

A Deep Learning Approach for Forecasting Cost Estimate at Completion (EAC)

in Construction Projects

by

Denisse Magdalena Diaz Merino

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Construction Engineering and Management

Department of Civil and Environmental Engineering

University of Alberta

© Denisse Magdalena Diaz Merino, 2024

ii

Abstract

Inaccurate cost forecasting is a significant issue that can lead to potential budget overruns, cash

flow problems, poor stakeholder relationships, and financial losses for construction execution

companies. To improve cost forecasting accuracy, this research proposes a deep-learning

framework structured into five phases, starting with exploring the literature review and finishing

with the practical application of the developed model. This framework leverages historical data

from completed projects and deep-learning algorithms to enhance the cost estimate at completion

accuracy.

First, this study explores the literature on previous approaches for cost forecasting and examines

factors that influence cost forecasting. Second, it analyses current practices in the industry, gathers

historical data, and establishes a data acquisition model at the level of individual work packages.

Third, it develops a computerized model, including data preprocessing, designing, and building

forecasting models based on deep learning algorithms. It also develops a graphical user interface

(GUI) to store generated data and deploy the deep learning model. Fourth, model application and

verification are performed using the dataset to select the optimal forecasting algorithm and

compare results with traditional earned value methods. Finally, the GUI is applied to deploy the

cost forecasting model at the work package level.

 The study results demonstrate that the Gated Recurrent Unit (GRU) algorithm significantly

outperforms traditional cost forecasting methods. The GRU model achieved Mean Absolute

Percentage Errors (MAPE) of 7.38%, 6.14%, and 3.97% for the concrete, backfill, and piping work

packages, respectively. In contrast, the Earned Value Management (EVM) method yielded MAPE

values of 11.32%, 13.42%, and 13.3% for the same work packages. This study demonstrates the

effectiveness of the deep learning model in accurately predicting cost forecasting for ongoing

iii

construction projects. By integrating deep learning algorithms with a comprehensive analysis of

historical cost data, the proposed framework offers a methodological foundation for future

innovation in cost forecasting analytics.

iv

Preface

This thesis is an original work by Denisse Magdalena Diaz Merino. No part of this thesis has been

previously published.

v

Acknowledgements

First and foremost, I would like to thank God for all his blessings throughout this academic journey.

I am profoundly thankful to my supervisor, Dr. Ahmed Hammad, for his unwavering support,

guidance, and encouragement. Dr. Hammad has been an exceptional mentor, always providing

kind and constructive feedback to improve my research.

I am also grateful to my examining committee members, Dr. Leila Hashemian, Dr. Yasser

Mohamed, and Dr. Ali Imanpour, for their invaluable insights and for reviewing my dissertation.

Their feedback has been crucial in refining my research.

A special thank you to my husband, Cristhian Laura, whose support has been invaluable. We spent

countless hours discussing and debating my topic, motivating me to learn new tools and techniques

to enhance my work. I am profoundly grateful to my family; their love and enthusiasm have helped

me complete this journey.

vi

Dedication

I dedicate this research to my two greatest loves, my children Miranda and my baby on the way. I

hope to show them that nothing is impossible when you truly desire to achieve something. As

inspired by Thomas Edison’s words, "Success is 1% inspiration and 99% persistence."

vii

Table of Contents

Abstract .. ii

Preface ... iv

Acknowledgements .. v

Dedication ... vi

List of Tables .. x

List of Figures ... xi

Chapter 1: Introduction .. 1

1.1 Background .. 1

1.2 Problem Statement ... 3

1.3 Research Objectives ... 4

1.4 Research Methodology .. 5

1.5 Thesis Organization ... 7

Chapter 2: Literature Review ... 8

2.1 Introduction ... 8

2.2 Project Cost Management in Construction ... 8

2.3 Cost Forecasting Techniques ... 9

2.3.1 Earned Value Method ... 10

2.3.2 The Regression-Based Approach .. 15

2.3.3 Bayesian Statistics .. 17

2.4 Machine Learning ... 20

2.4.1 Conceptual Machine Learning Terms .. 20

2.4.2 Types of Machine Learning Algorithms .. 21

2.4.3 Machine Learning Algorithms Used for Cost Forecasting 24

viii

2.5 Emergence of Deep Learning ... 26

2.6 Assessing the Performance of Machine Learning Algorithms 30

2.7 Machine Learning Application for Cost Forecasting 32

2.8 Summary and Research Gaps .. 37

Chapter 3: Development of Conceptual Model for Cost Forecasting 39

3.1 Introduction ... 39

3.2 Current Cost Forecasting Practices .. 41

3.3 Key Factors Influencing EAC .. 43

3.4 Proposed Data Acquisition Model .. 48

3.4.1 Entity Relationship Diagram (ERD) .. 49

3.5 Data Collection Process .. 52

3.6 Data Description ... 53

3.7 Limitations in the Acquired Dataset .. 57

Chapter 4: Development of Computational Model for Cost Forecasting 59

4.1 Introduction ... 59

4.2 Data Preprocessing ... 59

4.2.1 Grouping of Work Package Dataset ... 60

4.2.2 Dealing with Missing Values in Time Series .. 61

4.2.3 Outlier Detection ... 62

4.2.4 Correlation Analysis and Feature Selection 62

4.2.5 Time Series Data for Supervised Learning Problem 64

4.2.6 Max-Min Normalization and Data Splitting .. 65

4.3 Developing a Deep Learning-Based Cost Forecasting Model 67

4.3.1 Deep Learning for Time Series Forecasting .. 68

ix

4.3.2 Cost Forecasting Model Design .. 72

4.4 Graphical User Interface for Cost Forecasting Model 76

4.4.1 Designing GUI Application with Tkinter .. 77

4.5 Integrating SQL into GUI .. 91

4.6 Project Forecasting Section ... 92

Chapter 5: Application, Verification and Validation .. 94

5.1 Introduction ... 94

5.2 Selecting the Optimal Forecasting Model. .. 94

5.3 Applying the Forecasting Model to the Testing Dataset 98

5.4 Comparative Analysis of Forecasting Models and EVM Methods 107

5.5 Sensitivity Analysis ... 114

Chapter 6: Conclusion .. 117

6.1 Research Summary ... 117

6.2 Research Contributions .. 120

6.2.1 Academic Contributions .. 120

6.2.2 Industrial Contributions: .. 120

6.3 Limitations ... 121

6.4 Future Work and Recommendations .. 122

References .. 124

Appendix A: Python Scrip for Deep Learning Model .. 135

Appendix B: Python Code for GUI Creation, SQLite, and Model Deployment 140

x

List of Tables

Table 2.1 EVM Terminology .. 11

Table 2.2 EAC Equations Summary .. 14

Table 2.3 Performance Measure Equations ... 31

Table 2.4 Summary of Machine Learning Approach .. 36

Table 3.1 Factors Influencing Project Cost Forecasting .. 44

Table 3.2 Preliminary Inputs and Output Available .. 47

Table 3.3 Initial Dataset Overview .. 54

Table 3.4 Actual Cost at Completion Bounds .. 54

Table 3.5 Earned Value Bounds .. 55

Table 3.6 Duration Bounds in Weeks ... 56

Table 4.1 Forecasting Model Features Variables .. 64

Table 5.1 Model Results Comparison ETC Results .. 95

Table 5.2 Model Results Comparison EAC Results ... 95

Table 5.3 Results of ACC vs. Deep Learning Models ... 97

Table 5.4 Results of Concrete-GRU on Testing Data .. 100

Table 5.5 Results of Piping-GRU on Testing Data ... 104

Table 5.6 Results of Backfill-GRU on Testing Data ... 106

Table 5.7 Comparative Analysis of EAC Predictions for Concrete WP 109

Table 5.8 Comparative Analysis of EAC Predictions for Piping (HDPE) WP............. 111

Table 5.9 Comparative Analysis of EAC Predictions for Backfill WP 113

xi

List of Figures

Figure 1.1 Phases and Stages of the Project .. 2

Figure 1.2 Research Methodology .. 6

Figure 2.1 EVM components (Project Management Institute, 2019) 10

Figure 2.2 Gompertz Growth Model (Ead, 2020) .. 16

Figure 2.3 Machine Learning Algorithm Types ... 22

Figure 2.4 ANN architecture (Tyagi & Abraham, 2022) ... 25

Figure 2.5 AI, Machine Learning, and Deep Learning Overview 27

Figure 2.6 LSTM cell (Fan et al., 2020) ... 28

Figure 2.7 GRU Network (Yamak et al., 2019) ... 30

Figure 3.1 Conceptual Model for Cost Forecasting .. 39

Figure 3.2 DAM and Forecasting Model Development Methodology 41

Figure 3.3 Breakdown Structure Schema ... 50

Figure 3.4 Entity Relationship Diagram ... 51

Figure 3.5 Actual Cost to Date _Concrete dataset .. 55

Figure 3.6 Earned Value Cumulate _Fill dataset .. 55

Figure 4.1 Forecasting Model as a Workflow .. 60

Figure 4.2 Missing Values Process .. 61

Figure 4.3 Outlier Detection Process ... 62

Figure 4.4 Spearman Correlation Analysis ... 63

Figure 4.5 Time Series Transformation .. 65

Figure 4.6 Data Split Diagram .. 67

xii

Figure 4.7 RNN architecture .. 69

Figure 4.8 GRU Neural Network Setup ... 73

Figure 4.9 Code snippet for the Class ProjectCostManagementApp 79

Figure 4.10 Segment Phyton Code for Creating Navigation Menu 80

Figure 4.11 Methods include in the Project Setup Frame Design................................ 81

Figure 4.12 Project Setup Frame ... 82

Figure 4.13 Error Message in Project Setup Frame .. 82

Figure 4.14 Work Package Setup Frame .. 83

Figure 4.15 Method Structure for Project Tracking in Tkinter GUI Application 85

Figure 4.16 Project Update Frame .. 86

Figure 4.17 Current Baseline Window ... 86

Figure 4.18 Work Package Update Frame .. 87

Figure 4.19 Work Package Current Baseline Window .. 88

Figure 4.20 Weekly Progress per Work Package Frame .. 89

Figure 4.21 Actual Cost Details Window ... 90

Figure 4.22 SQL Database_Wekkly Progress Table ... 90

Figure 4.23 Database Structure ... 91

Figure 4.24 Methods Developed for Cost Forecasting .. 92

Figure 4.25 Project Forecasting Frame .. 93

Figure 5.1 ACC vs Predicted EAC (Simple RNN, LSTM and GRU) 96

Figure 5.2 Actual vs. Predicted ETC for the Concrete Work Package 99

Figure 5.3 ACC vs. Predicted EAC for the Concrete Work Package 99

xiii

Figure 5.4 Cost Forecasting for the Concrete Work Package - Period 26 101

Figure 5.5 Cost Forecasting for the Concrete Work Package - Period 50 101

Figure 5.6 Actual vs. Predicted ETC for the Piping Work Package 103

Figure 5.7 ACC vs. Predicted EAC for the Piping Work Package 103

Figure 5.8 Cost Forecasting for the Piping Work Package - Period 45 103

Figure 5.9 Actual vs. Predicted ETC for the Backfill Work Package 105

Figure 5.10 ACC vs. Predicted EAC for the Backfill Work Package 105

Figure 5.11 Cost Forecasting for the Fill Work Package - Period 26 107

Figure 5.12 Comparative Analysis of EAC Predictions for Concrete WP 108

Figure 5.13 Comparative Analysis of EAC Predictions for Piping WP 110

Figure 5.15 Results - Sensitivity Analysis for Concrete Work Package 115

Figure 5.16 Results - Sensitivity Analysis for Piping (HDPE) Work Package 116

Figure 5.17 Results - Sensitivity Analysis for Backfill Work Package 116

1

Chapter 1: Introduction

1.1 Background

The construction sector is vital to nations' economic progress as it significantly contributes to the

Gross Domestic Product (GDP), generates employment, and stimulates economic growth. In

Canada, the construction industry is essential in developing and maintaining infrastructure and

supporting the nation's growth. According to Statistics Canada's report in 2021, the construction

industry contributed $23.6 billion (8.0%) to Alberta's GDP. Additionally, in 2023, Alberta allocated

$260.4 million in capital towards the construction industry (Statistics Canada, 2024).

Construction projects are inherently complex and involve multiple phases throughout their

lifecycle, including Pre-Engineering, Engineering, Procurement, Construction, Commissioning

and Start-up, as defined by the Construction Industry Institute (CII). Each phase presents unique

challenges and requirements, but this study explicitly emphasizes the execution phase. This phase

is critical, as most of the project's budget is allocated here. Therefore, effective cost control is

necessary to prevent budget overruns, which can significantly impact the project's finances.

Within the execution phase, controlling and monitoring is a pivotal stage that helps the project

manager to identify potential deviations early, preventing delays and avoiding cost overruns (Atout,

2019). An ineffective performance at this stage significantly contributes to project failures (Nassar,

2005). As elucidated in Figure 1.1, a key outcome of cost control is the cost estimate at completion

(EAC). EAC involves predicting the total project cost based on current data and trends. Accurate

EAC allows construction project managers to detect deviations and make informed decisions

throughout the project execution.

2

Figure 1.1 Phases and Stages of the Project

Traditional cost forecasting methods are often challenged by the dynamic nature of construction

projects, where material cost escalation, labour productivity, unexpected weather conditions or

unforeseen delays can complicate these forecasts, leading to potential budget overruns.

Consequently, these challenges underscore the need for more sophisticated, adaptable methods to

handle current construction projects' complexities. In this regard, deep learning, a machine learning

subfield, has shown promising results in various sectors, such as finance and healthcare, for its

3

ability to analyze and make predictions from complex and voluminous data. Deep learning models

are based on architectures like neural networks to uncover complex patterns in data, making them

powerful tools for forecasting analytics in data-rich sectors.

In construction management, machine learning applications have primarily been investigated to

predict resource allocation, ensure safety, and estimate costs and duration during the planning stage.

Despite these advancements, deep learning integration into cost forecasting remains unexplored.

This study aims to develop and validate a deep learning framework to enhance cost forecasting

accuracy during the execution phase of construction projects, potentially setting a benchmark for

future predictive analytics in project cost management.

1.2 Problem Statement

Forecasting the final cost in construction projects is often inaccurate due to several inherent

difficulties and limitations in the current methods. One popular approach for cost estimated at

completion in the construction sector is earned value management (EVM) (Fleming, 2016). This

method uses indexed formulas to calculate the cost estimate at completion. Recent evidence

indicates that the EVM method's cost prediction needs to be more accurate because it assumes that

no further shifts in performance or risk will occur in the remaining work (Cheng & Hoang, 2014;

Du et al., 2016; Kim, 2015). Additionally, EVM formulas do not consider factors such as weather

conditions (Dastgheib et al., 2022), material price escalation, or labour productivity (Lema & Price,

1996), essential for capturing the uncertainties inherent in lengthy and complex construction

projects. Another methodology is the bottom-up approach, which involves estimating the costs of

remaining individual tasks or work packages and then aggregating them to determine the total

project cost at completion. Although this method might be more accurate, it is time-consuming,

data-intensive, complex for large projects, and carries the risk of overestimation.

4

Recent technological advancements have introduced machine learning methods as alternative

approaches for EAC forecasting, aiming to address the limitations of traditional methodologies.

Among these are Artificial Neural Networks (ANN) (Pewdum et al., 2009), Support Vector

Machines (SVM) (Cheng et al., 2010, 2012, 2013; Cheng & Hoang, 2014), and Adaptive Neuro-

Fuzzy Inference Systems (ANFIS) (Dastgheib et al., 2022). Despite this advance in machine

learning techniques, their application in real-world construction projects is still limited. Also,

according to recent studies, machine-learning techniques such as ANN, SVM, and ANFIS present

limited performances when compared with deep-learning techniques (Kareem Kamoona &

Budayan, 2019).

Deep learning is a promising option for forecasting time series because it can model complex,

nonlinear temporal data (Hopfe et al., 2024). Several studies have proposed deep learning

approaches for time series forecasting, demonstrating improvements in accuracy. However, its

application is still minimal in the construction industry, especially for cost estimates at completion.

Thus, this study aims to create a forecasting model using a deep learning architecture to improve

the accuracy of predicting the final cost.

1.3 Research Objectives

This research aims to develop an integrated framework that utilizes deep learning algorithms to

provide accurate cost-forecasting outcomes at the work package level. To achieve this, the study

will analyze the various factors that impact the final construction cost, evaluate the performance

of three deep learning algorithms using time series datasets, and develop a reliable forecasting

model that the construction industry can use through a provided User Interface to enhance cost

control at the work package level.

5

1.4 Research Methodology

This study was conducted in five phases.

Phase 1

- Investigating the literature review regarding traditional approaches and alternative methods for

cost forecasting in construction projects.

- Examining the factors influencing the cost estimate at completion significantly and assessing

their applicability to the defined problem.

Phase 2

- Exploring the current practices in the construction industry for calculating cost estimate at

completion of construction projects.

- Proposing a data acquisition model to gather data for the forecasting model at the work package

level.

- Historical data collection from completed projects.

- Data description.

Phase 3

- Developing data preprocessing to tailor the data to the specific architecture of deep learning

models.

- Designing and configuring forecasting models based on deep learning algorithms, including

Long-Short-Term Memory, Simple Recurrent Networks, and Gate Recurrent Units.

- Engineering a graphical user interface for storing data generated during the project execution

and deploying the deep learning model.

6

Phase 4

- Performing the models using the dataset according to the proposed computerized model.

- Selecting the optimal forecasting model based on their performance metrics.

- Deploying the selected model at the work package level for unseen data and comparing the

result with traditional earned value methods.

- Verifying the proposed model through a sensitivity analysis.

- Saving the cost forecasting model.

- Applying the graphical user interface to predict the cost estimate at completion.

Figure 1.2 illustrates the research methodology and details for each phase.

Figure 1.2 Research Methodology

7

1.5 Thesis Organization

This thesis comprises six chapters, beginning with an introduction. The subsequent chapters'

contents are summarized as follows:

• Chapter 2: Literature Review—This chapter describes construction project cost management,

including cost forecasting techniques. Additionally, it explains the fundamental principles of

machine learning, algorithms, and prior academic research in machine learning in the context

of predicting the cost estimate at completion.

• Chapter 3: Development of Conceptual Model for Forecasting Cost Estimate at Completion—

This chapter presents the proposed research methodology, including a detailed explanation of

the data collection process and the proposed data acquisition model.

• Chapter 4: Development of Computational Model for Forecasting EAC with Graphical User

Interface – This chapter covers the development of forecasting models utilizing deep learning

algorithms. It also includes the development of the graphical user interface for entering inputs,

saving inputs, and deploying the proposed model.

• Chapter 5: Application and Verification – This chapter implements the developed model in a

case study, compares the proposed model against traditional approaches, and verifies the model

through a sensitivity analysis.

• Chapter 6: Conclusion—This chapter includes a summary of the work completed under this

thesis, the research conclusion, its limitations, and recommendations for future research.

8

Chapter 2: Literature Review

2.1 Introduction

This research's main objective is to develop a predictive model for accurately forecasting the cost

estimate at completion. This model is built based on a deep learning algorithm to predict the final

cost of ongoing construction projects. Given the research problem's complex nature, this Chapter

covers three areas. To develop the model effectively, it is imperative to analyze critical areas

comprehensively: 1) Project cost management in construction; 2) Cost forecasting techniques,

such as earned value management and other methods proposed in the literature; 3) Fundamental

principles of machine learning, deep learning, algorithms, and prior academic research within the

context of machine learning to predict the cost estimate at completion.

2.2 Project Cost Management in Construction

Construction project cost management involves estimating, budgeting, monitoring, controlling,

and managing the day-to-day costs of a project (Project Management Institute, 2016). Cost

estimating entails the development of an approximation of the monetary resources required for the

successful completion of the project. Cost budgeting aggregates the estimated costs of activities or

construction work packages and is established once an estimate is approved. The main benefit of

this process is determining the cost baseline, which can later be used to monitor and control project

performance. Monitoring and controlling project costs entails updating and tracking costs,

managing any changes made to the cost baseline, and providing a forecast for all remaining costs

(Project Management Institute, 2016). Forecasts and estimates are both critical for planning future

project activities. Estimates are used to establish the Budget at Completion (BAC) for performance

baselines.

9

On the other hand, forecasts predict the cost to complete, or Estimate to Complete (ETC), for

works that are in progress or have not started (Amos, 2012). Accurate cost forecasting becomes

challenging when factoring in unexpected events such as material cost escalation, material delays,

scope variation, poor productivity, alterations to the project execution strategy, and poor

subcontractor performance. Most current systems like EVM do not incorporate user judgmental

inputs; judgmental inputs they rely on quantitative variables (Nassar, Nadim Kamil, 2004). The

application of this system could lead to inaccurate forecast results.

Predicting the final cost of ongoing projects holds significance within the construction industry's

project control procedures. The profitability of construction projects depends significantly on the

construction organization's ability to predict the cost at completion well in advance and take the

necessary corrective actions if some cost overrun occurs. One way to effectively enhance the

accuracy of cost forecasts is by creating more dependable prediction tools that can integrate the

inherent variability in construction projects into their calculations. Most project managers rely on

index-based methods based on experts' judgment and linear trending approaches.

This Chapter will examine various forecasting methods and evaluate their advantages and

disadvantages.

2.3 Cost Forecasting Techniques

Cost forecasting is a crucial aspect of construction projects, which has led to numerous research

efforts in developing methods to predict the final cost at project completion. These methods focus

on calculating the cost estimate at completion (EAC), which is considered the most reliable

estimate of the total cost at the end of the project. Two main categories of cost forecasting methods

are developed: 1. Methods based on earned value management and 2. regression-based approach.

10

2.3.1 Earned Value Method

For years, EVM has been the most widely used technique to manage a project's time and cost

performance and predict the final project duration and cost. EVM has been a foundational project

management tool in architecture, engineering, and construction since its inception in the late 1970s

(He et al., 2017). Currently, EVM is recognized as a method that integrates project cost, schedule,

and scope to evaluate actual status versus its baseline and to estimate the cost and duration at

completion (Project Management Institute, 2019).

The EVM method has a crucial cost metric called EAC. EAC represents the estimates of the

project's total cost and results from the summation of the actual costs incurred for work completed

and the cost estimate to complete, as illustrated in Figure 2.1.

Figure 2.1 EVM components (Project Management Institute, 2019)

The following are important terms used in cost project management. Table 2.1 describes the

principal EVM terminology.

11

Table 2.1 EVM Terminology

Abbreviation Name Definition

PV Planned Value The budget allocated and approved for the

scheduled work.

EV Earned Value The amount of the work performed in terms of

the authorized budget.

AC Actual Cost The realized cost incurred for the work

performed.

BAC Budget at

Completion

The sum of all budgets created for the work to

be developed

ETC Estimate to

Complete

The estimated cost to conclude all the remaining

project work.

EAC Estimate at

Completion

The expected cost of completing all work is

expressed as the sum of the AC to date and the

ETC.

The EVM tool provides several extensions for EAC calculation. These extensions are represented

as index-based formulas, which use cost and schedule performance index to calculate the EAC.

Following the prescribed guidelines established by the Association for the Advancement of Cost

Engineering (AACE), the equations for computing the EAC and their associated drawbacks under

specific scenarios are as follows (Amos, 2012).

a) This equation assumes that the remaining work will be accomplished precisely at the total

approved budget value without observing the past performance index. It is valid when the

cost performance index (CPI) is close to 1.0. Otherwise, this method could yield an unreal

EAC calculation.

12

𝐸𝐴𝐶 = 𝐴𝐶 +
(𝐵𝐴𝐶−𝐸𝑉)

1
 Equation (2.1)

b) This equation assumes that the cumulative cost performance index (CPIcum) efficiency

remains constant throughout the project. Consequently, any incremental change in the CPI

value over time will have less impact on the cumulative CPI. Notably, the formulation does

not incorporate a scheduled performance index. This limitation can result in potentially

inaccurate assessments when addressing schedule delays. Usually, two distinct alternatives

may arise in a project schedule delay: allocating increased resources and effort to recover

the delay or providing additional resources for an extended duration. Either of these

alternatives will entail extra costs.

𝐸𝐴𝐶 = 𝐴𝐶 +
(𝐵𝐴𝐶−𝐸𝑉)

𝐶𝑃𝐼
 Equation (2.2)

c) This method presupposes that the forecasted final cost is a function of both the cost and

schedule index. This equation recommends that the project manager evaluate the schedule's

critical path to identify the nature of the SPI. Some projects may still have an SPI > 1.0

when noncritical work is completed more than planned and activities on the critical path

have delays. This equation is not recommended after 80% of the work effort is

accomplished because the SPI value will be moved to 1.0 when the project is completed.

𝐸𝐴𝐶 = 𝐴𝐶 +
𝐵𝐴𝐶−𝐸𝑉

𝐶𝑃𝐼∗𝑆𝑃𝐼
 Equation (2.3)

13

d) This approach is also influenced by the combination of six months' CPI (CPI6mth) and the

cumulative schedule index SPIcum. Because the CPI index has a shorter duration and only

a six-month average, this equation works best once the project gets into the steep incline

on the S‐curve rather than at the start of the project.

𝐸𝐴𝐶 = 𝐴𝐶 +
𝐵𝐴𝐶−𝐸𝑉

𝐶𝑃𝐼6𝑚𝑡ℎ∗𝑆𝑃𝐼𝑐𝑢𝑚
 Equation (2.4)

e) Unlike the previous equations, this method assigns a weighted value to the CPI and SPI.

The sum of this weighted value must equal 1.0. Weighted values require expert opinion

from the project team. The weighting is usually heavier for the cost performance index

because it has been demonstrated to be a more reliable indicator of final cost.

𝐸𝐴𝐶 = 𝐴𝐶 +
𝐵𝐴𝐶−𝐸𝑉

(𝐴∗𝐶𝑃𝐼𝑐𝑢𝑚+𝐵∗𝑆𝑃𝐼𝑐𝑢𝑚)
 Equation (2.5)

Where:

- AC: Actual Cost.

- EV: Earned Value.

- BAC: Budget at Completion.

- CPI: Cost Performance Index, CPI = EV/AC.

- SPI: Schedule Performance Index, SPI =EV/PV.

The underlying assumptions and prediction equations of the five estimate-at-completion (EAC)

methods are summarized in Table 2.2.

14

Table 2.2 EAC Equations Summary

Method Assumption EAC Equation

EAC1 The remaining work will be completed within the

approved budget.
𝐴𝐶 +

(𝐵𝐴𝐶 − 𝐸𝑉)

1

EAC2 Future performance will be the same as the

cumulative CPIcum.

𝐵𝐴𝐶

𝐶𝑃𝐼

EAC3 Both the CPI and SPI will influence future

performance.
𝐴𝐶 +

𝐵𝐴𝐶 − 𝐸𝑉

𝐶𝑃𝐼 ∗ 𝑆𝑃𝐼

EAC4 Future performance will be equal to the average

of the recent six months' CPI6mth and the

SPIcum.

