Relationship between 5γ� and 5β� 
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Figure 6-23: Effect of 6β  on the confining behaviour of HSS collars 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-24: Relationship between 6β  and 6λ  for HSS collars 
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Figure 6-25: Effect of collar smearing on the confining of collars 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-26: Relationship between sλ  and 3β  
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Figure 6-27: Confinement stress vs. lateral strain curves for case 1 
(Table 6-20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-28: Confinement stress vs. lateral strain curves for case 2 
(Table 6-20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 553



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 6-29: Confinement stress vs. lateral strain curves for case 3 

(Table 6-20)  
 
 
 
 

Figure 6-30: Confinement stress vs. lateral strain curves for case 4 
(Table 6-20) 
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Figure 6-31: Confinement stress vs. lateral strain curves for case 5 
(Table 6-20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-32: Confinement stress vs. lateral strain curves for case 6 
(Table 6-20) 
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Figure 6-33: Confinement stress vs. lateral strain curves for case 7 
(Table 6-20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-34: Confinement stress vs. lateral strain curves for case 8 
(Table 6-20) 
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Figure 6-35: Confinement stress vs. lateral strain curves for case 9 
(Table 6-20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-36: Confinement stress vs. lateral strain curves for case 10 
(Table 6-20) 
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Figure 6-37: Confinement stress vs. lateral strain curves for case 11 
(Table 6-20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-38: Confinement stress vs. lateral strain curves for case 12 
(Table 6-20) 
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Figure 6-39: Confinement stress vs. lateral strain curves for case 13 
(Table 6-20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-40: Confinement stress vs. lateral strain curves for case 14 
(Table 6-20) 
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Figure 6-41: Stress vs. strain curve for HSS 51x51x6.35 mm  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-42: Confinement stress vs. lateral strain curves for 
column C06  
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Figure 6-43: Load vs. strain curves for column C06 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-44: Stress vs. strain curve for HSS 76x51x6.35 mm  
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Figure 6-45: Confinement stress vs. lateral strain curves for column 
C09  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-46: Load vs. strain curves of column C09  
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Figure 6-47: Effect of scale on the confining behaviour of 
solid collars 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-48: Effect of variation of 1β  on the confining behaviour 
of solid collars 
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(a) (b) 

Figure 6-49 Relationsip between 1λ  and 1β  for 1β  ranges: (a) =1β 0.004 

to 0.024; and (b) =1β 0.024 to 0.056. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-50 Relationsip between 1γ  and 1β  for 1β  ranges: (a) 

=1β 0.004 to 0.024; and (b) =1β 0.024 to 0.056. 

(a) (b) 
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Figure 6-51 Effect of 2β  on the confining behaviour 
of solid collars 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-52: Relationship between 2λ  and 2β  for 2β  ranges: 

(a) =2β 0.000096 to 0.00288; and (b) 0.00288 to 0.0192 

(a) (b) 
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(a) (b)  
 

Figure 6-53: Relationship between 2γ  and 2β  for 2β  ranges: 

(a) =2β 0.000096 to 0.00288; and (b) 0.00288 to 0.0192 

 
 
 
 
 
 
 
 
 

Figure 6-54: Effect of 3β  on the confining behaviour of solid 
collars 
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Figure 6-55: Relationship between: (a) 3λ  and 3β  and  (b) 3γ  and 3β  
for solid collars 

(a) (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-56: Effect of variation of 5β  on the confining behaviour 
of solid collars 
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Figure 6-57: Relationship between 5λ  and 5β  for solid collars 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-58: Effect of variation of 5β� on the confining behaviour 
of solid collars 
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Figure 6-59: Relationship between 5γ� and 5β� for solid collars 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-60: Effect of variation of 6β on the confining behaviour of solid 
collars 
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Figure 6-61: Relationship between 6λ  and 6β  for solid collars 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-62: Effect of smearing on the confining behaviour of 
solid collars 
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Figure 6-63: Relationship between sλ  and 3β  for solid collars 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.64: Confinement stress vs. lateral strain curve for case 1 
(Table 6.35) 
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Figure 6.65: Confinement stress vs. lateral strain curve for case 2 
(Table 6.35) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.66: Confinement stress vs. lateral strain curve for case 3 
(Table 6.35) 
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 Figure 6.67: Confinement stress vs. lateral strain curve for case 4 

(Table 6.35)  
 
 
 
 
 

Figure 6.68: Confinement stress vs. lateral strain curve for case 5 
(Table 6.35) 
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Figure 6.69: Confinement stress vs. lateral strain curve for case 6 
(Table 6.35) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.70: Confinement stress vs. lateral strain curve for case 7 
(Table 6.35) 
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Figure 6.71: Confinement stress vs. lateral strain curve for case 8 
(Table 6.35) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.72: Confinement stress vs. lateral strain curve for case 9 
(Table 6.35) 
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Figure 6.73: Confinement stress vs. lateral strain curve for case 10 
(Table 6.35) 
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7. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 
7.1 Introduction 
 
Existing structures can be seismically deficient due to various reasons such as changes in 

zoning of seismic activity in the area, changes in the performance objectives of the buildings due 

to, for example, a change in building function, and changes in the seismic design codes 

themselves due to advancements in knowledge of structural behaviour. During recent 

earthquakes, a large number of seismically deficient reinforced concrete structures received 

severe structural and non-structural damage. Many techniques have been developed for the 

upgrade of seismically deficient existing reinforced concrete buildings. Some techniques work 

through the enhancement of strength and stiffness, others through the enhancement in 

deformability and robustness, and still others by reducing seismic input through base isolation. 

 

Stiffened steel plate shear walls have been used for the seismic upgrade of existing seismically 

deficient reinforced concrete buildings such as the Oregon State Library Building (Robinson, 

2000) and the Veterans Administration Hospital in Charleston, South Carolina (Baldelli, 1983). 

The connection of the steel plates to the reinforced concrete frame was made with help of 

mechanical and adhesive type anchor bolts, which require chipping of the surface concrete to 

expose the bars, drilling to intall the anchor bolts, and subsequent grouting. Steel plate shear 

walls were selected because the structures could be rehabilitated without abondening the 

operation of the buildings. In both of these buildings, the rehabilitation objectives were achieved 

through enhancement in strength and stiffness. The inherent ductility of the steel plate shear 

walls could not be utilized due to the ductility incompatibility between the steel plate and the 

existing seismically deficient reinforced concrete frame. 

 

A new scheme has been proposed that makes use of steel plate shear walls that resist lateral 

load through the development of a diagonal tension field after out-of-plane buckling of the plate. 

The new rehabilitation scheme should make use of the ductility of the steel plate wall. The 

problem of ductility incompatibility is solved by improving the ductility of the concrete frames 

through confinement using steel collars. The collars not only provide confinement, but also 

provide a means of connection of the steel plate shear wall to the reinforced concrete frames. 

 

The ultimate aim of the broad research program is to study the composite performance of 

seismically deficient reinforced concrete frames rehabilitated using steel collars and thin steel 
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plate shear wall infill plates. However, it was considered that the confined behaviour of the 

collared concrete columns plays a critical role in the performance of the overall rehabilitation 

scheme. Therefore, the scope of the present research project was focused on the behaviour of 

the columns confined externally by steel collars (HSS collars were used both in the experimental 

and analytical work and solid steel collars were used in the analytical work only) under concentric 

axial loading and under combined axial and lateral cyclic loading. 

 
7.2 Summary 
 
In Chapter 2, a literature review related to the key areas of the present research is presented. 

Brief summaries of existing models for predicting the behaviour of concrete members confined by 

conventional internal reinforcement and by fibre reinforced composites are given and although 

many are available, existing confinement models are unable to predict the behaviour of concrete 

confined by HSS collars. This is primarily because of the lack of an explicit flexural stiffness 

parameter and/or because these models cannot account for variations in confining pressure 

through the axial load history of the columns. Collars provide confinement not only through axial 

stiffness, but also through their flexural stiffness that is significantly higher than that of 

conventional rebars ties. Moreover, the confining pressure under collars varies appreciably 

through the axial load history. Due to certain similarities with the behaviour of concrete confined 

by steel collars, some research into confinement using steel jackets is also summarized in this 

chapter. Although good behaviour of columns confined by various configurations of jackets is 

reported in the literature, few exploit the benefits of the flexural stiffness of steel collars. 

 

In Chapter 3, the behaviour of reinforced concrete columns under concentric axial loading that 

are confined externally by HSS collars is discussed based on an experimental study under 

quasi-static concentric axial loading of 11 full-scale test specimens. The columns were typical of 

those that would be present in a two to three story building. Two control columns with 

conventional tie reinforcement (one satisfying the gravity load design criteria of ACI 318-02 and 

CSA Standard A23.3-94 and the other satisfying the seismic plastic hinge requirements of these 

codes), five columns confined by steel HSS collars with bolted corner connections, and four 

columns confined by steel HSS collars with welded collar connections were tested. In order to 

study the effect of external collar confinement separately, no internal tie reinforcement was 

provided in the test regions of the collared columns. All the columns were 300 x 300 mm in cross 

section and 1500 mm in height. One column with bolted collars and one column with welded 

collars were tested under multiple load cycles that verified the robustness of the confinement 

mechanism. The major parameters included in this experimental study were collar size, collar 
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spacing, and type of collars (collars with bolted or welded corner connections). Conclusions 

drawn from this experimental program are presented in the next section.  

 

In Chapter 4, the behaviour of concrete columns under cyclic loading that are confined externally 

by HSS collars are discussed based on an experimental program consisting of a total of nine 

full-scale reinforced concrete columns typical of two to three story buildings. One control column 

had conventional tie reinforcement in the rest region and it satisfied the seismic plastic hinge 

requirements of both ACI 318-02 and CSA Standard A23.3-94 and the remaining eight columns 

had external collar confinement in the test regions. In order to study the effect of external collar 

confinement separately, no internal tie reinforcement was provided in the test regions of the 

collared columns. All the columns were 300 x 300 mm in cross section and about 2100 mm in 

height and were tested in a cantilever manner. The variables included in this study were axial 

load, collar spacing, collar size, and shear-span. In addition, envelope curves to the hysteresis of 

the columns are predicted by using the existing analytical models for flexural deformations and 

anchorage slip. Conclusions drawn from this experimental program are presented in the next 

section. 

 

Because existing confinement models are unable to predict the stress versus strain behaviour of 

concrete confined externally by HSS collars, in Chapter 5 a new model has been proposed. The 

proposed model makes use of behavioural curves of the collars in terms of average confining 

pressure versus average lateral strain. A finite element model using the general-purpose finite 

element program ABAQUS (HKS, 2004a, 2004b) has been developed to determine these 

behavioural curves. The model predictions show very good agreement with the experimental 

results of the externally confined columns tested under concentric axial loading (Chapter 3).  

 

The application of the confinement model proposed in Chapter 5 requires the behavioural curves 

of collars in terms of average confining pressure versus average lateral strain, which are 

obtained through finite element analysis that is not always convenient. In order to make the 

proposed confinement model practical, empirical models for the confining behaviour of collars 

are required. In Chapter 6, two empirical models have been proposed for the confining behaviour 

of collars with rigid corner connections for providing confinement to square concrete columns: 

one for collars made from hollow structural sections (HSS); and one for collars made from solid 

steel sections. The proposed models are based on a comprehensive finite element study using a 

wide variety of input parameters. For this purpose, non-dimensional parameters were identified 

and validated. Parametric studies were then performed in terms of these non-dimensional 

parameters and multiple nonlinear regressions were performed on the data obtained through 

finite element analyses to develop multi-dimensional empirical equations for defining the 
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confining behaviour of collars. The non-dimensional models provide good predictions of the 

behavioural curves of HSS and solid collars with rigid corner connections and eliminate the need 

for finite element modelling. 

 
7.3 Conclusions 
 
7.3.1 Concentrically Loaded Columns 
 
External confinement by HSS collars has excellent potential for rehabilitation of reinforced 

concrete structures through enhancement in both strength and ductility. The collared columns 

exhibited a maximum strength enhancement factor of 3.12 (column C07; strain at peak stress 

equal to 0.026), calculated based on the reduced core of the column, and a maximum observed 

strain at peak stress of 0.043 (column C05; strength enhancement factor equal to 2.57). By 

comparison, a conventionally confined column satisfying the plastic hinge requirements of 

ACI 318 and CSA Standard A23.3 (column C00B) exhibited a strength enhancement factor of 

2.70 and a strain at peak stress of 0.030. Clearly, the comparative overall benefit in strength for 

the collared columns is much greater when considering that the size of the core itself is 

considerably larger. This is because external confinement by HSS collars prevents the spalling of 

concrete cover under the collars and inhibits spalling between the collars. The effective core area 

of externally confined columns is therefore significantly larger than that of conventional columns. 

 

On average, columns confined by collars having welded corner connections show an 

enhancement in strength, based on the reduced core area, of 1.95 times that of equivalent 

columns with bolted collars. The strain at peak stress of the concrete confined by the two types 

of collars are comparable and generally are close to ten times that which would be expected for 

unconfined concrete. The lower failure strain exhibited by columns with welded collars is 

attributed to the lack of ductility of the welds in the collars themselves and it may be increased 

significantly with deeper weld penetration. 

 

The spacing of the collars has a profound effect on the confined material curve. It was observed 

that by increasing the clear spacing by about 60%, the enhancement in concrete strength was 

cut in half. The effect of a change in collar spacing on the strain at peak stress of the confined 

concrete was more prominent at higher spacings (lower levels of confinement) and it became 

less influential at smaller spacings (higher levels of confinement). These observations are not 

expected to hold at very large spacings, where the degree of confinement is very low. 
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The mere presence of HSS collars has a large effect on column strength due, in part, to their 

high stiffness. By increasing the HSS stiffness, an enhancement in both strength and ductility 

was observed, although the benefits in strength were relatively small as compared to the 

increase in collar stiffness. For bolted collars, this is attributed to the fact that the behaviour is 

influenced by the deformations of the bolts, which are relatively flexible components of the 

system. For welded collars, it is attributed to the high level of confinement achieved by the 

presence of the rigid corner connections, which in turn reduces the impact of the moment of 

inertia of the HSS member itself. Therefore, when increasing the collar stiffness, there is a 

threshold beyond which the rate of increasing benefit diminishes rapidly. 

 

The column with relatively high initial active confining pressure showed improved behaviour up to 

the peak load, but exhibited rapid softening in the post-peak part of the curve, likely due to some 

combination of rapid spalling of the concrete between the collars and yielding of the bolts. An 

enhancement in concrete strength was observed that was 1.39 times that of the otherwise similar 

column by increasing the initial confining pressure by 2.24 times. 

 

7.3.2 Columns Under Cyclic Loading 
 
All the collared columns showed very good behaviour under severe cyclic loading. The desired 

enhancement in strength and ductility was achieved through confinement of concrete and the 

presence of the collars made the columns very resistant to degradation under severe cyclic 

loading. External confinement by HSS collars is therefore an effective means of rehabilitating 

columns in seismically deficient reinforced concrete buildings.  

 

In the collared columns, very little spalling of concrete between the collars was observed at the 

end of the first 20 cycles, a ductility level equal to 4, which is common in the design of new 

reinforced concrete structures. In the case of the conventionally tied column, most of the spalling 

of the concrete cover occurred at a displacement ductility level of 1.5. Hence, collared columns 

possess a larger effective core than that of conventionally tied columns. 

 

Fracture of some vertical bars due to low-cycle fatigue was observed in several collared 

columns. However, it was more pronounced in columns with wider collar spacings. No slippage 

of the collars was observed in the test regions of the collared columns at the end of the tests, a 

feature that is highly desirable for the success of this rehabilitation scheme.  

 

In the collared columns, most of the spalling was confined to the lower half of the test region 

while in the conventional column, spalling took place over a wider range. One reason could be 
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the upward shift in the location of the hinge formation. Collars tend to provide restraint to the 

spread of damage in the test region of collared columns. 

 

The normalized peak moment of the conventionally tied column is less than that of collared 

columns used in the present study. The normalized modulus of toughness of the conventionally 

tied column is less than that of the collared columns having the same shear-span as that of the 

conventionally tied column. However, some collared columns with the short shear–span 

exhibited a lower modulus of toughness than that of the conventionally tied column. 

 

All the collared columns exhibited a higher level of stiffness retention than the conventionally tied 

column. Hence, collared columns are more resistant to degradation under severe cyclic loading. 

 

The energy dissipation in a cycle depends on the displacement amplitude, level of axial load, and 

the moment capacity of the columns. With an increase of each of these variables, the energy 

dissipation in a cycle increases. The moment capacity of the column cannot be varied at the time 

of testing, so this cannot be considered as a variable in the present context. Hence, the energy 

dissipation in a cycle can be varied by varying either axial load or displacement amplitude (which 

is usually related under the testing protocol to the yield displacement). That is, the slope of the 

cumulative energy dissipation (or normalized cumulative energy dissipation) versus cycle number 

curve depends on the amount of energy dissipated in each successive cycle. Increasing the 

energy dissipation in a cycle does not mean that the total energy dissipated by the column at the 

end of the test or at failure will also increase. Increasing the axial load will increase the energy 

dissipation in a cycle, but the deteriorating effect of axial load tends to make the column fail 

earlier. Therefore, the number of cycles sustained by the specimen at failure can be reduced 

considerably, in turn reducing the total energy dissipated by the specimen. Similarly, the energy 

dissipation in a cycle with a large displacement amplitude will be high. Since the displacement 

amplitudes are related to the yield displacement, if the yield displacement is higher the slope of 

the energy dissipation curve will also increase. However, this does not mean that the overall 

energy dissipated by the column at the end of the test will also increase, as the number of cycles 

sustained by the specimen will likely reduce leading to an overall reduction in the total energy 

dissipated at failure. In addition, the energy dissipated in primary cycles is higher than that 

dissipated in secondary cycles at the same level of displacement ductility. If a large number of 

cycles are performed at the same displacement ductility, the energy dissipation in subsequent 

cycles decreases due to degradation in strength and stiffness of the column. 

 

The rate of increase of cumulative normalized energy dissipation with respect to cycle number is 

generally higher for conventionally tied column as compared to that of collared columns. The 
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cumulative normalized energy dissipated at the end of the tests is higher for conventionally tied 

column as compared to that of collared columns with a short shear-span. The comparison 

between conventionally tied columns and collared columns with a long shear-span cannot be 

made with respect to cumulative normalized energy dissipated at the end of the tests because 

the tests of most of the collared columns with long shear-span were stopped prematurely due to 

the limitation of jack stroke. Had the tests not stopped prematurely, the cumulative normalized 

energy dissipated at the end of the tests of collared columns with long shear-span would likely 

have been higher than that of the conventionally tied column. 

 

The hysteretic damping ratio increases with the increase of lateral drift for all the columns. The 

hysteretic damping ratio of the conventionally tied column is generally higher than that of collared 

columns. Very rarely, the hysteretic damping ratio of collared columns became higher than that 

of conventionally tied columns. 

 

The curvature ductility of the conventionally tied column was higher than that of the collared 

columns. The cumulative ductility ratio and cumulative energy damage indicator at the end of the 

test are significantly higher for conventionally tied column than those of collared columns. The 

collared columns exhibited less ductility because the damage is concentrated within a smaller 

length of the test region as compared to the length of the damaged region in the conventionally 

tied column. 

 

In addition, the following conclusions are drawn with respect to the effect of various parameters 

on the behaviour of the collared columns. 

 

7.3.2.1 Effect of Axial Load 
 

Based on the test results of collared columns with short and long shear-spans, it can be 

concluded that the presence of axial load on the columns causes an increase in the rate of 

degradation in strength and a decrease in the stiffness retention of the columns. The presence of 

axial load in columns with long and short shear-spans caused a reduction in the cumulative 

normalized dissipated energy at the end of the tests. 

 

With an increase in axial load, the hysteretic damping ratio of collared columns decreased. 

However, this effect was more pronounced in collared columns with short shear-spans than with 

long shear-spans. 
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The application of axial loads in the range of  to  generally caused an 

improvement in the ductility of the collared columns expressed in terms of the normalized 

modulus of toughness (as defined in the present research), curvature ductility, cumulative 

ductility ratio, and cumulative energy damage indicator. It is assumed that in columns within this 

range of axial loads, the axial load will help improve the ductility by mobilizing confinement more 

rapidly as compared to columns without axial load and its improving effect on ductility is greater 

than its deterioration effect. 

0150 P. 0230 P.

 

7.3.2.2 Effect of Collar Spacing 
 
In the regime of both long and short shear-span columns, columns with a wider spacing of collars 

exhibited lower values of normalized peak moments, normalized modulus of toughness up to the 

peak moment condition, and normalized modulus of toughness up to the failure of the columns 

as compared to those of columns with closer spacing. The rate of deterioration of strength is 

higher in columns with widely spaced collars than with closely spaced collars. 

 

In the regime of both long and short shear-span columns, the effect of collar spacing on the 

stiffness retention of the columns was marginal; columns with closely spaced collars exhibited 

slightly higher stiffness retention as compared to columns with relatively wider collar spacing. 

 

For both long and short shear-span columns, the cumulative energy dissipated and cumulative 

normalized energy dissipated at the end of the tests is significantly lower for columns with widely 

spaced collars as compared to columns with closely spaced collars. 

 

In columns with long shear spans, the hysteretic damping ratio of columns with widely spaced 

collars is slightly higher than that of columns with closely spaced collars. However, in columns 

with short shear spans, the columns with wider spacing of collars exhibited significantly higher 

hysteretic damping ratios at a certain level of lateral drift than columns with closely spaced 

collars. 

 

In the regimes of both long and short shear span columns, columns with widely spaced collars 

exhibited lower curvature ductility, cumulative ductility ratio, and cumulative energy damage 

indicator as compared to columns with widely spaced collars. 
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7.3.2.3 Effect of Collar Size 
 
In the case of columns with long shear spans, the stiffness retention was slightly higher for 

columns with large size collars as compared to that of columns with small size collars. 

Conversely, in the case of columns with short shear spans, the stiffness retention was slightly 

higher for columns with small size collars than for columns with large size collars. The energy 

dissipation characteristics of the columns were not particularly sensitive to the change in the size 

of the collars in the range in which this study was made. 

 

In the case of columns with long shear-spans, the normalized cumulative energy dissipated at 

the end of the test for the column with small size collars was higher than that of the column with 

large size collars, although the very low concrete strength in the latter column prevents a direct 

comparison. The columns behaved very similarly in this respect up to about 30 cycles of load. In 

the case of columns with short shear-spans, columns with different sizes of collars exhibited 

similar energy dissipation characteristics in terms of cumulative normalized energy dissipated 

versus cycle number. It appears as though the energy dissipation characteristics of the columns 

were not particularly sensitive to the change in the size of the collars in the range in which this 

study was conducted. 

 

IFor columns with long shear-spans, the hysteretic damping ratio was slightly higher for columns 

with large size collars as compared to that of columns with small size collars. In the case of 

columns with short shear-spans, the hysteretic damping ratio was slightly higher for columns with 

small size collars as compared to that of columns with large size collars. This means that the 

hysteretic damping ratio was not sensitive to the change in the size of collars in the range in 

which this study was made. 

 

In the case of columns with long shear-spans, the columns with large size collars exhibited 

higher moduli of toughness as compared to columns with small size collars. The columns with 

large size collars exhibited lower values of curvature ductility, cumulative ductility ratio, and 

cumulative normalized energy damage indicator. This discrepancy is attributed to the relatively 

higher value of axial load index in columns with large size collars as compared to that in columns 

with small size collars. In the case of columns with short shear spans, the columns with large 

size collars exhibited higher moduli of toughness, curvature ductility, cumulative ductility ratio, 

and energy damage indicator as compared to those of columns with small size collars. Based on 

the above, it can be concluded that the columns with large size collars exhibited higher ductility 

as compared to columns with small size collars. 
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7.3.2.4 Effect of Shear-Span 
 
The rate of strength deterioration is higher in collared columns with a short shear-span as 

compared to that in columns with a long shear-span. Moreover, the collared columns with a long 

shear-span exhibited higher stiffness retention and higher energy dissipation characteristics. 

 

Generally, the hysteretic damping ratio exhibited by columns with shorter shear spans was 

higher than that of columns with long shear spans. 

 

Based on parameters such as normalized modulus of toughness, curvature ductility, cumulative 

ductility ratio, and cumulative energy damage indicater, the collared columns with long 

shear-spans are more ductile as compared to collared columns with short shear-spans. 

 

7.3.2.5 Conclusions Based on Analytical Results 
 

The envelope to the hysteresis curves (Chapter 4) of the conventionally tied column, the collared 

columns with long shear-spans, and the collared columns with short shear-spans were predicted 

analytically. The predicted envelope curves showed very good agreement with that of the 

average experimental envelope curves for the conventionally tied column and for the collared 

columns with long shear-spans. However, in the case of collared columns with short 

shear-spans, the predicted envelope curves showed very good agreement with the experimental 

envelope curves up to a lateral drift of about 5%. After this level of lateral drift, the predicted 

envelope curves over-estimate the capacity of the columns. This is because in columns with 

short shear-spans, more rapid spalling of concrete takes place as compared to columns with long 

shear-spans. Rapid spalling of concrete between the collars results in a reduced column cross 

section due to which the experimental capacity of the columns also reduces rapidly. However, 

this reduction of cross section due to spalling of concrete is not taken into account in the model. 

In addition, the effect of cyclic loads on the properties of the concrete and steel reinforcing bars 

and the effect of lateral bending of the longitudinal bars due to the expansion of the concrete 

were not included in the model. 

 

7.3.3 Concrete Confinement and Empirical Collar Models 
 

The proposed confinement model (Chapter 5) for predicting the stress versus strain behaviour of 

collared columns was validated by applying it to columns confined externally by steel HSS collars 

with bolted and welded corner connections tested in phase 1 of the project (Chapter 3). Some 
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columns with bolted collars had initial active confining pressure due to the pre-stressing of the 

bolts. The results predicted by the model show good agreement with the experimental results. 

Equations for establishing the descending branches of the confined concrete material curves 

have also been proposed that show good results but they need more experimental data for 

calibration outside of the range of the confinement index considered. 

 

The proposed empirical models (Chapter 6) in terms of non-dimensional parameters for the 

confining behaviour of HSS and solid collars with rigid corner connections were verified with the 

help of several case studies, including physical tests conducted as part of this research program. 

The results predicted by the proposed empirical models were found to correlate very well with the 

finite element and test results. Therefore, the empirical models represent a viable alternate to the 

more onerous finite element analyses for predicting confining pressure vs. lateral strain curves. 

 
7.4 Recommendations for Future Research 
 
In Chapter 3, the behaviour of concrete columns confined externally by HSS collars under 

concentric axial loading was studied. The columns confined by bolted HSS collars exhibited 

highly ductile behaviour and the columns confined by welded HSS collars failed prematurely due 

to rupture of the corner welds. Therefore, the descending branch for these latter columns, with a 

very high level of confinement, could not be traced. However, the failure happened at a very high 

level of axial strain. According to the conclusion of Canar and Bažant (2002) based on tube 

squash tests, if the volumetric ratio of confining steel is more than 14.5%, which is similar to the 

columns with welded collars, then the confined concrete should not exhibit a descending branch 

provided lateral bending of the longitdunal bars does not takes place. The idea of having no 

degradation with high confinement levels needs to be confirmed for collared columns with more 

experimental testing in which premature failure of the corner welds does not take place. 

However, it is expected that due to the presence of the gaps between the collars, even columns 

with a large amount of confining steel would exhibit a descending branch at a high level of axial 

strain. 

 

The equations for establishing the descending branch of the proposed confinement model were 

calibrated with a database consisting of few columns. Therefore, it is recommended that 

additional tests of collared columns that exhibit a descending branch be conducted for the 

calibration of the proposed equations. 

 

Empirical models have been developed for the confining behaviour of HSS and solid steel collars 

with rigid corner connections for square concrete columns in terms of their non-dimensional 
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parameters based on the finite element results. Currently, solid steel collars with bolts on two 

diagonally opposite corners and continuous at the remaing two corners (Figure 7-1) are under 

investigation at the University of Alberta. Such collars are fabricated by cutting thick steel plates 

using an oxy-gas flame cutting method. It is anticipated that these collars would be economical 

with respect to both fabrication and field application. It is therefore recommended that the 

non-dimensional parameters for these collars be identified and a model be developed for 

predicting the confining behaviour in terms of the non-dimensional parameters. 

 

When the collared columns are subjected to combined axial loads and moments (the same can 

be achieved by subjecting the columns to eccentric loading), the column cross-section goes 

under a strain gradient. It has been observed from the literature review that concrete under 

eccentric loading achieves a higher strain. Experimental evidence is required to confirm this 

phenomenon for collared columns that may lead to the modification of the proposed confinement 

models for concrete under a strain gradient that is confined by collars. 

 

It is recommended that a comprehensive experimental study be conducted to investigate the 

shear behaviour of collared columns under simulated seismic loading and develop equations for 

predicting the shear behaviour. A research project is underway at the University of Alberta in this 

direction. 

 

Existing reinforced concrete frames may have short lap splices at the location of plastic hinges. 

According to the literature review, the behaviour of columns with short lap splices is significantly 

improved by confining the splice region. The behaviour of concrete columns with short lap splices 

in longitudinal bars under collar confinement has not yet been studied. Therefore, it is 

recommended that an experimental study be carried out to investigate the behaviour of concrete 

columns with short lap splices in longitudinal bars confined externally by steel collars. 

 

So far, the focus of the present research has been on square concrete columns. However, 

reinforced concrete columns with rectangular cross-sections are also frequently employed, often 

to satisfy architectural requirements. Therefore, it is recommended that the behaviour of 

rectangular concrete columns confined externally by steel collars under concentric monotonic 

axial loading and under cyclic lateral loading be investigated. Analytical and/or empirical 

confinement models are also required to predict the behaviour of rectangular concrete columns 

confined externally by steel collars. 

 
Knowing the flexural and shear behaviour of collared columns under cyclic loading according to 

the research mentioned above, the next step is to investigate the behaviour of a seismically 
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deficient reinforced concrete frame rehabilitated with both collars and a steel plate shear wall. A 

schematic diagram of a possible single storey test specimen is shown in Figure 7-2. For this test 

frame, the connection of the steel plate shear wall to the beam could be made by threaded rods 

or steel collars passing through the slab. Based on previous research on the seismic behaviour 

of steel plate shear walls, it is apparent that the performance of the proposed composite test 

frame will be highly dependent on the thickness of the steel infill plate. The determination of the 

optimum plate thickness for the best performance of the composite frame requires the knowledge 

of the seismic shear strength and curvature ductility capacity of the boundary columns confined 

by steel collars. To determine the shear demand and curvature ductility demand on the boundary 

elements of the test frame imposed by the diagonal tension field of the steel plate shear walls, a 

pushover analysis of the system can be performed. As the prime objective of the proposed 

research is to extend the seismic benefits of the steel plate shear wall to reinforced concrete 

frames, existing methods for strengthening non-ductile frame joint regions should be 

incorporated to bring them to the same level of ductility as that of the reminder of the composite 

frame. After design and fabrication of the test specimen, the next step is to test the frame under 

simulated seismic loading to determine the composite performance of the rehabilitated system. 
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Figure 7-1: Plan and elevation of new solid steel collars having two diagonally
opposite corners with bolted connections and the remaining two
corners continuous. 
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Figure 7-2: Elevation of schematic test frame 
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A. DERIVATION OF EQUATIONS FOR CONFINING STEEL 

 
A.1 Introduction 
 
In this Appendix, the equations for the confining steel for circular columns and for 

square/rectangular columns are derived based on the assumptions of ACI 318. The equations 

are derived on the basis that loss in load carrying capacity of the column due to the spalling of 

concrete cover is compensated by the enhancement of core concrete strength due to 

confinement. Because of the ability in circular columns of the circular ties or spirals to resist 

expansion of the concrete by means of tensile forces only, they are fully effective in developing 

the confining pressure. However, in the case of square/rectangular columns, the ties are not fully 

effective in developing the confining pressure due to their lack of flexural stiffness. 

 
A.2 Derivation of Equation 2.8 
 
According to earlier investigations, the strength of concrete confined by active fluid pressures is 

given by the following equation (all notation is presented at the end of the appendix for 

convenience: 

 

[A.1]   lcocc fkff 1+′=′

 

The value of  depends on the concrete constituents and proportions, as well as the lateral 

pressure itself. Based on experimental results, the average value of this coefficient was found to 

be 4.1 by Richart et al. (1928). Balmer (1949) reported that the value of this coefficient varied 

from 4.5 to 7.0, with an average value of 5.6, based on additional experimental work. The higher 

values of this coefficient occur at low confining pressure. 

1k

 

The maximum load carried by the concrete shell, ( )maxsP , can be calculated by the following 

equation: 

 

[A.2]  ( ) ( ) cocgmaxs fAAP ′−=  

 

The additional load, Padd, carried by the core concrete due to strength enhancement is given by 

the following equation: 

 

[A.3]   ( )cladd AfkP 1=
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According to the requirement of the ACI 318, the maximum load carried by the unconfined 

concrete cover shell, shall be compensated by the enhancement of concrete strength in the core 

due to confinement: 

 

[A.4]   ( )maxsadd PP =

 

[A.5]  ( ) cocgcll fAAAfk ′−=  

 

With the help of Figure A.1, the confining pressure after the yielding of the spiral steel can be 

calculated from the following equilibrium equation, where  = lf sσ : 

 

[A.6]  
c

yhsp
l sd

fA
f

2
=  

 

According to Richart et al. (1928), . Substituting the values of  and  into 

Equation A.5, results in the following: 

141 .=k 1k lf

 

[A.7]  
yh

co

c

g

c

sp

f
f

A
A

sd
A. ′

⎥
⎦

⎤
⎢
⎣

⎡
−= 1
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 [A.8]  
( )
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f

A
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⎥
⎦
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⎡
−=

+−
1

28
π

π
 

 

[A.9]  
( )

yh

co

c

g

c

ssp
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⎥
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[A.10]  
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f
A
A
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[A.11]  
c

ssp

yh

co

c

g
s sA

dA
f
f

A
A

.
π

ρ −
′

⎥
⎦

⎤
⎢
⎣

⎡
−= 14880  

 

The second term on the right hand side of Equation A.11 is very small in magnitude relative to 

the first. Therefore, neglecting the second term and substituting, cco f.f ′=′ 850  results in the 

following relationship: 

 

[A.12]  
yh

c

c

g
s f

f
A
A

.
′

⎥
⎦

⎤
⎢
⎣

⎡
−= 14140ρ  

 

The coefficient 0.414 was increased to 0.45 and the equation was adopted by ACI 318. The final 

form of the equation (Equation 2.8) is given below: 

 

[A.13]  ⎥
⎦

⎤
⎢
⎣

⎡
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ′
= 1450

c

g

yh

c
s A

A
f
f

.ρ  

 

A.3 Derivation of Equation 2.10 
 
This equation was derived based on the assumption that the efficiency of rectangular hoops is 

50% that of spiral steel. The derivation of this equation is given in the commentary of ACI 318-71, 

which is reproduced here: 

 

The following equilibrium equation can be deduced from the free body diagram shown in 

Figure A.1: 

 

[A.14]  yhspcs fAsdV 20 −==∑ σ  

 

which simplifies to the following: 

[A.15]  
c

yhsp
s sd

fA2
=σ  

 

Similarly, for the free body diagram shown in Figure A.2: 
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[A.16]  yhtieuh fAsLV 2-0 σ==∑  

 

which simplifies to the following: 

 

[A.17]  
u

yhtie
h sL

fA
σ

2
=  

 

According to the assumption of 50% efficiency, for equal confining pressure: 

 

[A.18]   hs σσ 50.=

 

Substituting Equations A.15 and A.17 into A.18: 

 

[A.19]  
u

yhtie

c

yhsp

sL
fA

sd
fA

=
2

 

 

[A.20]  
u

tie

c

sp

L
A

d
A

=
2

 

 

For an equivalent spiral column: 

 

[A.21]  
c

sp

c

csp
s sd

A

ds

dA 4

4
2

≈
⎟
⎠
⎞

⎜
⎝
⎛

≈
π
π

ρ  

 

Combining Equation A.20 and Equation A.21 gives Equation 2.10: 

 

[A.22]  
2

sρL
A su

tie =  

 

In later versions of the ACI code, the efficiency of the hoop reinforcment was considered to be 

high and it was assumed that the efficiency of the hoops is 75% of that of spirals. With this 

increased efficiency of the hoop, the above equation is modified to the following: 
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[A.23]  
3

sρL
A su

tie =  

 

Appendix A Notation 

cA  = area of concrete measured to outside diameter of spiral; 

chA  = area of rectangular core of column measured out-to-out of hoop; 

gA
 = gross area of the section; 

spA
 = cross-sectional area of the spiral; 

tieA  = cross-sectional area of one leg of the hoop reinforcement; 

cd  = diameter of concrete core measured out to out of spiral; 

sd  = diameter of spiral steel; 

cf ′  = specified compressive strength of concrete as measured from  

standard cylinders; 

cof ′  = compressive strength of unconfined concrete; cco f.f ′=′ 850 ; 

lf  = lateral confining pressure; 

yhf
 = specified yield strength of spiral or hoop reinforcement; 

uL  = unsupported length of rectangular hoop measured  

between perpendicular legs of the hoop or supplementary crossties; 

addP  = additional load capacity due to enhancement in strength of core concrete; 

( )maxsP  = Maximum load carried by concrete shell; 
s  = centre-to-centre spacing of spirals or hoops; 

sρ  = volumetric ratio of spiral steel; 

∑V  = sum of all the horizontal forces; 
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Figure A.1: Confining pressure for circular columns  

 

 

 

Figure A.2: Confining pressure for rectangular columns 
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B. PROGRAM MCP 

 
 

B.1 OBJECTIVE 
 
The objective of this program is to add, subtract and find averages of the curves. In addition, the 

abscissas of different curves can be made same with the help of this program using linear 

interpolation technique, which then can then be added or subtracted or averaged in 

spreadsheets. This program has been widely used in Chapter 3 and Chapter 4. 

 
B.2 FORTRAN SOURCE CODE 
 
C********************************************************************* 
C********************************************************************* 
C********************************************************************* 
CCC       DEVELOPED BY MUNAWAR A. HUSSAIN, 
CCC       DEPARTMENT OF CIVIL ENGINEERING, 
CCC       UNIVERSITY OF ALBERTA, EDMONTON, CANADA. 
CCC       FOR ADDING AND SUBTRACTING CURVES 
CCC       JULY 2002 
C********************************************************************** 
C********************************************************************** 
C********************************************************************** 
C         For the partial fulfillment of the requirement 
C         for the degree of Doctor of Philosophy 
C********************************************************************** 
C********************************************************************** 
C********************************************************************** 
CCC******************************************************************** 
CCC       DEDICATED TO SABINA AND ALI 
CCC******************************************************************** 
C********************************************************************** 
C********************************************************************** 
             PROGRAM MCURVE 
             DIMENSION NCOUNT(15),WAITF(15) 
             DIMENSION CURVE(3,16000,2) 
             DIMENSION KOUNTG(15),STRAIN(15) 
C********************************************************************** 
             OPEN(UNIT=1,FILE='MCP1.INP') 
             OPEN(UNIT=2,FILE='MCP2.INP') 
             OPEN(UNIT=3,FILE='MCP3.INP') 
             OPEN(UNIT=4,FILE='MCP4.INP') 
             OPEN(UNIT=5,FILE='MCP5.INP') 
CCC             OPEN(UNIT=6,FILE='MCP6.INP') 
CCC             OPEN(UNIT=7,FILE='MCP7.INP') 
CCC             OPEN(UNIT=8,FILE='MCP8.INP') 
CCC             OPEN(UNIT=9,FILE='MCP9.INP') 
CCC             OPEN(UNIT=10,FILE='MCP10.INP') 
C********************************************************************** 
             OPEN(UNIT=11,FILE='MCP1.OUT') 
             OPEN(UNIT=12,FILE='MCP2.OUT') 
CCC             OPEN(UNIT=13,FILE='VCURVE.DAT') 
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             OPEN(UNIT=14,FILE='MCP.OUT') 
C********************************************************************** 
CCC             REWIND(10) 
             REWIND(11) 
             REWIND(12) 
             REWIND(14) 
C********************************************************************** 
             NCOORD=2 
C********************************************************************** 
1000         FORMAT(I10) 
1010         FORMAT(2F25.10) 
C********************************************************************** 
       WRITE(*,501) 
501    FORMAT(5X,'PROGRAM FOR'/ 
     .5X,'FINDING WEIGHTED AVERAGE OF CURVES'/ 
     .5X,'AND ADDITION OF CURVES'/) 
  WRITE(*,2001) 
2001   FORMAT(5X, 'FOR WEIGHTED AVERAGE, OPTION=1'/ 
     .,5X,'FOR ADDITION OF CURVES, OPTION=2'/) 
 WRITE(*,2010) 
2010  FORMAT(10X,'BY'//5X,'MUNAWAR HUSSAIN'/ 
     .5X,'DEPARTMENT OF CIVIL ENGINEERING'/ 
     .5X,'UNIVERSITY OF ALBERTA'/ 
     .5X,'EDMONTON, ALBERTA, CANADA'/ 
     .5X,'JULY 2002'//) 
CCC       WRITE(*,505) 
CCC505    FORMAT('****DEDICATED TO SABINA AND ALI*****'//) 
       WRITE(*,502) 
502    FORMAT(5X,'PLEASE ENTER THE DATA BELOW') 
       WRITE(*,505) 
505  FORMAT(5X,'NUMBER OF CURVES    X-INTERVAL     OPTION') 
       READ(*,*)NCURVE,SINT,LOPT 
*********************************************************************** 
          WRITE(*,*)'PLEASE ENTER WEIGHT FACTORS FOR COMBINATION' 
          READ(*,*)(WAITF(ICURVE),ICURVE=1,NCURVE) 
*********************************************************************** 
          DO 200 ICURVE=1,NCURVE 
          READ(ICURVE,*)NCOUNT(ICURVE) 
          NPOIN=NCOUNT(ICURVE) 
          DO 300 IPOIN=1,NPOIN 
          READ(ICURVE,*)XCOD1,YCOD1 
          CURVE(ICURVE,IPOIN,1)=XCOD1 
          CURVE(ICURVE,IPOIN,2)=YCOD1 
CCC          WRITE(14,*)XCOD1,YCOD1 
          IF(IPOIN.EQ.NPOIN)THEN 
          STRAIN(ICURVE)=XCOD1 
          ENDIF 
300       CONTINUE 
200       CONTINUE 
*********************************************************************** 
C        WRITE(14,1010)(STRAIN(ICURVE),ICURVE=1,NCURVE) 
*********************************************************************** 
        SMIN=STRAIN(1) 
        DO 700 ICURVE=1,NCURVE 
        SDIFF=SMIN-STRAIN(ICURVE) 
        IF(SDIFF.GT.0)SMIN=STRAIN(ICURVE) 
700     CONTINUE 
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        SMIN=SMIN 
        LMIN=SMIN/SINT 
********************************************************************** 
               REWIND(11) 
               REWIND(12) 
********************************************************************** 
              WRITE(11,350) 
350   FORMAT(/'THIS PROGRAM WAS DEVELOPED BY MUNAWAR HUSSAIN' 
     ./'DEPARTMENT OF CIVIL ENGINEERING'/'UNIVERSITY OF ALBERTA, 
     .EDMONTON, CANADA'/) 
              WRITE(11,355) 
355   FORMAT(/'THE DATA FOR ALL THE GENERATED CURVES HAVE BEEN DUMPED' 
     ./'IN THIS FILE')  
CC********************************************************************* 
CC********************************************************************* 
CC********************************************************************* 
CC********************************************************************* 
         DO 7777 ICURVE=1,NCURVE 
    CALL ANAME 
         WRITE(11,1050)ICURVE 
1050     FORMAT(/'GENERATED DATA FOR CURVE NO.',I3,2X,'FOLLOWS:-') 
         NPOIN=NCOUNT(ICURVE) 
         NINT=STRAIN(ICURVE)/SINT 
         MINT=NINT+1 
         WRITE(11,1060)MINT 
1060   FORMAT('NUMBER OF DATA POINTS IN THIS GENERATED CURVE=',I5/) 
         XCOD0=0.000 
         YCOD0=0.000 
         KONT=0 
         XCOD=0.000 
         WRITE(11,1010)XCOD0,YCOD0 
         WRITE(12,1010)XCOD0,YCOD0 
CC********************************************************************* 
         DO 5555 KINT=1,NINT 
         XCOD=XCOD+SINT 
         DO 4444 IPOIN=1,NPOIN 
         XCOD2=CURVE(ICURVE,IPOIN,1) 
         YCOD2=CURVE(ICURVE,IPOIN,2) 
         IF(XCOD2.GE.XCOD)THEN 
         LPOIN=IPOIN-1 
         XCOD1=CURVE(ICURVE,LPOIN,1) 
         YCOD1=CURVE(ICURVE,LPOIN,2) 
         GOTO 6666 
         ENDIF 
4444     CONTINUE 
6666     KONT=KONT+1 
         YCOD=YCOD1+(YCOD2-YCOD1)*(XCOD-XCOD1)/(XCOD2-XCOD1) 
         WRITE(11,1010)XCOD,YCOD 
         WRITE(12,1010)XCOD,YCOD 
5555     CONTINUE 
         KOUNTG(ICURVE)=KONT+1 
7777     CONTINUE 
*********************************************************************** 
         JMIN=SMIN/SINT+1 
*********************************************************************** 
CCCCC    WRITE(14,*)(KOUNTG(ICURVE),ICURVE=1,NCURVE) 
*********************************************************************** 
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         WRITE(14,311) 
311      FORMAT('XY-DATA FOR RESULTANT CURVE FOLLOWS') 
         WRITE(11,312) 
312      FORMAT('XY-DATA FOR RESULTANT CURVE FOLLOWS') 
         WRITE(11,313)JMIN 
313      FORMAT('NUMBER POINTS IN THE RESULTANT CURVE=',I5) 
*********************************************************************** 
          REWIND(12) 
*********************************************************************** 
          DO 1922 ICURVE=1,NCURVE 
          NPOIN=KOUNTG(ICURVE) 
          DO 2344 IPOIN=1,NPOIN 
          CURVE(ICURVE,IPOIN,1)=0 
          CURVE(ICURVE,IPOIN,2)=0 
 2344     CONTINUE 
 1922     CONTINUE 
*********************************************************************** 
          DO 8888 ICURVE=1,NCURVE 
          NPOIN=KOUNTG(ICURVE) 
          DO 8822 IPOIN=1,NPOIN 
          READ(12,*)XCOD1,YCOD1 
          CURVE(ICURVE,IPOIN,1)=XCOD1 
          CURVE(ICURVE,IPOIN,2)=YCOD1 
8822      CONTINUE 
8888      CONTINUE 
*********************************************************************** 
C          DO 3344 ICURVE=1,NCURVE 
C          NPOIN=KOUNTG(ICURVE) 
C          DO 2345 IPOIN=1,NPOIN 
C          XCOD1=CURVE(ICURVE,IPOIN,1) 
C          YCOD1=CURVE(ICURVE,IPOIN,2) 
C          WRITE(13,1010)XCOD1,YCOD1 
C2345      CONTINUE 
C3344      CONTINUE 
C********************************************************************** 
          NPOIN=SMIN/SINT+1 
***INCREASE BY 1 IS FOR FIRST COORDINATE WHICH IS (0.000,0.000) 
*********************************************************************** 
          IF(LOPT.EQ.1)THEN 
          GOTO 1934 
          ELSE 
          GOTO 2311 
          ENDIF 
*********************************************************************** 
1934      DO 9999 IPOIN=1,NPOIN 
          SFACT=0.0 
          SUMM=0.0 
          DO 9911 ICURVE=1,NCURVE 
          XCOD1=CURVE(ICURVE,IPOIN,1) 
          YCOD1=CURVE(ICURVE,IPOIN,2) 
          FACT=WAITF(ICURVE) 
          SFACT=SFACT+FACT 
          SUMM=SUMM+FACT*YCOD1 
9911      CONTINUE 
          XCOD=XCOD1 
          YCOD=SUMM/SFACT 
          WRITE(11,1010)XCOD,YCOD 
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          WRITE(12,1010)XCOD,YCOD 
          WRITE(14,1010)XCOD,YCOD 
9999      CONTINUE 
          GOTO 5000 
C********************************************************************** 
2311      DO 1166 IPOIN=1,NPOIN 
          SUMM=0.0 
          DO 9111 ICURVE=1,NCURVE 
          XCOD1=CURVE(ICURVE,IPOIN,1) 
          YCOD1=CURVE(ICURVE,IPOIN,2) 
          FACT=WAITF(ICURVE) 
          SUMM=SUMM+FACT*YCOD1 
9111      CONTINUE 
          XCOD=XCOD1 
          YCOD=SUMM 
          WRITE(11,1010)XCOD,YCOD 
          WRITE(12,1010)XCOD,YCOD 
          WRITE(14,1010)XCOD,YCOD 
1166      CONTINUE 
*********************************************************************** 
5000      CONTINUE 
          CALL JOB 
*********************************************************************** 
          CLOSE(1) 
          CLOSE(2) 
          CLOSE(3) 
          CLOSE(4) 
          CLOSE(5) 
CCC          CLOSE(6) 
CCC          CLOSE(7) 
CCC          CLOSE(8) 
CCC          CLOSE(9) 
CCC          CLOSE(10) 
CCC          CLOSE(11) 
CCC          CLOSE(12) 
CCC          CLOSE(14) 
****************************************************************** 
          STOP 
          END 
C***************************************************************** 
C***************************************************************** 
C***************************************************************** 
C***************************************************************** 
     SUBROUTINE ANAME 
     REWIND (103) 
C****************************************************************** 
     WRITE(*,10) 
10  FORMAT(//////5X, 'DEVELOPED BY MUNAWAR A. HUSSAIN, U OF A, 
     .EDMONTON, CANADA')  
     RETURN 
     END 
C****************************************************************** 
C****************************************************************** 
C****************************************************************** 
     SUBROUTINE JOB 
          WRITE(*,10) 
10  FORMAT(//5X,'JOB COMPLETED! JOB COMPLETED!'//) 
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   RETURN 
       END 
C****************************************************************** 
C****************************************************************** 
C****************************************************************** 
 
B.3 OPERATION 
 
The program works in interactive mode. On execution, the program asks for the number of input 

files to be engaged (The file names are MCP1.INP, MCP2.INP, MCP3.INP and so on). Then the 

program asks about the type of operation to be performed on these files such as 

addition/subtraction or finding average of the given input files. The program also asks for the 

required size of interval between the data points of the resulting output file. Two sample input 

files such as MCP1.INP and MCP2.INP and the resulting output file (MCP.OUT) containing the 

average of the two input files are given in Table B.1. It can be seen that the data points of the 

input files are at random locations and the data points of the output file are at constant interval 

specified by the user. The number 18 and 17 in the first lines of the input data files MCP1.INP, 

and MCP2.INP represent the number of data points in these files, respectively. 
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Table B.1: Sample input and output files  
  

 
MCP1.INP 

 
MCP2.INP 

 
MCP.OUT 

 
 

 
18 

 
17 

 

0.00 0.00 0.00 0.00 0.00 0.00 
0.16 21.70 0.19 26.91 0.50 53.92 
0.35 38.36 0.34 40.45 1.00 98.43 
0.62 64.28 0.54 58.98 1.50 139.34 
0.84 84.56 0.83 86.22 2.00 166.38 
0.99 95.61 1.07 106.16 2.50 182.76 
1.14 107.78 1.12 107.63 3.00 191.01 
1.32 122.36 1.19 114.74 3.50 198.08 
1.52 137.78 1.38 133.30 4.00 204.92 
1.84 155.00 1.73 160.00 4.50 210.68 
2.02 160.00 2.06 176.00 5.00 215.93 
2.58 178.00 2.18 180.00 5.50 219.04 
3.04 186.09 2.42 189.00 6.00 222.15 
3.92 199.80 2.55 191.00 6.50 225.26 
4.90 210.00 4.94 221.00 7.00 228.37 
7.30 214.00 7.24 245.84 7.50 237.43 
9.74 217.00 10.11 254.50 8.00 231.50 
15.61 208.00   8.50 232.56 

    9.00 233.62 
    9.50 234.67 
    10.00 235.40 
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C. YIELDING OF LONGITUDINAL BARS AT YIELD DISPLACEMENT 

 
A procedure for the determination of the yield displacement of columns has been described in 

Chapter 4. In this appendix, a brief investigation is presented on whether yielding of longitudinal 

bars in tension is likely to occur at the displacement . A singly reinforced rectangular concrete 

section of 300 mm width and 600 mm overall depth is chosen to study bar yielding behaviour. 

The section is reinforced with 3-φ25 mm bars with a 540 mm effective depth. The yield strength, 

, and modulus of elasticity, , of the reinforcing bars are 500 MPa and 200 000 MPa, 

respectively. The effect of the strength of concrete, 

yΔ

yf sE

cf ′ , on the nominal moment strength, , 

and the moment strength of the section at the first yield of tensile steel,  (based on 

unconfined concrete), was studied. The nominal moment strengths, , were calculated 

based on the ACI 318 Whitney stress block. The moment capacities of the section at the first 

yield of the steel were calculated using the strain compatibility analysis. This analysis requires 

the complete stress vs. strain curves of concrete and the equation proposed by Popovics (1973) 

was used. The strain equal to 0.003 was considered as the failure strain of concrete. The results 

of these calculations are given in Table C.1. The values of other parameters such as the 

coefficient , the steel ratio,

nucM

yucM

nucM

1β ρ , and the balanced steel ratio, , are also given in the table. 

The definitions of these terms can be found in ACI 318-02. 

bρ

 

Figure C-1 shows the plot of values of  and  with respect to . For concrete 

strengths varying from 20 to 45 MPa, the given section is under-reinforced, i.e., crushing of the 

concrete will take place after the yielding of the tensile steel takes place. This is also clear from 

Table C-1, which shows that the values of steel ratios, 

nucM yucM cf ′

ρ , are less than the corresponding 

balanced steel ratios, . Hence, for an under-reinforced section, the nominal moment 

strengths, , are always more than the corresponding yield moment capacity, , of the 

section. Figure C-1 also shows that with the increase of concrete strength, both the nominal 

moment strength, , and the moment capacity at the first yield of steel, , increase. This 

figure also shows that  and  converge when the steel ratio, 

bρ

nucM yucM

nucM yucM

nucM yucM ρ , approaches the 

balanced steel ratios, . When the steel ratio, bρ ρ , becomes equal to the balanced steel ratio, 

, yielding of the steel and the crushing of the concrete happen simultaneously and the nominal 

moment capacity, , and yield moment capacity, , are equal. In over-reinforced 

bρ

nucM yucM
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concrete sections, crushing of the concrete happens before yielding of the steel and the nominal 

moment strength, , will be controlled by the crushing of the concrete. nucM

 

Figure C-2 shows the plot of the ratio of  to , expressed in percentage, with respect to 

the cylinder strength of concrete. For low strength concrete,  tends to approach , but 

as the strength of concrete increases,  becomes a smaller percentage of . In the 

present case, it levels off at about 96% of . The procedure used for the determination of 

yield displacements, , in Chapter 4 requires that the yielding of the section take place 

between  and  (assuming ). In balanced and over-reinforced 

sections, the chance of yielding of the tensile steel occurring at the yield displacement, , 

determined by this procedure is nil. Moreover, in under-reinforced sections, the chance of 

yielding the tensile steel at the yield displacement, , is also unlikely because  can go as 

high as 96% of . Therefore, the procedure for the determination of the yield displacement in 

Chapter 4 does not guarantee that the yielding of the tensile steel will take place at the yield 

displacement. Hence, the yield displacement should refer to the yielding of the section as a 

whole. This seems viable because in over-reinforced sections, the damage starts in the concrete 

and the member goes into the nonlinear range and starts absorbing energy prior to yielding of 

the steel. 

yucM nucM

yucM nucM

yucM nucM

nucM

yΔ

nucM750. nucM ifnuc MM =

yΔ

yΔ yucM

nucM
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Table C.1: Nominal flexural strength and moment capacities at first yield of 
longitudinal tensile steel bars of a singly reinforced section 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

cf ′  

 

(MPa) 

 

1β  

 
ρ  

 

bρ  

Ratio 
yucM (kN·m) nucM  

 

(kN·m) 

nucyuc MM /

(%) 

20 0.85 0.0093 0.0158 347.65 349.85 99.37 

25 0.85 0.0093 0.0197 353.29 360.88 97.90 

30 0.85 0.0093 0.0236 356.75 368.24 96.88 

35 0.81 0.0093 0.0263 359.10 371.93 96.55 

40 0.77 0.0093 0.0286 361.16 374.56 96.42 

45 0.73 0.0093 0.0305 362.76 376.46 96.36 

Notes: 
Width of the section: 300 mm 
Overall depth of the section: 600 mm 
Effective depth of the section: 540 mm 
Yield stress of steel: 500 MPa 
Modulus of elasticity of steel: 200 000 MPa 
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Figure C-1: Effect of strength of concrete on nucM and yucM of
a singly reinforced section

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C-2: Effect of strength of concrete on the ratio of yucM  to nucM  
of a singly reinforced concrete section
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D. MOMENT VERSUS REINFORCING BAR STRAIN RELATIONSHIPS 

 
In this section, the strain data of the tie bars of specimen CL0 and of the longitudinal bars of all 

the specimens are presented. Figure D-1 shows the location of strain gages on the longitudinal 

bars of each column. The locations of strain gauges on the longitudinal bars of the columns are 

identified with notation L1, L2, L3 and so on (L1 means the location of strain gage number 1, for 

example). These strain gages are divided into five groups based on their locations: group 1 

consists of strain gages at locations L1, L2, and L3; group 2 consists of strain gages at locations 

L8, L9, and L10; group 3 consists of strain gages at locations L6 and L7; group 4 consists of 

strain gages at locations L4 and L5; and group 5 consists of strain gages at locations L11 and 

L12. The strain gages were affixed on the neutral axis of the rebars to cancel the effect of the 

strain gradient in the rebars. The data of the strain gauges within a certain group were similar. 

Therefore, it was decided to present the data of one strain gage from each group. Generally, the 

data from a strain gauge that sustained a greater number of cycles before debonding or 

malfunctioning in a certain group was selected for presentation. The selection of the number of 

cycles for presentation depends on the availability of the data and the clarity of figures. From 10 

to 20 cycles are presented. In the present study, all the columns were first pushed towards the 

north in all the cycles they sustained. The moments corresponding to the north push are 

specified as positive and those corresponding to the south push are negative. Similarly, the 

tensile rebar strains are positive and the compressive rebar strains are negative. For the location 

of strain gauges on the tie bars in specimen CL0, the ties are numbered from bottom to top. The 

first tie close to the footing is given number 1 and the second tie is given number 2 and so on. 

The strain gauges on the tie bars are located at mid-depth of the column section on either its 

north or east face. 

 
D.1 Specimen CL0 
 
Figure D-2 shows the relationships between the moment at the column base and longitudinal bar 

strains for column CL0. For this column, a gravity load of 1470 kN was maintained up to the end 

of the 16th cycle and was reduced to 720 kN for the remaining cycles. The yielding of the 

longitudinal bars of the column is clear from this figure. The nominal moment capacity of the 

column based on the unconfined concrete, , is 180.3 kN·m (Table 4.5). The moment at first 

yield considering confined concrete in compression, , is 246.8 kN.m (Table 4.5). 

nucM

yccM

 

Figure D-2(a) shows the relationship between the moment at the column base vs. strain of a 

longitudinal bar at location L3 on the south face of the column. The tensile and compressive 

strains of this longitudinal bar in the first 15 cycles are similar.  
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Figure D-2(b) shows the relationship between moment at the column base and strain of a 

longitudinal bar at location L10 on the north face of the column. In the first 10 cycles, the tensile 

and compressive strains are similar. In cycles 11 through 15, the compressive strain in the bar at 

location L3 increases gradually with the increase in the number of cycles and it becomes much 

higher than the tensile strains at the end of 15th cycle. Similar behaviour was observed for strains 

at location L5 and L11. At these locations, the tensile and compressive strains in the rebars are 

similar up to the end of the first five cycles. The compressive strains become much higher than 

the tensile strains in cycles 6 through 15. The compressive strains in the rebars at level 2 are 

much higher than those at level 1. This can be explained with the help of Figure 4-18, which 

shows that the most damaged region occurs between 300 to 550 mm above the footing.  

 

Figure D-2(c) shows the relationship between the moment and the rebar strain at location L6. In 

the first five cycles, the strains remain compressive. In the sixth cycle, the rebar is subjected to a 

small tensile strain when the column is at the extreme north. Thereafter, the loops shift towards 

the left with the increase in the number of cycles.  

 

In Figures D-2(b), D-2(c), D-2(d), and D-2(e), the loops shift towards the left with the increase in 

the number of cycles. This is because the concrete sheds its load due to damage imparted to the 

concrete due to cycling, which is then carried by the longitudinal bars of the column. The strain at 

location L3 does not show this behaviour. The reason of this discrepancy is not known. 

 

Figure D-3 shows the relationships between moment at the column base and strains in ties 1, 2, 

and 3, respectively. The strain gages were installed on the neutral axis of the tie bars to cancel 

the effect of the strain gradient from bending as the ties are pushed out due to concrete dilation. 

The strains in the tie bars are tensile as shown in Figures D-3(b) through D-3(f). Figure D-3(a) 

shows tensile as well as compressive strains in the tie bars under cyclic loading. The reason for 

this discrepancy is attributed to the error in placing strain gauge exactly at the neutral axis of the 

tie bar. The tensile strain of tie 5 is much higher than that of tie 1 and tie 3. This is because tie 5 

is located in the most damage region (location of hinge formation) of the column. 

 

D.2 Specimens CL1 and CL5 
 
First the specimen CL1 will be discussed and then specimen CL5 will be discussed. Both of 

these specimens were tested without gravity load. 

 

Figure D-4 shows the relationships between moment and strains of longitudinal bars at different 

locations for specimen CL1. The yielding of the longitudinal bars of the column is clear from this 
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figure. The moment at the first yield of the tensile steel considering confined concrete in the 

compression zone, , is 151.1 kN·m (Table 4.6). yccM

 

The bars on the north and south faces receive tensile and compressive strains in the first five or 

sometime first ten cycles. However, tensile strains are higher in magnitude than compressive 

strains (Figures D-4(a), D-4(b), D-4(d), and D-4(e)). In cycles 6 through 15, the strains in the 

rebars are generally tensile. However, the magnitude of tensile strains varies during cycling. 

 

In the first five cycles, the crushing of concrete does not take place because the applied moment 

in these cycles is much less than the nominal moment strength of the section,  

( =142.56 kN.m, Table 4.5), calculated based on the unconfined concrete strength. As the 

crushing of unconfined concrete does not take place in these five cycles, the collar confinement 

is not activated in these cycles because collar confinement is passive. 

nucM

nucM

 

Therefore, the bond between concrete and rebars remains intact and the column section 

behaves like a composite column section. Hence, the longitudinal steel bars receive compressive 

as well as tensile strains in these cycles and the magnitude of tensile and compressive strains 

are comparable. 

 

In cycles 6 through 15, the longitudinal bars of the column, generally, do not receive compressive 

strains. However, they receive high tensile strains. This is because in these cycles the applied 

moment on the column is more than  ( =142.6 kN·m, Table 4.5), which means that the 

crushing of unconfined concrete takes place in these cycles and, due to outward pressure of the 

crushed concrete on the collars, the collar confinement becomes effective. With each additional 

cycle, the outward pressure increases and the confining pressure from the collars on the 

concrete also increases. The column section is over-reinforced if unconfined concrete is 

considered and it becomes under-reinforced if confined concrete is considered. Up to about the 

first 20 cycles, the spalling of concrete is very limited. Hence, the full cross-section of the column 

takes part in resisting the applied moments.  

nucM nucM

 

Figure D-4(a) shows a relationship between moment and strain of a longitudinal bar located on 

the south face of the column. In cycles 6 through 15, the strain of this bar never becomes 

compressive. When the column is pushed towards the north in these cycles, the bars on the 

south face of the column go into tension and tension cracks are created on the south face of the 

column. As the concrete is under high confining pressure, the gaps created by tension cracks are 

immediately filled by the crushed confined concrete. When the column is pushed towards south, 
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the crushed concrete starts taking load immediately. The stretched bars just relax and do not 

take compression. As the columns do not carry gravity load, the need of these bars to take 

compressive load does not arise because the presence of concrete is sufficient to take 

compressive loads. Hence, these rebars do not show compressive strains.  

 

Figure D-4(c) shows the moment vs. strain of a longitudinal bar at mid-depth of the column. 

These bars receive only tensile strain during cyclic loading, which increases with the increase in 

the displacement ductility level. 

 

The relationships between moment at the column base and strains of longitudinal bars for 

column CL5 are given in Figure D-8. The yielding of longitudinal bars of the column is clear from 

this figure. The nominal moment capacity of the section, , based on the unconfined 

concrete is 164.3 kN·m (Table 4.5). This is the only column in which yielding of the tensile steel 

can take place before the crushing of unconfined concrete in the compression zone. The moment 

at the first yield calculated based on the unconfined concrete, , is 135.5 kN·m (Table 4.5). 