𝐴𝐶 +
𝐵𝐴𝐶 − 𝐸𝑉

𝐶𝑃𝐼6𝑚𝑡ℎ ∗ 𝑆𝑃𝐼𝑐𝑢𝑚

EAC5 Future performance will be equal to a weighted

average of the CPIcum and the SPIcum
𝐴𝐶 +

𝐵𝐴𝐶 − 𝐸𝑉

(𝐴 ∗ 𝐶𝑃𝐼𝑐𝑢𝑚 + 𝐵 ∗ 𝑆𝑃𝐼𝑐𝑢𝑚)

Project managers typically rely on EVM for EAC calculation. Nevertheless, traditional EVM

techniques have limitations, such as employing past information and cost performance index to

calculate the remaining budget (Barraza et al., 2004; Cheng et al., 2012; Howes, 2000; Kareem

Kamoona & Budayan, 2019). The EVM method assumes that cost performance remains stable

throughout the project; however, cost performance tends to change over time in most projects (He

et al., 2017). A study by Due et al. illustrates that for most projects, the CPI falls erratically when

the project is around 25% complete; accordingly, the cost estimation will also change dramatically

when about 25% of the work is completed (Du et al., 2016). Hence, the assumption that past

performance guarantees future performance may not hold.

In this regard, certain academics have developed alternative methodologies to enhance the

effectiveness of earned value-based techniques. Specific approaches have been formulated among

these alternatives with a foundation in regression models.

15

2.3.2 The Regression-Based Approach

Researchers have increasingly embraced regression-based approaches to address the shortcomings

of the conventional earned value-based method. Regression analysis calculated the EAC by

regressing a dependent and independent variable (Nystrom, 1995). Regression analysis includes

several variations, including linear and nonlinear statistics between the inputs and outputs

relationship. Some of these equations are shown below (Hammad, 2009):

- Linear regression 𝑌 = 𝛽0 + 𝛽1𝑋 Equation (2.6)

- Quadratic regression 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 Equation (2.7)

- Quadratic regression 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 + 𝛽3𝑋3 Equation (2.8)

- Exponential 𝑌 = 𝛽0 + 𝛽1𝐸𝑥𝑝(𝑥) Equation (2.9)

Where:

𝛽0, 𝛽1 , 𝛽2 and 𝛽3, are the coefficients of regression.

The following section will briefly review regression-based approaches to forecasting the cost

estimate at completion.

Narbaev and De Marco (2014) introduced a Gompertz growth model (GGM) via nonlinear

regression curve fitting that employs S curve fitting, offering a pragmatic approach for predicting

cost EAC. The S-curve, commonly used in project management, serves as a graphical

representation of cumulative work progress over time. Its characteristic shape represents a slower

progression at the project's start and finish. It reflects a consistent pace while displaying a more

rapid advancement in the middle phase, indicating a steeper trajectory.

16

The Gompertz growth model articulates phenomena within data exhibiting a growth trajectory. It

is widely employed for curve fitting and predictions and is a part of the sigmoidal model family.

The GGM growth rate pattern aligns well with typical project cycles where the initial stages of the

project see slow growth, followed by a rapid phase and a slow completion phase, as shown in

Figure 2.2 (Ead, 2020)

Figure 2.2 Gompertz Growth Model (Ead, 2020)

The Narbaev and De Marco’s study is formulated based on three main targets:

1. To create a novel formula by modifying the index based (EAC) formula with four distinct

growth models (Logistic, Gompertz, Bass, and Weibull).

2. To assess the effectiveness of the newly developed method through its application on nine

past projects.

3. To determine the most effective growth model by considering statistical validity tests and

comparing the accuracy of EAC estimations.

The Gompertz model-based cost EAC formula demonstrated superior fitting when comparing the

four growth models based on their EAC error. It produced more accurate final cost forecasting

than those obtained through the index-based method and the three other models (Narbaev & De

Marco, 2014). In theory, the proposed method enhances EAC calculation by integrating EV metrics

17

with regression-based analysis, offering a practical approach that considers schedule impacts to

improve cost forecasting accuracy (Araba et al., 2021).

Ottaviani and Marco (2022) unveiled a new approach. A multiple linear regression model

performed this approach to forecast the cost of ongoing projects. The study was conducted on

EVM data from twenty-nine projects and used inputs such as CPI, actual cost, work schedule,

work performed, and periods. The model development process consists of three steps:

1. A generalized linear model selection procedure will be used to select the inputs

included in the model.

2. Correlation analysis is used to select inputs to understand their relationship.

3. Multiple linear regression analysis to find the best-fit model by considering the

correlations among the inputs and avoiding underfitting or overfitting issues.

The model's performance was then compared to the index based EAC method regarding variance

and accuracy. The new EAC formulation's results show better accuracy and lower variance than

the standard EAC calculation (Ottaviani & Marco, 2022).

2.3.3 Bayesian Statistics

Bayesian is a method of statistical inference in which Bayes' theorem is applied to deduce the

parameters of a probability distribution and update these parameters based on new data available

(Bartlett & Keogh, 2018). The general Bayes' theory can be written as follows (Kim, 2015).

P(θ|D) =
P(D|θ)P(θ)

P(D)
 Equation (2.10)

18

Where:

P(θ) is a prior distribution of a set of parameters θ

P(D|θ) is the conditional probability that a particular outcome D would be observed, given θ.

P(D) is the marginal distribution of the outcome D.

P(θ|D) is the posterior distribution of θ given D.

The prior distribution is the most sensitive step because it includes expert opinions about project

trends, future risks and opportunities, project patterns and impacts of corrective actions,

corresponding to the main contribution given by experts (Caron et al., 2013)

Kim & Reinschmidt (2011), this study introduced a probabilistic cost forecasting method that

combines the inside estimate (bottom-up), the outside forecast (top-down) and actual performance

data during execution. The authors argue for an adaptive approach using Bayesian inference and

Bayesian model averaging techniques, which incorporates actual performance data generated

during project execution to update forecasts dynamically. Finally, the authors present qualitative

examples of a hypothetical project to demonstrate the validity of the proposed method as a viable

tool for effective project cost forecasting (Kim & Reinschmidt, 2011).

Caron et al. (2013) proposed a model to calculate the EAC based on integrating quantitative data

and qualitative information in terms of past performance data records and expert knowledge. This

study developed a Bayesian model within the EVM framework based on two main assumptions:

independence of the indices CPI and SPI and a log-normal distribution. The proposed model

includes three phases. First, data analysis and logarithmic transformation of the indices’ values.

Second, transforming experts’ opinions into a prior distribution. Third, calculating the future

19

distribution of CPI𝑓 and SPI(𝑡)𝑓, where f represents the future value. The results highlight that

the Bayesian model improved cost forecasting accuracy compared to traditional EVM methods.

Kim B (2015) presented a second-moment Bayesian model to enhance project cost forecasting by

considering cost risk assessment and actual performance data. The model provides a probabilistic

range of possible project costs at various confidence levels. The proposed method offers algebraic

formulas for probabilistic forecasting without requiring extensive additional data collection or

complex statistical analyses. The author illustrates the model's practical application and forecast

accuracy through simulation experiments and numerical examples (Kim, 2015).

Caron et al. (2016) proposed a Bayesian model for forecasting the performance of large projects

in the Oil & Gas industry. Their study explores different knowledge sources, such as experts'

opinions and data from similar past projects and integrates them using the Bayesian approach. The

study also highlights the application of the model to some real-life projects and concludes that the

Bayesian model outperforms EVM, exhibiting significantly lower MEAN, approximately one-

tenth (Caron et al., 2016).

Having explored the most common approaches presented in the literature, such as EVM, regression

models and Bayesian statistics for calculating EAC, it is crucial to pivot towards contemporary

advances that enhance predictive accuracy and efficiency. The following section will explore

machine learning theory, which leverages computational algorithms to learn from data and make

informed decisions. This shift not only represents the evolution of project forecasting methods but

also sets the stage for a discussion on how machine learning techniques can be applied to optimize

the calculation of EAC.

20

2.4 Machine Learning

The construction industry can use Machine Learning, a subfield of AI, to create automated

technologies and make the construction process smarter (Y. Xu et al., 2021). Machine learning

techniques involve developing algorithms and models for computer systems to learn from patterns

in data without relying on explicit programming (Kareem Kamoona & Budayan, 2019; Rebala et

al., 2019). In construction projects, machine learning techniques offer a data-driven approach to

addressing complex challenges such as cost estimations. When correctly used, these techniques

can significantly enhance the accuracy of cost predictions and decision-making by leveraging

historical data, patterns, and relationships within construction processes.

ML algorithms can analyze large-scale historical data from construction projects to identify

patterns and make more accurate cost predictions (Y. Xu et al., 2021). ML models can consider

quantitative factors such as cost, physical progress, and duration and qualitative factors such as

weather conditions and project complexity, among other factors (Feylizadeh et al., 2012). ML also

offers the potential for real-time cost monitoring and adjustment, allowing for more effective

project control and decision-making (Kareem Kamoona & Budayan, 2019). Despite the promising

results of machine learning in construction, challenges remain: 1) the need for a significant amount

of data and 2) some existing machine learning algorithms are not high enough for practical

applications. (Xu et al., 2021). The following section provides an introductory framework for

understanding the fundamental concepts, roles, and potential challenges of machine learning in

cost forecasting.

2.4.1 Conceptual Machine Learning Terms

To facilitate understanding of the concept of ML, the following are some critical conceptual

terms.

21

• Dataset: A dataset is a collection of data that follows a specific structure or schema. In a

typical dataset, each column represents a feature or attribute, while each row represents an

individual member or example of the dataset (Awad & Khanna, 2015). In classical statistics,

independent variables are inputs, and dependent variables are outputs (Hastie et al., 2009).

The output is the class, target value, or label.

• Model: The concept of a model is the core representation of the problem for trying to solve.

Each model can be adjusted to the specific requirements of an application. They are

building a suitable model, whether a linear regression, decision tree, or deep neural network,

significantly impacts the machine-learning system accuracy.

• Algorithms: Algorithms drive how models learn from data. Understanding different

algorithms and their suitability for tasks is essential.

• Training, validation, and testing split: In many practical applications, a dataset is split

into three subsets: training, validation, and testing (Shalev-Shwartz & Ben-David, 2014).

The first subset is used to train the algorithm, and the second subset is reserved for selecting

the best model. Once the optimal model is selected, the test subset is employed to evaluate

the performance of the resulting predictor.

2.4.2 Types of Machine Learning Algorithms

Machine Learning is a vast domain. Consequently, the field of ML has been divided into several

types dealing with different learning tasks. Three main types of machine learning algorithms

depend on the problem to be solved: supervised, unsupervised, and reinforcement learning (Prince,

2023). Figure 2.3 shows a taxonomy of machine learning with exemplary applications listed under

each type.

22

Figure 2.3 Machine Learning Algorithm Types

a) Supervised Learning:

This form of learning is a prevalent type of machine learning where the algorithm is provided with

a large dataset of data points labelled with actual answers (Rebala et al., 2019). The algorithm

analyzes the key characteristics of each data point in the dataset to identify patterns and make

predictions. When presented with a new data point, the algorithm uses these patterns to predict the

outcome accurately. Supervised learning is divided into two subcategories: Regression and

classification problems. Regression is used to predict numerical values, while classification is used

to classify one or more labels.

b) Unsupervised Learning:

The algorithms present data with no explicit labels or predefined categories in unsupervised

learning. In other words, the algorithm does not have a specific target to achieve. Instead, the

algorithms focus on discovering patterns, structures, or relationships within the data. Unsupervised

learning techniques include:

23

• Clustering: In clustering, also called data segmentation, the algorithms group data points

based on similarity into clusters. Standard methods include K-Means clustering and

hierarchical clustering. Clustering is used for tasks like customer segmentation and

anomaly detection.

• Association Rule Learning: This technique focuses on discovering exciting relationships

or associations between variables in a dataset.

Unsupervised learning is not widely used in construction due to limitations in extracting

information from unlabelled data compared to labelled data (Y. Xu et al., 2021).

c) Reinforcement learning:

Although not directly relevant to the techniques employed in this research, reinforcement learning

(RL) is briefly outlined here to ensure a comprehensive coverage of machine learning types. RL is

a type of ML where a system interacts with an environment and learns to make sequential decisions

(Mohsen, 2021). The system's main objective (agent) is to maximize the cumulative reward over

time by taking actions that result in favourable outcomes. It is achieved through a trial-and-error

process where the agent learns from the consequences of its activities and receives feedback in the

form of rewards or penalties. RL is used in various fields such as robotics, game playing,

autonomous vehicles, and recommendation systems where decision-making over time is critical.

This chapter developed a basic understanding of the core machine-learning concepts discussed in

the previous sections. In the subsequent section, a concise theoretical overview of the most widely

applied algorithms within the realm of cost forecasting in construction projects will be presented.

24

2.4.3 Machine Learning Algorithms Used for Cost Forecasting

In regression learning, the objective is to establish a connection between a set of input variables

(predictors) and a continuous output variable (target) to predict outcomes for new input variables.

The literature encompasses a range of regression algorithms employed to estimate final cost

forecasting surrounding basic approaches like linear regression (LR), support vector machines

(SVMs), artificial neural networks (ANNs), as well as more sophisticated techniques such as deep

neural networks (DNNs) and long short-term memory (LSTM). The subsequent section briefly

overviews these methods to understand their application in the context of construction

management.

a) Artificial Neural Network (ANN)

An artificial neural network (ANN) is an inspired algorithm which tries to mimic the behaviour

of the human brain's neural network (Tyagi & Abraham, 2022, p. 3). This mathematical model

is based on connections between units or nodes known as artificial neurons (Mirtaheri &

Shahbazian, 2022). Each connection from one artificial neuron to another establishes the flow

of information. Artificial neurons and connections have a weight that adjusts as the system

learns. The strength of the information in each connection can be intensified or diminished due

to the weight (Tyagi & Abraham, 2022). An ANN is typically organized in layers, as shown in

Figure 2.4.

25

Figure 2.4 ANN architecture (Tyagi & Abraham, 2022)

Since the early 1990s, ANN has been investigated as an innovative management tool in

construction management (Moselhi et al., 1991). Some applications of ANN in construction

management include predicting labour productivity (Heravi & Eslamdoost, 2015), safe work

behaviour (Patel & Jha, 2015), estimating schedule to completion (Cheng et al., 2019), and

cost estimates at completion (Pewdum et al., 2009) in construction projects.

b) Support Vector Machine (SVM)

SVM is a supervised learning algorithm for classification and regression problems, which is

founded on statistical learning theory developed by Vapnik (Vapnik, 2000). SVM regression

aims to find a hyperplane that accurately fits data points, with the margin around the hyperplane

measuring the model's accuracy (Mirtaheri, 2022). SVM algorithm is beneficial for complex

or nonlinear data relationships because it can use kernel functions, such as polynomial, radial

basis function or sigmoid, to map the data into a higher-dimensional space and to capture

intricate patterns. SVM is also robust against outliers and can control the trade-off between

26

model complexity and error, making it a valuable tool in various regression applications in

construction, including control project forecasting (Wauters & Vanhoucke, 2014).

Despite the previous advantages mentioned for this algorithm, SVM for regression analysis

has a significant drawback in its sensitivity to hyperparameters and the kernel function

(Mirtaheri, 2022). Selecting the right values for these hyperparameters can be challenging and

time-consuming. If not chosen correctly, they can lead to suboptimal model performance,

overfitting or underfitting. Moreover, SVM regression can be computationally expensive,

particularly with large datasets, which may limit its usefulness in settings with vast amounts

of data.

2.5 Emergence of Deep Learning

Deep learning is a subset of machine learning that can analyze time series data (Prince, 2023). It

performs better in handling big data and complex nonlinear relationships, as evidenced by recent

applications such as image classification (Jiang & Zhang, 2020), object detection (Zhao et al.,

2019), and time series prediction (Brownlee, 2018; Jiang & Zhang, 2019). Deep Learning

embraces several neural networks, including recurrent neural networks (RNNs). RNNs are

specially built to handle time series data and can maintain the memory of previous inputs through

a hidden state (Tyagi & Abraham, 2022). There are three main types of RNNs, which are

categorized based on their architectural features: Simple Recurrent Neural Network (Simple RNN),

Long short-term Memory (LSTM) and Gated Recurrent Unit (GRU).

27

Figure 2.5 AI, Machine Learning, and Deep Learning Overview

a) Simple Recurrent Neural Network

Simple Recurrent neural networks (Simple RNN) effectively model time series data

(LeCun et al., 2015). Simple RNNs make decisions influenced by previous decisions at

each time step, meaning that the outcome at the time step 't-1' impacts the decision-making

process at the current time step, 't' (Desell et al., 2020). However, Simple RNNs can

struggle with long-term dependencies, leading to gradients that either explode or vanish

(Hossen et al., 2018; Tian et al., 2018). To address this issue, a specialized type of RNN

architecture known as LSTM was introduced to improve the performance of the simple

RNNs.

b) Long short-term Memory (LSTM)

LSTM is a particular type of RNN; LSTM was introduced by Hochreiter and Schmidhuber

(Hochreiter & Schmidhuber, 1997) and was refined and popularized by Gers, Schmidhuber,

and Cummins (2000) and Graves and Schmidhuber (2005). LSTM networks are

architecture designed to learn long-term dependencies and can avoid vanishing gradients

using memory cells (J. Xu et al., 2024). The LSTM architecture replaces the typical hidden

28

layers with LSTM cells. These cells consist of multiple gates that regulate the input flow.

These multiple gates comprise an input gate, forget gate, and output gate. Figure 2.6

illustrates the architecture of Long Short-Term Memory (LSTM) cells.

Figure 2.6 LSTM cell (Fan et al., 2020)

The key to LSTM is the cell state (𝐶𝑡), which enables the information to flow unchanged.

Three gates regulate the cell state to let information flow optionally. The first gate, called the

forget gate layer, decides the elements of the cell state vector (𝐶𝑡−1) will be ignored.

𝑓𝑡 = 𝜎 (𝑊𝑓ℎ𝑡−1 + 𝑊𝑓ℎ𝑡) Equation (2.11)

Afterwards, the input gate determines which value needs to be updated.

 𝑖𝑡 = 𝜎 (𝑊𝑖ℎ𝑡−1 + 𝑊𝑖ℎ𝑡) Equation (2.12)

Following the intermediate cell state is calculated by the current input 𝑥𝑡 and the last

hidden state ℎ𝑡−1:

�̃� = 𝑡𝑎𝑛ℎ(𝑊𝑐ℎ𝑡−1 + 𝑊𝑐ℎ𝑡) Equation (2.13)

29

After that, the old cell state 𝐶𝑡−1 can update into the new cell state 𝐶𝑡 by element-wise

multiplication:

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 Equation (2.14)

Finally, the output gate decides which to be output by a sigmoid layer:

𝑜𝑡 = 𝜎 (𝑊𝑜ℎ𝑡−1 + 𝑊𝑜ℎ𝑡) Equation (2.15)

The new hidden state ℎ𝑡 is then computed by employing equations 2.12 and 2.13.

 ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) Equation (2.16)

Where:

𝑥𝑡: Input vector at time t, ℎ𝑡: output vector at time t, 𝐶𝑡: cell state vector, 𝑓𝑡: forget gate

vector, 𝑖𝑡: input gate vector, 𝑂𝑡: output gate vector.

c) Gated Recurrent Unit (GRU)

Gated recurrent Unit (GRU) can be considered a variation of LSTM that aims to overcome

the vanishing gradient limitation in Simple RNN. GRU proposed by Cho et al (Cho et al.,

2014) enables each unit within the network to adjust and capture dependencies dynamically

across varying time scales (Chung et al., 2014).This algorithm utilizes two gates, one less

than LSTM, so it is slightly simpler architecture than LSTM (Tyagi & Abraham, 2022).

- Reset gate (r) establishes how much past information can be forgotten (Yamak et al.,

2019).

- Update gate (𝑍) decides how much of the past information (previous hidden state)

needs to be passed along to the next step.

30

𝑟 = 𝜎(𝑊𝑟ℎ𝑡−1 + 𝑈𝑟𝑥𝑡) Equation (4.15)

𝑍 = 𝜎(𝑊𝑧ℎ𝑡−1 + 𝑈𝑧𝑥𝑡) Equation (4.16)

𝑐 = tanh(𝑊𝑐(ℎ𝑡−1 ∗ r) + 𝑈𝑐𝑥𝑡) Equation (4.17)

ℎ𝑡 = (1 − 𝑍) ∗ ℎ𝑡−1 + 𝑧 ∗ 𝑐 Equation (4.18)

Where 𝜎 denotes the sigmoid function, 𝑊′𝑠 are the parameters matrix, 𝑥𝑡 is the input at time

t, ℎ𝑡−1 represent the hidden state from the previous time step. 𝑐 the candidate's hidden state

determines what to collect from the current memory content. ℎ𝑡 is the final hidden state for the

current time state.

Figure 2.7 GRU Network (Yamak et al., 2019)

2.6 Assessing the Performance of Machine Learning Algorithms

To compare different machine learning models, a systematic approach evaluates their performance

and ability to analyze new data effectively. Several commonly employed metrics exist to measure

the accuracy of numerical predictions. There are some standard metrics used for evaluating

machine learning regression algorithms, including Mean Absolute Error (MAE), Mean Absolute

Percentage Error (MAPE), Mean Percentage Error (MPE), Mean Square Error (MSE) and Root

31

Mean Square Error (RMSE) (Botchkarev, 2019). Table 2.3 displays the equations for these

performance measures.

Table 2.3 Performance Measure Equations

Performance Measure Expression

Mean Absolute Error (MAE) 𝑀𝐴𝐸 =
1

𝑛
∑|𝑎𝑖 − 𝑝𝑖|

𝑛

𝑖=1

Mean Absolute Percentage Error

(MAPE)

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

(𝑎𝑖 − 𝑝𝑖)

𝑎𝑖
|

𝑛

𝑖=1

Mean Percentage Error (MPE) 𝑀𝑃𝐸 =
1

𝑛
∑

(𝑎𝑖 − 𝑝𝑖)

𝑎𝑖

𝑛

𝑖=1

Mean Square Error (MSE) 𝑀𝑆𝐸 =
1

𝑛
∑(𝑎𝑖 − 𝑝𝑖)2

𝑛

𝑖=1

Root Mean Square Error

(RMSE)
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑(𝑎𝑖 − 𝑝𝑖)2

𝑛

𝑖=1

Were: 𝑎𝑖 is the actual observed target value of example 𝑖 , 𝑝𝑖 is the predicted target value of

example 𝑖, and 𝑛 is the total number of examples in the dataset.

When selecting performance measures for a machine learning algorithm, it is crucial to consider

the problem and its application carefully. The performance metric chosen should align with the

model's goals. Some metrics, such as MAPE, are more relevant in specific business applications

as they provide insights into the percentage accuracy. Choosing interpretable metrics easily is

essential, depending on the users. Metrics such as MAE and MAPE are relatively easy to interpret,

whereas others, such as RMSE, may need to be more intuitive to non-technical stakeholders.

32

2.7 Machine Learning Application for Cost Forecasting

In the context of Cost EAC, it is essential to highlight that limited studies have been conducted.

This section provides an overview of the existing studies that have primarily focused on

developing machine learning models, with a particular emphasis on their use for forecasting

project costs within the project execution phase.

Pewdum et al. (2009) created an Artificial Neural Network (ANN) model to predict the cost and

duration of highway construction projects during the execution phase in Thailand. The EAC was

calculated based on eight factors: traffic volume, topography, weather conditions, evaluation date,

contract duration, construction budget, as-planned completion percentage, and actual completion

percentage. On the other hand, the duration was calculated using factors such as work starting date,

evaluation date, contract duration, rate of as-planned completion, and percentage of actual

completion. The study findings demonstrate a notable contrast in forecasting accuracy, as indicated

by the Mean Absolute Percentage Error (MAPE) values. The MAPE for the ANN model was 2.6%,

whereas the MAPE for the earned value method was significantly higher at 28.37%. This

divergence underscores the effectiveness of the proposed ANN model in accurately predicting the

EAC for highway construction projects in Thailand (Pewdum et al., 2009).

While the results showcased the predictive capabilities of the Artificial Neural Network (ANN)

model, it is essential to acknowledge some limitations associated with the ANN algorithm. One

disadvantage of using an Artificial Neural Network (ANN) is its inherent black-box nature, so it

cannot explain the underlying processes (Kareem Kamoona & Budayan, 2019; Kudirat et al.,

2023). ANN's black box modelling predicts output variables based on their relationships with the

input variables (Vu & Do, 2021). Consequently, when employing ANN modelling, it becomes

33

essential to have a sufficiently large dataset to minimize the risk of overfitting in predictions

(Aggarwal, 2018).

One of the primary disadvantages of ANNs for forecasting is their lack of transparency, often

described as a 'black box' characteristic (Kudirat et al., 2023). The model has a complex

architecture with multiple hidden layers and parameters, making it difficult to interpret how the

predictions were made. Additionally, ANNs are not inherently designed to handle temporal

dependencies of time series data (Fang et al., 2017).

Cheng et al. (2010) presented a Support Vector Machine Inference Model (ESIM) to estimate the

final project cost during the construction execution. The proposed model combines two machine

learning approaches: The fast messy genetic algorithm (fmGA) and the Support Vector Machine

(SVM). The ESIM model considered seven factors: CPI, SPI, subcontractor billed index, owner

billed index, change orders, climate, and market pricing effects. Data from two testing case studies

were modelling and comparing the predicted values of EAC with actual values, and average errors

were 7.02% and 1.68%, respectively (Cheng et al., 2010).

Cheng and Hoang (2014), in a subsequent study, proposed a model to predict the construction

project cost through the combination of Least Squares Support Vector Machine (LS-SVM),

machine learning-based interval estimation (MLIE), and differential evolution (DE). A difference

from the previous proposal is that this model provides interval results with lower and upper

prediction limits. The study analyzed data from 13 reinforced concrete building projects that were

carried out in Taiwan. The researchers considered ten input variables: construction progress %,

actual cost, planned cost, CPI, SPI, subcontractor billed index, owner billed index, change order

index, construction price fluctuations, and climax effect index. The study result indicated that the

proposed model achieved the following values in the testing data: MAPE=3.74, MAE = 0.03, and

34

RMSE = 0.04 (Cheng & Hoang, 2014). Additionally, the performance metrics of this model were

compared with the ANN model, and the EAC-LSPIM performed the best result.

Feylizadeh et al. (2012) proposed a different approach, presenting a Fuzzy Neural Network (FNN)

model to estimate the final project cost. The model included both qualitative and quantitative

factors. For quantitative factors, the authors considered actual cost, budget at completion, earned

value, planned value, cost performance index, and schedule performance index. The authors also

considered qualitative inputs such as weather conditions, employer cash status, and the degree of

experience of project staff. The study compared the model's results with the traditional EAC

forecasting approach and found that the proposed model outperformed (Feylizadeh et al., 2012).

However, the study did not provide the values of performance prediction indicators.

Dastgheib et al. (2022), this study proposed a model which employs an adaptative neuro-fuzzy

inference system (ANFIS) to forecast the EAC of construction projects. This model included

earned value, planned value, actual cost, contractor payments as inputs, and EAC as an output.

The EV, AC and PV datasets were simulated considering the normal distribution. This study

compared the ANFIS model with three types of neural networks: multi-layer perceptron, radial

basis function, and generalized regression neural networks. The results confirmed that the ANFIS

model performed well with RMSE = 0.0181 and MSE= 0.0003 (Dastgheib et al., 2022).

Despite the potential benefits of using Adaptive Neuro-Fuzzy Inference Systems (ANFIS) in

construction projects, certain limitations must be considered. One of the biggest challenges of this

study was obtaining comprehensive and appropriate project data from completed past projects to

train the ANFIS model effectively. Therefore, the authors created synthetic data to evaluate the

proposed model's performance.