The moment capacity of the section based on the first yield of the tensile steel considering 

confined concrete material, , is calculated to be 163.8 kN.m (Table 4.5). The interpretation 

of results given above for column CL1 applies to this specimen also. 

nucM

yucM

yccM

 

D.3 Specimens CL2, CL3, CL4, CL6, CL7, and CL8 

 
Each of these columns was tested under gravity loads of 720 kN. The moment vs. longitudinal 

bar strain relationships for these columns are shown in Figures D-5, D-6, D-7, D-9, D-10, and 

D-11, respectively, which are similar for all the columns with a few exceptions that are attributed 

to the malfunctioning or debonding of strain gages. The values of and  for these 

columns are given in Table 4.5. Yielding of the longitudinal bars in both tension and compression 

is obvious from these figures. The bars receive both tension and compressive strains due to 

cyclic loading; however, the tensile strains are higher than the compressive strains. The reason 

for this discrepancy is that in tension the load is resisted by the steel alone because concrete 

cannot resist tensile forces after cracking, whereas in the compression zone the load is resisted 

by both concrete and steel. In the columns without gravity loads, practically the bars do not go 

into compression. In the present case, the compressive forces are high due to the presence of 

gravity loads. The confined concrete starts resisting compressive load, as described before, 

during a cycle. The compressive forces are high and the confined concrete is strained 

considerably. Due to high strains in the compression zone, the resisting capacity of the 

nucM yccM
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longitudinal bars is also mobilized. Hence, the longitudinal bars of the columns (with gravity 

loads) show considerable compressive strains under horizontal cyclic loading. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 616



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D-1: Location of strain gages on the longitudinal bars of the 
columns (collars not shown for clarity). 

Level 1

Level 2
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Figure D-2: Moment at column base vs. longitudinal bar strains 
for column CL0 

(a) 

(e) 

(c) 

(d) 

(b) 
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Figure D-3: Moment at the column base vs. strains of tie bars 
for column CL0 

(a) 

(d) 

(b) 

(c) 

(e) (f) 
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Figure D-4: Moment at column base vs. longitudinal bar strain for 
column CL1 

(a) 

(b) (c) 

(d) (e) 
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Figure D-5: Moment at column base and the strain on longitudinal bars for 
column CL2 

(a) 

(b) (c) 

(d) (e) 
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Figure D-6: Moment at column base vs. longitudinal bars for 
column CL3 

(d) 

(a) 

(b) (c) 

(e) 
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Figure D-7: Moment at column base vs. longitudinal bars 
for column CL4 

(a) 

(b) 

(c) 
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Figure D-8: Moment at column base and the strain on longitudinal 
bars for column CL5

(a) 

(b) (c) 

(d) 
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Figure D-9: Moment at column base vs. longitudinal bars for 
column CL6 

(b) (c) 

(d) (e) 

(a) 
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Figure D-10: Moment at column base vs. longitudinal bars strains for 
column CL7 

(a) 

(b) 
(c) 

(d) (e) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 626



 
 

Figure D-11: Moment at column base vs. longitudinal bar strains for 
column CL8 

(a) 

(b) (c) 

(d) (e) 
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E. AVERAGE ENVELOPES TO MOMENT VERSUS DRIFT HYSTERESES 

 
 
 

Figure E-1: Envelopes to moment vs. lateral drift hysteresis for 
column CL0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure E-2: Envelopes to moment vs. lateral drift hysteresis for 
specimen CL1 
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Figure E-3: Envelopes to moment vs. lateral drift hysteresis for 
specimen CL2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure E-4: Envelopes to moment vs. lateral drift hysteresis for 
specimen CL3 
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Figure E-5: Envelopes to moment vs. lateral drift hysteresis for 
specimen CL4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure E-6: Envelopes to moment vs. lateral drift hysteresis for 
specimen CL5 
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Figure E-7: Envelopes to moment vs. lateral drift hysteresis for 
specimen CL6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure E-8: Envelopes to moment vs. lateral drift hysteresis for 
specimen CL7 
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Figure E-9: Envelopes to moment vs. lateral drift hysteresis for 
specimen CL8 
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F. DETERMINATION OF YIELD DISPLACEMENTS 

 
 

Figure F-1: Determination of yield displacement for column CL0 using 
the first cycle (method 1(alternative 2)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-2: Determination of yield displacement for column 
CL1using the first cycle (method 1(alternative 2)) 
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Figure F-3: Determination of yield displacement for column CL2 using 
the first cycle (method 1(alternative 2)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-4: Determination of yield displacement for column CL3 
using the first cycle (method 1(alternative 2)) 
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Figure F-5: Determination of yield displacement for column CL4 using the 
first cycle (method 1(alternative 2)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-6 Determination of yield displacement for column CL5 
using the first cycle (method 1(alternative 2)) 
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Figure F-7: Determination of yield displacement for column CL6 
using the first cycle(method 1(alternative 2)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-8: Determination of yield displacement for column 
CL7 using the first cycle (method 1(alternative 2)) 
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Figure F-9: Determination of yield displacement for column CL8 using
the first cycle (method 1(alternative 2)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-10: Determination of yield displacement for column CL0
using average envelope (method 1(alternative 3)) 
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Figure F-11: Determination of yield displacement for column CL1
using average envelope (method 1(alternative 3)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-12: Determination of yield displacement for column CL2 using
average envelope (method 1(alternative 3)) 
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Figure F-13: Determination of yield displacement for column CL3
using average envelope (method 1(alternative 3)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-14: Determination of yield displacement for column CL4
using average envelope (method 1(alternative 3)) 
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Figure F-15: Determination of yield displacement for column CL5
using average envelope (method 1(alternative 3)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-16: Determination of yield displacement for column CL6
using average envelope (method 1(alternative 3)) 
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Figure F-17: Determination of yield displacement for column CL7 
using average envelope (method 1(alternative 3)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-18: Determination of yield displacement for column CL8 
using average envelope (method 1(alternative 3)) 
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Figure F-19: Determination of yield displacement for column CL0 using 
average envelope (method 1(alternative 4)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-20: Determination of yield displacement for column CL1 using 
average envelope (method 1(alternative 4)) 
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Figure F-21: Determination of yield displacement for column CL2 using 
average envelope (method 1(alternative 4)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-22: Determination of yield displacement for column CL3 using 
average envelope (method 1(alternative 4)) 
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Figure F-23: Determination of yield displacement for column CL4 using 
average envelope (method 1(alternative 4)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-24: Determination of yield displacement for column CL5 using 
average envelope (method 1(alternative 4)) 
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Figure F-25: Determination of yield displacement for column CL6 using 
average envelope (method 1(alternative 4)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-26: Determination of yield displacement for column CL7 using 
average envelope (method 1(alternative 4)) 
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Figure F-27: Determination of yield displacement for column CL8 using 
average envelope (method 1(alternative 4)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-28: Determination of yield displacement for column CL0 using 
average envelope (method 1(alternative 5)) 
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Figure F-29: Determination of yield displacement for column CL1 using 
average envelope (method 1(alternative 5)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-30: Determination of yield displacement for column CL2 using 
average envelope (method 1(alternative 5)) 
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Figure F-31: Determination of yield displacement for column CL3 using 
average envelope (method 1(alternative 5)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-32: Determination of yield displacement for column CL4 using 
average envelope (method 1(alternative 5)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 648



 
 

Figure F-33: Determination of yield displacement for column CL5 using 
average envelope (method 1(alternative 5)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-34: Determination of yield displacement for column CL6 using 
average envelope (method 1(alternative 5)) 
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Figure F-35: Determination of yield displacement for column CL7 using 
average envelope (method 1(alternative 5)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-36: Determination of yield displacement for column CL8 using 
average envelope (method 1(alternative 5)) 
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Figure F-37: Determination of yield displacement for column 
CL0 using area equalization method (case 1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-38: Determination of yield displacement for column 
CL0 using area equalization method (case 2) 
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Figure F-39: Determination of yield displacement for column 
CL0 using area equalization method (case 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-40: Determination of yield displacement for column 
CL1 using area equalization method 
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Figure F-41: Determination of yield displacement for column 
CL2 using area equalization method 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-42: Determination of yield displacement for column CL3 
using area equalization method 
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Figure F-43: Determination of yield displacement for column CL4 using 
area equalization method 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-44: Determination of yield displacement for column CL5 
using area equalization method 
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Figure F-45: Determination of yield displacement for column CL6 
using area equalization method 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F-46: Determination of yield displacement for column
CL7 using area equalization method 
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Figure F-47: Determination of yield displacement for column
CL8 using area equalization method 
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G. ENERGY DISSIPATION 
 
 
 

Table G.1: Energy dissipated by specimen CL0 based on overall system  
Cycle 

number 
Energy dissipated 

 per cycle 
(kN.m) 

Cumulative energy 
dissipated 

(kN.m) 

Cumulative 
norm. energy 

dissipated 
1 1.09 1.09 0.32 
2 0.84 1.93 0.56 
3 0.83 2.76 0.81 
4 0.78 3.54 1.04 
5 0.70 4.24 1.24 
6 5.69 9.93 2.90 
7 3.46 13.38 3.92 
8 3.23 16.61 4.86 
9 2.85 19.46 5.69 
10 3.66 23.12 6.76 
11 6.43 29.55 8.64 
12 5.42 34.97 10.23 
13 6.33 41.30 12.08 
14 6.07 47.37 13.86 
15 5.39 52.76 15.43 
16 26.19 78.95 23.10 
17 17.50 96.46 28.22 
18 17.50 113.96 33.34 
19 16.74 130.70 38.23 
20 16.56 147.27 43.08 
21 33.43 180.70 52.86 
22 35.48 216.18 63.24 
23 33.89 250.07 73.15 
24 34.50 284.57 83.25 
25 36.03 320.59 93.78 
26 39.43 360.02 105.32 
27 40.62 400.65 117.20 
28 40.62 441.27 129.09 
29 39.34 480.61 140.59 
30 39.14 519.74 152.04 
31 39.30 559.04 163.54 
32 39.77 598.81 175.17 
33 39.17 637.98 186.63 
34 39.39 677.37 198.15 
35 39.14 716.51 209.60 
36 39.70 756.21 221.22 
37 39.30 795.50 232.71 
38 37.67 833.17 243.73 
39 35.66 868.83 254.16 
40 34.25 903.07 264.18 
41 34.54 937.61 274.28 
42 34.39 972.00 284.34 
43 35.66 1007.66 294.77 
44 34.25 1041.91 304.79 

Note: Experimental 30 mm; 1900 mm; and 216.50 kN.m =yΔ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 =2H =maxM 
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 Table G.2: Energy dissipated by specimen CL1 based on overall system 
 Cycle 

number
Energy dissipated  

per cycle 
(kN.m) 

Cumulative energy 
dissipated 

(kN.m) 

Cumulative 
norm. energy 

dissipated 
1 0.31 0.31 0.11 
2 0.20 0.51 0.18 
3 0.15 0.66 0.23 
4 0.11 0.78 0.27 
5 0.11 0.89 0.31 
6 0.97 1.86 0.65 
7 0.68 2.54 0.89 
8 0.53 3.07 1.08 
9 0.45 3.52 1.24 
10 0.36 3.88 1.36 
11 1.80 5.68 1.99 
12 1.54 7.22 2.53 
13 1.39 8.61 3.02 
14 1.34 9.95 3.49 
15 1.31 11.26 3.95 
16 11.03 22.29 7.82 
17 8.98 31.27 10.97 
18 8.80 40.08 14.06 
19 8.64 48.72 17.09 
20 8.07 56.79 19.92 
21 19.81 76.59 26.87 
22 18.43 95.02 33.34 
23 18.17 113.19 39.71 
24 18.81 132.00 46.31 
25 17.21 149.21 52.35 
26 31.77 180.98 63.49 
27 31.93 212.91 74.70 
28 29.88 242.80 85.18 
29 28.89 271.69 95.32 
30 28.20 299.89 105.21 
31 29.68 329.57 115.62 
32 28.91 358.48 125.76 
33 29.48 387.96 136.11 
34 29.53 417.49 146.47 
35 29.76 447.26 156.91 
36 28.44 475.70 166.89 
37 28.56 504.26 176.91 
38 28.30 532.57 186.84 
39 28.32 560.88 196.77 
40 28.88 589.76 206.90 
41 28.16 617.92 216.78 
42 28.69 646.60 226.84 
43 28.59 675.20 236.88 
44 28.63 703.83 246.92 
45 28.59 732.42 256.95 

Note: Experimental 23 mm; 1900 mm, and 235.47 kN.m =yΔ =2H

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 =maxM 
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 Table G.3: Energy dissipated by specimen CL2 based on overall system 
 Cycle 

number 
Energy dissipated  

per cycle 
(kN.m) 

Cumulative energy 
dissipated 

(kN.m) 

Cumulative 
Norm. energy 

dissipated 
1 1.10 1.10 0.18 
2 0.64 1.74 0.29 
3 0.68 2.42 0.40 
4 0.61 3.03 0.51 
5 0.73 3.76 0.63 
6 5.51 9.27 1.55 
7 4.34 13.61 2.28 
8 3.97 17.58 2.94 
9 4.10 21.68 3.63 
10 4.10 25.78 4.31 
11 8.20 33.98 5.69 
12 8.12 42.10 7.05 
13 7.90 50.00 8.37 
14 7.94 57.94 9.70 
15 7.93 65.87 11.02 
16 32.21 98.08 16.41 
17 30.32 128.41 21.49 
18 28.14 156.55 26.20 
19 28.76 185.31 31.01 
20 29.09 214.40 35.88 
21 39.58 253.98 42.50 
22 40.44 294.42 49.27 
23 40.23 334.65 56.00 
24 40.00 374.65 62.70 
25 39.83 414.48 69.36 
26 36.81 451.29 75.52 
27 26.85 478.14 80.01 

Note: Experimental 41 mm; 1900 mm, and 276.92 kN.m =yΔ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=2H =maxM
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Table G.4: Energy dissipated by specimen CL3 based on overall system 
Cycle 

number 
Energy dissipated 

per cycle 
(kN.m) 

 
Cumulative energy 

dissipated 
(kN.m) 

Cumulative 
Norm. energy 

 
 
 
 

dissipated 
1 1.35 1.35 0.22 
2 0.72 2.07 0.34 
3 0.62 2.69 0.45  
4 0.56 3.25 0.54  

 
 
 

5 0.59 3.84 0.64 
6 3.80 7.64 1.27 
7 3.14 10.78 1.79 
8 2.97 13.75 2.28 
9 2.84 16.59 2.76  10 2.86 19.45 3.23 

 
 
 
 

11 6.92 26.37 4.38 
12 6.32 32.69 5.43 
13 6.05 38.74 6.44 
14 6.89 45.63 7.58 
15 6.29 51.92 8.63 

 16 31.34 83.26 13.83 
17 26.33 109.59 18.21  

 
 
 

18 25.26 134.85 22.40 
19 24.74 159.59 26.51 
20 23.74 183.33 30.46 
21 37.99 221.32 36.77 
22 36.79 258.11 42.88  
23 36.26 294.37 48.90  

 
 
 

24 35.93 330.30 54.87 
25 36.66 366.96 60.96 
26 35.99 402.95 66.94 
27 36.00 438.95 72.92 
28 35.24 474.19 78.78 

 29 35.69 509.88 84.71 
 
 
 
 

30 35.36 545.23 90.58 
31 35.31 580.55 96.45 
32 35.90 616.45 102.41 
33 35.33 651.77 108.28 
34 35.22 687.00 114.13 

 35 35.05 722.05 119.96 
36 35.09 757.14 125.79  

 
 
 

37 35.06 792.21 131.61 
38 35.01 827.21 137.43 
39 35.16 862.37 143.27 
40 34.98 897.35 149.08 
41 34.98 932.33 154.89  42 35.01 967.33 160.71 

 
 
 
 

43 34.92 1002.26 166.51 
44 35.22 1037.48 172.36 
45 34.74 1072.22 178.13 

Note: Experimental 38 mm; 1900 mm, and 300.96 kN.m =yΔ =2H =maxM
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Table G.5: Energy dissipated by specimen CL4 based on overall system 
Cycle 

number 
Energy dissipated 

per cycle 
(kN.m) 

 
 Cumulative energy 

dissipated 
(kN.m) 

Cumulative 
Norm. energy  dissipated 

 
 
 
 

1 0.68 0.68 0.16 
2 0.46 1.14 0.26 
3 0.39 1.53 0.35 
4 0.36 1.89 0.43 
5 0.36 2.25 0.51 

 6 1.87 4.12 0.94 
 
 
 
 

7 1.24 5.36 1.23 
8 1.14 6.50 1.49 
9 1.10 7.60 1.74 
10 1.02 8.62 1.97 
11 3.57 12.18 2.79 

 12 2.83 15.01 3.43 
13 2.64 17.65 4.03  

 
 
 

14 2.68 20.33 4.65 
15 3.22 23.55 5.38 
16 18.34 41.88 9.57 
17 14.36 56.25 12.86 
18 14.72 70.97 16.22  19 13.94 84.91 19.41 

 
 
 
 

20 13.91 98.82 22.59 
21 32.23 131.05 29.96 
22 29.44 160.49 36.69 
23 29.07 189.56 43.33 
24 29.19 218.75 50.01 

 25 30.50 249.25 56.98 
 
 
 
 

26 37.59 286.84 65.57 
27 36.75 323.59 73.97 
28 36.41 360.00 82.29 
29 36.24 396.24 90.58 
30 36.08 432.32 98.83 
31 35.87 468.19 107.03  
32 36.01 504.20 115.26  

 
 
 

33 35.56 539.76 123.39 
34 35.28 575.04 131.45 
35 35.44 610.48 139.55 
36 35.01 645.49 147.63 
37 34.94 680.43 155.71  38 34.54 714.97 163.79 

 
 
 
 

39 35.34 750.32 171.87 
40 35.34 785.66 179.95 
41 35.14 820.80 187.98 
42 35.24 856.05 196.02 
43 34.67 890.72 203.94 
44 34.53 925.25 211.84 
45 34.58 959.83 219.74 

Note: Experimental 28 mm; 1900 mm, and 296.84 kN.m =yΔ

 
 
 
 
 

=2H =maxM
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 Table G.6: Energy dissipated by specimen CL5 based on overall system 
 
 
 
 

Cycle 
number 

Energy dissipated  
per cycle 
(kN.m) 

Cumulative energy 
dissipated 

(kN.m) 

Cumulative 
Norm. energy 

dissipated 
1 0.43 0.43 0.20 
2 0.23 0.66 0.30  3 0.16 0.82 0.37 

 
 
 
 

4 0.15 0.97 0.44 
5 0.14 1.12 0.51 
6 1.96 3.08 1.39 
7 0.72 3.79 1.72 
8 0.65 4.45 2.01  
9 0.51 4.96 2.24  

 
 
 

10 0.50 5.46 2.47 
11 2.44 7.90 3.57 
12 1.78 9.68 4.37 
13 1.76 11.44 5.17 

 14 1.60 13.04 5.89 
15 1.50 14.53 6.57  

 
 
 

16 12.39 26.93 12.17 
17 9.13 36.06 16.30 
18 8.84 44.90 20.29 
19 8.11 53.01 23.96 
20 7.89 60.90 27.53  
21 19.86 80.76 36.50  

 
 
 

22 17.23 98.00 44.29 
23 17.23 115.23 52.08 
24 15.33 130.55 59.01 
25 14.42 144.98 65.53 
26 24.75 169.73 76.71  27 24.80 194.53 87.92 

 
 
 
 

28 23.12 217.65 98.37 
29 22.89 240.54 108.72 
30 21.38 261.92 118.38 
31 31.18 293.10 132.48 
32 28.92 322.02 145.55 

 33 29.47 351.49 158.87 
 
 
 
 

34 27.29 378.78 171.20 
35 26.49 405.27 183.18 
36 32.77 438.05 197.99 
37 28.44 466.49 210.84 

Note: Experimental 8 mm; 750 mm, and 207.42 kN.m =yΔ =2H =maxM
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Table G.7: Energy dissipated by specimen CL6 based on overall system 
Cycle 

number 
Energy dissipated 

per cycle 
(kN.m) 

Cumulative energy 
dissipated 

(kN.m) 

Cumulative 
Norm. energy 

dissipated 
1 0.69 0.69 0.22  2 0.39 1.08 0.34  

 
 
 

3 0.43 1.51 0.48 
4 0.38 1.89 0.60 
5 0.33 2.22 0.70 
6 2.11 4.33 1.37 
7 1.20 5.53 1.75  
8 1.26 6.79 2.15  

 
 
 

9 1.32 8.11 2.56 
10 1.18 9.29 2.94 
11 3.42 12.71 4.02 
12 2.83 15.53 4.91 

 13 2.35 17.89 5.65 
 
 
 
 

14 2.37 20.25 6.40 
15 2.62 22.88 7.23 
16 14.70 37.58 11.88 
17 11.92 49.50 15.64 
18 11.40 60.90 19.24 
19  11.72 72.62 22.95 
20  

 
 
 

11.38 84.00 26.55 
21 24.49 108.50 34.29 
22 22.62 131.11 41.43 
23 24.54 155.65 49.19 
24 27.79 183.45 57.97 
25  25.84 209.29 66.14 
26  

 
 
 

40.47 249.76 78.93 
27 38.25 288.01 91.02 
28 39.75 327.76 103.58 
29 40.16 367.92 116.27 
30 38.90 406.82 128.56 
31 

 
43.79 450.61 142.40 

Note: Experimental 8.5 mm; 760 mm, and 282.93 kN.m =yΔ
 
 
 
 

=2H =maxM
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 Table G.8: Energy dissipated by specimen CL7 based on overall system 

Cycle 
number 

Energy dissipated 
per cycle 
(kN.m) 

 
 
 
 

Cumulative energy 
dissipated 

(kN.m) 

Cumulative 
Norm. energy 

dissipated 
1 1.26 1.26 0.28 
2 0.75 2.00 0.44  
3 0.63 2.63 0.58  

 
 
 

4 0.75 3.38 0.75 
5 0.84 4.22 0.93 
6 3.24 7.46 1.65 
7 2.15 9.61 2.12 

 8 1.24 10.84 2.40 
9 1.39 12.23 2.70  

 
 
 

10 1.65 13.87 3.07 
11 5.24 19.11 4.23 
12 4.41 23.52 5.20 
13 4.54 28.06 6.20 

 14 3.72 31.78 7.03 
 
 
 
 

15 3.62 35.40 7.83 
16 20.68 56.08 12.40 
17 16.86 72.94 16.13 
18 15.86 88.81 19.64 
19 15.59 104.40 23.09 
20 14.66 119.06 26.33 
21 

 
 
 
 
 

31.65 150.72 33.33 
22 30.68 181.40 40.11 
23 29.99 211.39 46.74 
24 29.81 241.19 53.33 
25 31.90 273.10 60.39 
26 

 
50.00 323.09 71.44 

27 
 
 
 
 

46.96 370.06 81.83 
28 41.95 412.00 91.10 
29 40.90 452.91 100.15 
30 42.10 495.01 109.46 
31  61.23 556.24 123.00 
32 58.81 615.05 136.00 
33 

 
 
 
 

58.30 673.35 148.89 
34 57.52 730.87 161.61 
35 51.80 782.67 173.07 

Note: Experimental 11.5 mm; 755 mm, and 296.90 kN.m =yΔ =2H =maxM 
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Table G.9: Energy dissipated by specimen CL8 based on overall system 
Cycle 

number 
Energy dissipated 

per cycle 
(kN.m) 

 
Cumulative energy 

dissipated 
(kN.m) 

Cumulative 
Norm. energy 

 
 dissipated 
 1 0.71 0.71 0.17 
 2 0.56 1.27 0.30 

3 0.56 1.83 0.43  
4 0.67 2.50 0.59  5 0.65 3.15 0.75 

 6 1.53 4.68 1.11 
 7 2.46 7.14 1.70 

8 2.26 9.40 2.23  
9 1.50 10.90 2.59  10 1.72 12.62 3.00 

 11 2.39 15.01 3.57 
 12 3.46 18.48 4.39 

13 2.72 21.20 5.04  14 4.27 25.47 6.05 
 15 3.61 29.07 6.91 
 16 17.30 46.37 11.02 

17 15.88 62.26 14.79  
18 15.86 78.12 18.56  19 14.23 92.34 21.94 

 20 13.64 105.98 25.19 
 21 29.67 135.65 32.24 

22 28.98 164.63 39.12  
23 27.96 192.59 45.77  24 29.70 222.29 52.82 

 25 28.71 251.00 59.65 
 26 43.94 294.94 70.09 

27 42.80 337.74 80.26  28 41.04 378.77 90.01 
 29 41.22 419.99 99.81 
 30 40.28 460.27 109.38 

31 57.62 517.89 123.07  
32 57.03 574.92 136.62  33 54.55 629.48 149.59 

 34 54.80 684.27 162.61 
 35 54.19 738.46 175.49 

 
 
 
 
 
 
 
 

Note: Experimental 11 mm; 775 mm, and 296.48 kN.m =2H =maxM=yΔ
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H. DISTRIBUTION OF ENERGY DISSIPATION IN COLUMNS 

 
Although the curvature distributions give a general idea of damage distribution in the test regions 

of the columns, it is difficult to quantify the level of damage in a certain segment of the test region 

using only these diagrams. Conversely, the distribution of energy dissipation in columns gives a 

better idea of the damage distribution and the location of the most damaged region, , of the 

column. In addition, it helps to estimate the effective plastic hinge lengths, , in the columns. 

fh

pL

 

Figures H-1 through H-8 shows the distribution of energy dissipation along the test regions of 

collared columns (CL1 to CL8) for different levels of displacement ductility. These figures also 

give insight into the variation of energy dissipation in different parts of the column with the 

increase of displacement ductility. The energy dissipated at a particular displacement ductility 

level is the sum of energy dissipated in all the cycles to that level. 

 

The values of energy dissipated per cycle based on the overall systems are given in Appendix-G. 

The energy dissipated per loop based on the overall system is equal to the area enclosed by the 

moment at column base vs. lateral drift hysteresis loop. The values of energy dissipated up to the 

centreline of the first collar and the second and/or third collar are given in Tables H.1 through H.8 

for columns CL1 through CL8. The energy dissipated per cycle is equal to the area enclosed by 

the moment vs. collar rotation (in radians) hysteresis loop. However, for these hysteresis loops, 

the moment was calculated at a point located midway between the top of the footing and the 

centreline of the collar under consideration. 

 

H.1 Column CL1 
 
Figure H-1 shows the distribution of energy dissipation along column CL1 at different levels of 

displacement ductility. The centreline of collars 1 and 3 are located at 55 mm and 256 mm, 

respectively, from the top of the footing (Table 4.4). The energy dissipation below the first collar 

was only calculated up to cycle 20 because the stroke of the LVDTs used for measuring the 

rotation of the collar was exhausted in one direction. Figure 4-91 shows the curvature distribution 

for this column. The curvature distributions for ductility levels =μ 4.6 and =μ 6.59 were 

calculated using the data of the LVDTs for one direction only. The calculations for the distribution 

of energy dissipation in this column presented below are based on the sum of energy dissipated 

in cycles 16 through 20, cycles 21 through 25, and in cycles 1 through 45. The reason for 

choosing cycles 16 through 20 and cycles 21 through 25 is that the corresponding displacement 
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ductilities are =μ 3.1 and =μ 4.6, respectively, which encompass the displacement ductility 

level =μ 4, that is often used for the design of reinforced concrete frames in zones of high 

seismic activity. 

 

Based on the sum of energy dissipated in cycles 16 through 20 in different parts of the column, 

the energy dissipated below the first and third collar is 47.06% and 78.34%, respectively, of the 

energy dissipated in the overall system, and the remaining 21.66% is dissipated in the region 

between the third collar and the point of application of horizontal load. Based on the above, the 

energy dissipated between collar 1 and collar 3 is 31.28% of the total energy dissipated. Based 

on the sum of energy dissipated in cycles 21 through 25 in different parts of the column, the 

energy dissipated below the third collar is 77.67% and the remaining 22.33% is dissipated in the 

region between the third collar and the point of application of horizontal load.  

 

Based on the cumulative energy dissipated from cycle 1 through 45, the energy dissipated below 

the third collar is 80.22% of the energy dissipated in the overall system and 19.78% is dissipated 

above the third collar. Figure 4-19 shows the extent of damage in different parts of column CL1 

at different stages of the test. 

 
H.2 Column CL2 
 
Figure H-2 shows the distribution of energy dissipation along column CL2 at different levels of 

displacement ductility. The distances from the centreline of collars 1 and 2 are 76 mm and 

240 mm, respectively, from the top of the footing (Table 4.4). The calculations for the distribution 

of energy dissipation in this column are based on the sum of energy dissipated in cycles 11 

through 15, cycles 16 through 20, and in cycles 1 through 27. The reason for choosing cycles 11 

through 15 and 16 through 20 is that the displacement ductilities are =μ 2.65 and =μ 5.29, 

respectively, which encompass the ductility level =μ 4. 

 

Based on the sum of energy dissipated in cycles 11 through 15 in different parts of the column, 

the energy dissipated below the first and second collar is 28.09% and 75.08%, respectively, of 

the energy dissipated in the overall system, and the remaining 24.92% is dissipated in the region 

between the second collar and the point of application of horizontal load. Therefore, the energy 

dissipated between collars 1 and 2 is 46.99% of the energy dissipated in the overall system. 

Based on cycles 16 through 20 in different parts of the column, the energy dissipated below the 

first and second collars is 13.81% and 76.74%, respectively, of the energy dissipated in the 

overall system, and the remaining 23.26% is dissipated in the region between the second collar 
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and the point of application of horizontal load. The energy dissipated between collars 1 and 2 is 

62.93% of the total energy dissipated in these cycles. 

 

Based on the sum of energy dissipated in cycles 1 through 27, the energy dissipated below the 

first and second collars is 12.13% and 81.83%, respectively, of the energy dissipated in the 

overall system, and the remaining 18.17% is dissipated in the region between the second collar 

and the point of application of horizontal load. The energy dissipated between collars 1 and 2 is 

69.70% of the total energy dissipated in these cycles. 

 

The energy dissipation between the first and second collar is much higher than that below the 

first collar. This is in accordance with the curvature distributions of the column along the test 

region at different levels of displacement ductility (Figure 4-92). The rupture of vertical bars 

between collars 1 and 2 support these observations (Figure 4-20). 

 
H.3 Column CL3 
 
Figure H-3 shows the distribution of energy dissipation along column CL3 at different levels of 

displacement ductility. The distance to the centreline of collars 1 and 3 are 64 mm and 294 mm, 

respectively, from the top of the footing (Table 4.4). The calculations for the distribution of energy 

dissipation in this column are based on the sum of energy dissipated in cycles 11 through 15, 

cycles 16 through 20, and in cycles 1 through 45. Cycles 11 through 15 and cycles 16 through 20 

were selected because the displacement ductility levels of these cycles are =μ 2.38 and 

=μ 4.75, respectively, which encompass the ductility level =μ 4. 

 

Based on the sum of energy dissipated in cycles 11 through 15 in different parts of the column, 

the energy dissipated below the first and third collars is 25.90% and 62.85%, respectively, of the 

energy dissipated in the overall system in these cycles, and the remaining 37.15% is dissipated 

in the region between the third collar and the point of application of horizontal load. The energy 

dissipated between collars 1 and 3 is 36.95% of the total energy dissipated in these cycles. 

Based on the sum of energy dissipated in cycles 16 through 20, the energy dissipated below the 

first and third collars is 16.55% and 61.33%, respectively, of the energy dissipated in the overall 

system in these cycles, and the remaining 38.67% is dissipated in the region between the third 

collar and the point of application of horizontal load. The energy dissipated between collars 1 

and 3 is 44.78% of the total energy dissipated in these cycles. 
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Based on the sum of energy dissipated in cycles 1 through 45, the energy dissipated below the 

first and third collars is 12.15% and 61.77%, respectively, of the energy dissipated in the overall 

system in these cycles, and the remaining 38.23% is dissipated in the region between the third 

collar and the point of application of horizontal load. The energy dissipated between collars 1 

and 3 is 49.62% of the total energy dissipated in these cycles.  

 

The energy dissipation between the first and third collars is higher than that below the first collar. 

The appearance of the test region of the column shows considerable damage above the third 

collar (Figure 4-21(d)), which supports the calculated distribution of energy dissipation.  

 

H.4 Column CL4 
 
Figure H-4 shows the distribution of energy dissipation along column CL4 at different levels of 

displacement ductility. The distance from the centreline of collars 1 and 3 are 66 mm and 

285 mm, respectively, from the top of the footing (Table 4.4). The calculations for the distribution 

of energy dissipation in this column are based on the sum of energy dissipated in cycles 16 

through 20, and energy dissipated in cycles 1 through 45. The reason for choosing cycles 16 

through 20 is that these cycles were performed at a ductility level of, =μ 4.  

 

Based on the sum of energy dissipated in cycles 16 through 20, the energy dissipated below the 

first and third collars is 30.65% and 81.40%, respectively, of the energy dissipated in the overall 

system in these cycles, and the remaining 18.60% is dissipated in the region between the third 

collar and the point of application of horizontal load. The energy dissipated between collars 1 

and 3 is 50.75% of the total energy dissipated in these cycles. 

 
Based on the sum of energy dissipated in cycles 1 through 45, the energy dissipated below the 

first and third collars is 30.62% and 79.10%, respectively, of the energy dissipated in the overall 

system in these cycles, and the remaining 20.90% is dissipated in the region between the third 

collar and the point of application of horizontal load. The energy dissipated between collars 1 

and 3 is 48.48% of the total energy dissipated in these cycles. 

 

The data above indicate that the distribution of energy dissipation along the column is relatively 

uniform, calculated based on cycles 16 through 20 and based on cycles 1 through 45. From 

Figure H-4 and the sum of energy dissipated from cycles 1 through 45, it can be seen that 

30.62%, 48.48%, and 20.90% of the total energy is dissipated below the first collar, between the 

first and third collars, and between the third collar and the point of application of horizontal load. 
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The appearance of the test region of the column shows some damage above the third collar 

(Figure 4-22(d)), which supports the calculated distribution of energy dissipation. 

 

H.5 Column CL5 
 
Figure H-5 shows the distribution of energy dissipation along column CL5 at different levels of 

displacement ductility. The distance of centerline of collar 1 and collar 3 are 50 and 260 mm, 

respectively, from the top of footing (Table 4.4). The calculations for the distribution of energy 

dissipation in this column are based on the sum of energy dissipated in cycles 16 through 20, 

and the sum of energy dissipated in cycles 1 through 37. The reason for choosing cycles 16 

through 20 is that these cycles were performed at a displacement ductility level of =μ 4.27, 

which is close to =μ 4, generally used for the design of reinforced concrete frames in the zones 

of high seismic activity. 

 

Based on the sum of energy dissipated in cycles 16 through 20 in different parts of the column, 

the energy dissipated below the first and third collar is 77.87 and 82.75%, respectively, of the 

energy dissipated in the overall system in these cycles, and the remaining 17.25% is dissipated 

in the region between the third collar and the point of application of horizontal load. Based on the 

above, the energy dissipated between collar 1 and collar 3 is 4.88% of the energy dissipated in 

the overall system.  

 
Based on the sum of energy dissipated in cycles 1 through 37 in different parts of the column, the 

energy dissipated below the first and third collar is 60.79 and 76.82%, respectively, of the energy 

dissipated in the overall system in these cycles, and the remaining 23.18% is dissipated in the 

region between the third collar and the point of application of horizontal load. Based on the 

above, the energy dissipated between collar 1 and collar 3 is 16.03% of the energy dissipated in 

the overall system.  

 

From Figure H-5 and the data above, it is evident that 60.79%, 16.03%, and 23.18% of the total 

energy dissipated in the system is dissipated below the first collar, between the first and the third 

collars, and between the third collar and the point of application of horizontal load. An increase in 

the energy dissipation above the third collar takes place with the increase in the displacement 

ductility level. Figure 4-23 shows that most of the damage occurs below the first collar and 

between first and second collars. 
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H.6 Column CL6 
 
Figure H-6 shows the distribution of energy dissipation along column CL6 at different levels of 

displacement ductility. The energy dissipation below the first is collar is generally higher than the 

energy dissipated below the second collar. This discrepancy is explained as follows: rotation 

takes place only below the first collar and the remainder of the test region just rotates as a rigid 

body. Hence, the rotation of the first collar and second collar are almost identical. However, the 

moment corresponding to the first collar is higher than that corresponding to the second collar. 

As a result, the energy dissipation below the second collar is lower than the energy dissipation 

below the first collar. Based on this, it can be deduced that the energy dissipation between the 

first and second collars is very small. Figure 4-24(d) shows the appearance of column CL6 at the 

end of the test; the damage is visible only below first collar. 

 

The distance of the centerline of collar 1 and collar 2 are 97 and 254 mm, respectively, from the 

top of footing (Table 4.4). The calculations for the distribution of energy dissipation in this column 

are based on the sum of energy dissipated in cycles 11 through 15, cycles 16 through 20, and 

energy dissipated in cycles 1 through 31. The reason for choosing cycles 11 through 15, and 

cycles 16 through 20 is that the displacement ductility level of cycles 11 through 15, and cycles 

16 through 20 are =μ 2.43 and =μ 4.86, respectively, which encompass the ductility level 

=μ 4, that is generally used for the design of reinforced concrete frames in zones of high 

seismic activity. 

 

Based on the sum of energy dissipated in cycles 11 through 15 in different parts of the column, 

the energy dissipated below the first collar is 87.86% of the energy dissipated in the overall 

system, and the remaining 12.14% is dissipated in the region between the first collar and the 

point of application of horizontal load. Based on the sum of energy dissipated in cycles 16 

through 20 in different parts of the column, the energy dissipated below the first collar is 92.21% 

of the energy dissipated in the overall system, and the remaining 7.79% is dissipated in the 

region between the first collar and point of application of horizontal load. 
 
Based on the sum of energy dissipated in cycles 1 through 31 in different parts of the column, the 

energy dissipated below the first collar is 87.01% of the energy dissipated in the overall system, 

and the remaining 12.99% is dissipated in the region between the first collar and the point of 

application of horizontal load. 
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Hence, most of the energy is dissipated below the first collar, which is also clear from the 

curvature distributions along the test region of the column at different levels of displacement 

ductility (Figure 4-96). 

 

H.7 Column CL7 
 
Figure H-7 shows the distribution of energy dissipation along column CL7 at different levels of 

displacement ductility. The energy dissipation below the third collar is lower than that dissipated 

below the second collar. The reason for this discrepancy has already been given in section H.6. 

Figure 4-26(d) shows the damage below the first collar and between first and second collars. The 

distance of the centerline of collar 1, 2, and 3 are 51, 152, and 252 mm, respectively, from the 

top of footing (Table 4.4). The calculations for the distribution of energy dissipation in this column 

are based on the sum of energy dissipated in cycles 11 through 15, cycles 16 through 20, and 

energy dissipated in cycles 1 through 35. The reason for choosing cycles 11 through 15, and 

cycles 16 through 20 is that the displacement ductility level of cycle 11 through 15, and cycles 16 

through 20 are =μ 2.44 and =μ 4.89, respectively, which encompass the ductility level =μ 4, 

that is generally used for the design of reinforced concrete frames in zones of high seismic 

activity. 

 

Based on the sum of energy dissipated in cycles 11 through 15 in different parts of the column, 

the energy dissipated below the first and second collar is 66.05 and 67.95%, respectively, of the 

energy dissipated in the overall system in these cycles, and the remaining 32.05% is dissipated 

in the region between the second collar and the point of application of horizontal load. The 

energy dissipated between the first and second collar is 1.90% of the energy dissipated in the 

overall system. Based on the sum of energy dissipated in cycles 16 through 20 in different parts 

of the column, the energy dissipated below the first and second collar is 59.81 and 70.69%, 

respectively, of the energy dissipated in the overall system, and the remaining 29.31% is 

dissipated in the region between the second collar and the point of application of the horizontal 

load. The energy dissipated between the first and second collar is 10.88% of the energy 

dissipated in the overall system. 

 
Based on the sum of energy dissipated in cycles 1 through 35 in different parts of the column, the 

energy dissipated below the first and second collar is 54.23 and 66.68%, respectively, of the 

energy dissipated in the overall system in these cycles, and the remaining 33.32% is dissipated 

in the region between the third collar and the point of application of horizontal load. The energy 

dissipated between collar 1 and collar 2 is 12.45% of the energy dissipated in the overall system. 
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Based on the above data, a significant amount of the overall energy is dissipated below the first 

collar. 

 

H.8 Column CL8 
 
Figure H-8 shows the distribution of energy dissipation along column CL8 at different levels of 

displacement ductility. The energy dissipation below the third collar is lower than that dissipated 

below the second collar. The reason for this discrepancy has been given in section 4.3.11.6. 

Other similar discrepancies in energy dissipation are also seen at ductility level =μ 2.44.  

 

The distance of the centerline of collar 1, 2, and 3 are 65, 170, and 270 mm, respectively, from 

the top of footing (Table 4.4). The calculations for the distribution of energy dissipation in this 

column are based on the sum of energy dissipated in cycles 16 through 20 and energy 

dissipated in cycles 1 through 35. The reason for choosing cycles 16 through 20 is that the 

displacement ductility level of cycles 16 through 20 is =μ 4.89, which is close to the ductility 

level =μ 4, that is generally used for the design of reinforced concrete frames in zones of high 

seismic activity. 

 

Based on the sum of energy dissipated in cycles 16 through 20 in different parts of the column, 

the energy dissipated below the first and second collar is 53.91 and 84.93%, respectively, of the 

energy dissipated in the overall system in these cycles, and the remaining 15.07% is dissipated 

in region between the second collar and point of application of horizontal load. Based on the 

above, the energy dissipated between the first and second collar is 31.02% of the energy 

dissipated in the overall system. 
 
Based on the sum of energy dissipated in cycles 1 through 35 in different parts of the column, the 

energy dissipated below the second collar is 63.60% of the energy dissipated in the overall 

system in these cycles, and the remaining 36.40% is dissipated in the region between the 

second collar and the point of application of horizontal load. 

 

The appearance of the test region of the column in Figure 4-27(d), shows considerable damage 

below the first collar and between first and second collars, which is in accordance with the 

calculations of energy dissipation in different parts of the column given above. 
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Table H.1: Energy dissipated up to different heights of the test region 
for column CL1 

 
 

 Energy 
dissipated 
per cycle 
below 3rd 

collar 

Cumulative 
energy 

Energy  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Cycle 

dissipated  
per cycle  

number 

(kN.m) 

dissipated 
below 

3rd collar 
(kN.m) 

below 1st 
collar 

(kN.m) 

Cumulative 
energy 

dissipated  
below 1st 

collar 
(kN.m) 

1 0.14 0.14 0.08 0.08 
2 0.09 0.23 0.06 0.14 
3 0.06 0.29 0.05 0.19 
4 0.05 0.34 0.03 0.22 
5 0.05 0.39 0.03 0.25 
6 0.65 1.04 0.47 0.73 
7 0.36 1.40 0.28 1.01 
8 0.43 1.83 0.33 1.33 
9 0.36 2.19 0.27 1.60 
10 0.28 2.47 0.22 1.82 
11 1.41 3.88 0.93 2.75 
12 1.19 5.07 0.81 3.56 
13 1.08 6.15 0.73 4.29 
14 1.03 7.18 0.70 4.99 
15 1.00 8.18 0.69 5.69 
16 8.48 16.67 5.07 10.75 
17 7.08 23.75 4.21 14.97 
18 6.92 30.67 4.14 19.11 
19 6.79 37.46 4.17 23.28 
20 6.39 43.85 3.84 27.12 
21 15.13 58.98 - - 
22 14.26 73.24 - - 
23 14.11 87.35 - - 
24 14.71 102.06 - - 
25 13.58 115.63 - - 
26 24.57 140.20 - - 
27 25.16 165.36 - - 
28 23.69 189.05 - - 
29 22.89 211.94 - - 
30 22.48 234.42 - - 
31 23.70 258.13 - - 
32 23.16 281.28 - - 
33 23.69 304.97 - - 
34 23.80 328.77 - - 
35 24.07 352.84 - - 
36 23.09 375.93 - - 
37 23.21 399.14 - - 
38 23.14 422.28 - - 
39 23.19 445.47 - - 
40 23.80 469.27 - - 
41 23.20 492.47 - - 
42 23.76 516.23 - - 
43 23.66 539.89 - - 
44 23.87 563.77 - - 
45 23.79 587.55 - - 
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Table H.2: Energy dissipated up to different heights of the test region 
for column CL2 

 
 

 Energy 
dissipated 
per cycle 
below 2nd

 collar 

Cumulative 
energy 

Energy Cumulative 
energy   

Cycle 
dissipated  

 dissipated 
below 2nd

per cycle  
below 1st 

collar 

dissipated  
 number below 1st 

collar collar  
(kN.m) (kN.m) (kN.m) (kN.m) 

1 0.53 0.53 0.35 0.35 
2 0.31 0.84 0.20 0.55 
3 0.31 1.16 0.22 0.77 
4 0.30 1.45 0.20 0.96 
5 0.37 1.82 0.25 1.21 
6 4.07 5.89 1.81 3.02 
7 3.25 9.14 1.45 4.47 
8 2.97 12.11 1.31 5.79 
9 3.05 15.16 1.35 7.14 
10 3.06 18.22 1.35 8.48 
11 6.13 24.35 2.39 10.87 
12 6.09 30.45 2.31 13.18 
13 5.92 36.37 2.20 15.37 
14 5.99 42.36 2.17 17.54 
15 5.96 48.32 2.15 19.69 
16 24.33 72.65 5.25 24.94 
17 23.17 95.82 4.42 29.36 
18 21.57 117.39 3.74 33.10 
19 22.23 139.63 3.63 36.73 
20 22.68 162.30 3.47 40.20 
21 32.03 194.34 4.05 44.25 
22 33.42 227.76 3.56 47.81 
23 33.94 261.70 3.19 51.00 
24 34.59 296.28 2.77 53.76 
25 35.37 331.66 2.28 56.04 
26 34.07 365.73 1.46 57.50 
27 25.51 391.24 0.51 58.01 
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 Table H.3: Energy dissipated up to different heights of the test region 

for column CL3  
  Energy 

dissipated 
per cycle 
below 3rd

collar 

Cumulative 
energy 

Energy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Cycle 

dissipated 
per cycle 

number 

(kN.m) 

dissipated 
below 

3rd collar 
(kN.m) 

below 1st 
collar 

(kN.m) 

Cumulative 
energy 

dissipated  
below 1st 

collar 
(kN.m) 

1 0.62 0.62 0.41 0.41 
2 0.32 0.94 0.21 0.62 
3 0.29 1.23 0.19 0.82 
4 0.26 1.49 0.18 0.99 
5 0.25 1.74 0.19 1.19 
6 2.59 4.33 1.21 2.40 
7 2.12 6.45 1.04 3.44 
8 2.00 8.45 0.96 4.41 
9 1.91 10.36 0.91 5.32 
10 1.92 12.28 0.91 6.23 
11 4.44 16.72 1.89 8.12 
12 4.05 20.77 1.68 9.79 
13 3.89 24.66 1.58 11.38 
14 4.35 29.01 1.71 13.09 
15 3.99 33.00 1.55 14.64 
16 19.49 52.49 5.41 20.04 
17 16.19 68.69 4.44 24.48 
18 15.42 84.11 4.16 28.64 
19 15.04 99.14 3.97 32.61 
20 14.45 113.59 3.78 36.39 
21 23.39 136.98 5.99 42.37 
22 22.52 159.50 5.64 48.01 
23 22.11 181.61 5.47 53.48 
24 21.76 203.38 5.27 58.75 
25 22.20 225.58 5.40 64.15 
26 22.76 248.34 5.35 69.50 
27 21.82 270.16 5.16 74.66 
28 21.33 291.49 4.97 79.63 
29 21.94 313.43 2.78 82.41 
30 21.80 335.23 2.60 85.01 
31 21.79 357.02 2.47 87.48 
32 22.17 379.19 2.72 90.21 
33 21.83 401.02 2.57 92.78 
34 21.80 422.82 2.57 95.35 
35 21.72 444.54 2.54 97.89 
36 21.77 466.31 2.64 100.54 
37 21.72 488.03 2.64 103.17 
38 21.75 509.78 2.58 105.75 
39 21.76 531.54 2.84 108.59 
40 21.68 553.23 5.51 114.10 
41 21.75 574.98 2.85 116.95 
42 21.78 596.76 2.49 119.44 
43 21.78 618.55 2.32 121.75 
44 22.00 640.55 4.10 125.85 
45 21.73 662.28 4.39 130.24 

 676



 
 
 Table H.4: Energy dissipated up to different heights of the test region 

for column CL4  
  Energy 

dissipated 
per cycle 
below 3rd

collar 

Cumulative 
energy 

Energy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Cycle 

dissipated 
per cycle 

number 

(kN.m) 

dissipated 
below 

3rd collar 
(kN.m) 

below 1st 
collar 

(kN.m) 

Cumulative 
energy 

dissipated 
below 1st 

collar 
(kN.m) 

1 0.35 0.35 0.14 0.14 
2 0.26 0.60 0.13 0.27 
3 0.18 0.79 0.13 0.40 
4 0.18 0.97 0.12 0.52 
5 0.18 1.14 0.12 0.64 
6 1.14 2.28 0.78 1.42 
7 0.70 2.99 0.49 1.91 
8 0.67 3.65 0.46 2.38 
9 0.65 4.31 0.43 2.81 
10 0.57 4.87 0.41 3.22 
11 2.80 7.67 1.92 5.14 
12 2.19 9.87 1.48 6.62 
13 2.08 11.94 1.37 7.99 
14 2.09 14.03 1.35 9.34 
15 2.60 16.63 1.51 10.85 
16 14.81 31.44 5.78 16.63 
17 11.70 43.14 4.54 21.16 
18 11.99 55.12 4.51 25.68 
19 11.40 66.52 4.15 29.83 
20 11.38 77.90 4.09 33.92 
21 24.82 102.73 8.30 42.22 
22 22.97 125.69 7.23 49.45 
23 22.64 148.34 6.91 56.36 
24 22.69 171.03 6.77 63.13 
25 23.86 194.89 8.69 71.82 
26 35.64 230.53 12.58 84.40 
27 28.68 259.21 9.29 93.69 
28 28.44 287.65 9.04 102.73 
29 28.33 315.98 8.73 111.46 
30 28.15 344.12 8.37 119.83 
31 28.15 372.27 8.50 128.33 
32 28.18 400.45 10.87 139.20 
33 27.91 428.36 9.66 148.86 
34 27.62 455.98 9.05 157.91 
35 27.84 483.82 11.70 169.61 
36 26.44 510.27 14.54 184.15 
37 28.43 538.70 14.26 198.41 
38 27.65 566.35 13.76 212.16 
39 27.99 594.34 14.66 226.82 
40 26.55 620.88 12.68 239.49 
41 27.93 648.81 12.98 252.48 
42 27.87 676.68 11.54 264.02 
43 27.51 704.19 10.21 274.23 
44 27.53 731.72 8.28 282.51 
45 27.55 759.27 11.37 293.88 
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 Table H.5: Energy dissipated up to different heights of the test region 

for column CL5  
  Energy 

dissipated 
per cycle 
below 3rd 

collar 

Cumulative 
energy  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Cycle 

number 

(kN.m) 

dissipated 
below 

3rd collar 
(kN.m) 

Energy Cumulative 
dissipated 
per cycle 
below 1st 

collar 
(kN.m) 

 

energy 
dissipated 
below 1st 

collar 
(kN.m) 

1 0.34 0.34 0.26 0.26 
2 0.16 0.49 0.14 0.40 
3 0.11 0.60 0.11 0.51 
4 0.14 0.74 0.11 0.62 
5 0.09 0.82 0.09 0.72 
6 1.57 2.40 1.57 2.28 
7 0.49 2.89 0.61 2.90 
8 0.52 3.41 0.59 3.48 
9 0.27 3.68 0.46 3.95 
10 0.26 3.94 0.47 4.42 
11 1.72 5.67 2.25 6.67 
12 1.35 7.02 1.68 8.35 
13 1.38 8.40 1.66 10.01 
14 1.28 9.68 1.50 11.51 
15 1.26 10.94 1.41 12.92 
16 10.44 21.38 9.90 22.82 
17 7.59 28.97 7.07 29.89 
18 7.45 36.42 6.80 36.69 
19 6.70 43.12 6.25 42.94 
20 6.39 49.51 6.09 49.03 
21 17.12 66.62 13.33 62.36 
22 15.63 82.25 13.49 75.85 
23 14.53 96.78 12.69 88.55 
24 12.67 109.45 10.71 99.26 
25 11.95 121.40 10.05 109.31 
26 20.53 141.93 15.10 124.41 
27 20.21 162.14 15.37 139.79 
28 18.78 180.92 14.38 154.16 
29 18.06 198.98 14.31 168.47 
30 16.67 215.65 13.98 182.45 
31 24.24 239.88 19.05 201.51 
32 22.21 262.09 18.97 220.47 
33 21.21 283.30 18.87 239.34 
34 19.20 302.50 9.53 248.87 
35 17.69 320.19 20.12 268.98 
36 21.28 341.47 6.33 275.32 

16.89 358.36 8.25 37 283.57 
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 Table H.6: Energy dissipated up to different heights of the test region 

for column CL6  
  Energy Cumulative Energy Cumulative 
  dissipated 

per cycle 
below 2nd 

collar 
(kN.m) 

energy 
dissipated 

below 

dissipated 
per cycle 
below 1st 

collar 
(kN.m) 

 

  
Cycle  

number 2nd collar  (kN.m) 

energy 
dissipated 
below 1st 

collar 
(kN.m) 

1 0.55 0.55 0.41 0.41 
2 0.24 0.78 0.22 0.63 
3 0.13 0.92 0.15 0.77 
4 0.43 1.35 0.35 1.12 
5 0.04 1.39 0.09 1.21 
6 1.67 3.06 1.57 2.78 
7 0.65 3.70 0.67 3.45 
8 0.82 4.52 0.82 4.27 
9 0.72 5.24 0.77 5.04 
10 0.65 5.89 0.72 5.76 
11 2.66 8.55 2.87 8.63 
12 2.43 10.98 2.56 11.19 
13 1.99 12.97 2.12 13.31 
14 1.86 14.83 2.04 15.35 
15 2.19 17.02 2.35 17.70 
16 12.66 29.68 13.69 31.39 
17 10.50 40.18 11.13 42.52 
18 9.95 50.14 10.52 53.04 
19 10.26 60.40 10.79 63.83 
20 9.79 70.19 10.24 74.06 
21 21.53 91.72 21.27 95.34 
22 19.93 111.65 19.48 114.82 
23 21.80 133.45 21.36 136.18 
24 24.47 157.92 24.21 160.39 
25 22.58 180.51 22.62 183.01 
26 35.35 215.86 35.79 218.80 
27 32.83 248.69 34.00 252.80 
28 33.68 282.36 35.61 288.40 
29 33.82 316.18 36.24 324.64 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

32.98 349.16 35.70 360.35 30 
29.20 378.37 31.76 31 392.10 
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Table H.7: Energy dissipated up to different heights of the test region for column CL7 
 

 Energy Cumulative Energy Cumulative
energy 

dissipated 
below 

2nd collar 
(kN.m) 

Energy 
dissipated 
per cycle 
below first 

collar 

 
Cycle 

dissipated 
per cycle 
below 3rd 

collar 

energy dissipated 
per cycle 
below 2nd 

collar 

dissipated 
below number 

3rd collar 
(kN.m) (kN.m) (kN.m) (kN.m) 

Cumulative
energy 

dissipated 
below 

first collar 
(kN.m) 

1 0.77 0.77 0.66 0.66 0.49 0.49 
2 0.45 1.22 0.42 1.08 0.26 0.76 
3 0.36 1.59 0.33 1.41 0.23 0.99 
4 0.46 2.05 0.43 1.84 0.22 1.20 
5 0.53 2.57 0.49 2.33 0.24 1.44 
6 2.01 4.59 2.08 4.41 1.81 3.25 
7 1.35 5.94 1.38 5.79 1.21 4.46 
8 0.77 6.71 0.82 6.61 0.93 5.39 
9 0.87 7.57 0.90 7.51 0.82 6.22 
10 1.03 8.61 1.09 8.60 0.94 7.16 
11 3.30 11.90 3.50 12.10 3.47 10.62 
12 2.81 14.71 3.01 15.11 2.80 13.43 
13 2.88 17.59 3.09 18.20 2.94 16.36 
14 2.37 19.97 2.52 20.72 2.46 18.82 
15 2.31 22.28 2.51 23.23 2.56 21.38 
16 13.49 35.77 14.55 37.78 12.18 33.56 
17 11.10 46.87 11.93 49.71 9.93 43.49 
18 10.45 57.33 11.26 60.97 9.75 53.24 
19 10.28 67.61 11.00 71.97 9.24 62.48 
20 9.73 77.34 10.40 82.37 8.94 71.42 
21 20.90 98.24 21.80 104.18 18.28 89.69 
22 20.28 118.52 21.04 125.21 17.27 106.96 
23 19.78 138.30 20.50 145.71 17.04 124.00 
24 19.66 157.96 20.38 166.10 16.95 140.95 
25 20.96 178.92 21.77 187.86 18.03 158.97 
26 32.30 211.22 33.04 220.91 25.91 184.89 
27 30.46 241.68 31.28 252.18 24.35 209.24 
28 27.06 268.74 27.77 279.96 22.59 231.83 
29 26.30 295.05 27.09 307.05 22.45 254.28 
30 26.96 322.00 27.74 334.79 23.09 277.37 
31 39.29 361.30 40.14 374.92 30.51 307.88 
32 37.40 398.69 38.18 413.10 29.82 337.70 
33 36.95 435.64 37.74 450.84 29.90 367.59 
34 36.34 471.99 37.25 488.10 29.79 397.38 

32.95 504.94 33.82 521.92 27.06 35 424.44 
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Table H.8: Energy dissipated up to different heights of the test region for column 
CL8 

 

 
 

C
yc

le
 

nu
m

be
r 

Energy Cumulative Energy 
dissipated 
per cycle 

below  
3rd collar 

(kN.m) 

energy 
dissipated 

below 
3rd collar 

(kN.m) 

dissipated 
per cycle 

below  
2nd collar 

(kN.m) 

Cumulative
energy 

dissipated 
below 

2nd collar 
(kN.m) 

Energy 
dissipated 
per cycle 
below first 

collar 
(kN.m) 

Cumulative
energy 

dissipated 
below 

first collar 
(kN.m) 

1 0.44 0.44 0.40 0.40 0.33 0.33 
2 0.34 0.78 0.34 0.73 0.21 0.54 
3 0.41 1.19 0.42 1.16 0.18 0.72 
4 0.38 1.57 0.39 1.55 0.18 0.90 
5 0.88 2.45 0.97 2.52 0.50 1.40 
6 1.55 4.00 1.62 4.14 1.17 2.57 
7 1.41 5.41 1.51 5.65 1.04 3.61 
8 0.93 6.34 1.01 6.66 0.71 4.32 
9 1.07 7.41 1.17 7.82 0.85 5.17 
10 1.52 8.93 1.65 9.48 1.25 6.42 
11 2.26 11.19 2.50 11.98 1.98 8.40 
12 1.76 12.95 1.87 13.85 1.27 9.68 
13 2.79 15.74 3.04 16.89 2.24 11.91 
14 2.33 18.07 2.54 19.43 1.88 13.79 
15 11.65 29.72 12.57 32.00 8.17 21.96 
16 10.79 40.51 11.52 43.52 7.38 29.34 
17 10.83 51.34 11.53 55.06 7.36 36.70 
18 9.69 61.03 10.32 65.37 6.52 43.22 
19 9.31 70.34 9.88 75.25 6.29 49.51 
20 20.37 90.71 20.68 95.93 13.02 62.54 
21 19.99 110.71 20.26 116.19 12.63 75.17 
22 19.32 130.03 19.58 135.77 12.16 87.33 
23 20.38 150.41 20.71 156.48 13.01 100.34 
24 19.68 170.09 19.96 176.44 12.46 112.80 
25 30.12 200.21 30.52 206.96 18.79 131.59 
26 29.55 229.75 29.78 236.74 18.30 149.89 
27 27.87 257.62 28.23 264.97 17.56 167.45 
28 27.83 285.45 28.21 293.18 17.63 185.08 
29 27.05 312.50 27.45 320.63 17.52 202.60 
30 38.28 350.78 39.22 359.85 8.70 211.29 
31 37.54 388.32 38.50 398.35 - - 
32 35.56 423.89 36.69 435.05 - - 
33 35.61 459.49 36.92 471.97 - - 

34.97 494.46 36.46 508.43 - - 34 
37.28 531.74 38.39 546.82 - 35 - 
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Figure H-1: Distribution of energy absorption mechanism in specimen CL1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure H-2: Distribution of energy absorption mechanism in specimen CL2 
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Figure H-3: Distribution of energy absorption mechanism in specimen CL3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure H-4: Distribution of energy absorption mechanism in specimen CL4 
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Figure H-5: Distribution of energy absorption mechanism in specimen CL5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure H-6: Distribution of energy absorption mechanism in specimen CL6 
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Figure H-7: Distribution of energy absorption mechanism in specimen CL7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure H-8: Distribution of energy absorption mechanism in specimen CL8 
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I. MOMENT VERSUS CURVATURE HYSTERESES 
 
 
 
 

Figure I-1: Moment vs. curvature hysteresis for column CL0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure I-2: Moment vs. curvature hysteresis for column CL1 
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Figure I-3: Moment vs. curvature hysteresis for column CL2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure I-4: Moment vs. curvature hysteresis for column CL3 
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Figure I-5: Moment vs. curvature hysteresis for column CL4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure I-6: Moment vs. curvature hysteresis for column CL5 
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Figure I-7: Moment vs. curvature hysteresis for column CL6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure I-8: Moment vs. curvature hysteresis for column CL7 
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Figure I-9: Moment vs. curvature hysteresis for column CL8 
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J. DUCTILITY PARAMETERS 
 
 Table J.1: Ductility ratios and energy damage indicator for column CL0. 
  

Cycle 
number 

Ductility  
Ratio 

 

Cumulative 
ductility 
ratios 

 

Energy 
 damage 

indicator 
 

Cumulative 
energy 

damage 
indicator 

1 1.70 1.70 0.83 0.83 
2 1.90 3.60 0.81 1.64 
3 2.04 5.64 0.86 2.49 
4 2.11 7.76 0.87 3.37 
5 2.10 9.86 0.75 4.12 
6 4.32 14.18 13.79 17.91 
7 4.39 18.57 8.13 26.04 
8 4.69 23.26 8.73 34.77 
9 4.38 27.65 6.80 41.57 
10 4.93 32.58 10.77 52.34 
11 5.87 38.45 22.25 74.59 
12 5.87 44.32 18.17 92.75 
13 6.40 50.73 23.50 116.25 
14 6.24 56.97 22.90 139.15 
15 5.98 62.95 19.20 158.35 
16 12.23 75.18 198.17 356.52 
17 11.59 86.78 109.28 465.80 
18 11.59 98.37 109.28 575.08 
19 11.41 109.78 103.30 678.39 
20 11.39 121.17 102.34 780.72 
21 17.28 138.44 359.42 1140.14 
22 17.28 155.72 376.21 1516.35 
23 17.53 173.25 364.11 1880.47 
24 18.30 191.55 384.99 2265.46 
25 18.27 209.82 397.38 2662.84 
26 19.33 229.15 462.94 3125.78 
27 19.39 248.54 478.14 3603.92 
28 19.39 267.93 478.14 4082.06 
29 19.39 287.32 458.46 4540.52 
30 19.54 306.86 453.60 4994.12 
31 19.54 326.40 454.57 5448.70 
32 19.64 346.04 461.61 5910.30 
33 19.61 365.65 457.59 6367.90 
34 19.70 385.35 459.92 6827.81 
35 19.71 405.07 456.62 7284.43 
36 19.80 424.87 459.91 7744.35 
37 19.93 444.80 451.80 8196.15 
38 19.67 464.47 508.08 8704.23 
39 20.28 484.75 385.95 9090.17 
40 20.44 505.19 385.34 9475.51 
41 20.52 525.71 392.94 9868.45 
42 20.60 546.31 389.68 10258.13 
43 20.74 567.06 389.43 10647.55 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44 21.15 588.20 392.75 11040.31 
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 Table J.2: Ductility ratios and energy damage indicator for column CL1. 

 
Cycle 

number 

Ductility  
Ratio 

 Cumulative 
ductility 
ratios 

 

Energy 
damage  

 indicator 
 

Cumulative 
energy 

damage 
indicator 

1 0.57 0.57 0.01 0.01 
2 0.64 1.21 0.01 0.02 
3 0.64 1.85 0.01 0.03 
4 0.65 2.50 0.01 0.03 
5 0.65 3.15 0.01 0.04 
6 1.16 4.31 0.11 0.15 
7 1.17 5.48 0.08 0.23 
8 1.24 6.72 0.09 0.32 
9 1.21 7.93 0.07 0.39 
10 1.16 9.10 0.06 0.45 
11 1.60 10.70 0.32 0.77 
12 1.62 12.32 0.29 1.06 
13 1.60 13.92 0.25 1.31 
14 1.60 15.52 0.24 1.55 
15 1.63 17.15 0.24 1.79 
16 3.52 20.68 5.22 7.01 
17 3.56 24.23 4.12 11.13 
18 3.55 27.79 3.85 14.98 
19 3.58 31.36 3.78 18.76 
20 3.54 34.90 3.50 22.26 
21 5.46 40.37 15.69 37.95 
22 5.50 45.86 13.82 51.76 
23 5.52 51.39 13.56 65.33 
24 5.67 57.05 13.93 79.26 
25 5.44 62.50 11.66 90.92 
26 7.55 70.05 35.43 126.35 
27 7.70 77.75 34.06 160.41 
28 7.61 85.35 30.41 190.82 
29 7.51 92.86 28.65 219.47 
30 7.47 100.33 27.22 246.69 
31 7.69 108.02 29.76 276.45 
32 7.58 115.60 27.43 303.88 
33 7.68 123.27 28.66 332.54 
34 7.67 130.94 28.31 360.85 
35 7.66 138.60 28.18 389.03 
36 7.54 146.14 25.87 414.90 
37 7.52 153.66 25.57 440.47 
38 7.53 161.19 24.72 465.19 
39 7.55 168.74 24.37 489.56 
40 7.63 176.36 24.94 514.50 
41 7.52 183.89 23.01 537.51 
42 7.61 191.49 24.12 561.63 
43 7.61 199.10 23.70 585.33 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

44 7.59 206.69 23.96 609.29 
45 7.60 214.29 22.94 632.23 
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Table J.3: Ductility ratios and energy damage indicator for column CL2. 
 
Cycle 

number 

Ductility  
Ratio 

 
 Cumulative 

ductility 
ratios 

 

Energy 
damage  

 indicator 
 

Cumulative 
energy 
damage 
indicator 

1 1.53 1.53 0.16 0.16 
2 1.62 3.15 0.11 0.27 
3 1.72 4.87 0.13 0.39 
4 1.73 6.60 0.12 0.51 
5 1.79 8.39 0.14 0.65 
6 3.60 11.98 2.62 3.27 
7 3.59 15.57 2.04 5.31 
8 3.53 19.10 1.79 7.10 
9 3.62 22.72 1.90 9.00 
10 3.63 26.35 1.88 10.88 
11 4.88 31.23 5.72 16.60 
12 4.96 36.20 5.66 22.26 
13 4.99 41.18 5.45 27.71 
14 5.02 46.20 5.48 33.19 
15 5.02 51.22 5.41 38.60 
16 10.76 61.98 60.81 99.41 
17 10.81 72.79 55.04 154.46 
18 10.71 83.50 49.69 204.15 
19 10.69 94.20 49.51 253.66 
20 10.74 104.94 49.44 303.10 
21 12.79 117.73 89.37 392.47 
22 13.10 130.83 86.63 479.10 
23 13.09 143.92 84.34 563.44 
24 13.18 157.10 80.00 643.44 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

13.21 170.31 77.98 721.42 25 
13.59 183.89 63.72 785.15 26 
13.77 197.67 39.18 27 824.33 
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 Table J.4: Ductility ratios and energy damage indicator for column CL3. 

 
Cycle 

number 

Ductility  
Ratio 

 Cumulative 
ductility 
ratios 

 

Energy 
 damage 

 indicator 
 

Cumulative 
energy damage 

indicator 

1 1.42 1.42 0.26 0.26 
2 1.48 2.90 0.16 0.43 
3 1.50 4.40 0.15 0.58 
4 1.52 5.92 0.14 0.72 
5 1.50 7.42 0.14 0.86 
6 2.52 9.93 1.90 2.76 
7 2.64 12.58 1.70 4.46 
8 2.58 15.16 1.50 5.96 
9 2.52 17.68 1.39 7.34 
10 2.44 20.12 1.30 8.65 
11 3.61 23.73 5.51 14.16 
12 3.65 27.38 5.02 19.18 
13 3.58 30.96 4.71 23.89 
14 3.56 34.52 5.23 29.12 
15 3.64 38.16 4.90 34.01 
16 8.04 46.20 66.67 100.68 
17 7.91 54.11 53.00 153.68 
18 7.79 61.91 48.88 202.56 
19 7.78 69.69 46.74 249.29 
20 7.78 77.47 44.12 293.42 
21 9.78 87.25 98.90 392.32 
22 9.77 97.02 91.17 483.48 
23 9.72 106.75 87.24 570.73 
24 9.71 116.46 88.33 659.05 
25 9.77 126.22 85.75 744.80 
26 9.77 135.99 90.45 835.26 
27 9.76 145.75 84.90 920.15 
28 9.76 155.51 85.72 1005.87 
29 9.76 165.27 85.03 1090.90 
30 9.77 175.04 82.73 1173.63 
31 9.79 184.83 83.88 1257.51 
32 9.77 194.60 81.68 1339.19 
33 9.79 204.39 83.42 1422.61 
34 9.74 214.13 82.07 1504.68 
35 9.79 223.92 82.52 1587.20 
36 9.71 233.64 80.65 1667.85 
37 9.79 243.43 81.20 1749.05 
38 9.79 253.22 80.08 1829.13 
39 9.79 263.01 82.02 1911.15 
40 9.79 272.80 80.96 1992.11 
41 9.76 282.56 80.39 2072.50 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

42 9.80 292.36 79.75 2152.25 
43 9.79 302.15 80.23 2232.48 
44 9.80 311.94 79.83 2312.30 
45 9.77 321.71 78.62 2390.93 
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 Table J.4: Ductility ratios and energy damage indicator for column CL4. 

 
Cycle 

number 

Ductility  
Ratio 

 Cumulative 
ductility 
ratios 

 

Energy 
damage   indicator 

 

Cumulative 
energy 

damage 
indicator 

1 0.91 0.91 0.06 0.06 
2 0.97 1.87 0.05 0.11 
3 1.04 2.91 0.04 0.16 
4 1.02 3.93 0.04 0.19 
5 1.01 4.94 0.04 0.23 
6 1.99 6.93 0.71 0.94 
7 1.97 8.90 0.42 1.35 
8 2.03 10.93 0.40 1.75 
9 2.00 12.93 0.38 2.13 
10 2.01 14.94 0.33 2.46 
11 2.71 17.66 2.08 4.54 
12 2.71 20.36 1.63 6.17 
13 2.71 23.07 1.50 7.66 
14 2.74 25.82 1.53 9.20 
15 2.92 28.73 2.03 11.23 
16 5.93 34.66 27.06 38.29 
17 5.85 40.51 22.07 60.37 
18 5.99 46.50 22.16 82.53 
19 5.94 52.44 21.21 103.74 
20 5.93 58.36 21.01 124.75 
21 9.22 67.58 85.70 210.45 
22 9.23 76.81 76.93 287.39 
23 9.28 86.09 75.32 362.71 
24 9.33 95.42 75.96 438.67 
25 9.64 105.06 84.02 522.69 
26 10.79 115.85 143.81 666.51 
27 10.83 126.68 115.40 781.91 
28 10.82 137.50 112.67 894.58 
29 10.77 148.27 107.96 1002.53 
30 10.84 159.11 109.28 1111.81 
31 10.85 169.97 109.46 1221.27 
32 10.86 180.82 109.31 1330.58 
33 10.84 191.67 107.30 1437.88 
34 10.81 202.48 103.28 1541.17 
35 10.83 213.31 104.68 1645.84 
36 10.83 224.14 108.26 1754.10 
37 10.83 234.96 108.60 1862.70 
38 10.83 245.79 108.26 1970.96 
39 10.83 256.62 108.26 2079.22 
40 10.83 267.45 108.26 2187.48 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 41 10.82 278.27 101.92 2289.40 
 42 10.84 289.11 102.15 2391.55 
 
 
 

43 10.80 299.91 97.96 2489.51 
44 10.83 310.74 99.52 2589.03 
45 10.83 321.57 97.18 2686.22 
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Table J.5: Ductility ratios and energy damage indicator for column CL5. 
 

Cycle 
number 

Ductility  
Ratio 

 
Cumulative 

ductility 
ratios 

 

Energy  damage 
  indicator 

 

Cumulative 
energy 

damage 
indicator 

1 1.16 1.16 0.09 0.09 
2 1.22 2.38 0.05 0.14 
3 1.21 3.59 0.04 0.17 
4 1.23 4.82 0.03 0.21 
5 1.23 6.05 0.03 0.24 
6 2.17 8.21 0.89 1.13 
7 2.07 10.29 0.31 1.44 
8 2.11 12.40 0.29 1.72 
9 2.02 14.42 0.21 1.93 
10 2.06 16.47 0.21 2.14 
11 2.73 19.20 1.44 3.58 
12 2.66 21.86 0.97 4.54 
13 2.69 24.55 0.96 5.50 
14 2.67 27.23 0.83 6.33 
15 2.65 29.88 0.78 7.11 
16 5.46 35.34 15.83 22.94 
17 5.16 40.50 9.83 32.77 
18 5.19 45.69 9.67 42.44 
19 5.05 50.74 8.23 50.67 
20 5.04 55.78 7.92 58.59 
21 7.65 63.44 35.43 94.02 
22 7.72 71.15 32.74 126.76 
23 7.72 78.87 28.04 154.80 
24 7.36 86.23 20.82 175.62 
25 7.17 93.40 18.92 194.54 
26 9.47 102.87 48.24 242.78 
27 9.26 112.13 43.59 286.37 
28 9.10 121.24 38.54 324.91 
29 9.10 130.33 36.12 361.04 
30 8.64 138.97 31.39 392.43 
31 10.46 149.44 50.46 442.90 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 10.60 160.04 42.32 485.22 32 

10.82 170.86 44.07 529.29 33 
 10.53 181.39 38.58 567.86 34 
 
 
 
 
 

10.61 192.00 36.34 604.21 35 
12.53 204.53 51.52 655.72 36 
12.49 217.02 38.06 37 693.78 
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 Table J.6: Ductility ratios and energy damage indicator for column CL6 

 
Cycle 

number 

Ductility  
Ratio 

 Cumulative 
ductility 
ratios 

 

Energy 
 
 
 
 
 
 
 
 
 

damage 
 indicator 

 

Cumulative 
energy 
damage 
indicator 

1 1.16 1.16 0.05 0.05 
2 1.24 2.40 0.03 0.08 
3 1.45 3.85 0.05 0.13 
4 1.44 5.29 0.04 0.18 
5 1.39 6.68 0.04 0.21 
6 2.53 9.22 0.47 0.68 
7 2.46 11.68 0.25 0.93 
8 2.54 14.22 0.28 1.21 
9 2.60 16.82 0.29 1.50 
10 2.59 19.41 0.26 1.76 
11 3.27 22.68 0.99 2.75 
12 3.22 25.90 0.77 3.52 
13 3.23 29.13 0.65 4.17 
14 3.23 32.36 0.63 4.81 
15 3.35 35.71 0.75 5.55 
16 6.41 42.12 9.11 14.67 
17 6.21 48.33 6.71 21.37 
18 6.26 54.59 6.31 27.69 
19 6.36 60.95 6.49 34.18 
20 6.31 67.26 6.19 40.37 
21 9.36 76.62 23.02 63.39 
22 9.28 85.90 20.39 83.77 
23 9.80 95.70 23.32 107.10 
24 10.41 106.11 25.83 132.92 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10.26 116.37 24.14 157.06 25 
13.07 129.44 51.07 208.13 26 
13.04 142.48 45.49 253.62 27 
13.39 155.87 46.51 300.13 28 

 13.68 169.55 48.20 348.33 29 
 
 
 
 
 

13.43 182.98 46.11 394.44 30 
12.38 195.36 34.72 31 429.16 
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Table J.7: Ductility ratios and energy damage indicator for column CL7. 
 
Cycle 

number 

Ductility  
Ratio 

Cumulative 
ductility 
ratios 

 

Energy 
damage 

 indicator 
 

Cumulative 
energy 
damage 
indicator 

1 1.24 1.24 0.09 0.09 
2 1.36 2.60 0.06 0.15 
3 1.41 4.01 0.06 0.21 
4 1.46 5.47 0.06 0.27 
5 1.55 7.03 0.06 0.33 
6 2.58 9.61 0.76 1.09 
7 2.63 12.24 0.54 1.62 
8 2.56 14.80 0.41 2.03 
9 2.49 17.30 0.34 2.37 
10 2.64 19.94 0.38 2.75 
11 3.45 23.39 1.78 4.54 
12 3.44 26.83 1.39 5.92 
13 3.52 30.35 1.47 7.39 
14 3.36 33.70 1.19 8.58 
15 3.48 37.18 1.30 9.88 
16 6.67 43.86 15.38 25.26 
17 6.60 50.45 11.86 37.12 
18 6.62 57.07 11.29 48.41 
19 6.59 63.65 10.47 58.87 
20 6.40 70.06 9.62 68.49 
21 9.61 79.67 35.62 104.11 
22 9.84 89.51 33.90 138.01 
23 9.67 99.18 31.88 169.89 
24 9.53 108.71 29.68 199.58 
25 10.28 118.99 34.48 234.05 
26 12.34 131.33 68.98 303.03 
27 12.89 144.22 67.02 370.06 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 12.01 156.23 52.71 422.77 28 
 
 
 
 
 

11.96 168.19 50.08 472.85 29 
11.92 180.11 50.63 523.48 30 
15.58 195.68 112.06 635.53 31 
15.22 210.90 94.59 730.12 32 
15.09 225.99 99.43 829.55 33 
15.00 240.99 97.72 927.27 34 

 15.81 256.80 85.14 35 1012.41 
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Table J.8: Ductility ratios and energy damage indicator for column CL8.  
  

Cycle 
number 

 
Ductility  

Ratio 

Cumulative 
ductility 
ratios 

 

Energy 
damage  

 
 

indicator 
 

Cumulative 
energy 
damage 
indicator 

1 1.03 1.03 0.07 0.07 
2 1.13 2.16 0.05 0.13 
3 1.13 3.28 0.05 0.18 
4 1.18 4.47 0.05 0.24 
5 1.29 5.76 0.06 0.30 
6 2.09 7.85 0.29 0.59 
7 2.33 10.18 0.61 1.20 
8 2.36 12.54 0.54 1.74 
9 2.23 14.77 0.35 2.09 
10 2.35 17.11 0.47 2.56 
11 2.42 19.53 0.58 3.13 
12 2.91 22.45 1.08 4.21 
13 2.84 25.29 0.73 4.94 
14 3.11 28.39 1.26 6.20 
15 3.02 31.41 1.09 7.29 
16 5.47 36.88 11.45 18.74 
17 5.67 42.55 10.42 29.15 
18 5.85 48.40 10.35 39.51 
19 5.68 54.08 9.08 48.58 
20 5.62 59.70 8.60 57.18 
21 7.97 67.66 30.09 87.27 
22 8.50 76.16 30.60 117.87 
23 8.38 84.54 27.67 145.54 
24 8.80 93.33 31.28 176.82 
25 8.65 101.98 29.13 205.96 
26 10.96 112.95 62.39 268.35 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 10.69 123.64 58.22 326.57 27 

10.64 134.28 52.97 379.53 28  
10.73 145.00 51.73 431.26 29  
10.65 155.66 50.99 482.25 30  13.32 168.97 94.80 577.05 31 

 13.24 182.22 84.17 661.23 32 
 13.04 195.26 78.58 739.81 33 
 13.01 208.27 75.49 815.29 34 
 12.93 221.20 74.88 890.18 35 
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K. PROGRAM MCR 

 
 

K.1 OBJECTIVE 
 
The objective of this computer program is to determine the moment versus curvature 

relationships of the reinforced concrete sections with and without axial load. The program 

requires the material curves of the steel longitudinal bars and the concrete. The program works 

both for confined and unconfined concrete material curves. A sample input file is given 

subsequently in this appendix. The explanation of various terms in the data file is given in 

Table K.1. 

 

K.2 FORTRAN SOURCE CODE 
 
C******************************************************************* 
C******************************************************************* 
C******************************************************************* 
C******************************************************************* 
C          MUNAWAR ALI HUSSAIN 
C          PHD. CANDIDATE 
C          STRUCTURES GROUP 
C          DEPARTMENT OF CIVIL ENGINEERING  
C          UNIVERSITY OF ALBERTA  
C          CANADA, OCTOBER 2003 
C******************************************************************* 
C******************************************************************* 
C******************************************************************* 
C******************************************************************* 
        PROGRAM MCR 
   DIMENSION TITLE(20) 
C***************************************************************** 
        OPEN(UNIT=101,FILE='MCR.INP') 
        OPEN(UNIT=102,FILE='MCR.DAT') 
        OPEN(UNIT=103,FILE='MCR.CON') 
        OPEN(UNIT=104,FILE='MCR.STE') 
C        OPEN(UNIT=105,FILE='MCR.OUT1') 
   OPEN(UNIT=106,FILE='MCR.OUT') 
C***************************************************************** 
        REWIND(101) 
        REWIND(102) 
        REWIND(103) 
        REWIND(104) 
C       REWIND(105) 
   REWIND(106) 
C***************************************************************** 
1000   FORMAT(20A4) 
1002    FORMAT(2F26.8) 
C***************************************************************** 
        CALL ANAME 
C***************************************************************** 
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        READ(101,1000)TITLE   
        WRITE(102,1000)TITLE 
C   WRITE(105,1000)TITLE 
   WRITE(106,1000)TITLE   
        READ(101,1000)TITLE   
        WRITE(102,1000)TITLE  
        READ(101,1000)TITLE 
C***************************************************************** 
        READ(101,*)NPC,NPS,SNSTA,SINC,SNEND,CINC,AFORCE 
        WRITE(102,1005)NPC,NPS,SNSTA,SINC,SNEND,CINC,AFORCE 
1005    FORMAT(/5X,'NPC=',I6/5X,'NPS=',I6/5X,'SNSTA=',F20.6 
     .  /5X,'SINC=',F20.6 
     .  /5X,'SNEND=',F20.6/5X,'CINC=',F20.6/5X,'AFORCE=',F20.6/) 
C***************************************************************** 
         READ(101,1000)TITLE 
CCCC     WRITE(102,1000)TITLE 
         READ(101,*)WIDTH,DEPTH,AS1,AS2,AS3,DST1,DST2,DST3 
         WRITE(102,1010)WIDTH,DEPTH,AS1,AS2,AS3,DST1,DST2,DST3 
1010     FORMAT(/5X,'COLUMN WIDTH=',F12.5/5X,'COLUMN DEPTH=',F12.5 
     .  /5X,'AS1=',F12.5/5X,'AS2=',F12.5/5X,'AS3=',F12.5 
     .  /5X,'DST1=',F12.5/5X,'DST2=',F12.5/5X,'DST3=',F12.5/) 
C***************************************************************** 
   READ(101,1000)TITLE 
   WRITE(102,1000)TITLE 
   READ(101,1000)TITLE 
   WRITE(102,1000)TITLE 
C***************************************************************** 
          DO 100 IPC=1,NPC 
          READ(101,*)CSTRAIN,CSTRESS 
          WRITE(102,1002)CSTRAIN,CSTRESS 
          WRITE(103,1002)CSTRAIN,CSTRESS 
100       CONTINUE 
C***************************************************************** 
   READ(101,1000)TITLE 
   WRITE(102,1000)TITLE 
   READ(101,1000)TITLE 
   WRITE(102,1000)TITLE 
C***************************************************************** 
          DO 105 IPS=1,NPS 
          READ(101,*)SSTRAIN,SSTRESS 
          WRITE(102,1002)SSTRAIN,SSTRESS 
          WRITE(104,1002)SSTRAIN,SSTRESS 
105       CONTINUE 
C***************************************************************** 
        NITER=SSTRAIN/SINC+1 
   MITER=DEPTH/CINC+1 
   WRITE(102,107)NITER,MITER 
107     FORMAT(/10X,'NITER=',I6,10X,'MITER=',I6) 
C********************************************************************** 
        WRITE(102,917) 
917     FORMAT(/5X,'WIDTH  DEPTH   SN100   CN100   FST1   FST2   FST3   
     .  AFORCE  CDEPTH  XBAR   CFORCE') 
C********************************************************************** 
   REWIND(103) 
        REWIND(104) 
C********************************************************************** 
C  WRITE(105,1235) 

 701



 
 
C1235  FORMAT(10X,'STEEL STRAIN',15X,'MOMENT'/) 
C********************************************************************** 
 WRITE(106,1240) 
1240 FORMAT(/10X,'MOMENT',10X,'SN100',10X,'CN100', 
     .10X,'CDEPTH',10X,'CURVATURE'/) 
C********************************************************************** 
       SN100=SNSTA 
C********************************************************************** 
       DO 800 ITER=1,NITER 
  CDEPTH=1.00000 
  DO 900 JTER=1,MITER 
       CN100=SN100*CDEPTH/(DST1-CDEPTH) 
C***************************************************************** 
  IF(SN100.LT.0)THEN 
  CN200=ABS(SN100) 
  CALL SSTRES(CN200,SSTRES1) 
  CALL CSTRES(CN200,CSTRES1)  
  FST1=-(SSTRES1-CSTRES1)*AS1 
  ELSE 
       CALL SSTRES(SN100,SSTRES1) 
  FST1=SSTRES1*AS1 
  ENDIF 
C***************************************************************** 
  SSTRN2=SN100*(DST2-CDEPTH)/(DST1-CDEPTH) 
  IF(SSTRN2.LT.0)THEN 
       CSTRN2=ABS(SSTRN2) 
       CALL SSTRES(CSTRN2,SSTRES2) 
  CALL CSTRES(CSTRN2,CSTRES2) 
       FST2=-(SSTRES2-CSTRES2)*AS2 
       ELSE 
  CALL SSTRES(SSTRN2,SSTRES2) 
       FST2=SSTRES2*AS2 
       ENDIF 
C***************************************************************** 
  SSTRN3=SN100*(DST3-CDEPTH)/(DST1-CDEPTH) 
       IF(SSTRN3.LT.0)THEN 
  CSTRN3=ABS(SSTRN3) 
       CALL SSTRES(CSTRN3,SSTRES3) 
  CALL CSTRES(CSTRN3,CSTRES3) 
  FST3=-(SSTRES3-CSTRES3)*AS3 
       ELSE 
  CALL SSTRES(SSTRN3,SSTRES3) 
       FST3=SSTRES3*AS3 
       ENDIF 
C***************************************************************** 
        CALL RESCON(WIDTH,CDEPTH,CN100,XBAR,CFORCE) 
C***************************************************************** 
  FRES=FST1+FST2+FST3+AFORCE-CFORCE 
C***************************************************************** 
 IF(ABS(FRES).LT.1000)THEN 
      RESMOM=FST1*(DST1-DEPTH/2)+FST2*(DST2-DEPTH/2)+ 
     .FST3*(DST3-DEPTH/2)+CFORCE*(DEPTH/2-CDEPTH+XBAR)  
      RESMOM=RESMOM/1000/1000               
C WRITE(105,915)SN100,RESMOM 
C915   FORMAT(5X,F20.10,5X,F20.6) 
 WRITE(102,909)WIDTH,DEPTH,SN100,CN100,FST1,FST2,FST3,AFORCE, 
 .CDEPTH,XBAR,CFORCE 
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909 FORMAT(11F20.6) 
C****************************************************************** 
  PHI=CN100/CDEPTH 
  WRITE(106,111)RESMOM,SN100,CN100,CDEPTH,PHI 
111    FORMAT(5E20.8) 
C****************************************************************** 
 GOTO 950 
 ENDIF 
C****************************************************************** 
      CDEPTH=CDEPTH+CINC 
900   CONTINUE   
C****************************************************************** 
950   SN100=SN100+SINC 
        IF(SN100.GT.SNEND)GOTO 2121 
800     CONTINUE 
        CALL JOB 
C****************************************************************** 
2121            CLOSE(101) 
                CLOSE(102) 
                CLOSE(103) 
                CLOSE(104) 
C                CLOSE(105) 
                CLOSE(106) 
C***************************************************************** 
       STOP 
       END  
C***************************************************************** 
          SUBROUTINE CSTRES(EPSL,CPP) 
        CALL ANAME 
       KOUNT=0 
       NPOIN=20000 
C***************************************************************** 
C***************************************************************** 
C***************************************************************** 
       DO 110 IPOIN=1,NPOIN 
       READ(103,*)EPSLAT,CPDATA 
       KOUNT=KOUNT+1 
C***************************************************************** 
       IF(EPSL.EQ.EPSLAT)THEN 
       GOTO 200 
       ENDIF 
C***************************************************************** 
        IF(EPSL.LT.EPSLAT)THEN 
       EPS2=EPSLAT 
       CP2=CPDATA 
       GOTO 300 
       ENDIF 
110     CONTINUE 
C***************************************************************** 
300     KOUNT=KOUNT-1 
        REWIND(103) 
       DO 400 K=1,KOUNT 
       READ(103,*)EPSLAT,CPDATA 
400     CONTINUE 
        EPS1=EPSLAT 
       CP1=CPDATA 
        CPP=CP1+(CP2-CP1)*(EPSL-EPS1)/(EPS2-EPS1) 
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       GOTO 500 
C***************************************************************** 
200     CPP=CPDATA 
500     REWIND(103)             
       RETURN 
        END 
C***************************************************************** 
C***************************************************************** 
C***************************************************************** 
        SUBROUTINE SSTRES(EPSL,CPP) 
     CALL ANAME 
       KOUNT=0 
       NPOIN=20000 
C***************************************************************** 
       DO 110 IPOIN=1,NPOIN 
       READ(104,*)EPSLAT,CPDATA 
       KOUNT=KOUNT+1 
C***************************************************************** 
       IF(EPSL.EQ.EPSLAT)THEN 
       GOTO 200 
       ENDIF 
C**************************************************************** 
        IF(EPSL.LT.EPSLAT)THEN 
       EPS2=EPSLAT 
       CP2=CPDATA 
       GOTO 300 
       ENDIF 
110     CONTINUE 
C**************************************************************** 
300    KOUNT=KOUNT-1 
       REWIND(104) 
       DO 400 K=1,KOUNT 
       READ(104,*)EPSLAT,CPDATA 
400     CONTINUE 
       EPS1=EPSLAT 
       CP1=CPDATA 
       CPP=CP1+(CP2-CP1)*(EPSL-EPS1)/(EPS2-EPS1) 
       GOTO 500 
C***************************************************************** 
200       CPP=CPDATA 
500       REWIND(104)    
        RETURN 
       END 
C***************************************************************** 
C***************************************************************** 
          SUBROUTINE RESCON(WIDTH,CDEPTH,CSTRAIN,XBAR,SFORCE) 
     DIMENSION  CDEPT(200),CSTS(200),FCON(200),XDIST(200) 
     WIDTH=WIDTH 
     CDEPTH=CDEPTH 
     NITER=100 
     CINC=CDEPTH/(NITER-1) 
     C=0.00000 
C***************************************************************** 
     DO 200 ITER=1,NITER 
     CDEPT(ITER)=C 
     CTN=CSTRAIN*C/CDEPTH 
     CALL CSTRES(CTN,CSTS1) 

 704



 
 
     CSTS(ITER)=CSTS1 
     C=C+CINC 
200     CONTINUE 
C***************************************************************** 
          NITER=NITER-1 
C***************************************************************** 
     DO 300 ITER=1,NITER 
     FCON(ITER)=WIDTH*CINC*(CSTS(ITER)+CSTS(ITER+1))/2 
     XDIST(ITER)=(CDEPT(ITER)+CDEPT(ITER+1))/2 
300       CONTINUE 
C***************************************************************** 
          SMOM=0.00000 
     SFORCE=0.0000 
          DO 400 ITER=1,NITER 
     SFORCE=SFORCE+FCON(ITER) 
     SMOM=SMOM+FCON(ITER)*XDIST(ITER) 
400       CONTINUE 
C***************************************************************** 
          SFORCE=SFORCE 
          XBAR=SMOM/SFORCE 
C***************************************************************** 
     RETURN 
     END 
C*****************************************************************   
C***************************************************************** 
C***************************************************************** 
C***************************************************************** 
     SUBROUTINE ANAME 
     REWIND (103) 
     REWIND (104) 
C****************************************************************** 
     WRITE(*, 10) 
10  FORMAT(5X, 'DEVELOPED BY MUNAWAR A. HUSSAIN, U OF A, 
EDMONTON, 
     .CANADA')  
C****************************************************************** 
C****************************************************************** 
C****************************************************************** 
     RETURN 
     END 
C****************************************************************** 
C****************************************************************** 
C****************************************************************** 
     SUBROUTINE JOB 
          WRITE(*,10) 
10  FORMAT(//5X,'JOB COMPLETED! JOB COMPLETED! JOB 
COMPLETED!'//) 
   RETURN 
     END 
C****************************************************************** 
C****************************************************************** 
C****************************************************************** 
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K.3 A SAMPLE INPUT FILE 
 
Munawar A. Hussain 
Department of Civil Engineering, University of Alberta 
NPC      NPS      SNSTART    SINC      SNEND      CINC        AFORCE  
20       34        0.001     0.01      0.13       0.001       0.0000 
WIDTH     DEPTH     AS1     AS2    AS3    DST1     DST2       DST3 
300.00    300.00   1500    1000   1500    240      150        60 
Confined-Concrete-Curve Follows 
        Axial-Strain  Axial-Stress 
            0.000        0.00 
            0.005        25.77 
            0.010        32.03 
            0.015        33.58 
            0.020        33.70 
            0.025        33.41 
            0.030        32.96 
            0.035        32.43 
            0.040        31.84 
            0.045        31.34 
            0.050        30.90 
            0.055        30.49 
            0.060        30.07 
            0.065        29.76 
            0.070        29.44 
            0.075        29.12 
            0.080        28.85 
            0.085        28.59 
            0.090        28.33 
            0.095        28.14 
Stress-Strain-Curve for Vertical Rebars of The Column 
        Axial-Strain   Axial-Stress 
            0.000         0.00 
            0.005        509.87 
            0.010        517.80 
            0.015        551.72 
            0.020        582.22 
            0.025        609.03 
            0.030        631.94 
            0.035        651.67 
            0.040        667.70 
            0.045        680.84 
            0.050        693.33 
            0.055        702.52 
            0.060        710.33 
            0.065        716.58 
            0.070        721.43 
            0.075        725.95 
            0.080        729.06 
            0.085        731.47 
            0.090        733.35 
            0.095        734.92 
            0.100        735.88 
            0.105        736.41 
            0.110        736.48 
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            0.115        736.24 
            0.120        735.70 
            0.125        734.90 
            0.130        733.89 
            0.135        733.26 
            0.140        731.34 
            0.145        729.15 
            0.150        726.49 
            0.155        723.53 
            0.160        720.28 
            0.165        717.17 
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 Table K.1: Explanation of various terms in the input file (MCR.INP) 

TERM EXPLANATION 

NPC Number of data points in stress versus strain curve of 
concrete 

NPS Number of data points in stress versus strain curve of 
steel longitudinal bars 

SNSTART Start strain for steel longitudinal bars 

SNEND Steel strain at which analysis is to be terminated 

SINC Increment in steel strain 

CINC 
Increment in c, where c is the distance from extreme 
compression fiber to the neutral axis of the column 
section 

Width Width of column section 

Depth Depth of column section 

AS1 Area of longitudinal steel 1 

AS2 Area of longitudinal steel 2 

AS3 Area of longitudinal steel 3 

DST1 Distance of longitudinal steel 1 from compression face 

DST2 Distance of longitudinal steel 2 from compression face 

DST3 Distance of longitudinal steel 3 from compression face 
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L. PROGRAM C4P 
 

 
L.1 OBJECTIVE 
 
Knowing the behaviour of collars in terms of confining pressure versus lateral strain relationships 

by the finite element or by the proposed empirical models, the computer program C4P is used to 

find the confined concrete material curve of the reduced core of the confined columns. This 

program is used in Chapters 5 and 6. A sample input file is also given later in this chapter. The 

explanation of various terms in the input file is given in Table L.1. 

 

L.2 FORTRAN SOURCE CODE 
 
C******************************************************************* 
C******************************************************************* 
C    The acronym C4P is derived from the following: 
C    Confinement of reinforced Concrete Columns by steel Collar 
C******************************************************************* 
C******************************************************************* 
C          PROGRAM DEVELOPED BY MUNAWAR A. HUSSAIN 
C          PHD. CANDIDATE 
C          STRUCTURES GROUP 
C          DEPARTMENT OF CIVIL ENGINEERING  
C          UNIVERSITY OF ALBERTA  
C          CANADA, MARCH 2003 
C******************************************************************* 
C******************************************************************* 
C******************************************************************* 
C******************************************************************* 
C          Dedicated to Sabina and Ali 
C******************************************************************* 
C******************************************************************* 
C******************************************************************* 
 PROGRAM C4P 
 DIMENSION TITLE(20) 
C******************************************************************* 
C*****C4P.INP  contains input data 
C*****C4P.DAT  contains the generated data 
C*****C4P.CPLS  is the scratch file for confining-pressure vs lateral-
c*****strain 
C*****C4P.CPAS  is the scratch file for confining-pressure vs axial-
C*****strain 
C*****C4P.OUT  contains data for confined-concrete-stress vs axial-
C*****strain 
C********************************************************************* 
        OPEN(UNIT=101,FILE='C4P.inp') 
   OPEN(UNIT=102,FILE='C4P.dat') 
   OPEN(UNIT=103,FILE='C4P.cpls') 
        OPEN(UNIT=104,FILE='C4P.cpas') 
   OPEN(UNIT=105,FILE='C4P.out') 
C***************************************************************** 
        REWIND(101) 
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        REWIND(102) 
        REWIND(103) 
   REWIND(104) 
   REWIND(105) 
C***************************************************************** 
1000   FORMAT(20A4) 
1002    FORMAT(2F26.7) 
1004   FORMAT(10E12.4) 
C***************************************************************** 
      READ(101,1000)TITLE   
      WRITE(102,1000)TITLE   
      READ(101,1000)TITLE   
      WRITE(102,1000)TITLE  
      READ(101,1000)TITLE 
CCCCC WRITE(102,1000)TITLE 
C******************************************************************** 
  READ(101,*)NPOIN,FCOP,EC,PRCO,EPS0,CPACTIVE 
  WRITE(102,1005)NPOIN,FCOP,EC,PRCO,EPS0,CPACTIVE 
1005   FORMAT(//5X,'NPOIN=',I5/5X,'FCOP=',F20.6/5X,'SECANT-E=',F20.6/ 
     . 5X,'PRCO=',F20.6/5X,'EPS0=',F20.6/5X,'CPACTIVE=',F20.6) 
C******************************************************************** 
 READ(101,1000)TITLE 
 WRITE(102,1000)TITLE 
C******************************************************************** 
C******************************************************************** 
C******************************************************************** 
 DO 100 IPOIN=1,NPOIN 
 READ(101,*)EPSLAT,CP 
 WRITE(102,1002)EPSLAT,CP 
 WRITE(103,1002)EPSLAT,CP 
100   CONTINUE 
 SLMAX=EPSLAT 
      JOUNT=SLMAX/0.00001+10 
C********************************************************************** 
C*****INITIAL VALUES FOLLOWS******************************************* 
C********************************************************************** 
      XCOORD=0.000000 
      WRITE(102,1003) 
1003 FORMAT(5X,'EPSCC',7X,'EPSCCP',7X,'PRC',8X,'CPPIN',7X,'CPPOUT', 
     .7X,'EPSL',7X,'EP',7X,'FCC',7X,'R',7X,'ECC') 
 WRITE(104,1002)XCOORD,CPACTIVE 
 WRITE(105,1002)XCOORD,XCOORD 
C********************************************************************** 
      EPSCC=0.0005 
 EPSCCP=0.01 
 ECC=1.10*EC 
 ECO=1.12*EC 
 CPP=0.00000 
 KOUNT=30 
 PRCLMT=0.500000 
C********************************************************************** 
      DO 1200 J=1,JOUNT 
      DO 1500 K=1,KOUNT 
      CONSTT=1.914*(CPP/FCOP)+0.719 
      PRC=PRCO*(CONSTT*(EPSCC/EPSCCP)+1) 
C********************************************************************** 
 IF(PRC.GT.PRCLMT)THEN  
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 PRC=PRCLMT 
 ENDIF 
C********************************************************************** 
      EPSL=EPSCC*PRC 
 IF(EPSL.GT.SLMAX)GOTO 1400 
 CALL CPRESS(NPOIN,EPSL,CPP) 
 CPPIN=CPP 
 CPP=CPP-CPACTIVE 
 EP=CPP/EPSL 
 CPP=EPSL/(((1-PRC)/ECC)+1/EP) 
 CPP=CPP+CPACTIVE 
 CPPOUT=CPP 
 FCCP=FCOP*(-1.254+2.254*SQRT(1+7.94*CPP/FCOP)-2.0*CPP/FCOP) 
  SEF=FCCP/FCOP 
  EPSCCP=EPS0*(1+5*(SEF-1)) 
 ESEC=FCCP/EPSCCP 
 R=ECO/(ECO-ESEC) 
 X=EPSCC/EPSCCP 
 FCC=FCCP*X*R/(R-1+X**R) 
 ECC=FCC/EPSCC 
1500  CONTINUE 
 WRITE(104,1002)EPSCC,CPP 
      WRITE(102,1004)EPSCC,EPSCCP,PRC,CPPIN,CPPOUT,EPSL,EP,FCC,R,ECC 
 WRITE(105,1002)EPSCC,FCC 
      EPSCC=EPSCC+0.0005 
1200  CONTINUE   
1400  CONTINUE  
C***************************************************************** 
C***************************************************************** 
      CALL JOB 
C***************************************************************** 
C***************************************************************** 
 CLOSE(101) 
 CLOSE(102) 
 CLOSE(103) 
 CLOSE(104) 
 CLOSE(105) 
C***************************************************************** 
     STOP 
 END  
C***************************************************************** 
      SUBROUTINE CPRESS(NPOIN,EPSL,CPP) 
 CALL ANAME 
 KOUNT=0 
CCCC WRITE(102,*)EPSL 
C*************************************************************** 
 DO 110 IPOIN=1,NPOIN 
 READ(103,*)EPSLAT,CPDATA 
CCCC WRITE(102,*)EPSLAT,CPDATA 
 KOUNT=KOUNT+1 
CCCC WRITE(102,*)KOUNT 
C**************************************************************** 
 IF(EPSL.EQ.EPSLAT)THEN 
 GOTO 200 
 ENDIF 
C**************************************************************** 
      IF(EPSL.LT.EPSLAT)THEN 
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 EPS2=EPSLAT 
 CP2=CPDATA 
CCCC WRITE(102,*)EPS2,CP2 
  GOTO 300 
 END IF 
C**************************************************************** 
C***************************************************************** 
110   CONTINUE 
C***************************************************************** 
300 KOUNT=KOUNT-1 
 REWIND(103) 
  DO 400 K=1,KOUNT 
 READ(103,*)EPSLAT,CPDATA 
400   CONTINUE 
 EPS1=EPSLAT 
 CP1=CPDATA 
 CPP=CP1+(CP2-CP1)*(EPSL-EPS1)/(EPS2-EPS1) 
 GOTO 500 
C***************************************************************** 
200   CPP=CPDATA 
      CALL ANAME 
500   CONTINUE    
 RETURN 
 END 
C***************************************************************** 
C***************************************************************** 
C***************************************************************** 
     SUBROUTINE ANAME 
     REWIND (103) 
C****************************************************************** 
     WRITE(*, 10) 
10  FORMAT(5X, 'DEVELOPED BY MUNAWAR A. HUSSAIN, U OF A,  
     .CANADA')  
C****************************************************************** 
C****************************************************************** 
C****************************************************************** 
     RETURN 
     END 
C****************************************************************** 
C****************************************************************** 
C****************************************************************** 
     SUBROUTINE JOB 
          WRITE(*,10) 
10  FORMAT(//5X,'JOB COMPLETED! JOB COMPLETED!'//)  
   RETURN 
     END 
C****************************************************************** 
C****************************************************************** 
C************************************************************************ 
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L.3 A SAMPLE INPUT FILE 
 
Munawar A. Hussain 
Deptt. of Civil and Env. Engg, University of Alberta, Edmonton, Canada 
NPOIN    f’co     Ec       POISSON   EPSILON-0           CP-ACTIVE 
93      32.895   21221      0.15      0.0031               2.9162 
        Lateral-Strain  Confining-Pressure   

 0.000           0.00 
             0.002           5.80 
             0.004           7.26 
             0.006           8.60 
             0.008           9.81 
             0.010          10.75 
             0.012          11.40 
             0.014          11.79 
             0.016          12.18 
             0.018          12.34 
             0.020          12.47 
             0.022          12.60 
             0.024          12.72 
             0.026          12.80 
             0.028          12.87 
             0.030          12.95 
             0.032          13.02 
             0.034          13.08 
             0.036          13.14 
             0.038          13.20 
             0.040          13.24 
             0.042          13.29 
             0.044          13.33 
             0.046          13.37 
             0.048          13.41 
             0.050          13.45 
             0.052          13.47 
             0.054          13.50 
             0.056          13.52 
             0.058          13.55 
             0.060          13.58 
             0.062          13.60 
             0.064          13.63 
             0.066          13.65 
             0.068          13.67 
             0.070          13.67 
             0.072          13.67 
             0.074          13.67 
             0.076          13.67 
             0.078          13.67 
             0.080          13.68 
             0.082          13.68 
             0.084          13.68 
             0.086          13.68 
             0.088          13.68 
             0.090          13.68 
             0.092          13.68 
             0.094          13.69 

 713



 
 
             0.096          13.69 
             0.098          13.66 
             0.100          13.64 
             0.102          13.61 
             0.104          13.58 
             0.106          13.56 
             0.108          13.53 
             0.110          13.50 
             0.112          13.48 
             0.114          13.45 
             0.116          13.42 
             0.118          13.40 
             0.120          13.37 
             0.122          13.34 
             0.124          13.32 
             0.126          13.29 
             0.128          13.27 
             0.130          13.24 
             0.132          13.21 
             0.134          13.19 
             0.136          13.16 
             0.138          13.13 
             0.140          13.11 
             0.142          13.08 
             0.144          13.05 
             0.146          13.01 
             0.148          12.96 
             0.150          12.92 
             0.152          12.88 
             0.154          12.84 
             0.156          12.80 
             0.158          12.76 
             0.160          12.72 
             0.162          12.68 
             0.164          12.64 
             0.166          12.60 
             0.168          12.56 
             0.170          12.52 
             0.172          12.48 
             0.174          12.44 
             0.176          12.39 
             0.178          12.35 
             0.180          12.30 
             0.182          12.26 
             0.184          12.22 
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Table L.1: Explanation of various terms in the input file (C4P.INP) 

TERM EXPLANATION 

NPOIN Number of data points in confining pressure versus 
lateral strain curve 

cof ′  Strength of column concrete 

cE  Secant modulus of elasticity of column concrete 

POISSON Initial Poisson’s ratio of concrete 

EPSILON-0 Strain at peak stress of column concrete (unconfined) 

CP-ACTIVE Magnitude of initial active confining pressure 
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	5. MODEL FOR CONCRETE CONFINED EXTERNALLY BY STEEL COLLARS 
	 
	5.1 Introduction 
	 
	Numerous experimental and analytical studies into the behaviour of concrete confined by conventional reinforcing steel ties have been reported (e.g., Richart et al. (1928, 1929), Chan (1955), Iyengar et al. (1970), Vallenas et al. (1977), Ahmad and Shah (1982, 1985), Sheikh and Uzumeri (1980, 1982), Park et al. (1982), Scott et al. (1982), Mander et al. (1988a, 1988b), Chung et al. (2002), Saatcioglu and Razvi (1992), Cusson and Paultre (1995), and Légéron and Paultre (2003)). Since the 1990s, a large number of researchers have focussed on the confinement of concrete by composite materials (e.g., Sadaatmanesh et al. (1994), Nanni and Bradford (1995), Mirmiran and Shahawy (1996, 1997), Seible et al. (1997), Samaan et al. (1998), and Fam and Rizkalla (2001)). In most of these studies, concrete material models have been proposed that account for the confinement of concrete based on the behaviour of the confining elements.. 
	 
	External confinement by simple bolted or welded collars made from steel hollow structural sections (HSS) has proved through experimental study at the University of Alberta to be an effective seismic rehabilitation scheme for square reinforced concrete columns. The experimental program consisted of two phases: in phase 1, the behaviour of externally confined columns under concentric axial loading was studied (Chapter 3); and in phase 2, the behaviour of externally confined columns under cyclic loading was studied (Chapter 4). 
	 
	The existing confinement models for both conventional rebar confinement and for confinement of concrete by composite materials are unable to predict the behaviour of concrete columns confined externally by HSS collars under concentric monotonic axial loading because of either one or more of the following reasons: 
	 
	(1) The flexural stiffness of the confining elements affects the behaviour of confined concrete significantly, as has been demonstrated experimentally by Khaloo and Bozorgzadeh (2001) and through finite element analysis by Hussain and Driver (2001), and all of the aforementioned existing confinement models lack an explicit flexural stiffness parameter. 
	 
	(2) Most of the models for the confinement of concrete by conventional steel ties assume yielding of the confining steel at the peak stress of the confined concrete and hence, for simplicity, assume constant confining pressure throughout the axial load history of the confined columns. However, because the steel collars are often either elastic or only partially yielded at this point, the variation of the confining pressure under the collars must be accounted for, as has been demonstrated by Hussain and Driver (2003) through finite element study. 
	 
	(3) Most of the models for conventional rebar confinement base their results on the yield strength of the confining steel without taking into consideration the shape of the stress vs. strain relationship which is known to be influential for collared columns (Hussain and Driver, 2003). 
	 
	The modified Kent and Park model (Park et al., 1982) and the models proposed by Sheikh and Uzumeri (1982), Mander et al. (1988b), and Saatcioglu and Razvi (1992) assume that complete yielding of the confining steel has taken place at the peak stress of the confined concrete and strain hardening is neglected. The models proposed by Ahmad and Shah (1982), Chung et al. (2002), Cusson and Paultre (1995), and Légeron and Paultre (2003) for the confinement of concrete by conventional ties do not assume yielding of the confining steel at the peak stress of the confined concrete and, hence, in these models confining pressure is not considered to remain constant. The models proposed by Ahmed and Shah (1982), Madas and Elnashai (1992), Cusson and Paultre (1995), and Légeron and Paultre (2003) take into consideration the complete stress vs. strain curve of the confining steel by making use of an incremental—iterative procedure to trace the stress vs. strain relationship of the confined concrete. All of these models lack an explicit flexural stiffness parameter. Generally, the confinement models are either based on or validated by the test results of columns confined by elements having small flexural stiffness. Therefore, the omission of this parameter from the confinement models has no adverse consequence on their performance if used for columns confined by confining elements with negligible flexural stiffness. However, their performance would be questionable if used for columns confined by elements with significant flexural stiffness in addition to axial stiffness. Moreover, none of the above mentioned confinement models have the ability to take into account the initial active confining pressure that may be present in the concrete confined with steel collars having bolted corner connections due to the pre stressing of bolts.  
	 
	5.2 Predictions by Existing Confinement Models 

	 
	In order to demonstrate that the existing confinement models are unable to predict the behaviour of concrete confined by HSS collars, the following models are chosen to predict the behaviour of column C06 (Chapter 3), which is considered typical: modified Kent and Park model (Park et al., 1982); Sheikh and Uzumeri (1982); Mander et al. (1988b); Saatcioglu and Razvi (1992); and Légeron and Paultre (2003). The resulting confined stress vs. strain curves are depicted in Figure 5 1. The column is 300 x 300 mm in cross section and is confined with collars made from steel hollow structural sections (HSS 51 x 51 x 6.35 mm) with welded corner connections. The centre to centre spacing of collars is 122 mm. The yield stress and modulus of elasticity of collars are 497 MPa and 203 400 MPa, respectively. The cylinder strength of concrete,  , is 34.8 MPa. It is clear from Figure 5 1, that none of these confinement models are able to provide a good prediction of the behaviour of this collared column. Other column configurations lead to similar results. Therefore, in order to predict the behaviour of concrete columns confined by HSS collars, finite element methods were used in combination with a new confinement model, as described in the next sections. 
	 
	5.3 Finite Element Analysis 

	 
	Finite element analysis of the columns was carried out using the general purpose finite element program ABAQUS (HKS, 2004a, 2004b). Three dimensional finite element models were developed to predict the behaviour of externally confined columns under concentric loading. The formulation of the numerical model was based on small displacements and infinitesimal strains and material nonlinearities were taken into consideration. The analyses were conducted incrementally with equilibrium established in each increment. 
	 
	5.3.1 Geometric Modelling 

	 
	Figure 5 2 shows a typical three dimensional finite element model of a mid height slice of an axially loaded concrete column confined externally with steel HSS collars having either bolted or welded corner connections. All of the columns were 300 x 300 mm in cross section and uniform finite element meshes were used throughout the models. For mesh refinement studies, three meshes—12 x 12 x 13, 16 x 16 x 13, and 20 x 20 x 13—were tried and the same results were obtained. Hence, a mesh of 12 x 12 x 13 (as shown in Figure 5 2) was chosen for modelling all of the collared columns. 
	 
	Eight node solid elements with reduced integration (C3D8R) were used to model the concrete. At each node, there were three translational degrees of freedom. The vertical reinforcement was modelled using two node three dimensional truss elements (T3D2) with three translational degrees of freedom per node. The truss elements of the vertical bars were connected to the nodes of the concrete elements (C3D8R) and hence no bond slip was assumed. HSS collars were modelled with two node shear flexible three dimensional beam elements (B33) with six degrees of freedom per node (three translational and three rotational). The links between collar beam elements and concrete cube elements (outriggers) were also modelled using truss elements T3D2. The area of the cross section of these links was chosen high enough to render them as axially rigid. As the collars are connected to the concrete with truss element links (T3D2) with no rotational degrees of freedom at the nodes, the collars were unstable in the vertical direction. Therefore, the vertical stability of the collars was obtained by constraining the vertical degrees of freedom of the four corner nodes of the collar to the central node of the concrete surface in the plane of the collar. By these constraints, the vertical displacements of the collars and those of the respective central nodes of the concrete remain equal. 
	 
	In the present study, two types of collars made from hollow structural sections (HSS) were used, as described in Chapter 3. The collar beam elements were placed at the centreline of the collars. In the case of collars with rigid (welded) corner connections, the unsupported lengths of the elements at the collar corners affect the collar stiffness significantly. This problem was overcome by providing rigid diagonal elements in the corners of the collars, as shown in Figure 5 2. In the case of collars with bolted corner connections, the bolts were relatively flexible elements; therefore, the confining behaviour of the collars with bolted corner connections was highly dependent on the length of the corner bolts (threaded rods). In order to achieve the desired behaviour, measured bolt lengths between the undersides of the nuts were used in the models. The collars used in the experimental work were made from standard steel HSS. The HSS has round corners but in the finite element model, rectangular box sections with sharp corners were used to model the HSS. The thickness of the webs and flanges of the box sections were selected to provide the moment of inertia and area of cross section equal to that of the actual HSS cross-section with round corners. As the HSS collars are 51 mm wide and they therefore cover a 51 mm depth on the concrete column surface, lumping the stiffness of collars in just one line was not considered appropriate. Therefore, each collar was modelled using two layers of beam elements (one at each of the two limits of contact with the concrete), as depicted in Figure 5 2. 
	 
	5.3.2 Boundary Conditions and Loading 

	 
	Rigid surfaces were defined at the top and bottom ends of the model. All three degrees of freedom of the central node at the bottom surface of the model were fully restrained. The two horizontal degrees of freedom of the central node on the top surface were also fully restrained, leaving its third (vertical) degree of freedom unrestrained to apply axial load to the column using displacement control. The degrees of freedom of all the remaining nodes of the top and bottom surfaces were constrained to the central node of the respective surface. 
	 
	The behaviour of the confined concrete columns is described in terms of load vs. axial strain relationships. The vertical load on the model is obtained from the vertical reaction of the central node at the bottom surface. The axial strain is determined from the relative displacements of two nodes on the vertical centreline of the model that are situated two layers away from the boundaries at either end. The reason for selecting nodes away from the boundaries is to exclude any effect of boundaries on the confining behaviour.  
	 
	5.3.3 Solution Strategy 

	 
	Displacement control with a Newton Raphson iterative scheme was used for solving the finite element models. In the full Newton Raphson’s method, the tangent stiffness matrix [K] is updated in all equilibrium iterations, making this nonlinear solution scheme expensive in terms of total solution time. In the modified Newton Raphson’s Method, the stiffness matrix is updated only at the beginning of every load or displacement increment, potentially resulting in a significant reduction of total solution time. ABAQUS automatically moves back and forth between Newton Raphson’s method and the modified Newton Raphson’s method based on the difficulties in updating [K] and the convergence rate (HKS, 2004a, 2004b). 
	 
	5.3.4 Material Properties 

	 
	The finite element models consisted of concrete, reinforcing bars, steel HSS, and threaded rods. The collars with welded corner connections were grouted onto the columns using epoxy grout. However, the thickness of the grout layer was small (5 to 6 mm), so its effect on the behaviour of the confined columns was deemed negligible and it was not included in the finite element models (the inner faces of the collars were assumed to bear directly against the concrete). The material properties were taken from the experimental program. Properties that were not measured directly were estimated, as discussed below. 
	 
	5.3.4.1 Concrete 

	 
	For plain concrete, a constitutive model implemented in ABAQUS under the option of “concrete” was used. This material model encompasses tension as well as compression behaviour of concrete. For computational efficiency, several simplifications are included in the model. The response of concrete under compressive stresses is modelled with an elastic plastic constitutive theory using a yield surface consisting of equivalent compressive stress and von Mises deviatoric stress (generally known as the Drucker Prager yield surface). When the stress state of the concrete reaches the yield surface, isotropic hardening and associated flow rules are used. The assumption of associated flow for concrete has not been justified by experiments. In addition, this material model cannot take into account the inelastic response of concrete under high compressive stresses. This model works well for uniaxial and biaxial compression cases; however, due to the lack of third stress invariant in the failure surface and due to the inadequacy of plasticity hardening parameters, this material model cannot accurately predict the behaviour of concrete under tri axial compression and tri axial tension (HKS, 2004a). 
	 
	In tension, cracking is assumed to occur in the concrete when the stress level reaches a failure surface called the “crack detection surface.” The model uses a smeared crack approach, which means that it does not track individual “macro cracks. ” In the smeared crack approach, the localized deformation of each crack is smeared over a characteristic length and the response in tension is described as a continuum in terms of stress vs. strain relationships. After the appearance of the cracks, the postfailure behaviour of the concrete is described by a damage elasticity model and a bilinear stress crack opening relationship is used to define the tensile softening behaviour of the concrete (HKS, 2004a). 
	 
	Some basic properties of concrete for phases 1 and 2 columns such as cylinder strength, modulus of elasticity, strain at peak stress, and Poisson’s ratio are reported in Chapters 3 and 4, respectively. 
	 
	5.3.4.2 Reinforcing Bars, Steel HSS, and Threaded Rods 

	 
	Tension tests were performed to determine the material properties of the rebars and threaded rods (bolts). Stub column tests were performed to find the material properties of the HSS. These material properties were reported in Chapters 3 and 4. The constitutive behaviour of the steel was defined by an elastic-plastic model with the von Mises yield criterion, associated flow rule, and isotropic strain hardening. 
	 
	5.3.5 Preliminary Finite Element Results and New Direction 

	 
	While conducting the finite element analyses, difficulties arose in tracing the descending branch of the confined concrete material curves and comparisons between the finite element and experimental results were not satisfactory due to the limitations of the program for modelling the concrete under tri axial compression, as described above. Initially, attempts were made to overcome this problem by modifying the descending branch of the input concrete material curve as has been suggested by Johansson and Gylltoft (2002) and modelling explicitly the spalling of concrete between the collars by removing the cover elements during the axial loading history based on the observed behaviour in the experimental study (Chapter 3). The slope of the straight line descending branch of the input material concrete material curve was decreased (i.e., the descending branch was raised)—to obtain a good agreement with the test results—to compensate for the lack of the third stress invariant in the concrete material model available in ABAQUS and it seems logical to relate the modification of the descending branch to the magnitude of the confining pressure on the columns. In the experimental study reported in Chapter 3, columns with different levels of confining pressures were tested because of differences in the size, spacing, and corner connections of the collars. In addition, some of the collars with bolted corner connections were pre stressed and had active confining pressure in addition to passive confining pressure, which is produced due to the expansion of the concrete during the axial load history of the columns. The question remains, however, of how much the descending branch of the input concrete material model should be modified to produce an accurate representation of the confined behaviour. In addition, it has been shown elsewhere (Hussain and Driver, 2003) and again it will be shown later in this chapter that the dilation rate of the concrete material model available in ABAQUS is quite different than that of an existing empirical concrete dilation model used in the present study (See Section 5.4.3). 
	 
	Because of these reasons, it was decided not to use the ABAQUS concrete material model for predicting the confining behaviour of the collared columns. Therefore, a different approach was developed for this purpose, which requires as input the confining behaviour of the steel HSS collars in terms of confining pressure vs. lateral strain obtained through finite element analysis. The use of the confining pressure vs. lateral strain relationship from the finite element analysis reduces substantially the dependence of the results on the concrete material model because the results are related primarily to the collar behaviour itself. 
	 
	5.3.6 Confining Pressure vs. Lateral Strain Relationships 

	 
	Although the finite element model described above is unable to predict the behaviour of concrete confined by steel HSS collars due to its various limitations, it is nevertheless useful to determine the behaviour of collars in terms of average confining pressure vs. average lateral strain. It seems reasonable to assume that this relationship, which is predominantly related to the restraining action of the collars themselves (i.e., as a collar strains outward due to the laterally expanding concrete, the confining pressure increases by an amount that is a function of its stiffness), is largely independent of the concrete properties used as input. However, in order to assess the effect of the input concrete material curve on the confining behaviour of collars, different curves were used in the finite element analysis and it was confirmed that the resulting confining behaviour of collars is practically independent of the input concrete material curves. This is demonstrated by studying the dependency of the confining behaviour of the bolted collars of column C01 and the welded collars of column C06 on the input concrete material curves. Five different input curves of normal strength concrete with modified (enhanced) curvilinear descending branches are shown in Figure 5 3. Using these input concrete material curves, the confining pressure versus lateral strain curves for column C01 (bolted collars) and C06 (welded collars) are determined through finite element analysis and are shown in Figures 5 4 and 5 5, respectively. The variations in the input concrete material curves have no effect on the confining behaviour of the bolted collars of column C01. This is because the bolts are relatively flexible components in the collars and most of the deformation takes place there. However, the confining behaviour of the welded collars of column C06 is slightly affected by the change in the input concrete material curve because welded collars tend to apply high confining pressure in the corners as compared to the mid depth of the column.  
	 
	The discrepancy for the welded collars can be solved by using an iterative procedure similar to the one used by Hussain and Driver (2003). In this method, the confining behaviour of collars is established with an input material curve similar to the ones shown in Figure 5 3, which is then used to determine the confined concrete material curve using the empirical model described later in this chapter. Using this confined material curve as a reference, the input concrete material curve for the finite element analysis is modified in such a way that the output confined concrete material curve obtained from FEM matches with the confined concrete material curve obtained by the empirical model. The level of accuracy can be improved by using the revised confining behaviour of collars in each iteration for the determination of confined concrete material curve by the proposed empirical model, which is used as the reference to compare the confined concrete material curve obtained from the finite element analysis. This procedure is repeated until the confined concrete material curve obtained by the finite element analysis is the same as that obtained by the proposed empirical model. Although this procedure is more accurate, it requires a large number of finite element runs just for one column and is therefore not considered to be practical for general use. 
	 
	For simplicity and to make the procedure practical, it is assumed that the confining behaviour of welded collars is not affected by the change of the input concrete material. To assess the impact of this assumption, a sensitivity study is done on column C06. The selection of the particular curves given in Figure 5 3 was based on experimental experience (Chapter 3). Using the resulting confining pressure versus lateral strain curves 1 and 5 (Figure 5 5) of column C06, the confined concrete material curves of this column are determined using the empirical model. These curves are nearly identical, as shown in Figure 5 6. Using these confined concrete material curves, the column load versus axial strain curves of the column were obtained, which are also virtually identical (Figure 5 7). Hence, for normal strength concrete and for practical sizes of collars, the assumption that the confining behaviour of collars is independent of the input concrete material curve is justified. For all subsequent studies presented in this chapter, as well as in Chapter 6, material curve No. 5 given in Figure 5 3 was used. It is expected that this curve will give very good results for typical concrete strengths and levels of collars confinement. 
	 
	In some of the columns with bolted collars, an initial confining pressure was applied through pre-stressing. This pre-stressing force was generated in ABAQUS by applying a negative temperature change to the corner bolts of the collars. When the finite element model is loaded in the axial direction, the four sides of the confining collars are deformed laterally due to the dilation (i.e., lateral strain) of concrete. In response, the confining collar applies confining pressure onto the concrete due to its restraining action. Although the confining pressure for columns with bolted collars is a combination of active and passive pressures, the pressure on the columns having collars with welded corner connections is purely passive. A behavioural curve of a typical steel HSS collar in terms of average confining pressure vs. average lateral strain is shown in Figure 5 8, where   is the average confining pressure and   is the average lateral strain corresponding to  . 
	 
	The average confining pressure is obtained by dividing the total force in the outriggers located in a strip having a length equal to the column width and a depth equal to the centre to centre spacing, s, of collars, by the strip area. The average lateral strain is obtained by dividing the average horizontal displacements of the concrete surface nodes at which outriggers from the collars are connected, by half the width of the column. The finite element study showed that the collars remain in contact with the column during the great majority of the axial load history (see Chapter 6). Only at very high levels of axial strain may the collar and the concrete at mid width of the column may break contact. For the practical range of axial strain, it is assumed that the contact between the concrete and the collars remains intact. This assumption has been justified by the testing of the columns in phase 1 of the project where no gap was observed in any of the tests (Chapter 3). 
	 
	As noted previously, the confining pressure vs. lateral strain curve depends essentially on the behaviour of the steel HSS collar, although the influence of the profile in which the collars are pushed outward is also present in this curve. Moreover, because the curve is based on the finite element analysis, the effects of axial as well as flexural stiffness of the collars are present in these curves. The effect of flexural stiffness of the confining elements has largely been neglected in previous finite element models. 
	 
	 
	5.4 Proposed Model for Confinement of Concrete 

	 
	A confinement model is proposed for the prediction of material curves for columns confined externally by HSS collars that takes into account active as well as passive confining pressures, variability of the confining pressure through the axial load history of the column, flexural stiffness of collars, axial stiffness of collars, spacing of collars, stress vs. strain behaviour of the collars, and properties of concrete such as strength, modulus of elasticity, Poisson’s ratio, and strain at peak stress. The model uses certain features of existing confinement models. The proposed generalized stress vs. strain relationship of concrete confined externally by HSS collars is shown in Figure 5 9, where   is the peak stress of the confined concrete,   is the strain at peak stress, and   is the strain corresponding to 85% of the peak stress in the post peak region. The methods for constructing the various segments of this curve are described subsequently. 
	 
	The confining pressure under the collars varies through the axial load history of the externally confined columns as is demonstrated subsequently. Similar to the models of Ahmad and Shah (1982), Madas and Elnashai (1992), Cusson and Paultre (1995), Fam and Rizkalla (2001), and Légeron and Paultre (2003), the proposed model also makes use of an incremental iterative procedure to trace the stress vs. strain curve of confined concrete. During each increment, constant confining pressure is assumed. The confining pressure under the steel collars can be purely passive or it can have both active and passive components, and the passive confining pressures become dominant in the latter stages of the tests. It is assumed that active and passive confining pressures produce the same confined concrete material curve (Richart et al. 1928, 1929; Iyengar  et al. 1970).  
	 
	A typical reinforced concrete column with HSS collar confinement is shown in Figure 5 10(a). For simplicity, the discrete collars are not modelled individually but are assumed smeared over the height of the column equivalent to a continuous tube as shown in Figure 5 10(b). This assumption does not seem valid if the confining pressures under the collars and between the collars at the surface of the column are compared. However, this assumption becomes viable for relatively closely spaced collars if the confining pressure is considered a short distance away from the surface of the column. Similar assumptions have been made in the existing confinement models for columns with conventional transverse reinforcement (Sheikh and Uzumeri (1982); Mander et al. (1988b); Saatcioglu and Razvi (1992); and Légeron and Paultre (2003)). 
	 
	The equivalent tube is assumed made of an orthotropic material having zero stiffness in the direction of column axis. The flexural stiffness of the tube in the direction normal to the longitudinal axis of the column should match the total flexural stiffness of all collars, over the height of the column, in the same direction. A similar argument applies to the axial stiffness of the equivalent tube and discrete collars. It is further assumed that the column with equivalent tube confinement expands uniformly over its height without bulging. Similar assumptions were made by Légeron and Paultre (2003) in the development of their confinement model for normal  and high strength concrete, and by Caner and Bažant (2002) while applying their computational model with smeared confinement to columns confined by spiral reinforcement. 
	 
	5.4.1 Lateral Displacement Compatibility 
	 
	Lateral displacement compatibility at the interface between the concrete prism and the confining tube is used to formulate the interaction between them. Consider the unconfined concrete column with square cross section shown in Figure 5 10(c). When an axial strain,  , is applied to the concrete column, it is assumed that free uniform lateral expansion of the concrete takes place over the height and width of the column. As the prism is free to expand laterally, the lateral displacement,  , can be evaluated as: 
	 
	[5.1]                                      
	 
	where   is Poisson’s ratio of the material; and   is the lateral dimension (width) of the square concrete prism. 
	 