35

Kamoona and Budayan (2019), this study proposed a novel model named deep neural networks

(DNN) to calculate the EAC. The first phase of this study compares the DNN model with the

support vector regression model (SVM). The results confirmed the predictability of the DNN over

the SVR models. The second phase involves implementing a hybrid model that combines a genetic

algorithm (GA) and brute force (BF) with a deep neural network to allocate correlated attributes

and build a predictive model accurately. The authors' findings suggest that the GA-DNN model is

a robust intelligence model for calculating EAC. The inputs incorporated in this model were cost

variance, schedule variance and SPI. The performance metrics for the testing data were RMSE =

0.0566, 𝑅2 = 0.91, and MAE = 0.4446, indicating that the model's predictions were accurate and

reliable.

İnan et al. (2022) developed a predictive model based on a deep learning algorithm (LSTM) to

forecast actual costs at completion. While the authors mention using a seven-dimensional feature

vector, including CPI and SPI, details about including other input variables are lacking.

Furthermore, the study's analysis compares the outcomes derived from the LSTM model against

those stemming from an index-based method. The findings showed that, in 75.33% of the

examined projects, the Mean Absolute Percentage Error (MAPE) metric generated by the LSTM

model exhibits superior performance compared to the index-based method (İnan et al., 2022). The

study proposed by İnan et al. makes significant progress in applying deep learning models to cost

forecasting for Estimate at Completion (EAC). While their approach effectively forecasts EAC at

the project level using variables derived from traditional Earned Value Management (EVM) inputs,

it also highlights opportunities for further enhancement. Specifically, there is potential for more

granular analysis and the inclusion of new input variables to improve EAC forecasting. Table 2.4

provides a summary of these studies with a brief description.

36

Table 2.4 Summary of Machine Learning Approach

Modelling

Technique

Inputs Description Reference

ANN

Traffic volume, topography, weather

conditions, evaluation date, contract duration,

construction budget, planned completion %,

and actual completion %.

An ANN model is used to forecast the

duration and EAC of highway projects

in Thailand. The model employs data

from fifty-one highway construction

projects.

Pewdum et

al. (2009)

SVM and

fmGA

Duration, AC, PV, CPI, SPI, subcontractor

management contract payment, change order,

contract payment, construction price

fluctuation and weather conditions.

A hybrid model for predicting EAC. The

model employed data from thirteen

building projects executed in Taiwan.

Cheng et

al. (2010)

LS-SVM,

MLIE, and

DE

Duration, AC, PV, CPI, SPI, subcontractor

management contract payment, change order,

contract payment, construction price

fluctuation and weather conditions.

The study provides a hybrid model for

predicting EAC and interval results with

lower and upper prediction limits. The

model employed data from thirteen

building projects executed in Taiwan.

Cheng and

Hoang

(2014)

FNN

AC, BAC, EV, PV CPI, SPI, employer cash

status, weather conditions, and the experience

of project staff.

The FNN model considers qualitative

and quantitative factors. This study

needs to mention the origin of the data

employed.

Feylizadeh

et al.

(2012)

GA-DNN

CV, SV, CPI

A deep neural network model for

predicting EAC. This model employed

fifteen construction projects executed in

Iraq.

Kamoona

and

Budayan

(2019)

ANFIS

EV, PV, AC, contractor payments

The ANFIS model forecasts the EAC,

considering the risk for qualitative

variables. The inputs were randomly

generated using a normal distribution.

Dastgheib

et al.

(2022)

LSTM Seven-dimensional feature vector, including

CPI and SPI

The LSTM model for predicting EAC,

the study used data from forty-one

projects.

İnan et al.

(2022)

37

2.8 Summary and Research Gaps

Several previous research studies attempted to forecast the EAC of construction projects by

considering diverse cost factors and using various modelling techniques. The EVM technique has

been the industry's prevailing cost prediction technique for decades. Despite its popularity, several

findings suggest that the traditional EVM technique can be misleading due to their assumption that

cost performance remains consistently stable and uniform throughout the project (Barraza et al.,

2004; Du et al., 2016; Howes, 2000; Narbaev & De Marco, 2014). Moreover, EAC formulas used

in the EVM method cannot consider qualitative factors such as project types, weather conditions,

and contractor payments (Dastgheib et al., 2022). These limitations can affect the EAC accuracy

calculated by EVM methodology.

A regression-based approach has been proposed to address the challenge posed by the EVM. For

instance, Narbaev and De Marco (2014) proposed a method based on an earned schedule factor

modified by GGM via a nonlinear regression analysis (Narbaev & De Marco, 2014). Later, Caron

et al. (2016) developed a Bayesian approach capable of including experts' opinions, data from past

projects and the current performance (Caron et al., 2016). In 2022, Ottaviani and De Marco

presented a new EAC formulation based on multiple linear regression analysis (Ottaviani & Marco,

2022). While there have been improvements in EAC computation using the regression-model

approach, adopting advanced modern artificial intelligence models is crucial to advance cost

forecasting in system development. In the quest for more comprehensive cost forecasting solutions,

the integration of machine learning emerges as the next logical step, building upon the insights

gained from the EVM method and the regression-based approach.

Leveraging the capabilities of ML promises to address the remaining challenges in a dynamic and

data-driven manner. Although there have been several studies since 2009 on EAC prediction using

38

machine learning models, the studies developed still need to be improved and require more

attention, especially in applying deep learning algorithms to solve time series forecasting problems.

For instance, two studies only tested deep learning algorithms in cost forecasting of ongoing

projects. This limitation is notable, considering the potential of deep learning models such as

Simple RNN, GRU and LSTM networks, which can capture intricate patterns in time series data.

The underutilization of these techniques hinders the development of more accurate cost forecasts

in the construction industry.

The current machine learning models exhibit a common limitation: their focus on project-level

modelling. While these models offer valuable insights into overall project cost forecasting, they

lack granularity at the work package level. This limitation hinders identifying potential deviations

and cost overruns at the lowest level of the work breakdown structure. Work package-level

modelling becomes essential for identifying specific areas of concern that a project-level approach

could mask.

Considering the described limitations in the cost forecasting for ongoing projects, the proposed

work follows: 1) Selecting relevant inputs impacting cost forecasting in construction projects; 2)

Choosing algorithms capable of capturing nuanced patterns within time series data like deep

learning techniques, and 3) Building a deep learning model able to enhance the accuracy of cost

forecasting at the work package level

39

Chapter 3: Development of Conceptual Model for Cost Forecasting

3.1 Introduction

This study aims to create a cost forecasting model to help project managers calculate EAC at the

work package level. To create the forecasting model, the input factors, the process for developing

the forecasting model, and the output target were defined, as illustrated in Figure 3.1. By focusing

on construction projects in the execution phase and introducing an innovative method for real-time

forecasting, this study proposes a comprehensive framework for accurately predicting EAC. The

input stage encompasses critical factors necessary for the model, identified by examining industry

practices and literature review. The primary process consists of four essential steps: developing a

data acquisition model, data preprocessing, model building and configuration, and evaluating and

selecting the optimal forecasting model. The output target represents the value calculated by the

forecasting model, which subsequently facilitates the determination of the EAC.

Figure 3.1 Conceptual Model for Cost Forecasting

Defining the input factors involves examining industry practices and conducting a literature

review. It comprises analyzing the current practices employed by construction companies in cost

forecasting calculation and reviewing academic contributions that propose new methodologies for

cost forecasting. This comprehensive review also encompassed the factors integrated within these

40

methodologies, ensuring a thorough understanding of the existing and emerging approaches in the

field.

This study concentrates on construction projects in the execution phase from the contractor's

perspective. It suggests an innovative method for real-time forecasting of direct costs. The research

outlines the primary process for developing a data acquisition system and model development with

a graphical user interface (GUI). This process is based on a framework comprising five main steps:

data acquisition model, data preprocessing, model building and configuration, evaluation and

selection of the optimal forecasting model, and GUI development, as shown in Figure 3.2.

This chapter centres on several key aspects.

1. Investigating forecasting methods employed by industry practitioners.

2. Identifying the project factors significantly impacting cost EAC prediction, drawn from

prior research and discussions with experienced project managers.

3. Establishing a data acquisition model to streamline data collection for project managers.

4. Gathering historical project data for use in developing forecasting models.

5. Describing the preliminary dataset's factors

The following chapter outlines the detailed processes for model development with a GUI.

41

Figure 3.2 DAM and Forecasting Model Development Methodology

3.2 Current Cost Forecasting Practices

From the contractor's perspective, EAC forecasting in construction projects involves several

approaches and methods. Typically, project managers choose between two strategies to calculate

EAC: Bottom-up and EVM methodology.

The bottom-up technique for cost forecasting during construction execution is a detailed and

systematic approach aggregating the estimated costs of elements or work packages to determine

the remaining project cost. One of the primary advantages of the bottom-up approach is its

accuracy; focusing on the specifics of each task offers reasonable forecasting of total remaining

project costs, making it particularly useful for complex projects where each component's cost can

significantly impact the overall budget.

42

However, the bottom-up technique is not without its disadvantages. Typically, the most significant

drawback is the time-consuming nature of this technique, as it requires a detailed understanding

of the project and much effort to break down and estimate every aspect of the remaining work.

This level of detail can also lead to analysis paralysis, where an overabundance of information

hinders decision-making. As a result, this method is laborious for periodically or monthly

developing forecasts. Additionally, the accuracy of a bottom-up approach is dependent on the

quality of the collected data, including actual rate cost, current productivity, remaining quantities,

change orders, and price material escalations; inaccuracies in forecasting individual activities or

work packages can compound, leading to significant inconsistencies in the overall project cost

forecast.

Earned Value Management is one of the industry's most widely known techniques for cost

prediction (He et al., 2017). During the project execution, the EVM method measures the project’s

performance periodically, forecasts the EAC and analyzes variances in schedule and budget

(Fleming, 2016). When it comes to predicting costs, EVM uses the cost performance index (CPI)

to determine cumulative cost performance by dividing EV by AC, and then this index is used to

forecast EAC (Lipke et al., 2009). Several EVM-based cost forecasting formulas are available, as

discussed in Chapter 2 of this study. Each formula has its own set of assumptions and is used at

the discretion of project managers, depending on the specific project requirements. Although EAC

formulas from the EVM method are popular, they do not account for certain factors that impact

project cost performance. These factors include unexpected weather conditions, price fluctuation,

exchange rate (Baloi & Price, 2003), and variability of labour productivity (Lema & Price, 1996).

43

3.3 Key Factors Influencing EAC

Identifying critical factors influencing the calculation of cost EAC is based on a thorough review

of existing literature and expert opinion from practitioners.

 As mentioned previously, there are limited investigations about prediction cost forecasting of

ongoing projects employing artificial intelligence techniques. Nevertheless, it is worth noting that

many studies have primarily concentrated on developing models for estimating project costs

during the planning stage. These models consider factors including project type, total floor area,

soil condition, presence of underground floors, seismic zone and technical complexity (Cheng &

Roy, 2010). During the early stages of construction projects, construction companies emphasize

budget planning while overlooking other aspects, such as cost fluctuations, information updates,

and comprehensive cost management. In contrast, the main goal of this study is to create a

forecasting model framework that can forecast the cost estimate at completion, capturing the data

generated during the execution stage. To achieve this goal, this study comprehensively reviews

pertinent literature on the key inputs to be incorporated into an EAC forecasting model.

Researchers have identified several factors that influence cost forecasting models. Table 3.1

presents the factors used in the past literature, including SPI, CPI, Cost Variance (CV), Schedule

Variance (SV), subcontractor billing, contract payment, change orders index, construction cost

index, AC, EV, PV, weather conditions, percentage work planned and performed, and project staff

experience.

44

Table 3.1 Factors Influencing Project Cost Forecasting

Factor

number
Influence Factors

Literature

1 2 3 4 5 6 7 8 9 10 11 12 13

1 SPI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 CPI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 CV ✓

4 SV ✓

5 Subcontractor billed index ✓ ✓ ✓ ✓ ✓ ✓

6 Contract payment ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

7 Change Order Index ✓ ✓ ✓ ✓ ✓ ✓

8 Construction Price Fluctuation ✓ ✓ ✓ ✓ ✓ ✓ ✓

9 Weather condition ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10 AC ✓ ✓ ✓ ✓ ✓ ✓ ✓

11 Budget at Completion ✓ ✓

12 EV ✓ ✓ ✓ ✓ ✓ ✓

13 PV ✓ ✓ ✓ ✓ ✓ ✓ ✓

14 Experience of project staff ✓ ✓

15 Construction duration ✓ ✓ ✓ ✓ ✓ ✓

16 Topography ✓

17 % of work performed ✓ ✓

18 Increase in labour Cost ✓

19
Lack of experience in the

location
 ✓

20 Inaccurate quantity take-off ✓

21 Traffic volume ✓

22 Evaluating date ✓

23 % of work planned ✓

Sources for cost estimate factors

1. (Wauters & Vanhoucke, 2014)

2. (Kareem Kamoona & Budayan, 2019)

3. (Feylizadeh et al., 2012)

4. (Dastgheib et al., 2022)

5. (Cheng et al., 2010)

6. (Pewdum et al., 2009)

45

7. (Ottaviani & Marco, 2022)

8. (İnan et al., 2022)

9. (Cheng & Hoang, 2014)

10. (Cheng et al., 2012)

11. (Cheng & Roy, 2010)

12. (Cheng et al., 2013)

13. (Kaming et al., 1997)

Several factors are crucial when forecasting construction project costs from a practitioner's

perspective. Firstly, it is essential to capture the actual cost rate, which includes the actual cost by

unit measure. This indicator allows for more accurate forecasting and budget adjustments.

Similarly, actual productivity, a unit measured per hour or day, is essential. Another factor is

unexpected weather conditions, which can cause significant delays, damage materials, or

necessitate additional labour, affecting both the timeline and cost. Another key consideration is

material price escalation. As prices for critical materials fluctuate, the project's overall cost can

increase unexpectedly. Currency exchange rate fluctuations could affect the final cost of imported

materials and equipment, which is crucial for those depending on foreign supplies or projects

budgeted in different currencies. Inflation rates gradually reduce the purchasing power of a budget,

impacting cost forecasting. Lastly, the evaluation date for grasping the metric according to the

season acknowledges that certain times of the year can affect both the availability and price of

labour and materials and the feasibility of construction work, making timing a crucial element in

cost forecasting. The collaborating practitioner has emphasized that these factors contribute to the

intricate nature of cost forecasting in construction projects.

Previous studies and expert opinions have identified some critical factors impacting cost

forecasting. However, some of them are unavailable for the current research. In this study, the

46

available factors were considered based on those identified through a literature review and expert

opinion to create a preliminary list of factors influencing cost forecasting.

Regarding the output, the Estimate at Completion computation is contingent upon predicting the

Estimate to Complete (ETC), given the progressive availability of actual costs throughout the

project. This study's approach involves forecasting the ETC at each period and adding the

cumulative actual cost to derive the EAC. The following equation calculates the EAC based on the

predicted ETC.

𝐸𝐴𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝐴𝐶𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒 + 𝐸𝑇𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 Equation 3.1

Where:

- 𝐸𝐴𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 : Estimate at Completion predicted.

- 𝐴𝐶𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒 : Cumulative Actual Cost

- 𝐸𝑇𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 : Estimate to Complete predicted.

Table 3.2 presents a preliminary selection of input variables and an output to further analyze in the

subsequent chapter. While the CPI is presented within the data collected, it has been omitted from

this preliminary list because it is derived from two inputs under consideration: AC and EV.

However, in the next chapter, CPI input will be incorporated into the Pearson correlation analysis,

part of the feature selection process, to validate this decision.

47

Table 3.2 Preliminary Inputs and Output Available

Feature

code

Feature

Name

Description Category

𝒙𝟏 AC The total cost of a specific work package from the start to the

current period.

Input

𝒙𝟐 EV Total earned value for a specific work package up to the current

period.

Input

𝒙𝟑 % Duration The percentage of time passed about the current schedule

baseline for a specific work package.

Input

𝒙𝟒 Labour Cost The total labour cost of a specific work package from the start

to the current period.

Input

𝒙𝟓 Executed

quantity

Work that has been completed on a project relative to the total

work required.

Input

𝒙𝟔

WP Type Categorization of a specific set of tasks within the project Input

𝒚𝟏 ETC The projection represents the anticipated cost required to

complete the remaining work.

Output

It is essential to mention that the data for this study was collected weekly at the work package level.

Previous studies on forecasting EAC using a machine learning model have focused on the project

level, so their models did not include work package type inputs. However, this research proposes

a new approach to predicting EAC at the work package level. To achieve this, the model consists

of a work package type, categorizing the work into concrete, piping, and fill. Utilizing the work

packages approach in managing construction projects is expected to improve cost forecasting

analysis by giving alerts about potential cost overruns at this level, consequently helping the

project manager identify and promptly implement targeted corrective actions. Additionally, the

work packages approach will likely decrease the chances of experiencing schedule delays and cost

overruns (Hammad, 2009).

48

3.4 Proposed Data Acquisition Model

Collecting and maintaining quality data is crucial for the deep learning model's success. A Data

Acquisition Model (DAM) ensures that data is gathered correctly and consistently, increasing the

chance of a more accurate model. Ongoing construction projects are dynamic, with costs, progress

and performance changing frequently. A data acquisition model allows for real-time data collection,

providing up-to-date information for evaluating cost performance and forecasting. Data

acquisition models can be built to collect data at a granular level, such as a work package. This

level of detail is convenient for addressing and managing potential cost variations. Also, DAM

provides transparency in data collection, ensuring that all stakeholders can access reliable data and

promote better decision-making. Therefore, obtaining good-quality data is crucial for the

organization's success.

Construction companies have different methods of collecting data from onsite projects. Some rely

on manual data collection by filling out forms onsite and entering the data into an Excel

spreadsheet (El-Omari & Moselhi, 2011). However, this practice is prone to human error, such as

missing data or misinterpretation. It is also time-consuming and may cause delays in data reporting.

On the other hand, some companies use specialized systems, such as SAP and BST Global, that

are more efficient for collecting data. Nevertheless, this software may not cover all the cost-

tracking data necessary to calculate and accurately predict costs.

Hence, this study aims to introduce a data acquisition model that establishes a tracking system

capable of gathering high-quality data from onsite projects, particularly data needed for cost

forecasting. The conceptual design of the database offers an overview of the data requirement. The

development was carried out using an Entity Relationship Diagram (ERD).

49

3.4.1 Entity Relationship Diagram (ERD)

The entities-relationship diagram (ERD) methodology, developed by Chen in 1976, is used to map

and formulate data into a project database (P. P.-S. Chen, 1976). The ERD includes entities,

relationships, and attributes. Entities are essential objects that exist physically or conceptually.

Relationships are connections between two entities and are used in designing the database. In a

binary relationship, the association includes one-to-one (1:1), one-to-many (1:m), and many-to-

many (m: n) relationships. Attributes refer to the qualities or features that describe entities;

attributes are the data fields containing entity information. The ERD diagram acts as a guide for

developers to model data entities and relationships without conflicts.

Developing an ERD is pivotal in establishing a comprehensive data collection framework designed

to enhance cost forecasting at the work package level within the context of construction projects.

Figure 3.3 illustrates that the ERD encapsulates the relationships and entities crucial for

systematically capturing, organizing, and forecasting costs associated with different work package

types. The ERD framework is a valuable tool for contractors, facilitating the collection of essential

project data for cost forecasting.

The proposed ERD presents a hierarchical structure for project management. At the highest level

is the 'Portfolio,' a strategic collection of projects and programs to achieve overall business

objectives (Project Management Institute, 2018). The second level comprises programs that are

clusters of interconnected projects; their success depends on the completion of each project in

collaboration. In the third level, each construction project is represented by the 'Project' entity. The

last level is the work package, which is the level of evaluation in the proposed predictive model.

Figure 3.3 illustrates the Breakdown Structure Schema.

50

Figure 3.3 Breakdown Structure Schema

The ERD proposed represents a data acquisition model for managing construction projects to

forecast EAC at the Work Package level. This ERD is comprised of several entities, each of which

is integral to the database's overarching structure and is interconnected through various

relationships. At the top of the ERD is the "Project" entity, which holds attributes such as 'ID,'

'Name,' 'Project Manager/Controller,' 'Owner Company,' 'Location,' 'Project Type,' 'Contract

Number,' 'Contract Type,' 'Contract Amount,' 'Contract Duration,' 'Original Budget at Completion

(BAC),' and 'Schedule Baseline.' It is a central node that connects to the 'Company,' 'Portfolio,'

'Program,' 'Project Update,' and 'Work Package (WP).'

The central entity in the ERD is the 'Work Package,' which includes attributes such as 'Name,' 'ID,'

'WP Type,' 'Key Quantity,' 'Description,' and 'Unit of Measure,' allowing for granular tracking and

management of project tasks. The WP entity relates to ‘Weekly Progress per WP,' which captures

the weekly progress on work packages. This entity includes 'Earned Value (EV),' 'Planned Value

(PV),' 'Actual Cost (AC) for Equipment, Labour, Material, Subcontractor,' 'Quantity,' and

'Comments,' providing critical data points for performance measurement and management. The

51

'WP Original Baseline' and 'WP Update' entities establish a plan or reference point against which

the performance and progress of specific work packages can be measured.

The ERD employs one-to-many ('1', 'm') and many-to-one ('m', '1') relationships. For instance, a

single project may contain multiple work packages, each with multiple updates and progress

reports.

Figure 3.4 Entity Relationship Diagram

52

3.5 Data Collection Process

The historical data cases in this study consist of five mining projects developed between June 2014

and June 2016 by one construction company in Peru. The project comprises part of the expansion

of the mining unit, including the following main work package: earthworks, concrete and steel

structures, mechanical and piping installation, guides and anchor blocks, electrical installation, and

instrumentation. This data is based on weekly cost-related information for each project.

In this study, historical data is systematically acquired through a range of reports supplied by the

contractor. These reports encompass diverse information, including the final project report, weekly

production report, weekly earned value management reports, equipment control data, and labour

hours data, among other general documentation. Most historical data is available in the time-series

format and at the work package level, contributing to the robustness of the data collection process

for the study.

The industry partner collaborating in this study has followed a comprehensive tracking system

encompassing a variety of spreadsheets tailored for data collection. Most data collected for this

study was obtained from two reports provided by the contractor:

- The Earned Value Management Report: This report furnishes weekly insights at the work

package level, featuring data points such as work package descriptions, earned value ($),

actual cost ($), budget at completion ($), CPI (Cost Performance Index) for both the current

period and cumulatively, and the percentage of physical completion.

- Cost Control reports: This report compares the periodically incurred actual costs with the

budgeted costs. The actual cost is divided into four categories: labour, material, equipment,

and subcontractors. It is important to note that the labour cost had periodic information,

53

whereas the material, equipment, and subcontractor costs had the total amount at the end

of the project.

- The Weekly Production Report: This report focuses on monitoring labour and production,

detailing actual hours expended weekly, actual quantities executed and planned quantities

based on critical units for each work package.

While the contractor provided valuable information to build the cost forecasting data set, there are

specific attributes that the contractor did not provide. These missing elements include the planned

value per week at the work package level, the SPI (Schedule Performance Index), material price

escalation, information related to the impact of unexpected weather conditions, and detailed

information concerning contract payments, including delays in payments or discrepancies between

payments and actual work executed onsite.

3.6 Data Description

The dataset collected for this study is briefly explained in the following section. An example of

the initial dataset overview is provided in Table 3.3.

- Actual Costs to Date:

This input consists of ongoing costs as the project progresses. This data is available at the work

package level with weekly frequency for each construction project. This information

encompasses the actual direct cost, including materials, equipment, subcontractors, and labour

costs, excluding indirect costs. Direct costs are specific and tangible to the project, including

materials, labour, equipment, and subcontractors (Amos, 2012). Indirect costs are not directly

accountable or tangible to the project, such as business taxes, home office overhead, or

transportation fleet distributed cost, but are necessary for the business to remain solvent (Amos,

54

2012). Table 3.5 displays the lower and upper bounds (in monetary units) for the actual cost at

completion associated with each work package type.

Table 3.3 Initial Dataset Overview

Table 3.4 Actual Cost at Completion Bounds

 Project
 Work

Package Type
 Unit Start Date Finish Date Period

 Duration

(weeks)
 BAC ($) AC to date ($) EV to date ($)

 Key quantity

to date (unit)

 Actual labour

Cost ($)

Project 01 Concreto m3 4-Dec-14 10-Dec-14 1.00 59.00 1,736,919.69 5,428.58 6,195.61 10.11 3,097.00

Project 01 Concreto m3 11-Dec-14 17-Dec-14 2.00 59.00 1,736,919.69 36,090.56 9,259.89 16.71 18,316.00

Project 01 Concreto m3 18-Dec-14 24-Dec-14 3.00 59.00 1,736,919.69 82,552.47 24,772.37 39.43 26,163.00

Project 01 Concreto m3 25-Dec-14 31-Dec-14 4.00 59.00 1,736,919.69 122,488.09 25,688.44 40.92 22,990.00

Project 01 Concreto m3 1-Jan-15 7-Jan-15 5.00 59.00 1,736,919.69 171,070.01 35,613.77 57.12 27,721.00

Project 01 Concreto m3 8-Jan-15 14-Jan-15 6.00 59.00 1,736,919.69 201,308.59 44,280.76 71.27 17,214.00

Project 01 Concreto m3 15-Jan-15 21-Jan-15 7.00 59.00 1,736,919.69 248,464.94 44,280.76 71.27 27,056.00

Project 01 Concreto m3 22-Jan-15 28-Jan-15 8.00 59.00 1,736,919.69 283,760.79 44,806.38 72.32 20,406.00

Project 01 Concreto m3 29-Jan-15 4-Feb-15 9.00 59.00 1,736,919.69 316,208.04 73,241.88 107.42 19,000.00

Project 01 Concreto m3 5-Feb-15 11-Feb-15 10.00 59.00 1,736,919.69 346,337.49 83,511.86 136.02 17,594.00

Project 01 Concreto m3 12-Feb-15 18-Feb-15 11.00 59.00 1,736,919.69 370,514.54 89,213.78 164.52 14,554.00

Project 01 Concreto m3 19-Feb-15 25-Feb-15 12.00 59.00 1,736,919.69 389,311.97 141,537.63 290.59 9,785.00

Project 01 Concreto m3 26-Feb-15 4-Mar-15 13.00 59.00 1,736,919.69 412,070.03 153,024.42 318.61 12,787.00

Project 01 Concreto m3 5-Mar-15 11-Mar-15 14.00 59.00 1,736,919.69 439,730.30 176,075.72 354.08 15,124.00

Project 01 Concreto m3 12-Mar-15 18-Mar-15 15.00 59.00 1,736,919.69 464,587.84 177,185.66 355.90 14,193.00

Project 01 Concreto m3 19-Mar-15 25-Mar-15 16.00 59.00 1,736,919.69 497,896.62 179,954.49 360.45 18,981.00

Project 01 Concreto m3 26-Mar-15 1-Apr-15 17.00 59.00 1,736,919.69 512,854.33 192,521.23 372.64 10,279.00

Project 01 Concreto m3 2-Apr-15 8-Apr-15 18.00 59.00 1,736,919.69 527,309.30 192,521.23 372.64 8,322.00

Project 01 Concreto m3 9-Apr-15 15-Apr-15 19.00 59.00 1,736,919.69 553,573.64 260,594.80 468.84 17,822.00

Project 01 Concreto m3 16-Apr-15 22-Apr-15 20.00 59.00 1,736,919.69 615,981.91 369,389.09 614.46 41,743.00

Project 01 Concreto m3 23-Apr-15 29-Apr-15 21.00 59.00 1,736,919.69 697,353.91 430,018.59 694.30 50,825.00

Project 01 Concreto m3 30-Apr-15 6-May-15 22.00 59.00 1,736,919.69 777,293.15 466,662.63 751.08 45,980.00

Project 01 Concreto m3 7-May-15 13-May-15 23.00 59.00 1,736,919.69 820,301.69 512,003.64 820.78 24,282.00

Project 01 Concreto m3 14-May-15 20-May-15 24.00 59.00 1,736,919.69 893,795.80 588,981.87 938.80 39,634.00

Project 01 Concreto m3 21-May-15 27-May-15 25.00 59.00 1,736,919.69 984,077.11 608,352.06 963.64 52,744.00

Project 01 Concreto m3 28-May-15 3-Jun-15 26.00 59.00 1,736,919.69 1,057,379.74 664,222.32 1,049.72 41,249.00

Project 01 Concreto m3 4-Jun-15 10-Jun-15 27.00 59.00 1,736,919.69 1,187,979.03 717,408.64 1,137.72 73,397.00

Project 01 Concreto m3 11-Jun-15 17-Jun-15 28.00 59.00 1,736,919.69 1,341,861.54 861,976.52 1,437.40 85,025.00

Project 01 Concreto m3 18-Jun-15 24-Jun-15 29.00 59.00 1,736,919.69 1,498,786.81 942,130.16 1,561.28 86,868.00

Project 01 Concreto m3 25-Jun-15 1-Jul-15 30.00 59.00 1,736,919.69 1,656,872.07 969,806.57 1,605.82 90,269.00

Project 01 Concreto m3 2-Jul-15 8-Jul-15 31.00 59.00 1,736,919.69 1,694,438.16 1,028,493.34 1,773.59 50,027.00

Project 01 Concreto m3 9-Jul-15 15-Jul-15 32.00 59.00 1,736,919.69 1,736,849.86 1,108,636.48 1,983.10 55,708.00

Project 01 Concreto m3 16-Jul-15 22-Jul-15 33.00 59.00 1,736,919.69 1,842,858.17 1,159,535.90 2,060.98 65,455.00

… … … … … … … … … … …

Lower Bound Upper Bound

Concrete 8 439 1,422,346.05 4,172,899.84

Piping (HDPE) 9 388 1,214,274.77 7,292,779.17

Backfill 6 328 1,474,004.06 3,683,582.26

Work Package

Type

Number of Work

Packages

Actual Cost at Completion($)
Number of Records

55

Figure 3.5 Actual Cost to Date _Concrete dataset

- Earned Value to Date:

This attribute represents the budget for the work package accomplished at a specific time. EV

is calculated by multiplying the percentage completed by the BAC. Table 3.5 displays the

lower and upper bounds (in monetary units) for the earned value associated with each work

package type.