	When the expansion of the concrete takes place due to the Poisson’s effect, the confining tube resists this expansion by developing confining pressure on the concrete column through its axial and flexural stiffness. For simplicity, it is assumed that the confining pressure under the tube is uniformly distributed along the height and width of the column. If the concrete prism is subjected to external bi-axial uniform confining pressure,  , as shown in Figure 5 10(d) (the equivalent confining tube is not shown in the figure for clarity), the inward displacement,  , at any face of the column is determined for elastic behaviour using the following constitutive relationship (Young 1989): 
	 
	[5.2]                                       
	 
	where  is the modulus of elasticity of the concrete. 
	 
	Now consider the lateral expansion of the confining tube as shown in Figure 5 10(e). (There is no axial strain applied to the confining tube that is analogous to   for the concrete due to the discontinuous nature of the collars in the real structure.) For equilibrium, the outward pressure from the concrete on the confining tube must be equal in magnitude to the inward pressure applied by the tube on the concrete, i.e.,  . It is assumed that the outward pressure on the confining tube causes uniform expansion of the tube along the width and height of the column as shown in Figure 5 10(e). The outward displacement of any side of the confining tube caused by this pressure is denoted by  . The compatibility condition requires that the equivalent confining tube and the column concrete surface remain in contact throughout the axial load history. Accordingly, the lateral displacement of the confining tube   and the net resultant lateral displacement of the concrete ( ) are equal, i.e.: 
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	Due to the interaction between the concrete and the confining tube, Equation 5.3 does not result in a unique solution for  . Equations 5.1 and 5.2 taken together (right hand side of Equation 5.3) provide an expression for the lateral displacement of the column under a certain confining pressure and axial strain that is based on the concrete behaviour alone. In order to develop an analogous expression for the lateral displacement based on the steel behaviour alone (left hand side of Equation 5.3), use is made of a confining pressure vs. lateral strain curve based on the tube behaviour, such as the typical one depicted in Figure 5 11. The behaviour of the confining tube may be determined by finite element analysis, as described above. This curve is nonlinear and it starts from the origin. In the case of collars with bolted corner connections, some initial confining pressure may exist due to the pre stressing force in bolts. The initial active confining pressure is treated separately. The behavioural curve of the confining tube itself is considered independent of the concrete behaviour. However, the particular point on the curve where equilibrium is achieved under a certain axial column force depends on both the lateral expansion of the concrete under the Poisson effect due to the applied axial strain as well as the lateral contraction of the concrete due to the confining pressure applied by the tube. In the present study, the general confining pressure from the curve based on the tube behaviour is denoted by  , whereas the equilibrium confining pressure for a particular axial strain, which includes the response of the concrete, is denoted by  . 
	 
	For a particular lateral displacement (or lateral strain) of the confining tube, a characteristic secant line can be constructed. From Figure 5 11, the slope of the ith secant line,  , is: 
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	and the slope of a general secant line,  , is: 
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	where   and   are the confining pressure and lateral strain, respectively, corresponding to the point of intersection of the ith secant line with the confining pressure vs. lateral strain curve of the confining tube and   and   are the confining pressure and lateral strain corresponding to the point of intersection of a general secant line with the confining pressure vs. lateral strain curve. It is to be noted that for a particular confining pressure or lateral strain,   is a characteristic of the confining tube only. 
	 
	It is assumed that a constant confining pressure,  , develops at the interface between the concrete and the confining tube in a certain increment. By setting the confining pressure   equal to  , the displacement of the confining tube can be derived from Equation 5.5 to give: 
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	By substituting the expressions for  ,  , and   from Equations 5 1, 5 2, and 5 6, respectively, into Equation 5.3, the following expression for the unknown interfacial confining pressure, , is obtained: 
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	Similar compatibility equations have been used by other researchers such as: Fam and Rizkalla (2001) for FRP confined circular columns; Cusson and Paultre (1995) for confinement of high strength concrete columns of rectangular/square cross section; and Légeron and Paultre (2003) for normal  and high strength concrete columns of rectangular/square cross section. The confining pressure vs. lateral strain relationship is linear for FRP confinement, whereas the confining pressure vs. lateral strain relationship for steel ties and steel collar confinement are nonlinear in nature (see Figure 5 11). 

	 
	5.4.2 Effect of Unconfined Concrete in the Core 

	 
	In conventional columns, the core is generally defined as the region enclosed by the centreline of the ties. Figures 5 12(a) and 5 12(b) show the ineffectively confined regions between tie levels and at the ties that are approximately parabolic in shape, as described by, for example, Sheikh and Uzumeri (1982) and Mander et al. (1988b). In the confinement model by Sheikh and Uzumeri (1982), an expression for the strength enhancement factor was defined based on the core bounded by the centreline of the ties. It was assumed that the strength enhancement factor depends on the amount of transverse reinforcement, the stress in the transverse reinforcement at the peak stress of confined concrete, and the ratio of effectively confined concrete at the critical section to the core area bounded by the centreline of the ties, which in turn depends on the configuration and spacing of ties. Similarly, in the confinement model by Mander et al. (1988b), a confinement effectiveness coefficient was defined as the ratio of effectively confined concrete at the critical section to the concrete area in the core bounded by the centreline of the perimeter ties. The average confining pressure was calculated assuming yielding of the transverse reinforcement at the peak stress of the confined concrete. The average confining pressures on the sides of the column were then multiplied by the confinement effectiveness coefficients to obtain the equivalent confining pressure. The peak stress of the confined concrete was then determined under this equivalent confining pressure. Saatcioglu and Razvi (1992) also reported that the average confining pressure calculated by assuming yielding of the transverse reinforcement overestimates the confining pressure. A factor was therefore defined based on a regression analysis of experimental data to convert the average confining pressure to an equivalent confining pressure. The model proposed by Chung et al. (2002) utilizes an effectively confined distance ratio, instead of area, to account for ineffectively confined regions in the core. The effectively confined distance ratio is defined as the ratio of the effectively confined width to the total width of the core concrete. This ratio takes the maximum value at the tie level and the minimum value at the critical section midway between two sets of ties. However, effectively and ineffectively confined regions were not dealt with separately. Instead, an expression for the strength enhancement factor was defined using regression in terms of the volumetric ratio of transverse steel, stress in the transverse steel at peak stress of the confined concrete, cylinder strength of the concrete, and effectively confined distance ratio. 
	 
	In contrast to the approaches described above wherein the ineffectively confined concrete is accounted for by a reduction factor, the proposed model for externally confined columns separates explicitly the behaviour of the effectively and ineffectively confined regions in the core. The core of the externally confined columns is equal to the gross dimensions of the columns. The load vs. strain curves of the effectively and ineffectively confined concrete regions in the core are defined, and are then combined to get the overall load vs. strain curve of the concrete in the core. The load vs. strain curves can be converted to stress vs. strain curves by dividing the load by the core area. Figure 5 12(c) shows the effectively and ineffectively confined regions between the collars and Figure 5 12(d) shows that there are no ineffectively confined regions at the collar level because of the considerable flexural stiffness of the sides of the collars, in addition to their axial stiffness. This assumption has been verified by both experimental and finite element studies. To model the behaviour of the effectively confined regions in the core, the collars are assumed smeared over the height of the columns, as described before, with confining pressure uniformly distributed on the side of the columns. The ineffectively confined concrete acts simply as a filler to transfer the confining force to the effectively confined regions. First, the behaviour of the confined concrete in the core will be determined and then the behaviour of unconfined concrete in the core region will be studied. 
	 
	5.4.3 Behaviour of Confined Concrete in Core 

	 
	Mander et al. (1988b) proposed a model for the stress vs. strain curve of concrete confined by conventional transverse steel reinforcement that assumes constant confining pressure through the axial load history. In this model, the stress vs. strain curve of confined concrete is represented by an equation proposed by Popovics (1973) for unconfined concrete. In addition, it utilizes the expression for strain at peak stress of the confined concrete proposed by Richart et al. (1928) based on the test results of cylinders under constant hydraulic confining pressure. In columns confined externally by HSS collars, the confining pressure varies with the axial load history. Therefore, this model cannot be used directly to predict the stress vs. strain relationships of these columns. However, the model can still be utilized to predict the behaviour of these columns by applying only a small increment of axial strain over which confining pressure can be assumed constant. This leads to an incremental iterative approach to predict the behaviour of externally confined columns similar to the approaches used by Ahmed and Shah (1982), Madas and Elnashai (1992), Cusson and Paultre (1995), and Légeron and Paultre (2003) for concrete confined by conventional rebar ties. Similarly, Fam and Rizkalla (2003) also used an incremental iterative approach for concrete columns confined by FRP, a material that exhibits essentially elastic behaviour and results in varying confinement pressure as the column is loaded axially. During each increment, a different confined concrete material response forms with a different concrete secant modulus of elasticity,  , corresponding to a general point i on the confined concrete material curve at which the axial strain is  . 
	 
	Dilation properties of unconfined and confined concrete under active confining pressures have been well established by Chen (1982) and Pantazopoulou (1995). Madas and Elnashai (1992) used a relationship for Poisson’s ratio in their model for conventional rebar confinement that was determined by performing a least square fit of a cubic polynomial on the test results of concrete under biaxial compression provided by Kupfer et al. (1969). Similarly, Fam and Rizkalla (2001) developed relationships for the dilation of concrete confined actively using hydrostatic pressure, based on the test results (triaxial compression tests) of Gardner (1969), for use with their model for FRP confinement. These relationships have been used in the proposed procedure for the confinement of concrete by steel collars. 
	 
	Similar to the secant modulus of elasticity of concrete, the secant Poisson’s ratio,  , also changes with the increase in the axial strain of the column. In addition, the secant Poisson’s ratio,  , is also dependent on the magnitude of the confining pressure present in an increment of axial strain. The secant Poisson’s ratio in the increment i can be represented by  . Gardner (1969) tested concrete cylinders and reported average lateral strain vs. axial strain curves at different levels of confining pressure. Using those results, Fam and Rizkalla (2001) developed the following relationship between the secant Poisson’s ratio,  , and the axial strain of the confined concrete,  , for different confining pressures: 
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	where   and   are the initial Poisson’s ratio and strain at peak stress of confined concrete, respectively. It is clear from this equation that the Poisson’s ratio increases with the increase of axial strain of the confined concrete. An upper limit of 0.5 is imposed on the secant Poisson’s ratio in the present investigation as suggested by Madas and Elnashai (1992) because the Poisson’s ratio of conventional engineering materials cannot exceed 0.5. The bulk modulus of concrete will become infinity at Poisson’s ratio equal to 0.5. At the time of bursting of concrete, the Poisson’s ratio may be taken equal to 0.5. 
	 
	A linear expression for the constant C (it is considered constant within an increment) as a function of the confining pressure (again, assumed constant within an increment) was obtained by performing a regression analysis on the experimentally obtained values of C (Fam and Rizkalla 2001): 
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	For increment i, Equations 5.8 and 5.9 can be written as: 
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	The lateral strain   in the increment can be calculated as: 
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	Knowing  , the confining pressure,  , can be found from the relationship between the confining pressure vs. lateral strain (similar to Figure 5 11) obtained from the finite element analysis by setting  . Then,   can be calculated as: 
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	The confining pressure   due to collar confinement in increment i can be calculated from the following equation, the derivation of which (Equation 5 7) has been given before: 
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	If there exists both active and passive confining pressures, as shown in Figure 5 13 (active confining pressure remains constant but the passive confining pressure varies through the axial load history), Equation 5.14 is applied only to the passive component of the confining pressure. The passive confining pressure is then added to the active component of the confining pressure to get the total confining pressure   in that increment.  
	 
	If   is known in an increment i, various equations are available for calculating the peak stress of confined concrete  . However, the present model makes use of the following equation for this purpose that assumes constant confining pressure (also used by Mander et al. (1988b)): 
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	This equation is based on the “five parameter” multiaxial failure surface of concrete under triaxial compression given by Willam and Warnke (1975) calibrated with test results of concrete under triaxial compression provided by Schickert and Winkler (1979). 
	 
	Then, the strain at peak stress,  , of the confined concrete material can be determined from the following equation (Richart et al. 1928): 
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	Then, according to the procedure of Mander et al. (1988b), the Popovics (1973) equation is utilized to determine the confined concrete stress, , at axial strain   as given below: 
	 
	[5.17]                             
	 
	where: 
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	Knowing the stress of confined concrete   at strain  , the secant modulus of elasticity, , of the confined material in increment i can be calculated as: 
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	The values for  ,  , and   in the foregoing equations are based on the unconfined column concrete response curve and can be estimated using well established methods based on standard cylinder test data. 
	 
	Using the procedure described above, twelve unknowns are encountered in a particular increment on the axial strain of the confined concrete. Specifically, for a particular level of axial strain in the ith increment,  , the following parameters are all initially unknown: the resulting confining pressure,  , the secant modulus of elasticity,  , the Poisson’s ratio,  , the constant  , the strain at peak stress of confined concrete,  , the secant slope of the behavioural curve of the confining tube,  , the lateral strain,  , the peak stress of confined concrete,  , the confined concrete stress,  , the confined concrete material curve parameters   and  , and the secant modulus of elasticity at the peak of the confined curve,  . Hence, the method of successive approximations is used on Equations 5.10 to 5.21 to converge to the solution within each increment. The values of the unknowns are assumed arbitrarily in the first iteration in an increment. In subsequent iterations in the same increment, the values from the immediately previous iteration are used. Iterations are performed until the values of these variables converge. Then, the next increment in axial strain of the confined is taken and the process is repeated. In this way, the stress vs. strain curve of externally confined concrete is traced until some failure criterion is met. This process of tracing the confined material curve is path-independent because we can find the confined concrete stress,  , at any level of axial strain,  , in an increment i without knowing the trace of confined concrete material curves in the previous increments. A computer program C4P was written based on FORTRAN to perform these incremental iterative calculations, the listing of which is given in Appendix L. 
	 
	5.4.4 Behaviour of Unconfined Concrete in Core 

	 
	Some portion of the concrete in the core of the externally confined column is not effectively confined. The depth of this unconfined concrete into the core was determined based on tests of externally confined columns under concentric axial loading (Chapter 3). The average depth of parabolic concrete spalling between the collars at the peak load was found to be 0.29 , which is higher than the depth of concrete spalling between ties equal to 0.21  reported by Chung et al. (2002) based on analytical derivations, where   is the clear spacing between the collars or ties. To simulate the behaviour of cover concrete, the following expression was proposed by Muto (1974) and is plotted in Figure 5 14: 
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	where  ,   and   are stress and strain of unconfined concrete, and   is the strain at which spalling of the unconfined concrete starts. The same expression is adopted to represent the behaviour of the parabolic concrete region between the collars in externally confined columns. Muto (1974) took   equal to the strain at peak stress of the unconfined concrete. For externally confined columns, the value can be determined more directly and it is recommended that   be taken equal to the average of experimentally observed strains at which concrete spalling started based on the externally confined columns tested under concentric axial loading (Chapter 3). The average value of this strain was found to be 0.0039. 
	 
	5.4.5 The Descending Branch 
	 
	The procedure for establishing the strain at peak stress,  , (i.e., at point A in Figure 5 9) and the slope of the descending branch (line A–C in Figure 5 9) of the confined concrete material curve is presented in this section. The descending branch is established after calculating the confined concrete stress,  , vs. axial strain,  , relationship by the proposed model that does not in itself possess a failure criterion. 
	 
	The slope of the descending branch of the confined concrete material curve can be established by knowing the values of  ,   and   of the confined concrete material curve, where   is the peak stress of the confined concrete,   is the strain at peak stress of the confined concrete, and   is the strain at 85% of   in the post peak region. For these variables, the influencing parameters are established from the literature and models are proposed for   and   for collared columns in terms of these parameters. The models are then calibrated using available experimental data. The value of   is determined from the confined concrete material curve, established by the model presented previously, at the strain corresponding to  . 
	 
	In some of the confinement models established for conventional rebar confinement such as the modified Kent and Park (Park et al., 1982), Sheikh and Uzumeri (1982), and Saatcioglu and Razvi (1992), the equations for determining the strain at peak stress and the slope of the descending branch of the confined concrete material curves were obtained empirically by performing a regression analysis on the test results of concrete columns confined by conventional rebar ties.  
	 
	In the modified Kent and Park model (Park et al., 1982), the strain at peak stress of confined concrete depends on the following: (1) strain at peak stress of unconfined concrete; (2) volumetric ratio of the confining steel; (3) yield strength of the confining steel; and (4) cylinder strength of the concrete. The model assumes that with an increase in the cylinder strength of concrete, the strain at peak stress of the confined concrete will decrease. This model does not take into account the effect of tie spacing and the effect of distribution of longitudinal steel on the strain at peak stress of the confined concrete material curve. According to this model, the slope of the descending branch will increase (will become steeper) with an increase in cylinder strength of concrete, and will decrease (will become less steep or will tend to be flat) with an increase of the volumetric ratio and yield strength of the confining steel and by decreasing the ratio of tie spacing to the width of the column. 
	 
	In the model proposed by Sheikh and Uzumeri (1982), the strain at peak stress depends on the following parameters: (1) volumetric ratio of the confining steel; (2) stress in the confining steel at peak stress of confined concrete; (3) cylinder strength of concrete; (4) strain at peak stress of unconfined concrete; (5) spacing of ties; and (6) distribution of the longitudinal bars of the column. According to this model, the strain at peak stress of the confined concrete will increase with an increase of the volumetric ratio and the stress of the confining steel at the peak stress of the confined concrete. The strain at peak stress of the confined concrete also increases with a decrease in spacing of transverse ties and with an increase of strain at the peak stress of unconfined concrete. Conversely, the strain at peak stress of confined concrete will decrease with an increase of centre to centre spacing of the longitudinal bars (this effect is related to both the distribution of longitudinal bars and the resulting tie configuration) and with an increase of cylinder strength of concrete. According to this model, the slope of the descending branch depends on the following two parameters: volumetric ratio of the confining steel and the ratio of tie spacing to the column width. In accordance with this model, the slope of the descending branch will decrease (will tend to become flat) with an increase of the volumetric ratio of the confining steel and with a decrease in spacing of transverse ties. 
	 
	In the confinement model by Saatcioglu and Razvi (1992), the strain at peak stress of the confined concrete depends on the following parameters: (1) strain at peak stress of unconfined concrete; (2) equivalent confining pressure; and (3) unconfined concrete strength of the column. The equivalent confining pressure, in turn, takes into account the effect of the following parameters: (a) spacing of ties; (b) distance between the longitudinal bars of the column (distribution of longitudinal bars of the columns); and (c) the sectional transverse steel ratio. In accordance with this model, the strain at peak stress of confined concrete increases with an increase of strain at peak stress of unconfined concrete and the equivalent confining pressure and it decreases with an increase of the strength of the column concrete. For determining the slope of the descending branch, no equation was defined in this model. However, an empirical expression for the strain at 85% of the peak stress of the confined concrete in the post peak region was given, which indirectly establishes this slope. According to this model, this strain increases with an increase in the sectional transverse steel ratio, the strain at peak stress of confined concrete, and the strain at 85% of the peak stress of unconfined concrete in the post peak region. The strain at peak stress of the confined concrete depends on the effective confining pressure, which in turn is related to the ratio of tie spacing to the column width. Hence, indirectly it can be established that in this model also, the slope of the descending branch depends on the ratio of tie spacing to the column width. 
	 
	With this background from the literature, the proposed model for the confinement of concrete by HSS collars assumes that both the strain at peak stress and the slope of the descending branch of the confined concrete material curve depend on the following parameters: 
	 
	(1) the magnitude of the confining pressure at an axial strain of 0.10,  ; 
	(2) the strain at peak stress of unconfined column concrete,  ; 
	(3) the strain at 85% of peak stress of unconfined column concrete in the post peak region,  ;  
	(4) the strength of unconfined column concrete,  ; 
	 
	(5) the ratio of the clear spacing between the collars to the width of the confined concrete core (i.e., the column width for collared columns),  ; the clear spacing between the collars is calculated as  , where s is the centre to centre spacing of the collars and   is the width (parallel to the column axis) of the collar. 
	 
	It is apparent that the confining pressure applied by the collar will affect the nature of the descending branch. This parameter includes the effects of the axial and flexural stiffnesses of the collar as well as the yield stress of the collar steel. In the confinement of concrete by steel collars, the confining pressure under the collars does not remain constant, as in the case of yielding rebar ties, but rather builds gradually with the increase of axial strain. A question arises, therefore, as to what value of confining pressure should be used in developing equations for the strain at peak stress and the slope of the descending branch of the confined concrete material curve, although it must be at a level of strain within the descending branch of the confined material curve. The value of confining pressure at an axial strain of 0.10,  , is chosen because in the testing of some of the columns with welded collars (Chapter 3), an axial strain of 0.10 would likely have been achieved had the corner welds of the collars not fractured prematurely. The second justification for choosing a confining pressure at this large axial strain is the presence of active confining pressure in some of the columns with bolted collars. The effect of the presence of initial active confining pressure diminishes under increasing deformations and is considered negligible at this level of axial strain. The relationships between the confining pressure and axial strain determined by the proposed model (i.e., the model used for the ascending branch) are utilized to determine the value of  . 
	 
	It is widely recognized that the character of the unconfined material curve is reflected in the confined material curve. Therefore,  ,  , and   are also included in the list of parameters that influence the descending branch. These parameters are consistent with those identified by other researchers, as described above. 
	 
	It is also reasonable to assume that the descending branch depends on the ratio of the clear spacing between the collars to the width of the column,  . The clear spacing has been observed experimentally (Chapters 3 and 4) to influence greatly the degree of spalling at large axial strains, which, in turn, has a fundamental effect on the effective material behaviour.  
	The only parameter that was identified by the other research programs described previously as being influential for the descending branch of conventionally tied columns that has no equivalent in the list above is the spacing of the longitudinal reinforcing steel. This parameter has been neglected for collared columns because the efficiency of the collars in confining the column concrete tends to dominates the behaviour, making the spacing of the longitudinal bars less important. 
	 
	As shown in Chapter 3, the descending branches of the confined concrete material curves of four of the collared columns, C01, C02, C03, and C04, were obtained experimentally. In order to develop the model for the descending branch, the confined concrete material curves of these columns were idealized. 
	 
	To get an idealized counterpart of the confined concrete material curve, a straight line equation was fit to the portion of the descending branch of each of these columns between 60% and 95% of the peak stress as shown in Figures 5 15 through 5 18. The selection of these limits was based on judgement, so that the idealized confined concrete material curves give the best representation of their corresponding experimental counterpart. The upper limit (95%) was chosen to exclude the local sharp curvature just beyond the peak that is not representative of the overall character of the descending branch. The lower limit (60%) was selected because data were available to this point for all the curves considered. The straight line equations for these columns, obtained through regression, are shown in these figures. 
	 
	Figures 5 19 through 5 22 show the experimental confined concrete material curves for columns C01 through C04, respectively, along with their idealized counterparts. The idealized curves were obtained by plotting horizontal lines at the peak stresses of the experimentally obtained confined concrete material curves and by plotting the equations for the descending branches obtained previously. The two lines intersect to define the beginning of the descending branch. The areas under the experimentally obtained confined concrete material curves were calculated up to 60% of the peak stress (in the descending branch) for each of these columns. The strains corresponding to this stress for columns C01, C02, C03, and C04 are 0.0672, 0.0721, 0.0521, and 0.0292, respectively. Vertical lines (called equal area lines) are also drawn in these figures to delineate this level of strain. Similarly, the areas under the idealized curves for these columns were also calculated up this level of strain. The areas under the experimental curves and the corresponding idealized curves were slightly different. Therefore, the idealized descending branch lines were shifted towards the left until the areas under the experimental and idealized curves became equal. The idealized confined concrete curves shown in Figures 5 19 through 5 22 show the final location of inclined descending branches. (The second terms in the equations for the descending branches are very slightly different than those given in Figures 5 15 through 5 18.) From the idealized confined concrete material curves, the values of   and   were determined. The strain at peak stress,  , corresponds to the point of intersection of the horizontal line drawn at the peak stress of the experimentally obtained confined concrete material curve and the inclined descending branch after area equalization (point A in the figures). From the idealized curves, the strains corresponding to 85% of the peak stresses,  , (at point B) were also determined for these columns. The resulting values of   and   are reported in Table 5.1, which are used to calibrate the proposed generalized model for the descending branch. The following equations are proposed for   and   in terms of the confinement index,  , and the characteristics of the unconfined concrete material curves: 
	 
	[5.23]                                      
	 
	[5.24]                                     
	 
	Substituting  ,  , and   in the above equations, the following equations are obtained that represent, respectively, the non-dimensional enhancement in the strain at peak stress and the strain at 85% of the peak stress in the descending branch due to collar confinement: 
	 
	[5.25]                                      
	 
	[5.26]                                     
	 
	The nature of Equations 5.23 through 5.26 is such that they will always remain dimensionally homogeneous and will not depend on the system of units for the constituent variables. The values of coefficients   through  were determined through regression based on the test results of columns C01, C02, C03, and C04; some key results are given in Table 5.1 and the remaining can be seen in Chapter 3. The strain at peak stress of the unconfined column concrete,  , in the columns can be determined from the following common relationship that assumes a parabolic unconfined stress vs. strain response: 
	 
	[5.27]                                      
	 
	where   is the initial slope of the curve (with the coefficient determined from concrete cylinders). The computed values of this strain,  , for the column concrete are given in Table 5.1. A comparison of the values of   with the values of  , determined experimentally for the associated concrete cylinder tests (Table 3.2; Chapter 3), provides further support for the use of Equation 5.27. 
	 
	No direct measurements were made for the strain at 85% of the peak stress in the post peak region,  , of the unconfined concrete material curve. Based on the available evidence in the literature, the strains   were conservatively assumed to be 1.75 times the strain  . Saatcioglu and Razvi (1992) suggested that in the case of an absence of experimental data, the strain at peak stress of unconfined concrete,  , can be assumed to be 0.002. They also suggested that the strains   can be assumed to be 0.0038. According to these suggestions, the ratio of   to   is 1.9, which is higher than 1.75 assumed in the present research. The computed values of   are also given in Table 5.1. The strength of unconfined concrete in the column,  , in Equations 5.23 through 5.26, is taken equal to 85% of the cylinder strength of concrete,  . 
	 
	The values of   are plotted with respect to the values of  for columns C01, C02, C03, and C04 in Figure 5 23. Through regression, the following expression is obtained for  : 
	 
	[5.28]                                  
	 
	Similarly, the values of   are plotted with respect to   for columns C01, C02, C03, and C04 depicted in Figure 5 24. Through regression, the following expression was obtained for the values of  : 
	 
	[5.29]                                    
	 
	It is to be noted that Equations 5.28 and 5.29 were calibrated for the values of confinement index,  , ranging from 0.76 to 1.79 (Table 5.1). These equations may not produce good results outside of this range. More experimental testing is recommended to increase the range of these equations. 
	 
	Knowing the values of  and   for a column, the slope of the descending branch of the confined concrete in the core can be determined by the following equation: 
	 
	[5.30]                                   
	 
	Then the descending branch is traced as follows: 
	 
	[5.31]                              
	 
	The descending branch A–C extends to the horizontal sustaining branch of the confined concrete material curve at a stress level of   (Figure 5 9). This constant stress level of the sustaining branch has been assumed similar to the confinement models proposed by Vallenas et al. (1977), Sheikh and Uzumeri (1982), and Chung et al. (2002). However, more experimental data are required to justify this stress level. 
	 
	5.4.6 Application of the Proposed Model 
	 
	The proposed model was applied to determine the confined concrete material curves for collared columns (C01 to C09) tested in phase 1 of the project as well as collared columns (CL1 TO CL8) tested in phase 2. The phase 1 columns were tested under concentric axial loading and the phase 2 columns were tested under lateral cyclic loading, either with or without axial load. The details of the phase 1 columns are described in Chapter 3 and those of the phase 2 columns are given in Chapter 4.  
	 
	Confining pressure vs. lateral strain relationships for the collared columns were obtained through finite element analyses to establish the confining behaviour of the collars. Figures 5 25 and 5 26 show the confining pressure vs. lateral strain relationships for the phase 1 (C01 to C09) columns. The curves for columns C02, C03, C04, and C05 are composite curves in that they consist of a combination of active and passive confining pressures. The initial active confining pressure was generated in the finite element models by inducing a negative temperature change in the bolts. Figure 5 27 shows the confining pressure vs. lateral strain relationships for the phase 2 (CL1 to CL9) columns with welded corner connections. The confining pressure vs. lateral strain curves are used to obtain the confined concrete material curves.  
	 
	It is interesting to compare the confining behaviour determined from the proposed procedure with that obtained directly from the finite element analyses to demonstrate the need for the proposed procedure. The proposed procedure can also convert the confining pressure vs. lateral strain relationships to confining pressure vs. axial strain relationships for the externally confined columns. Figures 5 28 through 5 36 show the relationship between the confining pressure vs. axial strain for the phase 1 columns (C01 to C09). For comparison, the confining pressure vs. axial strain relationships for these columns obtained directly from the finite element analyses using ABAQUS are also shown in these figures. It is clear that at a particular level of axial strain, the finite element curves show higher confining pressure, which is a direct indicator of the higher dilation rate of the concrete material model embedded in ABAQUS as compared to the dilation behaviour in the proposed model. 
	 
	The proposed model was used to determine the confined concrete material curves for the reduced cores (i.e., reduced area due to spalling between the collars) of the phase 1 and phase 2 columns (using the program C4P in the Appendix L) and these are depicted in Figures 5 37 through 5 39. These curves represent the stresses attained at the smallest cross-section accounting for the presence of spalling. The behaviour of the spalling concrete has been modelled by the equation proposed by Muto (1974). Figure 5 14 shows the behaviour of the spalling concrete during the axial load history of a typical column C01 (phase 1). The behaviour of the reduced cores and the spalling concrete in the columns were then combined to obtain the confined concrete material curves of the collared columns for phase 1 and phase 2 (Figure 5 40 and 5 41).  
	 
	The abscissa of the confined concrete materials curves of the columns, confined concrete material curves of the reduced cores, and the material curves of the spalling concrete are identical. Therefore, the following equation can be used to calculate the ordinates of the confined concrete material curves: 
	 
	[5.34]                          
	 
	where: 
	 
	  = gross cross sectional area of column; 
	  = cross sectional area of the reduced core; 
	  = cross sectional area of the spalling concrete; 
	  = total cross-sectional area of longitudinal steel bars in column; 
	  = stress of unconfined concrete in the core; 
	  = stress of confined concrete in core; 
	  = stress of confined concrete in the reduced core; 
	 
	After determining the confined concrete material curves, the descending branches of these curves were established by the method proposed in Section 5.4.5.  
	 
	The values of the confinement indices,  , for all the collared columns tested in phase 1 are given in Table 5.2. The values of the confinement index for columns C01, C02, C03, C04, and C09 fall in the range of confinement index over which the Equations 5.28 and 5.29 were developed. Hence, the descending branches can be established accurately only for these columns. Therefore, for the remaining columns, C05, C06, C07, and C08, the descending branches were not established, although the values of   and   that result from this method are also reported in Table 5.2. 
	 
	Similarly, the values of confinement indices, , for collared columns tested in phase 2 are much higher than the range over which the Equations 5.28 and 5.29 were calibrated (Table 5.3). Therefore, the descending branches for these columns are not established. The values of   and   for these columns are reported in Table 5.3, although they may not be accurate.  
	 
	Figures 5 42 and 5 43 show the material curves of the longitudinal reinforcing bars of the phase 1 and phase 2 columns. Using the confined concrete material curves, the load vs. strain curves of the columns can be obtained. The ordinates of the load vs. strain curves of the columns can be obtained by the following equation: 
	 
	[5.35]                            
	 
	The load versus strain curves for the phase 1 collared columns (C01 through C09) predicted by the proposed model and those obtained experimentally are shown in Figures 5 44 to 5 52. The predicted results show good agreement with the experimental results except for columns C07 and C08. The reason for this discrepancy is attributed to the considerably higher strength of concrete of these columns and the fact the column C07 was tested in two steps. 
	 
	Similarly, Figures 5 53 through 5 60 show the predicted load vs. strain curves for the phase 2 columns (CL1 to CL8). No experimental load vs. strain curves are available for these columns for comparison. 
	 
	The descending branches of the confined concrete material curves of columns C01, C02, C03, C04, and C09 show reasonably good agreement with that of the experimental curves.  
	 
	5.5 Summary and Conclusions 
	 
	It has been demonstrated experimentally in Chapter 3 that both the strength and ductility of concrete improve significantly through confinement by steel HSS collars. Previously existing confinement models are unable to predict the stress vs. strain behaviour of the concrete columns confined externally by steel collars because of one or more of the following reasons: (1) lack of an explicit flexural stiffness parameter of the confining elements; (2) inability to account for variability of the confining pressure through the axial load history of the columns; (3) results based on the yield stress of the confining steel without taking into account the complete stress vs. strain curve of the confining steel; and (4) inability to accommodate a combination of active and passive confining pressures. A general purpose finite element program, ABAQUS, was also used to predict the behaviour of externally confined columns but no satisfactory results were obtained because of various limitations in the concrete material model available in the software package. 
	 
	Columns of 300 x 300 mm were tested in phase 1 of the project (Chapter 3). Various parameters control the behaviour of the externally confined columns by steel HSS collars. Hence, there was a need to propose a confinement model that is able to predict the stress vs. strain behaviour of collared columns of different dimensions, collar spacing, and material properties. The proposed model makes use of an incremental iterative procedure for which a computer program is required. The key component of the proposed confinement model is that the confining behaviour of the collars is expressed in terms of average confining pressure vs. average lateral strain. The confining pressure vs. lateral strain relationships of the collars are also important because the axial and flexural stiffness of the confining devices is incorporated into the proposed model through these relationships. Because the confining pressure was variable through the axial load history of the columns, the analysis was performed in increments and in each increment a constant confining pressure was assumed and the model of Mander et al. (1988b) was applied in that increment. For the dilation of the confined concrete, the relationships developed by Fam and Rizkalla (2001) based on the test results of Gardner (1969) were used. In each increment, there were initially several unknowns. They were set to arbitrary values and an iterative process was performed until the variables converged to unique values and then the next increment was taken and the process was repeated. In this way, the entire stress vs. strain curve of the confined concrete was traced. 
	 
	The proposed model was validated by applying it to columns confined externally by steel HSS collars with bolted and welded corner connections tested in phase 1 of the project (Chapter 3). Some columns with bolted collars had initial active confining pressure due to the pre stressing of the bolts. The results predicted by the model show good agreement with the experimental results. Equations for establishing the descending branches of the confined concrete material curves have also been proposed that show good results but they need more experimental data for calibration outside of the range of the confinement index considered. 
	 
	  
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Table 5.1: Measured and assumed properties of confined concrete columns for developing models for strain at peak stress and slope of descending branch
	Column
	 
	  
	(mm)
	 
	  
	(MPa)
	 
	  
	(MPa)
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	C01
	71
	32.22
	12.66
	1.66
	0.0031
	0.0054
	0.0377
	0.0494
	12.28
	9.20
	C02
	71
	32.90
	13.60
	1.75
	0.0031
	0.0054
	0.0414
	0.0524
	13.51
	9.77
	C03
	71
	32.13
	13.63
	1.79
	0.0031
	0.0054
	0.0397
	0.0443
	12.96
	8.26
	C04
	119
	32.13
	9.74
	0.76
	0.0031
	0.0054
	0.0078
	0.0154
	2.54
	2.86
	 
	 
	  
	 
	 
	 
	Table 5.2: Relevant data and computed values of   and   for phase 1 columns
	Column
	 
	  
	(mm)
	 
	  
	(MPa)
	 
	  
	(MPa)
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	C01
	71
	32.22
	12.66
	1.66
	11.65
	8.47
	0.0031
	0.0054
	0.0361
	0.0460
	C02
	71
	32.89
	13.60
	1.75
	13.11
	9.19
	0.0031
	0.0054
	0.0406
	0.0499
	C03
	71
	32.13
	13.60
	1.79
	13.83
	9.54
	0.0031
	0.0054
	0.0429
	0.0518
	C04
	119
	32.13
	9.74
	0.76
	2.53
	2.85
	0.0031
	0.0054
	0.0078
	0.0155
	C05*
	44
	30.94
	17.10
	3.77
	83.70
	33.67
	0.0031
	0.0054
	0.2595
	0.1827
	C06*
	71
	29.58
	20.25
	2.89
	43.69
	21.30
	0.0029
	0.0051
	0.1267
	0.1081
	C07*
	71
	39.95
	28.26
	2.99
	47.34
	22.53
	0.0034
	0.0060
	0.1609
	0.1341
	C08*
	71
	44.88
	36.20
	3.41
	65.33
	28.27
	0.0036
	0.0063
	0.2352
	0.1781
	C09
	119
	30.85
	16.99
	1.39
	7.81
	6.42
	0.0030
	0.0053
	0.0234
	0.0337
	Note: The confinement indices for the starred columns exceed the limit of calibration of the model for the descending branch
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	 
	 
	Table 5.3: Relevant data and computed values of   and   for phase 2 columns
	 
	 
	 
	Column 
	 
	 
	 
	  
	mm
	 
	  
	MPa
	 
	  
	MPa
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	CL1
	50
	10.45
	23.03
	13.22
	1909.0
	314.05
	0.0017
	0.0031
	3.3358
	0.9603
	CL2
	100
	13.52
	19.24
	4.27
	113.96
	41.90
	0.0020
	0.0035
	0.2265
	0.1457
	CL3
	50
	13.09
	23.31
	10.68
	1119.9
	214.18
	0.0020
	0.0034
	2.1903
	0.7330
	CL4
	50
	27.79
	23.21
	5.01
	169.62
	55.57
	0.0028
	0.0050
	0.4833
	0.2771
	CL5
	50
	22.35
	28.58
	7.67
	490.17
	118.49
	0.0026
	0.0045
	1.2526
	0.5299
	CL6
	100
	27.71
	23.42
	2.54
	31.71
	17.01
	0.0028
	0.0050
	0.0902
	0.0847
	CL7
	50
	30.09
	30.50
	6.08
	274.47
	78.30
	0.0030
	0.0052
	0.8138
	0.4063
	CL8
	50
	30.00
	23.56
	4.71
	145.59
	49.85
	0.0030
	0.0052
	0.4310
	0.2583
	Note: The confinement indices for all the columns exceed the limit of the calibration of the model for the descending branch
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	6.  NON-DIMENSIONAL MODEL FOR COLUMN CONFINING BEHAVIOUR OF HSS AND SOLID COLLARS WITH RIGID CORNER CONNECTIONS 
	 
	6.1 Introduction 
	 
	Many concrete confinement models exist for columns with conventional reinforcing steel including those proposed by Kent and Park (1971), Sheikh and Uzumeri (1982), Mander et al. (1988), Saatcioglu and Razvi (1992), Légeron and Paultre (2003), and Chung et al. (2002). Other models for confinement by composite materials have been proposed by Samaan et al. (1998) and Fam and Rizkalla (2001). However, none are able to predict the behaviour of columns confined externally by steel collars with significant flexural stiffness because of the lack of an explicit flexural stiffness parameter of the confining elements in these models. Hussain and Driver (2001) demonstrated through finite element study that both axial and flexural stiffness of the confining elements play significant roles and therefore need to be included in a comprehensive confinement model. This chapter presents a numerical investigation into the confining behaviour of steel HSS and solid collars with rigid corner connections on square concrete columns in terms of non-dimensional parameters. A parametric study and multi dimensional regression was performed on the data generated using the finite element model described in Chapter 5 to develop equations that are capable of predicting confining behaviour in terms of average confining stress vs. average lateral strain. 
	 
	A typical reinforced concrete column with collar confinement is shown in Figure 6 1(a). For simplicity, the discrete collars can be assumed smeared over the height of the column to form an equivalent continuous tube, as shown in Figure 6 1(b), provided the effect of smearing on the confining behaviour is taken into consideration. The tube is assumed to be made of an orthotropic material having zero stiffness in the direction of column axis. The flexural stiffness of the tube in the direction normal to the longitudinal axis of the column is the total flexural stiffness of all collars, over the height of the column, in the same direction. A similar argument applies to the axial stiffness of the equivalent tube as compared to the discrete collars. It is further assumed that the column with equivalent tube confinement expands uniformly over its height without bulging. Similar assumptions have been made by Légeron and Paultre (2003) in the development of their confinement model for conventionally reinforced normal  and high strength concrete columns, and by Caner and Bažant (2002) while applying their computational model with smeared confinement to columns confined by spiral reinforcement. The equivalent confining tube is not shown for clarity in Figure 6 1(c), which depicts the lateral expansion of the concrete,  , under axial compressive stress. 
	 
	Figure 6 2(a) shows a general relationship between the average confining stress and average lateral strain for a confining tube. These confining stress vs. lateral strain curves, generated for many cases using the finite element model described in Chapter 5, are used to determine a representative non-dimensional curve, as depicted in Figure 6 2(b). The variables shown in the figure that are used to define this curve are described subsequently. 
	 
	6.2 Confining Stress vs. Lateral Strain Relationship 
	 
	In conventional columns, the core is generally defined as the region enclosed by the centreline of the ties. Figures 6 3(a) and 6 3(b) show the ineffectively confined regions within the core between tie levels and at the ties, respectively, that are approximately parabolic in shape, as described by, for example, Sheikh and Uzumeri (1982) and Mander et al. (1988). In the confinement model by Sheikh and Uzumeri (1982), an expression for the strength enhancement factor was defined based on the core bounded by the centreline of the ties. It was assumed that the strength enhancement factor depends on the amount of transverse reinforcement, the stress in the transverse reinforcement at the peak strength of confined concrete, and the ratio of the effectively confined concrete area at the critical section to the core area, which in turn depends on the configuration and spacing of the ties. Similarly, in the confinement model by Mander et al. (1988), a confinement effectiveness coefficient was defined as the ratio of the effectively confined concrete area at the critical section to the concrete core area bounded by the centreline of the perimeter ties. The average confining stress was calculated assuming that yielding of the transverse reinforcement occurs at the peak stress of the confined concrete. The average confining stresses on the sides of the column were then multiplied by the confinement effectiveness coefficients to get the equivalent confining stress. The peak stress of the confined concrete was then determined under this equivalent confining stress. Saatcioglu and Razvi (1992) also reported that the average confining stress calculated by assuming yielding of the transverse reinforcement overestimates the effective confining stress by a significant margin. A factor was therefore defined, based on a regression analysis of experimental data, to convert the average confining stress to an equivalent confining stress. The model proposed by Chung et al. (2002) utilizes an effectively confined distance ratio instead of area ratio to account for ineffectively confined regions within the core. The effectively confined distance ratio is defined as the ratio of the effectively confined width to the total width of the core concrete. This ratio takes the maximum value at the tie level and the minimum value at the critical section midway between two sets of ties. However, effectively and ineffectively confined regions were not dealt with separately. Instead, an expression for the strength enhancement factor was defined using regression in terms of the volumetric ratio of transverse steel, stress in the transverse steel at peak stress of the confined concrete, cylinder strength of the concrete, and the effectively confined distance ratio. 
	 
	The core of externally confined columns is equal to the gross dimensions of the columns. In contrast to the approaches described above wherein the ineffectively confined concrete is accounted for indirectly by a reduction factor applied to the behaviour of the entire core, the proposed model for externally confined columns separates explicitly the behaviour of the effectively and ineffectively confined regions in the core. The load vs. strain curves of the effectively and ineffectively confined concrete regions in the core are defined, and are then combined to get the overall load vs. strain curve. The load vs. strain curves can be converted to average stress vs. strain curves by dividing the load by the core area. Figure 6 3(c) shows the effectively and ineffectively confined regions between the collars and Figure 6 3(d) shows that there are no ineffectively confined regions at the collar level because of the considerable flexural stiffness of the sides of the collars, in addition to their axial stiffness. This assumption has been verified experimentally in this research program and its numerical verification will be given subsequently. To model the behaviour of the effectively confined regions in the core, the collars are assumed smeared over the height of the columns, as described before, with confining stress uniformly distributed on the sides of the columns. The ineffectively confined concrete acts simply as a filler to transfer the confining force to the effectively confined regions. 
	 
	6.3. Finite Element Model 

	 
	The general purpose finite element program ABAQUS (HKS 2004a; 2004b) was used to obtain the average confining stress vs. average lateral strain curves for the confining tube. Figure 6 4 shows the plan and elevation of a typical finite element model of a column segment with collars having rigid corner connections. The collars are represented by beam elements located a distance of one half the collar depth from the concrete surface and are connected to the concrete by axially rigid outriggers. The complete description of the finite element model has been given in Chapter 5. 
	 
	When the finite element model is loaded in the axial direction, the confining tube is strained laterally due to the dilation of concrete. In response, the confining tube applies confinement stress onto the concrete due to its restraining action. The pressure on the columns is purely passive. It can be observed from the elevation of the model that an individual collar has been divided into a number of layers within the actual center to centre spacing, s, to represent the equivalent confining tube described above. Any reasonable number of layers could be selected, provided the effect of collar smearing (described later) is taken into consideration. Smearing is used in order to keep the ranges of the non-dimensional parameters relatively small to improve the accuracy of the resulting equation, while still accounting for all realistic collar configurations. The average confining stress is obtained by dividing the total force in the outriggers located in a strip having a length equal to the column width and a depth equal to the centre to centre spacing s of collars, by the strip area. The average lateral strain is obtained by dividing the average horizontal displacements of the concrete surface nodes at which outriggers from the smeared collars are connected, by half the width of the column. 
	 
	6.3.1 Concrete Material Curve 


	 
	The confining behaviour of the collars deduced from the finite element model is expressed as the average confining stress vs. average lateral strain. It has been demonstrated in Chapter 5 that the confining behaviour of collars with rigid corner connections is affected slightly by making a significant change in the input concrete material curve. However, this marginal effect on the confining behaviour of collars has been neglected in the parametric study presented in this chapter. The concrete material curve No. 5 shown in Figure 6 5 is used in the present chapter. Additional discussion of the curves in this figure is presented in Chapter 5. 
	 
	6.3.2 Steel Material Curve 

	 
	The confining behaviour of the collars depends on material properties of the confining steel such as yield stress and modulus of elasticity, and the shape of the material curve. Stub column tests were performed to determine material properties of the HSS collars used in phase 1 (Chapter 3) and phase 2 (Chapter 4) of the project. The material curves of all the HSS were round shaped because of the presence of residual stresses. In all of these curves, the 0.2% offset method was used to determine the yield stress. As the parametric study on confining behaviour covers HSS collars as well as solid collars, in which the behaviour of the confining steel plays a pivotal role, it was considered that the range of parameters should be selected in such as way that they cover most commonly occurring cases. For this purpose, reference values of yield stress and modulus of elasticity were required. The reference values need not be exactly central over the range of interest. In the present study, the reference values of yield stress and modulus of elasticity were obtained by averaging the results of yield stresses and moduli of elasticity obtained from the stub column tests given in Chapters 3 and 4. The average values of yield stress and modulus of elasticity were found to be 465 MPa and 203 250 MPa, respectively. The reference value of yield stress is denoted by   and that of modulus of elasticity is denoted by  . 
	 
	Figure 6 6(a) shows the stress vs. strain curve for a typical HSS 76x51x6.35.obtained from a stub column test (phase 2). There are different conventions to define the yield stress of this type of steel material curve. Among them, the most commonly used conventions are: (a) 0.2% offset method; and (b) the stress at a particular level of axial strain,  . The 0.2% offset method, widely used for civil engineering materials with round shaped material curves, was used in the present study to determine the yield stresses of HSS. In this method, a line is drawn parallel to the initial slope of the curve beginning at a strain of 0.002. The stress at the point of intersection of this line with the curve represents the yield stress,  , of the material. The yield stress and modulus of elasticity of steel material shown in Figure 6 6(a) are   MPa and   MPa. 
	 
	The Ramberg Osgood model can be calibrated to match the round shaped steel material curves (Chen and Han 1988). The equation of the Ramberg Osgood model using conventional notation is: 
	 
	[6.1]                                 
	The shape of the material curve is controlled by four parameters:  ,  ,  , and  . These parameters can be selected by a trial and error procedure to produce a material curve that closely matches the experimentally obtained curve. However, if it is required that all of the generated curves have a yield stress,  , at 0.2% strain, then the parameter   must be set equal to 0.002. The generated steel material curve using the Ramberg Osgood model shown in Figure 6 6(a) was obtained for the parameters set at the following values:  ,  ,   MPa, and   MPa. 
	 
	The confining steel material curves can therefore be generated for a constant value of   (0.2% offset method) by varying the three other parameters:  ,  ,.and  . 
	 
	6.3.3 Generation of Steel Material Curves for Parametric Study 
	 
	Using the three parameters required to define a steel material curve ( ,  , and  ), four groups of curves for confining steel can be generated: 
	 
	(1) Figure 6 6(b) shows curves with different values of n, keeping   and   constant at their reference values, i.e.,   and  . In these curves, n was varied from 10 to 20 using the following values:  10, 11, 12, 14, 16, 18, and 20. The initial slope of these curves are identical due to the invariance of  . The rounded parts of these curves approaching the yield stress are affected only slightly by the variations in the value of n, which has been ignored in the present study for simplicity. Conversely, the second parts of these curves (beyond the yield stress) vary considerably with n. 
	 
	(2) Figure 6 6(c) shows the generated material curves with different values of   and   for a constant value of n. The value of n can be set equal to its reference value, the choice of which is arbitrary as long as it is in the range over which it varies in the problem under consideration. For these curves, the reference value of n was taken equal to 11. The variation of   and   is done in such a way that their ratio ( ) remains constant. This approach leads to variation over the full extent of the curves, as seen in Figure 6 6(c). It will be noted in the subsequent parametric study that   and   influence the behavioural curves of the collars in a distinct way. However, it was considered difficult to capture the effect of simultaneous variation of both   and   on the confining behaviour of collars. Moreover, the value of   would be expected to vary little for structural steel, while   can vary considerably. Therefore, the influence of the variation of   and   on the behavioural curves of collars are studied separately, which required the generation of two more sets of steel material curves described in (3) and (4) below. 
	 
	(3) Figure 6 7(a) shows curves with different values of  , keeping n and   constant at their reference values. In this case, only the latter part of the material curve is affected significantly. 
	 
	(4) Figure 6 7(b) shows curves with different values of  , keeping n and  constant at their reference values. It is evident that varying the properties in this way has the greatest effect on the initial slope and the “knee” of the curve. 
	 
	6.4 Contact of Collars with the Concrete Column 

	 
	A total of nine collared columns were tested in phase 1 (see Chapter 3) of the project under concentric axial loading to very large strains. Although the collars deformed considerably during the axial load history, no gap was observed between the collars and the concrete of the column. Therefore, it is reasonable to assume that the pressures developed by the collars in the finite element model will always be compressive and gap elements are not required, nor is it necessary to distinguish between cases of collars installed with and without epoxy grout. This assumption was validated numerically using model 2 of group 1 given in Table 6.1. The average confining pressures on the respective elements at the surface of the column across its width are plotted in Figure 6 8(a) with respect to the average lateral strain of the column. There are 12 concrete elements across the width of the column; element 1 is in the corner and element 6 is adjacent to the centreline of the column. The confining pressure at element 1 is high and it diminishes towards the column centerline. As shown in Figure 6 8(b), the pressure in the corner of the column increases with an increase of average lateral strain. No tension force was observed in the outriggers in the practical range of lateral strain, validating the assumption that no gap develops between the concrete and steel collars. 
	 
	6.5 Model for HSS Collars for Square Concrete Columns 
	 
	A model for the confining behaviour of HSS collars for square concrete columns has been developed in terms of non-dimensional parameters The output parameters of the parametric analyses, related to the confinement stress and lateral strain, represent the characteristic confinement curves. There are several equations that can be calibrated to approximate these curves. Of those considered, it was found that the Popovics equation (Popovics 1973) gave the best fit to the finite element results and was therefore used in the present study. 
	 
	6.5.1. Non Dimensional Parameters 


	 
	The objective of the study is to develop equations to predict the confining behaviour of HSS collars. Based on the experimental work and finite element studies, it is assumed that this behaviour for square concrete columns depends on the following ten primary variables: 
	 
	(1) area of cross-section of a side of a collar,  ;  
	(2) moment of inertia of a side of a collar about an axis parallel to the axis of the column,  ;  
	(3) width of the column (inside length of a collar side),  ;  
	(4) depth of the collar (perpendicular to column axis),  ;  
	(5) centre to centre spacing  ; 
	(6) yield stress of the confining steel,  ;  
	(7) modulus of elasticity of the confining steel,  ;  
	(8)  value of n in the Ramberg Osgood confining steel material model 
	(9) average lateral strain,  ; and  
	(10)  average confinement stress,  . 
	It is to be noted that variables (6) to (8) ( ,  , and n) are related to the material curve of the confining steel. It should also be noted that since the depth, width, and wall thickness (horizontal and vertical wall thicknesses were varied independently to enhance the generality of the study) of the hollow steel tubes can all be varied, variables (1), (2), and (4) ( ,  , and  ) ,are independent. (The corner rounds have been neglected for simplicity.) Conversely, since only square concrete columns are being considered,  ,  , and   represent only a single independent quantity symbolized by variable (3) ( ). The confining behaviour of collars is represented by variables (9) and (10) (  and  ). These two variables are dependent and the rest are independent parameters.  
	 
	In order to perform a parametric study on ten parameters, a large number of analyses are required to study the effect of each individually on the confining behaviour of collars. The details of dimensional analysis are not presented here (see, for example, Taylor (1974)), however, in general the procedure is to relate groups of two or more primary variables to produce a reduced number of new non-dimensional variables (parameters) that reflect the effect of the variables combined. By dealing with combined non dimensional parameters, the number of analyses required for the parametric study are considerably reduced and the scale effects can be eliminated. The dimensional analysis approach is suitable for this application because it leads to the development of simplified equations for the confining behaviour of collars with a reduced number of independent parameters, but still takes into account the effects of all the primary variables. 
	 
	The confining behaviour of the HSS collars depends on the ten primary variables. Two of these are already dimensionless: lateral strain  ; and the value of n in the Ramberg Osgood model. Hence, remaining are eight variables to be combined to form dimensionless parameters. 
	 
	According to Taylor (1974), if the behaviour of a physical problem is represented by a set of m variables,  ,  ,  , … , the relationship between these variables can be expressed in terms of a homogeneous function: 
	 
	[6.2]                         
	 
	There are a variety of ways to reduce the primary variables and to develop a proper set of non-dimensional parameters to characterize the behaviour of a physical problem. Among them, the most commonly used method is the Buckingham Pi theorem (Langhaar, 1951) which is stated below: 
	 
	If an equation is dimensionally homogeneous, it can be reduced to a relationship among a complete set of dimensionless products. 
	 
	Langhaar (1951) demonstrated that the number of non dimensional parameters needed to correlate the variables in a given physical problem is equal to n-r, where r is the rank of the dimensional matrix of the variables  ,  ,  , … . The rank of a matrix is the largest order of any square sub matrix that has a non zero determinant. After developing the non dimensional parameters ( ,  ,  … ) using the Buckingham Pi theorem, the homogeneous function [6.2] can be rewritten as follows: 
	 
	[6.3]                       
	 
	The dimensional matrix of eight primary variables (after taking out the two dimensionless parameters) in terms of fundamental units of mass, M, length, L, and time, T, can be written in the following form: 
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	0
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	L
	2
	4
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	-1
	-1
	-1
	T
	0
	0
	0
	0
	0
	-2
	-2
	-2
	 
	The rank of this dimensional matrix is two, therefore, six non dimensional parameters are required (in addition to the two dimensionless parameters mentioned above) to describe this physical behaviour, i.e., the confining behaviour of the collars. For concrete columns confined by HSS collars, the following eight trial non dimensional parameters were chosen (including the two that were already dimensionless): 
	 
	   
	  
	    
	  
	    
	 
	    
	 
	    
	 
	   
	 
	    
	 
	   
	 
	It is to be noted that   and   are output parameters and   to   are input parameters. The parameter   is the ratio of yield stress,  , to modulus of elasticity,  , of the confining steel. The variation in   can be obtained by varying yield stress,  , and/or the modulus of elasticity,  . However, their effects on the relationship between the output parameters,   and  , are different. In order to differentiate their effects, the notation   will be used when varying  , while keeping   and n constant. The constant value of   can be set equal to   and the definition of the parameter becomes: 
	   
	Figure 6.7(a) shows the resulting input steel material curves with different values of   for constant values of   and n:   and  11. Because these curves have a constant modulus of elasticity,  , the initial parts of the curves coincide. However, the second parts of the curves differ significantly. The curves with higher values of   are higher and vice versa. 
	 
	The notation   is used when varying  , while keeping,   and n constant. The constant value of   and n are set equal to   and 11, respectively; and the definition of   becomes: 
	   
	Figure 6 7(b) shows a group of curves with different values of  , while keeping   constant. The initial slopes of these curves differ, however, beyond the knee of the curves they converge. This means that a change in modulus of elasticity,  , should not have a significant effect on the peak of the output curves generated by   and . In order to remove the dependence of the output parameter   on  , the value of   in the denominator of   is held constant at a value of  , the reference modulus of elasticity. Therefore, the definition of   is adjusted as follows: 
	 
	   
	 
	6.5.2 Ranges of Parameters and Reference Model 
	 
	The reference model is an arbitrarily selected model for which the input parameters fall within the ranges over which the parametric study is performed. The ranges considered accommodate the practical cases of columns and confining collars likely to be encountered. Attempts to capture the behavioural trends over wider ranges tend to lead to very complicated functions to achieve a good fit to the data points. In order to simplify the functions by reducing the ranges over which the parametric study is performed and regression equations are developed, collars of a practical size can be smeared into a series of smaller collars. 
	 
	The geometry of the columns confined by HSS collars is controlled by the following four parameters:  ;  ;  ; and  . The ranges of these parameters that have been used in the parametric study are: 
	 
	  0.00262 to 0.00527 
	  2.48x10-4 to 5.56x10-4 
	  0.00625 to 0.2125 
	  0.20 to 0.31 
	 
	Small deviations from these ranges are acceptable while using the prediction equations (yet to be developed). However, large deviations might jeopardize the accuracy of predicted results. The nature of the prediction equation for a particular parameter gives insight into how much deviation from its range might be acceptable, while still maintaining the accuracy of predicted results. 
	 

	The other parameters are related to the material curve of the confining steel. The parameter   was set at 0.002. The effect of parameters  ,  , and   on the confining behaviour of collars was studied over the following ranges: 
	  0.001968 to 0.002952 
	  0.00177 to 0.00266 
	  10.00 to 20.00 
	This covers all the practical material curves for the confining steel. 
	 
	Model 6 in Table 6.2 is the reference model for the parametric study of HSS collars. This model recurs for the study of each individual variable. The values of the input parameters for this model, along with the ranges of parameters over which the parametric studies were performed, are given below:  
	 
	   0.00365 (Range: 0.00262 to 0.00527) 
	  0.0003634 (Range: 0.00024876 to 0.00055588) 
	  0.075 (Range: 0.00625 to 0.2125) 
	  0.25 (Range: 0.20 to 0.31) 
	  0.002287 (Range: 0.001968 to 0.00295) 
	  0.002287 (Range: 0.00177 to 0.00266) 
	  11.00 (Range: 10.00 to 20.00) 
	The values of input parameters for the reference model do not necessarily fall in the middle of the ranges of the parameters for HSS collars. 
	 
	6.5.3 Scale Effect 
	 
	In order to verify that the non-dimensional parameters are independent of any scale effect, ten analyses were performed in two groups, the details of which are given in Table 6.1. The objective is to vary the constituent (primary) variables of the non-dimensional parameters, while keeping the non-dimensional parameters themselves constant. If the input parameters selected truly and fully represent the behaviour defined by the output parameters, the output curves will be identical over the full range of interest. It is to be noted that in order to keep   through   constant, the constituent variables of each non-dimensional parameter cannot be varied individually. This is because once the cross sectional column dimension,  , has been selected, the associated area,  , and moment of inertia,  , are also set. The numerators of the respective non-dimensional input parameters are therefore also unique in order to achieve specific values of   through  . Conversely, the constituent (primary) variables of   and   can be varied individually. In this scale effect study only the constituents of   through   are varied. The analogous effects of   and   are studied separately and presented subsequently. 
	 
	The two groups of models for assessing the scale effect are shown in Table 6.1. Group 1 consists of six models and group 2 consists of four models. Although the primary variables are different for the various models in each of these groups, the values of the non-dimensional input parameters are the same within a group. The values of the input parameters for the models in group 1 are: 
	 
	  3.65x10-3 
	  3.634x10-4 
	  0.075 
	  0.25 
	  2.288x10-3 
	  2.288x10-3 
	   
	 
	The values of the input parameters in group 2 are: 
	 
	  7.979x10-3 
	  7.495x10-4 
	  0.20 
	  0.25 
	  2.288x10-3 
	  2.288x10-3 
	  11.00 
	The relationships between   and  for the analyses of models in groups 1 and 2 are depicted in Figure 6 9. The curves for the different models in each group overlap each other, confirming that the parameters are independent of scale effects. However, the two groups have different output curves because of the difference in the values of the non dimensional input parameters. 
	 
	6.5.4. Parametric Study and Prediction Equation 

	 
	In order to capture trends in the confining behaviour of welded hollow collars, use of a generalized equation proposed by Popovics (1973), for unconfined concrete, has been made. This equation was selected because it tends to provide a better fit to the output curves than other common methods due primarily to the ability to control the curvature of the ascending branch. Moreover, the Popovics equation can be controlled by two simple variables, as described below. The relationship between   and   can therefore be expressed as: 
	 
	[6.4]                             
	 
	where  ,  , and   
	 
	A typical relationship between   and   is presented in Figure 6 2(b) to define the variables  ,  ,  , and  , where   is the initial slope of the curve;   is the secant slope of the curve to the point defined as the “peak;” and   is the value of   at  . The shape of the curve obtained by Equation 6.4 can be controlled by three variables:  ,  , and  . The variable   has been set equal to 1.0 to be used for obtaining the best fit to the finite element results. (It is to be noted that this point is arbitrary and the curve fitting exercise takes place only over the range of reasonable lateral strains (i.e., values of  ).) Hence, there are only two variables (  and  ) remaining to fully control the shape of the curve. The following relationships are hypothesised for   and  : 
	 
	[6.5]    
	 
	[6.6]    
	 
	The functions  ,  ,  ,  ,  ,  ,  ,    ,  ,  ,  ,  , and   are determined by performing regression analyses on the data generated through parametric study using finite element models, the details of which is given in the following sections. Once these functions are established, the non-dimensional output curve can be generated easily with Equation 6.4 for any values of the non-dimensional input variables that are consistent with the parametric study. 
	 
	6.5.4.1 Overview of Regression Analysis 
	 
	The objective of a regression analysis is to determine the values of parameters for a function that cause the function to provide a best fit to a given set of data generated either numerically or experimentally. In the present study, it was found that power series could generally be selected to provided a good fit to the data without becoming unduly complex. There are several procedures to check the quality of fitness of a function to the given numerical data; some of them are listed below: 
	 
	 Final Sum of Squared Deviations 
	 Average and Maximum Deviations 
	 Coefficient of Multiple Determination 
	 Adjusted Coefficient of Multiple Determination 
	 
	In the present study, the “coefficient of multiple determination” method was used to check the quality of fitness by using the following deviation parameter: 
	 
	[6.7]                      
	where   is the variance using the predicted values, and   is the variance using the mean value. The variance using the mean value,  , is defined as the sum of the squared differences between the mean value and the values of the dependent variable at all data points. The variance using the predicted value,  , is defined as the sum of the squared differences between the values of the dependent variable predicted by the function and the actual values at all data points. 
	 
	The goodness of fit of a function to a set of numerical data is determined from the value of  , as defined in Equation 6.7. If the function fits the data perfectly, the value of   is equal to 1.00. In the worst case, the value of   can become equal to zero, which means that the function is no better than simply using the mean of the observed values. 
	 
	6.5.4.2 Effect of Parameter   on the Confining Behaviour of HSS Collars 
	 
	Table 6.2 shows the details of the analyses to study the effect of variation of   on the confining behaviour. It is to be noted that the model 6 in this table is the reference model. The collar dimensions are modified in such a way that only   varies and the other input parameters ( , , , ,  and  ) remain constant. Figure 6 10 shows the relationship between   and   for all the analyses for   varying from 0.00262 to 0.00527. The values of the other parameters were set at the following values: 
	 
	  0.003634 
	  0.075000 
	  0.250000 
	  0.002288 
	  0.002288 
	  11.00 
	 
	The curves shown in this figure have essentially two parts, the first part (steep) and the second part (nearly horizontal), which are joined by a curve. The slope of the initial part of the curve is represented by  . The parameter  is the value of   at  . Although the location of   is not on the graph of Figure 6 10, it can be concluded from the shape of these curves that both   and   increase with an increase of  . In order to capture the trends of these curves, Equation 6.4 was made to provide a best fit up to a practical value of lateral strain,  , and the resulting values of   and   are given in Table 6.2. A total of 11 models were used (see Table 6.2). By inspection, curve fitting to case 11 appeared to be worse as compared to the other 10 cases. The following values of R2 were calculated for this case up to different levels of lateral strains to quantify the level of curve fitting that could be achieved by this process: 
	 
	R2 = 0.9905 up to a lateral strain of 0.06 
	R2 = 0.9924 up to a lateral strain of 0.05 
	R2 = 0.9920 up to a lateral strain of 0.04 
	R2 = 0.9901 up to a lateral strain of 0.03 
	 
	These values of R2 indicate very good curve fitting even for the worst case. Similarly, in other cases in the parametric study, approximately the same level of curving fitting was maintained. It was decided to use 0.03 as the limit of lateral strain for curve fitting procedures. 
	 
	The values of  and   listed in Table 6.2 are equivalent to   and  , respectively, and they account directly for the effect of   in Equation 6.4. The effects of the other input parameters must therefore be formulated to account only for the required adjustments to these base values. Figure 6 11(a) shows the relationship between   and  . Using a power series function, the following equation was obtained for  : 
	 
	[6.8]                     
	 
	Similarly, Figure 6 11(b) shows the relationships between  and   and the following best fit equation was obtained for : 
	[6.9]                        
	 
	6.5.4.3 Effect of Parameter   on the Confining Behaviour of HSS Collars 
	 
	Table 6.3 shows the details of the models used to study the effect of variation of   on the confining behaviour. Model 6 is the reference model. The collar dimensions are modified in such as way that only   varies from 2.4876x10 4 to 5.5588x10 4 and the other input parameters ( , , , ,  and  ) remain constant at the following values: 
	 
	  0.00365 
	  0.07500 
	  0.25000 
	  0.002288 
	  0.002288 
	  11.00 
	 
	The resulting output curves relating   and  are shown in Figure 6 12 up to  0.05. It is clear from these curves that the variation of   affects the first part (initial slope) of the curves. Although the curves seems to be converging, the small variation in the so-called peak values (i.e., at  =1.0) has also been captured by fitting an equation. Equation 6.4 was fit to the finite element curves relating   to   (Figure 6 12) up to   equal to 0.03, and the respective values of   and   are given in Table 6.3. Table 6.4 also lists the values of   and   for all the models, in addition to the ratio of  of all the models to the value of  of model 6 (reference model). These ratios are denoted by  . It is to be noted that the value of   for the reference model necessarily becomes equal to 1.0. Figure 6 13(a) shows the plot of values of   vs.  . A power series function was fit to these data points and the following expression is obtained for  : 
	 
	[6.10]                    
	 
	Table 6.4 also shows the ratio of   for all the models to  of reference model. These ratios are denoted by  . The value of   for the reference model becomes equal to 1.0. Figure 6 13(b) shows the plot of   vs.  . A power series function was fit to these data points and the following expression is obtained for  : 
	 
	[6.11]   
	 
	6.5.4.4 Effect of Parameter   on the Confining Behaviour of HSS Collars 
	 
	Table 6.5 shows the detail of finite element models to study the effect of variation of   on the confining behaviour. Model 10 in this table is the reference model. The collar spacing was varied to get variation in   (from 0.00625 to 0.2125), while keeping the other input parameters ( , , , ,  and ) at the following constant values: 
	 
	  0.003650 
	  0.036340 
	  0.250000 
	  0.002288 
	  0.002288 
	  11.00 
	 
	The curves between   and   for all the models given in Table 6.5 were plotted to study the effect of change of   on the confining behaviour. The curves for models 1, 2, 4, 5, 7, 9, 11, and 16 are depicted in Figure 6 14. The study of these curves showed that the change in   has a large effect on both   and  . Equation 6.4 was made fit to all these curves, and the respective values of   and   are reported in Table 6.6. The values of   and   thus obtained were normalized with respect to the respective values of   and   of the curve of model 10 and the resulting normalized values of   and  , referred to as   and  , respectively, are also given in Table 6.6. The values of   were plotted with respect to  and the resulting curve is shown in Figure 6 15(a). A power series function was fit to this curve and the following expression for  was obtained: 
	 
	[6.12]               
	 
	Similary, the values of   were plotted with respect to   and the resulting curve is shown in Figure 6 15(b). A power series function was fit to this curve and the following expression for  was obtained: 
	 
	[6.13]                   
	 
	6.5.4.5 Effect of Parameter   on the Confining Behaviour of HSS Collars 
	 
	Table 6.7 shows the detail of models to study the effect of variation of   on the confining behaviour. In this case, model 5 is the reference model. The collar depth   was varied to get variation in   (0.20 to 0.31), while keeping the other input parameters ( , , , ,  and ) at the following constant values: 
	 
	  0.003650 
	  0.036340 
	  0.075000 
	  0.002288 
	  0.002288 
	  11.00 
	 
	The curves relating   and   for these models are shown in Figure 6 16. From these curves, it is clear that the variation in   only affects  , without affecting  . With the increase of  , the value of   increases. Equation 6.4 was fit to these curves and the resulting values of   and   for each case is given in Table 6.8. The values of   and   were normalized with respect to the values of   and  , respectively, of the curve of the reference model (model 5 in Table 6.8). The normalized values of   and  , denoted by   and   are also given in the Table 6.8. The values of   were plotted with respect to the values of  and the resulting curve is shown in Figure 6 17. A power series function was fit to the data and the following expression was obtained for  : 
	 
	[6.14]   
	 
	It is clear from Table 6.8 that the values of   are constant at 1.0 and therefore have no dependence on  , which leads to the following expression for  : 
	 
	[6.15]   
	 
	6.5.4.6 Effect of Parameter   on the Confining Behaviour of HSS Collars 
	 
	The parameter   represents the ratio of yield stress,  , to modulus of elasticity,  , of the confining steel. The effect of this parameter on the confining behaviour of HSS collars is studied in two ways: (a) variation in both yield stress,  , and modulus of elasticity,  , in such a way that   remains constant; and (b) variation in yield stress,  , or modulus of elasticity,  , or both such that   does not remain constant. The effect of variation of both  and  , such that parameter   remains constant, on the relationship between   and   is presented initially. This is analogous to the studies of   through   in the section on scale effect. Table 6.9 shows the detail of the finite element models used for this study with the following values of input parameters: 
	 
	  0.003650 
	 
	  0.036340 
	 
	  0.075000 
	 
	  0.250000 
	 
	  0.002288 
	 
	Based on the analyses of these models, the curves relating parameters   and   are shown in Figure 6 18. Although   is constant for these curves, they do not coincide. This casts doubt on the validity of   as a characteristic non-dimensional parameter. This discrepancy can be explained with the help of Figure 6.7, which shows material curves for HSS generated by the calibrated Ramberg Osgood model: (a) with different values of   and a constant value of   (Figure 6 7(a)); and (b) with different values of   and a constant value of   (Figure 6 7(b)). The initial parts of the curves shown in Figure 6 7(a) essentially overlap because these curves were generated for a constant value of  . The variation in the values of   is reflected in the second parts of these curves. Similarly, Figure 6 7(b) shows material curves of confining steel with different values of   and a constant value of  . The change in   is reflected in the initial parts of these curves but they tend to converge past the knee. Because of the distinct effect   and   show in the different curve regions, it seems preferable to vary these variables separately and this can be done by normalizing each with the reference values   and  , respectively, as discussed previously.  
	 
	Table 6.10 shows the details of the finite element models to study the effect of variation of   (i.e., variation of  ) on the confining behaviour of the collars with   set equal to the reference value. Model 3 in this table is the reference model. The parameter   was varied from 0.001968 to 0.002952; the other input parameters ( , , ,  ,  , and   ) were set at the following constant values: 
	 
	  0.003650 
	 
	  0.036340 
	 
	  0.075000 
	 
	  0.250000 
	 
	  0.002288 
	 
	  0.250000 
	 
	 
	The resulting curves between   and  for these analyses are shown in Figure 6 19. The initial parts of these curves overlap each other but the second parts, or the so called peak values of these curves, are affected significantly by changing  . The Equation 6.4 was fit to all these curves and the resulting values of   and   are given in Table 6.11. These values of   and   were normalized with respect to the values of   and   of the reference model. The normalized values of   and  , denoted by   and  , respectively, are also given in Table 6.11. 
	 
	The values of   are plotted with respect to the respect to   and the resulting curve is shown in Figure 6 20. In this case, a power function was not required to obtain good accuracy and a linear function was fit to this curve by setting the y intercept equal to zero, resulting in the following expression for  : 
	 
	 [6.16]   
	 
	The values of   remains essentially unaffected by changing  . Therefore, the values of   becomes 1.00 for all these curves, resulting in the following expression for  : 
	 
	[6.17]   
	 
	6.5.4.7 Effect of Parameter   on the Confining Behaviour of HSS Collars 

	 
	Table 6.12 summaries the details of the models used to study the effect of variation of   (i.e., variation in  ) on the confining behaviour of collars with   set equal to the reference value. Model 3 in this table is the reference model. The parameter   was varied from 0.00177 to 0.00266, keeping the other input parameters ( , , ,  ,  , and  ) at the following constant values: 
	 
	  0.003650 
	 
	  0.036340 
	 
	  0.075000 
	 
	  0.250000 
	 
	  0.002288 
	 
	  11.00 
	 
	Figure 6 21 shows the relationship between   and   for different values of  . The study of these curves shows that the variation in   essentially affects the initial slope,  , of the curves, without affecting the second parts of the curves. The Equation 6.4 was fit to these curves and the resulting values of  and   are listed in Table 6.13. These values of  and   were normalized with respect to the values of   and  , respectively, of the reference model (model 3). The normalized values of  and  , denoted by   and  , respectively, are also listed in this table. Although   is affected by a change in  , the effect is considered small enough to neglect. Therefore, the values of   for all these curves become equal to 1.00, resulting in the following expression for  : 
	 
	 [6.18]                   
	 
	The values of   are plotted with respect to the values of   in Figure 6 22. A power series function was fit to this curve and the following expression was obtained for  : 
	 
	 [6.19]                 
	 
	6.5.4.8 Effect of Parameter   on the Confining Behaviour of HSS Collars 

	 
	The confining behaviour of HSS collars also depends on the shape of the material curves of the confining steel, which in turn depends on the value of n in addition to a,   and   (Equation 6.1). The effect of a change in the value of n on the confining behaviour of collars is now considered. Table 6.14 gives the details of the finite element models used for this study. The Model 2 in this table is the reference. In these models, the value of   is varied from 10 to 20 and the other parameters were set at the following at the following constant values: 
	 
	  0.003650 
	 
	  0.036340 
	 
	  0.075000 
	 
	  0.250000 
	 
	  0.002288 
	 
	  0.002288 
	 
	Figure 6 23 shows the relationship between   and   for different values of  . The study of these curves shows that the variation of   affects essentially the second parts of the curves without affecting the initial slope,  . The Equation 6.4 was fit to all these curves and the resulting values of   and   are given in Table 6.15. These values of   and   were normalized with respect to the values of   and   of the reference model. The normalized values of   and  , denoted by   and   respectively, are also given in Table 6.15. Figure 6 24 shows the plot relating   and  . A power series function was fit to this curve with the help of regression, resulting in the following expression for  : 
	 
	[6.20]   
	 
	The values of   are constant with respect to  , which leads to the following expression for  : 
	 
	[6.21]   
	 
	6.5.4.9 Effect of Collar Smearing on the Confining Behaviour of HSS Collars 

	 
	Table 6.16 shows the detail of finite element models to study the effect of collar smearing on the confining behaviour. It is to be noted that model 4 in this table is the reference model. All of these models are equivalent in that although different degrees of smearing are present, the total axial and flexural stiffnesses of the collars are identical. Hence, all the model should give the same result in terms of the relationship between the output parameters   and   if there is no smearing effect. The models in Table 6.16 show variation of   from 0.01875 to 0.30, accompanied by concomitant variations in parameter   from 9.125x10-4 to 1.46x10-2 and parameter   from 9.0841x10-5 to 1.4535x10-3 such that the models remain equivalent to each other. The other input parameters of these models were kept at the following constant values (i.e., the reference values): 
	 
	  0.250000 
	 
	  0.002288 
	 
	  0.002288 
	 
	  11.00 
	 
	Only for Models 3, 4, and 5 do all of the parameters  ,  , and   fall within the ranges considered in the parametric study. It is important to note that it is the models with the higher numbers that have values for collar area, stiffness, and spacing that are closer to those that would be expected for real columns (i.e., “unsmeared”). Figure 6 25 shows that although the initial slope is unaffected by smearing, an effect on the peak of the curve is observed, primarily for Models 1 and 2. It is significant that smearing by a small amount has a relatively small effect and only for the severe smearing of Models 1 and 2 is the effect highly pronounced. This effect over the range of Models 3, 4, and 5 is considered negligible, so smearing to any degree that falls within the ranges of the non-dimensional input parameters considered in the parametric study can be taken as equivalent.  
	 
	The effect of smearing can be related to any one of the three input parameters  ,  , and   because of the equivalency in their variations. In the present study, the effect of smearing on the output behavioural curves of the collars is related to  . Equation 6.4 was fit to the curves in Figure 6 25 and the corresponding values of   and   are given in Table 6.17. These values are then normalized with respect to the respective values of   and   of reference model (model 4). The normalized values of   and  , denoted by   and  , have also been given in Table 6.17. The values of   are plotted with respect to  and the resulting curve is shown in Figure 6 26. A power series function was fit to this curve, resulting in the following expression for  : 
	 
	[6.22]                 
	 
	The values of   for all the models are 1.00 in Table 6.17, which leads to the following relation for  : 
	 
	[6.23]     
	 
	The correction for smearing can be applied to the so called peak values of the behavioural curves of the collars. If the   parameters for the actual and smeared models are denoted by   and  , respectively, a factor  is defined to account for the effect of smearing on the peak value of the confining behaviour (using Equation 6.22): 
	 
	[6.24]   
	 
	The value of this factor will be greater than 1 if the spacing of the collars in the actual model is bigger than that of the smeared model, which will always be true for practical cases. 
	 
	6.5.4.10 Expressions for  and   for HSS Collars 
	 
	The expression for   can be obtained by substituting the values of  ,  ,  ,  ,  ,  , and   into Equation 6.5, and adding the smearing correction factor,  . The resulting expression is: 
	 
	[6.25]                  
	 
	Similarly, the expression for   can be obtained by substituting the expressions for  ,  ,  ,  ,  ,  , and  into Equation 6.6. The resulting expression is:  
	 
	[6.26]                    
	 
	Equation 6.26 could be simplified somewhat without impacting the accuracy of the results significantly by treating the modulus of elasticity as a constant, as is often done for structural steel. Moreover, both Equations 6.25 and 6.26 could be simplified by eliminating the factors that have a very small effect on the output curves within the prescribed ranges, such as  . Further simplification could be achieved by selecting linear functions that closely match some of the near-linear power functions selected, such as  . Nevertheless, Equations 6.25 and 6.26 are not onerous to evaluate and the following verification study is performed on these equations as presented. 
	 
	6.5.4.11 Verification of the Proposed Model for HSS Collars 
	 
	The proposed empirical confinement model has been verified using 14 case studies. It is to be noted that for verification purposes, collared columns of 300x300 mm in cross section have been used, whilst the equations of the proposed model were developed based on the results of collared columns of 400x400 mm in cross section. Table 6.18 shows the details of all the finite element models used for this purpose. These are not intended to represent real columns, however, they were developed in such a way that their non-dimensional parameters are close to those of real columns (i.e., they have not been smeared, as is required for the empirical equation). The results of these models in terms of confinement stress vs. lateral strain are depicted in Figures 6 27 through 6 40.  
	 
	While using the proposed model to determine the confining behaviour of collars, it is possible to violate slightly the ranges used in the parametric study at the cost of accuracy of the predicted results. Through applying the proposed model to the 14 cases given in Table 6.18, it has been observed that the predicted results are more sensitive to the range of parameter   (0.00262 to 0.00527) than any other parameter. Therefore, while applying the proposed model, it is recommended that the parameter   remain within its prescribed range, while other parameters can violate their ranges slightly without affecting the accuracy of predicted results drastically. In order to keep the parameter   within its range, the real collars are smeared over the column at a relatively small spacing, although excessive smearing is not recommended. Only need-based smearing is recommended in order to bring the parameter   within its range. Table 6.19 shows the details of models, equivalent to those given in Table 6.18, obtained through need-based smearing of the collars. The proposed empirical model was applied to these cases to determine their respective confining behaviour in terms of confinement stress vs. lateral strain, also depicted in Figures 6 27 through 6 40 for comparison with the respective finite element results. The curves are shown up to lateral strain of 0.06, which is a very high level of lateral strain. The coefficient of multiple determination, R2, was used to measure the accuracy of the predictions for each curve up to four levels of lateral strains, i.e., 0.06, 0.05, 0.04, and 0.03. The corresponding values of R2 are given in Table 6.20 for each of the 14 cases. A study of the values of R2 shows that very good agreement exists between the finite element results and those of the proposed model. In order to demonstrate the procedures used in the verification exercise, the details of one of the cases (Case 8) is given below. 
	 
	The finite element analyses for Case 8 were performed on a 300x300 mm column with steel HSS collars of 25.5x51 mm (web 3.175 mm and flange 6.35 mm thick) spaced at 61.00 mm on centres. These are hypothetical steel HSS sections without round corners and with varying wall thickness. The yield stress,  , and modulus of elasticity,  , of the confining steel are 470 MPa and 210 000 MPa, respectively. The values of the non dimensional parameters for this model are (note that the prime symbol is included on   to signify the actual, rather than smeared, condition for consistency with Equation 6.24 that accounts for the smearing effect): 
	 
	  0.006306 
	 
	  0.000285 
	 
	  0.203333 
	 
	  0.170000 
	 
	  0.002312 
	 
	  0.002214 
	 
	  11.00000 
	 
	As the value of parameter   exceeds its specified range, in order to apply the proposed model the collars need to be smeared. (Although   also falls outside of its prescribed range, the method is much less sensitive to this parameter.) After smearing, the collar size becomes 12.75 x 51.00 mm (web 1.5875 mm and flange 6.35 mm thick) and the centre to centre spacing becomes 30.50 mm. The non dimensional parameters of the equivalent model (Case 8 in Table 6.19) with smeared collars becomes: 
	 
	  0.0031500 
	 
	  0.0001424 
	 
	  0.1016600 
	 
	  0.170000 
	 
	  0.002312 
	 
	  0.002214 
	 
	  11.00000 
	 
	Now the value of the non dimensional parameter   falls within the range over which the parametric study was performed. Using Equation 6.24 that accounts for the smearing effect, the value of   is calculated to be: 
	 
	  1.037 
	 
	Applying Equation 6.25, the value of   can be calculated: 
	 
	  0.0001517 
	 
	Applying Equation 6.26, the value of   is calculated: 
	 
	  0.03027 
	 
	Substituting the values of   and   into Equation 6.4, the relationship between   and   can be established. This curve is then converted to confinement stress,  , vs. lateral strain by multiplying the values of   by the constant   203 250 MPa. It is to be noted that the parameter   represents the lateral strain of the collar directly. The relationships between confinement stress and lateral strain determined with both the finite element analysis and the empirical model using need-based smearing are shown in Figure 6.34. The curves can be compared with the help of the values of R2 in Table 6.20 The values of R2 for this curve up to lateral strains of 0.06, 0.05, 0.04, and 0.03 are 0.9971, 0.9968, 0.9965, 0.9961, respectively. 
	 
	6.5.4.12 Application of the Proposed Model to Real Cases 
	 
	In this section, the proposed model is applied to columns C06 and C09 tested under concentric axial loading in phase 1 of the project (Chapter 3). 
	 
	6.5.4 12.1 Column C06 
	 
	Column C06 is 300x300 mm in cross section confined with collars of HSS 51x51x6.35 mm with welded corner connections, spaced at 122 mm on centres. The area of the cross section of this HSS is 1085 mm2 and the moment of inertia of the collar about its major axis is 0.319x106 mm2. The material curve for the HSS was obtained from a stub column test and is shown in Figure 6 41. The Ramberg Osgood model was calibrated to this curve and the best fit was obtained at the following values of material parameters: 
	 
	   497 MPa 
	   203 400 MPa 
	   0.002 MPa 
	   12.80 MPa 
	 
	For establishing the confining behaviour of the collars of this column using finite element analysis, it is reasonable to approximate the actual condition by splitting each collar into two equivalent collars. This is necessary because the actual collars apply confining pressure across a 51 mm deep strip and in the model, pressure is applied along a line at the collar centreline. Hence, the collars of this column can be assumed to consist of HSS 25.5x51 mm (web 3.175 mm and flange 6.35 mm thick) spaced at 61 mm on centers, with cross sectional area of 542.5 mm2 and moment of inertia of 0.1595x106 mm4 taking into account the effect of round corners. 
	 
	With this information, the non-dimensional parameters of this column were calculated to be: 
	 
	  0.0060277 
	 
	  0.0002363 
	 
	  0.2033333 
	 
	  0.170000 
	 
	  0.002445 
	 
	  0.002286 
	 
	  12.80000 
	 
	The value of parameter   exceeds the range (0.00262 to 0.00527) over which the parametric study was performed. In order to get the best results from the proposed model, it is required that the collars be smeared over the height of the column under consideration. For this purpose, each collar of the original column (i.e., with center to center spacing of collars of 122 mm) is divided into four smaller collars, resulting in the following values of the non-dimensional parameters: 
	 
	  0.0030139 
	 
	  0.0001182 
	 
	  0.1016667 
	 
	  0.170000 
	 
	  0.002445 
	 
	  0.002286 
	 
	  12.80000 
	 
	Substituting the values of the non dimensional parameters into Equations 6.25 and 6.26, and applying  , the following values of  and   are found: 
	 
	  0.00015145 
	 
	  0.02861 
	 
	Using these values in Equation 6.4, the relationship between   and   can be obtained and transformed to a confinement stress vs. lateral strain curve, which is shown in Figure 6.42, by multiplying   by  . This figure also shows the relationship between the confinement stress and lateral strain obtained directly from the finite element analysis. The coefficient of multiple determination was used to compare these two curves. The following values of R2 were found: 
	 
	 R2 = 0.9726 up to lateral strain of 0.06 
	 
	 R2 = 0.9780 up to lateral strain of 0.05 
	 
	 R2 = 0.9828 up to lateral strain of 0.04 
	 
	 R2 = 0.9852 up to lateral strain of 0.03. 
	 
	 
	These values of R2 show that the two curves compare well with each other. The confinement stress vs. lateral strain curve obtained by the proposed model was used to determine the confined concrete material curve for the core concrete according to the procedure given in Chapter 5. The behaviour of spalling concrete and the longitudinal reinforcing bars was modelled separately. Combining the contributions of core concrete, cover concrete, and the longitudinal reinforcing bars, the axial load vs. axial strain curve for the column was obtained and is shown in Figure 6 43. The experimentally obtained load vs. strain curve of the column is also given in this figure for comparison. Very good agreement exists between the two curves, validating the proposed model. 
	 
	6.5.4.12.2 Column C09 
	 
	Column C09 is 300x300 mm in cross section confined with collars of HSS 76x51x6.35 mm with welded corner connections, spaced at 170 mm on centres. The area of cross section of this HSS is 1375 mm2 and the moment of inertia of the collar about its major axis is 0.919x106 mm2. The material curve of the HSS for this column, obtained from the stub column test, is shown in Figure 6 44. The Ramberg Osgood model was calibrated to this curve and the best fit was obtained at the following values of material parameters: 
	 
	   445 MPa 
	   202 700 MPa 
	   0.002 MPa 
	   20.00 MPa 
	 
	For the confining behaviour of the collars of this column using finite element analysis, it is reasonable to split each collar of this column into two equivalent collars because the actual collars apply confining pressure on about a 51 mm width. Hence, the collars of this column can be assumed to consist of HSS 25.5x76 mm (web 3.175 mm and flange 6.35 mm thick) spaced at 85 mm on centres, with a cross sectional area of 687.50 mm2 and moment of inertia of 0.4595x106 mm4. 
	 
	With this information, the non-dimensional parameters for this column can be calculated as: 
	 
	  0.007639 
	 
	  0.000681 
	 
	  0.283333 
	 
	  0.253333 
	 
	  0.002189 
	 
	  0.002294 
	 
	  20.00000 
	 
	The value of parameter   exceeds the range (0.00262 to 0.00527) over which parametric study was performed, so the collars must be smeared. For this purpose, each collar of the original column (spacing equal to 170 mm) is divided into four smaller collars, resulting in the following values of the non dimensional parameters: 
	 
	  0.0038195 
	 
	  0.0003405 
	 
	  0.1416666 
	 
	  0.2533333 
	 
	  0.002189 
	 
	  0.002294 
	 
	  20.00 
	 
	Substituting the values of the non dimensional parameters into Equations 6.25 and 6.26, and applying  , the following values of   and   are found: 
	 
	  0.0001203 
	 
	  0.03336 
	 
	Using these values in Equation 6.4, the relationship between   and   can be obtained and then transformed to confinement stress vs. lateral strain, shown in Figure 6 45. This figure also shows the relationship between the confinement stress and lateral strain obtained directly from the finite element analysis. The coefficient of multiple determination was used to compare the two curves. The following values of R2 were found: 
	 
	 R2 = 0.9800 up to lateral strain of 0.06 
	 
	 R2 = 0.9785 up to lateral strain of 0.05 
	 
	 R2 = 0.9762 up to lateral strain of 0.04 
	 
	 R2 = 0.9725 up to lateral strain of 0.03. 
	 
	 
	The values of R2 shows that the two curves compare well. The confinement stress vs. lateral strain curve obtained by the proposed model was used to determine the confined concrete material curve for the core concrete according to the procedure given in Chapter 5. Adding the contributions of core concrete, cover concretes and the longitudinal reinforcing bars, the load vs. axial strain curve for the column was obtained, as shown in Figure 6 46. The experimentally obtained load vs. strain curve of the column is also given in this figure for comparison. Very good agreement exists between the two curves, again validating the proposed model. 
	 
	6.6 Model for Solid Collars 
	 
	In a manner similar to the procedure used for HSS (hollow) collars, a model for the confining behaviour of solid collars with rigid corner connections has been developed in terms of non-dimensional parameters. The derivation of the model is provided in the following sections. 
	 
	6.6.1. Non Dimensional Parameters for Solid Collars 

	 
	Based on the experimental work and finite element studies, it is assumed that the confining behaviour of the solid collars for square concrete columns depends on the following nine primary variables:  
	(1) area of cross-section of a side of a collar,   
	(2) moment of inertia of the side of the collar,   
	(3) width of the column (inside length of a collar side),   
	(4) centre to centre spacing,  ; 
	(5) yield stress of the confining steel,   
	(6) modulus of elasticity of the confining steel,   
	(7) value of n in the Ramberg Osgood model 
	(8) average lateral strain,   
	(9) average confinement stress,   
	 
	It is to be noted that, the three ( ,  , and n) of above nine variables are related to the material curve of the confining steel. In case of solid collars, the quantities   and   can be varied independently. Conversely, since only square concrete columns are being considered,  ,  , and   represent only a single independent quantity,  .  
	 
	The dimensional matrix of seven primary variables (after taking out the two dimensionless parameters) in terms of fundamental units of mass, M, length, L, and time, T, can be written in the following form: 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	M
	0
	0
	0
	0
	1
	1
	1
	L
	2
	4
	1
	1
	-1
	-1
	-1
	T
	0
	0
	0
	0
	-2
	-2
	-2
	 
	 
	The rank of this dimensional matrix is two; therefore, five non dimensional parameters are required (in addition to the two dimensionless primary variables) to describe this physical behaviour, i.e., the confining behaviour of solid collars. The following seven trial non dimensional parameters were chosen: 
	 
	    
	  
	    
	 
	    
	 
	    
	 
	   
	 
	    
	 
	    
	 
	For consistency, the same nomenclature has been used for the parameters for solid collars as was used for hollow collars. It is to be noted that parameter   does not exist for solid collars. Again,   and  are output parameters and  ,  ,  ,  , and   are input parameters. The parameter   is the ratio of yield stress,  , to modulus of elasticity,  , of the confining steel. As was done for hollow collars and for the same reasons, this parameter is split into two parameters: 
	   
	   
	The definition of   is again revised to: 
	 
	   
	 
	6.6.2 Ranges of Parameters and Reference Model for Solid Collars 
	 
	The geometry of the columns confined by solid collars is controlled by three parameters:  ;  ; and  . The ranges of these parameters used in the parametric study are: 
	 
	  0.004 to 0.056 
	  0.000096 to 0.0192 
	  0.020 to 0.30 
	 
	These ranges cover most practical cases. The reference model is an arbitrarily selected model whose parameters fall in the ranges over which the parametric studies were performed. Model 5 in Table 6.21 is the reference model for the parametric study of solid collars. The values of input parameters (including material and geometric parameters) for this model along with their ranges over which the parametric studies were performed are given below:  
	 
	  0.02083 (Range: 0.004 to 0.056) 
	  0.001302 (Range: 0.000096 to 0.0192) 
	  0.16667 (Range: 0.020 to 0.30) 
	  0.002288 (Range: 0.001476 to 0.00344) 
	  0.002288 (Range: 0.00177 to 0.00266) 
	  11.00 (Range: 10.00 to 20.00) 
	 
	These ranges are sufficiently wide to accommodate practical sizes of solid collars without requiring collar smearing. However, the effect of collar smearing on the confining behaviour of solid collars was also studied; if required, it can be used to predict the behaviour of relatively larger solid collars. 
	 
	6.6.3 Scale Effect for Solid Collars 
	 
	In order to verify that the non-dimensional parameters are independent of any scale effect, eleven analyses were performed, the details of which are given in Table 6.21. The values of input parameters for all the models in this table are: 
	 
	  0.0208333 
	  0.001302 
	  0.16667 
	  0.002288 
	  0.002288 
	   
	 
	The relationships between   and  for the analyses of these models are depicted in Figure 6 47. The curves generated by the different models coincide exactly, confirming that the parameters are independent of scale effect. 
	 
	6.6.4 Parametric Study and Prediction Equation for Solid Collars 

	 
	In order to capture trends in the confining behaviour of solid collars, Equation 6.4 is again used. From the finite element study it was deduced that the variables   and   in this equation depend on the non dimensional parameters  ,  ,  ,  ,  , and  . Hence, the following relationships are hypothesised for   and  : 
	 
	[6.27]     
	 
	[6.28]     
	 
	The functions  ,  ,  , ,  ,  ,  ,  ,  ,  ,  , and   are determined by performing regression analyses on the data generated through parametric study using finite element models, the details of which is given in the following sections. 
	 
	6.6.4.1 Effect of Parameter   on the Confining Behaviour of Solid Collars 
	 
	Table 6.22 shows the details of the 15 models used to study the effect of variation of   on the confining behaviour. Model 6 in this table is the reference model. Figure 6 48 shows the relationship between   and   for all the analyses for   varying from 0.004 to 0.056. The values of other parameters were set at the following values, which are same as those for the reference model: 
	 
	  0.001302 
	  0.166666 
	  0.002288 
	  0.002288 
	  11.00 
	 
	The quantities   and   shown in Table 6.22 are equivalent to   and  , respectively (without modification because the normalizing factor is 1.00). By inspection, curve fitting to case 4 appeared to be the least precise as compared to the other 14 cases. The following values of R2 (coefficient of multiple determination) were calculated for this case up to different levels of lateral strains in order to quantify the level of curve fitting: 
	 
	 R2 = 0.9935 up to a lateral strain of 0.06 
	 R2 = 0.9936 up to a lateral strain of 0.05 
	 R2 = 0.9947 up to a lateral strain of 0.04 
	 R2 = 0.9938 up to a lateral strain of 0.03 
	 
	These values of R2 indicate very good curve fitting even for the worst case. (In all the subsequent cases, a similar quality of curve fitting was maintained.) Figures 6 49(a) and 6 49(b) show the relationships between   and   for two   ranges: (a) 0.004 to 0.024; and (b) 0.024 to 0.056; respectively. Several trials were made to get a single expression for the complete range of  (0.004 to 0.056), but a satisfactory function could not be obtained. Therefore, it was decided to split the   range into two parts and for each range, separate functions were obtained through curve fitting: 
	 
	[6.29]              for  0.004 to 0.024 
	[6.30]               for  0.024 to 0.056 
	 
	Figures 6 50(a) and 6 50(b) show the relationships between   and   for the same two ranges that lead to the following functions: 
	 
	[6.31]                 for  0.004 to 0.024 
	[6.32]                 for  0.024 to 0.056 
	 
	6.6.4.2 Effect of Parameter   on the Confining Behaviour of Solid Collars 
	 
	Table 6.23 shows the details of models to study the effect of variation of   on the confining behaviour. Model 6 in this table is the reference model. The collar dimensions are modified in such as way that only   varies from 0.000096 to 0.0192 and the other input parameters ( ,  ,  ,  and  ) remain constant at the following values, which are same as those for the reference model: 
	: 
	  0.020833 
	  0.16667 
	  0.002288 
	  0.002288 
	  11.00 
	 
	The resulting output curves between   and  are shown in Figure 6 51 up to 0.05. It is clear from these curves that the variation of   affects both the first part (initial slope) and the second part (so-called peaks) of the curves. Equation 6.4 was fit to these curves up to a strain of 0.03 and the respective values of   and   are given in Table 6.23. The same quality of fitness was maintained as was in the previous section. The values of   and   for all the models were normalized with respect to the respective values of   and  of the reference model. These normalized values of   and   are denoted by   and  , respectively, and are given in Table 6.24. The values of   were plotted with respect to   and several trials were made to get a single expression through regression, which gives best fit to the complete range of   (0.000096 to 0.0192) but a satisfactory function could not be obtained. Therefore, it was decided to split the   range into two parts and for each part a separate expression of   was obtained. Figures 6 52(a) and 6 52(b) show the plot of   with respect to  for  ranges: (a) 0.000096 to 0.00288; and (b) 0.00288 to 0.0192; respectively. A power series function was fit to the data points in each of these ranges and the following expressions for   were obtained: 
	 
	[6.33]                for  0.000096 to 0.00288 
	[6.34]                for  0.00288 to 0.0192 
	 
	Similarly, Figures 6 53(a) and 6 53(b) show the plots of   with respect to  for  the same ranges. Power series functions were fit to the data points in these ranges and the following expressions for   were obtained: 
	 
	[6.35]   for  0.000096 to 0.00288 
	[6.36]   for  0.00288 to 0.0192 
	 
	 
	 
	 
	6.6.4.3 Effect of Parameter   on the Confining Behaviour of Solid Collars 
	 
	Table 6.25 shows the details of the finite element models to study the effect of variation of   on the confining behaviour. Model 9 in this table is the reference model. The collar spacing was varied to get a variation in   (from 0.020 to 0.30), while keeping the other input parameters ( ,  ,  ,   and  ) at the following constant values, which are same as those for the reference model: 
	 
	  0.020833 
	  0.001302 
	  0.002288 
	  0.002288 
	  11.00 
	 
	The curves relating   and   for all the models in this table were plotted. However, only a few of these curves are depicted in Figure 6 54 for clarity. A study of these curves shows that the change in   has a large effect on both   and  . Equation 6.4 was fit to all the curves, and the respective values of   and   are reported in Table 6.25. The values of   and   thus obtained were normalized with respect to the respective values of   and   of model 9 (reference model) and the resulting normalized values of   and  , denoted by   and   respectively, are also given in Table 6.26. Figure 6 55(a) show a plot of   with respect to . A power series function was fit to this curve and the following expression for  was obtained: 
	 
	[6.37]              for  0.02 to 0.30 
	 
	Similarly, Figure 6 55(b) shows the plot of   with respect to  . A power series function was fit to this curve and the following expression for  was obtained: 
	 
	[6.38]                for  0.02 to 0.30 
	 
	6.6.4.4 Effect of Parameter   on the Confining Behaviour of Solid Collars 
	 
	Table 6.27 shows the details of the finite element models to study the effect of variation of   (Range: 0.001476 to 0.00344) (due to varying  ) on the confining behaviour of solid collars while keeping the other input parameters at the following constant values, which are same as those for the reference model: 
	 
	  0.020833 
	 
	  0.001302 
	 
	  0.166667 
	 
	  0.002288 
	 
	Based on the analyses of these models, the curves relating parameters   and   are shown in Figure 6 56. A study of these curves shows that the initial parts of these curves overlap each other but the second parts are affected by the change of  . Equation 6 4 was fit to all these curves and the resulting values of   and   are given in Table 6.28. These values of   and   were then normalized with respect to the values of   and   of the reference model. The normalized values of   and  , denoted by   and   respectively, are also given in Table 6.28. 
	 
	The values of   are plotted with respect to   and the resulting curve is shown in Figure 6 57. A linear function was fit to this curve by setting the y-intercept equal to zero, resulting in the following expression for  : 
	 
	[6.39]   for  0.001476 to 0.003444 
	 
	The values of   remain essentially unaffected by changing  ; therefore, the values of   become 1.00 for all these curves, resulting in the following expression for  : 
	 
	[6.40]   
	 
	6.6.4.5 Effect of Parameter   on the Confining Behaviour of Solid Collars 
	 
	Table 6.29 summaries the details of the models used to study the effect of variation of   (i.e., variation in  ) on the confining behaviour of collars. Model 3 in this table is the reference model. The parameter   was varied from 0.00177 to 0.00266, keeping the other input parameters ( ,  ,  ,  , and  ) at the following constant values, which are same as those for the reference model: 
	 
	  0.020833 
	 
	  0.001302 
	 
	  0.166666 
	 
	  0.002288 
	 
	  11.00 
	 
	Figure 6 58 shows the relationship between   and   for different values of  . A study of these curves shows that the variation in   affects essentially the initial slope,  , of these curves, without affecting the second parts of the curves. Equation 6 4 was fit to these curves and the resulting values of   and   are listed in Table 6.30. These values of   and   were normalized with respect to the values of   and  , respectively, of the reference model (model 3). The normalized values of  and  , denoted by   and   respectively, are also listed in this table. As the so called peaks of these curves are not affected significantly by a change in  , the values of   for all these curves can be set to 1.00, resulting in the following expression for  : 
	 
	[6.41]    .0 
	 
	The values of   are plotted with respect to   in Figure 6 59. A power series function was fit to this curve and the following expression was obtained for  : 
	 
	 [6.42]          for  0.00177 to 0.00266 
	 
	6.6.4.6 Effect of Parameter   on the Confining Behaviour of Solid Collars 
	 
	Table 6.31 gives the details of the finite element models used to study the effect of a change in the value of n from the function representing the material curve on the confining behaviour of collars.. Model 2 in this table is the reference. In these models, the value of   is varied from 10 to 20 and the other parameters are set at the following at the following constant values, which are same as those for the reference model: 
	 
	  0.020833 
	 
	  0.001302 
	 
	  0.166667 
	 
	  0.002288 
	 
	  0.002288 
	 
	Figure 6 60 shows the relationship between   and   for different values of  . The variation of   affects essentially the second parts of the curves, without affecting the initial slope,  , of the curve. Equation 6 4 was fit to all these curves and the resulting values of   and   are given in Table 6 32. These values of   and   were normalized with respect to the values of   and   of the reference model. The normalized values of   and  , denoted by   and   respectively, are also given in Table 6 32. Figure 6 61 shows the plot of   versus  . A power series function was fit to this curve with the help of regression, resulting in the following expression for  : 
	 
	[6.43]           for  10.00 to 20.00 
	 
	The values of   are constant with respect to   which leads to the following expression for  : 
	 
	[6.44]            
	 
	6.6.4.7 Effect of Collar Smearing on the Confining Behaviour of Solid Collars 

	 
	Table 6 33 shows the details of finite element models used to study the effect of collar smearing on the confining behaviour. Model 4 in this table is the reference model. All of these models are equivalent and should give the same relationship between output parameters   and  . But in the present study, a slight reduction in confining pressure has been observed due to collars smearing. The models in Table 6 33 show a variation in   from 0.0208 to 0.250, accompanied by concomitant variations in parameter   from 2.5417x10-3 to 3.125x10-2 and parameter  from 1.5885x10-4 to 1.9531x10-3 such that the models remain equivalent. The other input parameters of these models were kept at the following constant values, which are same as those for the reference model: 
	 
	  0.002288 
	 
	  0.002288 
	 
	  11.00 
	 
	The relationships between   and   for all these models are given in Figure 6 62. Collar smearing only affects the so called peak values of these curves, without affecting their initial slopes significantly. The effect of smearing can be related to any one of the three input parameters such as  ,  , and   because of equivalency in their variations. In the present study, the effect of smearing on the output behavioural curves of the collars is related to  . Equation 6.4 was fit to these curves and the corresponding values of   and   are given in Table 6.34. These values of   and   are normalized with respect to the respective to values of   and   of reference model (model 4).The normalized values of   and  , denoted by   and  , have also been given in Table 6.34. The values of   are plotted with respect to   and the resulting curve is shown in Figure 6 63. A power series function was fit to this curve, resulting in the following expression for  : 
	 
	 [6.45]              for  0.020833 to 0.25 
	 
	Table 6.34 shows that the values of   for all the models are 1.00, which leads to the following relation for  : 
	 
	[6.46]                 
	 
	The correction for smearing can be applied to the so called peak values of the behavioural curves of the collars. If the   parameters for the actual and smeared models are denoted by   and  , respectively, a factor  is defined to account for the effect of smearing on the peak value of the confining behaviour (using Equation 6.45): 
	 
	[6.47]                 
	 
	The value of this factor will be greater than 1 if the spacing of the collars in the actual column is bigger than that of the smeared model, or vice versa. This factor may not be used very often for solid collars, because the prediction equations for solid collars were developed over a range that covers almost all the practically occurring solid collars. 
	 
	6.6.4.8 Expressions for  and   for Solid Collars 
	 
	The expression for   can be obtained by substituting the values of  ,  ,  ,  ,  , and   into Equation 6 27, and adding the smearing correction factor,  . As discussed previously, the ranges of   and   were so wide that single and satisfactory expressions could not be obtained for these ranges. Therefore, both of these ranges were split into smaller ranges and separate functions were fit to the curves over each short range. Hence, four expressions for   are required to cover the full ranges of   and  . The resulting expressions are given below: 
	 
	For  0.004 to 0.024 and  0.000096 to 0.00288 
	 
	[6.48a]                      
	 
	For  0.024 to 0.056 and  0.00288 to 0.0192 
	 
	[6.48b]                       
	 
	For  0.004 to 0.024 and  0.00288 to 0.0192 
	 
	[6.48c]                    
	 
	For  0.024 to 0.056 and  0.000096 to 0.00288 
	 
	[6.48d]                    
	 
	Similarly, the expression for   can be obtained by substituting the expressions for  ,  ,  ,  ,  , and  into Equation 6.28.  The ranges of   and   were split into two short ranges and the following four expressions are obtained to predict the values of  : 
	 
	For  0.004 to 0.024 and  0.000096 to 0.00288 
	 
	[6.49a]                    
	 
	For  0.024 to 0.056 and  0.00288 to 0.0192 
	 
	[6.49b]                      
	 
	For  0.004 to 0.024 and  0.00288 to 0.0192 
	 
	[6.49c]                      
	 
	For  0.024 to 0.056 and  0.000096 to 0.00288 
	 
	[6.49d]                   
	 
	As discussed for hollow collars, simplifications of Equations 6.48 and 6.49 are possible. However, these equations are not difficult to evaluate and the verification study presented in the next section utilizes these equations as presented. 
	 
	6.6.4.9 Verification of the Proposed Model for Solid Collars 
	 
	In this section, the proposed empirical confinement model is verified with the help of 10 case studies. For verification purposes, columns with various cross sectional dimensions have been used, whilst the equations of the proposed model were developed based on the results of collared columns of 500x500 mm in cross section. Table 6.35 shows the details of all the finite element models used for this purpose. The results of these models in terms of confinement stress vs. lateral strain, as well as the associated curves using the proposed model, are depicted in Figures 6 64 through 6 73. The corresponding values of R2 are given in Table 6.36, showing that very good agreement exists between the finite element results and those of the proposed model. The details of one of the case studies (Case 5) is given below. 
	 
	The column in Case 5 is 400x400 mm in cross section and confined by solid steel collars of 50 mm width (parallel to column axis) and 85 mm depth, spaced at 100 mm on centres. The yield stress,  , and modulus of elasticity,  , of the confining steel are 520 MPa and 202 000 MPa, respectively. The values of non dimensional parameters for this model are calculated to be: 
	 
	  0.0265625 
	 
	  0.0011995 
	 
	  0.250 
	 
	  0.0025584 
	 
	  0.0023019 
	 
	  12.00000 
	 
	Equation 6.48(d) was used to calculate the value of   and Equation 6.49(d) was used to calculate the value of  : 
	 
	  0.0003994 
	  0.08981 
	 
	These values of   and   can be substituted in Equation 6.4 to determine the relationship between   and  , which can be converted to confinement stress vs. lateral strain by multiplying the values of   by  , where   203 250 MPa. 
	 
	The resulting curve is shown in Figure 6 68, along with the curve generated directly using finite element analysis. These curves are compared using the coefficient of multiple determination, R2, given in Table 6.36. The values of R2 for this curve up to lateral strains of 0.06, 0.05, 0.04, and 0.03 are 0.9960; 0.9974; 0.9975; and 0.9970; respectively. From these values of R2, one can conclude that the two curves show very good agreement, validating the proposed model for the confining behaviour of solid collars. 
	 
	6.7 Comparison of Equations for HSS and Solid Collars 
	 
	It is of interest to compare the equations for predicting the behaviour of HSS and solid collars. As one might expect, the equations related to the geometry of the collared columns are different for HSS and solid collars. However, the equations for the behaviour of both HSS and solid collars based on the material properties of the confining steel are the same. For example, Equation 6.16 is the same as Equation 6.39; Equation 6.19 is the same as Equation 6.42; and Equation 6.20 is the same as Equation 6.43. Moreover, the remaining equations based on material properties (Equations 6.17, 6.18, 6.21, 6.40, 6.41, and 6.44) show no dependence on the respective non-dimensional parameters. 
	 
	To explain the apparent lack of dependence on the cross-sectional shape of the various material-based parameters for predicting the confining pressure vs. lateral strain behaviour of the collars, it is helpful to consider each case separately. Consider the case of varying   only. The initial slope of the confining pressure vs. lateral strain curve is dependent only on the elastic collar stiffness. Furthermore, both the axial and flexural stiffnesses of the collars are linearly related to   (i.e., proportional to  A or  I, respectively). Therefore, increasing   by a specific amount will increase the initial slope of the confining pressure vs. lateral strain curve by an amount that does not depend on the shape of the cross-section. As a result, the expression for   does not depend on cross-sectional shape. 
	 
	It is interesting to note also that an increase in   does not result in an equal increase (proportionally) in the initial slope of the confining pressure vs. lateral strain curve because only the average values are used in establishing this curve. This phenomenon occurs because the stress distribution on the collar sides actually depends on the flexural stiffness of the collars themselves, which is clearly affected by a change in  . Consequently, the deflected shapes of two collars with different flexural stiffnesses are different at the same average lateral strain, which affects the resulting average pressure. However, this effect is relatively small since the axial stresses are dominant in the initial part of the curve. 
	 
	Consider now the case of varying   only. In assessing the effect on the "peak" of the confining pressure vs. lateral strain curve, it can be assumed that yielding in the collar is extensive under a combination of axial force and bending moment. The confining pressure arises due to the axial force, developed in the collar though "membrane" action, and the bending moment, developed through "bulging" between the column corners. The near-fully plastic stress distribution at the peak can be resolved into an axial force and bending moment combination. Neglecting the small elastic zone, by increasing the yield stress the axial force and bending moments both increase by the same amount (proportionally), regardless of the cross-sectional shape. Therefore, the expression for   does not depend on cross-sectional shape. Similar arguments can be made for the case of the material parameter n. 
	 
	6.8 Summary and Conclusions 
	 
	A confinement model for use with concrete columns confined with collars having significant flexural stiffness has been proposed in Chapter 5. The proposed model requires as input the confining pressure vs. lateral strain curve, which is primarily a function of the behaviour of the collar alone. One method of obtaining these curves is to conduct finite element analyses of detailed models. However, to eliminate the need for finite element modelling, empirical models have been developed in terms of non dimensional parameters for predicting the confining behaviour of collars fabricated from steel hollow structural sections (HSS) and solid steel sections for square concrete columns. In both cases, the corner connections of the collars are assumed rigid. 
	 
	In order to eliminate the scale effect, non-dimensional parameters for the confining behaviour of HSS collars and solid collars were identified and validated. Then, a comprehensive parametric study was performed in terms of these parameters using finite element models. Based on the analytical results, non dimensional empirical equations were developed through nonlinear regression for predicting the confining behaviour of collars in terms of the non dimensional parameters. 
	 
	The proposed empirical models for the confining behaviour of HSS and solid collars were verified with the help of several case studies, including physical tests conducted as part of this research program. The results predicted by the proposed empirical models were found to correlate very well with the finite element and test results. Therefore, the empirical models represent a viable alternate to the more onerous finite element analyses for predicting confining pressure vs. lateral strain curves. 
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	Table 6.1: Detail of finite element models to study the effect of scale on the confining behaviour of HSS collars
	 
	Group 
	 
	 
	No. 
	 
	 
	  
	 
	(mm) 
	 
	  
	 
	(mm2)
	  
	 
	(mm4)
	  
	 
	(mm2)
	  
	 
	(mm4)
	  
	 
	(mm) 
	  
	 
	(mm) 
	  
	 
	(MPa) 
	 
	 
	  
	 
	(MPa) 
	1
	1
	300
	90 000
	0.675x109
	0.3285x103
	0.2453x106
	75
	22.5
	465
	203 250
	2
	400
	160 000
	2.133x109
	0.5840x103
	0.7752x106
	100
	30.0
	465
	203 250
	3
	500
	250 000
	5.208x109
	0.9125x103
	1.8930x106
	125
	37.5
	465
	203 250
	4
	600
	360 000
	10.80x109
	1.314x103
	3.9240x106
	150
	45.0
	465
	203 250
	5
	700
	490 000
	20.00x109
	1.789x103
	7.2700x106
	175
	52.5
	465
	203 250
	6
	800
	640 000
	34.13x109
	2.336x103
	12.400x106
	200
	60.0
	465
	203 250
	2
	1
	300
	90 000
	0.675x109
	0.7181x103
	0.5059x106
	75
	60.0
	465
	203 250
	2
	400
	160 000
	2.133x109
	1.276x103
	1.5990x106
	100
	80.0
	465
	203 250
	3
	500
	250 000
	5.208x109
	1.994x103
	3.9040x106
	125
	100.0
	465
	203 250
	4
	600
	360 000
	10.80x109
	2.872x103
	8.0950x106
	150
	120.0
	465
	203 250
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	Table 6.2: Detail of finite element models to study the effect of variation of   on the confining behaviour of HSS collars
	No. 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm2)
	  
	(mm4)
	  
	(mm2)
	  
	(mm4)
	  
	 
	(mm) 
	  
	(mm) 
	 
	 
	 
	mm 
	 
	 
	  
	 
	 
	 
	  
	 
	1 
	1
	400
	160 000
	2.133x109
	419.1
	775.2
	100
	30
	2.6196x10-3
	0.0465
	0.0001605
	2
	400
	160 000
	2.133x109
	456.9
	775.2
	100
	30
	2.8557x10-3
	0.0500
	0.0001719
	3
	400
	160 000
	2.133x109
	488.5
	775.2
	100
	30
	3.0532x10-3
	0.0530
	0.0001809
	4
	400
	160 000
	2.133x109
	520.2
	775.2
	100
	30
	3.2515x10-3
	0.0550
	0.0001907
	5
	400
	160 000
	2.133x109
	552.0
	775.2
	100
	30
	3.4504x10-3
	0.0571
	0.0001999
	6
	400
	160 000
	2.133x109
	584.0
	775.2
	100
	30
	3.6500x10-3
	0.0587
	0.0002105
	7 
	400
	160 000
	2.133x109
	616.1
	775.2
	100
	30
	3.8504x10-3
	0.0601
	0.0002220
	8
	400
	160 000
	2.133x109
	648.2
	775.2
	100
	30
	4.0515x10-3
	0.0615
	0.0002330
	9
	400
	160 000
	2.133x109
	680.5
	775.2
	100
	30
	4.2534x10-3
	0.0630
	0.0002440
	10
	400
	160 000
	2.133x109
	778.1
	775.2
	100
	30
	4.8634x10-3
	0.0665
	0.0002700
	11
	400
	160 000
	2.133x109
	843.8
	775.2
	100
	30
	5.2742x10-3
	0.0694
	0.000284
	Note: Model No. 6 is the reference model 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	Table 6.3: Detail of finite element models to study the effect of variation of   on the confining behaviour of HSS collars
	No. 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm2)
	  
	(mm4)
	  
	(mm2)
	  
	(mm4)
	  
	(mm) 
	 
	 
	 
	mm 
	 
	  
	(mm) 
	  
	 
	 
	  
	1 
	1
	400
	160 000
	2.133x109
	584
	530.69x103
	100
	30
	248.76x10-6
	0.0497
	213.0x10-6
	2
	400
	160 000
	2.133x109
	584
	581.73x103
	100
	30
	272.69x10-6
	0.0521
	212.8x10-6
	3
	400
	160 000
	2.133x109
	584
	632.40x103
	100
	30
	296.44x10-6
	0.0539
	212.7x10-6
	4
	400
	160 000
	2.133x109
	584
	682.70x103
	100
	30
	320.02x10-6
	0.0554
	212.5x10-6
	5
	400
	160 000
	2.133x109
	584
	732.66x103
	100
	30
	343.43x10-6
	0.0565
	212.6x10-6
	6
	400
	160 000
	2.133x109
	584
	775.18x103
	100
	30
	363.37x10-6
	0.0587
	210.0x10-6
	7 
	400
	160 000
	2.133x109
	584
	859.44x103
	100
	30
	402.86x10-6
	0.0595
	210.0x10-6
	8
	400
	160 000
	2.133x109
	584
	942.64x103
	100
	30
	441.86x10-6
	0.0616
	208.0x10-6
	9
	400
	160 000
	2.133x109
	584
	1024.8x103
	100
	30
	480.36x10-6
	0.0650
	207.8x10-6
	10
	400
	160 000
	2.133x109
	584
	1105.9x103
	100
	30
	518.37x10-6
	0.0660
	207.6x10-6
	11
	400
	160 000
	2.133x109
	584
	1185.9x103
	100
	30
	555.88x10-6
	0.0675
	2.077x10-6
	Note: Model No. 6 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Table 6.4: Relationship between: (a)   and  ; and (b)   and   for HSS collars
	No.
	 
	 
	 
	 
	 
	1
	248.76x10-6
	0.0497
	213.0x10-6
	0.8467
	1.0143
	2
	272.69x10-6
	0.0521
	212.8x10-6
	0.8876
	1.0133
	3
	296.44x10-6
	0.0539
	212.7x10-6
	0.9182
	1.0130
	4
	320.02x10-6
	0.0554
	212.5x10-6
	0.9438
	1.0119
	5
	343.43x10-6
	0.0565
	212.6x10-6
	0.9625
	1.0124
	6
	363.37x10-6
	0.0587
	210.0x10-6
	1.0000
	1.0000
	7
	402.86x10-6
	0.0595
	210.0x10-6
	1.0136
	1.0000
	8
	441.86x10-6
	0.0616
	208.0x10-6
	1.0494
	0.9905
	9
	480.36x10-6
	0.0650
	207.8x10-6
	1.1073
	0.9895
	10
	518.37x10-6
	0.0660
	207.6x10-6
	1.1244
	0.9886
	11
	555.88x10-6
	0.0675
	207.7x10-6
	1.1499
	0.9890
	Note: Model No. 6 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	Table 6.5: Detail of finite element models to study the effect of variation of   on the confining behaviour of HSS collars
	No. 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm2)
	  
	(mm4)
	  
	(mm2)
	  
	(mm4)
	  
	(mm) 
	 
	 
	mm 
	 
	  
	(mm)
	  
	 
	 
	  
	1 
	1
	400
	160 000
	2.133x109
	584
	775 180
	100
	2.5
	0.00625
	0.7300
	2070.0x10-6
	2
	400
	160 000
	2.133x109
	584
	775 180
	100
	5.0
	0.0125
	0.3550
	1037.0x10-6
	3
	400
	160 000
	2.133x109
	584
	775 180
	100
	7.5
	0.0188
	0.2300
	702.0x10-6
	4
	400
	160 000
	2.133x109
	584
	775 180
	100
	10.0
	0.0250
	0.1730
	533.9x10-6
	5
	400
	160 000
	2.133x109
	584
	775 180
	100
	12.5
	0.0313
	0.1350
	437.5x10-6
	6
	400
	160 000
	2.133x109
	584
	775 180
	100
	15.0
	0.0375
	0.1130
	373.0x10-6
	7 
	400
	160 000
	2.133x109
	584
	775 180
	100
	17.5
	0.0438
	0.0970
	327.5x10-6
	8
	400
	160 000
	2.133x109
	584
	775 180
	100
	20.0
	0.0500
	0.0850
	292.0x10-6
	9
	400
	160 000
	2.133x109
	584
	775 180
	100
	25.0
	0.0625
	0.0675
	244.0x10-6
	10
	400
	160 000
	2.133x109
	584
	775 180
	100
	30.0
	0.0750
	0.0587
	210.0x10-6
	11
	400
	160 000
	2.133x109
	584
	775 180
	100
	35.0
	0.0875
	0.0517
	185.0x10-6
	12
	400
	160 000
	2.133x109
	584
	775 180
	100
	40.0
	0.1000
	0.0450
	167.5x10-6
	13
	400
	160 000
	2.133x109
	584
	775 180
	100
	45.0
	0.1125
	0.0414
	153.0x10-6
	14
	400
	160 000
	2.133x109
	584
	775 180
	100
	50.0
	0.1250
	0.0385
	141.7x10-6
	15
	400
	160 000
	2.133x109
	584
	775 180
	100
	55.0
	0.1375
	0.0358
	132.0x10-6
	16
	400
	160 000
	2.133x109
	584
	775 180
	100
	60.0
	0.1500
	0.0334
	123.5x10-6
	17
	400
	160 000
	2.133x109
	584
	775 180
	100
	65.0
	0.1625
	0.0319
	118.0x10-6
	18
	400
	160 000
	2.133x109
	584
	775 180
	100
	70.0
	0.1750
	0.0289
	110.5x10-6
	19
	400
	160 000
	2.133x109
	584
	775 180
	100
	75.0
	0.1875
	0.0275
	105.0x10-6
	20
	400
	160 000
	2.133x109
	584
	775 180
	100
	80.0
	0.2000
	0.0260
	99.00x10-6
	21
	400
	160 000
	2.133x109
	584
	775 180
	100
	85.0
	0.2125
	0.0260
	95.00x10-6
	Note: Model No. 10 is the reference model
	 
	  
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Table 6.6: Relationship between: (a)   and  ; and (b)   and   for solid collars
	No.
	 
	 
	 
	 
	 
	1
	0.00625
	0.7300
	2070.0x10-6
	12.4361
	9.8571
	2
	0.0125
	0.3550
	1037.0x10-6
	6.04770
	4.9381
	3
	0.0188
	0.2300
	702.0x10-6
	3.9182
	3.3428
	4
	0.0250
	0.1730
	533.9x10-6
	2.9472
	2.5424
	5
	0.0313
	0.1350
	437.5x10-6
	2.2998
	2.0833
	6
	0.0375
	0.1130
	373.0x10-6
	1.9250
	1.7762
	7
	0.0438
	0.0970
	327.5x10-6
	1.6525
	1.5595
	8
	0.0500
	0.0850
	292.0x10-6
	1.4480
	1.3905
	9
	0.0625
	0.0675
	244.0x10-6
	1.1499
	1.1619
	10
	0.0750
	0.0587
	210.0x10-6
	1.0000
	1.0000
	11
	0.0875
	0.0517
	185.0x10-6
	0.8807
	0.8809
	12
	0.1000
	0.0450
	167.5x10-6
	0.7666
	0.7976
	13
	0.1125
	0.0414
	153.0x10-6
	0.7053
	0.7286
	14
	0.1250
	0.0385
	141.7x10-6
	0.6559
	0.6747
	15
	0.1375
	0.0358
	132.0x10-6
	0.6099
	0.6286
	16
	0.1500
	0.0334
	123.5x10-6
	0.5690
	0.5881
	17
	0.1625
	0.0319
	118.0x10-6
	0.5431
	0.5619
	18
	0.1750
	0.0289
	110.5x10-6
	0.4923
	0.5262
	19 
	 
	 
	 
	 
	0.1875
	0.0275
	105.0x10-6
	0.4685
	0.50000
	20
	0.2000
	0.0260
	99.00x10-6
	0.4429
	0.4714
	21
	0.2125
	0.0260
	95.00x10-6
	0.4429
	0.4524
	Note: Model No. 10 is the reference model
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	 
	 
	 
	Table 6.7: Detail of finite element models to study the effect of variation of   on the confining behaviour of HSS collars
	No. 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm2)
	  
	(mm4)
	  
	(mm2)
	  
	(mm4)
	  
	(mm) 
	 
	 
	 
	mm 
	 
	  
	(mm) 
	  
	 
	 
	  
	1 
	1
	400
	160 000
	2.133x109
	584
	775 180
	80
	30
	0.200
	0.0587
	202.0x10-6
	2
	400
	160 000
	2.133x109
	584
	775 180
	85
	30
	0.213
	0.0587
	204.0x10-6
	3
	400
	160 000
	2.133x109
	584
	775 180
	90
	30
	0.225
	0.0587
	206.0x10-6
	4
	400
	160 000
	2.133x109
	584
	775 180
	95
	30
	0.238
	0.0587
	208.0x10-6
	5
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	0.250
	0.0587
	212.0x10-6
	6
	400
	160 000
	2.133x109
	584
	775 180
	105
	30
	0.263
	0.0587
	214.2x10-6
	7 
	400
	160 000
	2.133x109
	584
	775 180
	110
	30
	0.275
	0.0587
	216.0x10-6
	Note: Model No. 5 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Table 6.8: Relationship between: (a)   and  ; and (b)   and   for HSS collars
	No.
	 
	 
	 
	 
	 
	1
	0.200
	0.0587
	202.0x10-6
	1
	0.9619
	2
	0.213
	0.0587
	204.0x10-6
	1
	0.9714
	3
	0.225
	0.0587
	206.0x10-6
	1
	0.9810
	4
	0.238
	0.0587
	208.0x10-6
	1
	0.9905
	5
	0.250
	0.0587
	212.0x10-6
	1
	1.0000
	6
	0.263
	0.0587
	214.2x10-6
	1
	1.0200
	7
	0.275
	0.0587
	216.0x10-6
	1
	1.0286
	Note: Model No. 5 is the reference model 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Table 6.9: Detail of finite element models to study the effect of variation of  and   keeping  constant on the confining behaviour of HSS collars
	No. 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm2)
	  
	(mm4)
	  
	(mm2)
	  
	(mm4)
	  
	 
	(mm)
	  
	(mm) 
	 
	 
	 
	mm 
	 
	  
	 
	(MPa)
	  
	 
	(MPa)
	  
	1 
	1
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	400
	174 838
	2.2878x10-3
	2
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	450
	196 693
	2.2878x10-3
	3
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	465
	203 250
	2.2878x10-3
	4
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	500
	218 548
	2.2878x10-3
	5
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	550
	240 403
	2.2878x10-3
	6
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	600
	262 258
	2.2878x10-3
	Note: Model No. 3 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	 
	 
	 
	 
	Table 6.10: Detail of finite element models to study the effect of variation of  , keeping  and n constant on the confining behaviour of HSS collars
	No. 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm2)
	  
	(mm4)
	  
	(mm2)
	  
	(mm4)
	  
	 
	(mm)
	  
	(mm) 
	 
	 
	 
	mm 
	 
	  
	 
	(MPa)
	  
	 
	(MPa)
	  
	1 
	1
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	400
	203 250
	1.968x10-3
	2
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	450
	203 250
	2.214x10-3
	3
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	465
	203 250
	2.288x10-3
	4
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	500
	203 250
	2.460x10-3
	5
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	550
	203 250
	2.706x10-3
	6
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	600
	203 250
	2.952x10-3
	Note: Model No. 3 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	 
	 
	Table 6.11: Relationship between:  (a)   and  ; and (b)   and   for HSS collars
	No.
	 
	 
	 
	 
	 
	1
	1.9680x10-3
	0.0587
	183.0x10-6
	0.8714
	1
	2
	2.2140x10-3
	0.0587
	202.5x10-6
	0.9643
	1
	3
	2.2878x10-3
	0.0587
	210.0x10-6
	1.0000
	1
	4
	2.4600x10-3
	0.0587
	225.5x10-6
	1.0738
	1
	5
	2.7060x10-3
	0.0587
	246.0x10-6
	1.1714
	1
	6
	2.9520x10-3
	0.0587
	267.0x10-6
	1.2714
	1
	Note: Model No. 3 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	 
	 
	 
	Table 6.12: Detail of finite element models to study the effect of variation of  , keeping   and n constant on the confining behaviour of HSS collars
	No. 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm2)
	  
	(mm4)
	  
	(mm2)
	  
	(mm4)
	  
	 
	(mm)
	  
	(mm) 
	 
	 
	 
	mm 
	 
	  
	 
	(MPa)
	  
	 
	(MPa)
	  
	1 
	1
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	465
	174 838
	2.6596x10-3
	2
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	465
	196 693
	2.3641x10-3
	3
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	465
	203 250
	2.2878x10-3
	4
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	465
	218 548
	2.1277x10-3
	5
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	465
	240 403
	1.9343x10-3
	6
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	465
	262 258
	1.7731x10-3
	Note: Model No. 3 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Table 6.13: Relationship between: (a)   and  ; and (b)   and   for HSS collars
	No.
	 