Table 3.5 Earned Value Bounds

Figure 3.6 Earned Value Cumulate _Fill dataset

Lower Bound Upper Bound

Concrete 8 439 1,058,914.93 3,321,901.78

Piping (HDPE) 9 388 912,213.67 8,228,545.37

Backfill 6 328 930,789.85 2,886,114.86

Work Package Type
Number of Work

Packages
Number of Records

Earned Value ($)

56

- Duration % Completed:

This input refers to the percentage of the total project duration that has been completed at a

given point in time. This was obtained by considering each work package's actual start and

finish dates and the current baseline duration. Table 3.6 shows the lower and upper bound

(measures in weeks) for the duration input associated with each work package type.

Table 3.6 Duration Bounds in Weeks

- Actual Labour Cost:

Labour costs are a significant portion of the actual cost, representing the total payments made

to field workers who carry out the work package task. This input helps the model understand

trends and patterns in labour spending throughout the project.

- Work Package Type:

The work package type attribute represents the category of the work executed. The projects

collected include nine main work packages: Excavation, fill, rockfill, concrete (including

concrete placement, formwork, and steel reinforcement), piping, assembly of light and medium

structures, assembly of heavy structures, electrical cables, and instrumentation. However,

subcontractors executed some work package types, and the weekly complete information is

unavailable. Thus, this study only considers work packages that contain all completed cost data.

These are fill, concrete, and piping (HDPE).

Lower Bound Upper Bound

Concrete 8 439 50.00 61.00

Piping (HDPE) 9 388 38.00 51.00

Backfill 6 328 51.00 59.00

Work Package

Type

Number of Work

Packages
Number of Records

Duration (Weeks)

57

- Executed quantity:

The executed quantity comprises the quantity completed (for each work package) at a given

time; it is expressed according to the key unit defined for each work package.

3.7 Limitations in the Acquired Dataset

The data acquired process encountered a set of constraints and challenges, primarily stemming

from the unavailability or confidentiality of specific data on the contractor's side. At the onset of

the data collection process, a preliminary meeting was held with a Canadian company to introduce

the research investigation, inquire about their current methodologies and practices in the cost

forecasting task and request information to build the proposed forecasting model. The data

provided by this Canadian entity was notably well organized. However, it only included some

crucial attributes for developing the forecasting model. A principal constraint imposed by the

Canadian company was the stringent confidentiality surrounding cost-related data. Given that the

proposed model's main objective is predicting the project's final cost, the absence of access to cost-

related data posed a significant limitation.

In response to this limitation, an alternate option was explored, leading to a connection with a

Peruvian company. This company possessed data from construction projects completed around

eight years ago, offering an alternative source of information. This strategic connection was

established to acquire a comprehensive dataset to build the predicted model.

Although the dataset provided by the Peruvian company included some essential attributes

required for the model, it notably omitted other significant attributes. Specifically, the dataset

lacked data regarding the planned value, SPI, indexes for construction price fluctuations,

information about extreme weather conditions, change orders, and monthly project progress

58

payments made by the owner to the contractor. This study constructed the current model using the

available information despite the unavailable data. However, we hope that future investigations

will consider incorporating these additional attributes to enable the development and evaluation of

an improved model version.

59

Chapter 4: Development of Computational Model for Cost Forecasting

4.1 Introduction

This research aims to develop a deep learning framework to predict the final cost in construction

projects by determining influential factors in cost forecasting, using historical data, and employing

a deep learning algorithm. Once the forecasting model is developed, the study will create a

graphical user interface to deploy the forecasting model. The resulting model will help project

managers make better-informed decisions and predict the final cost in real time during the

construction project execution. Chapter 4 proposes a framework for developing the model and

engineering a graphical user interface for data collection and model deployment. This framework

involves preprocessing the collected data, building and configuring three models, evaluating the

models using performance metrics, selecting the optimal forecasting model, and developing GUI

for collecting data and directly applying the model. In the subsequent sections, a comprehensive

elaboration of the main steps, including their respective sub-steps, will be presented in detail. This

detailed exposition aims to thoroughly understand the sequential processes for developing a

forecasting model based on a deep learning algorithm. A pictorial depiction of the workflow for a

forecasting model is given in Figure 4.1.

4.2 Data Preprocessing

As per standard machine learning practices, a systematic preprocessing protocol is essential to

refine raw data for optimal utilization in model training and validation endeavours. Data

preprocessing can significantly impact the predictive capability of a model, potentially

determining its success or failure (Kuhn & Johnson, 2013). The preprocessing steps aim to remove

categorical data, address missing values through deletion or imputation, and organize each time

60

observation into a single vector row (Barrera-Animas et al., 2022). The preprocessing procedure

developed in this study is explained in the following sections.

Figure 4.1 Forecasting Model as a Workflow

4.2.1 Grouping of Work Package Dataset

In the first step, this study considers separating the dataset based on work package types. The

collected data reveals three distinct work package types: concrete, piping (HDPE) and backfill.

This procedural segmentation safeguards the singularities inherent in cost forecasting for each

work package throughout the training process. The complete dataset for each work package type

comprises weekly recordings, including actual cost, earned value, executed quantity, actual labour

cost, and duration (start and finish date). Moreover, the dataset provides project-level records,

including name, location, start date, finish date, contract amount and actual estimate at completion.

61

After dividing the data for each work package category, the "Work Package Type" input was

removed. The date inputs, including start and finish date, were also removed because they

duplicated information in the duration attribute.

4.2.2 Dealing with Missing Values in Time Series

Missing values are common in data due to data entry errors or incomplete data collection. However,

these missing values can negatively impact the accuracy of forecasting models. Regarding time

series data, handling missing values is different because the data knows what preceded the missing

value. In this study, we used the "Replace Missing Values (Series)" operator from Rapid Miner

Study software to address this issue. This software replaces missing numerical values with the

average of the neighbouring values in the series, as shown in Equation 4.1. Figure 4.2 illustrates

replacing missing values in time series data using Rapid Miner Studio software.

𝑥𝑡
′ =

𝑥𝑡−1+𝑥𝑡+1

2
 Equation 4.1

Where:

- 𝑥𝑡
′ : Represent the padding value.

- 𝑥𝑡−1 and 𝑥𝑡+1:Denote the values of the previous time and the next time.

Figure 4.2 Missing Values Process

62

4.2.3 Outlier Detection

Outliers are defined as data point observations that are significantly far from the mainstream of

the data (Kuhn & Johnson, 2013). They can be caused by several factors, such as data entry errors,

measurement errors, or genuinely unusual events. Identifying and handling outliers is essential in

data preprocessing because they can significantly impact the predicted model results. The Local

Outlier Factor operator in RapidMiner identifies values far from their local neighbourhoods,

making it a valuable method for detecting local outliers. Figure 4.3 displays the outlier detection

process in RapidMiner Studio 9.10.013, including a step-by-step description.

Figure 4.3 Outlier Detection Process

4.2.4 Correlation Analysis and Feature Selection

The study analyzed the Pearson correlation coefficient (Liu et al., 2020) between six preliminary

input parameters and a single output value (ETC) to comprehend the relationship between input

parameters and output. This was done to evaluate their linear relationship. The Pearson Correlation

Coefficient is a statistical method to measure the linear relationship between two inputs, X and Y.

63

The resulting value ranges from +1 to -1 (Liu et al., 2020). A value of +1 implies an absolute

positive correlation, meaning that as variable X increases, variable Y also increases. On the other

hand, a value of -1 implies a perfect negative correlation, meaning that as variable X increases,

variable Y decreases. A value equal to 0 indicates no linear correlation. Figure 4.4 illustrates the

correlation matrix analysis.

The study has identified varying degrees of correlation between the six inputs and the ETC. The

CPI reveals very low correlations with all the variables, ranging from - 0.03 to 0.33, indicating

almost no linear relationship between CPI and the other variables in the set. However, inputs such

as AC cumulate, % Duration and Labour Cost cumulate exhibit significant correlations with the

ETC output. Finally, the AC cumulate, and EV cumulate display a high correlation, like the AC

cumulate and the labour cost cumulate. Despite this high correlation, it has been decided to retain

the AC cumulate variable due to the limited number of inputs, with each input providing valuable

information. Table 4.1 presents the final list of features included in the cost forecasting model.

Figure 4.4 Spearman Correlation Analysis

64

Table 4.1 Forecasting Model Features Variables

4.2.5 Time Series Data for Supervised Learning Problem

Time series refers to observations of different values corresponding to specific periods. Each

observation contains a time and an observation element. The observation element may correspond

to a single variable, a univariate time series, or multiple variables, also called a multivariate time

series (Wen & Li, 2023). The dataset collected for this study corresponds to a multivariate time

series encompassing various inputs for each observation. This dataset structure is particularly

suitable for applying regression-based deep learning algorithms, where the objective is to predict

continuous outcomes based on the temporal relationship and intricate patterns inherent in the

collected multivariate inputs.

The dataset needs to undergo specific preparations to prepare time series data for supervised deep

learning algorithms, transforming it into input and output components. In this research, the dataset

consists of five input time series, one output time series, and a time window of length 3. The

proposed model uses three weeks of data to predict the estimate to complete (ETC) target of the

following week. The input time series includes actual cost, earned value, duration percentage

completed, labour cost, and quantities. The output time series corresponds to the ETC. Since the

Feature code Feature Name Index Category

𝒙𝟏 Actual Cost 𝐴𝐶𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒 Input

𝒙𝟐 Earned Value 𝐸𝑉𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒 Input

𝒙𝟑 % Duration 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑡𝑜 𝑑𝑎𝑦

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 Input

𝒙𝟒 Labour Cost

𝐿𝑎𝑏𝑜𝑢𝑟 𝑐𝑜𝑠𝑡𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒
 Input

𝒙𝟓 Executed quantity .𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦
𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒

 Input

𝒚𝟏 Estimate to

Complete

 𝐸𝑇𝐶 Output

65

AC is available during the project execution, the accuracy of the forecasting EAC depends on the

forecasting ETC. Hence, the proposed model trains the input factors and one output feature for the

best accurate target (ETC). In this research, the EAC is computed by Equation 4.2.

 𝐸𝐴𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝐴𝐶𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒 + 𝐸𝑇𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 Equation 4.2

Where:

- 𝐸𝐴𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 : Estimate at Completion predicted.

- 𝐴𝐶𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒 : Cumulative Actual Cost

- 𝐸𝑇𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 : Estimate to Complete predicted.

Figure 4.5 displays data packing five inputs, one output from three preceding steps, and one

target.

Figure 4.5 Time Series Transformation

4.2.6 Max-Min Normalization and Data Splitting

Dataset normalization is a common approach performed in Machine Learning models when their

features have different magnitudes of values between them (Barrera-Animas et al., 2022). This

66

study employs the min-max normalization function from Python's Scikit learn library, which

involves linearly transforming the values of each parameter to map them into a standardized range.

Equation 4.3 for this calculation is as follows:

𝑥𝑛𝑜𝑟𝑚 =
𝑥− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 Equation 4.3

Where:

- 𝑥 denotes a value in the sequence of original variables.

- 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 Denote the maximum and minimum values in variables, respectively.

When working with time series data for a regression problem using deep learning algorithms, it is

important not to split the data randomly. This is because time series data inherently possess

temporal dependencies and sequential patterns. Randomly splitting the data would disrupt these

temporal relationships, leading to several issues. In the following step, the dataset is split into three

subsets, keeping the data sequence structure to evaluate the learning performance objectively.

- The first subset, the training set, comprises around 75% of the records and is used to

develop predictive models.

- The second subset, the validation set, consists of about 15% of the dataset and is used

to evaluate the model's performance and fine-tune its parameters.

- The last subset, the testing set, the study case set or unseen data, comprises around 10%

of the data set and assesses the model's future performance.

Figure 4.6 represents the division of a dataset into three splits: The training, validation, and testing

set, which are used during the deep learning model development process.

67

Figure 4.6 Data Split Diagram

Considering the dataset composed of finalized projects, the division into subsets for training,

validation and testing was carried out with the intention of including a completed project in each

evaluation category. Consequently, the percentages delineated below are approximations.

The dataset's preprocessing stage has been completed until this section. This ensures the data is

clean, normalized, and suitable for analytical model processing. This study will build a predictive

model using the refined data to establish a forecasting framework in the upcoming section.

4.3 Developing a Deep Learning-Based Cost Forecasting Model

This section describes the experiments to train three deep-learning models for time series

forecasting. This research evaluates the effectiveness of three network architectures for predicting

the ETC for the subsequent period. The comparative analysis focuses on Simple RNN, LSTM and

GRU, assessing their respective capabilities in accurate ETC forecasting.

Deep learning methods such as RNN, LSTM, and GRU have been proven to help learn temporal

dependence structures for time series forecasting challenges. The selected model pretends to

predict the target variable at one future time step, denoted as 𝑦𝑡+1, based on historical time series

data {𝑥1, , 𝑥2 ,, 𝑥𝑡 that ends at time t. This data includes a vector of m input parameters,

represented as 𝑥𝑡, observed at time t.

68

This study applies a length sliding time window of size three to make the input to the model

uniform in length. Mathematically, the function relationship learned by the deep learning model

can be expressed as shown in Equation 4.4.

�̂�𝑡+1 = 𝑓(𝑥𝑡, 𝑥𝑡−1 𝑥𝑡−2, 𝑦𝑡, 𝑦𝑡−1, 𝑦𝑡−2) Equation 4.4

Where �̂�𝑡+1 is the target variable predicted for time t+1, and 𝑦𝑡, 𝑦𝑡−1, 𝑦𝑡−2 are the target values

observed in their given time and 𝑥𝑡 , 𝑥𝑡−1, 𝑥𝑡−2 are the vector of m observed input parameters.

4.3.1 Deep Learning for Time Series Forecasting

This section provides a mathematical description of the deep learning algorithms used in this

research: Simple Recurrent Neural Network, Long Short-Term Memory, and Gated Recurrent

Units.

• Simple Recurrent Neural Network (RNN):

A Simple Recurrent Neural Network (RNN) is an artificial neural network type designed to

work for data involving sequences (Tyagi & Abraham, 2022). RNN is specifically designed to

identify patterns within time series data, such as text, audio, video, stock market prices or

forecasting tasks. RNN has the concept of "memory," which benefits the collection of the states

or information of previous inputs to generate the following sequence output (Hossen et al.,

2018). As shown in equation 4.6, the output �̂�𝑡 is determined by the internal state, 𝑆𝑡, which

depends on the current input 𝑥𝑡 and the previous state 𝑆𝑡−1 . The Simple RNN formula for

calculating the current state of RNN can be expressed as follows (Wu et al., 2020):

𝑆𝑡 = 𝑓 (𝜔𝑥𝑥𝑡 + 𝜔𝑠𝑆𝑡−1 + 𝑏𝑠) Equation 4.5

�̂�𝑡 = 𝑓 (𝜔𝑦𝑆𝑡 + 𝑏𝑦) Equation 4.6

69

Where:

- 𝑆𝑡 means hidden state (or activation) at time step t.

- 𝑥𝑡 ∈ ℝ𝑚 denotes the input vector of m inputs at time t.

- 𝜔𝑥 ∈ ℝ𝑚𝑥(𝑚+𝑛) and 𝜔𝑦 ∈ ℝ𝑚𝑥𝑛 learned parameters, n is the number of neurons in

the RNN layers.

- 𝑏𝑠 and 𝑏𝑦 are bias vectors for the internal state and output, which helps to define the

model.

�̂�𝑡 represents the output vector at time t.

- 𝑓 represents the activation function, the sigmoid function or ReLU.

Figure 4.7 RNN architecture

Although RNN models the time series well, it is hard to learn when processing long-term

dependencies due to the vanishing problem (Le & Zuidema, 2016; Shi et al., 2022; Wu et

al., 2020)

• Long Short-Term Memory (LSTM):

LSTM networks are variants of the RNN, which aims to overcome the vanishing gradient

problem by incorporating memory control units to determine the information to forget or retain

(J. Xu et al., 2024) and learn long-term dependency in time series data. The LSTM network

70

unit has three gates (Hochreiter & Schmidhuber, 1997). These three gates comprise an input,

forget, and output gate to control the information flow across the cells and avoid gradient

vanishing and explosion (G. Chen, 2018). Mathematically, it is given as follows:

- Forget gate layer: 𝑓𝑡 = 𝜎 (𝑊𝑓𝑆𝑡−1 + 𝑊𝑓𝑆𝑡) Equation (4.9)

- input gate: 𝑖𝑡 = 𝜎 (𝑊𝑖𝑆𝑡−1 + 𝑊𝑖𝑆𝑡) Equation (4.9)

- intermediate cell state �̃� = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑆𝑡−1 + 𝑊𝑐𝑆𝑡) Equation (4.10)

- cell state 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 Equation (4.11)

- output gate 𝑜𝑡 = 𝜎 (𝑊𝑜𝑆𝑡−1 + 𝑊𝑜𝑆𝑡) Equation (4.12)

- hidden state 𝑆𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) Equation (4.13)

- output vector �̂�𝑡 = 𝑓 (𝜔𝑦𝑆𝑡 + 𝑏𝑦) Equation (4.14)

Where:

 𝑥𝑡 ∈ ℝ𝑚 is input vector at time t.

 𝑆𝑡: output vector.

 𝐶𝑡: cell state vector.

 𝑓𝑡: forget gate vector.

 𝑖𝑡: input gate vector.

 𝑂𝑡: output gate vector.

 𝑊, 𝑈 𝑎𝑛𝑑 𝑓 are the parameter matrix and vector.

 �̂�𝑡: output vector at time t.

𝜎 is the non-linear sigmoid activation function, and tanh is the hyperbolic tangent function

mathematically expressed as follows:

𝜎(𝑥) =
1

1+𝑒−𝑥 Equation (4.15)

71

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥+𝑒−𝑥 Equation (4.16)

• Gated Recurrent Unit (GRU)

GRU is a variant of LSTM that aims to overcome the vanishing gradient limitation in Simple

RNN by incorporating two gates: an update gate (Zt), and a reset gate (rt).

This study explains the mathematics behind that process and the calculation of the update gate.

- Reset gate (rt) establishes how much of the past information to forget.

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [𝑠𝑡−1, 𝑥𝑡] + 𝑏𝑟) Equation (4.17)

- Update gate (Zt) decides how much of the past information (previous hidden state 𝑠𝑡−1)

needs to be passed along to the next step.

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [𝑠𝑡−1, 𝑥𝑡] + 𝑏𝑧) Equation (4.18)

- Candidate Hidden State:

�̃�𝑡 = tanh(𝑊 ⋅ [𝑟𝑡 ∗ 𝑠𝑡−1, 𝑥𝑡]) Equation (4.19)

- Final Hidden State:

𝑆𝑡 = (1 − 𝑧𝑡) ∗ 𝑠𝑡−1 + 𝑧𝑡 ∗ �̃�𝑡 Equation (4.20)

- Output vector at time t:

�̂�𝑡 = 𝑓 (𝜔𝑦𝑆𝑡 + 𝑏𝑦)

Where 𝜎 denotes the sigmoid function, 𝑊′𝑠 are the parameters matrix, 𝑥𝑡 is the input at time t,

𝑠𝑡−1 represent the hidden state from the previous time step, and b’s are the bias parameters.

72

�̃�𝑡 represent the candidate's hidden state determines what to collect from the current memory

content. 𝑆𝑡 is the final hidden state for the current time state.

4.3.2 Cost Forecasting Model Design

This study develops RNN, LSTM, and GRU predictive models leveraging the robust capabilities

of Keras, a high-level neural network running on top of TensorFlow, a comprehensive open-source

platform for a machine learning library. The development process, including model architecture

design, training, and evaluation, uses the Python version 3.9.7. This study utilizes Keras version 2

and TensorFlow version 2.14.0, ensuring compatibility and leveraging the latest features available.

This research's computational environment includes an Intel Core i7 processor 2.3 GHz, 16 GB of

RAM, and an NVIDIA Geforce RTX 3070 laptop GPU. This hardware configuration provided the

necessary computational resources to train deep learning models, allowing for rapid iteration and

robust performance evaluations. The following are the main steps involved in model building.

a) Model Setting

Based on the LSTM, GRU and Simple RNN network theory introduced above, this study

has designed a regression model for cost forecasting. These models consider the

relationship between the estimate to complete and five inputs (AC, EV, % Duration, actual

labour cost and quantity executed). The model setup consists of five components: an input

layer, two hidden layers, a dropout layer, and an output layer. Figure 4.8 describes code

that uses Kera’s library to set up a neural network model.

73

Figure 4.8 GRU Neural Network Setup

Following is a breakdown of the code snippet, including the hyperparameters selected for

GRU Neural Network Setup:

• Input Layer: This refers to the initial neural network layer, which includes five inputs

(AC, EV, % Duration, Actual labour cost cumulate, and quantity performed) and one

output (ETC) from the previous three weeks.

• First Hidden Layer: The first Hidden Layer comprises 32 units or neurons, each with

internal mechanisms such as input, forget, and output gates. It is activated by the

Rectified Linear Unit (ReLU) function and set up to process input sequences while

returning sequences to the next layer. This layer is crucial in enabling the model to

operate sequence data effectively.

• Second Hidden Layer: The second hidden comprises 32 units and ReLU activation,

configured to return only the final output. This layer processes the sequential

information from the first hidden layer and prepares the model for the final prediction

stage.

• Dropout Layer: The dropout rate measures the percentage of dropped input units

(neurons) during training, which helps prevent overfitting. The proposed model's

dropout value is 0.01, which means that 1% of the neurons in the preceding layer will

74

be randomly set to zero during each training iteration, effectively ignored. The dropout

hyperparameter enhances the model's generalization ability with new, unseen data.

• Dense Output Layer: The Dense layer has only 1 unit, corresponding to the single

output value (ETC).

b) Model Training

This study trains the models using a prepared training set after setting up the model. In this

process, the model continuously adapts its weights to learn the features of the input samples

gradually (J. Xu et al., 2024). In each training epoch, the model is optimized by monitoring

its performance. Combining these steps enables the model to automatically learn the data

features from the training set and perform better in subsequent tasks. The model gradually

improves its ability to predict cost forecasting through training. During the training process,

this research chose the MAE loss function, the Adam algorithm, as the optimization

algorithm. The MAE loss function is crucial during model training, especially for

regression tasks, as it is the guiding metric for model optimization. By minimizing MAE,

the model is trained to make predictions as close to the actual values as possible, which in

turn helps to create accurate and reliable regression models.

c) Model Evaluation

Evaluating the performance of the proposed Simple RNN, LSTM and GRU models

consists of comparing the predicted results with the actual value using four indicators:

Mean absolute error (MAE), root mean square error (RMSE), coefficient of determination

R2, and mean absolute percentage error (MAPE).

- The MAE measures the average of errors between predicted and actual values. MAE uses

the absolute value of each error, ensuring that all errors are treated equally. This approach

75

is helpful as squared error metrics can penalize more significant errors unfairly. A minor

MAE value indicates that the model has a greater accuracy and more minor deviations from

the actual values.

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑎𝑖 − 𝑝𝑖|

𝑛
𝑖=1 Equation (4.21)

- The RMSE is used to evaluate how accurately a model predicts the behaviour of a dataset.

A lower value of RMSE indicates that the model fits the data better. It is beneficial when

penalizing more significant errors more heavily than smaller ones is necessary. The RMSE

assigns a relatively higher weight to substantial errors, making it an effective measure to

assess the overall performance of a model.

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑎𝑖 − 𝑝𝑖)

2𝑛

𝑖=1
 Equation (4.22)

- R2 measures how well a regression model fits the data; its value ranges from 0 to 1. A

higher R2 value means a better fit of the model, and if R2 equals 1, it indicates that the

model perfectly predicts the data.

R2 = 1 −
∑ (𝑎𝑖−𝑝𝑖)2𝑛

𝑖=1

∑ (𝑎𝑖−�̅�𝑖)2𝑛

𝑖=1

 Equation (4.23)

76

- MAPE evaluates the percentage deviation between the actual and predicted values. A

smaller MAPE value indicates better predictive quality of the model with more minor

errors.