	 
	 
	 
	 
	 
	 
	1
	2.6596x10-3
	0.0514
	213.0x10-6
	0.8756
	1.0143
	2
	2.3641x10-3
	0.0565
	211.5x10-6
	0.9625
	1.0071
	3
	2.2878x10-3
	0.0587
	210.0x10-6
	1.0000
	1.0000
	4
	2.1277x10-3
	0.0617
	208.0x10-6
	1.0511
	0.9904
	5
	1.9343x10-3
	0.0669
	207.0x10-6
	1.1397
	0.9857
	6
	1.7731x10-3
	0.0720
	206.0x10-6
	1.2266
	0.9809
	Note: Model No. 3 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	 
	 
	 
	Table 6.14: Detail of finite element models to study the effect of variation of   on the confining behaviour of HSS collars
	No. 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm2)
	  
	(mm4)
	  
	(mm2)
	  
	(mm4)
	  
	 
	(mm)
	  
	(mm) 
	 
	 
	 
	mm 
	 
	  
	 
	(MPa)
	  
	 
	(MPa)
	  
	1 
	1
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	465
	203 250
	10
	2
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	465
	203 250
	11
	3
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	465
	203 250
	12
	4
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	465
	203 250
	14
	5
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	465
	203 250
	16
	6
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	465
	203 250
	18
	7
	400
	160 000
	2.133x109
	584
	775 180
	100
	30
	465
	203 250
	20
	Note: Model No. 2 is the reference model 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	 
	 
	Table 6.15: Relationship between: (a)   and  ; and (b)   and   for HSS collars
	No.
	 
	 
	 
	 
	 
	 
	 
	1
	10
	0.0587
	215.0x10-6
	1
	1.0238
	2
	11
	0.0587
	210.0x10-6
	1
	1.0000
	3
	12
	0.0587
	206.0x10-6
	1
	0.9810
	4
	14
	0.0587
	200.0x10-6
	1
	0.9524
	5
	16
	0.0587
	194.5x10-6
	1
	0.9262
	6
	18
	0.0587
	192.5x10-6
	1
	0.9167
	7
	20
	0.0587
	189.0x10-6
	1
	0.9000
	Note: Model No. 2 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	Table 6.16: Detail of finite element models to study the effect of smearing on the confining behaviour of HSS collars
	No. 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm2)
	  
	(mm4)
	  
	(mm2)
	  
	(mm4)
	  
	(mm) 
	 
	 
	 
	mm 
	 
	  
	 
	   
	 
	   
	1 
	1
	400
	160 000
	2.133x109
	146
	193.79x103
	7.5
	0.9125x10-3
	90.841x10-6
	18.750x10-3
	2
	400
	160 000
	2.133x109
	292
	387.59x103
	15.0
	1.825x10-3
	181.68x10-6
	37.500x10-3
	3
	400
	160 000
	2.133x109
	438
	581.38x103
	22.5
	2.738x10-3
	272.52x10-6
	56.250x10-3
	4
	400
	160 000
	2.133x109
	584
	775.18x103
	30.0
	3.650x10-3
	363.37x10-6
	75.000x10-3
	5
	400
	160 000
	2.133x109
	730
	968.97x103
	37.5
	4.563x10-3
	454.21x10-6
	93.750x10-3
	6
	400
	160 000
	2.133x109
	876
	1162.8x103
	45.0
	5.475x10-3
	545.05x10-6
	112.50x10-3
	7 
	400
	160 000
	2.133x109
	1022
	1356.6x103
	52.5
	6.388x10-3
	635.89x10-6
	131.25x10-3
	8
	400
	160 000
	2.133x109
	1168
	1550.4x103
	60.0
	7.300x10-3
	726.73x10-6
	150.00x10-3
	9
	400
	160 000
	2.133x109
	1460
	1937.9x103
	75.0
	9.125x10-3
	908.41x10-6
	187.50x10-3
	10
	400
	160 000
	2.133x109
	1752
	2325.5x103
	90.0
	1.095x10-3
	1090.1x10-6
	225.00x10-3
	11
	400
	160 000
	2.133x109
	2336
	3100.7x103
	120.0
	14.60x10-3
	1453.5x10-6
	300.00x10-3
	Note: Model No. 4 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	Table 6.17: Relationship between: (a)   and  ; and (b)  and   for HSS collars
	No.
	 
	 
	 
	 
	 
	 
	 
	1
	0.01875
	0.0587
	188.0x10-6
	1
	0.8952
	2
	0.03750
	0.0587
	200.0x10-6
	1
	0.9524
	3
	0.05625
	0.0587
	207.0x10-6
	1
	0.9857
	4
	0.07500
	0.0587
	210.0x10-6
	1
	1.0000
	5
	0.09375
	0.0587
	213.0x10-6
	1
	1.0143
	6
	0.11250
	0.0587
	214.5x10-6
	1
	1.0214
	7
	0.13125
	0.0587
	216.0x10-6
	1
	1.0286
	8
	0.15000
	0.0587
	217.0x10-6
	1
	1.0333
	9
	0.18750
	0.0587
	219.0x10-6
	1
	1.0429
	10
	0.22500
	0.0587
	220.5x10-6
	1
	1.0500
	11
	0.30000
	0.0587
	221.1x10-6
	1
	1.0529
	Note: Model No. 4 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	Table 6.18: Detail of finite element models to check the proposed equations
	Case 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm)
	  
	(mm)
	  
	(mm)
	  
	(mm)
	  
	(mm) 
	 
	 mm) 
	 
	 
	 
	mm 
	 
	  
	 
	(MPa) 
	 
	  
	 
	(MPa) 
	 
	 
	n 
	 
	1
	300
	25.5
	51
	3.175
	6.35
	61.00
	465
	203 250
	11
	2
	300
	25.5
	51
	3.175
	6.35
	61.00
	500
	203 250
	11
	3
	300
	17.0
	51
	2.117
	6.35
	40.67
	465
	203 250
	11
	4
	300
	17.0
	51
	2.117
	6.35
	40.67
	500
	203 250
	11
	5
	300
	25.5
	51
	3.175
	6.35
	61.00
	465
	196 693
	11
	6
	300
	17.0
	51
	2.117
	6.35
	40.67
	465
	196 693
	11
	7
	300
	25.5
	51
	3.175
	6.35
	61.00
	400
	200 000
	11
	8
	300
	25.5
	51
	3.175
	6.35
	61.00
	470
	210 000
	11
	9
	300
	25.5
	76
	3.175
	6.35
	61.00
	465
	203 250
	11
	10
	300
	25.5
	76
	3.175
	6.35
	61.00
	500
	203 250
	11
	11
	300
	8.5
	76
	1.058
	6.35
	20.33
	465
	203 250
	11
	12
	300
	25.5
	102
	3.175
	6.35
	61.00
	465
	203 250
	11
	13
	300
	25.5
	102
	3.175
	6.35
	61.00
	500
	203 250
	11
	14
	300
	6.375
	102
	0.794
	6.35
	15.25
	465
	203 250
	11
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	Table 6.19: Detail of equivalent models obtained after collar smearing in order to apply proposed equations for the confining of HSS collars
	Case 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm)
	  
	(mm)
	  
	(mm)
	  
	(mm)
	  
	(mm) 
	 
	mm) 
	 
	 
	 
	mm 
	 
	  
	 
	(MPa) 
	 
	  
	 
	(MPa) 
	 
	 
	n 
	 
	1
	300
	12.75
	51
	1.5875
	6.35
	30.50
	465
	203 250
	11
	2
	300
	17.00
	51
	2.1167
	6.35
	40.66
	500
	203 250
	11
	3
	300
	17.00
	51
	2.1167
	6.35
	40.66
	465
	203 250
	11
	4
	300
	17.00
	51
	2.1167
	6.35
	40.66
	500
	203 250
	11
	5
	300
	12.75
	51
	1.5875
	6.35
	30.50
	465
	196 693
	11
	6
	300
	12.75
	51
	1.5875
	6.35
	30.50
	465
	196 693
	11
	7
	300
	12.75
	51
	1.5875
	6.35
	30.50
	400
	200 000
	11
	8
	300
	12.75
	51
	1.5875
	6.35
	30.50
	470
	210 000
	11
	9
	300
	12.75
	76
	1.5875
	6.35
	30.50
	465
	203 250
	11
	10
	300
	12.75
	76
	1.5875
	6.35
	30.50
	500
	203 250
	11
	11
	300
	12.75
	76
	1.5875
	6.35
	30.50
	465
	203 250
	11
	12
	300
	12.75
	102
	1.5875
	6.35
	30.50
	465
	203 250
	11
	13
	300
	12.75
	102
	1.5875
	6.35
	30.50
	500
	203 250
	11
	14
	300
	12.75
	102
	1.5875
	6.35
	30.50
	465
	203 250
	11
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	Table 6.20: Coefficients of multiple determinations R2 up to various level of lateral strains for columns confined by HSS collars 
	Cases
	R2
	 
	 
	 
	 
	1
	0.9967
	0.9953
	0.9958
	0.9949
	2
	0.9885
	0.9883
	0.9873
	0.9854
	3
	0.9742
	0.9765
	0.9774
	0.9767
	4
	0.9879
	0.9878
	0.9869
	0.9850
	5
	0.9962
	0.9958
	0.9952
	0.9941
	6
	0.9960
	0.9957
	0.9950
	0.9939
	7
	0.9741
	0.9780
	0.9803
	0.9806
	8
	0.9971
	0.9968
	0.9965
	0.9961
	9
	0.9813
	0.9810
	0.9820
	0.9851
	10
	0.9710
	0.9721
	0.9751
	0.9809
	11
	0.9819
	0.9804
	0.9798
	0.9812
	12
	0.9857
	0.9842
	0.9832
	0.9832
	13
	0.9833
	0.9821
	0.9818
	0.9832
	14
	0.9915
	0.9911
	0.9898
	0.9891
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	Table 6.21: Detail of finite element models to study the effect of scale on the confining behaviour of solid collars
	 
	No. 
	 
	 
	  
	 
	(mm) 
	 
	 
	  
	 
	(mm2)
	  
	 
	(mm4)
	  
	 
	(mm2)
	  
	 
	(mm4)
	  
	 
	(mm) 
	  
	 
	(MPa) 
	 
	 
	  
	 
	(MPa) 
	1
	300
	90.00x103
	0.675x109
	1875
	0.879x106
	50.00
	465
	203 250
	2
	350
	122.5x103
	1.251x109
	2552
	1.628x106
	58.33
	465
	203 250
	3
	400
	160.0x103
	2.133x109
	3333
	2.778x106
	66.67
	465
	203 250
	4
	450
	202.5x103
	3.417x109
	4219
	4.449x106
	75.00
	465
	203 250
	5
	500
	250.0x103
	5.208x109
	5208
	6.782x106
	83.33
	465
	203 250
	6
	550
	302.5x103
	7.626x109
	6302
	9.929x106
	91.66
	465
	203 250
	7
	600
	360.0x103
	10.80x109
	7500
	14.06x106
	100.00
	465
	203 250
	8
	650
	422.5x103
	14.88x109
	8802
	19.37x106
	108.33
	465
	203 250
	9
	700
	490.0x103
	20.01x109
	10210
	26.05x106
	116.66
	465
	203 250
	10
	750
	562.5x103
	26.37x109
	11720
	34.33x106
	125.00
	465
	203 250
	11
	800
	640.0x103
	34.13x109
	13330
	44.44x106
	133.33
	465
	203 250
	Note: Model No. 5 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	Table 6.22: Detail of finite element models to study the effect of variation of   on the confining behaviour of solid collars
	No. 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm2)
	  
	(mm4)
	  
	(mm2)
	  
	(mm4)
	  
	(mm) 
	 
	 
	 
	mm 
	 
	  
	 
	 
	  
	1 
	1
	500
	250 000
	5.208x109
	1000
	6.782x106
	83.33
	0.004
	0.042
	130x10-6
	2
	500
	250 000
	5.208x109
	2000
	6.782x106
	83.33
	0.008
	0.064
	235x10-6
	3
	500
	250 000
	5.208x109
	3000
	6.782x106
	83.33
	0.012
	0.085
	315x10-6
	4
	500
	250 000
	5.208x109
	4000
	6.782x106
	83.33
	0.016
	0.103
	378x10-6
	5
	500
	250 000
	5.208x109
	5000
	6.782x106
	83.33
	0.020
	0.117
	439x10-6
	6
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	0.02083
	0.120
	448x10-6
	7 
	500
	250 000
	5.208x109
	6000
	6.782x106
	83.33
	0.024
	0.132
	485x10-6
	8
	500
	250 000
	5.208x109
	7000
	6.782x106
	83.33
	0.028
	0.142
	540x10-6
	9
	500
	250 000
	5.208x109
	8000
	6.782x106
	83.33
	0.032
	0.150
	579x10-6
	10
	500
	250 000
	5.208x109
	9000
	6.782x106
	83.33
	0.036
	0.158
	630x10-6
	11
	500
	250 000
	5.208x109
	10000
	6.782x106
	83.33
	0.040
	0.164
	665x10-6
	12
	500
	250 000
	5.208x109
	11000
	6.782x106
	83.33
	0.044
	0.170
	710x10-6
	13
	500
	250 000
	5.208x109
	12000
	6.782x106
	83.33
	0.048
	0.174
	750x10-6
	14
	500
	250 000
	5.208x109
	13000
	6.782x106
	83.33
	0.052
	0.177
	790x10-6
	15
	500
	250 000
	5.208x109
	14000
	6.782x106
	83.33
	0.056
	0.180
	818x10-6
	Note: Model No. 6 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	Table 6.23: Detail of finite element models to study the effect of variation of   on the confining behaviour of solid collars
	No. 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm2)
	  
	(mm4)
	  
	(mm2)
	  
	(mm4)
	  
	(mm) 
	 
	 
	 
	mm 
	 
	  
	 
	 
	  
	1 
	1
	500
	250 000
	5.208x109
	5208
	0.50x106
	83.33
	0.096x10-3
	0.045
	275.3x10-6
	2
	500
	250 000
	5.208x109
	5208
	1.00x106
	83.33
	0.192x10-3
	0.054
	317.0x10-6
	3
	500
	250 000
	5.208x109
	5208
	2.50x106
	83.33
	0.480x10-3
	0.079
	373.3x10-6
	4
	500
	250 000
	5.208x109
	5208
	4.00x106
	83.33
	0.768x10-3
	0.097
	405.3x10-6
	5
	500
	250 000
	5.208x109
	5208
	5.00x106
	83.33
	0.960x10-3
	0.106
	422.6x10-6
	6
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	1.302x10-3
	0.120
	448.0x10-6
	7 
	500
	250 000
	5.208x109
	5208
	15.00x106
	83.33
	2.880x10-3
	0.160
	521.1x10-6
	8
	500
	250 000
	5.208x109
	5208
	30.00x106
	83.33
	5.760x10-3
	0.188
	594.3x10-6
	9
	500
	250 000
	5.208x109
	5208
	40.00x106
	83.33
	7.680x10-3
	0.199
	619.7x10-6
	10
	500
	250 000
	5.208x109
	5208
	50.00x106
	83.33
	9.600x10-3
	0.208
	638.0x10-6
	11
	500
	250 000
	5.208x109
	5208
	60.00x106
	83.33
	11.520x10-3
	0.216
	650.2x10-6
	12
	500
	250 000
	5.208x109
	5208
	70.00x106
	83.33
	13.440x10-3
	0.222
	665.4x10-6
	13
	500
	250 000
	5.208x109
	5208
	80.00x106
	83.33
	15.360x10-3
	0.226
	674.6x10-6
	14
	500
	250 000
	5.208x109
	5208
	90.00x106
	83.33
	17.280x10-3
	0.230
	682.7x10-6
	15
	500
	250 000
	5.208x109
	5208
	100.00x106
	83.33
	19.200x10-3
	0.235
	685.7x10-6
	Note: Model No. 6 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	Table 6.24: Relationship between: (a)   and  ; and (b)   and   for solid collars
	No.
	 
	 
	 
	 
	 
	1
	0.096x10-3
	0.045
	275.3x10-6
	0.3750
	0.6145
	2
	0.192x10-3
	0.054
	317.0x10-6
	0.4500
	0.7075
	3
	0.480x10-3
	0.079
	373.3x10-6
	0.6542
	0.8333
	4
	0.768x10-3
	0.097
	405.3x10-6
	0.8083
	0.9048
	5
	0.960x10-3
	0.106
	422.6x10-6
	0.8833
	0.9433
	6
	1.302x10-3
	0.120
	448.0x10-6
	1.0000
	1.0000
	7
	2.880x10-3
	0.160
	521.1x10-6
	1.3333
	1.1632
	8
	5.760x10-3
	0.188
	594.3x10-6
	1.5667
	1.3265
	9
	7.680x10-3
	0.199
	619.7x10-6
	1.6583
	1.3832
	10
	9.600x10-3
	0.208
	638.0x10-6
	1.7333
	1.4240
	11
	11.520x10-3
	0.216
	650.2x10-6
	1.8017
	1.4512
	12
	13.440x10-3
	0.222
	665.4x10-6
	1.8517
	1.4853
	13
	15.360x10-3
	0.226
	674.6x10-6
	1.8833
	1.5057
	14
	17.280x10-3
	0.230
	682.7x10-6
	1.9167
	1.5238
	15
	19.200x10-3
	0.235
	685.7x10-6
	1.9583
	1.5306
	Note: Model No. 6 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	Table 6.25: Detail of finite element models to study the effect of variation of   on the confining behaviour of solid collars
	No. 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm2)
	  
	(mm4)
	  
	(mm2)
	  
	(mm4)
	  
	(mm) 
	 
	 
	 
	mm 
	 
	  
	 
	 
	  
	1 
	1
	500
	250 000
	5.208x109
	5208
	6.782x106
	10.00
	0.0200
	0.950
	3180x10-6
	2
	500
	250 000
	5.208x109
	5208
	6.782x106
	15.00
	0.0300
	0.630
	2133x10-6
	3
	500
	250 000
	5.208x109
	5208
	6.782x106
	20.00
	0.0400
	0.480
	1625x10-6
	4
	500
	250 000
	5.208x109
	5208
	6.782x106
	30.00
	0.0600
	0.320
	1117x10-6
	5
	500
	250 000
	5.208x109
	5208
	6.782x106
	40.00
	0.0800
	0.240
	848.3x10-6
	6
	500
	250 000
	5.208x109
	5208
	6.782x106
	50.00
	0.1000
	0.195
	690.8x10-6
	7 
	500
	250 000
	5.208x109
	5208
	6.782x106
	60.00
	0.1200
	0.169
	584.1x10-6
	8
	500
	250 000
	5.208x109
	5208
	6.782x106
	70.00
	0.1400
	0.145
	513.0x10-6
	9
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	0.1667
	0.120
	448.0x10-6
	10
	500
	250 000
	5.208x109
	5208
	6.782x106
	90.00
	0.1800
	0.110
	421.6x10-6
	11
	500
	250 000
	5.208x109
	5208
	6.782x106
	100.00
	0.2000
	0.099
	391.1x10-6
	12
	500
	250 000
	5.208x109
	5208
	6.782x106
	110.00
	0.2200
	0.092
	360.6x10-6
	13
	500
	250 000
	5.208x109
	5208
	6.782x106
	120.00
	0.2400
	0.086
	338.3x10-6
	14
	500
	250 000
	5.208x109
	5208
	6.782x106
	130.00
	0.2600
	0.078
	320.0x10-6
	15
	500
	250 000
	5.208x109
	5208
	6.782x106
	140.00
	0.2800
	0.075
	300.7x10-6
	16
	500
	250 000
	5.208x109
	5208
	6.782x106
	150.00
	0.3000
	0.068
	286.5x10-6
	Note: Model No. 9 is the reference model 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Table 6.26: Relationship between: (a)   and  ; and (b)   and   for solid collars
	No.
	 
	 
	 
	 
	 
	1
	0.0200
	0.950
	3180x10-6
	7.9167
	7.0975
	2
	0.0300
	0.630
	2133x10-6
	5.2500
	4.7619
	3
	0.0400
	0.480
	1625x10-6
	4.0000
	3.6281
	4
	0.0600
	0.320
	1117x10-6
	2.6667
	2.4943
	5
	0.0800
	0.240
	848.3x10-6
	2.0000
	1.8934
	6
	0.1000
	0.195
	690.8x10-6
	1.6250
	1.5419
	7
	0.1200
	0.169
	584.1x10-6
	1.4083
	1.3039
	8
	0.1400
	0.145
	513.0x10-6
	1.2083
	1.1451
	9
	0.1667
	0.120
	448.0x10-6
	1.0000
	1.0000
	10
	0.1800
	0.110
	421.6x10-6
	0.9167
	0.9410
	11
	0.2000
	0.099
	391.1x10-6
	0.8250
	0.8730
	12
	0.2200
	0.092
	360.6x10-6
	0.7667
	0.8050
	13
	0.2400
	0.086
	338.3x10-6
	0.7167
	0.7551
	14
	0.2600
	0.078
	320.0x10-6
	0.6500
	0.7143
	15
	0.2800
	0.075
	300.7x10-6
	0.6250
	0.6712
	16
	0.3000
	0.068
	286.5x10-6
	0.5658
	0.6395
	Note: Model No. 9 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	Table 6.27: Detail of finite element models to study the effect of variation of   keeping   and n constant on the confining behaviour of solid collars
	No. 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm2)
	  
	(mm4)
	  
	(mm2)
	  
	(mm4)
	  
	(mm) 
	 
	 
	 
	mm 
	 
	  
	 
	MPa
	  
	 
	MPa
	  
	1 
	1
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	300
	203 250
	1.476x10-3
	2
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	350
	203 250
	1.722x10-3
	3
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	400
	203 250
	1.968x10-3
	4
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	450
	203 250
	2.214x10-3
	5
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	465
	203 250
	2.288x10-3
	6
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	500
	203 250
	2.460x10-3
	7 
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	550
	203 250
	2.706x10-3
	8
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	600
	203 250
	2.952x10-3
	9
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	650
	203 250
	3.198x10-3
	10
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	700
	203 250
	3.444x10-3
	Note: Model No. 5 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	Table 6.28: Relationship between: (a)   and  ; and (b)  and   for solid collars
	No.
	 
	 
	 
	 
	  
	 
	1
	1.476x10-3
	0.12
	298.7x10-6
	1
	0.6667
	2
	1.722x10-3
	0.12
	344.4x10-6
	1
	0.7687
	3
	1.968x10-3
	0.12
	388.8x10-6
	1
	0.8679
	4
	2.214x10-3
	0.12
	433.8x10-6
	1
	0.9683
	5
	2.288x10-3
	0.12
	448.0x10-6
	1
	1.0000
	6
	2.460x10-3
	0.12
	482.5x10-6
	1
	1.0771
	7
	2.706x10-3
	0.12
	523.2x10-6
	1
	1.1678
	8
	2.952x10-3
	0.12
	571.9x10-6
	1
	1.2766
	9
	3.198x10-3
	0.12
	619.7x10-6
	1
	1.3832
	10
	3.444x10-3
	0.12
	665.4x10-6
	1
	1.4853
	Note: Model No. 5 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	 
	Table 6.29: Detail of finite element models to study the effect of variation of   keeping   and n constant on the confining behaviour of solid collars
	No. 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm2)
	  
	(mm4)
	  
	(mm2)
	  
	(mm4)
	  
	(mm) 
	 
	 
	 
	mm 
	 
	  
	 
	(MPa)
	  
	 
	(MPa)
	  
	1 
	1
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	465
	174 838
	2.6596x10-3
	2
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	465
	196 693
	2.3641x10-3
	3
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	465
	203 250
	2.2878x10-3
	4
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	465
	218 548
	2.1277x10-3
	5
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	465
	240 403
	1.9343x10-3
	6
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	465
	262 258
	1.7731x10-3
	Note: Model No. 3 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	 
	 
	 
	Table 6.30: Relationship between: (a)   and  ; and (b)  and   for solid collars
	No.
	 
	 
	 
	 
	  
	 
	1
	2.6596x10-3
	0.1073
	451.0x10-6
	0.8942
	1.0068
	2
	2.3641x10-3
	0.1173
	448.5x10-6
	0.9775
	1.0011
	3
	2.2878x10-3
	0.1200
	448.0x10-6
	1.0000
	1.0000
	4
	2.1277x10-3
	0.1269
	447.4x10-6
	1.0575
	0.9987
	5
	1.9343x10-3
	0.1375
	441.9x10-6
	1.1458
	0.9864
	6
	1.7731x10-3
	0.1480
	438.9x10-6
	1.2333
	0.9796
	Note: Model No. 3 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	Table 6.31: Detail of finite element models to study the effect of variation of n on the confining behaviour of solid collars
	No. 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm2)
	  
	(mm4)
	  
	(mm2)
	  
	(mm4)
	  
	(mm) 
	 
	 
	 
	mm 
	 
	  
	 
	(MPa)
	  
	 
	(MPa)
	n 
	 
	  
	1 
	1
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	465
	203 250
	10
	10
	2
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	465
	203 250
	11
	11
	3
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	465
	203 250
	12
	12
	4
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	465
	203 250
	14
	14
	5
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	465
	203 250
	16
	16
	6
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	465
	203 250
	18
	18
	7 
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	465
	203 250
	20
	20
	Note: Model No. 2 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	Table 6.32: Relationship between: (a)   and  ; and (b)  and   for solid collars
	No.
	 
	 
	 
	 
	  
	 
	1
	10
	0.12
	294x10-6
	1
	1.0181
	2
	11
	0.12
	339x10-6
	1
	1.0000
	3
	12
	0.12
	382x10-6
	1
	0.9841
	4
	14
	0.12
	427x10-6
	1
	0.9569
	5
	16
	0.12
	441x10-6
	1
	0.9388
	6
	18
	0.12
	475x10-6
	1
	0.9184
	7
	20
	0.12
	515x10-6
	1
	0.9048
	Note: Model No. 2 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	Table 6.33: Detail of finite element models to study the effect of collar smearing on the confining behaviour of solid collars
	No. 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm2)
	  
	(mm4)
	  
	(mm2)
	  
	(mm4)
	  
	(mm) 
	 
	 
	 
	mm 
	 
	  
	 
	   
	 
	   
	1 
	1
	500
	250 000
	5.208x109
	635.4
	8.274x105
	10.42
	2.5417x10-3
	0.1588x10-3
	20.833x10-3
	2
	500
	250 000
	5.208x109
	1271
	1.655x106
	20.83
	5.0833x10-3
	0.3177x10-3
	41.667x10-3
	3
	500
	250 000
	5.208x109
	2604
	3.391x106
	41.67
	10.417x10-3
	0.6510x10-3
	83.333x10-3
	4
	500
	250 000
	5.208x109
	5208
	6.782x106
	83.33
	20.833x10-3
	1.3021x10-3
	166.67x10-3
	5
	500
	250 000
	5.208x109
	6510
	8.477x106
	104.17
	26.042x10-3
	1.6276x10-3
	208.33x10-3
	6
	500
	250 000
	5.208x109
	7813
	10.17x106
	125.00
	31.250x10-3
	1.9531x10-3
	250.00x10-3
	Note: Model No. 4 is the reference model 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Table 6.34: Relationship between: (a)   and  ; and (b)   and   for solid collars
	No.
	 
	 
	 
	 
	 
	1
	20.83x10-3
	0.12
	398.22x10-6
	1
	0.8889
	2
	41.67x10-3
	0.12
	418.03x10-6
	1
	0.9331
	3
	83.33x10-3
	0.12
	434.79x10-6
	1
	0.9705
	4
	166.67x10-3
	0.12
	448.00x10-6
	1
	1.0000
	5
	208.33x10-3
	0.12
	452.67x10-6
	1
	1.0104
	6
	250.00x10-3
	0.12
	453.89x10-6
	1
	1.0131
	Note: Model No. 4 is the reference model
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	Table 6.35: Detail of finite element models to test the proposed equations for the confining behaviour of solid collars
	No. 
	 
	 
	 
	 
	 
	  
	(mm) 
	 
	 
	  
	(mm)
	  
	(mm)
	  
	(mm) 
	 
	 
	 
	mm 
	 
	  
	 
	(MPa)
	  
	 
	(MPa)
	n 
	 
	1 
	1
	250
	25
	75
	45
	430
	203 250
	11
	2
	325
	25
	75
	45
	430
	203 250
	11
	3
	350
	25
	80
	60
	500
	202 000
	12
	4
	350
	25
	80
	65
	500
	203 250
	12
	5
	400
	50
	85
	100
	520
	202 000
	12
	6
	400
	50
	85
	100
	520
	202 000
	12
	7
	450
	50
	85
	100
	520
	202 000
	12
	8
	500
	50
	85
	100
	520
	202 000
	12
	9
	600
	50
	85
	100
	520
	202 000
	12
	10
	700
	50
	85
	100
	520
	202 000
	12
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	 
	Table 6.36: Coefficients of multiple determinations R2 up to various level of lateral strains for column confined by solid collars
	Cases
	R2
	 
	 
	 
	 
	1
	0.9834
	0.9911
	0.9950
	0.9960
	2
	0.9879
	0.9917
	0.9924
	0.9910
	3
	0.9959
	0.9955
	0.9948
	0.9949
	4
	0.9919
	0.9909
	0.9905
	0.9917
	5
	0.9960
	0.9974
	0.9975
	0.9970
	6
	0.9728
	0.9724
	0.9743
	0.9798
	7
	0.9977
	0.9983
	0.9982
	0.9979
	8
	0.9978
	0.9984
	0.9984
	0.9981
	9
	0.9941
	0.9963
	0.9977
	0.9982
	10
	0.9798
	0.9851
	0.9892
	0.9921
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	7. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 
	 
	7.1 Introduction 
	 
	Existing structures can be seismically deficient due to various reasons such as changes in zoning of seismic activity in the area, changes in the performance objectives of the buildings due to, for example, a change in building function, and changes in the seismic design codes themselves due to advancements in knowledge of structural behaviour. During recent earthquakes, a large number of seismically deficient reinforced concrete structures received severe structural and non structural damage. Many techniques have been developed for the upgrade of seismically deficient existing reinforced concrete buildings. Some techniques work through the enhancement of strength and stiffness, others through the enhancement in deformability and robustness, and still others by reducing seismic input through base isolation. 
	 
	Stiffened steel plate shear walls have been used for the seismic upgrade of existing seismically deficient reinforced concrete buildings such as the Oregon State Library Building (Robinson, 2000) and the Veterans Administration Hospital in Charleston, South Carolina (Baldelli, 1983). The connection of the steel plates to the reinforced concrete frame was made with help of mechanical and adhesive type anchor bolts, which require chipping of the surface concrete to expose the bars, drilling to intall the anchor bolts, and subsequent grouting. Steel plate shear walls were selected because the structures could be rehabilitated without abondening the operation of the buildings. In both of these buildings, the rehabilitation objectives were achieved through enhancement in strength and stiffness. The inherent ductility of the steel plate shear walls could not be utilized due to the ductility incompatibility between the steel plate and the existing seismically deficient reinforced concrete frame. 
	 
	A new scheme has been proposed that makes use of steel plate shear walls that resist lateral load through the development of a diagonal tension field after out of plane buckling of the plate. The new rehabilitation scheme should make use of the ductility of the steel plate wall. The problem of ductility incompatibility is solved by improving the ductility of the concrete frames through confinement using steel collars. The collars not only provide confinement, but also provide a means of connection of the steel plate shear wall to the reinforced concrete frames. 
	 
	The ultimate aim of the broad research program is to study the composite performance of seismically deficient reinforced concrete frames rehabilitated using steel collars and thin steel plate shear wall infill plates. However, it was considered that the confined behaviour of the collared concrete columns plays a critical role in the performance of the overall rehabilitation scheme. Therefore, the scope of the present research project was focused on the behaviour of the columns confined externally by steel collars (HSS collars were used both in the experimental and analytical work and solid steel collars were used in the analytical work only) under concentric axial loading and under combined axial and lateral cyclic loading. 
	 
	7.2 Summary 
	 
	In Chapter 2, a literature review related to the key areas of the present research is presented. Brief summaries of existing models for predicting the behaviour of concrete members confined by conventional internal reinforcement and by fibre reinforced composites are given and although many are available, existing confinement models are unable to predict the behaviour of concrete confined by HSS collars. This is primarily because of the lack of an explicit flexural stiffness parameter and/or because these models cannot account for variations in confining pressure through the axial load history of the columns. Collars provide confinement not only through axial stiffness, but also through their flexural stiffness that is significantly higher than that of conventional rebars ties. Moreover, the confining pressure under collars varies appreciably through the axial load history. Due to certain similarities with the behaviour of concrete confined by steel collars, some research into confinement using steel jackets is also summarized in this chapter. Although good behaviour of columns confined by various configurations of jackets is reported in the literature, few exploit the benefits of the flexural stiffness of steel collars. 
	 
	In Chapter 3, the behaviour of reinforced concrete columns under concentric axial loading that are confined externally by HSS collars is discussed based on an experimental study under quasi static concentric axial loading of 11 full scale test specimens. The columns were typical of those that would be present in a two to three story building. Two control columns with conventional tie reinforcement (one satisfying the gravity load design criteria of ACI 318 02 and CSA Standard A23.3 94 and the other satisfying the seismic plastic hinge requirements of these codes), five columns confined by steel HSS collars with bolted corner connections, and four columns confined by steel HSS collars with welded collar connections were tested. In order to study the effect of external collar confinement separately, no internal tie reinforcement was provided in the test regions of the collared columns. All the columns were 300 x 300 mm in cross section and 1500 mm in height. One column with bolted collars and one column with welded collars were tested under multiple load cycles that verified the robustness of the confinement mechanism. The major parameters included in this experimental study were collar size, collar spacing, and type of collars (collars with bolted or welded corner connections). Conclusions drawn from this experimental program are presented in the next section.  
	 
	In Chapter 4, the behaviour of concrete columns under cyclic loading that are confined externally by HSS collars are discussed based on an experimental program consisting of a total of nine full scale reinforced concrete columns typical of two to three story buildings. One control column had conventional tie reinforcement in the rest region and it satisfied the seismic plastic hinge requirements of both ACI 318 02 and CSA Standard A23.3 94 and the remaining eight columns had external collar confinement in the test regions. In order to study the effect of external collar confinement separately, no internal tie reinforcement was provided in the test regions of the collared columns. All the columns were 300 x 300 mm in cross section and about 2100 mm in height and were tested in a cantilever manner. The variables included in this study were axial load, collar spacing, collar size, and shear span. In addition, envelope curves to the hysteresis of the columns are predicted by using the existing analytical models for flexural deformations and anchorage slip. Conclusions drawn from this experimental program are presented in the next section. 
	 
	Because existing confinement models are unable to predict the stress versus strain behaviour of concrete confined externally by HSS collars, in Chapter 5 a new model has been proposed. The proposed model makes use of behavioural curves of the collars in terms of average confining pressure versus average lateral strain. A finite element model using the general purpose finite element program ABAQUS (HKS, 2004a, 2004b) has been developed to determine these behavioural curves. The model predictions show very good agreement with the experimental results of the externally confined columns tested under concentric axial loading (Chapter 3).  
	 
	The application of the confinement model proposed in Chapter 5 requires the behavioural curves of collars in terms of average confining pressure versus average lateral strain, which are obtained through finite element analysis that is not always convenient. In order to make the proposed confinement model practical, empirical models for the confining behaviour of collars are required. In Chapter 6, two empirical models have been proposed for the confining behaviour of collars with rigid corner connections for providing confinement to square concrete columns: one for collars made from hollow structural sections (HSS); and one for collars made from solid steel sections. The proposed models are based on a comprehensive finite element study using a wide variety of input parameters. For this purpose, non dimensional parameters were identified and validated. Parametric studies were then performed in terms of these non dimensional parameters and multiple nonlinear regressions were performed on the data obtained through finite element analyses to develop multi dimensional empirical equations for defining the confining behaviour of collars. The non dimensional models provide good predictions of the behavioural curves of HSS and solid collars with rigid corner connections and eliminate the need for finite element modelling. 
	 
	7.3 Conclusions 
	 
	7.3.1 Concentrically Loaded Columns 
	 
	External confinement by HSS collars has excellent potential for rehabilitation of reinforced concrete structures through enhancement in both strength and ductility. The collared columns exhibited a maximum strength enhancement factor of 3.12 (column C07; strain at peak stress equal to 0.026), calculated based on the reduced core of the column, and a maximum observed strain at peak stress of 0.043 (column C05; strength enhancement factor equal to 2.57). By comparison, a conventionally confined column satisfying the plastic hinge requirements of ACI 318 and CSA Standard A23.3 (column C00B) exhibited a strength enhancement factor of 2.70 and a strain at peak stress of 0.030. Clearly, the comparative overall benefit in strength for the collared columns is much greater when considering that the size of the core itself is considerably larger. This is because external confinement by HSS collars prevents the spalling of concrete cover under the collars and inhibits spalling between the collars. The effective core area of externally confined columns is therefore significantly larger than that of conventional columns. 
	 
	On average, columns confined by collars having welded corner connections show an enhancement in strength, based on the reduced core area, of 1.95 times that of equivalent columns with bolted collars. The strain at peak stress of the concrete confined by the two types of collars are comparable and generally are close to ten times that which would be expected for unconfined concrete. The lower failure strain exhibited by columns with welded collars is attributed to the lack of ductility of the welds in the collars themselves and it may be increased significantly with deeper weld penetration. 
	 
	The spacing of the collars has a profound effect on the confined material curve. It was observed that by increasing the clear spacing by about 60%, the enhancement in concrete strength was cut in half. The effect of a change in collar spacing on the strain at peak stress of the confined concrete was more prominent at higher spacings (lower levels of confinement) and it became less influential at smaller spacings (higher levels of confinement). These observations are not expected to hold at very large spacings, where the degree of confinement is very low. 
	 
	The mere presence of HSS collars has a large effect on column strength due, in part, to their high stiffness. By increasing the HSS stiffness, an enhancement in both strength and ductility was observed, although the benefits in strength were relatively small as compared to the increase in collar stiffness. For bolted collars, this is attributed to the fact that the behaviour is influenced by the deformations of the bolts, which are relatively flexible components of the system. For welded collars, it is attributed to the high level of confinement achieved by the presence of the rigid corner connections, which in turn reduces the impact of the moment of inertia of the HSS member itself. Therefore, when increasing the collar stiffness, there is a threshold beyond which the rate of increasing benefit diminishes rapidly. 
	 
	The column with relatively high initial active confining pressure showed improved behaviour up to the peak load, but exhibited rapid softening in the post peak part of the curve, likely due to some combination of rapid spalling of the concrete between the collars and yielding of the bolts. An enhancement in concrete strength was observed that was 1.39 times that of the otherwise similar column by increasing the initial confining pressure by 2.24 times. 
	 
	7.3.2 Columns Under Cyclic Loading 
	 
	All the collared columns showed very good behaviour under severe cyclic loading. The desired enhancement in strength and ductility was achieved through confinement of concrete and the presence of the collars made the columns very resistant to degradation under severe cyclic loading. External confinement by HSS collars is therefore an effective means of rehabilitating columns in seismically deficient reinforced concrete buildings.  
	 
	In the collared columns, very little spalling of concrete between the collars was observed at the end of the first 20 cycles, a ductility level equal to 4, which is common in the design of new reinforced concrete structures. In the case of the conventionally tied column, most of the spalling of the concrete cover occurred at a displacement ductility level of 1.5. Hence, collared columns possess a larger effective core than that of conventionally tied columns. 
	 
	Fracture of some vertical bars due to low cycle fatigue was observed in several collared columns. However, it was more pronounced in columns with wider collar spacings. No slippage of the collars was observed in the test regions of the collared columns at the end of the tests, a feature that is highly desirable for the success of this rehabilitation scheme.  
	 
	In the collared columns, most of the spalling was confined to the lower half of the test region while in the conventional column, spalling took place over a wider range. One reason could be the upward shift in the location of the hinge formation. Collars tend to provide restraint to the spread of damage in the test region of collared columns. 
	 
	The normalized peak moment of the conventionally tied column is less than that of collared columns used in the present study. The normalized modulus of toughness of the conventionally tied column is less than that of the collared columns having the same shear span as that of the conventionally tied column. However, some collared columns with the short shear–span exhibited a lower modulus of toughness than that of the conventionally tied column. 
	 
	All the collared columns exhibited a higher level of stiffness retention than the conventionally tied column. Hence, collared columns are more resistant to degradation under severe cyclic loading. 
	 
	The energy dissipation in a cycle depends on the displacement amplitude, level of axial load, and the moment capacity of the columns. With an increase of each of these variables, the energy dissipation in a cycle increases. The moment capacity of the column cannot be varied at the time of testing, so this cannot be considered as a variable in the present context. Hence, the energy dissipation in a cycle can be varied by varying either axial load or displacement amplitude (which is usually related under the testing protocol to the yield displacement). That is, the slope of the cumulative energy dissipation (or normalized cumulative energy dissipation) versus cycle number curve depends on the amount of energy dissipated in each successive cycle. Increasing the energy dissipation in a cycle does not mean that the total energy dissipated by the column at the end of the test or at failure will also increase. Increasing the axial load will increase the energy dissipation in a cycle, but the deteriorating effect of axial load tends to make the column fail earlier. Therefore, the number of cycles sustained by the specimen at failure can be reduced considerably, in turn reducing the total energy dissipated by the specimen. Similarly, the energy dissipation in a cycle with a large displacement amplitude will be high. Since the displacement amplitudes are related to the yield displacement, if the yield displacement is higher the slope of the energy dissipation curve will also increase. However, this does not mean that the overall energy dissipated by the column at the end of the test will also increase, as the number of cycles sustained by the specimen will likely reduce leading to an overall reduction in the total energy dissipated at failure. In addition, the energy dissipated in primary cycles is higher than that dissipated in secondary cycles at the same level of displacement ductility. If a large number of cycles are performed at the same displacement ductility, the energy dissipation in subsequent cycles decreases due to degradation in strength and stiffness of the column. 
	 
	The rate of increase of cumulative normalized energy dissipation with respect to cycle number is generally higher for conventionally tied column as compared to that of collared columns. The cumulative normalized energy dissipated at the end of the tests is higher for conventionally tied column as compared to that of collared columns with a short shear span. The comparison between conventionally tied columns and collared columns with a long shear span cannot be made with respect to cumulative normalized energy dissipated at the end of the tests because the tests of most of the collared columns with long shear span were stopped prematurely due to the limitation of jack stroke. Had the tests not stopped prematurely, the cumulative normalized energy dissipated at the end of the tests of collared columns with long shear span would likely have been higher than that of the conventionally tied column. 
	 
	The hysteretic damping ratio increases with the increase of lateral drift for all the columns. The hysteretic damping ratio of the conventionally tied column is generally higher than that of collared columns. Very rarely, the hysteretic damping ratio of collared columns became higher than that of conventionally tied columns. 
	 
	The curvature ductility of the conventionally tied column was higher than that of the collared columns. The cumulative ductility ratio and cumulative energy damage indicator at the end of the test are significantly higher for conventionally tied column than those of collared columns. The collared columns exhibited less ductility because the damage is concentrated within a smaller length of the test region as compared to the length of the damaged region in the conventionally tied column. 
	 
	In addition, the following conclusions are drawn with respect to the effect of various parameters on the behaviour of the collared columns. 
	 
	7.3.2.1 Effect of Axial Load 
	 
	Based on the test results of collared columns with short and long shear spans, it can be concluded that the presence of axial load on the columns causes an increase in the rate of degradation in strength and a decrease in the stiffness retention of the columns. The presence of axial load in columns with long and short shear spans caused a reduction in the cumulative normalized dissipated energy at the end of the tests. 
	 
	With an increase in axial load, the hysteretic damping ratio of collared columns decreased. However, this effect was more pronounced in collared columns with short shear spans than with long shear spans. 
	 
	The application of axial loads in the range of   to   generally caused an improvement in the ductility of the collared columns expressed in terms of the normalized modulus of toughness (as defined in the present research), curvature ductility, cumulative ductility ratio, and cumulative energy damage indicator. It is assumed that in columns within this range of axial loads, the axial load will help improve the ductility by mobilizing confinement more rapidly as compared to columns without axial load and its improving effect on ductility is greater than its deterioration effect. 
	 
	7.3.2.2 Effect of Collar Spacing 
	 
	In the regime of both long and short shear span columns, columns with a wider spacing of collars exhibited lower values of normalized peak moments, normalized modulus of toughness up to the peak moment condition, and normalized modulus of toughness up to the failure of the columns as compared to those of columns with closer spacing. The rate of deterioration of strength is higher in columns with widely spaced collars than with closely spaced collars. 
	 
	In the regime of both long and short shear span columns, the effect of collar spacing on the stiffness retention of the columns was marginal; columns with closely spaced collars exhibited slightly higher stiffness retention as compared to columns with relatively wider collar spacing. 
	 
	For both long and short shear span columns, the cumulative energy dissipated and cumulative normalized energy dissipated at the end of the tests is significantly lower for columns with widely spaced collars as compared to columns with closely spaced collars. 
	 
	In columns with long shear spans, the hysteretic damping ratio of columns with widely spaced collars is slightly higher than that of columns with closely spaced collars. However, in columns with short shear spans, the columns with wider spacing of collars exhibited significantly higher hysteretic damping ratios at a certain level of lateral drift than columns with closely spaced collars. 
	 
	In the regimes of both long and short shear span columns, columns with widely spaced collars exhibited lower curvature ductility, cumulative ductility ratio, and cumulative energy damage indicator as compared to columns with widely spaced collars. 
	 
	 
	 
	 
	 
	7.3.2.3 Effect of Collar Size 
	 
	In the case of columns with long shear spans, the stiffness retention was slightly higher for columns with large size collars as compared to that of columns with small size collars. Conversely, in the case of columns with short shear spans, the stiffness retention was slightly higher for columns with small size collars than for columns with large size collars. The energy dissipation characteristics of the columns were not particularly sensitive to the change in the size of the collars in the range in which this study was made. 
	 
	In the case of columns with long shear spans, the normalized cumulative energy dissipated at the end of the test for the column with small size collars was higher than that of the column with large size collars, although the very low concrete strength in the latter column prevents a direct comparison. The columns behaved very similarly in this respect up to about 30 cycles of load. In the case of columns with short shear spans, columns with different sizes of collars exhibited similar energy dissipation characteristics in terms of cumulative normalized energy dissipated versus cycle number. It appears as though the energy dissipation characteristics of the columns were not particularly sensitive to the change in the size of the collars in the range in which this study was conducted. 
	 
	IFor columns with long shear spans, the hysteretic damping ratio was slightly higher for columns with large size collars as compared to that of columns with small size collars. In the case of columns with short shear spans, the hysteretic damping ratio was slightly higher for columns with small size collars as compared to that of columns with large size collars. This means that the hysteretic damping ratio was not sensitive to the change in the size of collars in the range in which this study was made. 
	 
	In the case of columns with long shear spans, the columns with large size collars exhibited higher moduli of toughness as compared to columns with small size collars. The columns with large size collars exhibited lower values of curvature ductility, cumulative ductility ratio, and cumulative normalized energy damage indicator. This discrepancy is attributed to the relatively higher value of axial load index in columns with large size collars as compared to that in columns with small size collars. In the case of columns with short shear spans, the columns with large size collars exhibited higher moduli of toughness, curvature ductility, cumulative ductility ratio, and energy damage indicator as compared to those of columns with small size collars. Based on the above, it can be concluded that the columns with large size collars exhibited higher ductility as compared to columns with small size collars. 
	 
	7.3.2.4 Effect of Shear Span 
	 
	The rate of strength deterioration is higher in collared columns with a short shear span as compared to that in columns with a long shear span. Moreover, the collared columns with a long shear span exhibited higher stiffness retention and higher energy dissipation characteristics. 
	 
	Generally, the hysteretic damping ratio exhibited by columns with shorter shear spans was higher than that of columns with long shear spans. 
	 
	Based on parameters such as normalized modulus of toughness, curvature ductility, cumulative ductility ratio, and cumulative energy damage indicater, the collared columns with long shear spans are more ductile as compared to collared columns with short shear spans. 
	 
	7.3.2.5 Conclusions Based on Analytical Results 
	 
	The envelope to the hysteresis curves (Chapter 4) of the conventionally tied column, the collared columns with long shear spans, and the collared columns with short shear spans were predicted analytically. The predicted envelope curves showed very good agreement with that of the average experimental envelope curves for the conventionally tied column and for the collared columns with long shear spans. However, in the case of collared columns with short shear spans, the predicted envelope curves showed very good agreement with the experimental envelope curves up to a lateral drift of about 5%. After this level of lateral drift, the predicted envelope curves over-estimate the capacity of the columns. This is because in columns with short shear spans, more rapid spalling of concrete takes place as compared to columns with long shear spans. Rapid spalling of concrete between the collars results in a reduced column cross section due to which the experimental capacity of the columns also reduces rapidly. However, this reduction of cross section due to spalling of concrete is not taken into account in the model. In addition, the effect of cyclic loads on the properties of the concrete and steel reinforcing bars and the effect of lateral bending of the longitudinal bars due to the expansion of the concrete were not included in the model. 
	 
	7.3.3 Concrete Confinement and Empirical Collar Models 
	 
	The proposed confinement model (Chapter 5) for predicting the stress versus strain behaviour of collared columns was validated by applying it to columns confined externally by steel HSS collars with bolted and welded corner connections tested in phase 1 of the project (Chapter 3). Some columns with bolted collars had initial active confining pressure due to the pre stressing of the bolts. The results predicted by the model show good agreement with the experimental results. Equations for establishing the descending branches of the confined concrete material curves have also been proposed that show good results but they need more experimental data for calibration outside of the range of the confinement index considered. 
	 
	The proposed empirical models (Chapter 6) in terms of non dimensional parameters for the confining behaviour of HSS and solid collars with rigid corner connections were verified with the help of several case studies, including physical tests conducted as part of this research program. The results predicted by the proposed empirical models were found to correlate very well with the finite element and test results. Therefore, the empirical models represent a viable alternate to the more onerous finite element analyses for predicting confining pressure vs. lateral strain curves. 
	 
	7.4 Recommendations for Future Research 
	 
	In Chapter 3, the behaviour of concrete columns confined externally by HSS collars under concentric axial loading was studied. The columns confined by bolted HSS collars exhibited highly ductile behaviour and the columns confined by welded HSS collars failed prematurely due to rupture of the corner welds. Therefore, the descending branch for these latter columns, with a very high level of confinement, could not be traced. However, the failure happened at a very high level of axial strain. According to the conclusion of Canar and Bažant (2002) based on tube squash tests, if the volumetric ratio of confining steel is more than 14.5%, which is similar to the columns with welded collars, then the confined concrete should not exhibit a descending branch provided lateral bending of the longitdunal bars does not takes place. The idea of having no degradation with high confinement levels needs to be confirmed for collared columns with more experimental testing in which premature failure of the corner welds does not take place. However, it is expected that due to the presence of the gaps between the collars, even columns with a large amount of confining steel would exhibit a descending branch at a high level of axial strain. 
	 
	The equations for establishing the descending branch of the proposed confinement model were calibrated with a database consisting of few columns. Therefore, it is recommended that additional tests of collared columns that exhibit a descending branch be conducted for the calibration of the proposed equations. 
	 
	Empirical models have been developed for the confining behaviour of HSS and solid steel collars with rigid corner connections for square concrete columns in terms of their non dimensional parameters based on the finite element results. Currently, solid steel collars with bolts on two diagonally opposite corners and continuous at the remaing two corners (Figure 7 1) are under investigation at the University of Alberta. Such collars are fabricated by cutting thick steel plates using an oxy gas flame cutting method. It is anticipated that these collars would be economical with respect to both fabrication and field application. It is therefore recommended that the non dimensional parameters for these collars be identified and a model be developed for predicting the confining behaviour in terms of the non dimensional parameters. 
	 
	When the collared columns are subjected to combined axial loads and moments (the same can be achieved by subjecting the columns to eccentric loading), the column cross-section goes under a strain gradient. It has been observed from the literature review that concrete under eccentric loading achieves a higher strain. Experimental evidence is required to confirm this phenomenon for collared columns that may lead to the modification of the proposed confinement models for concrete under a strain gradient that is confined by collars. 
	 
	It is recommended that a comprehensive experimental study be conducted to investigate the shear behaviour of collared columns under simulated seismic loading and develop equations for predicting the shear behaviour. A research project is underway at the University of Alberta in this direction. 
	 
	Existing reinforced concrete frames may have short lap splices at the location of plastic hinges. According to the literature review, the behaviour of columns with short lap splices is significantly improved by confining the splice region. The behaviour of concrete columns with short lap splices in longitudinal bars under collar confinement has not yet been studied. Therefore, it is recommended that an experimental study be carried out to investigate the behaviour of concrete columns with short lap splices in longitudinal bars confined externally by steel collars. 
	 
	So far, the focus of the present research has been on square concrete columns. However, reinforced concrete columns with rectangular cross sections are also frequently employed, often to satisfy architectural requirements. Therefore, it is recommended that the behaviour of rectangular concrete columns confined externally by steel collars under concentric monotonic axial loading and under cyclic lateral loading be investigated. Analytical and/or empirical confinement models are also required to predict the behaviour of rectangular concrete columns confined externally by steel collars. 
	 
	Knowing the flexural and shear behaviour of collared columns under cyclic loading according to the research mentioned above, the next step is to investigate the behaviour of a seismically deficient reinforced concrete frame rehabilitated with both collars and a steel plate shear wall. A schematic diagram of a possible single storey test specimen is shown in Figure 7 2. For this test frame, the connection of the steel plate shear wall to the beam could be made by threaded rods or steel collars passing through the slab. Based on previous research on the seismic behaviour of steel plate shear walls, it is apparent that the performance of the proposed composite test frame will be highly dependent on the thickness of the steel infill plate. The determination of the optimum plate thickness for the best performance of the composite frame requires the knowledge of the seismic shear strength and curvature ductility capacity of the boundary columns confined by steel collars. To determine the shear demand and curvature ductility demand on the boundary elements of the test frame imposed by the diagonal tension field of the steel plate shear walls, a pushover analysis of the system can be performed. As the prime objective of the proposed research is to extend the seismic benefits of the steel plate shear wall to reinforced concrete frames, existing methods for strengthening non ductile frame joint regions should be incorporated to bring them to the same level of ductility as that of the reminder of the composite frame. After design and fabrication of the test specimen, the next step is to test the frame under simulated seismic loading to determine the composite performance of the rehabilitated system. 
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	A. DERIVATION OF EQUATIONS FOR CONFINING STEEL 
	 
	A.1 Introduction 
	 
	In this Appendix, the equations for the confining steel for circular columns and for square/rectangular columns are derived based on the assumptions of ACI 318. The equations are derived on the basis that loss in load carrying capacity of the column due to the spalling of concrete cover is compensated by the enhancement of core concrete strength due to confinement. Because of the ability in circular columns of the circular ties or spirals to resist expansion of the concrete by means of tensile forces only, they are fully effective in developing the confining pressure. However, in the case of square/rectangular columns, the ties are not fully effective in developing the confining pressure due to their lack of flexural stiffness. 
	 
	A.2 Derivation of Equation 2.8 
	 
	According to earlier investigations, the strength of concrete confined by active fluid pressures is given by the following equation (all notation is presented at the end of the appendix for convenience: 
	 
	[A.1]    
	 
	The value of   depends on the concrete constituents and proportions, as well as the lateral pressure itself. Based on experimental results, the average value of this coefficient was found to be 4.1 by Richart et al. (1928). Balmer (1949) reported that the value of this coefficient varied from 4.5 to 7.0, with an average value of 5.6, based on additional experimental work. The higher values of this coefficient occur at low confining pressure. 
	 
	The maximum load carried by the concrete shell,  , can be calculated by the following equation: 
	 
	[A.2]    
	 
	The additional load, Padd, carried by the core concrete due to strength enhancement is given by the following equation: 
	 
	[A.3]    
	 
	According to the requirement of the ACI 318, the maximum load carried by the unconfined concrete cover shell, shall be compensated by the enhancement of concrete strength in the core due to confinement: 
	 
	[A.4]    
	 
	[A.5]    
	 
	With the help of Figure A.1, the confining pressure after the yielding of the spiral steel can be calculated from the following equilibrium equation, where   =  : 
	 
	[A.6]    
	 
	According to Richart et al. (1928),  . Substituting the values of   and   into Equation A.5, results in the following: 
	 
	[A.7]    
	 
	 [A.8]    
	 
	[A.9]    
	 
	[A.10]    
	 
	 
	 
	 
	[A.11]    
	 
	The second term on the right hand side of Equation A.11 is very small in magnitude relative to the first. Therefore, neglecting the second term and substituting,  results in the following relationship: 
	 
	[A.12]    
	 
	The coefficient 0.414 was increased to 0.45 and the equation was adopted by ACI 318. The final form of the equation (Equation 2.8) is given below: 
	 
	[A.13]    
	 
	A.3 Derivation of Equation 2.10 
	 
	This equation was derived based on the assumption that the efficiency of rectangular hoops is 50% that of spiral steel. The derivation of this equation is given in the commentary of ACI 318 71, which is reproduced here: 
	 
	The following equilibrium equation can be deduced from the free body diagram shown in Figure A.1: 
	 
	[A.14]    
	 
	which simplifies to the following: 
	[A.15]    
	 
	Similarly, for the free body diagram shown in Figure A.2: 
	 
	[A.16]    
	 
	which simplifies to the following: 
	 
	[A.17]    
	 
	According to the assumption of 50% efficiency, for equal confining pressure: 
	 
	[A.18]    
	 
	Substituting Equations A.15 and A.17 into A.18: 
	 
	[A.19]    
	 
	[A.20]    
	 
	For an equivalent spiral column: 
	 
	[A.21]    
	 
	Combining Equation A.20 and Equation A.21 gives Equation 2.10: 
	 
	[A.22]    
	 
	In later versions of the ACI code, the efficiency of the hoop reinforcment was considered to be high and it was assumed that the efficiency of the hoops is 75% of that of spirals. With this increased efficiency of the hoop, the above equation is modified to the following: 
	 
	[A.23]    
	 
	Appendix A Notation 
	  = area of concrete measured to outside diameter of spiral; 
	  = area of rectangular core of column measured out to out of hoop; 
	  = gross area of the section; 
	  = cross-sectional area of the spiral; 
	  = cross-sectional area of one leg of the hoop reinforcement; 
	  = diameter of concrete core measured out to out of spiral; 
	  = diameter of spiral steel; 
	  = specified compressive strength of concrete as measured from  
	standard cylinders; 
	  = compressive strength of unconfined concrete;  ; 
	  = lateral confining pressure; 
	  = specified yield strength of spiral or hoop reinforcement; 
	  = unsupported length of rectangular hoop measured  
	between perpendicular legs of the hoop or supplementary crossties; 
	  = additional load capacity due to enhancement in strength of core concrete; 
	  = Maximum load carried by concrete shell; 
	  = centre to centre spacing of spirals or hoops; 
	  = volumetric ratio of spiral steel; 
	  = sum of all the horizontal forces; 
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	B. PROGRAM MCP 
	 
	 
	B.1 OBJECTIVE 
	 
	The objective of this program is to add, subtract and find averages of the curves. In addition, the abscissas of different curves can be made same with the help of this program using linear interpolation technique, which then can then be added or subtracted or averaged in spreadsheets. This program has been widely used in Chapter 3 and Chapter 4. 
	 