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

(𝑎𝑖− 𝑝𝑖)

𝑎𝑖
|

𝑛

𝑖=1
 Equation (4.24)

From the statical indicator formulas, 𝑛 is the number of samples in the validation set, 𝑎 is the

actual output, 𝑝 is the predicted output, and �̅�𝑖=
1

𝑛
∑ 𝑎𝑖

𝑛
𝑖=1 .

d) Saving the Selected Model

After evaluating and selecting the best deep learning model for time series data forecasting,

saving the chosen model for future application is necessary. Saving a model post-training

means the user does not have to retrain from scratch when entering new information, analyzing

new data, or refining the model hyperparameters. This process can save computational

resources and time. This saving process encapsulates the model's architecture, weights, and

training configuration into a single file, making integrating the model into a user interface

possible. Also, it facilitates the real-time application of the model for forecasting without

needing access to the original training environment.

4.4 Graphical User Interface for Cost Forecasting Model

This research develops a graphical user interface (GUI) to store all forecasting-related construction

project data in a database and explicitly execute the developed deep learning model for forecasting

EAC at the work package level. The interface follows the proposed DAM in Chapter 3 regarding

the data saved through the GUI. The GUI development is based on essential objectives, including

simplified data entry and management, one-click model deployment and real-time results

77

visualization. To design the user interface, this study utilizes two pivotal tools: Tkinter and DB

Browser for SQLite. Tkinter is Python's most widely used module for creating graphical user

interfaces. Complementing Tkinter, DB Browser for SQLite was utilized as the database

management tool to store and manage the data entered through the interface. DB Browser offers

an accessible means to interact with SQLite databases, providing a seamless storage and retrieval

solution. This combination of Tkinter for interface development and DB Browser for data

management creates a comprehensive ecosystem, ensuring the user interface is interactive and

effectively supports the underlying data infrastructure required for cost forecasting. This interface

is designed in alignment with the Entity-Relationship Diagram (ERD) developed in Chapter 3,

section 3.4.1, ensuring a coherent and systematic structure. The interface navigation menu shows

the main tasks designed for the GUI, and it is categorized into three sections: "Project Setup,"

"Project Tracking," and "Project Forecasting." Each section is designed to enhance user interaction

and data management efficiency. The interface is engineered to verify the format of any new data

entered automatically. When the input data is found to be erroneous or incomplete, the system is

programmed to notify the user with an informative message. This approach minimizes data entry

errors.

4.4.1 Designing GUI Application with Tkinter

In this study, a single class named "ProjectCostManagementApp" is applied in the Tkinter Python

code to develop the user interface. This design choice aligns with the principles of object-oriented

programming (OOP). OOP implies an instance or class variable (Moore & Harwani, 2019). A class

is a blueprint or template that contains methods and variables; it facilitates encapsulation, allowing

all the properties and methods necessary for the created class interface to be contained within a

unit. This approach streamlines the logical grouping of related functionalities, such as initializing

78

the application window, connecting to the SQL database, and creating the user input fields. This

approach enables manageable code, advantageous in a GUI context where the interface elements

are interdependent. Moreover, the class-based architecture allows for inheritance and extension,

paving the way for further development without altering the existing, well-defined structure.

Therefore, implementing the entire user interface within a single class underscores the study's

commitment to producing robust and well-organized code.

Figure 4.9 illustrates an approach to constructing a class in a Tkinter GUI application. It showcases

how a well-designed class is the backbone for managing the graphical user interface elements and

their associated functionalities. The class begins with an “__init__ method” to initialize the main

application window, followed by “show_frame” and “clear_frame” methods, integral to the

dynamic display and management of different frames or sections within the GUI.

This piece of the Python code of a Tkinter application demonstrates how classes can be used to

encapsulate functionalities, ensuring that each code segment is responsible for a particular piece

of the application's operation. This approach simplifies the development process, as methods and

attributes related to specific actions are categorized within the class structure.

79

Figure 4.9 Code snippet for the Class ProjectCostManagementApp

• Detailed Menu Navigation

The navigation menu is critical to the user's interaction with the application, organized by the

“create_menu_navigation_frame” method, which suggests a user-friendly approach to navigating

through the system's various features. The Python code segment shown in Figure 4.10 provides an

example of the "create_menu_navigation_frame" method used to build this navigation framework.

This study divides the menu into sections such as 'Project Setup,' 'Project Tracking,' and 'Project

Forecasting.' Each section is then populated with buttons (Button widgets) that are styled and

configured to perform specific functions indicated by the command parameter.

80

Figure 4.10 Segment Phyton Code for Creating Navigation Menu

o Project Setup Section

The Project Settings section has been designed to collect project-related information using multiple

input fields and is activated by clicking the Create Project button. This frame design comprises

four methods called def save_project_data (self, def create_project_setup_frame (self, def

save_wp_data (self, def create_wp_setup_window (self). Each method performs a specific

operation, manipulating GUI elements and handling logic to ensure proper application

functionality. Figure 4.11 illustrates the methods included in the project setup frame design.

81

Figure 4.11 Methods include in the Project Setup Frame Design

The Following enumerates the elements incorporated within this frame: Project Name, Portfolio

Name, Owner Company Name; Contract Type: A dropdown menu with options such as Lump Sum,

Time Material, Unit Price, and Cost Plus; Project Type: A dropdown menu with options for

Residential & Commercial, Infrastructure, and Industrial projects; Contract Amount, Project

Manager, Description, Project ID, Project Cost Center, Contract Number, Owner Contact Name,

Project Location, Contract Duration; Project Delivery Method: A dropdown menu with options

such as Design-bid-build, Design-Build, IPD, and Construction Management.

Furthermore, the Project Setup Frame encompasses an “Original Baseline" subframe comprising

the Budget at Completion, Finish Date, Start Date, and Schedule Baseline. The elements of the

project setup frame are displayed in Figure 4.12. If any fields are left unfilled when committing

the project setup to the database, an error message will prompt on the interface, as shown in

Figure 4.13. This notification delineates the fields that require completion, ensuring data integrity

and the coherence of the information stored.

82

Figure 4.12 Project Setup Frame

Figure 4.13 Error Message in Project Setup Frame

The Project Setup frame incorporates a button labelled Add Work Package, which, upon interaction,

opens a window titled Work Package Setup. This window is designed for the detailed entry of

83

information about individual work packages that constitute a project. The elements of this window

are elucidated in Figure 4.14

Figure 4.14 Work Package Setup Frame

o Project Tracking Section

The interface's 'Project Tracking' section is segmented into three subsections: 'Project Update,'

'Work Package Update,' and 'Weekly Progress,' and each subsection is activated by clicking the

button with the same name. Figure 4.17 displays a portion of a Python code, defined methods

within a class designed for project tracking. The methods are categorized under several subsections,

each representing a different aspect of the project tracking functionality:

- Update Project: This subsection contains methods for updating project information.

 def update_project_info(self): A method for updating the general project

information.

 def create_cb_frame(self): This is a method to create a frame for the current

baseline data.

84

 def save_cb(self): This is likely a method for saving the current baseline data.

 def show_project_data(self): A method to display project data.

 def edit_project_information(self): A method to edit project information.

 def update_project_information(self): A method to update the displayed project

information.

- Update Work Package: This part involves methods for updating work package details.

 def create_update_wp_info(self): Creating an interface to update work package

information.

 def open_update_cb_window(self): A method that might open a window to update

current baseline information specific to work packages.

 def save_baseline_data(self): A method to save baseline data for work packages.

 def update_wp_names(self): This method could be used to update the names of

work packages.

 def show_wp_details(self): A method for displaying work package details.

 def edit_wp_information(self): A method to edit work package information.

- Weekly Progress: This subsection lists methods concerning weekly progress information.

 def create_project_cost_status_frame(self): A method to create a frame for entering

or displaying the project's cost status.

 def show_information(self): A method to show the project's progress information.

 def open_actual_cost_window(self): A method to open a window for inputting or

editing actual cost data.

 def save_actual_cost_details(self): A method for saving details about actual costs.

85

- Callbacks for GUI Elements: This part includes callback methods likely triggered by GUI

events such as user interactions with widgets.

 def update_wp_combobox(self): A callback method to update a combo box with

work package options.

 def update_week_ending_calendar(self): A method to update a calendar widget for

selecting the end of a week.

 def save_weekly_progress_data(self): A method to save data related to weekly

progress.

Project Update frame empowers the user to select a given project previously created, view the

project details, and execute modifications, rectifying errors in previous data entries. After these

editions, the corrections are recorded within the SQLite database to maintain data integrity.

Furthermore, the frame has a feature that facilitates updating the initial baseline, allowing it to

reflect the current baseline metrics. Figure 4.16 shows the Project Update frame, while Figure 4.17

presents the Current Baseline window, which can be accessed by selecting the 'Update Original

Baseline' button.

Figure 4.15 Method Structure for Project Tracking in Tkinter GUI Application

86

Figure 4.16 Project Update Frame

Figure 4.17 Current Baseline Window

87

The following frame is designated for the work package update. Within this frame, the user can

select both the 'Project Name' and the 'Work Package Name' from a drop-down menu. Subsequent

interaction with the 'Show Information' button reveals the details about the chosen work package.

This interface allows editing the work package data, facilitating the correction previously recorded,

if necessary. Figure 4.18 depicts the Work Package Update Frame and this interface segment's

elements.

Figure 4.18 Work Package Update Frame

An additional feature of this frame is the 'Update WP Original Baseline' button, which establishes

a current baseline window; this window allows the user to update the original baseline to the

selected work package. Figure 4.19 shows the work package's current baseline window.

88

Figure 4.19 Work Package Current Baseline Window

The 'Weekly Progress per Work Package' frame facilitates the systematic entry of progress-related

information for each work package within a project, which is essential for generating the inputs

necessary for the forecasting model. Initially, users must select specific parameters: the project and

work package name, the status upon completion, the period number, and the evaluation day—the

latter signifying the concluding day of the week under review for forecasting purposes.

Upon selecting 'Show Information,' the interface displays two sub-frames: one detailing baseline

information and the other showing weekly progress data. The 'Weekly Progress Information' sub-

frame is comprised of four elements—Earned Value ($), Planned Value ($), Actual Cost ($), and

Quantity. Users must input data for these elements to calculate the current cumulative values,

which is facilitated by activating the 'Current Cumulative' button. Furthermore, a comment field

must be filled with information about the current period. This should include insights that facilitate

understanding any critical situations that may have arisen.

89

Subsequently, clicking the blue 'Actual Cost' button opens a new window titled 'Actual Cost

Detail.' This window is designed to enter detailed actual cost data, including labour, equipment,

materials, and expenditures for subcontractor services.

To conclude the process, users should click the save buttons to ensure the information for the

current week is accurately recorded and preserved. Figure 4.20 describes the weekly progress per

work package, and Figure 4.21 shows the actual cost detail window.

Figure 4.20 Weekly Progress per Work Package Frame

90

Figure 4.21 Actual Cost Details Window

Inputting the necessary setup and tracking information for both the project and work package

levels in the GUI stores the information securely and efficiently in the SQL database. Figure 4.22

shows a table of the SQL database called Weekly Progress. This process ensures that essential

project data is readily available for future analysis.

Figure 4.22 SQL Database_Wekkly Progress Table

91

4.5 Integrating SQL into GUI

When incorporating SQLite into a Python-based application, it is crucial to import the SQLite3

library, which is a standard library component of Python. This module is necessary to connect with

SQLite databases and perform SQL operations. DB Browser for SQLite is used in this study. DB

Browser is an open-source tool for constructing and designing database files compatible with

SQLite. To design the database, it is essential to define the schema, which includes tables, fields,

data types, and execute SQL commands to materialize it. After creating the database, it is necessary

to connect it to the interface and write functions in Python to perform operations such as design,

read, update, and delete. Finally, it links GUI actions to database functions. Figure 4.23 reveals a

portion of the database schema and the structure of several tables, indicating their names, data

types, and the SQL commands used to create them.

Figure 4.23 Database Structure

92

4.6 Project Forecasting Section

The code snippet depicted in Figure 4.24 includes a set of method definitions related to project

forecasting functionality in a Python class. These methods collectively outline steps where data is

collected, processed, and used to predict outcomes. The results are then presented in a graphical

user interface. In an application built with Tkinter, these methods would be connected to various

widgets such as buttons, entries, and plot areas. This provides an interactive way for users to

perform and view project forecasts at the work package level.

Figure 4.24 Methods Developed for Cost Forecasting

Figure 4.25 illustrates the Cost Status graph for a Project related to a specific work package. It

delineates three curves: Actual Cost, Earned Value, and Planned Value. The project's temporal

progression is demarcated weekly. It also shows the predicted EAC, which is updated weekly as

the project progresses. The graph serves as a tool, offering a visual compendium of cost forecasting.

This frame also shows a tabular representation of cost data, including period number, week ending,

original budget at completion, current budget at completion, earned value cumulative, actual cost

cumulative, historical EAC’s predictions, and variance (%), which can indicate whether the project

is over or under cost respected the current baseline.

93

Figure 4.25 Project Forecasting Frame

94

Chapter 5: Application, Verification and Validation

5.1 Introduction

This chapter demonstrates the implementation of the developed computational models using real

datasets, building on the foundational groundwork in the previous chapter. This chapter starts by

determining the best model from three algorithms based on their performance metrics outcomes.

Once the optimal model has been selected, this model is deployed using a testing dataset _data that

remained unseen during the training and validation phases. The results from the testing data are

compared against popular methodologies derived from Earned Value Management (EVM). To

verify the model's reliability, a comprehensive sensitivity analysis examines how the model

responds to changes in input parameters.

5.2 Selecting the Optimal Forecasting Model.

This section focuses on selecting the best forecasting model using the validation dataset. It

compares the performance metrics of three key algorithms: Simple Recurrent Neural Network

(SimpleRNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). The criteria

for selection are based on an evaluation of key performance metrics, which include Mean Absolute

Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).

These metrics comprehensively overview each model's accuracy, reliability, and predictive power.

This helps make an informed decision about the most suitable algorithm for accurate cost

forecasting.

Tables 5.1 and 5.2 display the performance metrics for the EAC and ETC, respectively. The data

is from three deep learning models: Simple RNN, LSTM, and GRU. The models are categorized

by work package (Concrete, Piping (HDPE), and Fill). According to the results from Tables 5.1

95

and 5.2, the GRU algorithm shows the lowest values for MAE, RMSE, and MAPE, suggesting

that the GRU model is the most reliable and accurate approach among the model validation

processes, making it a suitable choice for time-series predictions.

Table 5.1 Model Results Comparison ETC Results

Table 5.2 Model Results Comparison EAC Results

To aid in understanding the results presented in Tables 5.1 and 5.2, Table 5.3 compares actual and

predicted ETC and EAC for the validation dataset (concrete work package). The table presents

predicted values for each period, starting from period four. Regarding the ETC predicted values,

Model RMSE MAE MAPE Ranking

Concrete_SimpleRNN 42,016.58 26,088.95 10.63% 3

Concrete_LSTM 34,323.19 24,150.55 11.45% 2

Concrete_GRU 31,080.09 21,098.74 10.83% 1

Fill_SimpleRNN 28,522.80 24,745.52 12.84% 2

Fill_LSTM 56,658.67 45,069.00 16.45% 3

Fill_GRU 30,291.21 23,226.90 8.60% 1

Piping_SimpleRNN 38,550.14 30,535.96 4.39% 2

Piping_LSTM 54,372.21 45,299.86 5.07% 3

Piping_GRU 33,592.51 24,252.65 4.96% 1

Validation Set (ETC)

 Validation Set (EAC)

Model RMSE MAE MAPE Ranking

Concrete_SimpleRNN 42,016.58 26,088.95 1.22% 3

Concrete_LSTM 34,323.19 24,150.55 1.13% 2

Concrete_GRU 31,080.09 21,098.74 0.99% 1

Fill_SimpleRNN 28,522.80 24,745.52 1.61% 3

Fill_LSTM 56,658.67 45,069.00 2.99% 2

Fill_GRU 30,291.21 23,226.90 1.56% 1

Piping_SimpleRNN 38,550.14 30,535.96 0.57% 2

Piping_LSTM 54,372.21 45,299.86 0.87% 3

Piping_GRU 33,592.51 24,252.65 0.44% 1

96

the % error tends to be higher in the last periods, given that the predicted values decrease to almost

zero. Hence, minimal variation between actual and predicted generates a high % error. To better

understand the algorithm's performance, the actual cost to date is added to the predicted ETC in

each period to obtain the predicted EAC. In this scenario, the scale values are higher, and the %

error between the actual and predicted values is more representative. Furthermore, Figure 5.1

displays the graphical representation of EAC results for the concrete work package on the

validation dataset; this figure shows that between the LSTM, GRU, and Simple RNN results, the

GRU set of results (red line) is closer to the actual cost at completion ACC) represented by the

blue line. ACC refers to the total cost incurred to complete a project from start to finish. It is a

critical metric for assessing project performance and comparing it against the initial budget and

the EAC. It helps project managers evaluate the accuracy of cost forecasts. This figure suggests

that the GRU model has higher accuracy for the cost forecasting task The x-axis represents the

work package periods in weeks, while the y-axis represents the cost in dollars.

Figure 5.1 ACC vs Predicted EAC (Simple RNN, LSTM and GRU)

97

Table 5.3 Results of ACC vs. Deep Learning Models

98

5.3 Applying the Forecasting Model to the Testing Dataset

In this section, the selected forecasting models are subjected to an essential test assessing their

predictive capability on an unseen dataset. This step is crucial as it reveals the model's predictive

power and generalizability beyond the data it was trained. In supervised learning, a model is

typically configured to use an input feature set to forecast a subsequent target value. These features

comprise historical outputs as part of their composition. About the forecasting model proposed in

this study, the initiation phase requires input data from the three antecedent periods, including

historical outputs. This input data comprises Actual Cost Cumulative, Earned Value Cumulative,

Quantity Cumulative, Percentage of Project Duration Completed, Labour Cost Cumulative, and

ETC (output). The methodology of this study incorporates the ETC values derived from an EVM

calculation as part of the initial input set. Then, the predicted ETC will serve as a feedback loop

for the upcoming periods, refining the forecasting precision for future periods.

The results of this application are depicted through two graphical representations for each work

package. First, the ETC (actual vs. predicted) graph compares the actual data and the predictions

made by the GRU model across each work package period. Second is the EAC (actual vs. predicted)

graph, where the predicted EAC is calculated by adding the actual cost to date to each ETC

predicted periodically.

 The ETC output is generated through the weekly data input, mirroring the conditions of a real

project scenario from the fourth week until the last project week. Subsequently, this output is stored

and compared with the actual estimates to complete, facilitating a comprehensive analysis of

project forecasting accuracy. The EAC (actual vs. predicted) graph analyzes the actual cost

estimate at completion value versus the predicted estimate at completion over time. This graph

99

demonstrates the long-term accuracy of the model, highlighting the GRU’s ability to capture the

overall trend of the project's cost requirements.

Applying these models to the testing dataset provides valuable insights into their effectiveness and

reliability. When the predicted and actual values are close, it confirms that the models are robust

and have the potential to be helpful in real-world project forecasting scenarios.

• Forecasting Model on the Concrete Dataset

This section applies the Concrete-GRU forecasting model to the concrete dataset, comprising

unseen data during the model's training and validation phases, i.e. testing data set. The analyzed

dataset consists of fifty weeks, with results starting from the fourth period due to the three previous

periods' data needed for the model's initialization. Figures 5.2 and 5.3 show the result between

actual and predicted values for the ETC and EAC calculation.

Figure 5.2 Actual vs. Predicted ETC for the Concrete Work Package

Figure 5.3 ACC vs. Predicted EAC for the Concrete Work Package

100

Table 5.4 displays the outcomes of applying the Concrete-GRU model on the testing dataset. It

enumerates the predicted amount for ETC and EAC. Additionally, the table quantifies the model's

accuracy by presenting the percentage error for each evaluated period. The MAE is reported as

$ 118,789, and the MAPE is 7.38%. Figures 5.2, 5.3 and Table 5.4 show that the difference

between actual and predicted values are higher during the initial weeks, at around 25%. However,

it decreases notably over the subsequent periods as more actual project data is entered into the

model, leading to improved precision in cost forecasting efforts over time.

Table 5.4 Results of Concrete-GRU on Testing Data

101

Figure 5.4 Cost Forecasting for the Concrete Work Package - Period 26

Figure 5.5 Cost Forecasting for the Concrete Work Package - Period 50

Figures 5.4 and 5.5 depict the GUI's deep learning model deployment outcomes tailored for the

concrete work package covering periods 26 and 50, respectively. The GUI deploys the forecasting

model according to the entered data and provides the project manager with a tool for making

decisions during the project execution. To deploy the forecasting model through the GUI, the user

102

should select the project name, work package, and period to be evaluated, then click the bottom

“Deep learning model” to display the actual, planned, and earned value cumulate, as well as the

predicted EAC for the selecting period. The green line within the graphical representation denotes

the cumulative planned value. As mentioned in Chapter 3, the planned values were not periodically

provided among the collected data for this study, so they are shown as zero throughout the periods.

However, this research considers it necessary to include this value between the graphical and

tabular representations when implementing the GUI with new project data. This inclusion will

provide a more complete view of the project results.

The GUI also shows a record table of the previous cost-related data entered, including the predicted

EAC for the previous periods and the % variance between the current budget and EAC forecasting.

This historical data from the ongoing project helps the project manager periodically observe how

the predicted EAC changes over time based on the decisions made to mitigate the percentage

variance.

As listed in Table 5.4, the actual estimate at completion versus the predicted estimate at completion

for period 50 revealed $1,609,043.24 and $1,606,113.28, respectively. Similarly, for period 26, the

actual estimate at completion versus the predicted estimate at completion was $1,609,043.24 and

$1,661,604.39. These predicted EAC values correspond to the EAC results shown in Figures 5.4

and 5.5.

• Forecasting Model on the Piping Dataset

This section applies the Piping-GRU model. This testing dataset consists of 45 periods, with results

starting from the fourth period. Figure 5.6 shows the result between actual ETC and predicted ETC,

respectively. Figure 5.7 illustrates the actual cost at completion (ACC) and the predicted EAC.

103

Table 5.5 exhibits the results of the Piping-GRU model. This model's MAE is $ 278,917, and

MAPE is 3.997%. MAPE values decrease notably as more actual project data enters the model.

Figure 5.6 Actual vs. Predicted ETC for the Piping Work Package

Figure 5.7 ACC vs. Predicted EAC for the Piping Work Package

Figure 5.8 Cost Forecasting for the Piping Work Package - Period 45

104

Figure 5.8 explains GUI's deep learning model deployment outcomes tailored for the piping work

package covering period 45.

Table 5.5 Results of Piping-GRU on Testing Data

% Error

Period Work Package Actual GRU GRU

4 Piping (HDPE) 6,841,070.82 6,916,824.00 7,025,270.82 7,101,024.00 1.08%

5 Piping (HDPE) 6,695,213.68 6,868,212.50 7,025,270.82 7,198,269.64 2.46%

6 Piping (HDPE) 6,570,499.39 6,816,588.00 7,025,270.82 7,271,359.43 3.50%

7 Piping (HDPE) 6,441,070.82 6,766,390.50 7,025,270.82 7,350,590.50 4.63%

8 Piping (HDPE) 6,309,927.96 6,691,546.00 7,025,270.82 7,406,888.86 5.43%

9 Piping (HDPE) 6,139,856.53 6,596,190.50 7,025,270.82 7,481,604.79 6.50%

10 Piping (HDPE) 5,958,856.53 6,477,663.50 7,025,270.82 7,544,077.79 7.38%

11 Piping (HDPE) 5,754,570.82 6,336,723.50 7,025,270.82 7,607,423.50 8.29%

12 Piping (HDPE) 5,514,427.96 6,161,209.00 7,025,270.82 7,672,051.86 9.21%

13 Piping (HDPE) 5,248,142.25 5,943,509.50 7,025,270.82 7,720,638.07 9.90%

14 Piping (HDPE) 5,035,285.10 5,708,247.00 7,025,270.82 7,698,232.71 9.58%

15 Piping (HDPE) 4,785,981.53 5,460,569.00 7,025,270.82 7,699,858.29 9.60%

16 Piping (HDPE) 4,592,981.53 5,206,747.50 7,025,270.82 7,639,036.79 8.74%

17 Piping (HDPE) 4,335,838.68 4,943,782.50 7,025,270.82 7,633,214.64 8.65%

18 Piping (HDPE) 4,052,981.53 4,671,514.50 7,025,270.82 7,643,803.79 8.80%

19 Piping (HDPE) 3,839,695.82 4,389,153.50 7,025,270.82 7,574,728.50 7.82%

20 Piping (HDPE) 3,661,981.53 4,103,313.00 7,025,270.82 7,466,602.29 6.28%

21 Piping (HDPE) 3,503,981.53 3,831,362.25 7,025,270.82 7,352,651.54 4.66%

22 Piping (HDPE) 3,269,695.82 3,561,909.50 7,025,270.82 7,317,484.50 4.16%

23 Piping (HDPE) 3,147,489.37 3,301,774.25 7,025,270.82 7,179,555.69 2.20%

24 Piping (HDPE) 3,027,024.75 3,054,577.75 7,025,270.82 7,052,823.82 0.39%

25 Piping (HDPE) 2,899,256.04 2,817,745.50 7,025,270.82 6,943,760.28 1.16%

26 Piping (HDPE) 2,760,550.60 2,586,874.50 7,025,270.82 6,851,594.72 2.47%

27 Piping (HDPE) 2,593,501.74 2,364,232.00 7,025,270.82 6,796,001.08 3.26%

28 Piping (HDPE) 2,355,587.46 2,135,168.25 7,025,270.82 6,804,851.61 3.14%

29 Piping (HDPE) 2,164,444.60 1,925,255.25 7,025,270.82 6,786,081.47 3.40%

30 Piping (HDPE) 1,937,873.17 1,732,478.50 7,025,270.82 6,819,876.15 2.92%

31 Piping (HDPE) 1,760,587.46 1,545,553.38 7,025,270.82 6,810,236.74 3.06%

32 Piping (HDPE) 1,598,301.74 1,378,901.75 7,025,270.82 6,805,870.83 3.12%

33 Piping (HDPE) 1,403,873.17 1,229,031.50 7,025,270.82 6,850,429.15 2.49%

34 Piping (HDPE) 1,228,887.46 1,086,846.00 7,025,270.82 6,883,229.36 2.02%

35 Piping (HDPE) 1,041,173.17 955,246.88 7,025,270.82 6,939,344.52 1.22%

36 Piping (HDPE) 864,030.31 831,313.13 7,025,270.82 6,992,553.63 0.47%

37 Piping (HDPE) 710,173.17 713,462.13 7,025,270.82 7,028,559.77 0.05%

38 Piping (HDPE) 601,000.00 624,247.94 7,025,270.82 7,048,518.76 0.33%

39 Piping (HDPE) 410,428.57 516,214.78 7,025,270.82 7,131,057.03 1.51%

40 Piping (HDPE) 258,142.86 383,107.88 7,025,270.82 7,150,235.84 1.78%

41 Piping (HDPE) 204,142.86 291,789.09 7,025,270.82 7,112,917.06 1.25%

42 Piping (HDPE) 111,000.00 200,138.92 7,025,270.82 7,114,409.74 1.27%

43 Piping (HDPE) 68,857.14 135,285.08 7,025,270.82 7,091,698.75 0.95%

44 Piping (HDPE) 22,428.57 89,160.10 7,025,270.82 7,092,002.35 0.95%

45 Piping (HDPE) - 46,644.89 7,025,270.82 7,071,915.71 0.66%

MAE 278,917

MAPE 3.97%

ETC ($)

Testing Set

ACC ($) GRU - EAC ($)

105

• Forecasting Model on the Backfill Dataset

This section applies the Fill-GRU forecasting model to the backfill dataset, comprising unseen

data during the model's training and validation phases. The dataset consists of 53 weeks, with

results starting from the fourth period due to the three previous periods' data needed for the model's

initialization. Figures 5.9 and 5.10 show the result between actual and predicted values for the

ETC and EAC calculation, respectively.