	B.2 FORTRAN SOURCE CODE 
	 
	C********************************************************************* 
	C********************************************************************* 
	C********************************************************************* 
	CCC       DEVELOPED BY MUNAWAR A. HUSSAIN, 
	CCC       DEPARTMENT OF CIVIL ENGINEERING, 
	CCC       UNIVERSITY OF ALBERTA, EDMONTON, CANADA. 
	CCC       FOR ADDING AND SUBTRACTING CURVES 
	CCC       JULY 2002 
	C********************************************************************** 
	C********************************************************************** 
	C********************************************************************** 
	C         For the partial fulfillment of the requirement 
	C         for the degree of Doctor of Philosophy 
	C********************************************************************** 
	C********************************************************************** 
	C********************************************************************** 
	CCC******************************************************************** 
	CCC       DEDICATED TO SABINA AND ALI 
	CCC******************************************************************** 
	C********************************************************************** 
	C********************************************************************** 
	             PROGRAM MCURVE 
	             DIMENSION NCOUNT(15),WAITF(15) 
	             DIMENSION CURVE(3,16000,2) 
	             DIMENSION KOUNTG(15),STRAIN(15) 
	C********************************************************************** 
	             OPEN(UNIT=1,FILE='MCP1.INP') 
	             OPEN(UNIT=2,FILE='MCP2.INP') 
	             OPEN(UNIT=3,FILE='MCP3.INP') 
	             OPEN(UNIT=4,FILE='MCP4.INP') 
	             OPEN(UNIT=5,FILE='MCP5.INP') 
	CCC             OPEN(UNIT=6,FILE='MCP6.INP') 
	CCC             OPEN(UNIT=7,FILE='MCP7.INP') 
	CCC             OPEN(UNIT=8,FILE='MCP8.INP') 
	CCC             OPEN(UNIT=9,FILE='MCP9.INP') 
	CCC             OPEN(UNIT=10,FILE='MCP10.INP') 
	C********************************************************************** 
	             OPEN(UNIT=11,FILE='MCP1.OUT') 
	             OPEN(UNIT=12,FILE='MCP2.OUT') 
	CCC             OPEN(UNIT=13,FILE='VCURVE.DAT') 
	             OPEN(UNIT=14,FILE='MCP.OUT') 
	C********************************************************************** 
	CCC             REWIND(10) 
	             REWIND(11) 
	             REWIND(12) 
	             REWIND(14) 
	C********************************************************************** 
	             NCOORD=2 
	C********************************************************************** 
	1000         FORMAT(I10) 
	1010         FORMAT(2F25.10) 
	C********************************************************************** 
	       WRITE(*,501) 
	501    FORMAT(5X,'PROGRAM FOR'/ 
	     .5X,'FINDING WEIGHTED AVERAGE OF CURVES'/ 
	     .5X,'AND ADDITION OF CURVES'/) 
	  WRITE(*,2001) 
	2001   FORMAT(5X, 'FOR WEIGHTED AVERAGE, OPTION=1'/ 
	     .,5X,'FOR ADDITION OF CURVES, OPTION=2'/) 
	 WRITE(*,2010) 
	2010  FORMAT(10X,'BY'//5X,'MUNAWAR HUSSAIN'/ 
	     .5X,'DEPARTMENT OF CIVIL ENGINEERING'/ 
	     .5X,'UNIVERSITY OF ALBERTA'/ 
	     .5X,'EDMONTON, ALBERTA, CANADA'/ 
	     .5X,'JULY 2002'//) 
	CCC       WRITE(*,505) 
	CCC505    FORMAT('****DEDICATED TO SABINA AND ALI*****'//) 
	       WRITE(*,502) 
	502    FORMAT(5X,'PLEASE ENTER THE DATA BELOW') 
	       WRITE(*,505) 
	505  FORMAT(5X,'NUMBER OF CURVES    X-INTERVAL     OPTION') 
	       READ(*,*)NCURVE,SINT,LOPT 
	*********************************************************************** 
	          WRITE(*,*)'PLEASE ENTER WEIGHT FACTORS FOR COMBINATION' 
	          READ(*,*)(WAITF(ICURVE),ICURVE=1,NCURVE) 
	*********************************************************************** 
	          DO 200 ICURVE=1,NCURVE 
	          READ(ICURVE,*)NCOUNT(ICURVE) 
	          NPOIN=NCOUNT(ICURVE) 
	          DO 300 IPOIN=1,NPOIN 
	          READ(ICURVE,*)XCOD1,YCOD1 
	          CURVE(ICURVE,IPOIN,1)=XCOD1 
	          CURVE(ICURVE,IPOIN,2)=YCOD1 
	CCC          WRITE(14,*)XCOD1,YCOD1 
	          IF(IPOIN.EQ.NPOIN)THEN 
	          STRAIN(ICURVE)=XCOD1 
	          ENDIF 
	300       CONTINUE 
	200       CONTINUE 
	*********************************************************************** 
	C        WRITE(14,1010)(STRAIN(ICURVE),ICURVE=1,NCURVE) 
	*********************************************************************** 
	        SMIN=STRAIN(1) 
	        DO 700 ICURVE=1,NCURVE 
	        SDIFF=SMIN-STRAIN(ICURVE) 
	        IF(SDIFF.GT.0)SMIN=STRAIN(ICURVE) 
	700     CONTINUE 
	        SMIN=SMIN 
	        LMIN=SMIN/SINT 
	********************************************************************** 
	               REWIND(11) 
	               REWIND(12) 
	********************************************************************** 
	              WRITE(11,350) 
	350   FORMAT(/'THIS PROGRAM WAS DEVELOPED BY MUNAWAR HUSSAIN' 
	     ./'DEPARTMENT OF CIVIL ENGINEERING'/'UNIVERSITY OF ALBERTA, 
	     .EDMONTON, CANADA'/) 
	              WRITE(11,355) 
	355   FORMAT(/'THE DATA FOR ALL THE GENERATED CURVES HAVE BEEN DUMPED' 
	     ./'IN THIS FILE')  
	CC********************************************************************* 
	CC********************************************************************* 
	CC********************************************************************* 
	CC********************************************************************* 
	         DO 7777 ICURVE=1,NCURVE 
	    CALL ANAME 
	         WRITE(11,1050)ICURVE 
	1050     FORMAT(/'GENERATED DATA FOR CURVE NO.',I3,2X,'FOLLOWS:-') 
	         NPOIN=NCOUNT(ICURVE) 
	         NINT=STRAIN(ICURVE)/SINT 
	         MINT=NINT+1 
	         WRITE(11,1060)MINT 
	1060   FORMAT('NUMBER OF DATA POINTS IN THIS GENERATED CURVE=',I5/) 
	         XCOD0=0.000 
	         YCOD0=0.000 
	         KONT=0 
	         XCOD=0.000 
	         WRITE(11,1010)XCOD0,YCOD0 
	         WRITE(12,1010)XCOD0,YCOD0 
	CC********************************************************************* 
	         DO 5555 KINT=1,NINT 
	         XCOD=XCOD+SINT 
	         DO 4444 IPOIN=1,NPOIN 
	         XCOD2=CURVE(ICURVE,IPOIN,1) 
	         YCOD2=CURVE(ICURVE,IPOIN,2) 
	         IF(XCOD2.GE.XCOD)THEN 
	         LPOIN=IPOIN-1 
	         XCOD1=CURVE(ICURVE,LPOIN,1) 
	         YCOD1=CURVE(ICURVE,LPOIN,2) 
	         GOTO 6666 
	         ENDIF 
	4444     CONTINUE 
	6666     KONT=KONT+1 
	         YCOD=YCOD1+(YCOD2-YCOD1)*(XCOD-XCOD1)/(XCOD2-XCOD1) 
	         WRITE(11,1010)XCOD,YCOD 
	         WRITE(12,1010)XCOD,YCOD 
	5555     CONTINUE 
	         KOUNTG(ICURVE)=KONT+1 
	7777     CONTINUE 
	*********************************************************************** 
	         JMIN=SMIN/SINT+1 
	*********************************************************************** 
	CCCCC    WRITE(14,*)(KOUNTG(ICURVE),ICURVE=1,NCURVE) 
	*********************************************************************** 
	         WRITE(14,311) 
	311      FORMAT('XY-DATA FOR RESULTANT CURVE FOLLOWS') 
	         WRITE(11,312) 
	312      FORMAT('XY-DATA FOR RESULTANT CURVE FOLLOWS') 
	         WRITE(11,313)JMIN 
	313      FORMAT('NUMBER POINTS IN THE RESULTANT CURVE=',I5) 
	*********************************************************************** 
	          REWIND(12) 
	*********************************************************************** 
	          DO 1922 ICURVE=1,NCURVE 
	          NPOIN=KOUNTG(ICURVE) 
	          DO 2344 IPOIN=1,NPOIN 
	          CURVE(ICURVE,IPOIN,1)=0 
	          CURVE(ICURVE,IPOIN,2)=0 
	 2344     CONTINUE 
	 1922     CONTINUE 
	*********************************************************************** 
	          DO 8888 ICURVE=1,NCURVE 
	          NPOIN=KOUNTG(ICURVE) 
	          DO 8822 IPOIN=1,NPOIN 
	          READ(12,*)XCOD1,YCOD1 
	          CURVE(ICURVE,IPOIN,1)=XCOD1 
	          CURVE(ICURVE,IPOIN,2)=YCOD1 
	8822      CONTINUE 
	8888      CONTINUE 
	*********************************************************************** 
	C          DO 3344 ICURVE=1,NCURVE 
	C          NPOIN=KOUNTG(ICURVE) 
	C          DO 2345 IPOIN=1,NPOIN 
	C          XCOD1=CURVE(ICURVE,IPOIN,1) 
	C          YCOD1=CURVE(ICURVE,IPOIN,2) 
	C          WRITE(13,1010)XCOD1,YCOD1 
	C2345      CONTINUE 
	C3344      CONTINUE 
	C********************************************************************** 
	          NPOIN=SMIN/SINT+1 
	***INCREASE BY 1 IS FOR FIRST COORDINATE WHICH IS (0.000,0.000) 
	*********************************************************************** 
	          IF(LOPT.EQ.1)THEN 
	          GOTO 1934 
	          ELSE 
	          GOTO 2311 
	          ENDIF 
	*********************************************************************** 
	1934      DO 9999 IPOIN=1,NPOIN 
	          SFACT=0.0 
	          SUMM=0.0 
	          DO 9911 ICURVE=1,NCURVE 
	          XCOD1=CURVE(ICURVE,IPOIN,1) 
	          YCOD1=CURVE(ICURVE,IPOIN,2) 
	          FACT=WAITF(ICURVE) 
	          SFACT=SFACT+FACT 
	          SUMM=SUMM+FACT*YCOD1 
	9911      CONTINUE 
	          XCOD=XCOD1 
	          YCOD=SUMM/SFACT 
	          WRITE(11,1010)XCOD,YCOD 
	          WRITE(12,1010)XCOD,YCOD 
	          WRITE(14,1010)XCOD,YCOD 
	9999      CONTINUE 
	          GOTO 5000 
	C********************************************************************** 
	2311      DO 1166 IPOIN=1,NPOIN 
	          SUMM=0.0 
	          DO 9111 ICURVE=1,NCURVE 
	          XCOD1=CURVE(ICURVE,IPOIN,1) 
	          YCOD1=CURVE(ICURVE,IPOIN,2) 
	          FACT=WAITF(ICURVE) 
	          SUMM=SUMM+FACT*YCOD1 
	9111      CONTINUE 
	          XCOD=XCOD1 
	          YCOD=SUMM 
	          WRITE(11,1010)XCOD,YCOD 
	          WRITE(12,1010)XCOD,YCOD 
	          WRITE(14,1010)XCOD,YCOD 
	1166      CONTINUE 
	*********************************************************************** 
	5000      CONTINUE 
	          CALL JOB 
	*********************************************************************** 
	          CLOSE(1) 
	          CLOSE(2) 
	          CLOSE(3) 
	          CLOSE(4) 
	          CLOSE(5) 
	CCC          CLOSE(6) 
	CCC          CLOSE(7) 
	CCC          CLOSE(8) 
	CCC          CLOSE(9) 
	CCC          CLOSE(10) 
	CCC          CLOSE(11) 
	CCC          CLOSE(12) 
	CCC          CLOSE(14) 
	****************************************************************** 
	          STOP 
	          END 
	C***************************************************************** 
	C***************************************************************** 
	C***************************************************************** 
	C***************************************************************** 
	     SUBROUTINE ANAME 
	     REWIND (103) 
	C****************************************************************** 
	     WRITE(*,10) 
	10  FORMAT(//////5X, 'DEVELOPED BY MUNAWAR A. HUSSAIN, U OF A, 
	     .EDMONTON, CANADA')  
	     RETURN 
	     END 
	C****************************************************************** 
	C****************************************************************** 
	C****************************************************************** 
	     SUBROUTINE JOB 
	          WRITE(*,10) 
	10  FORMAT(//5X,'JOB COMPLETED! JOB COMPLETED!'//) 
	   RETURN 
	       END 
	C****************************************************************** 
	C****************************************************************** 
	C****************************************************************** 
	 
	B.3 OPERATION 
	 
	The program works in interactive mode. On execution, the program asks for the number of input files to be engaged (The file names are MCP1.INP, MCP2.INP, MCP3.INP and so on). Then the program asks about the type of operation to be performed on these files such as addition/subtraction or finding average of the given input files. The program also asks for the required size of interval between the data points of the resulting output file. Two sample input files such as MCP1.INP and MCP2.INP and the resulting output file (MCP.OUT) containing the average of the two input files are given in Table B.1. It can be seen that the data points of the input files are at random locations and the data points of the output file are at constant interval specified by the user. The number 18 and 17 in the first lines of the input data files MCP1.INP, and MCP2.INP represent the number of data points in these files, respectively. 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Table B.1: Sample input and output files 
	 
	MCP1.INP
	 
	MCP2.INP
	 
	MCP.OUT
	 
	18
	 
	17
	0.00
	0.00
	0.00
	0.00
	0.00
	0.00
	0.16
	21.70
	0.19
	26.91
	0.50
	53.92
	0.35
	38.36
	0.34
	40.45
	1.00
	98.43
	0.62
	64.28
	0.54
	58.98
	1.50
	139.34
	0.84
	84.56
	0.83
	86.22
	2.00
	166.38
	0.99
	95.61
	1.07
	106.16
	2.50
	182.76
	1.14
	107.78
	1.12
	107.63
	3.00
	191.01
	1.32
	122.36
	1.19
	114.74
	3.50
	198.08
	1.52
	137.78
	1.38
	133.30
	4.00
	204.92
	1.84
	155.00
	1.73
	160.00
	4.50
	210.68
	2.02
	160.00
	2.06
	176.00
	5.00
	215.93
	2.58
	178.00
	2.18
	180.00
	5.50
	219.04
	3.04
	186.09
	2.42
	189.00
	6.00
	222.15
	3.92
	199.80
	2.55
	191.00
	6.50
	225.26
	4.90
	210.00
	4.94
	221.00
	7.00
	228.37
	7.30
	214.00
	7.24
	245.84
	7.50
	237.43
	9.74
	217.00
	10.11
	254.50
	8.00
	231.50
	15.61
	208.00
	8.50
	232.56
	9.00
	233.62
	9.50
	234.67
	10.00
	235.40
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	C. YIELDING OF LONGITUDINAL BARS AT YIELD DISPLACEMENT 
	 
	A procedure for the determination of the yield displacement of columns has been described in Chapter 4. In this appendix, a brief investigation is presented on whether yielding of longitudinal bars in tension is likely to occur at the displacement  . A singly reinforced rectangular concrete section of 300 mm width and 600 mm overall depth is chosen to study bar yielding behaviour. The section is reinforced with 3 (25 mm bars with a 540 mm effective depth. The yield strength,  , and modulus of elasticity,  , of the reinforcing bars are 500 MPa and 200 000 MPa, respectively. The effect of the strength of concrete,  , on the nominal moment strength,  , and the moment strength of the section at the first yield of tensile steel,   (based on unconfined concrete), was studied. The nominal moment strengths,  , were calculated based on the ACI 318 Whitney stress block. The moment capacities of the section at the first yield of the steel were calculated using the strain compatibility analysis. This analysis requires the complete stress vs. strain curves of concrete and the equation proposed by Popovics (1973) was used. The strain equal to 0.003 was considered as the failure strain of concrete. The results of these calculations are given in Table C.1. The values of other parameters such as the coefficient  , the steel ratio, , and the balanced steel ratio,  , are also given in the table. The definitions of these terms can be found in ACI 318 02. 
	 
	Figure C 1 shows the plot of values of   and   with respect to  . For concrete strengths varying from 20 to 45 MPa, the given section is under reinforced, i.e., crushing of the concrete will take place after the yielding of the tensile steel takes place. This is also clear from Table C 1, which shows that the values of steel ratios,  , are less than the corresponding balanced steel ratios,  . Hence, for an under reinforced section, the nominal moment strengths,  , are always more than the corresponding yield moment capacity,  , of the section. Figure C 1 also shows that with the increase of concrete strength, both the nominal moment strength,  , and the moment capacity at the first yield of steel,  , increase. This figure also shows that   and   converge when the steel ratio,  , approaches the balanced steel ratios,  . When the steel ratio,  , becomes equal to the balanced steel ratio,  , yielding of the steel and the crushing of the concrete happen simultaneously and the nominal moment capacity,  , and yield moment capacity,  , are equal. In over reinforced concrete sections, crushing of the concrete happens before yielding of the steel and the nominal moment strength,  , will be controlled by the crushing of the concrete. 
	 
	Figure C 2 shows the plot of the ratio of   to  , expressed in percentage, with respect to the cylinder strength of concrete. For low strength concrete,   tends to approach  , but as the strength of concrete increases,   becomes a smaller percentage of  . In the present case, it levels off at about 96% of  . The procedure used for the determination of yield displacements,  , in Chapter 4 requires that the yielding of the section take place between   and   (assuming  ). In balanced and over reinforced sections, the chance of yielding of the tensile steel occurring at the yield displacement,  , determined by this procedure is nil. Moreover, in under reinforced sections, the chance of yielding the tensile steel at the yield displacement,  , is also unlikely because   can go as high as 96% of  . Therefore, the procedure for the determination of the yield displacement in Chapter 4 does not guarantee that the yielding of the tensile steel will take place at the yield displacement. Hence, the yield displacement should refer to the yielding of the section as a whole. This seems viable because in over reinforced sections, the damage starts in the concrete and the member goes into the nonlinear range and starts absorbing energy prior to yielding of the steel. 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	Table C.1: Nominal flexural strength and moment capacities at first yield of longitudinal tensile steel bars of a singly reinforced section
	  
	 
	(MPa)
	 
	 
	 
	 
	 
	 
	 (kN·m)
	  
	 
	(kN·m)
	Ratio 
	  
	(%)
	20
	0.85
	0.0093
	0.0158
	347.65
	349.85
	99.37
	25
	0.85
	0.0093
	0.0197
	353.29
	360.88
	97.90
	30
	0.85
	0.0093
	0.0236
	356.75
	368.24
	96.88
	35
	0.81
	0.0093
	0.0263
	359.10
	371.93
	96.55
	40
	0.77
	0.0093
	0.0286
	361.16
	374.56
	96.42
	45
	0.73
	0.0093
	0.0305
	362.76
	376.46
	96.36
	Notes: 
	Width of the section: 300 mm 
	Overall depth of the section: 600 mm 
	Effective depth of the section: 540 mm 
	Yield stress of steel: 500 MPa 
	Modulus of elasticity of steel: 200 000 MPa
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	D. MOMENT VERSUS REINFORCING BAR STRAIN RELATIONSHIPS 
	 
	In this section, the strain data of the tie bars of specimen CL0 and of the longitudinal bars of all the specimens are presented. Figure D 1 shows the location of strain gages on the longitudinal bars of each column. The locations of strain gauges on the longitudinal bars of the columns are identified with notation L1, L2, L3 and so on (L1 means the location of strain gage number 1, for example). These strain gages are divided into five groups based on their locations: group 1 consists of strain gages at locations L1, L2, and L3; group 2 consists of strain gages at locations L8, L9, and L10; group 3 consists of strain gages at locations L6 and L7; group 4 consists of strain gages at locations L4 and L5; and group 5 consists of strain gages at locations L11 and L12. The strain gages were affixed on the neutral axis of the rebars to cancel the effect of the strain gradient in the rebars. The data of the strain gauges within a certain group were similar. Therefore, it was decided to present the data of one strain gage from each group. Generally, the data from a strain gauge that sustained a greater number of cycles before debonding or malfunctioning in a certain group was selected for presentation. The selection of the number of cycles for presentation depends on the availability of the data and the clarity of figures. From 10 to 20 cycles are presented. In the present study, all the columns were first pushed towards the north in all the cycles they sustained. The moments corresponding to the north push are specified as positive and those corresponding to the south push are negative. Similarly, the tensile rebar strains are positive and the compressive rebar strains are negative. For the location of strain gauges on the tie bars in specimen CL0, the ties are numbered from bottom to top. The first tie close to the footing is given number 1 and the second tie is given number 2 and so on. The strain gauges on the tie bars are located at mid depth of the column section on either its north or east face. 
	 
	D.1 Specimen CL0 
	 
	Figure D 2 shows the relationships between the moment at the column base and longitudinal bar strains for column CL0. For this column, a gravity load of 1470 kN was maintained up to the end of the 16th cycle and was reduced to 720 kN for the remaining cycles. The yielding of the longitudinal bars of the column is clear from this figure. The nominal moment capacity of the column based on the unconfined concrete,  , is 180.3 kN·m (Table 4.5). The moment at first yield considering confined concrete in compression,  , is 246.8 kN.m (Table 4.5). 
	 
	Figure D 2(a) shows the relationship between the moment at the column base vs. strain of a longitudinal bar at location L3 on the south face of the column. The tensile and compressive strains of this longitudinal bar in the first 15 cycles are similar.  
	 
	Figure D 2(b) shows the relationship between moment at the column base and strain of a longitudinal bar at location L10 on the north face of the column. In the first 10 cycles, the tensile and compressive strains are similar. In cycles 11 through 15, the compressive strain in the bar at location L3 increases gradually with the increase in the number of cycles and it becomes much higher than the tensile strains at the end of 15th cycle. Similar behaviour was observed for strains at location L5 and L11. At these locations, the tensile and compressive strains in the rebars are similar up to the end of the first five cycles. The compressive strains become much higher than the tensile strains in cycles 6 through 15. The compressive strains in the rebars at level 2 are much higher than those at level 1. This can be explained with the help of Figure 4 18, which shows that the most damaged region occurs between 300 to 550 mm above the footing.  
	 
	Figure D 2(c) shows the relationship between the moment and the rebar strain at location L6. In the first five cycles, the strains remain compressive. In the sixth cycle, the rebar is subjected to a small tensile strain when the column is at the extreme north. Thereafter, the loops shift towards the left with the increase in the number of cycles.  
	 
	In Figures D 2(b), D 2(c), D 2(d), and D 2(e), the loops shift towards the left with the increase in the number of cycles. This is because the concrete sheds its load due to damage imparted to the concrete due to cycling, which is then carried by the longitudinal bars of the column. The strain at location L3 does not show this behaviour. The reason of this discrepancy is not known. 
	 
	Figure D 3 shows the relationships between moment at the column base and strains in ties 1, 2, and 3, respectively. The strain gages were installed on the neutral axis of the tie bars to cancel the effect of the strain gradient from bending as the ties are pushed out due to concrete dilation. The strains in the tie bars are tensile as shown in Figures D 3(b) through D 3(f). Figure D 3(a) shows tensile as well as compressive strains in the tie bars under cyclic loading. The reason for this discrepancy is attributed to the error in placing strain gauge exactly at the neutral axis of the tie bar. The tensile strain of tie 5 is much higher than that of tie 1 and tie 3. This is because tie 5 is located in the most damage region (location of hinge formation) of the column. 
	 
	D.2 Specimens CL1 and CL5 
	 
	First the specimen CL1 will be discussed and then specimen CL5 will be discussed. Both of these specimens were tested without gravity load. 
	 
	Figure D 4 shows the relationships between moment and strains of longitudinal bars at different locations for specimen CL1. The yielding of the longitudinal bars of the column is clear from this figure. The moment at the first yield of the tensile steel considering confined concrete in the compression zone,  , is 151.1 kN·m (Table 4.6). 
	 
	The bars on the north and south faces receive tensile and compressive strains in the first five or sometime first ten cycles. However, tensile strains are higher in magnitude than compressive strains (Figures D 4(a), D 4(b), D 4(d), and D 4(e)). In cycles 6 through 15, the strains in the rebars are generally tensile. However, the magnitude of tensile strains varies during cycling. 
	 
	In the first five cycles, the crushing of concrete does not take place because the applied moment in these cycles is much less than the nominal moment strength of the section,   ( =142.56 kN.m, Table 4.5), calculated based on the unconfined concrete strength. As the crushing of unconfined concrete does not take place in these five cycles, the collar confinement is not activated in these cycles because collar confinement is passive. 
	 
	Therefore, the bond between concrete and rebars remains intact and the column section behaves like a composite column section. Hence, the longitudinal steel bars receive compressive as well as tensile strains in these cycles and the magnitude of tensile and compressive strains are comparable. 
	 
	In cycles 6 through 15, the longitudinal bars of the column, generally, do not receive compressive strains. However, they receive high tensile strains. This is because in these cycles the applied moment on the column is more than   ( =142.6 kN·m, Table 4.5), which means that the crushing of unconfined concrete takes place in these cycles and, due to outward pressure of the crushed concrete on the collars, the collar confinement becomes effective. With each additional cycle, the outward pressure increases and the confining pressure from the collars on the concrete also increases. The column section is over-reinforced if unconfined concrete is considered and it becomes under-reinforced if confined concrete is considered. Up to about the first 20 cycles, the spalling of concrete is very limited. Hence, the full cross section of the column takes part in resisting the applied moments.  
	 
	Figure D 4(a) shows a relationship between moment and strain of a longitudinal bar located on the south face of the column. In cycles 6 through 15, the strain of this bar never becomes compressive. When the column is pushed towards the north in these cycles, the bars on the south face of the column go into tension and tension cracks are created on the south face of the column. As the concrete is under high confining pressure, the gaps created by tension cracks are immediately filled by the crushed confined concrete. When the column is pushed towards south, the crushed concrete starts taking load immediately. The stretched bars just relax and do not take compression. As the columns do not carry gravity load, the need of these bars to take compressive load does not arise because the presence of concrete is sufficient to take compressive loads. Hence, these rebars do not show compressive strains.  
	 
	Figure D 4(c) shows the moment vs. strain of a longitudinal bar at mid depth of the column. These bars receive only tensile strain during cyclic loading, which increases with the increase in the displacement ductility level. 
	 
	The relationships between moment at the column base and strains of longitudinal bars for column CL5 are given in Figure D 8. The yielding of longitudinal bars of the column is clear from this figure. The nominal moment capacity of the section,  , based on the unconfined concrete is 164.3 kN·m (Table 4.5). This is the only column in which yielding of the tensile steel can take place before the crushing of unconfined concrete in the compression zone. The moment at the first yield calculated based on the unconfined concrete,  , is 135.5 kN·m (Table 4.5). The moment capacity of the section based on the first yield of the tensile steel considering confined concrete material,  , is calculated to be 163.8 kN.m (Table 4.5). The interpretation of results given above for column CL1 applies to this specimen also. 
	 
	D.3 Specimens CL2, CL3, CL4, CL6, CL7, and CL8 
	 
	Each of these columns was tested under gravity loads of 720 kN. The moment vs. longitudinal bar strain relationships for these columns are shown in Figures D 5, D 6, D 7, D 9, D 10, and D 11, respectively, which are similar for all the columns with a few exceptions that are attributed to the malfunctioning or debonding of strain gages. The values of  and   for these columns are given in Table 4.5. Yielding of the longitudinal bars in both tension and compression is obvious from these figures. The bars receive both tension and compressive strains due to cyclic loading; however, the tensile strains are higher than the compressive strains. The reason for this discrepancy is that in tension the load is resisted by the steel alone because concrete cannot resist tensile forces after cracking, whereas in the compression zone the load is resisted by both concrete and steel. In the columns without gravity loads, practically the bars do not go into compression. In the present case, the compressive forces are high due to the presence of gravity loads. The confined concrete starts resisting compressive load, as described before, during a cycle. The compressive forces are high and the confined concrete is strained considerably. Due to high strains in the compression zone, the resisting capacity of the longitudinal bars is also mobilized. Hence, the longitudinal bars of the columns (with gravity loads) show considerable compressive strains under horizontal cyclic loading. 
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	G. ENERGY DISSIPATION 
	 
	 
	Table G.1: Energy dissipated by specimen CL0 based on overall system
	Cycle 
	number
	Energy dissipated 
	 per cycle 
	(kN.m)
	Cumulative energy 
	dissipated 
	(kN.m)
	Cumulative 
	norm. energy 
	dissipated
	1
	1.09
	1.09
	0.32
	2
	0.84
	1.93
	0.56
	3
	0.83
	2.76
	0.81
	4
	0.78
	3.54
	1.04
	5
	0.70
	4.24
	1.24
	6
	5.69
	9.93
	2.90
	7
	3.46
	13.38
	3.92
	8
	3.23
	16.61
	4.86
	9
	2.85
	19.46
	5.69
	10
	3.66
	23.12
	6.76
	11
	6.43
	29.55
	8.64
	12
	5.42
	34.97
	10.23
	13
	6.33
	41.30
	12.08
	14
	6.07
	47.37
	13.86
	15
	5.39
	52.76
	15.43
	16
	26.19
	78.95
	23.10
	17
	17.50
	96.46
	28.22
	18
	17.50
	113.96
	33.34
	19
	16.74
	130.70
	38.23
	20
	16.56
	147.27
	43.08
	21
	33.43
	180.70
	52.86
	22
	35.48
	216.18
	63.24
	23
	33.89
	250.07
	73.15
	24
	34.50
	284.57
	83.25
	25
	36.03
	320.59
	93.78
	26
	39.43
	360.02
	105.32
	27
	40.62
	400.65
	117.20
	28
	40.62
	441.27
	129.09
	29
	39.34
	480.61
	140.59
	30
	39.14
	519.74
	152.04
	31
	39.30
	559.04
	163.54
	32
	39.77
	598.81
	175.17
	33
	39.17
	637.98
	186.63
	34
	39.39
	677.37
	198.15
	35
	39.14
	716.51
	209.60
	36
	39.70
	756.21
	221.22
	37
	39.30
	795.50
	232.71
	38
	37.67
	833.17
	243.73
	39
	35.66
	868.83
	254.16
	40
	34.25
	903.07
	264.18
	41
	34.54
	937.61
	274.28
	42
	34.39
	972.00
	284.34
	43
	35.66
	1007.66
	294.77
	44
	34.25
	1041.91
	304.79
	Note: Experimental  30 mm;  1900 mm; and  216.50 kN.m
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Table G.2: Energy dissipated by specimen CL1 based on overall system
	Cycle 
	number
	Energy dissipated  
	per cycle 
	(kN.m)
	Cumulative energy 
	dissipated 
	(kN.m)
	Cumulative 
	norm. energy 
	dissipated
	1
	0.31
	0.31
	0.11
	2
	0.20
	0.51
	0.18
	3
	0.15
	0.66
	0.23
	4
	0.11
	0.78
	0.27
	5
	0.11
	0.89
	0.31
	6
	0.97
	1.86
	0.65
	7
	0.68
	2.54
	0.89
	8
	0.53
	3.07
	1.08
	9
	0.45
	3.52
	1.24
	10
	0.36
	3.88
	1.36
	11
	1.80
	5.68
	1.99
	12
	1.54
	7.22
	2.53
	13
	1.39
	8.61
	3.02
	14
	1.34
	9.95
	3.49
	15
	1.31
	11.26
	3.95
	16
	11.03
	22.29
	7.82
	17
	8.98
	31.27
	10.97
	18
	8.80
	40.08
	14.06
	19
	8.64
	48.72
	17.09
	20
	8.07
	56.79
	19.92
	21
	19.81
	76.59
	26.87
	22
	18.43
	95.02
	33.34
	23
	18.17
	113.19
	39.71
	24
	18.81
	132.00
	46.31
	25
	17.21
	149.21
	52.35
	26
	31.77
	180.98
	63.49
	27
	31.93
	212.91
	74.70
	28
	29.88
	242.80
	85.18
	29
	28.89
	271.69
	95.32
	30
	28.20
	299.89
	105.21
	31
	29.68
	329.57
	115.62
	32
	28.91
	358.48
	125.76
	33
	29.48
	387.96
	136.11
	34
	29.53
	417.49
	146.47
	35
	29.76
	447.26
	156.91
	36
	28.44
	475.70
	166.89
	37
	28.56
	504.26
	176.91
	38
	28.30
	532.57
	186.84
	39
	28.32
	560.88
	196.77
	40
	28.88
	589.76
	206.90
	41
	28.16
	617.92
	216.78
	42
	28.69
	646.60
	226.84
	43
	28.59
	675.20
	236.88
	44
	28.63
	703.83
	246.92
	45
	28.59
	732.42
	256.95
	Note: Experimental  23 mm;  1900 mm, and  235.47 kN.m
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	Table G.3: Energy dissipated by specimen CL2 based on overall system
	Cycle 
	number
	Energy dissipated  
	per cycle 
	(kN.m)
	Cumulative energy 
	dissipated 
	(kN.m)
	Cumulative 
	Norm. energy 
	dissipated
	1
	1.10
	1.10
	0.18
	2
	0.64
	1.74
	0.29
	3
	0.68
	2.42
	0.40
	4
	0.61
	3.03
	0.51
	5
	0.73
	3.76
	0.63
	6
	5.51
	9.27
	1.55
	7
	4.34
	13.61
	2.28
	8
	3.97
	17.58
	2.94
	9
	4.10
	21.68
	3.63
	10
	4.10
	25.78
	4.31
	11
	8.20
	33.98
	5.69
	12
	8.12
	42.10
	7.05
	13
	7.90
	50.00
	8.37
	14
	7.94
	57.94
	9.70
	15
	7.93
	65.87
	11.02
	16
	32.21
	98.08
	16.41
	17
	30.32
	128.41
	21.49
	18
	28.14
	156.55
	26.20
	19
	28.76
	185.31
	31.01
	20
	29.09
	214.40
	35.88
	21
	39.58
	253.98
	42.50
	22
	40.44
	294.42
	49.27
	23
	40.23
	334.65
	56.00
	24
	40.00
	374.65
	62.70
	25
	39.83
	414.48
	69.36
	26
	36.81
	451.29
	75.52
	27
	26.85
	478.14
	80.01
	Note: Experimental  41 mm;  1900 mm, and  276.92 kN.m 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	Table G.4: Energy dissipated by specimen CL3 based on overall system
	Cycle 
	number
	Energy dissipated per cycle 
	(kN.m)
	Cumulative energy 
	dissipated 
	(kN.m)
	Cumulative 
	Norm. energy 
	dissipated
	1
	1.35
	1.35
	0.22
	2
	0.72
	2.07
	0.34
	3
	0.62
	2.69
	0.45
	4
	0.56
	3.25
	0.54
	5
	0.59
	3.84
	0.64
	6
	3.80
	7.64
	1.27
	7
	3.14
	10.78
	1.79
	8
	2.97
	13.75
	2.28
	9
	2.84
	16.59
	2.76
	10
	2.86
	19.45
	3.23
	11
	6.92
	26.37
	4.38
	12
	6.32
	32.69
	5.43
	13
	6.05
	38.74
	6.44
	14
	6.89
	45.63
	7.58
	15
	6.29
	51.92
	8.63
	16
	31.34
	83.26
	13.83
	17
	26.33
	109.59
	18.21
	18
	25.26
	134.85
	22.40
	19
	24.74
	159.59
	26.51
	20
	23.74
	183.33
	30.46
	21
	37.99
	221.32
	36.77
	22
	36.79
	258.11
	42.88
	23
	36.26
	294.37
	48.90
	24
	35.93
	330.30
	54.87
	25
	36.66
	366.96
	60.96
	26
	35.99
	402.95
	66.94
	27
	36.00
	438.95
	72.92
	28
	35.24
	474.19
	78.78
	29
	35.69
	509.88
	84.71
	30
	35.36
	545.23
	90.58
	31
	35.31
	580.55
	96.45
	32
	35.90
	616.45
	102.41
	33
	35.33
	651.77
	108.28
	34
	35.22
	687.00
	114.13
	35
	35.05
	722.05
	119.96
	36
	35.09
	757.14
	125.79
	37
	35.06
	792.21
	131.61
	38
	35.01
	827.21
	137.43
	39
	35.16
	862.37
	143.27
	40
	34.98
	897.35
	149.08
	41
	34.98
	932.33
	154.89
	42
	35.01
	967.33
	160.71
	43
	34.92
	1002.26
	166.51
	44
	35.22
	1037.48
	172.36
	45
	34.74
	1072.22
	178.13
	Note: Experimental  38 mm;  1900 mm, and  300.96 kN.m 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	Table G.5: Energy dissipated by specimen CL4 based on overall system
	Cycle 
	number
	Energy dissipated per cycle 
	(kN.m)
	Cumulative energy 
	dissipated 
	(kN.m)
	Cumulative 
	Norm. energy 
	dissipated
	1
	0.68
	0.68
	0.16
	2
	0.46
	1.14
	0.26
	3
	0.39
	1.53
	0.35
	4
	0.36
	1.89
	0.43
	5
	0.36
	2.25
	0.51
	6
	1.87
	4.12
	0.94
	7
	1.24
	5.36
	1.23
	8
	1.14
	6.50
	1.49
	9
	1.10
	7.60
	1.74
	10
	1.02
	8.62
	1.97
	11
	3.57
	12.18
	2.79
	12
	2.83
	15.01
	3.43
	13
	2.64
	17.65
	4.03
	14
	2.68
	20.33
	4.65
	15
	3.22
	23.55
	5.38
	16
	18.34
	41.88
	9.57
	17
	14.36
	56.25
	12.86
	18
	14.72
	70.97
	16.22
	19
	13.94
	84.91
	19.41
	20
	13.91
	98.82
	22.59
	21
	32.23
	131.05
	29.96
	22
	29.44
	160.49
	36.69
	23
	29.07
	189.56
	43.33
	24
	29.19
	218.75
	50.01
	25
	30.50
	249.25
	56.98
	26
	37.59
	286.84
	65.57
	27
	36.75
	323.59
	73.97
	28
	36.41
	360.00
	82.29
	29
	36.24
	396.24
	90.58
	30
	36.08
	432.32
	98.83
	31
	35.87
	468.19
	107.03
	32
	36.01
	504.20
	115.26
	33
	35.56
	539.76
	123.39
	34
	35.28
	575.04
	131.45
	35
	35.44
	610.48
	139.55
	36
	35.01
	645.49
	147.63
	37
	34.94
	680.43
	155.71
	38
	34.54
	714.97
	163.79
	39
	35.34
	750.32
	171.87
	40
	35.34
	785.66
	179.95
	41
	35.14
	820.80
	187.98
	42
	35.24
	856.05
	196.02
	43
	34.67
	890.72
	203.94
	44
	34.53
	925.25
	211.84
	45
	34.58
	959.83
	219.74
	Note: Experimental  28 mm;  1900 mm, and  296.84 kN.m
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	Table G.6: Energy dissipated by specimen CL5 based on overall system
	Cycle 
	number
	Energy dissipated  
	per cycle 
	(kN.m)
	Cumulative energy 
	dissipated 
	(kN.m)
	Cumulative 
	Norm. energy 
	dissipated
	1
	0.43
	0.43
	0.20
	2
	0.23
	0.66
	0.30
	3
	0.16
	0.82
	0.37
	4
	0.15
	0.97
	0.44
	5
	0.14
	1.12
	0.51
	6
	1.96
	3.08
	1.39
	7
	0.72
	3.79
	1.72
	8
	0.65
	4.45
	2.01
	9
	0.51
	4.96
	2.24
	10
	0.50
	5.46
	2.47
	11
	2.44
	7.90
	3.57
	12
	1.78
	9.68
	4.37
	13
	1.76
	11.44
	5.17
	14
	1.60
	13.04
	5.89
	15
	1.50
	14.53
	6.57
	16
	12.39
	26.93
	12.17
	17
	9.13
	36.06
	16.30
	18
	8.84
	44.90
	20.29
	19
	8.11
	53.01
	23.96
	20
	7.89
	60.90
	27.53
	21
	19.86
	80.76
	36.50
	22
	17.23
	98.00
	44.29
	23
	17.23
	115.23
	52.08
	24
	15.33
	130.55
	59.01
	25
	14.42
	144.98
	65.53
	26
	24.75
	169.73
	76.71
	27
	24.80
	194.53
	87.92
	28
	23.12
	217.65
	98.37
	29
	22.89
	240.54
	108.72
	30
	21.38
	261.92
	118.38
	31
	31.18
	293.10
	132.48
	32
	28.92
	322.02
	145.55
	33
	29.47
	351.49
	158.87
	34
	27.29
	378.78
	171.20
	35
	26.49
	405.27
	183.18
	36
	32.77
	438.05
	197.99
	37
	28.44
	466.49
	210.84
	Note: Experimental  8 mm;  750 mm, and  207.42 kN.m 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	Table G.7: Energy dissipated by specimen CL6 based on overall system
	Cycle 
	number
	Energy dissipated per cycle 
	(kN.m)
	Cumulative energy 
	dissipated 
	(kN.m)
	Cumulative 
	Norm. energy 
	dissipated
	1
	0.69
	0.69
	0.22
	2
	0.39
	1.08
	0.34
	3
	0.43
	1.51
	0.48
	4
	0.38
	1.89
	0.60
	5
	0.33
	2.22
	0.70
	6
	2.11
	4.33
	1.37
	7
	1.20
	5.53
	1.75
	8
	1.26
	6.79
	2.15
	9
	1.32
	8.11
	2.56
	10
	1.18
	9.29
	2.94
	11
	3.42
	12.71
	4.02
	12
	2.83
	15.53
	4.91
	13
	2.35
	17.89
	5.65
	14
	2.37
	20.25
	6.40
	15
	2.62
	22.88
	7.23
	16
	14.70
	37.58
	11.88
	17
	11.92
	49.50
	15.64
	18
	11.40
	60.90
	19.24
	19
	11.72
	72.62
	22.95
	20
	11.38
	84.00
	26.55
	21
	24.49
	108.50
	34.29
	22
	22.62
	131.11
	41.43
	23
	24.54
	155.65
	49.19
	24
	27.79
	183.45
	57.97
	25
	25.84
	209.29
	66.14
	26
	40.47
	249.76
	78.93
	27
	38.25
	288.01
	91.02
	28
	39.75
	327.76
	103.58
	29
	40.16
	367.92
	116.27
	30
	38.90
	406.82
	128.56
	31
	43.79
	450.61
	142.40
	Note: Experimental  8.5 mm;  760 mm, and  282.93 kN.m
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	Table G.8: Energy dissipated by specimen CL7 based on overall system
	Cycle 
	number
	Energy dissipated per cycle 
	(kN.m)
	Cumulative energy 
	dissipated 
	(kN.m)
	Cumulative 
	Norm. energy 
	dissipated
	1
	1.26
	1.26
	0.28
	2
	0.75
	2.00
	0.44
	3
	0.63
	2.63
	0.58
	4
	0.75
	3.38
	0.75
	5
	0.84
	4.22
	0.93
	6
	3.24
	7.46
	1.65
	7
	2.15
	9.61
	2.12
	8
	1.24
	10.84
	2.40
	9
	1.39
	12.23
	2.70
	10
	1.65
	13.87
	3.07
	11
	5.24
	19.11
	4.23
	12
	4.41
	23.52
	5.20
	13
	4.54
	28.06
	6.20
	14
	3.72
	31.78
	7.03
	15
	3.62
	35.40
	7.83
	16
	20.68
	56.08
	12.40
	17
	16.86
	72.94
	16.13
	18
	15.86
	88.81
	19.64
	19
	15.59
	104.40
	23.09
	20
	14.66
	119.06
	26.33
	21
	31.65
	150.72
	33.33
	22
	30.68
	181.40
	40.11
	23
	29.99
	211.39
	46.74
	24
	29.81
	241.19
	53.33
	25
	31.90
	273.10
	60.39
	26
	50.00
	323.09
	71.44
	27
	46.96
	370.06
	81.83
	28
	41.95
	412.00
	91.10
	29
	40.90
	452.91
	100.15
	30
	42.10
	495.01
	109.46
	31
	61.23
	556.24
	123.00
	32
	58.81
	615.05
	136.00
	33
	58.30
	673.35
	148.89
	34
	57.52
	730.87
	161.61
	35
	51.80
	782.67
	173.07
	Note: Experimental  11.5 mm;  755 mm, and  296.90 kN.m
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	Table G.9: Energy dissipated by specimen CL8 based on overall system
	Cycle 
	number
	Energy dissipated per cycle 
	(kN.m)
	Cumulative energy 
	dissipated 
	(kN.m)
	Cumulative 
	Norm. energy 
	dissipated
	1
	0.71
	0.71
	0.17
	2
	0.56
	1.27
	0.30
	3
	0.56
	1.83
	0.43
	4
	0.67
	2.50
	0.59
	5
	0.65
	3.15
	0.75
	6
	1.53
	4.68
	1.11
	7
	2.46
	7.14
	1.70
	8
	2.26
	9.40
	2.23
	9
	1.50
	10.90
	2.59
	10
	1.72
	12.62
	3.00
	11
	2.39
	15.01
	3.57
	12
	3.46
	18.48
	4.39
	13
	2.72
	21.20
	5.04
	14
	4.27
	25.47
	6.05
	15
	3.61
	29.07
	6.91
	16
	17.30
	46.37
	11.02
	17
	15.88
	62.26
	14.79
	18
	15.86
	78.12
	18.56
	19
	14.23
	92.34
	21.94
	20
	13.64
	105.98
	25.19
	21
	29.67
	135.65
	32.24
	22
	28.98
	164.63
	39.12
	23
	27.96
	192.59
	45.77
	24
	29.70
	222.29
	52.82
	25
	28.71
	251.00
	59.65
	26
	43.94
	294.94
	70.09
	27
	42.80
	337.74
	80.26
	28
	41.04
	378.77
	90.01
	29
	41.22
	419.99
	99.81
	30
	40.28
	460.27
	109.38
	31
	57.62
	517.89
	123.07
	32
	57.03
	574.92
	136.62
	33
	54.55
	629.48
	149.59
	34
	54.80
	684.27
	162.61
	35
	54.19
	738.46
	175.49
	Note: Experimental  11 mm;  775 mm, and  296.48 kN.m 
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	H. DISTRIBUTION OF ENERGY DISSIPATION IN COLUMNS 
	 
	Although the curvature distributions give a general idea of damage distribution in the test regions of the columns, it is difficult to quantify the level of damage in a certain segment of the test region using only these diagrams. Conversely, the distribution of energy dissipation in columns gives a better idea of the damage distribution and the location of the most damaged region,  , of the column. In addition, it helps to estimate the effective plastic hinge lengths, , in the columns. 
	 
	Figures H 1 through H 8 shows the distribution of energy dissipation along the test regions of collared columns (CL1 to CL8) for different levels of displacement ductility. These figures also give insight into the variation of energy dissipation in different parts of the column with the increase of displacement ductility. The energy dissipated at a particular displacement ductility level is the sum of energy dissipated in all the cycles to that level. 
	 
	The values of energy dissipated per cycle based on the overall systems are given in Appendix G. The energy dissipated per loop based on the overall system is equal to the area enclosed by the moment at column base vs. lateral drift hysteresis loop. The values of energy dissipated up to the centreline of the first collar and the second and/or third collar are given in Tables H.1 through H.8 for columns CL1 through CL8. The energy dissipated per cycle is equal to the area enclosed by the moment vs. collar rotation (in radians) hysteresis loop. However, for these hysteresis loops, the moment was calculated at a point located midway between the top of the footing and the centreline of the collar under consideration. 
	 
	H.1 Column CL1 
	 
	Figure H 1 shows the distribution of energy dissipation along column CL1 at different levels of displacement ductility. The centreline of collars 1 and 3 are located at 55 mm and 256 mm, respectively, from the top of the footing (Table 4.4). The energy dissipation below the first collar was only calculated up to cycle 20 because the stroke of the LVDTs used for measuring the rotation of the collar was exhausted in one direction. Figure 4 91 shows the curvature distribution for this column. The curvature distributions for ductility levels  4.6 and  6.59 were calculated using the data of the LVDTs for one direction only. The calculations for the distribution of energy dissipation in this column presented below are based on the sum of energy dissipated in cycles 16 through 20, cycles 21 through 25, and in cycles 1 through 45. The reason for choosing cycles 16 through 20 and cycles 21 through 25 is that the corresponding displacement ductilities are  3.1 and  4.6, respectively, which encompass the displacement ductility level  4, that is often used for the design of reinforced concrete frames in zones of high seismic activity. 
	 
	Based on the sum of energy dissipated in cycles 16 through 20 in different parts of the column, the energy dissipated below the first and third collar is 47.06% and 78.34%, respectively, of the energy dissipated in the overall system, and the remaining 21.66% is dissipated in the region between the third collar and the point of application of horizontal load. Based on the above, the energy dissipated between collar 1 and collar 3 is 31.28% of the total energy dissipated. Based on the sum of energy dissipated in cycles 21 through 25 in different parts of the column, the energy dissipated below the third collar is 77.67% and the remaining 22.33% is dissipated in the region between the third collar and the point of application of horizontal load.  
	 
	Based on the cumulative energy dissipated from cycle 1 through 45, the energy dissipated below the third collar is 80.22% of the energy dissipated in the overall system and 19.78% is dissipated above the third collar. Figure 4 19 shows the extent of damage in different parts of column CL1 at different stages of the test. 
	 
	H.2 Column CL2 
	 
	Figure H 2 shows the distribution of energy dissipation along column CL2 at different levels of displacement ductility. The distances from the centreline of collars 1 and 2 are 76 mm and 240 mm, respectively, from the top of the footing (Table 4.4). The calculations for the distribution of energy dissipation in this column are based on the sum of energy dissipated in cycles 11 through 15, cycles 16 through 20, and in cycles 1 through 27. The reason for choosing cycles 11 through 15 and 16 through 20 is that the displacement ductilities are  2.65 and  5.29, respectively, which encompass the ductility level  4. 
	 
	Based on the sum of energy dissipated in cycles 11 through 15 in different parts of the column, the energy dissipated below the first and second collar is 28.09% and 75.08%, respectively, of the energy dissipated in the overall system, and the remaining 24.92% is dissipated in the region between the second collar and the point of application of horizontal load. Therefore, the energy dissipated between collars 1 and 2 is 46.99% of the energy dissipated in the overall system. Based on cycles 16 through 20 in different parts of the column, the energy dissipated below the first and second collars is 13.81% and 76.74%, respectively, of the energy dissipated in the overall system, and the remaining 23.26% is dissipated in the region between the second collar and the point of application of horizontal load. The energy dissipated between collars 1 and 2 is 62.93% of the total energy dissipated in these cycles. 
	 
	Based on the sum of energy dissipated in cycles 1 through 27, the energy dissipated below the first and second collars is 12.13% and 81.83%, respectively, of the energy dissipated in the overall system, and the remaining 18.17% is dissipated in the region between the second collar and the point of application of horizontal load. The energy dissipated between collars 1 and 2 is 69.70% of the total energy dissipated in these cycles. 
	 
	The energy dissipation between the first and second collar is much higher than that below the first collar. This is in accordance with the curvature distributions of the column along the test region at different levels of displacement ductility (Figure 4 92). The rupture of vertical bars between collars 1 and 2 support these observations (Figure 4 20). 
	 
	H.3 Column CL3 
	 
	Figure H 3 shows the distribution of energy dissipation along column CL3 at different levels of displacement ductility. The distance to the centreline of collars 1 and 3 are 64 mm and 294 mm, respectively, from the top of the footing (Table 4.4). The calculations for the distribution of energy dissipation in this column are based on the sum of energy dissipated in cycles 11 through 15, cycles 16 through 20, and in cycles 1 through 45. Cycles 11 through 15 and cycles 16 through 20 were selected because the displacement ductility levels of these cycles are  2.38 and  4.75, respectively, which encompass the ductility level  4. 
	 
	Based on the sum of energy dissipated in cycles 11 through 15 in different parts of the column, the energy dissipated below the first and third collars is 25.90% and 62.85%, respectively, of the energy dissipated in the overall system in these cycles, and the remaining 37.15% is dissipated in the region between the third collar and the point of application of horizontal load. The energy dissipated between collars 1 and 3 is 36.95% of the total energy dissipated in these cycles. Based on the sum of energy dissipated in cycles 16 through 20, the energy dissipated below the first and third collars is 16.55% and 61.33%, respectively, of the energy dissipated in the overall system in these cycles, and the remaining 38.67% is dissipated in the region between the third collar and the point of application of horizontal load. The energy dissipated between collars 1 and 3 is 44.78% of the total energy dissipated in these cycles. 
	 
	Based on the sum of energy dissipated in cycles 1 through 45, the energy dissipated below the first and third collars is 12.15% and 61.77%, respectively, of the energy dissipated in the overall system in these cycles, and the remaining 38.23% is dissipated in the region between the third collar and the point of application of horizontal load. The energy dissipated between collars 1 and 3 is 49.62% of the total energy dissipated in these cycles.  
	 
	The energy dissipation between the first and third collars is higher than that below the first collar. The appearance of the test region of the column shows considerable damage above the third collar (Figure 4 21(d)), which supports the calculated distribution of energy dissipation.  
	 
	H.4 Column CL4 
	 
	Figure H 4 shows the distribution of energy dissipation along column CL4 at different levels of displacement ductility. The distance from the centreline of collars 1 and 3 are 66 mm and 285 mm, respectively, from the top of the footing (Table 4.4). The calculations for the distribution of energy dissipation in this column are based on the sum of energy dissipated in cycles 16 through 20, and energy dissipated in cycles 1 through 45. The reason for choosing cycles 16 through 20 is that these cycles were performed at a ductility level of,  4.  
	 
	Based on the sum of energy dissipated in cycles 16 through 20, the energy dissipated below the first and third collars is 30.65% and 81.40%, respectively, of the energy dissipated in the overall system in these cycles, and the remaining 18.60% is dissipated in the region between the third collar and the point of application of horizontal load. The energy dissipated between collars 1 and 3 is 50.75% of the total energy dissipated in these cycles. 
	 
	Based on the sum of energy dissipated in cycles 1 through 45, the energy dissipated below the first and third collars is 30.62% and 79.10%, respectively, of the energy dissipated in the overall system in these cycles, and the remaining 20.90% is dissipated in the region between the third collar and the point of application of horizontal load. The energy dissipated between collars 1 and 3 is 48.48% of the total energy dissipated in these cycles. 
	 
	The data above indicate that the distribution of energy dissipation along the column is relatively uniform, calculated based on cycles 16 through 20 and based on cycles 1 through 45. From Figure H 4 and the sum of energy dissipated from cycles 1 through 45, it can be seen that 30.62%, 48.48%, and 20.90% of the total energy is dissipated below the first collar, between the first and third collars, and between the third collar and the point of application of horizontal load. The appearance of the test region of the column shows some damage above the third collar (Figure 4 22(d)), which supports the calculated distribution of energy dissipation. 
	 
	H.5 Column CL5 
	 
	Figure H 5 shows the distribution of energy dissipation along column CL5 at different levels of displacement ductility. The distance of centerline of collar 1 and collar 3 are 50 and 260 mm, respectively, from the top of footing (Table 4.4). The calculations for the distribution of energy dissipation in this column are based on the sum of energy dissipated in cycles 16 through 20, and the sum of energy dissipated in cycles 1 through 37. The reason for choosing cycles 16 through 20 is that these cycles were performed at a displacement ductility level of  4.27, which is close to  4, generally used for the design of reinforced concrete frames in the zones of high seismic activity. 
	 
	Based on the sum of energy dissipated in cycles 16 through 20 in different parts of the column, the energy dissipated below the first and third collar is 77.87 and 82.75%, respectively, of the energy dissipated in the overall system in these cycles, and the remaining 17.25% is dissipated in the region between the third collar and the point of application of horizontal load. Based on the above, the energy dissipated between collar 1 and collar 3 is 4.88% of the energy dissipated in the overall system.  
	 
	Based on the sum of energy dissipated in cycles 1 through 37 in different parts of the column, the energy dissipated below the first and third collar is 60.79 and 76.82%, respectively, of the energy dissipated in the overall system in these cycles, and the remaining 23.18% is dissipated in the region between the third collar and the point of application of horizontal load. Based on the above, the energy dissipated between collar 1 and collar 3 is 16.03% of the energy dissipated in the overall system.  
	 
	From Figure H 5 and the data above, it is evident that 60.79%, 16.03%, and 23.18% of the total energy dissipated in the system is dissipated below the first collar, between the first and the third collars, and between the third collar and the point of application of horizontal load. An increase in the energy dissipation above the third collar takes place with the increase in the displacement ductility level. Figure 4 23 shows that most of the damage occurs below the first collar and between first and second collars. 
	 
	 
	 
	H.6 Column CL6 
	 
	Figure H 6 shows the distribution of energy dissipation along column CL6 at different levels of displacement ductility. The energy dissipation below the first is collar is generally higher than the energy dissipated below the second collar. This discrepancy is explained as follows: rotation takes place only below the first collar and the remainder of the test region just rotates as a rigid body. Hence, the rotation of the first collar and second collar are almost identical. However, the moment corresponding to the first collar is higher than that corresponding to the second collar. As a result, the energy dissipation below the second collar is lower than the energy dissipation below the first collar. Based on this, it can be deduced that the energy dissipation between the first and second collars is very small. Figure 4 24(d) shows the appearance of column CL6 at the end of the test; the damage is visible only below first collar. 
	 
	The distance of the centerline of collar 1 and collar 2 are 97 and 254 mm, respectively, from the top of footing (Table 4.4). The calculations for the distribution of energy dissipation in this column are based on the sum of energy dissipated in cycles 11 through 15, cycles 16 through 20, and energy dissipated in cycles 1 through 31. The reason for choosing cycles 11 through 15, and cycles 16 through 20 is that the displacement ductility level of cycles 11 through 15, and cycles 16 through 20 are  2.43 and  4.86, respectively, which encompass the ductility level  4, that is generally used for the design of reinforced concrete frames in zones of high seismic activity. 
	 
	Based on the sum of energy dissipated in cycles 11 through 15 in different parts of the column, the energy dissipated below the first collar is 87.86% of the energy dissipated in the overall system, and the remaining 12.14% is dissipated in the region between the first collar and the point of application of horizontal load. Based on the sum of energy dissipated in cycles 16 through 20 in different parts of the column, the energy dissipated below the first collar is 92.21% of the energy dissipated in the overall system, and the remaining 7.79% is dissipated in the region between the first collar and point of application of horizontal load. 
	 
	Based on the sum of energy dissipated in cycles 1 through 31 in different parts of the column, the energy dissipated below the first collar is 87.01% of the energy dissipated in the overall system, and the remaining 12.99% is dissipated in the region between the first collar and the point of application of horizontal load. 
	 
	Hence, most of the energy is dissipated below the first collar, which is also clear from the curvature distributions along the test region of the column at different levels of displacement ductility (Figure 4 96). 
	 
	H.7 Column CL7 
	 
	Figure H 7 shows the distribution of energy dissipation along column CL7 at different levels of displacement ductility. The energy dissipation below the third collar is lower than that dissipated below the second collar. The reason for this discrepancy has already been given in section H.6. Figure 4 26(d) shows the damage below the first collar and between first and second collars. The distance of the centerline of collar 1, 2, and 3 are 51, 152, and 252 mm, respectively, from the top of footing (Table 4.4). The calculations for the distribution of energy dissipation in this column are based on the sum of energy dissipated in cycles 11 through 15, cycles 16 through 20, and energy dissipated in cycles 1 through 35. The reason for choosing cycles 11 through 15, and cycles 16 through 20 is that the displacement ductility level of cycle 11 through 15, and cycles 16 through 20 are  2.44 and  4.89, respectively, which encompass the ductility level  4, that is generally used for the design of reinforced concrete frames in zones of high seismic activity. 
	 
	Based on the sum of energy dissipated in cycles 11 through 15 in different parts of the column, the energy dissipated below the first and second collar is 66.05 and 67.95%, respectively, of the energy dissipated in the overall system in these cycles, and the remaining 32.05% is dissipated in the region between the second collar and the point of application of horizontal load. The energy dissipated between the first and second collar is 1.90% of the energy dissipated in the overall system. Based on the sum of energy dissipated in cycles 16 through 20 in different parts of the column, the energy dissipated below the first and second collar is 59.81 and 70.69%, respectively, of the energy dissipated in the overall system, and the remaining 29.31% is dissipated in the region between the second collar and the point of application of the horizontal load. The energy dissipated between the first and second collar is 10.88% of the energy dissipated in the overall system. 
	 
	Based on the sum of energy dissipated in cycles 1 through 35 in different parts of the column, the energy dissipated below the first and second collar is 54.23 and 66.68%, respectively, of the energy dissipated in the overall system in these cycles, and the remaining 33.32% is dissipated in the region between the third collar and the point of application of horizontal load. The energy dissipated between collar 1 and collar 2 is 12.45% of the energy dissipated in the overall system. 
	 
	Based on the above data, a significant amount of the overall energy is dissipated below the first collar. 
	 
	H.8 Column CL8 
	 
	Figure H 8 shows the distribution of energy dissipation along column CL8 at different levels of displacement ductility. The energy dissipation below the third collar is lower than that dissipated below the second collar. The reason for this discrepancy has been given in section 4.3.11.6. Other similar discrepancies in energy dissipation are also seen at ductility level  2.44.  
	 
	The distance of the centerline of collar 1, 2, and 3 are 65, 170, and 270 mm, respectively, from the top of footing (Table 4.4). The calculations for the distribution of energy dissipation in this column are based on the sum of energy dissipated in cycles 16 through 20 and energy dissipated in cycles 1 through 35. The reason for choosing cycles 16 through 20 is that the displacement ductility level of cycles 16 through 20 is  4.89, which is close to the ductility level  4, that is generally used for the design of reinforced concrete frames in zones of high seismic activity. 
	 
	Based on the sum of energy dissipated in cycles 16 through 20 in different parts of the column, the energy dissipated below the first and second collar is 53.91 and 84.93%, respectively, of the energy dissipated in the overall system in these cycles, and the remaining 15.07% is dissipated in region between the second collar and point of application of horizontal load. Based on the above, the energy dissipated between the first and second collar is 31.02% of the energy dissipated in the overall system. 
	 
	Based on the sum of energy dissipated in cycles 1 through 35 in different parts of the column, the energy dissipated below the second collar is 63.60% of the energy dissipated in the overall system in these cycles, and the remaining 36.40% is dissipated in the region between the second collar and the point of application of horizontal load. 
	 
	The appearance of the test region of the column in Figure 4 27(d), shows considerable damage below the first collar and between first and second collars, which is in accordance with the calculations of energy dissipation in different parts of the column given above. 
	 