Figure 5.9 Actual vs. Predicted ETC for the Backfill Work Package

Figure 5.10 ACC vs. Predicted EAC for the Backfill Work Package

The following information is derived from the results of the GRU forecasting model’s Backfill

Package testing dataset. Table 5.6 reports the estimated monetary values for ETC and EAC and

the percentage error for each evaluated period, representing the model's accuracy. This model's

MAE is $165,698, and MAPE is 6.14%.

106

Table 5.6 Results of Backfill-GRU on Testing Data

% Error

Work Package Actual GRU GRU

4 Barrow Fill 2,671,055.83 2,277,869.25 2,698,620.08 2,305,433.50 14.57%

5 Barrow Fill 2,644,156.58 2,266,044.75 2,698,620.08 2,320,508.25 14.01%

6 Barrow Fill 2,613,001.33 2,254,810.25 2,698,620.08 2,340,429.00 13.27%

7 Barrow Fill 2,588,097.08 2,247,143.00 2,698,620.08 2,357,666.00 12.63%

8 Barrow Fill 2,558,404.83 2,233,622.75 2,698,620.08 2,373,838.00 12.04%

9 Barrow Fill 2,501,813.33 2,221,353.75 2,698,620.08 2,418,160.50 10.39%

10 Barrow Fill 2,456,526.83 2,206,868.25 2,698,620.08 2,448,961.50 9.25%

11 Barrow Fill 2,409,411.58 2,187,977.25 2,698,620.08 2,477,185.75 8.21%

12 Barrow Fill 2,383,845.48 2,169,094.00 2,698,620.08 2,483,868.60 7.96%

13 Barrow Fill 2,322,366.23 2,149,881.75 2,698,620.08 2,526,135.60 6.39%

14 Barrow Fill 2,268,035.73 2,126,745.75 2,698,620.08 2,557,330.10 5.24%

15 Barrow Fill 2,205,326.23 2,099,913.50 2,698,620.08 2,593,207.35 3.91%

16 Barrow Fill 2,151,494.48 2,071,545.50 2,698,620.08 2,618,671.10 2.96%

17 Barrow Fill 2,083,681.11 2,040,795.38 2,698,620.08 2,655,734.35 1.59%

18 Barrow Fill 2,003,914.36 2,006,403.38 2,698,620.08 2,701,109.10 0.09%

19 Barrow Fill 1,918,894.11 1,967,957.75 2,698,620.08 2,747,683.72 1.82%

20 Barrow Fill 1,864,232.51 1,926,131.63 2,698,620.08 2,760,519.19 2.29%

21 Barrow Fill 1,785,084.21 1,882,257.75 2,698,620.08 2,795,793.61 3.60%

22 Barrow Fill 1,698,021.08 1,834,109.63 2,698,620.08 2,834,708.62 5.04%

23 Barrow Fill 1,625,266.51 1,780,752.13 2,698,620.08 2,854,105.70 5.76%

24 Barrow Fill 1,538,816.51 1,724,812.88 2,698,620.08 2,884,616.45 6.89%

25 Barrow Fill 1,491,545.70 1,665,715.88 2,698,620.08 2,872,790.25 6.45%

26 Barrow Fill 1,424,081.45 1,604,407.50 2,698,620.08 2,878,946.13 6.68%

27 Barrow Fill 1,317,016.45 1,538,298.75 2,698,620.08 2,919,902.38 8.20%

28 Barrow Fill 1,198,689.81 1,466,519.00 2,698,620.08 2,966,449.27 9.92%

29 Barrow Fill 1,104,258.48 1,387,985.00 2,698,620.08 2,982,346.60 10.51%

30 Barrow Fill 939,222.18 1,305,793.13 2,698,620.08 3,065,191.02 13.58%

31 Barrow Fill 876,379.68 1,218,332.63 2,698,620.08 3,040,573.02 12.67%

32 Barrow Fill 814,165.61 1,129,488.88 2,698,620.08 3,013,943.34 11.68%

33 Barrow Fill 758,072.86 1,039,678.63 2,698,620.08 2,980,225.84 10.44%

34 Barrow Fill 703,775.61 950,257.06 2,698,620.08 2,945,101.53 9.13%

35 Barrow Fill 627,566.61 861,697.56 2,698,620.08 2,932,751.03 8.68%

36 Barrow Fill 582,213.61 775,357.69 2,698,620.08 2,891,764.16 7.16%

37 Barrow Fill 536,890.63 697,427.69 2,698,620.08 2,859,157.13 5.95%

38 Barrow Fill 435,492.55 612,416.38 2,698,620.08 2,875,543.90 6.56%

39 Barrow Fill 350,307.25 528,633.63 2,698,620.08 2,876,946.46 6.61%

40 Barrow Fill 282,643.50 447,642.50 2,698,620.08 2,863,619.08 6.11%

41 Barrow Fill 226,451.00 367,397.91 2,698,620.08 2,839,566.99 5.22%

42 Barrow Fill 174,348.25 288,983.75 2,698,620.08 2,813,255.58 4.25%

43 Barrow Fill 152,968.50 223,636.64 2,698,620.08 2,769,288.22 2.62%

44 Barrow Fill 134,049.25 167,197.72 2,698,620.08 2,731,768.55 1.23%

45 Barrow Fill 85,205.00 116,390.48 2,698,620.08 2,729,805.56 1.16%

46 Barrow Fill 68,314.00 71,084.54 2,698,620.08 2,701,390.62 0.10%

47 Barrow Fill 23,275.00 31,485.42 2,698,620.08 2,706,830.49 0.30%

48 Barrow Fill 21,113.75 16,600.63 2,698,620.08 2,694,106.96 0.17%

49 Barrow Fill 21,113.75 9,276.23 2,698,620.08 2,686,782.56 0.44%

50 Barrow Fill 21,113.75 1,442.77 2,698,620.08 2,678,949.09 0.73%

51 Barrow Fill 9,376.50 7,492.06- 2,698,620.08 2,681,751.52 0.63%

52 Barrow Fill 9,376.50 16,371.75- 2,698,620.08 2,672,871.83 0.95%

53 Barrow Fill - 25,619.38- 2,698,620.08 2,673,000.69 0.95%

MAE 165,698$

MAPE 6.14%

Testing Set

Period
ETC ($)

GRU- EAC ($)ACC ($)

107

Figure 5.11 Cost Forecasting for the Fill Work Package - Period 26

Figure 5.11 depicts the deep learning model deployment outcomes within the GUI tailored for the

backfill work package covering period 26. As listed in Table 5.5, the comparison between the

actual estimate at completion and the predicted estimate at completion revealed $2,698,620.08 and

$2,8878,946.13, respectively.

5.4 Comparative Analysis of Forecasting Models and EVM Methods

This section compares the proposed forecasting model with traditional methodologies used to

calculate the EAC. The conventional method selected is Earned Value Management, which uses

mathematical formulations to calculate EAC. These methodologies serve as a benchmark for

evaluating the proposed Artificial Intelligence (AI)—based model. The equations from earned

value methods applied in this comparative analysis were selected according to the available data;

as mentioned before, the SPI values are not presented between the data collected, so formulas that

include the SPI were excluded. The EVM formulas chosen are shown in equations 5.1 and 5.2.

108

Method 1 from Earned Value Management (EVM 1)

𝐸𝐴𝐶 =
𝐵𝐴𝐶

𝐶𝑃𝐼
 Equation 5.1

Method 2 from Earned Value Management (EVM 2)

𝐸𝐴𝐶 = 𝐴𝐶 + 𝐵𝐴𝐶 − 𝐸𝑉 Equation 5.2

• Comparison results on the Concrete Dataset

Table 5.7 compares the Concrete-GRU model and two traditional Earned Value Management

methods through MAE and MAPE across 50 periods. The results report MAE and MAPE values

for GRU, EVM 1, and EVM 2 are $118,789 (7.38%), $182,171 (11.32%), and $147,784 (9.18%),

respectively. These results show that the GRU model's established predictive precision indicates

that it can be a reliable tool for cost forecasting. Table 5.7 presents the results of the comparative

analysis for each period. Figure 5.12 provides a visual representation of these results.

Figure 5.12 Comparative Analysis of EAC Predictions for Concrete WP

109

Table 5.7 Comparative Analysis of EAC Predictions for Concrete WP

110

• Comparison results on the Piping (HDPE) Dataset

Table 5.8 assesses the Piping-GRU model and two Earned Value Management methods through

MAE and MAPE through 45 weeks. The results show MAE and MAPE values for GRU, EVM 1,

and EVM 2 are $278,917 (3.97%), $922,266 (13.13%), and $ 474,996 (7.62%), respectively. These

results show that the GRU model presents the lowest MAE and MAPE, indicating it can be a

reliable tool for cost forecasting. Figure 5.13 visually represents comparative analysis, showing

that the GRU model's results (red line) are closer to the ACC (blue line).

Figure 5.13 Comparative Analysis of EAC Predictions for Piping WP

111

Table 5.8 Comparative Analysis of EAC Predictions for Piping (HDPE) WP

112

• Comparison results on the Backfill Dataset

Table 5.9 assesses the Fill-GRU model and two Earned Value Management methods through

MAE and MAPE over 53 periods. The results show that the MAE and MAPE values for GRU,

EVM 1, and EVM 2 are $1165,698 (6.14%), $362,195 (13.42%), and $214,654 (7.95%),

respectively. These results show that the GRU model presents the lowest MAE and MAPE,

indicating superiority in terms of accuracy against the traditional EVM method. Figure 5.14

delivers a graphical representation of comparative analysis.

Figure 5.14 Comparative Analysis of EAC Predictions for Backfill WP

In this comparative analysis, the GRU model demonstrated superior performance metrics over

traditional forecasting methodologies across three distinct work package datasets. These outcomes

position the GRU model as a promising alternative for estimating the final costs of ongoing

construction projects with enhanced accuracy and reliability.

113

Table 5.9 Comparative Analysis of EAC Predictions for Backfill WP

ACC GRU EVM 1 EVM 2 GRU EVM 1 EVM 2

4 2,698,620 2,305,434 921,854 2,263,289 14.57% 65.84% 16.13%
5 2,698,620 2,320,508 1,055,440 2,240,173 14.01% 60.89% 16.99%
6 2,698,620 2,340,429 1,151,984 2,218,967 13.27% 57.31% 17.77%
7 2,698,620 2,357,666 1,194,415 2,201,903 12.63% 55.74% 18.41%
8 2,698,620 2,373,838 1,227,950 2,181,692 12.04% 54.50% 19.16%
9 2,698,620 2,418,161 1,512,967 2,201,655 10.39% 43.94% 18.42%

10 2,698,620 2,448,962 1,695,115 2,217,584 9.25% 37.19% 17.83%
11 2,698,620 2,477,186 1,694,156 2,200,421 8.21% 37.22% 18.46%
12 2,698,620 2,483,869 1,733,741 2,200,985 7.96% 35.75% 18.44%
13 2,698,620 2,526,136 1,930,634 2,231,747 6.39% 28.46% 17.30%
14 2,698,620 2,557,330 1,984,379 2,235,144 5.24% 26.47% 17.17%
15 2,698,620 2,593,207 2,062,469 2,246,715 3.91% 23.57% 16.75%
16 2,698,620 2,618,671 2,142,934 2,263,350 2.96% 20.59% 16.13%
17 2,698,620 2,655,734 2,230,632 2,284,234 1.59% 17.34% 15.36%
18 2,698,620 2,701,109 2,318,531 2,308,799 0.09% 14.08% 14.45%
19 2,698,620 2,747,684 2,397,962 2,334,981 1.82% 11.14% 13.47%
20 2,698,620 2,760,519 2,406,183 2,339,849 2.29% 10.84% 13.29%
21 2,698,620 2,795,794 2,465,451 2,364,223 3.60% 8.64% 12.39%
22 2,698,620 2,834,709 2,522,443 2,391,035 5.04% 6.53% 11.40%
23 2,698,620 2,854,106 2,522,947 2,397,513 5.76% 6.51% 11.16%
24 2,698,620 2,884,616 2,569,371 2,424,136 6.89% 4.79% 10.17%
25 2,698,620 2,872,790 2,575,578 2,431,615 6.45% 4.56% 9.89%
26 2,698,620 2,878,946 2,606,845 2,452,392 6.68% 3.40% 9.12%
27 2,698,620 2,919,902 2,651,476 2,485,363 8.20% 1.75% 7.90%
28 2,698,620 2,966,449 2,727,124 2,537,006 9.92% 1.06% 5.99%
29 2,698,620 2,982,347 2,696,869 2,536,520 10.51% 0.06% 6.01%
30 2,698,620 3,065,191 2,785,855 2,608,548 13.58% 3.23% 3.34%
31 2,698,620 3,040,573 2,765,363 2,608,232 12.67% 2.47% 3.35%
32 2,698,620 3,013,943 2,746,688 2,607,920 11.68% 1.78% 3.36%
33 2,698,620 2,980,226 2,731,073 2,607,638 10.44% 1.20% 3.37%
34 2,698,620 2,945,102 2,732,392 2,616,928 9.13% 1.25% 3.03%
35 2,698,620 2,932,751 2,754,919 2,643,143 8.68% 2.09% 2.06%
36 2,698,620 2,891,764 2,749,700 2,647,195 7.16% 1.89% 1.91%
37 2,698,620 2,859,157 2,759,739 2,661,123 5.95% 2.26% 1.39%
38 2,698,620 2,875,544 2,780,984 2,692,281 6.56% 3.05% 0.23%
39 2,698,620 2,876,946 2,797,639 2,718,458 6.61% 3.67% 0.74%
40 2,698,620 2,863,619 2,798,348 2,730,886 6.11% 3.70% 1.20%
41 2,698,620 2,839,567 2,768,082 2,718,539 5.22% 2.57% 0.74%
42 2,698,620 2,813,256 2,737,833 2,704,042 4.25% 1.45% 0.20%
43 2,698,620 2,769,288 2,713,975 2,688,587 2.62% 0.57% 0.37%
44 2,698,620 2,731,769 2,692,712 2,674,244 1.23% 0.22% 0.90%
45 2,698,620 2,729,806 2,709,600 2,695,224 1.16% 0.41% 0.13%
46 2,698,620 2,701,391 2,686,035 2,678,122 0.10% 0.47% 0.76%
47 2,698,620 2,706,830 2,695,889 2,692,908 0.30% 0.10% 0.21%
48 2,698,620 2,694,107 2,695,017 2,692,481 0.17% 0.13% 0.23%
49 2,698,620 2,686,783 2,695,017 2,692,481 0.44% 0.13% 0.23%
50 2,698,620 2,678,949 2,695,017 2,692,481 0.73% 0.13% 0.23%
51 2,698,620 2,681,752 2,697,026 2,695,894 0.63% 0.06% 0.10%
52 2,698,620 2,672,872 2,697,026 2,695,894 0.95% 0.06% 0.10%
53 2,698,620 2,673,001 2,698,620 2,698,620 0.95% 0.00% 0.00%

MAE 165,698$ 362,196$ 214,655$

MAPE 6.14% 13.42% 7.95%

Testing Set

% Error
Period

EAC ($)

114

5.5 Sensitivity Analysis

The GRU model exhibits reliable predictive accuracy and outperforms traditional methodologies.

However, a model verification process must be developed to recognize the relationship between

variables and output targets. A sensitivity analysis method is used for the proposed forecasting

model. In this method, the input parameters are varied to observe the model's response and assess

how it aligns with the actual system's behaviour (Sargen, 2007). The testing dataset, with the same

conditions discussed in section 5.2, is considered to achieve this. By varying the amounts of earned

value and actual cost, the model's output is also expected to vary. This study creates four scenarios

by increasing and decreasing each period's earned value and actual cost.

• Scenario 01 This first scenario examines the impact of increasing the EV input by 10% to 15%.

This range of a variable increase, rather than a fixed increase, such as 10%, is strategically

employed to eliminate the potential homogenization of the target value resulting from the

normalization process (specifically, max-min normalization) before applying the forecasting

model. This scenario only increases the EV input between the proposed range and keeps all

other variables constant. The results show a direct relationship between the increased EV input

and the EAC output; in other words, when the amount of EV increases, the EAC output also

increases.

• Scenario 02 examines the impact of decreasing the EV input by 10% to 15%. This scenario

only decreases the EV input within the proposed range every period and keeps all other

variables constant. The study found a direct correlation between EV and EAC.

• Scenario 03 considers the impact of increasing the AC input by 10% to 15%. This approach

uses a variable increase instead of a fixed increase (e.g. 15%) to avoid homogenizing the target

value during the normalization process (max-min normalization). This scenario only increases

115

the AC input between the proposed range and keeps all other variables constant. The results

found a direct relationship between the increased AC input and the EAC output; in other words,

when the amount of AC increases, the EAC output also increases.

• Scenario 04 investigates the impact of decreasing the AC input by 10% to 15%. This scenario

only decreases the AC input within the proposed range and keeps all other variables constant.

The results found a direct relationship between the increased AC input and the EAC output; in

other words, when the amount of AC decreases, the EAC output also decreases.

The results of the prediction model for the GRU model and the model applied after the sensitivity

analysis method are presented in Figures 5.15, 5.16, and 5.17. Figure 5.15 shows the values of the

first eighteen periods for the concrete work package, while Figure 5.16 displays the values for the

piping (HDPE) work package. Lastly, Figure 5.17 denotes the values of the first thirty-one periods

for the backfill work package. From the sensitivity analysis, this study found a direct relationship

between EV and AC values and the EAC output. As the values of EV and AC increased, EAC also

increased, and as the values of EV and AC decreased, EAC decreased. Also, the EV input was

found to be the most sensitive parameter.

Figure 5.15 Results - Sensitivity Analysis for Concrete Work Package

116

Figure 5.16 Results - Sensitivity Analysis for Piping (HDPE) Work Package

Figure 5.17 Results - Sensitivity Analysis for Backfill Work Package

117

Chapter 6: Conclusion

6.1 Research Summary

Construction projects are complex systems involving different phases. This study focuses on the

execution phase, which is essential due to its impact on project success and financial outcomes.

During the execution phase, controlling and monitoring is a pivotal stage that helps the project

manager detect potential cost deviations early, avoiding or mitigating cost overruns. Cost overruns

are prevalent in most construction projects and are influenced by many factors including

inaccuracies in cost estimate at completion (EAC). Inaccurate cost forecasting impacts effective

budget control, resource management, and decision-making, leading to cost overruns. Moreover,

inaccurate cost forecasting can harm contractors' reputations, leading clients to avoid collaborating

on future projects.

In the construction industry, conventional approaches to cost forecasting are bottom-up estimating

and earned value management. The bottom-up estimating method entails a detailed process that

breaks down the remaining work into minor components, such as individual tasks or work

packages, and sums them to get the total ETC. This method is commonly used when a high degree

of accuracy is required and when detailed information about the project's cost elements is available.

Despite the high level of accuracy that can provide this method, it is notably exhaustive and thereby

consumes a significant amount of time and resources. On the other hand, Earned Value

Management is commonly employed in construction project because of its easy integration with

current project control systems. Nonetheless, its ability to forecast early costs can be imprecise

because of the incorrect presumption that the initial cost performance will remain the same for the

project's remainder.

118

To address these issues, this study aims to enhance the accuracy of EAC calculation by using

historical data from completed projects and artificial intelligence capabilities, specifically deep

learning algorithms like gate recurrent unit (GRU).

This approach combined quantitative data analysis with qualitative insights, leveraging the GRU's

proficiency in recognizing and modelling long-term dependencies in time series data. This study

begins by exploring factors that influence the EAC calculation; for this purpose, three criteria were

combined: current practices in cost forecasting, literature review, and available data for the study.

Based on these criteria, the following attributes were proposed to be included in the model: earned

value to date, actual cost to date, labour cost to date, percentage of duration completed, and

quantity performed. However, this study considers that future investigations should include

additional factors in their analysis, such as unexpected weather conditions, material price

escalation, rate inflation, and planned value; for this study, these factors were excluded, given the

unavailable data.

Continuing from the outlined starting point, the collected dataset was preprocessed to be used as

the training, validation, and testing set for the forecasting model. Three deep learning algorithms

(RNN, LSTM, and GRU) were selected to evaluate the forecasting model; one of the main criteria

for choosing these algorithms was their capability to work with time series data, like the data

collected from construction project execution. After conducting a comparative analysis, the GRU

algorithm outperformed other algorithms regarding RMSE, MAE, and MAPE. Therefore, it was

chosen to construct the proposed model, and the performance results are presented in Table 5.1.

Then, a forecasting model was developed for each work package (concrete, backfill, and piping)

to better capture their variability and complexity. The model's output is the ETC for every

119

evaluated period, and the EAC is calculated by adding the incurred actual cost for the completed

work and the predicted ETC.

Building upon the established groundwork, the next phase of the study evaluated the forecasting

GRU models using the testing dataset (unseen data) for each work package. . The results of this

study reveal that the Gated Recurrent Unit (GRU) model outperforms traditional cost forecasting

techniques. The GRU model recorded Mean Absolute Percentage Errors (MAPE) of 7.38%, 6.14%,

and 3.97% for the concrete, backfill, and piping work packages, respectively. Conversely, the

Earned Value Management (EVM) method showed higher MAPE values of 11.32%, 13.42%, and

13.3% for these work packages. Additionally, GRU models generated more stable and reasonable

percentage errors during early project execution than EVM.

A sensitivity analysis was developed to verify the model by varying one attribute and keeping the

others. The results reflect that variation of the actual cost and earned value had a direct relationship

with the EAC as expected, thereby demonstrating verification of the model. Finally, this research

developed a user interface to correctly store related construction project data in real time and

execute the proposed deep learning models for forecasting EAC at the work package level. The

GUI was developed to provide an easy-to-use interface that benefits project managers, cost

controllers, or project teams, allowing them to use the forecasting model developed easily.

Overall, the findings underscore the potential of artificial intelligence-based models with the GRU

algorithm to revolutionize cost forecasting by providing more precise and dynamic real-time

forecasting. Expanding the dataset used in the training and validation phases is recommended to

enhance the forecasting accuracy of the proposed model. An enriched dataset will improve the

model's robustness and ability to generalize across various project scenarios, thereby solidifying

its advantage over conventional methods. This analysis paves the way for adopting more

120

sophisticated, AI-driven approaches in the construction industry, offering significant

improvements in cost forecasting.

6.2 Research Contributions

6.2.1 Academic Contributions

This study introduces a novel forecasting framework to predict cost estimate at completion of

ongoing construction projects by applying a deep-learning model. The academic contributions are

as follows:

1 Explore the significant factors that influence the cost estimate at completion of construction

projects, including but not limited to periodic information about the actual cost, earned

value, executed quantity, labour cost, and percentage duration.

2 Highlight the potential of using innovative technology, such as deep learning methods, by

providing a systematic framework with a step-by-step process that can be effectively

applied to predict cost forecasting at the work package level.

3 Investigate the applicability of deep learning algorithms to forecast the cost estimate at

completion (EAC) using a time series dataset.

4 This study uses data from multiple completed projects to train and test the deep learning

model. By leveraging a diverse dataset, the model can identify complex patterns and

relationships within the data.

6.2.2 Industrial Contributions:

The following are considered among the industrial contributions:

1 Propose a data acquisition model that periodically gathers data during project execution.

Considering that the accuracy of the predicted model depends on the quality and quantity

121

of the data available to train it, the developed DAM contains the essential input parameters

required to deploy the proposed cost forecasting model. It is important to note that

forecasting models require high-level data; therefore, data will be a premium asset for the

reliability of model results.

2 This investigation offers construction companies an advanced deep learning framework to

improve cost forecasting accuracy at the work package level. This framework provides

step-by-step instructions on building a cost forecasting model, including data collection,

preprocessing, model building, and model deployment. By adapting this framework to their

historical data, construction companies can achieve more accurate cost forecasting models.

3 This study developed a graphical user interface engineered to help the project managers

and project controllers interact with the deep learning model without the need for

programming expertise. This interface ensures straightforward data entry and updating,

showing an error handling mechanism that alerts user data entry mistakes, thereby

maintaining the reliability of the forecasting process. Moreover, the interface is connected

to a SQLite database, enabling a comprehensive recording of all the data entries. This

integration facilitates an organized data management system to save historical data from

completed projects. Finally, the interface offers real-time visualizations about insightful

cost forecasts at the work package level, enabling project managers to make informed

decisions efficiently.

6.3 Limitations

One central limitation of this research was the difficulty in obtaining complete and high-quality

cost-related data from completed projects to train the GRU model. Construction companies keep

such data confidential, which is unavailable for academic purposes. Despite finding a construction

122

company that agreed to share information, only a limited dataset was obtained for this study. The

shared dataset included five projects with several work packages; however, only three had more

completed information. This limited dataset hindered the potential benefits of the proposed

approach. Deep learning models require extensive and diverse datasets, which significantly affect

the accuracy of forecasting models. The performance metrics results from this study suggest the

potential for improvement by training the model using a more expansive dataset.

The second limitation is the need for standardized procedures for data acquisition, which can vary

across projects, locations, or managerial approaches. From the data provided by the contractor,

only five of the required attributes for the model were provided. This absence of uniformity can

lead to the omission of collecting crucial factors necessary for the model's training, thus affecting

the overall accuracy of the forecasting model.

6.4 Future Work and Recommendations

This study presents a foundational framework representing an initial step towards deep learning-

based cost control solutions, specifically in cost forecasting for construction projects with time

series data. To further enhance the applicability and accuracy of the proposed forecasting model,

the following recommendations are offered for future investigations:

- Integrating a more comprehensive range of work package data and following the proposed

approach could enhance the model's potency and applicability. Diverse work package

datasets should be systematically included in future training to enrich the model's

predictive capabilities and adaptability across different project types in the construction

industry.

- Determining additional parameters to expand requires judicious consideration. A team of

professionals with experience in cost control management, specifically in cost forecasting,

123

is recommended to participate in the input selection. Their insights will be invaluable in

identifying the most influential parameters that correlate strongly with the cost estimate at

completion in different scenarios and realities. This approach, guided by experts, ensures

that the model's enhancements are practical and grounded in industry realities.

- Considering the increasing trend of utilizing Power BI for enhanced reportability within

the construction industry, it is recommended that the proposed model's outcomes be

integrated with Power BI. This integration would enable users to incorporate the model's

results into their reporting seamlessly. Such a linkage leverages Power BI's robust data

visualization and analysis capabilities. It ensures that the model's results are readily

accessible to the project team and actionable within the industry's prevalent reporting

practices.

- The model should be updated with historical data from completed projects to stay relevant

and practical. This means the model can start working with the built-in initial data set.

However, the model should be rebuilt after a certain period with a considerable amount of

historical data stored from completed projects. This update process involves data

preprocessing, hyperparameter optimization, and benchmarking against similar algorithms

to ensure the model's superiority. In other words, follow all the steps in the proposed

framework in this research. It guarantees that the model evolves in response to a new

dataset, improving its accuracy and applicability in real-world scenarios.

- Assessing the model intensively by testing it in real-world case studies is essential. To

improve the model, it should be tested across various projects to identify its strengths and

areas for improvement. The feedback received from these practical applications will help

refine the model continuously.

124

References

Aggarwal, C. C. (2018). Neural Networks and Deep Learning: A Textbook. Springer

International Publishing. https://doi.org/10.1007/978-3-319-94463-0

Amos, S. J. (2012). Skills & knowledge of cost engineering: A continuing project of the AACE

International Education Board (5th ed. rev). AACE International.

Araba, A. M., Memon, Z. A., Alhawat, M., Ali, M., & Milad, A. (2021). Estimation at

Completion in Civil Engineering Projects: Review of Regression and Soft Computing

Models. Knowledge-Based Engineering and Sciences, 2(2), 1–12.

https://doi.org/10.51526/kbes.2021.2.2.1-12

Atout, M. M. (2019). Monitoring and Control Process of Construction Projects. Proceedings of

the Creative Construction Conference 2019, 584–590. https://doi.org/10.3311/CCC2019-

080

Awad, M., & Khanna, R. (2015). Efficient Learning Machines: Theories, Concepts, and

Applications for Engineers and System Designers. Apress. https://doi.org/10.1007/978-1-

4302-5990-9

Baloi, D., & Price, A. D. F. (2003). Modelling global risk factors affecting construction cost

performance. International Journal of Project Management, 21(4), 261–269.

https://doi.org/10.1016/S0263-7863(02)00017-0

Barraza, G. A., Back, W. E., & Mata, F. (2004). Probabilistic Forecasting of Project Performance

Using Stochastic S Curves. Journal of Construction Engineering and Management,

130(1), 25–32. https://doi.org/10.1061/(ASCE)0733-9364(2004)130:1(25)

Barrera-Animas, A. Y., Oyedele, L. O., Bilal, M., Akinosho, T. D., Delgado, J. M. D., & Akanbi,

L. A. (2022). Rainfall prediction: A comparative analysis of modern machine learning

125

algorithms for time-series forecasting. Machine Learning with Applications, 7, 100204.

https://doi.org/10.1016/j.mlwa.2021.100204

Bartlett, J. W., & Keogh, R. H. (2018). Bayesian correction for covariate measurement error: A

frequentist evaluation and comparison with regression calibration. Statistical Methods in

Medical Research, 27(6), 1695–1708. https://doi.org/10.1177/0962280216667764

Botchkarev, A. (2019). A New Typology Design of Performance Metrics to Measure Errors in

Machine Learning Regression Algorithms. Interdisciplinary Journal of Information,

Knowledge, and Management, 14, 045–076. https://doi.org/10.28945/4184

Caron, F., Ruggeri, F., & Merli, A. (2013). A Bayesian Approach to Improve Estimate at

Completion in Earned Value Management. Project Management Journal, 44(1), 3–16.

https://doi.org/10.1002/pmj.21303

Caron, F., Ruggeri, F., & Pierini, B. (2016). A Bayesian approach to improving estimate to

complete. International Journal of Project Management, 34(8), 1687–1702.

https://doi.org/10.1016/j.ijproman.2016.09.007

Chen, G. (2018). A Gentle Tutorial of Recurrent Neural Network with Error Backpropagation

(arXiv:1610.02583). arXiv. http://arxiv.org/abs/1610.02583

Chen, P. P.-S. (1976). The entity-relationship model—Toward a unified view of data. ACM

Transactions on Database Systems, 1(1), 9–36. https://doi.org/10.1145/320434.320440

Cheng, M.-Y., Chang, Y.-H., & Korir, D. (2019). Novel Approach to Estimating Schedule to

Completion in Construction Projects Using Sequence and Non sequence Learning.

Journal of Construction Engineering and Management, 145(11), 04019072.

https://doi.org/10.1061/(ASCE)CO.1943-7862.0001697

126

Cheng, M.-Y., & Hoang, N.-D. (2014). Interval Estimation of Construction Cost at Completion

Using Least Squares Support Vector Machine. Journal of Civil Engineering and

Management, 20(2), 223–236. https://doi.org/10.3846/13923730.2013.801891

Cheng, M.-Y., Hoang, N.-D., Roy, A. F. V., & Wu, Y.-W. (2012). A novel time-depended

evolutionary fuzzy SVM inference model for estimating construction project at

completion. Engineering Applications of Artificial Intelligence, 25(4), 744–752.

https://doi.org/10.1016/j.engappai.2011.09.022

Cheng, M.-Y., Peng, H.-S., Wu, Y.-W., & Chen, T.-L. (2010). Estimate at Completion for

construction projects using Evolutionary Support Vector Machine Inference Model.

Automation in Construction, 19(5), 619–629.

https://doi.org/10.1016/j.autcon.2010.02.008

Cheng, M.-Y., & Roy, A. F. V. (2010). Evolutionary fuzzy decision model for construction

management using support vector machine. Expert Systems with Applications, 37(8),

6061–6069. https://doi.org/10.1016/j.eswa.2010.02.120

Cheng, M.-Y., Wu, Y.-W., Dan, L. T., & Van Roy, A. F. (2013). Enhanced Time-Dependent

Evolutionary Fuzzy Support Vector Machines Inference Model for Cash Flow Prediction

and Estimate at Completion. International Journal of Information Technology &

Decision Making, 12(04), 679–710. https://doi.org/10.1142/S0219622013500259

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent

Neural Networks on Sequence Modeling. https://doi.org/10.48550/ARXIV.1412.3555

Dastgheib, S. R., Feylizadeh, M. R., Bagherpour, M., & Mahmoudi, A. (2022). Improving

estimate at completion (EAC) cost of construction projects using adaptive neuro-fuzzy

127

inference system (ANFIS). Canadian Journal of Civil Engineering, 49(2), 222–232.

https://doi.org/10.1139/cjce-2020-0399

Desell, T., ElSaid, A., & Ororbia, A. G. (2020). An Empirical Exploration of Deep Recurrent

Connections Using Neuro-Evolution. In P. A. Castillo, J. L. Jiménez Laredo, & F.

Fernández De Vega (Eds.), Applications of Evolutionary Computation (Vol. 12104, pp.

546–561). Springer International Publishing. https://doi.org/10.1007/978-3-030-43722-

0_35

Du, J., Kim, B.-C., & Zhao, D. (2016). Cost Performance as a Stochastic Process: EAC

Projection by Markov Chain Simulation. Journal of Construction Engineering and

Management, 142(6), 04016009. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001115

Ead, R. (2020). Using Monte Carlo Simulation to Evaluate Performance of Forecasting Models

in Project Control. https://doi.org/10.7939/R3-AVYR-AG82

El-Omari, S., & Moselhi, O. (2011). Integrating automated data acquisition technologies for

progress reporting of construction projects. Automation in Construction, 20(6), 699–705.

https://doi.org/10.1016/j.autcon.2010.12.001

Fan, H., Jiang, M., Xu, L., Zhu, H., Cheng, J., & Jiang, J. (2020). Comparison of Long Short

Term Memory Networks and the Hydrological Model in Runoff Simulation. Water,

12(1), 175. https://doi.org/10.3390/w12010175

Fang, K., Shen, C., Kifer, D., & Yang, X. (2017). Prolongation of SMAP to Spatiotemporally

Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network.

Geophysical Research Letters, 44(21). https://doi.org/10.1002/2017GL075619

128

Feylizadeh, M. R., Hendalianpour, A., & Bagherpour, M. (2012). A fuzzy neural network to

estimate at completion costs of construction projects. International Journal of Industrial

Engineering Computations, 3(3), 477–484. https://doi.org/10.5267/j.ijiec.2011.11.003

Fleming, Q. W. (2016). Earned Value Project Management—Fourth Edition. Project

Management Institute.

Hammad, Ahmed Mohamed. (2009). An Integrated Framework for Managing Labour Resources

Data in Industrial Construction Projects: A Knowledge Discovery in Data (KDD)

Approach. https://doi.org/10.7939/R3-A5NH-FJ58

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springer

New York. https://doi.org/10.1007/978-0-387-84858-7

He, S., Du, J., & Huang, J. Z. (2017). Singular-Value Decomposition Feature-Extraction Method

for Cost-Performance Prediction. Journal of Computing in Civil Engineering, 31(5),

04017043. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000694

Heravi, G., & Eslamdoost, E. (2015). Applying Artificial Neural Networks for Measuring and

Predicting Construction-Labor Productivity. Journal of Construction Engineering and

Management, 141(10), 04015032. https://doi.org/10.1061/(ASCE)CO.1943-

7862.0001006

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8),

1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Hopfe, D. H., Lee, K., & Yu, C. (2024). Short-term forecasting airport passenger flow during

periods of volatility: Comparative investigation of time series vs. neural network models.

Journal of Air Transport Management, 115, 102525.

https://doi.org/10.1016/j.jairtraman.2023.102525

129

Hossen, T., Nair, A. S., Chinnathambi, R. A., & Ranganathan, P. (2018). Residential Load

Forecasting Using Deep Neural Networks (DNN). 2018 North American Power

Symposium (NAPS), 1–5. https://doi.org/10.1109/NAPS.2018.8600549

Howes, R. (2000). Improving the performance of Earned Value Analysis as a construction

project management tool. Engineering, Construction and Architectural Management,

7(4), 399–411. https://doi.org/10.1108/eb021162

İnan, T., Narbaev, T., & Hazir, Ö. (2022). A Machine Learning Study to Enhance Project Cost

Forecasting. IFAC-PapersOnLine, 55(10), 3286–3291.

https://doi.org/10.1016/j.ifacol.2022.10.127

Jiang, W., & Zhang, L. (2019). Geospatial data to images: A deep-learning framework for traffic

forecasting. Tsinghua Science and Technology, 24(1), 52–64.

https://doi.org/10.26599/TST.2018.9010033

Jiang, W., & Zhang, L. (2020). Edge-SiamNet and Edge-TripleNet: New Deep Learning Models

for Handwritten Numeral Recognition. IEICE Transactions on Information and Systems,

E103.D(3), 720–723. https://doi.org/10.1587/transinf.2019EDL8199

Kaming, P. F., Olomolaiye, P. O., Holt, G. D., & Harris, F. C. (1997). Factors influencing

construction time and cost overruns on high-rise projects in Indonesia. Construction

Management and Economics, 15(1), 83–94. https://doi.org/10.1080/014461997373132

Kareem Kamoona, K. R., & Budayan, C. (2019). Implementation of Genetic Algorithm

Integrated with the Deep Neural Network for Estimating at Completion Simulation.

Advances in Civil Engineering, 2019, 1–15. https://doi.org/10.1155/2019/7081073

130

Kim, B.-C. (2015). Integrating Risk Assessment and Actual Performance for Probabilistic

Project Cost Forecasting: A Second Moment Bayesian Model. IEEE Transactions on

Engineering Management, 62(2), 158–170. https://doi.org/10.1109/TEM.2015.2404935

Kim, B.-C., & Reinschmidt, K. F. (2011). Combination of Project Cost Forecasts in Earned

Value Management. Journal of Construction Engineering and Management, 137(11),

958–966. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000352

Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. Springer New York.

https://doi.org/10.1007/978-1-4614-6849-3

Le, P., & Zuidema, W. (2016). Quantifying the Vanishing Gradient and Long Distance

Dependency Problem in Recursive Neural Networks and Recursive LSTMs. Proceedings

of the 1st Workshop on Representation Learning for NLP, 87–93.

https://doi.org/10.18653/v1/W16-1610

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

https://doi.org/10.1038/nature14539

Lema, N. M., & Price, A. D. F. (1996). Construction process performance variability: Focus on

labour productivity. Building Research & Information, 24(6), 339–350.

https://doi.org/10.1080/09613219608727554

Lipke, W., Zwikael, O., Henderson, K., & Anbari, F. (2009). Prediction of project outcome.

International Journal of Project Management, 27(4), 400–407.

https://doi.org/10.1016/j.ijproman.2008.02.009

Liu, Y., Mu, Y., Chen, K., Li, Y., & Guo, J. (2020). Daily Activity Feature Selection in Smart

Homes Based on Pearson Correlation Coefficient. Neural Processing Letters, 51(2),

1771–1787. https://doi.org/10.1007/s11063-019-10185-8

131

Mirtaheri, S. L. (2022). Machine learning: Theory to applications (First edition). CRC Press.

Mohsen, O. (2021). A Machine Learning Approach to Predict Production Time in Industrialized

Building Construction. https://doi.org/10.7939/R3-31AQ-VW56

Moore, A. D., & Harwani, B. M. (2019). Python GUI Programming - a Complete Reference

Guide: Develop responsive and powerful GUI applications with PyQt and Tkinter. Packt

Publishing, Limited.

Moselhi, O., Hegazy, T., & Fazio, P. (1991). Neural Networks as Tools in Construction. Journal

of Construction Engineering and Management, 117(4), 606–625.

https://doi.org/10.1061/(ASCE)0733-9364(1991)117:4(606)

Narbaev, T., & De Marco, A. (2014). An Earned Schedule-based regression model to improve

cost estimate at completion. International Journal of Project Management, 32(6), 1007–

1018. https://doi.org/10.1016/j.ijproman.2013.12.005

Nassar, Nadim Kamil. (n.d.). An integrated framework for evaluation, forecasting and

optimization of performance of construction projects. https://doi.org/10.7939/R3-AWDJ-

RT05

Ottaviani, F. M., & Marco, A. D. (2022). Multiple Linear Regression Model for Improved

Project Cost Forecasting. Procedia Computer Science, 196, 808–815.

https://doi.org/10.1016/j.procs.2021.12.079

Patel, D. A., & Jha, K. N. (2015). Neural Network Model for the Prediction of Safe Work

Behavior in Construction Projects. Journal of Construction Engineering and

Management, 141(1), 04014066. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000922

132

Pewdum, W., Rujirayanyong, T., & Sooksatra, V. (2009). Forecasting final budget and duration

of highway construction projects. Engineering, Construction and Architectural

Management, 16(6), 544–557. https://doi.org/10.1108/09699980911002566

Prince, S. J. D. (2023). Understanding deep learning. The MIT Press.

Project Management Institute (Ed.). (2016). Construction extension to the PMBOK guide.

Project Management Institute, Inc.

Project Management Institute (Ed.). (2018). The standard for portfolio management (Fourth

Edition). Project Management Institute.

Project Management Institute (Ed.). (2019). The standard for earned value management. Project

Management Institute, Inc.

Rebala, G., Ravi, A., & Churiwala, S. (2019). Machine Learning Definition and Basics. In G.

Rebala, A. Ravi, & S. Churiwala, An Introduction to Machine Learning (pp. 1–17).

Springer International Publishing. https://doi.org/10.1007/978-3-030-15729-6_1

Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to

algorithms. Cambridge university press.

Shi, J., Jain, M., & Narasimhan, G. (2022). Time Series Forecasting (TSF) Using Various Deep

Learning Models. https://doi.org/10.48550/ARXIV.2204.11115

Statistics Canada. (2024). Investment in building construction [Dataset]. [object Object].

https://doi.org/10.25318/3410028601-ENG

Tian, C., Ma, J., Zhang, C., & Zhan, P. (2018). A Deep Neural Network Model for Short-Term

Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural

Network. Energies, 11(12), 3493. https://doi.org/10.3390/en11123493

133

Tyagi, A. K., & Abraham, A. (2022). Recurrent Neural Networks (1st ed.). CRC Press.

https://doi.org/10.1201/9781003307822

Vapnik, V. N. (2000). The nature of statistical learning theory (2nd ed). Springer.

Vu, N.-T., & Do, K.-U. (2021). Prediction of Ammonium Removal by Biochar Produced From

Agricultural Wastes Using Artificial Neural Networks: Prospects and Bottlenecks. In Soft

Computing Techniques in Solid Waste and Wastewater Management (pp. 455–467).

Elsevier. https://doi.org/10.1016/B978-0-12-824463-0.00012-4

Wauters, M., & Vanhoucke, M. (2014). Support Vector Machine Regression for project control

forecasting. Automation in Construction, 47, 92–106.

https://doi.org/10.1016/j.autcon.2014.07.014

Wen, X., & Li, W. (2023). Time Series Prediction Based on LSTM-Attention-LSTM Model.

IEEE Access, 11, 48322–48331. https://doi.org/10.1109/ACCESS.2023.3276628

Wu, N., Green, B., Ben, X., & O’Banion, S. (2020). Deep Transformer Models for Time Series

Forecasting: The Influenza Prevalence Case (arXiv:2001.08317). arXiv.

http://arxiv.org/abs/2001.08317

Xu, J., Liu, J., Yu, S., Xu, K., & Zhang, T. (2024). Real-time temperature prediction of lunar

regolith drilling based on ATT-Bi-LSTM network. International Journal of Heat and

Mass Transfer, 218, 124783. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124783

Xu, Y., Zhou, Y., Sekula, P., & Ding, L. (2021). Machine learning in construction: From shallow

to deep learning. Developments in the Built Environment, 6, 100045.

https://doi.org/10.1016/j.dibe.2021.100045

Yamak, P. T., Yujian, L., & Gadosey, P. K. (2019). A Comparison between ARIMA, LSTM, and

GRU for Time Series Forecasting. Proceedings of the 2019 2nd International Conference

134

on Algorithms, Computing and Artificial Intelligence, 49–55.

https://doi.org/10.1145/3377713.3377722

Zhao, Z.-Q., Zheng, P., Xu, S.-T., & Wu, X. (2019). Object Detection With Deep Learning: A

Review. IEEE Transactions on Neural Networks and Learning Systems, 30(11), 3212–

3232. https://doi.org/10.1109/TNNLS.2018.2876865

135

Appendix A: Python Scrip for Deep Learning Model

1.0 Import Libraries

from math import sqrt

from numpy import concatenate

from matplotlib import pyplot

from pandas import read_csv

from pandas import DataFrame

from pandas import concat

import tensorflow as tf

from tensorflow import keras

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean_squared_error

from keras.models import Sequential

from keras.layers import Dense, Dropout

from keras.layers import GRU

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.metrics import mean_absolute_error

from sklearn.model_selection import TimeSeriesSplit

import numpy as np

from sklearn.metrics import r2_score

from keras.callbacks import EarlyStopping, ModelCheckpoint

##2.0 Get Data Using Pandas

dataset = read_csv('Concretedataset.csv', header=0)

values = dataset.values

dataset

#Specify columns to plot

groups = [0, 1, 2, 3,4,5]

i = 1

Plot each column

pyplot.figure()

for group in groups:

 pyplot.subplot(len(groups), 1, i)

 pyplot.plot(values[:, group], color='g')

 pyplot.title(dataset.columns[group], y=0.5, loc='right')

 i += 1

pyplot.show()

3.0 Data Preprocessing

def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):

 n_vars = 1 if type(data) is list else data.shape[1]

 df = DataFrame(data)

136

 cols, names = list(), list()

 # input sequence (t-n, ... t-1)

 for i in range(n_in, 0, -1):

 cols.append(df.shift(i))

 names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)]

 # forecast sequence (t, t+1, ... t+n)

 for i in range(0, n_out):

 cols.append(df.shift(-i))

 if i == 0:

 names += [('var%d(t)' % (j+1)) for j in range(n_vars)]

 else:

 names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)]

 # Put it all together

 agg = concat(cols, axis=1)

 agg.columns = names

 # Drop rows with NaN values

 if drop an:

 agg.dropna(inplace=True)

 return agg

#Ensure all data is float

values = values.astype('float32')

4.0 Normalization

scaler = MinMaxScaler()

scaled = scaler.fit_transform(values)

5.0 Define Parameters

n_past =3

n_output =1

n_features =6 #features include output

6.0 Convert to Supervised Learning, Splid Data, And Reshape Data.

frame as supervised learning

reframed = series_to_supervised(scaled, n_past, n_output)

print(reframed.shape)

print(reframed)

Split into train and validation sets

values = reframed.values

Define the number of splits

n_train_weeks =336

train = values[:n_train_weeks, :]

test = values[n_train_weeks:, :]

137

Split into input and outputs

n_obs = n_past * n_features

train_X, train_y = train[:, :n_obs], train[:, -(n_features)]

test_X, test_y = test[:, :n_obs], test[: , -(n_features)]

Reshape input to be 3D [samples, timesteps, features]

train_X = train_X.reshape((train_X.shape[0], n_past, n_features))

test_X = test_X.reshape((test_X.shape[0], n_past, n_features))

print('Train_X.shape=', train_X.shape, '-', 'Train_y.shape=', train_y.shape)

print('Test_X.shape=', test_X.shape, '-', 'Test_y.shape=', test_y.shape)

7.0 Setup the Gru Model

model = Sequential ()

model.add(GRU(32, activation='relu', input_shape=(train_X.shape[1], train_X.shape[2]), return_sequences=True))

model.add(GRU(32, activation='relu', return_sequences=False))

model.add(Dropout(0.01))

model.add(Dense(1))

Compile the model

model.compile(optimizer='adam', loss='mae')

Early stopping callback

early_stopping = EarlyStopping(monitor='val_loss', patience=50, verbose=1, restore_best_weights=True)

checkpoint_filepath = '/tmp/model_lstm_checkpoint.h5'

model_checkpoint_callback = ModelCheckpoint(filepath=checkpoint_filepath, monitor='val_loss', save_best_only=True)

8.0 Model development: Training and Validation using split datasets

history = model.fit(train_X, train_y, epochs=350, batch_size=64, validation_data=(test_X, test_y), verbose=2,

shuffle=False, callbacks=[early_stopping, model_checkpoint_callback])

plot history

pyplot.plot(history.history['loss'], label='Training loss')

pyplot.plot(history.history['val_loss'], label='Validation loss')

Add labels to axes

plt.xlabel('Epoch')

plt.ylabel('Loss (Normalized MAE)')

pyplot.legend()

pyplot.show()

y_train_predicted = model.predict(train_X)

Make a prediction

yhat = model.predict(test_X)

test_X = test_X.reshape((test_X.shape[0], n_past*n_features))

invert scaling for forecast

inv_yhat = concatenate((yhat, test_X[:,-(n_features-1):]), axis=1)

inv_yhat = scaler.inverse_transform(inv_yhat)

138

inv_yhat = inv_yhat[:,0]

invert scaling for actual

test_y = test_y.reshape((len(test_y), 1))

inv_y = concatenate((test_y, test_X[:,-(n_features-1):]), axis=1)

inv_y = scaler.inverse_transform(inv_y)

inv_y = inv_y[:,0]

9.0 Results and Performance Metrics

df_result = pd.DataFrame({'Actual': inv_y, 'Forecast': inv_yhat, 'Error': ((inv_y - inv_yhat) / inv_y)})

Calculate RMSE, MAE, R2, and MAPE

rmse = sqrt(mean_squared_error(inv_y, inv_yhat))

mae = mean_absolute_error(inv_y, inv_yhat)

r2 = r2_score(inv_y, inv_yhat)

mape = np.mean(np.abs((inv_y - inv_yhat) / inv_y)) * 100

Display metrics

print(f'R2: {r2}')

print(f'MAE: {mae}')

Create a bar plot for RMSE, MAE, R2, and MAPE

metrics = ['R2', 'MAE']

values = [r2, mae]

plt.bar(metrics, values)

plt.xlabel('Metrics')

plt.ylabel('Value')

plt.title('Performance Metrics Comparison')

plt.show()

Plot actual vs. predicted values with a line plot

plt.figure(figsize=(12, 6))

plt.plot(inv_y, label='Actual', linestyle='-', marker='o')

plt.plot(inv_yhat, label='Predicted', linestyle='-', marker='o')

plt.xlabel('Data Points')

plt.ylabel('Value')

plt.title('Actual vs. Predicted Values')

plt.legend()

plt.show()

10.0 Saving Model

model.save("model2GRU.h5")

load and evaluate a saved model

from numpy import loadtxt

from keras.models import load_model

load model

model1re = load_model('model2GRU.h5')

Summarize model.

model1re.summary()

139

model1re.summary()

df_result.to_csv('df_resultGRU.csv', index=False)

Calculate RMSE and MAE

rmse = sqrt(mean_squared_error(inv_y, inv_yhat))

mae = mean_absolute_error(inv_y, inv_yhat)

Plot the actual vs. predicted values as a bar plot

plt.figure(figsize=(12, 6))

plt.bar(np.arange(len(inv_y)), inv_y, width=0.4, label='Actual', align='center', alpha=0.7)

plt.bar(np.arange(len(inv_y)) + 0.4, inv_yhat, width=0.4, label='Predicted', align='edge', alpha=0.7)

plt.xlabel('Data Points')

plt.ylabel('Value')

plt.title('Actual vs. Predicted Values')

plt.legend()

plt.show()

140

Appendix B: Python Code for GUI Creation, SQLite, and Model Deployment

IMPORTING LIBRARIES AND DEFINING FUNCTIONS

import sqlite3

import pandas as pd

import numpy as np

import tkinter as tk

from tkinter import ttk, messagebox

from tkcalendar import DateEntry

from datetime import datetime

from numpy import concatenate

from sklearn.preprocessing import MinMaxScaler

from keras.models import load_model

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk

import matplotlib.pyplot as plt

from warnings import filterwarnings

filterwarnings('ignore')

def convert_to_float(value, default=None):

 try:

 result = float(value)

 except ValueError:

 result = 0

 return round(result, 3)

def update_sum_entries(entry_sum, *entries):

 states = [entry["state"] for entry in entries]

 entry_sum_state = entry_sum["state"]

 [entry.config(state="normal") for entry in entries]

 summ = sum([convert_to_float(entry.get()) for entry in entries])

 [entry.config(state=state) for entry, state in zip(entries, states)]

 entry_sum.config(state="normal")

 entry_sum.delete(0, tk.END)

 entry_sum.insert(0, round(summ, 3))

 entry_sum.config(state=entry_sum_state)

class ProjectCostManagementApp:

 def __init__(self, root):

 self.root = root

 self.root.title("Project Cost Forecasting")

 self.root.resizable(False, False)

 self.db = 'project_data.db'

 self.project_setup_labels = ["Project Name", "Project ID", "Portfolio Name", "Project Cost Center",

 "Contract Type", "Contract Number", "Owner Company Name", "Owner Contact Name",

 "Project Type", "Project Location", "Contract Amount ($)", "Contract Duration (days)",

 "Project Manager", "Project Controller", "Description"]

 self.project_baseline_labels = ["Budget at Completion ($)", "Start Date (mm/dd/yyyy)", "Finish Date (mm/dd/yyyy)",

 "Schedule Baseline (days)"]

 self.wp_setup_labels = ["Work Package Name", "Work Package Code", "Work Package Type", "Key Quantity",

 "Unit of Measure", "Description"]

 self.wp_baseline_labels = ["Budget at Completion ($)", "Start Date (mm/dd/yyyy)", "Finish Date (mm/dd/yyyy)", "Duration

(days)",

 "Labour Cost ($)", "Equipment Cost ($)", "Material Cost ($)", "Subcontractor Cost ($)",

 "Quantity"]

141

 self.actual_cost_details_labels = ["Labour Cost ($)", "Equipment Cost ($)", "Material Cost ($)", "Subcontractor Cost ($)"]

 self.dict_combobox = {"Work Package Name": ["Concrete", "Piping (HDPE)", "Baroe Fill", "Cut"],