	  
	Table H.1: Energy dissipated up to different heights of the test region for column CL1
	 
	 
	Cycle 
	number
	Energy 
	dissipated per cycle below 3rd collar 
	(kN.m)
	Cumulative 
	energy 
	dissipated below 
	3rd collar 
	(kN.m)
	Energy 
	dissipated  
	per cycle  
	below 1st collar 
	(kN.m)
	Cumulative 
	energy 
	dissipated  
	below 1st 
	collar 
	(kN.m)
	1
	0.14
	0.14
	0.08
	0.08
	2
	0.09
	0.23
	0.06
	0.14
	3
	0.06
	0.29
	0.05
	0.19
	4
	0.05
	0.34
	0.03
	0.22
	5
	0.05
	0.39
	0.03
	0.25
	6
	0.65
	1.04
	0.47
	0.73
	7
	0.36
	1.40
	0.28
	1.01
	8
	0.43
	1.83
	0.33
	1.33
	9
	0.36
	2.19
	0.27
	1.60
	10
	0.28
	2.47
	0.22
	1.82
	11
	1.41
	3.88
	0.93
	2.75
	12
	1.19
	5.07
	0.81
	3.56
	13
	1.08
	6.15
	0.73
	4.29
	14
	1.03
	7.18
	0.70
	4.99
	15
	1.00
	8.18
	0.69
	5.69
	16
	8.48
	16.67
	5.07
	10.75
	17
	7.08
	23.75
	4.21
	14.97
	18
	6.92
	30.67
	4.14
	19.11
	19
	6.79
	37.46
	4.17
	23.28
	20
	6.39
	43.85
	3.84
	27.12
	21
	15.13
	58.98
	-
	-
	22
	14.26
	73.24
	-
	-
	23
	14.11
	87.35
	-
	-
	24
	14.71
	102.06
	-
	-
	25
	13.58
	115.63
	-
	-
	26
	24.57
	140.20
	-
	-
	27
	25.16
	165.36
	-
	-
	28
	23.69
	189.05
	-
	-
	29
	22.89
	211.94
	-
	-
	30
	22.48
	234.42
	-
	-
	31
	23.70
	258.13
	-
	-
	32
	23.16
	281.28
	-
	-
	33
	23.69
	304.97
	-
	-
	34
	23.80
	328.77
	-
	-
	35
	24.07
	352.84
	-
	-
	36
	23.09
	375.93
	-
	-
	37
	23.21
	399.14
	-
	-
	38
	23.14
	422.28
	-
	-
	39
	23.19
	445.47
	-
	-
	40
	23.80
	469.27
	-
	-
	41
	23.20
	492.47
	-
	-
	42
	23.76
	516.23
	-
	-
	43
	23.66
	539.89
	-
	-
	44
	23.87
	563.77
	-
	-
	45
	23.79
	587.55
	-
	-
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	Table H.2: Energy dissipated up to different heights of the test region for column CL2
	 
	 
	Cycle 
	number
	Energy 
	dissipated per cycle below 2nd 
	 collar 
	(kN.m)
	Cumulative 
	energy 
	dissipated below 2nd 
	collar 
	(kN.m)
	Energy 
	dissipated  
	per cycle  
	below 1st collar 
	(kN.m)
	Cumulative 
	energy 
	dissipated  
	below 1st 
	collar 
	(kN.m)
	1
	0.53
	0.53
	0.35
	0.35
	2
	0.31
	0.84
	0.20
	0.55
	3
	0.31
	1.16
	0.22
	0.77
	4
	0.30
	1.45
	0.20
	0.96
	5
	0.37
	1.82
	0.25
	1.21
	6
	4.07
	5.89
	1.81
	3.02
	7
	3.25
	9.14
	1.45
	4.47
	8
	2.97
	12.11
	1.31
	5.79
	9
	3.05
	15.16
	1.35
	7.14
	10
	3.06
	18.22
	1.35
	8.48
	11
	6.13
	24.35
	2.39
	10.87
	12
	6.09
	30.45
	2.31
	13.18
	13
	5.92
	36.37
	2.20
	15.37
	14
	5.99
	42.36
	2.17
	17.54
	15
	5.96
	48.32
	2.15
	19.69
	16
	24.33
	72.65
	5.25
	24.94
	17
	23.17
	95.82
	4.42
	29.36
	18
	21.57
	117.39
	3.74
	33.10
	19
	22.23
	139.63
	3.63
	36.73
	20
	22.68
	162.30
	3.47
	40.20
	21
	32.03
	194.34
	4.05
	44.25
	22
	33.42
	227.76
	3.56
	47.81
	23
	33.94
	261.70
	3.19
	51.00
	24
	34.59
	296.28
	2.77
	53.76
	25
	35.37
	331.66
	2.28
	56.04
	26
	34.07
	365.73
	1.46
	57.50
	27
	25.51
	391.24
	0.51
	58.01
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	Table H.3: Energy dissipated up to different heights of the test region for column CL3
	 
	 
	Cycle 
	number
	Energy 
	dissipated per cycle below 3rd 
	collar 
	(kN.m)
	Cumulative 
	energy 
	dissipated below 
	3rd collar 
	(kN.m)
	Energy 
	dissipated 
	per cycle 
	below 1st collar 
	(kN.m)
	Cumulative 
	energy 
	dissipated  
	below 1st 
	collar 
	(kN.m)
	1
	0.62
	0.62
	0.41
	0.41
	2
	0.32
	0.94
	0.21
	0.62
	3
	0.29
	1.23
	0.19
	0.82
	4
	0.26
	1.49
	0.18
	0.99
	5
	0.25
	1.74
	0.19
	1.19
	6
	2.59
	4.33
	1.21
	2.40
	7
	2.12
	6.45
	1.04
	3.44
	8
	2.00
	8.45
	0.96
	4.41
	9
	1.91
	10.36
	0.91
	5.32
	10
	1.92
	12.28
	0.91
	6.23
	11
	4.44
	16.72
	1.89
	8.12
	12
	4.05
	20.77
	1.68
	9.79
	13
	3.89
	24.66
	1.58
	11.38
	14
	4.35
	29.01
	1.71
	13.09
	15
	3.99
	33.00
	1.55
	14.64
	16
	19.49
	52.49
	5.41
	20.04
	17
	16.19
	68.69
	4.44
	24.48
	18
	15.42
	84.11
	4.16
	28.64
	19
	15.04
	99.14
	3.97
	32.61
	20
	14.45
	113.59
	3.78
	36.39
	21
	23.39
	136.98
	5.99
	42.37
	22
	22.52
	159.50
	5.64
	48.01
	23
	22.11
	181.61
	5.47
	53.48
	24
	21.76
	203.38
	5.27
	58.75
	25
	22.20
	225.58
	5.40
	64.15
	26
	22.76
	248.34
	5.35
	69.50
	27
	21.82
	270.16
	5.16
	74.66
	28
	21.33
	291.49
	4.97
	79.63
	29
	21.94
	313.43
	2.78
	82.41
	30
	21.80
	335.23
	2.60
	85.01
	31
	21.79
	357.02
	2.47
	87.48
	32
	22.17
	379.19
	2.72
	90.21
	33
	21.83
	401.02
	2.57
	92.78
	34
	21.80
	422.82
	2.57
	95.35
	35
	21.72
	444.54
	2.54
	97.89
	36
	21.77
	466.31
	2.64
	100.54
	37
	21.72
	488.03
	2.64
	103.17
	38
	21.75
	509.78
	2.58
	105.75
	39
	21.76
	531.54
	2.84
	108.59
	40
	21.68
	553.23
	5.51
	114.10
	41
	21.75
	574.98
	2.85
	116.95
	42
	21.78
	596.76
	2.49
	119.44
	43
	21.78
	618.55
	2.32
	121.75
	44
	22.00
	640.55
	4.10
	125.85
	45
	21.73
	662.28
	4.39
	130.24
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	Table H.4: Energy dissipated up to different heights of the test region for column CL4
	 
	 
	Cycle 
	number
	Energy 
	dissipated per cycle below 3rd 
	collar 
	(kN.m)
	Cumulative 
	energy 
	dissipated below 
	3rd collar 
	(kN.m)
	Energy 
	dissipated 
	per cycle 
	below 1st collar 
	(kN.m)
	Cumulative 
	energy 
	dissipated 
	below 1st 
	collar 
	(kN.m)
	1
	0.35
	0.35
	0.14
	0.14
	2
	0.26
	0.60
	0.13
	0.27
	3
	0.18
	0.79
	0.13
	0.40
	4
	0.18
	0.97
	0.12
	0.52
	5
	0.18
	1.14
	0.12
	0.64
	6
	1.14
	2.28
	0.78
	1.42
	7
	0.70
	2.99
	0.49
	1.91
	8
	0.67
	3.65
	0.46
	2.38
	9
	0.65
	4.31
	0.43
	2.81
	10
	0.57
	4.87
	0.41
	3.22
	11
	2.80
	7.67
	1.92
	5.14
	12
	2.19
	9.87
	1.48
	6.62
	13
	2.08
	11.94
	1.37
	7.99
	14
	2.09
	14.03
	1.35
	9.34
	15
	2.60
	16.63
	1.51
	10.85
	16
	14.81
	31.44
	5.78
	16.63
	17
	11.70
	43.14
	4.54
	21.16
	18
	11.99
	55.12
	4.51
	25.68
	19
	11.40
	66.52
	4.15
	29.83
	20
	11.38
	77.90
	4.09
	33.92
	21
	24.82
	102.73
	8.30
	42.22
	22
	22.97
	125.69
	7.23
	49.45
	23
	22.64
	148.34
	6.91
	56.36
	24
	22.69
	171.03
	6.77
	63.13
	25
	23.86
	194.89
	8.69
	71.82
	26
	35.64
	230.53
	12.58
	84.40
	27
	28.68
	259.21
	9.29
	93.69
	28
	28.44
	287.65
	9.04
	102.73
	29
	28.33
	315.98
	8.73
	111.46
	30
	28.15
	344.12
	8.37
	119.83
	31
	28.15
	372.27
	8.50
	128.33
	32
	28.18
	400.45
	10.87
	139.20
	33
	27.91
	428.36
	9.66
	148.86
	34
	27.62
	455.98
	9.05
	157.91
	35
	27.84
	483.82
	11.70
	169.61
	36
	26.44
	510.27
	14.54
	184.15
	37
	28.43
	538.70
	14.26
	198.41
	38
	27.65
	566.35
	13.76
	212.16
	39
	27.99
	594.34
	14.66
	226.82
	40
	26.55
	620.88
	12.68
	239.49
	41
	27.93
	648.81
	12.98
	252.48
	42
	27.87
	676.68
	11.54
	264.02
	43
	27.51
	704.19
	10.21
	274.23
	44
	27.53
	731.72
	8.28
	282.51
	45
	27.55
	759.27
	11.37
	293.88
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	Table H.5: Energy dissipated up to different heights of the test region for column CL5
	 
	 
	Cycle 
	number
	Energy 
	dissipated per cycle below 3rd collar 
	(kN.m)
	Cumulative 
	energy 
	dissipated below 
	3rd collar 
	(kN.m)
	Energy 
	dissipated 
	per cycle 
	below 1st collar 
	(kN.m) 
	Cumulative 
	energy 
	dissipated 
	below 1st 
	collar 
	(kN.m)
	1
	0.34
	0.34
	0.26
	0.26
	2
	0.16
	0.49
	0.14
	0.40
	3
	0.11
	0.60
	0.11
	0.51
	4
	0.14
	0.74
	0.11
	0.62
	5
	0.09
	0.82
	0.09
	0.72
	6
	1.57
	2.40
	1.57
	2.28
	7
	0.49
	2.89
	0.61
	2.90
	8
	0.52
	3.41
	0.59
	3.48
	9
	0.27
	3.68
	0.46
	3.95
	10
	0.26
	3.94
	0.47
	4.42
	11
	1.72
	5.67
	2.25
	6.67
	12
	1.35
	7.02
	1.68
	8.35
	13
	1.38
	8.40
	1.66
	10.01
	14
	1.28
	9.68
	1.50
	11.51
	15
	1.26
	10.94
	1.41
	12.92
	16
	10.44
	21.38
	9.90
	22.82
	17
	7.59
	28.97
	7.07
	29.89
	18
	7.45
	36.42
	6.80
	36.69
	19
	6.70
	43.12
	6.25
	42.94
	20
	6.39
	49.51
	6.09
	49.03
	21
	17.12
	66.62
	13.33
	62.36
	22
	15.63
	82.25
	13.49
	75.85
	23
	14.53
	96.78
	12.69
	88.55
	24
	12.67
	109.45
	10.71
	99.26
	25
	11.95
	121.40
	10.05
	109.31
	26
	20.53
	141.93
	15.10
	124.41
	27
	20.21
	162.14
	15.37
	139.79
	28
	18.78
	180.92
	14.38
	154.16
	29
	18.06
	198.98
	14.31
	168.47
	30
	16.67
	215.65
	13.98
	182.45
	31
	24.24
	239.88
	19.05
	201.51
	32
	22.21
	262.09
	18.97
	220.47
	33
	21.21
	283.30
	18.87
	239.34
	34
	19.20
	302.50
	9.53
	248.87
	35
	17.69
	320.19
	20.12
	268.98
	36
	21.28
	341.47
	6.33
	275.32
	37
	16.89
	358.36
	8.25
	283.57
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	Table H.6: Energy dissipated up to different heights of the test region for column CL6
	 
	 
	 
	Cycle 
	number
	Energy 
	dissipated per cycle below 2nd collar 
	(kN.m)
	Cumulative 
	energy 
	dissipated below 
	2nd collar 
	(kN.m)
	Energy 
	dissipated 
	per cycle 
	below 1st collar 
	(kN.m) 
	Cumulative 
	energy 
	dissipated 
	below 1st 
	collar 
	(kN.m)
	1
	0.55
	0.55
	0.41
	0.41
	2
	0.24
	0.78
	0.22
	0.63
	3
	0.13
	0.92
	0.15
	0.77
	4
	0.43
	1.35
	0.35
	1.12
	5
	0.04
	1.39
	0.09
	1.21
	6
	1.67
	3.06
	1.57
	2.78
	7
	0.65
	3.70
	0.67
	3.45
	8
	0.82
	4.52
	0.82
	4.27
	9
	0.72
	5.24
	0.77
	5.04
	10
	0.65
	5.89
	0.72
	5.76
	11
	2.66
	8.55
	2.87
	8.63
	12
	2.43
	10.98
	2.56
	11.19
	13
	1.99
	12.97
	2.12
	13.31
	14
	1.86
	14.83
	2.04
	15.35
	15
	2.19
	17.02
	2.35
	17.70
	16
	12.66
	29.68
	13.69
	31.39
	17
	10.50
	40.18
	11.13
	42.52
	18
	9.95
	50.14
	10.52
	53.04
	19
	10.26
	60.40
	10.79
	63.83
	20
	9.79
	70.19
	10.24
	74.06
	21
	21.53
	91.72
	21.27
	95.34
	22
	19.93
	111.65
	19.48
	114.82
	23
	21.80
	133.45
	21.36
	136.18
	24
	24.47
	157.92
	24.21
	160.39
	25
	22.58
	180.51
	22.62
	183.01
	26
	35.35
	215.86
	35.79
	218.80
	27
	32.83
	248.69
	34.00
	252.80
	28
	33.68
	282.36
	35.61
	288.40
	29
	33.82
	316.18
	36.24
	324.64
	30
	32.98
	349.16
	35.70
	360.35
	31
	29.20
	378.37
	31.76
	392.10
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	Table H.7: Energy dissipated up to different heights of the test region for column CL7 
	 
	 
	Cycle 
	number
	Energy 
	dissipated per cycle below 3rd collar 
	(kN.m)
	Cumulative 
	energy 
	dissipated below 
	3rd collar 
	(kN.m)
	Energy 
	dissipated per cycle below 2nd collar 
	(kN.m)
	Cumulative 
	energy 
	dissipated below 
	2nd collar 
	(kN.m)
	Energy 
	dissipated per cycle below first collar 
	(kN.m)
	Cumulative 
	energy 
	dissipated below 
	first collar 
	(kN.m)
	1
	0.77
	0.77
	0.66
	0.66
	0.49
	0.49
	2
	0.45
	1.22
	0.42
	1.08
	0.26
	0.76
	3
	0.36
	1.59
	0.33
	1.41
	0.23
	0.99
	4
	0.46
	2.05
	0.43
	1.84
	0.22
	1.20
	5
	0.53
	2.57
	0.49
	2.33
	0.24
	1.44
	6
	2.01
	4.59
	2.08
	4.41
	1.81
	3.25
	7
	1.35
	5.94
	1.38
	5.79
	1.21
	4.46
	8
	0.77
	6.71
	0.82
	6.61
	0.93
	5.39
	9
	0.87
	7.57
	0.90
	7.51
	0.82
	6.22
	10
	1.03
	8.61
	1.09
	8.60
	0.94
	7.16
	11
	3.30
	11.90
	3.50
	12.10
	3.47
	10.62
	12
	2.81
	14.71
	3.01
	15.11
	2.80
	13.43
	13
	2.88
	17.59
	3.09
	18.20
	2.94
	16.36
	14
	2.37
	19.97
	2.52
	20.72
	2.46
	18.82
	15
	2.31
	22.28
	2.51
	23.23
	2.56
	21.38
	16
	13.49
	35.77
	14.55
	37.78
	12.18
	33.56
	17
	11.10
	46.87
	11.93
	49.71
	9.93
	43.49
	18
	10.45
	57.33
	11.26
	60.97
	9.75
	53.24
	19
	10.28
	67.61
	11.00
	71.97
	9.24
	62.48
	20
	9.73
	77.34
	10.40
	82.37
	8.94
	71.42
	21
	20.90
	98.24
	21.80
	104.18
	18.28
	89.69
	22
	20.28
	118.52
	21.04
	125.21
	17.27
	106.96
	23
	19.78
	138.30
	20.50
	145.71
	17.04
	124.00
	24
	19.66
	157.96
	20.38
	166.10
	16.95
	140.95
	25
	20.96
	178.92
	21.77
	187.86
	18.03
	158.97
	26
	32.30
	211.22
	33.04
	220.91
	25.91
	184.89
	27
	30.46
	241.68
	31.28
	252.18
	24.35
	209.24
	28
	27.06
	268.74
	27.77
	279.96
	22.59
	231.83
	29
	26.30
	295.05
	27.09
	307.05
	22.45
	254.28
	30
	26.96
	322.00
	27.74
	334.79
	23.09
	277.37
	31
	39.29
	361.30
	40.14
	374.92
	30.51
	307.88
	32
	37.40
	398.69
	38.18
	413.10
	29.82
	337.70
	33
	36.95
	435.64
	37.74
	450.84
	29.90
	367.59
	34
	36.34
	471.99
	37.25
	488.10
	29.79
	397.38
	35
	32.95
	504.94
	33.82
	521.92
	27.06
	424.44
	 
	 
	 
	 
	  
	 
	Table H.8: Energy dissipated up to different heights of the test region for column CL8 
	Cycle 
	number
	Energy 
	dissipated per cycle below  
	3rd collar 
	(kN.m)
	Cumulative 
	energy 
	dissipated below 
	3rd collar 
	(kN.m)
	Energy 
	dissipated per cycle below  
	2nd collar 
	(kN.m)
	Cumulative 
	energy 
	dissipated below 
	2nd collar 
	(kN.m)
	Energy 
	dissipated per cycle below first collar 
	(kN.m)
	Cumulative 
	energy 
	dissipated below 
	first collar 
	(kN.m)
	1
	0.44
	0.44
	0.40
	0.40
	0.33
	0.33
	2
	0.34
	0.78
	0.34
	0.73
	0.21
	0.54
	3
	0.41
	1.19
	0.42
	1.16
	0.18
	0.72
	4
	0.38
	1.57
	0.39
	1.55
	0.18
	0.90
	5
	0.88
	2.45
	0.97
	2.52
	0.50
	1.40
	6
	1.55
	4.00
	1.62
	4.14
	1.17
	2.57
	7
	1.41
	5.41
	1.51
	5.65
	1.04
	3.61
	8
	0.93
	6.34
	1.01
	6.66
	0.71
	4.32
	9
	1.07
	7.41
	1.17
	7.82
	0.85
	5.17
	10
	1.52
	8.93
	1.65
	9.48
	1.25
	6.42
	11
	2.26
	11.19
	2.50
	11.98
	1.98
	8.40
	12
	1.76
	12.95
	1.87
	13.85
	1.27
	9.68
	13
	2.79
	15.74
	3.04
	16.89
	2.24
	11.91
	14
	2.33
	18.07
	2.54
	19.43
	1.88
	13.79
	15
	11.65
	29.72
	12.57
	32.00
	8.17
	21.96
	16
	10.79
	40.51
	11.52
	43.52
	7.38
	29.34
	17
	10.83
	51.34
	11.53
	55.06
	7.36
	36.70
	18
	9.69
	61.03
	10.32
	65.37
	6.52
	43.22
	19
	9.31
	70.34
	9.88
	75.25
	6.29
	49.51
	20
	20.37
	90.71
	20.68
	95.93
	13.02
	62.54
	21
	19.99
	110.71
	20.26
	116.19
	12.63
	75.17
	22
	19.32
	130.03
	19.58
	135.77
	12.16
	87.33
	23
	20.38
	150.41
	20.71
	156.48
	13.01
	100.34
	24
	19.68
	170.09
	19.96
	176.44
	12.46
	112.80
	25
	30.12
	200.21
	30.52
	206.96
	18.79
	131.59
	26
	29.55
	229.75
	29.78
	236.74
	18.30
	149.89
	27
	27.87
	257.62
	28.23
	264.97
	17.56
	167.45
	28
	27.83
	285.45
	28.21
	293.18
	17.63
	185.08
	29
	27.05
	312.50
	27.45
	320.63
	17.52
	202.60
	30
	38.28
	350.78
	39.22
	359.85
	8.70
	211.29
	31
	37.54
	388.32
	38.50
	398.35
	-
	-
	32
	35.56
	423.89
	36.69
	435.05
	-
	-
	33
	35.61
	459.49
	36.92
	471.97
	-
	-
	34
	34.97
	494.46
	36.46
	508.43
	-
	-
	35
	37.28
	531.74
	38.39
	546.82
	-
	-
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	Appendix-J.pdf
	J. DUCTILITY PARAMETERS 
	 
	 
	Table J.1: Ductility ratios and energy damage indicator for column CL0.
	 
	Cycle 
	number
	Ductility  
	Ratio 
	Cumulative 
	ductility 
	ratios 
	Energy 
	damage 
	indicator 
	Cumulative 
	energy damage 
	indicator
	1
	1.70
	1.70
	0.83
	0.83
	2
	1.90
	3.60
	0.81
	1.64
	3
	2.04
	5.64
	0.86
	2.49
	4
	2.11
	7.76
	0.87
	3.37
	5
	2.10
	9.86
	0.75
	4.12
	6
	4.32
	14.18
	13.79
	17.91
	7
	4.39
	18.57
	8.13
	26.04
	8
	4.69
	23.26
	8.73
	34.77
	9
	4.38
	27.65
	6.80
	41.57
	10
	4.93
	32.58
	10.77
	52.34
	11
	5.87
	38.45
	22.25
	74.59
	12
	5.87
	44.32
	18.17
	92.75
	13
	6.40
	50.73
	23.50
	116.25
	14
	6.24
	56.97
	22.90
	139.15
	15
	5.98
	62.95
	19.20
	158.35
	16
	12.23
	75.18
	198.17
	356.52
	17
	11.59
	86.78
	109.28
	465.80
	18
	11.59
	98.37
	109.28
	575.08
	19
	11.41
	109.78
	103.30
	678.39
	20
	11.39
	121.17
	102.34
	780.72
	21
	17.28
	138.44
	359.42
	1140.14
	22
	17.28
	155.72
	376.21
	1516.35
	23
	17.53
	173.25
	364.11
	1880.47
	24
	18.30
	191.55
	384.99
	2265.46
	25
	18.27
	209.82
	397.38
	2662.84
	26
	19.33
	229.15
	462.94
	3125.78
	27
	19.39
	248.54
	478.14
	3603.92
	28
	19.39
	267.93
	478.14
	4082.06
	29
	19.39
	287.32
	458.46
	4540.52
	30
	19.54
	306.86
	453.60
	4994.12
	31
	19.54
	326.40
	454.57
	5448.70
	32
	19.64
	346.04
	461.61
	5910.30
	33
	19.61
	365.65
	457.59
	6367.90
	34
	19.70
	385.35
	459.92
	6827.81
	35
	19.71
	405.07
	456.62
	7284.43
	36
	19.80
	424.87
	459.91
	7744.35
	37
	19.93
	444.80
	451.80
	8196.15
	38
	19.67
	464.47
	508.08
	8704.23
	39
	20.28
	484.75
	385.95
	9090.17
	40
	20.44
	505.19
	385.34
	9475.51
	41
	20.52
	525.71
	392.94
	9868.45
	42
	20.60
	546.31
	389.68
	10258.13
	43
	20.74
	567.06
	389.43
	10647.55
	44
	21.15
	588.20
	392.75
	11040.31
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	Table J.2: Ductility ratios and energy damage indicator for column CL1.
	 
	Cycle 
	number
	Ductility  
	Ratio 
	Cumulative 
	ductility 
	ratios 
	Energy 
	damage 
	indicator 
	Cumulative 
	energy damage 
	indicator
	1
	0.57
	0.57
	0.01
	0.01
	2
	0.64
	1.21
	0.01
	0.02
	3
	0.64
	1.85
	0.01
	0.03
	4
	0.65
	2.50
	0.01
	0.03
	5
	0.65
	3.15
	0.01
	0.04
	6
	1.16
	4.31
	0.11
	0.15
	7
	1.17
	5.48
	0.08
	0.23
	8
	1.24
	6.72
	0.09
	0.32
	9
	1.21
	7.93
	0.07
	0.39
	10
	1.16
	9.10
	0.06
	0.45
	11
	1.60
	10.70
	0.32
	0.77
	12
	1.62
	12.32
	0.29
	1.06
	13
	1.60
	13.92
	0.25
	1.31
	14
	1.60
	15.52
	0.24
	1.55
	15
	1.63
	17.15
	0.24
	1.79
	16
	3.52
	20.68
	5.22
	7.01
	17
	3.56
	24.23
	4.12
	11.13
	18
	3.55
	27.79
	3.85
	14.98
	19
	3.58
	31.36
	3.78
	18.76
	20
	3.54
	34.90
	3.50
	22.26
	21
	5.46
	40.37
	15.69
	37.95
	22
	5.50
	45.86
	13.82
	51.76
	23
	5.52
	51.39
	13.56
	65.33
	24
	5.67
	57.05
	13.93
	79.26
	25
	5.44
	62.50
	11.66
	90.92
	26
	7.55
	70.05
	35.43
	126.35
	27
	7.70
	77.75
	34.06
	160.41
	28
	7.61
	85.35
	30.41
	190.82
	29
	7.51
	92.86
	28.65
	219.47
	30
	7.47
	100.33
	27.22
	246.69
	31
	7.69
	108.02
	29.76
	276.45
	32
	7.58
	115.60
	27.43
	303.88
	33
	7.68
	123.27
	28.66
	332.54
	34
	7.67
	130.94
	28.31
	360.85
	35
	7.66
	138.60
	28.18
	389.03
	36
	7.54
	146.14
	25.87
	414.90
	37
	7.52
	153.66
	25.57
	440.47
	38
	7.53
	161.19
	24.72
	465.19
	39
	7.55
	168.74
	24.37
	489.56
	40
	7.63
	176.36
	24.94
	514.50
	41
	7.52
	183.89
	23.01
	537.51
	42
	7.61
	191.49
	24.12
	561.63
	43
	7.61
	199.10
	23.70
	585.33
	44
	7.59
	206.69
	23.96
	609.29
	45
	7.60
	214.29
	22.94
	632.23
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	Table J.3: Ductility ratios and energy damage indicator for column CL2.
	 
	Cycle 
	number
	Ductility  
	Ratio 
	Cumulative 
	ductility 
	ratios 
	Energy 
	damage 
	indicator 
	Cumulative 
	energy damage 
	indicator
	1
	1.53
	1.53
	0.16
	0.16
	2
	1.62
	3.15
	0.11
	0.27
	3
	1.72
	4.87
	0.13
	0.39
	4
	1.73
	6.60
	0.12
	0.51
	5
	1.79
	8.39
	0.14
	0.65
	6
	3.60
	11.98
	2.62
	3.27
	7
	3.59
	15.57
	2.04
	5.31
	8
	3.53
	19.10
	1.79
	7.10
	9
	3.62
	22.72
	1.90
	9.00
	10
	3.63
	26.35
	1.88
	10.88
	11
	4.88
	31.23
	5.72
	16.60
	12
	4.96
	36.20
	5.66
	22.26
	13
	4.99
	41.18
	5.45
	27.71
	14
	5.02
	46.20
	5.48
	33.19
	15
	5.02
	51.22
	5.41
	38.60
	16
	10.76
	61.98
	60.81
	99.41
	17
	10.81
	72.79
	55.04
	154.46
	18
	10.71
	83.50
	49.69
	204.15
	19
	10.69
	94.20
	49.51
	253.66
	20
	10.74
	104.94
	49.44
	303.10
	21
	12.79
	117.73
	89.37
	392.47
	22
	13.10
	130.83
	86.63
	479.10
	23
	13.09
	143.92
	84.34
	563.44
	24
	13.18
	157.10
	80.00
	643.44
	25
	13.21
	170.31
	77.98
	721.42
	26
	13.59
	183.89
	63.72
	785.15
	27
	13.77
	197.67
	39.18
	824.33
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	Table J.4: Ductility ratios and energy damage indicator for column CL3.
	 
	Cycle 
	number
	Ductility  
	Ratio 
	Cumulative 
	ductility 
	ratios 
	Energy 
	damage 
	indicator 
	Cumulative 
	energy damage 
	indicator
	1
	1.42
	1.42
	0.26
	0.26
	2
	1.48
	2.90
	0.16
	0.43
	3
	1.50
	4.40
	0.15
	0.58
	4
	1.52
	5.92
	0.14
	0.72
	5
	1.50
	7.42
	0.14
	0.86
	6
	2.52
	9.93
	1.90
	2.76
	7
	2.64
	12.58
	1.70
	4.46
	8
	2.58
	15.16
	1.50
	5.96
	9
	2.52
	17.68
	1.39
	7.34
	10
	2.44
	20.12
	1.30
	8.65
	11
	3.61
	23.73
	5.51
	14.16
	12
	3.65
	27.38
	5.02
	19.18
	13
	3.58
	30.96
	4.71
	23.89
	14
	3.56
	34.52
	5.23
	29.12
	15
	3.64
	38.16
	4.90
	34.01
	16
	8.04
	46.20
	66.67
	100.68
	17
	7.91
	54.11
	53.00
	153.68
	18
	7.79
	61.91
	48.88
	202.56
	19
	7.78
	69.69
	46.74
	249.29
	20
	7.78
	77.47
	44.12
	293.42
	21
	9.78
	87.25
	98.90
	392.32
	22
	9.77
	97.02
	91.17
	483.48
	23
	9.72
	106.75
	87.24
	570.73
	24
	9.71
	116.46
	88.33
	659.05
	25
	9.77
	126.22
	85.75
	744.80
	26
	9.77
	135.99
	90.45
	835.26
	27
	9.76
	145.75
	84.90
	920.15
	28
	9.76
	155.51
	85.72
	1005.87
	29
	9.76
	165.27
	85.03
	1090.90
	30
	9.77
	175.04
	82.73
	1173.63
	31
	9.79
	184.83
	83.88
	1257.51
	32
	9.77
	194.60
	81.68
	1339.19
	33
	9.79
	204.39
	83.42
	1422.61
	34
	9.74
	214.13
	82.07
	1504.68
	35
	9.79
	223.92
	82.52
	1587.20
	36
	9.71
	233.64
	80.65
	1667.85
	37
	9.79
	243.43
	81.20
	1749.05
	38
	9.79
	253.22
	80.08
	1829.13
	39
	9.79
	263.01
	82.02
	1911.15
	40
	9.79
	272.80
	80.96
	1992.11
	41
	9.76
	282.56
	80.39
	2072.50
	42
	9.80
	292.36
	79.75
	2152.25
	43
	9.79
	302.15
	80.23
	2232.48
	44
	9.80
	311.94
	79.83
	2312.30
	45
	9.77
	321.71
	78.62
	2390.93
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	Table J.4: Ductility ratios and energy damage indicator for column CL4.
	 
	Cycle 
	number
	Ductility  
	Ratio 
	Cumulative 
	ductility 
	ratios 
	Energy 
	damage 
	indicator 
	Cumulative 
	energy damage 
	indicator
	1
	0.91
	0.91
	0.06
	0.06
	2
	0.97
	1.87
	0.05
	0.11
	3
	1.04
	2.91
	0.04
	0.16
	4
	1.02
	3.93
	0.04
	0.19
	5
	1.01
	4.94
	0.04
	0.23
	6
	1.99
	6.93
	0.71
	0.94
	7
	1.97
	8.90
	0.42
	1.35
	8
	2.03
	10.93
	0.40
	1.75
	9
	2.00
	12.93
	0.38
	2.13
	10
	2.01
	14.94
	0.33
	2.46
	11
	2.71
	17.66
	2.08
	4.54
	12
	2.71
	20.36
	1.63
	6.17
	13
	2.71
	23.07
	1.50
	7.66
	14
	2.74
	25.82
	1.53
	9.20
	15
	2.92
	28.73
	2.03
	11.23
	16
	5.93
	34.66
	27.06
	38.29
	17
	5.85
	40.51
	22.07
	60.37
	18
	5.99
	46.50
	22.16
	82.53
	19
	5.94
	52.44
	21.21
	103.74
	20
	5.93
	58.36
	21.01
	124.75
	21
	9.22
	67.58
	85.70
	210.45
	22
	9.23
	76.81
	76.93
	287.39
	23
	9.28
	86.09
	75.32
	362.71
	24
	9.33
	95.42
	75.96
	438.67
	25
	9.64
	105.06
	84.02
	522.69
	26
	10.79
	115.85
	143.81
	666.51
	27
	10.83
	126.68
	115.40
	781.91
	28
	10.82
	137.50
	112.67
	894.58
	29
	10.77
	148.27
	107.96
	1002.53
	30
	10.84
	159.11
	109.28
	1111.81
	31
	10.85
	169.97
	109.46
	1221.27
	32
	10.86
	180.82
	109.31
	1330.58
	33
	10.84
	191.67
	107.30
	1437.88
	34
	10.81
	202.48
	103.28
	1541.17
	35
	10.83
	213.31
	104.68
	1645.84
	36
	10.83
	224.14
	108.26
	1754.10
	37
	10.83
	234.96
	108.60
	1862.70
	38
	10.83
	245.79
	108.26
	1970.96
	39
	10.83
	256.62
	108.26
	2079.22
	40
	10.83
	267.45
	108.26
	2187.48
	41
	10.82
	278.27
	101.92
	2289.40
	42
	10.84
	289.11
	102.15
	2391.55
	43
	10.80
	299.91
	97.96
	2489.51
	44
	10.83
	310.74
	99.52
	2589.03
	45
	10.83
	321.57
	97.18
	2686.22
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	Table J.5: Ductility ratios and energy damage indicator for column CL5.
	 
	Cycle 
	number
	Ductility  
	Ratio 
	Cumulative 
	ductility 
	ratios 
	Energy 
	damage 
	indicator 
	Cumulative 
	energy damage 
	indicator
	1
	1.16
	1.16
	0.09
	0.09
	2
	1.22
	2.38
	0.05
	0.14
	3
	1.21
	3.59
	0.04
	0.17
	4
	1.23
	4.82
	0.03
	0.21
	5
	1.23
	6.05
	0.03
	0.24
	6
	2.17
	8.21
	0.89
	1.13
	7
	2.07
	10.29
	0.31
	1.44
	8
	2.11
	12.40
	0.29
	1.72
	9
	2.02
	14.42
	0.21
	1.93
	10
	2.06
	16.47
	0.21
	2.14
	11
	2.73
	19.20
	1.44
	3.58
	12
	2.66
	21.86
	0.97
	4.54
	13
	2.69
	24.55
	0.96
	5.50
	14
	2.67
	27.23
	0.83
	6.33
	15
	2.65
	29.88
	0.78
	7.11
	16
	5.46
	35.34
	15.83
	22.94
	17
	5.16
	40.50
	9.83
	32.77
	18
	5.19
	45.69
	9.67
	42.44
	19
	5.05
	50.74
	8.23
	50.67
	20
	5.04
	55.78
	7.92
	58.59
	21
	7.65
	63.44
	35.43
	94.02
	22
	7.72
	71.15
	32.74
	126.76
	23
	7.72
	78.87
	28.04
	154.80
	24
	7.36
	86.23
	20.82
	175.62
	25
	7.17
	93.40
	18.92
	194.54
	26
	9.47
	102.87
	48.24
	242.78
	27
	9.26
	112.13
	43.59
	286.37
	28
	9.10
	121.24
	38.54
	324.91
	29
	9.10
	130.33
	36.12
	361.04
	30
	8.64
	138.97
	31.39
	392.43
	31
	10.46
	149.44
	50.46
	442.90
	32
	10.60
	160.04
	42.32
	485.22
	33
	10.82
	170.86
	44.07
	529.29
	34
	10.53
	181.39
	38.58
	567.86
	35
	10.61
	192.00
	36.34
	604.21
	36
	12.53
	204.53
	51.52
	655.72
	37
	12.49
	217.02
	38.06
	693.78
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	Table J.6: Ductility ratios and energy damage indicator for column CL6
	 
	Cycle 
	number
	Ductility  
	Ratio 
	Cumulative 
	ductility 
	ratios 
	Energy 
	damage 
	indicator 
	Cumulative 
	energy damage 
	indicator
	1
	1.16
	1.16
	0.05
	0.05
	2
	1.24
	2.40
	0.03
	0.08
	3
	1.45
	3.85
	0.05
	0.13
	4
	1.44
	5.29
	0.04
	0.18
	5
	1.39
	6.68
	0.04
	0.21
	6
	2.53
	9.22
	0.47
	0.68
	7
	2.46
	11.68
	0.25
	0.93
	8
	2.54
	14.22
	0.28
	1.21
	9
	2.60
	16.82
	0.29
	1.50
	10
	2.59
	19.41
	0.26
	1.76
	11
	3.27
	22.68
	0.99
	2.75
	12
	3.22
	25.90
	0.77
	3.52
	13
	3.23
	29.13
	0.65
	4.17
	14
	3.23
	32.36
	0.63
	4.81
	15
	3.35
	35.71
	0.75
	5.55
	16
	6.41
	42.12
	9.11
	14.67
	17
	6.21
	48.33
	6.71
	21.37
	18
	6.26
	54.59
	6.31
	27.69
	19
	6.36
	60.95
	6.49
	34.18
	20
	6.31
	67.26
	6.19
	40.37
	21
	9.36
	76.62
	23.02
	63.39
	22
	9.28
	85.90
	20.39
	83.77
	23
	9.80
	95.70
	23.32
	107.10
	24
	10.41
	106.11
	25.83
	132.92
	25
	10.26
	116.37
	24.14
	157.06
	26
	13.07
	129.44
	51.07
	208.13
	27
	13.04
	142.48
	45.49
	253.62
	28
	13.39
	155.87
	46.51
	300.13
	29
	13.68
	169.55
	48.20
	348.33
	30
	13.43
	182.98
	46.11
	394.44
	31
	12.38
	195.36
	34.72
	429.16
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	Table J.7: Ductility ratios and energy damage indicator for column CL7.
	 
	Cycle 
	number
	Ductility  
	Ratio 
	Cumulative 
	ductility 
	ratios 
	Energy 
	damage 
	indicator 
	Cumulative 
	energy damage 
	indicator
	1
	1.24
	1.24
	0.09
	0.09
	2
	1.36
	2.60
	0.06
	0.15
	3
	1.41
	4.01
	0.06
	0.21
	4
	1.46
	5.47
	0.06
	0.27
	5
	1.55
	7.03
	0.06
	0.33
	6
	2.58
	9.61
	0.76
	1.09
	7
	2.63
	12.24
	0.54
	1.62
	8
	2.56
	14.80
	0.41
	2.03
	9
	2.49
	17.30
	0.34
	2.37
	10
	2.64
	19.94
	0.38
	2.75
	11
	3.45
	23.39
	1.78
	4.54
	12
	3.44
	26.83
	1.39
	5.92
	13
	3.52
	30.35
	1.47
	7.39
	14
	3.36
	33.70
	1.19
	8.58
	15
	3.48
	37.18
	1.30
	9.88
	16
	6.67
	43.86
	15.38
	25.26
	17
	6.60
	50.45
	11.86
	37.12
	18
	6.62
	57.07
	11.29
	48.41
	19
	6.59
	63.65
	10.47
	58.87
	20
	6.40
	70.06
	9.62
	68.49
	21
	9.61
	79.67
	35.62
	104.11
	22
	9.84
	89.51
	33.90
	138.01
	23
	9.67
	99.18
	31.88
	169.89
	24
	9.53
	108.71
	29.68
	199.58
	25
	10.28
	118.99
	34.48
	234.05
	26
	12.34
	131.33
	68.98
	303.03
	27
	12.89
	144.22
	67.02
	370.06
	28
	12.01
	156.23
	52.71
	422.77
	29
	11.96
	168.19
	50.08
	472.85
	30
	11.92
	180.11
	50.63
	523.48
	31
	15.58
	195.68
	112.06
	635.53
	32
	15.22
	210.90
	94.59
	730.12
	33
	15.09
	225.99
	99.43
	829.55
	34
	15.00
	240.99
	97.72
	927.27
	35
	15.81
	256.80
	85.14
	1012.41
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	  
	 
	 
	Table J.8: Ductility ratios and energy damage indicator for column CL8.
	 
	Cycle 
	number
	 
	Ductility  
	Ratio 
	Cumulative 
	ductility 
	ratios 
	Energy 
	damage 
	indicator 
	Cumulative 
	energy damage 
	indicator
	1
	1.03
	1.03
	0.07
	0.07
	2
	1.13
	2.16
	0.05
	0.13
	3
	1.13
	3.28
	0.05
	0.18
	4
	1.18
	4.47
	0.05
	0.24
	5
	1.29
	5.76
	0.06
	0.30
	6
	2.09
	7.85
	0.29
	0.59
	7
	2.33
	10.18
	0.61
	1.20
	8
	2.36
	12.54
	0.54
	1.74
	9
	2.23
	14.77
	0.35
	2.09
	10
	2.35
	17.11
	0.47
	2.56
	11
	2.42
	19.53
	0.58
	3.13
	12
	2.91
	22.45
	1.08
	4.21
	13
	2.84
	25.29
	0.73
	4.94
	14
	3.11
	28.39
	1.26
	6.20
	15
	3.02
	31.41
	1.09
	7.29
	16
	5.47
	36.88
	11.45
	18.74
	17
	5.67
	42.55
	10.42
	29.15
	18
	5.85
	48.40
	10.35
	39.51
	19
	5.68
	54.08
	9.08
	48.58
	20
	5.62
	59.70
	8.60
	57.18
	21
	7.97
	67.66
	30.09
	87.27
	22
	8.50
	76.16
	30.60
	117.87
	23
	8.38
	84.54
	27.67
	145.54
	24
	8.80
	93.33
	31.28
	176.82
	25
	8.65
	101.98
	29.13
	205.96
	26
	10.96
	112.95
	62.39
	268.35
	27
	10.69
	123.64
	58.22
	326.57
	28
	10.64
	134.28
	52.97
	379.53
	29
	10.73
	145.00
	51.73
	431.26
	30
	10.65
	155.66
	50.99
	482.25
	31
	13.32
	168.97
	94.80
	577.05
	32
	13.24
	182.22
	84.17
	661.23
	33
	13.04
	195.26
	78.58
	739.81
	34
	13.01
	208.27
	75.49
	815.29
	35
	12.93
	221.20
	74.88
	890.18
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	K. PROGRAM MCR 
	 
	 
	K.1 OBJECTIVE 
	 
	The objective of this computer program is to determine the moment versus curvature relationships of the reinforced concrete sections with and without axial load. The program requires the material curves of the steel longitudinal bars and the concrete. The program works both for confined and unconfined concrete material curves. A sample input file is given subsequently in this appendix. The explanation of various terms in the data file is given in Table K.1. 
	 
	K.2 FORTRAN SOURCE CODE 
	 
	C******************************************************************* 
	C******************************************************************* 
	C******************************************************************* 
	C******************************************************************* 
	C          MUNAWAR ALI HUSSAIN 
	C          PHD. CANDIDATE 
	C          STRUCTURES GROUP 
	C          DEPARTMENT OF CIVIL ENGINEERING  
	C          UNIVERSITY OF ALBERTA  
	C          CANADA, OCTOBER 2003 
	C******************************************************************* 
	C******************************************************************* 
	C******************************************************************* 
	C******************************************************************* 
	        PROGRAM MCR 
	   DIMENSION TITLE(20) 
	C***************************************************************** 
	        OPEN(UNIT=101,FILE='MCR.INP') 
	        OPEN(UNIT=102,FILE='MCR.DAT') 
	        OPEN(UNIT=103,FILE='MCR.CON') 
	        OPEN(UNIT=104,FILE='MCR.STE') 
	C        OPEN(UNIT=105,FILE='MCR.OUT1') 
	   OPEN(UNIT=106,FILE='MCR.OUT') 
	C***************************************************************** 
	        REWIND(101) 
	        REWIND(102) 
	        REWIND(103) 
	        REWIND(104) 
	C       REWIND(105) 
	   REWIND(106) 
	C***************************************************************** 
	1000   FORMAT(20A4) 
	1002    FORMAT(2F26.8) 
	C***************************************************************** 
	        CALL ANAME 
	C***************************************************************** 
	        READ(101,1000)TITLE   
	        WRITE(102,1000)TITLE 
	C   WRITE(105,1000)TITLE 
	   WRITE(106,1000)TITLE   
	        READ(101,1000)TITLE   
	        WRITE(102,1000)TITLE  
	        READ(101,1000)TITLE 
	C***************************************************************** 
	        READ(101,*)NPC,NPS,SNSTA,SINC,SNEND,CINC,AFORCE 
	        WRITE(102,1005)NPC,NPS,SNSTA,SINC,SNEND,CINC,AFORCE 
	1005    FORMAT(/5X,'NPC=',I6/5X,'NPS=',I6/5X,'SNSTA=',F20.6 
	     .  /5X,'SINC=',F20.6 
	     .  /5X,'SNEND=',F20.6/5X,'CINC=',F20.6/5X,'AFORCE=',F20.6/) 
	C***************************************************************** 
	         READ(101,1000)TITLE 
	CCCC     WRITE(102,1000)TITLE 
	         READ(101,*)WIDTH,DEPTH,AS1,AS2,AS3,DST1,DST2,DST3 
	         WRITE(102,1010)WIDTH,DEPTH,AS1,AS2,AS3,DST1,DST2,DST3 
	1010     FORMAT(/5X,'COLUMN WIDTH=',F12.5/5X,'COLUMN DEPTH=',F12.5 
	     .  /5X,'AS1=',F12.5/5X,'AS2=',F12.5/5X,'AS3=',F12.5 
	     .  /5X,'DST1=',F12.5/5X,'DST2=',F12.5/5X,'DST3=',F12.5/) 
	C***************************************************************** 
	   READ(101,1000)TITLE 
	   WRITE(102,1000)TITLE 
	   READ(101,1000)TITLE 
	   WRITE(102,1000)TITLE 
	C***************************************************************** 
	          DO 100 IPC=1,NPC 
	          READ(101,*)CSTRAIN,CSTRESS 
	          WRITE(102,1002)CSTRAIN,CSTRESS 
	          WRITE(103,1002)CSTRAIN,CSTRESS 
	100       CONTINUE 
	C***************************************************************** 
	   READ(101,1000)TITLE 
	   WRITE(102,1000)TITLE 
	   READ(101,1000)TITLE 
	   WRITE(102,1000)TITLE 
	C***************************************************************** 
	          DO 105 IPS=1,NPS 
	          READ(101,*)SSTRAIN,SSTRESS 
	          WRITE(102,1002)SSTRAIN,SSTRESS 
	          WRITE(104,1002)SSTRAIN,SSTRESS 
	105       CONTINUE 
	C***************************************************************** 
	        NITER=SSTRAIN/SINC+1 
	   MITER=DEPTH/CINC+1 
	   WRITE(102,107)NITER,MITER 
	107     FORMAT(/10X,'NITER=',I6,10X,'MITER=',I6) 
	C********************************************************************** 
	        WRITE(102,917) 
	917     FORMAT(/5X,'WIDTH  DEPTH   SN100   CN100   FST1   FST2   FST3   
	     .  AFORCE  CDEPTH  XBAR   CFORCE') 
	C********************************************************************** 
	   REWIND(103) 
	        REWIND(104) 
	C********************************************************************** 
	C  WRITE(105,1235) 
	C1235  FORMAT(10X,'STEEL STRAIN',15X,'MOMENT'/) 
	C********************************************************************** 
	 WRITE(106,1240) 
	1240 FORMAT(/10X,'MOMENT',10X,'SN100',10X,'CN100', 
	     .10X,'CDEPTH',10X,'CURVATURE'/) 
	C********************************************************************** 
	       SN100=SNSTA 
	C********************************************************************** 
	       DO 800 ITER=1,NITER 
	  CDEPTH=1.00000 
	  DO 900 JTER=1,MITER 
	       CN100=SN100*CDEPTH/(DST1-CDEPTH) 
	C***************************************************************** 
	  IF(SN100.LT.0)THEN 
	  CN200=ABS(SN100) 
	  CALL SSTRES(CN200,SSTRES1) 
	  CALL CSTRES(CN200,CSTRES1)  
	  FST1=-(SSTRES1-CSTRES1)*AS1 
	  ELSE 
	       CALL SSTRES(SN100,SSTRES1) 
	  FST1=SSTRES1*AS1 
	  ENDIF 
	C***************************************************************** 
	  SSTRN2=SN100*(DST2-CDEPTH)/(DST1-CDEPTH) 
	  IF(SSTRN2.LT.0)THEN 
	       CSTRN2=ABS(SSTRN2) 
	       CALL SSTRES(CSTRN2,SSTRES2) 
	  CALL CSTRES(CSTRN2,CSTRES2) 
	       FST2=-(SSTRES2-CSTRES2)*AS2 
	       ELSE 
	  CALL SSTRES(SSTRN2,SSTRES2) 
	       FST2=SSTRES2*AS2 
	       ENDIF 
	C***************************************************************** 
	  SSTRN3=SN100*(DST3-CDEPTH)/(DST1-CDEPTH) 
	       IF(SSTRN3.LT.0)THEN 
	  CSTRN3=ABS(SSTRN3) 
	       CALL SSTRES(CSTRN3,SSTRES3) 
	  CALL CSTRES(CSTRN3,CSTRES3) 
	  FST3=-(SSTRES3-CSTRES3)*AS3 
	       ELSE 
	  CALL SSTRES(SSTRN3,SSTRES3) 
	       FST3=SSTRES3*AS3 
	       ENDIF 
	C***************************************************************** 
	        CALL RESCON(WIDTH,CDEPTH,CN100,XBAR,CFORCE) 
	C***************************************************************** 
	  FRES=FST1+FST2+FST3+AFORCE-CFORCE 
	C***************************************************************** 
	 IF(ABS(FRES).LT.1000)THEN 
	      RESMOM=FST1*(DST1-DEPTH/2)+FST2*(DST2-DEPTH/2)+ 
	     .FST3*(DST3-DEPTH/2)+CFORCE*(DEPTH/2-CDEPTH+XBAR)  
	      RESMOM=RESMOM/1000/1000               
	C WRITE(105,915)SN100,RESMOM 
	C915   FORMAT(5X,F20.10,5X,F20.6) 
	 WRITE(102,909)WIDTH,DEPTH,SN100,CN100,FST1,FST2,FST3,AFORCE, 
	 .CDEPTH,XBAR,CFORCE 
	909 FORMAT(11F20.6) 
	C****************************************************************** 
	  PHI=CN100/CDEPTH 
	  WRITE(106,111)RESMOM,SN100,CN100,CDEPTH,PHI 
	111    FORMAT(5E20.8) 
	C****************************************************************** 
	 GOTO 950 
	 ENDIF 
	C****************************************************************** 
	      CDEPTH=CDEPTH+CINC 
	900   CONTINUE   
	C****************************************************************** 
	950   SN100=SN100+SINC 
	        IF(SN100.GT.SNEND)GOTO 2121 
	800     CONTINUE 
	        CALL JOB 
	C****************************************************************** 
	2121            CLOSE(101) 
	                CLOSE(102) 
	                CLOSE(103) 
	                CLOSE(104) 
	C                CLOSE(105) 
	                CLOSE(106) 
	C***************************************************************** 
	       STOP 
	       END  
	C***************************************************************** 
	          SUBROUTINE CSTRES(EPSL,CPP) 
	        CALL ANAME 
	       KOUNT=0 
	       NPOIN=20000 
	C***************************************************************** 
	C***************************************************************** 
	C***************************************************************** 
	       DO 110 IPOIN=1,NPOIN 
	       READ(103,*)EPSLAT,CPDATA 
	       KOUNT=KOUNT+1 
	C***************************************************************** 
	       IF(EPSL.EQ.EPSLAT)THEN 
	       GOTO 200 
	       ENDIF 
	C***************************************************************** 
	        IF(EPSL.LT.EPSLAT)THEN 
	       EPS2=EPSLAT 
	       CP2=CPDATA 
	       GOTO 300 
	       ENDIF 
	110     CONTINUE 
	C***************************************************************** 
	300     KOUNT=KOUNT-1 
	        REWIND(103) 
	       DO 400 K=1,KOUNT 
	       READ(103,*)EPSLAT,CPDATA 
	400     CONTINUE 
	        EPS1=EPSLAT 
	       CP1=CPDATA 
	        CPP=CP1+(CP2-CP1)*(EPSL-EPS1)/(EPS2-EPS1) 
	       GOTO 500 
	C***************************************************************** 
	200     CPP=CPDATA 
	500     REWIND(103)             
	       RETURN 
	        END 
	C***************************************************************** 
	C***************************************************************** 
	C***************************************************************** 
	        SUBROUTINE SSTRES(EPSL,CPP) 
	     CALL ANAME 
	       KOUNT=0 
	       NPOIN=20000 
	C***************************************************************** 
	       DO 110 IPOIN=1,NPOIN 
	       READ(104,*)EPSLAT,CPDATA 
	       KOUNT=KOUNT+1 
	C***************************************************************** 
	       IF(EPSL.EQ.EPSLAT)THEN 
	       GOTO 200 
	       ENDIF 
	C**************************************************************** 
	        IF(EPSL.LT.EPSLAT)THEN 
	       EPS2=EPSLAT 
	       CP2=CPDATA 
	       GOTO 300 
	       ENDIF 
	110     CONTINUE 
	C**************************************************************** 
	300    KOUNT=KOUNT-1 
	       REWIND(104) 
	       DO 400 K=1,KOUNT 
	       READ(104,*)EPSLAT,CPDATA 
	400     CONTINUE 
	       EPS1=EPSLAT 
	       CP1=CPDATA 
	       CPP=CP1+(CP2-CP1)*(EPSL-EPS1)/(EPS2-EPS1) 
	       GOTO 500 
	C***************************************************************** 
	200       CPP=CPDATA 
	500       REWIND(104)    
	        RETURN 
	       END 
	C***************************************************************** 
	C***************************************************************** 
	          SUBROUTINE RESCON(WIDTH,CDEPTH,CSTRAIN,XBAR,SFORCE) 
	     DIMENSION  CDEPT(200),CSTS(200),FCON(200),XDIST(200) 
	     WIDTH=WIDTH 
	     CDEPTH=CDEPTH 
	     NITER=100 
	     CINC=CDEPTH/(NITER-1) 
	     C=0.00000 
	C***************************************************************** 
	     DO 200 ITER=1,NITER 
	     CDEPT(ITER)=C 
	     CTN=CSTRAIN*C/CDEPTH 
	     CALL CSTRES(CTN,CSTS1) 
	     CSTS(ITER)=CSTS1 
	     C=C+CINC 
	200     CONTINUE 
	C***************************************************************** 
	          NITER=NITER-1 
	C***************************************************************** 
	     DO 300 ITER=1,NITER 
	     FCON(ITER)=WIDTH*CINC*(CSTS(ITER)+CSTS(ITER+1))/2 
	     XDIST(ITER)=(CDEPT(ITER)+CDEPT(ITER+1))/2 
	300       CONTINUE 
	C***************************************************************** 
	          SMOM=0.00000 
	     SFORCE=0.0000 
	          DO 400 ITER=1,NITER 
	     SFORCE=SFORCE+FCON(ITER) 
	     SMOM=SMOM+FCON(ITER)*XDIST(ITER) 
	400       CONTINUE 
	C***************************************************************** 
	          SFORCE=SFORCE 
	          XBAR=SMOM/SFORCE 
	C***************************************************************** 
	     RETURN 
	     END 
	C*****************************************************************   
	C***************************************************************** 
	C***************************************************************** 
	C***************************************************************** 
	     SUBROUTINE ANAME 
	     REWIND (103) 
	     REWIND (104) 
	C****************************************************************** 
	     WRITE(*, 10) 
	10  FORMAT(5X, 'DEVELOPED BY MUNAWAR A. HUSSAIN, U OF A, EDMONTON, 
	     .CANADA')  
	C****************************************************************** 
	C****************************************************************** 
	C****************************************************************** 
	     RETURN 
	     END 
	C****************************************************************** 
	C****************************************************************** 
	C****************************************************************** 
	     SUBROUTINE JOB 
	          WRITE(*,10) 
	10  FORMAT(//5X,'JOB COMPLETED! JOB COMPLETED! JOB COMPLETED!'//) 
	   RETURN 
	     END 
	C****************************************************************** 
	C****************************************************************** 
	C****************************************************************** 
	 
	 
	 
	 
	 
	 
	K.3 A SAMPLE INPUT FILE 
	 
	Munawar A. Hussain 
	Department of Civil Engineering, University of Alberta 
	NPC      NPS      SNSTART    SINC      SNEND      CINC        AFORCE  
	20       34        0.001     0.01      0.13       0.001       0.0000 
	WIDTH     DEPTH     AS1     AS2    AS3    DST1     DST2       DST3 
	300.00    300.00   1500    1000   1500    240      150        60 
	Confined-Concrete-Curve Follows 
	        Axial-Strain  Axial-Stress 
	            0.000        0.00 
	            0.005        25.77 
	            0.010        32.03 
	            0.015        33.58 
	            0.020        33.70 
	            0.025        33.41 
	            0.030        32.96 
	            0.035        32.43 
	            0.040        31.84 
	            0.045        31.34 
	            0.050        30.90 
	            0.055        30.49 
	            0.060        30.07 
	            0.065        29.76 
	            0.070        29.44 
	            0.075        29.12 
	            0.080        28.85 
	            0.085        28.59 
	            0.090        28.33 
	            0.095        28.14 
	Stress-Strain-Curve for Vertical Rebars of The Column 
	        Axial-Strain   Axial-Stress 
	            0.000         0.00 
	            0.005        509.87 
	            0.010        517.80 
	            0.015        551.72 
	            0.020        582.22 
	            0.025        609.03 
	            0.030        631.94 
	            0.035        651.67 
	            0.040        667.70 
	            0.045        680.84 
	            0.050        693.33 
	            0.055        702.52 
	            0.060        710.33 
	            0.065        716.58 
	            0.070        721.43 
	            0.075        725.95 
	            0.080        729.06 
	            0.085        731.47 
	            0.090        733.35 
	            0.095        734.92 
	            0.100        735.88 
	            0.105        736.41 
	            0.110        736.48 
	            0.115        736.24 
	            0.120        735.70 
	            0.125        734.90 
	            0.130        733.89 
	            0.135        733.26 
	            0.140        731.34 
	            0.145        729.15 
	            0.150        726.49 
	            0.155        723.53 
	            0.160        720.28 
	            0.165        717.17 
	 
	 
	 
	 
	  
	 
	Table K.1: Explanation of various terms in the input file (MCR.INP)
	TERM
	EXPLANATION
	NPC
	Number of data points in stress versus strain curve of concrete
	NPS
	Number of data points in stress versus strain curve of steel longitudinal bars
	SNSTART
	Start strain for steel longitudinal bars
	SNEND
	Steel strain at which analysis is to be terminated
	SINC
	Increment in steel strain
	CINC
	Increment in c, where c is the distance from extreme compression fiber to the neutral axis of the column section
	Width
	Width of column section
	Depth
	Depth of column section
	AS1
	Area of longitudinal steel 1
	AS2
	Area of longitudinal steel 2
	AS3
	Area of longitudinal steel 3
	DST1
	Distance of longitudinal steel 1 from compression face
	DST2
	Distance of longitudinal steel 2 from compression face
	DST3
	Distance of longitudinal steel 3 from compression face
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	L. P
	 
	 
	L.1 OBJECTIVE 
	 
	Knowing the behaviour of collars in terms of confining pressure versus lateral strain relationships by the finite element or by the proposed empirical models, the computer program C4P is used to find the confined concrete material curve of the reduced core of the confined columns. This program is used in Chapters 5 and 6. A sample input file is also given later in this chapter. The explanation of various terms in the input file is given in Table L.1. 
	 
	L.2 FORTRAN SOURCE CODE 
	 
	C******************************************************************* 
	C******************************************************************* 
	C    The acronym C4P is derived from the following: 
	C    Confinement of reinforced Concrete Columns by steel Collar 
	C******************************************************************* 
	C******************************************************************* 
	C          PROGRAM DEVELOPED BY MUNAWAR A. HUSSAIN 
	C          PHD. CANDIDATE 
	C          STRUCTURES GROUP 
	C          DEPARTMENT OF CIVIL ENGINEERING  
	C          UNIVERSITY OF ALBERTA  
	C          CANADA, MARCH 2003 
	C******************************************************************* 
	C******************************************************************* 
	C******************************************************************* 
	C******************************************************************* 
	C          Dedicated to Sabina and Ali 
	C******************************************************************* 
	C******************************************************************* 
	C******************************************************************* 
	 PROGRAM C4P 
	 DIMENSION TITLE(20) 
	C******************************************************************* 
	C*****C4P.INP  contains input data 
	C*****C4P.DAT  contains the generated data 
	C*****C4P.CPLS  is the scratch file for confining-pressure vs lateral-c*****strain 
	C*****C4P.CPAS  is the scratch file for confining-pressure vs axial-C*****strain 
	C*****C4P.OUT  contains data for confined-concrete-stress vs axial-C*****strain 
	C********************************************************************* 
	        OPEN(UNIT=101,FILE='C4P.inp') 
	   OPEN(UNIT=102,FILE='C4P.dat') 
	   OPEN(UNIT=103,FILE='C4P.cpls') 
	        OPEN(UNIT=104,FILE='C4P.cpas') 
	   OPEN(UNIT=105,FILE='C4P.out') 
	C***************************************************************** 
	        REWIND(101) 
	        REWIND(102) 
	        REWIND(103) 
	   REWIND(104) 
	   REWIND(105) 
	C***************************************************************** 
	1000   FORMAT(20A4) 
	1002    FORMAT(2F26.7) 
	1004   FORMAT(10E12.4) 
	C***************************************************************** 
	      READ(101,1000)TITLE   
	      WRITE(102,1000)TITLE   
	      READ(101,1000)TITLE   
	      WRITE(102,1000)TITLE  
	      READ(101,1000)TITLE 
	CCCCC WRITE(102,1000)TITLE 
	C******************************************************************** 
	  READ(101,*)NPOIN,FCOP,EC,PRCO,EPS0,CPACTIVE 
	  WRITE(102,1005)NPOIN,FCOP,EC,PRCO,EPS0,CPACTIVE 
	1005   FORMAT(//5X,'NPOIN=',I5/5X,'FCOP=',F20.6/5X,'SECANT-E=',F20.6/ 
	     . 5X,'PRCO=',F20.6/5X,'EPS0=',F20.6/5X,'CPACTIVE=',F20.6) 
	C******************************************************************** 
	 READ(101,1000)TITLE 
	 WRITE(102,1000)TITLE 
	C******************************************************************** 
	C******************************************************************** 
	C******************************************************************** 
	 DO 100 IPOIN=1,NPOIN 
	 READ(101,*)EPSLAT,CP 
	 WRITE(102,1002)EPSLAT,CP 
	 WRITE(103,1002)EPSLAT,CP 
	100   CONTINUE 
	 SLMAX=EPSLAT 
	      JOUNT=SLMAX/0.00001+10 
	C********************************************************************** 
	C*****INITIAL VALUES FOLLOWS******************************************* 
	C********************************************************************** 
	      XCOORD=0.000000 
	      WRITE(102,1003) 
	1003 FORMAT(5X,'EPSCC',7X,'EPSCCP',7X,'PRC',8X,'CPPIN',7X,'CPPOUT', 
	     .7X,'EPSL',7X,'EP',7X,'FCC',7X,'R',7X,'ECC') 
	 WRITE(104,1002)XCOORD,CPACTIVE 
	 WRITE(105,1002)XCOORD,XCOORD 
	C********************************************************************** 
	      EPSCC=0.0005 
	 EPSCCP=0.01 
	 ECC=1.10*EC 
	 ECO=1.12*EC 
	 CPP=0.00000 
	 KOUNT=30 
	 PRCLMT=0.500000 
	C********************************************************************** 
	      DO 1200 J=1,JOUNT 
	      DO 1500 K=1,KOUNT 
	      CONSTT=1.914*(CPP/FCOP)+0.719 
	      PRC=PRCO*(CONSTT*(EPSCC/EPSCCP)+1) 
	C********************************************************************** 
	 IF(PRC.GT.PRCLMT)THEN  
	 PRC=PRCLMT 
	 ENDIF 
	C********************************************************************** 
	      EPSL=EPSCC*PRC 
	 IF(EPSL.GT.SLMAX)GOTO 1400 
	 CALL CPRESS(NPOIN,EPSL,CPP) 
	 CPPIN=CPP 
	 CPP=CPP-CPACTIVE 
	 EP=CPP/EPSL 
	 CPP=EPSL/(((1-PRC)/ECC)+1/EP) 
	 CPP=CPP+CPACTIVE 
	 CPPOUT=CPP 
	 FCCP=FCOP*(-1.254+2.254*SQRT(1+7.94*CPP/FCOP)-2.0*CPP/FCOP) 
	  SEF=FCCP/FCOP 
	  EPSCCP=EPS0*(1+5*(SEF-1)) 
	 ESEC=FCCP/EPSCCP 
	 R=ECO/(ECO-ESEC) 
	 X=EPSCC/EPSCCP 
	 FCC=FCCP*X*R/(R-1+X**R) 
	 ECC=FCC/EPSCC 
	1500  CONTINUE 
	 WRITE(104,1002)EPSCC,CPP 
	      WRITE(102,1004)EPSCC,EPSCCP,PRC,CPPIN,CPPOUT,EPSL,EP,FCC,R,ECC 
	 WRITE(105,1002)EPSCC,FCC 
	      EPSCC=EPSCC+0.0005 
	1200  CONTINUE   
	1400  CONTINUE  
	C***************************************************************** 
	C***************************************************************** 
	      CALL JOB 
	C***************************************************************** 
	C***************************************************************** 
	 CLOSE(101) 
	 CLOSE(102) 
	 CLOSE(103) 
	 CLOSE(104) 
	 CLOSE(105) 
	C***************************************************************** 
	     STOP 
	 END  
	C***************************************************************** 
	      SUBROUTINE CPRESS(NPOIN,EPSL,CPP) 
	 CALL ANAME 
	 KOUNT=0 
	CCCC WRITE(102,*)EPSL 
	C*************************************************************** 
	 DO 110 IPOIN=1,NPOIN 
	 READ(103,*)EPSLAT,CPDATA 
	CCCC WRITE(102,*)EPSLAT,CPDATA 
	 KOUNT=KOUNT+1 
	CCCC WRITE(102,*)KOUNT 
	C**************************************************************** 
	 IF(EPSL.EQ.EPSLAT)THEN 
	 GOTO 200 
	 ENDIF 
	C**************************************************************** 
	      IF(EPSL.LT.EPSLAT)THEN 
	 EPS2=EPSLAT 
	 CP2=CPDATA 
	CCCC WRITE(102,*)EPS2,CP2 
	  GOTO 300 
	 END IF 
	C**************************************************************** 
	C***************************************************************** 
	110   CONTINUE 
	C***************************************************************** 
	300 KOUNT=KOUNT-1 
	 REWIND(103) 
	  DO 400 K=1,KOUNT 
	 READ(103,*)EPSLAT,CPDATA 
	400   CONTINUE 
	 EPS1=EPSLAT 
	 CP1=CPDATA 
	 CPP=CP1+(CP2-CP1)*(EPSL-EPS1)/(EPS2-EPS1) 
	 GOTO 500 
	C***************************************************************** 
	200   CPP=CPDATA 
	      CALL ANAME 
	500   CONTINUE    
	 RETURN 
	 END 
	C***************************************************************** 
	C***************************************************************** 
	C***************************************************************** 
	     SUBROUTINE ANAME 
	     REWIND (103) 
	C****************************************************************** 
	     WRITE(*, 10) 
	10  FORMAT(5X, 'DEVELOPED BY MUNAWAR A. HUSSAIN, U OF A,  
	     .CANADA')  
	C****************************************************************** 
	C****************************************************************** 
	C****************************************************************** 
	     RETURN 
	     END 
	C****************************************************************** 
	C****************************************************************** 
	C****************************************************************** 
	     SUBROUTINE JOB 
	          WRITE(*,10) 
	10  FORMAT(//5X,'JOB COMPLETED! JOB COMPLETED!'//)  
	   RETURN 
	     END 
	C****************************************************************** 
	C****************************************************************** 
	C************************************************************************ 
	 
	 
	 
	 
	 
	 
	 
	L.3 A SAMPLE INPUT FILE 
	 
	Munawar A. Hussain 
	Deptt. of Civil and Env. Engg, University of Alberta, Edmonton, Canada 
	NPOIN    f’co     Ec       POISSON   EPSILON-0           CP-ACTIVE 
	93      32.895   21221      0.15      0.0031               2.9162 
	        Lateral Strain  Confining Pressure   
	 0.000           0.00 
	             0.002           5.80 
	             0.004           7.26 
	             0.006           8.60 
	             0.008           9.81 
	             0.010          10.75 
	             0.012          11.40 
	             0.014          11.79 
	             0.016          12.18 
	             0.018          12.34 
	             0.020          12.47 
	             0.022          12.60 
	             0.024          12.72 
	             0.026          12.80 
	             0.028          12.87 
	             0.030          12.95 
	             0.032          13.02 
	             0.034          13.08 
	             0.036          13.14 
	             0.038          13.20 
	             0.040          13.24 
	             0.042          13.29 
	             0.044          13.33 
	             0.046          13.37 
	             0.048          13.41 
	             0.050          13.45 
	             0.052          13.47 
	             0.054          13.50 
	             0.056          13.52 
	             0.058          13.55 
	             0.060          13.58 
	             0.062          13.60 
	             0.064          13.63 
	             0.066          13.65 
	             0.068          13.67 
	             0.070          13.67 
	             0.072          13.67 
	             0.074          13.67 
	             0.076          13.67 
	             0.078          13.67 
	             0.080          13.68 
	             0.082          13.68 
	             0.084          13.68 
	             0.086          13.68 
	             0.088          13.68 
	             0.090          13.68 
	             0.092          13.68 
	             0.094          13.69 
	             0.096          13.69 
	             0.098          13.66 
	             0.100          13.64 
	             0.102          13.61 
	             0.104          13.58 
	             0.106          13.56 
	             0.108          13.53 
	             0.110          13.50 
	             0.112          13.48 
	             0.114          13.45 
	             0.116          13.42 
	             0.118          13.40 
	             0.120          13.37 
	             0.122          13.34 
	             0.124          13.32 
	             0.126          13.29 
	             0.128          13.27 
	             0.130          13.24 
	             0.132          13.21 
	             0.134          13.19 
	             0.136          13.16 
	             0.138          13.13 
	             0.140          13.11 
	             0.142          13.08 
	             0.144          13.05 
	             0.146          13.01 
	             0.148          12.96 
	             0.150          12.92 
	             0.152          12.88 
	             0.154          12.84 
	             0.156          12.80 
	             0.158          12.76 
	             0.160          12.72 
	             0.162          12.68 
	             0.164          12.64 
	             0.166          12.60 
	             0.168          12.56 
	             0.170          12.52 
	             0.172          12.48 
	             0.174          12.44 
	             0.176          12.39 
	             0.178          12.35 
	             0.180          12.30 
	             0.182          12.26 
	             0.184          12.22 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Table L.1: Explanation of various terms in the input file (C4P.INP)
	TERM
	EXPLANATION
	NPOIN
	Number of data points in confining pressure versus lateral strain curve
	 
	Strength of column concrete
	 
	Secant modulus of elasticity of column concrete
	POISSON
	Initial Poisson’s ratio of concrete
	EPSILON-0
	Strain at peak stress of column concrete (unconfined)
	CP ACTIVE
	Magnitude of initial active confining pressure
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 