 "Contract Type": ["Lump Sum", "Time and Materials", "Unit Price", "Cost Plus"],

 "Project Type": ["Residential & Commercial", "Infrastructure", "Industrial"],

 "Unit of Measure": ["m³", "yd³", "m²", "kg", "m", "per unit"],

 "Key Quantity": ["Volume of Concrete", "Weight of Structural Steel", "Area of Masonry", "Length of Piping",

"Area of Roofing", "Volume of Excavation", "Volume of fill", "Area of Flooring", "Length of Electrical Wiring"],

 "Work Package Type": ["EWP-Engineering", "CWP-Construction", "PWP-Procurement"],

 "Status at Completion": ["Completed", "On Hold", "In Progress", "Nor Yet Started"]}

 self.fonts = {"label1": {"anchor": "w", "font": ("didot", 9)},

 "label2": {"anchor": "w", "font": ("didot", 10)},

 "entry1": {"font": ("didot", 9)},

 "combobox1": {"font": ("didot", 9)},

 "labelframe1": {"font": ("didot", 11, "bold"), "foreground": "deeppink4", "borderwidth": 3},

 "labelframe2": {"font": ("didot", 10, "bold"), "foreground": "teal"},

 "button1": {"font": ("didot", 9, 'bold'), "bg": "palegreen", "fg":"gray25"},

 "button2": {"font": ("didot", 9, 'bold'), "bg": "khaki","fg": "gray30"},

 "button3": {"font": ("didot", 9, 'bold'), "bg": "pale green","fg": "gray25"},

 "dateentry1": {"font": ("didot", 9), "date_pattern": "mm/dd/yyyy", "background": "darkblue", "foreground": "white",

"borderwidth": 2},

 }

 self.create_menu_navigation_frame()

 self.frame = None

 self.frames = {"Project Setup": self.create_project_setup_frame,

 "Update Project": self.create_update_project_info,

 "Update Work Package": self.create_update_wp_info,

 "Weekly Progres": self.create_project_cost_status_frame,

 "Project Forecasting": self.create_project_forecasting_frame,}

 self.show_frame("Project Setup")

 def show_frame(self, frame_name):

 if self.frame:

 self.frame.grid_forget()

 self.frame = self.frames[frame_name]()

 self.frame.grid(row=0, column=1, padx=20, pady=20, sticky="nsew")

 def clear_frame(self, frame):

 """Clear all widgets from a frame if it's not None."""

 if frame is not None:

 for widget in frame.winfo_children():

 widget.destroy()

CREATE THE NAVIGATION MENU FRAME

 def create_menu_navigation_frame(self):

 self.menu_navigation_frame = tk.LabelFrame(self.root, text="NAVIGATION MENU", font=("Didot", 11, "bold"),

foreground="deeppink4", borderwidth=3)

 self.menu_navigation_frame.grid(row=0, column=0, padx=5, pady=20, sticky="nsw")

 ## Project Setup

 project_setup_frame = tk.LabelFrame(self.menu_navigation_frame, text="Project Setup", **self.fonts["labelframe2"])

 project_setup_frame.grid(row=0, padx=10, pady=10, sticky="nsew")

 self.setup_project = tk.Button(project_setup_frame, text="Project Creation", bg="#DCDCDC", command=lambda:

self.show_frame("Project Setup"))

 self.setup_project.grid(row=0, padx=30, pady=8, sticky="w")

 ## Project Traking

 project_tracking_frame = tk.LabelFrame(self.menu_navigation_frame, text="Project Tracking", **self.fonts["labelframe2"])

142

 project_tracking_frame.grid(row=1, padx=10, pady=10, sticky="nsew")

 self.update_project_info = tk.Button(project_tracking_frame, text="Project Update", bg="#DCDCDC", command=lambda:

self.show_frame("Update Project"))

 self.update_project_info.grid(row=0, padx=30, pady=8, sticky="w")

 self.update_wp_info = tk.Button(project_tracking_frame, text="Work Package Update", bg="#DCDCDC", command=lambda:

self.show_frame("Update Work Package"))

 self.update_wp_info.grid(row=1, padx=30, pady=8, sticky="w")

 self.project_cost_status_button = tk.Button(project_tracking_frame, text="Weekly Progress", bg="#DCDCDC",

command=lambda: self.show_frame("Weekly Progres"))

 self.project_cost_status_button.grid(row=2, padx=30, pady=8, sticky="w")

 ## Project Forecasting

 project_forecasting_frame = tk.LabelFrame(self.menu_navigation_frame, text="Project Forecasting",

**self.fonts["labelframe2"])

 project_forecasting_frame.grid(row=2, padx=10, pady=10, sticky="nsew")

 self.project_forecasting = tk.Button(project_forecasting_frame, text="Project Forecasting", bg="#DCDCDC",

command=lambda: self.show_frame("Project Forecasting"))

 self.project_forecasting.grid(row=0, padx=30, pady=8, sticky="w")

1.0 PROJECT SETUP

1.1 PROJECT SETUP FRAME

 def create_project_setup_frame(self):

 self.project_setup_frame = tk.LabelFrame(self.root, text="PROJECT SETUP", **self.fonts["labelframe1"])

 self.project_setup_frame.grid(row=0, column=1, padx=20, pady=20, sticky="nsew")

 self.project_setup_widgets = {}

 for i, label in enumerate(self.project_setup_labels):

 row = i // 2

 col = 0 if i % 2 == 0 else 2

 label_widget = tk.Label(self.project_setup_frame, text=f"{label}:", **self.fonts["label1"])

 label_widget.grid(row=row, column=col, padx=10, pady=5, sticky="ew")

 if label in self.dict_combobox:

 widget = ttk.Combobox(self.project_setup_frame, values=self.dict_combobox[label], state="readonly",

**self.fonts["combobox1"])

 widget.grid(row=row, column=col + 1, padx=10, pady=5, sticky="ew")

 widget.set(self.dict_combobox[label][0])

 elif label == "Description":

 widget = tk.Text(self.project_setup_frame, height=3)

 widget.grid(row=8, column=0, columnspan=4, padx=10, pady=5, sticky="ew")

 widget.configure(bg="azure")

 elif label.endswith('(mm/dd/yyyy)'):

 widget = DateEntry(self.project_setup_frame, **self.fonts["dateentry1"])

 widget.grid(row=row, column=col + 1, padx=10, pady=5, sticky="ew")

 else:

 widget = tk.Entry(self.project_setup_frame, **self.fonts["entry1"])

 widget.grid(row=row, column=col + 1, padx=10, pady=5, sticky="ew")

 self.project_setup_widgets[label] = widget

 # Adds a note label below the description text widget

 note_label_text = "NOTE: Project Manager or Project Controller only, have permissions to Submit this Form."

 note_label = tk.Label(self.project_setup_frame, text=note_label_text, font=("Didot", 8, "italic"))

 note_label.grid(row=11, column=0, columnspan=4, padx=10, pady=5, sticky="w")

 # Adds save and work package buttons

 save_project_button = tk.Button(self.project_setup_frame, text="Save Project", command=self.save_project_data,

bg="#9370DB",fg="white", font=("Didot", 10,"bold"))

143

 save_project_button.grid(row=10, column=2, padx=10, pady=5, sticky="se")

 wp_setup_button = tk.Button(self.project_setup_frame, text="Add Work Package", command=self.create_wp_setup_window,

bg="cadetblue1", fg="gray30",font=("Didot", 10,"bold"))

 wp_setup_button.grid(row=10, column=3, padx=10, pady=5, sticky="sw")

 # Original Baseline subframe

 ob_frame = tk.LabelFrame(self.project_setup_frame, text="Original Baseline", **self.fonts['labelframe2'])

 ob_frame.grid(row=9, column=0, columnspan=4, padx=10, pady=10, sticky="nsew")

 self.project_ob_widgets = {}

 # Adjusting grid layout for two columns

 for i, label in enumerate(self.project_baseline_labels):

 ob_row = i // 2

 ob_col = 0 if i % 2 == 0 else 2

 label_widget = tk.Label(ob_frame, text=f"{label}:", **self.fonts["label1"])

 label_widget.grid(row=ob_row, column=ob_col, padx=10, pady=5, sticky="ew")

 if label.endswith('(mm/dd/yyyy)'):

 widget = DateEntry(ob_frame, **self.fonts["dateentry1"])

 else:

 widget = tk.Entry(ob_frame)

 widget.grid(row=ob_row, column=ob_col + 1, padx=10, pady=5, sticky="ew")

 self.project_ob_widgets[label] = widget

 return self.project_setup_frame

1.1.1 SAVE PROJECT DATA

 def save_project_data(self):

 project_data = {}

 for label in self.project_setup_labels:

 try:

 project_data[label.replace(" ", "_").lower()] = self.project_setup_widgets[label].get().strip()

 except:

 project_data[label.replace(" ", "_").lower()] = self.project_setup_widgets[label].get("1.0",'end-1c').strip()

 bs_data = {label.replace(" ", "_").lower(): self.project_ob_widgets[label].get().strip() for label in self.project_baseline_labels}

 # Check for incomplete fields

 incomplete_fields = [label for label, value in project_data.items() if not value.strip()]

 if incomplete_fields:

 messagebox.showerror("Project Incomplete Fields", "Please complete the following fields: " + ", ".join(incomplete_fields))

 return

 incomplete_fields = [label for label, value in bs_data.items() if not value.strip()]

 if incomplete_fields:

 messagebox.showerror("Project Original Baseline Incomplete Fields", "Please complete the following fields: " + ",

".join(incomplete_fields))

 return

 conn = sqlite3.connect(self.db)

 kwargs = {'con': conn, 'if_exists': 'append', 'index': False}

 mod_date = datetime.now().strftime('%Y/%m/%d %H:%M:%S')

 project_data_df = pd.DataFrame(project_data, index=[0], columns=project_data.keys())

 project_data_df['mod_date'] = mod_date

 bs_data_df = pd.DataFrame(bs_data, index=[0], columns=bs_data.keys())

 bs_data_df['project_id'] = project_data['project_id']

 bs_data_df['mod_date'] = mod_date

 project_data_df.fillna('').to_sql("Projects", **kwargs)

144

 bs_data_df.fillna('').to_sql("Project_original_baselines", **kwargs)

 bs_data_df.fillna('').to_sql("Project_current_baselines", **kwargs)

 conn.close()

 messagebox.showinfo("Data Saved", "Data has been saved.")

 1.1.2 ADD WORK PACKAGE

 def create_wp_setup_window(self):

 wp_setup_window = tk.Toplevel(self.root)

 wp_setup_window.resizable(False, False)

 wp_setup_window.title("Work Package Details")

 main_frame = tk.LabelFrame(wp_setup_window, text="WORK PACKAGE SETUP", **self.fonts["labelframe1"])

 main_frame.grid(row=0, padx=20, pady=20, sticky="nsew")

 # Populate ComboBox with project names

 conn = sqlite3.connect(self.db)

 project_names = pd.read_sql('SELECT DISTINCT "project_name" FROM "Projects"', conn)['project_name'].to_list()

 conn.close()

 project_label = tk.Label(main_frame, text="Project Name:", **self.fonts["label1"])

 project_label.grid(row=1, column=0, padx=10, pady=5, sticky="w")

 self.project_combobox = ttk.Combobox(main_frame, values=project_names, state="readonly", **self.fonts["combobox1"])

 self.project_combobox.grid(row=1, column=1, columnspan=3, padx=10, pady=5, sticky="ew")

 self.wp_setup_widgets = {}

 for i, label in enumerate(self.wp_setup_labels):

 row = i // 2

 col = 0 if i % 2 == 0 else 2

 label_widget = tk.Label(main_frame, text=f"{label}:", **self.fonts["label1"])

 if label in self.dict_combobox:

 label_widget.grid(row=row + 2, column=col, padx=10, pady=2, sticky="ew")

 widget = ttk.Combobox(main_frame, values=self.dict_combobox[label], state="readonly", **self.fonts["combobox1"])

 widget.grid(row=row + 2, column=col + 1, padx=10, pady=5, sticky="ew")

 widget.set(self.dict_combobox[label][0])

 elif label == "Description":

 label_widget.grid(row=row + 3, column=0, padx=10, pady=2, sticky="ew")

 widget = tk.Text(main_frame, height=3)

 widget.grid(row=row + 4, column=0, columnspan=4, padx=10, pady=2, sticky="ew")

 widget.configure(bg="azure")

 elif label.endswith('(mm/dd/yyyy)'):

 label_widget.grid(row=row + 2, column=col, padx=10, pady=2, sticky="ew")

 widget = DateEntry(main_frame, **self.fonts["dateentry1"])

 widget.grid(row=row + 2, column=col + 1, padx=10, pady=5, sticky="ew")

 else:

 label_widget.grid(row=row + 2, column=col, padx=10, pady=2, sticky="ew")

 widget = tk.Entry(main_frame, **self.fonts["entry1"])

 widget.grid(row=row + 2, column=col + 1, padx=10, pady=2, sticky="ew")

 self.wp_setup_widgets[label] = widget

 # Original Baseline Frame inside main_frame

 ob_frame = tk.LabelFrame(main_frame, text="Original Baseline", **self.fonts["labelframe2"])

 ob_frame.grid(row=row + 5, column=0, columnspan=4, padx=10, pady=5, sticky="ew")

 # Widgets for Original Baseline Frame

 self.wp_ob_widgets = {}

 for i, label in enumerate(self.wp_baseline_labels):

 ob_row = i // 2

145

 ob_col = 0 if i % 2 == 0 else 2

 label_widget = tk.Label(ob_frame, text=f"{label}:", **self.fonts["label1"])

 label_widget.grid(row=ob_row, column=ob_col, sticky="w", padx=10, pady=5)

 if label.endswith('(mm/dd/yyyy)'):

 widget = DateEntry(ob_frame, **self.fonts["dateentry1"])

 else:

 widget = tk.Entry(ob_frame, **self.fonts["entry1"])

 widget.grid(row=ob_row, column=ob_col + 1, sticky="ew", padx=10, pady=5)

 self.wp_ob_widgets[label] = widget

 save_button = tk.Button(main_frame, text="Save Work Package", command=self.save_wp_data, bg="#9370DB", fg="white",

font=("Didot", 10, "bold"))

 save_button.grid(row=row + 6, column=0, columnspan=4, pady=10)

 note_label_text = "NOTE: Project Manager or Project Controller only, have permissions to Submit this Form."

 note_label = tk.Label(main_frame, text=note_label_text, font=("Didot", 8, "italic"))

 note_label.grid(row=row + 7, column=0, columnspan=4, padx=10, pady=5, sticky="w")

 1.1.3 SAVE WORK PACKAGE

 def save_wp_data(self):

 # Gather data from the entries and other components

 wp_data = {}

 for label in self.wp_setup_labels:

 try:

 wp_data[label.replace(" ", "_").lower()] = self.wp_setup_widgets[label].get().strip()

 except:

 wp_data[label.replace(" ", "_").lower()] = self.wp_setup_widgets[label].get("1.0",'end-1c').strip()

 bs_data = {label.replace(" ", "_").lower(): self.wp_ob_widgets[label].get().strip() for label in self.wp_baseline_labels}

 # Check for incomplete fields

 incomplete_fields = [label for label, value in wp_data.items() if not value.strip()]

 if incomplete_fields:

 messagebox.showerror("Work Package Incomplete Fields", "Please complete the following fields: " + ",

".join(incomplete_fields))

 return

 incomplete_fields = [label for label, value in bs_data.items() if not value.strip()]

 if incomplete_fields:

 messagebox.showerror("Work Package Original Baseline Incomplete Fields", "Please complete the following fields: " + ",

".join(incomplete_fields))

 return

 conn = sqlite3.connect(self.db)

 kwargs = {'con': conn, 'if_exists': 'append', 'index': False}

 wp_data_df = pd.DataFrame(wp_data, index=[0], columns=wp_data.keys())

 bs_data_df = pd.DataFrame(bs_data, index=[0], columns=bs_data.keys())

 self.project_name = self.project_combobox.get()

 self.project_id = pd.read_sql(f'SELECT "project_id" FROM "Projects" WHERE "project_name"="{self.project_name}" ORDER

BY "mod_date" DESC LIMIT 1', conn).iloc[0, 0]

 mod_date = datetime.now().strftime('%Y/%m/%d %H:%M:%S')

 wp_data_df['project_id'] = self.project_id

 wp_data_df['mod_date'] = mod_date

 bs_data_df['work_package_code'] = wp_data['work_package_code']

 bs_data_df['mod_date'] = mod_date

 wp_data_df.fillna('').to_sql("Work_packages", **kwargs)

 bs_data_df.fillna('').to_sql("Work_package_original_baselines", **kwargs)

 bs_data_df.fillna('').to_sql("Work_package_current_baselines", **kwargs)

146

 conn.close()

 messagebox.showinfo("Success", "Work Package data saved successfully")

2.0 PROJECT TRACKING

2.1 PROJECT UPDATE FRAME

 def create_update_project_info(self):

 self.update_project_frame = tk.LabelFrame(self.root, text="PROJECT UPDATE", **self.fonts["labelframe1"])

 self.update_project_frame.grid(row=0, column=1, padx=20, pady=20, sticky="nsew")

 project_name_label = tk.Label(self.update_project_frame, text="Project Name:", **self.fonts["label1"])

 project_name_label.grid(row=0, column=0, padx=10, pady=5, sticky="w")

 # Populate ComboBox with project names

 conn = sqlite3.connect(self.db)

 project_names = pd.read_sql('SELECT DISTINCT "project_name" FROM "Projects"', conn)['project_name'].to_list()

 conn.close()

 self.project_combobox = ttk.Combobox(self.update_project_frame, values=project_names, state="readonly",

**self.fonts["combobox1"])

 self.project_combobox.set("Select Project Name")

 self.project_combobox.grid(row=0, column=1, padx=20, pady=10, sticky="w")

 show_info_button = tk.Button(self.update_project_frame, text="Show Project Information",

command=self.show_project_data, bg="cadetblue1",fg="gray30", font=("Didot", 9, "bold"))

 show_info_button.grid(row=0, column=2, padx=10, pady=10, sticky="w")

 self.update_cb_button = tk.Button(self.update_project_frame, text="Update Original Baseline",

command=self.create_cb_frame, state="disabled", **self.fonts["button2"])

 self.update_cb_button.grid(row=0, column=3, padx=10, pady=10, sticky="nw")

 return self.update_project_frame

2.1.1 CURRENT BASELINE

 def create_cb_frame(self):

 self.cb_window = tk.Toplevel(self.root)

 self.cb_window.resizable(False, False)

 self.cb_window.title("Current Baseline")

 project_name_label = tk.Label(self.cb_window, text=f'Project Name: {self.project_name}', **self.fonts["label2"])

 project_name_label.grid(row=0, column=0, padx=10, pady=2, sticky="w")

 project_name_label = tk.Label(self.cb_window, text=f'Project ID: {self.project_id}', **self.fonts["label2"])

 project_name_label.grid(row=0, column=1, padx=10, pady=2, sticky="w")

 # Create a frame for current baseline fields

 cb_frame = tk.LabelFrame(self.cb_window, text="Current Baseline", **self.fonts["labelframe2"])

 cb_frame.grid(row=2, column=0, columnspan=2, padx=10, pady=10, sticky="ns")

 self.cb_widgets = {}

 conn = sqlite3.connect(self.db)

 cb_data = pd.read_sql(f'SELECT * FROM "Project_current_baselines" WHERE "project_id"="{self.project_id}" ORDER BY

"mod_date" DESC LIMIT 1', conn)

 conn.close()

 for i, label in enumerate(self.project_baseline_labels):

 label_widget = tk.Label(cb_frame, text=f"{label}:", **self.fonts["label1"])

 label_widget.grid(row=i, column=0, padx=10, pady=5, sticky="ew")

 value = cb_data.loc[0, label.replace(' ', '_').lower()]

 if label in self.dict_combobox:

 widget = ttk.Combobox(cb_frame, values=self.dict_combobox[label], state="readonly", **self.fonts["combobox1"])

 widget.set(value)

 elif label.endswith('(mm/dd/yyyy)'):

147

 widget = DateEntry(cb_frame, **self.fonts["dateentry1"])

 widget.delete(0, tk.END)

 widget.insert(tk.END, value)

 else:

 widget = tk.Entry(cb_frame, **self.fonts["entry1"])

 widget.insert(tk.END, value)

 widget.grid(row=i, column=1, padx=10, pady=5, sticky="ew")

 self.cb_widgets[label] = widget

 # Add a save button

 save_button = tk.Button(self.cb_window, text="Save Current Baseline", command=self.save_cb, bg="#9370DB",

fg="white",font=("Didot", 10, "bold"))

 save_button.grid(row=3, columnspan=2, padx=10, pady=10)

 def save_cb(self):

 # Validate and save the current baseline data

 cb_data = {label.replace(' ', '_').lower(): self.cb_widgets[label].get().strip() for label in self.project_baseline_labels}

 # Check for incomplete fields

 incomplete_fields = [label for label, value in cb_data.items() if not value]

 if incomplete_fields:

 messagebox.showerror("Incomplete Fields", "Please complete the following fields: " + ", ".join(incomplete_fields))

 return

 conn = sqlite3.connect(self.db)

 kwargs = {'con': conn, 'if_exists': 'append', 'index': False}

 cb_data_df = pd.DataFrame(cb_data, index=[0], columns=cb_data.keys())

 cb_data_df['project_id'] = self.project_id

 cb_data_df['mod_date'] = datetime.now().strftime('%Y/%m/%d %H:%M:%S')

 cb_data_df.fillna('').to_sql("Project_current_baselines", **kwargs)

 conn.close()

 messagebox.showinfo("Data Saved", "Data has been saved.")

2.1.2 SHOW PROJECT INFORMATION

 def show_project_data(self):

 selected_project_name = self.project_combobox.get()

 if selected_project_name == "Select Project Name" or (not selected_project_name):

 messagebox.showwarning("Select Project", "Please select a project Name to view its information.")

 return

 self.project_name = selected_project_name

 conn = sqlite3.connect(self.db)

 project_data = pd.read_sql(f'SELECT * FROM "Projects" WHERE "project_name"="{selected_project_name}" ORDER BY

"mod_date" DESC LIMIT 1', conn)

 self.project_id = project_data.loc[0, 'project_id']

 project_ob = pd.read_sql(f'SELECT * FROM "Project_original_baselines" WHERE "project_id"="{self.project_id}" ORDER BY

"mod_date" DESC LIMIT 1', conn)

 conn.close()

 project_info_frame = tk.LabelFrame(self.update_project_frame, text="Project Information", **self.fonts["labelframe2"])

 project_info_frame.grid(row=1, column=0, columnspan=5, padx=10, pady=10, sticky="nsew")

 self.project_info_widgets = {}

 # Create labels and entry widgets for each field

 for i, label in enumerate(self.project_setup_labels):

 row = i // 2

 col = 0 if i % 2 == 0 else 2

148

 label_widget = tk.Label(project_info_frame, text=f"{label}:", **self.fonts["label1"])

 label_widget.grid(row=row, column=col, padx=10, pady=5, sticky="w")

 value = project_data.loc[0, label.replace(' ', '_').lower()]

 if label in self.dict_combobox:

 widget = ttk.Combobox(project_info_frame, values=self.dict_combobox[label], **self.fonts["combobox1"])

 widget.grid(row=row, column=col + 1, padx=10, pady=5, sticky="ew")

 widget.set(value)

 widget.config(state="disabled")

 elif label == "Description":

 widget = tk.Text(project_info_frame, height=3)

 widget.grid(row=row + 1, column=0, columnspan=4, padx=10, pady=5, sticky="ew")

 widget.insert(tk.END, value)

 widget.config(state="disabled")

 else:

 widget = tk.Entry(project_info_frame, **self.fonts["entry1"])

 widget.grid(row=row, column=col + 1, padx=10, pady=5, sticky="ew")

 widget.insert(tk.END, value)

 widget.config(state="readonly")

 self.project_info_widgets[label] = widget

 # Add Original Baseline information

 ob_frame = tk.LabelFrame(project_info_frame, text="Original Baseline", **self.fonts["labelframe2"])

 ob_frame.grid(row=row + 2, column=0, columnspan=4, padx=10, pady=10, sticky="nsew")

 self.project_ob_widgets = {}

 for i, label in enumerate(self.project_baseline_labels):

 ob_row = i // 2

 ob_col = 0 if i % 2 == 0 else 2

 label_widget = tk.Label(ob_frame, text=f"{label}:", **self.fonts["label1"])

 label_widget.grid(row=ob_row, column=ob_col, padx=10, pady=2, sticky="w")

 value = project_ob.loc[0, label.replace(' ', '_').lower()]

 if label.endswith('(mm/dd/yyyy)'):

 widget = DateEntry(ob_frame, **self.fonts["dateentry1"])

 widget.delete(0, tk.END)

 widget.insert(tk.END, value)

 widget.config(state="disabled")

 else:

 widget = tk.Entry(ob_frame, **self.fonts["entry1"])

 widget.insert(tk.END, value)

 widget.config(state="readonly")

 self.project_ob_widgets[label] = widget

 widget.grid(row=ob_row, column=ob_col + 1, padx=10, pady=2, sticky="ew")

 self.edit_project_button = tk.Button(self.update_project_frame, text="Edit Project Information",

command=self.edit_project_information,

 **self.fonts["button1"])

 self.edit_project_button.grid(row=3, column=0, padx=10, pady=10, sticky="e")

 self.update_project_button = tk.Button(self.update_project_frame, text="Update Project Information",

command=self.update_project_information,

 **self.fonts["button2"])

 self.update_project_button.grid(row=3, column=1, padx=10, pady=10, sticky="e")

 # Enable the "Update Original Baseline" button

 self.update_project_button.config(state="disabled")

 self.update_cb_button.config(state="normal")

 def edit_project_information(self):

149

 [self.project_info_widgets[label].config(state="normal") for label in self.project_setup_labels if label not in ("Project Name",

"Project ID")]

 [self.project_ob_widgets[label].config(state="normal") for label in self.project_baseline_labels]

 self.update_project_button.config(state="normal")

 def update_project_information(self):

 # Store the project data

 [self.project_info_widgets[label].config(state="normal") for label in ("Project Name", "Project ID")]

 project_data = {}

 for label in self.project_setup_labels:

 if label == "Description":

 project_data[label.replace(" ", "_").lower()] = self.project_info_widgets[label].get("1.0",'end-1c').strip()

 else:

 project_data[label.replace(" ", "_").lower()] = self.project_info_widgets[label].get().strip()

 bs_data = {label.replace(" ", "_").lower(): self.project_ob_widgets[label].get().strip() for label in self.project_baseline_labels}

 # Check for incomplete fields

 incomplete_fields = [label for label, value in project_data.items() if not value.strip()]

 if incomplete_fields:

 messagebox.showerror("Project Incomplete Fields", "Please complete the following fields: " + ", ".join(incomplete_fields))

 return

 incomplete_fields = [label for label, value in bs_data.items() if not value.strip()]

 if incomplete_fields:

 messagebox.showerror("Project Original Baseline Incomplete Fields", "Please complete the following fields: " + ",

".join(incomplete_fields))

 return

 conn = sqlite3.connect(self.db)

 kwargs = {'con': conn, 'if_exists': 'append', 'index': False}

 mod_date = datetime.now().strftime('%Y/%m/%d %H:%M:%S')

 project_data_df = pd.DataFrame(project_data, index=[0], columns=project_data.keys())

 project_data_df['mod_date'] = mod_date

 bs_data_df = pd.DataFrame(bs_data, index=[0], columns=bs_data.keys())

 bs_data_df['project_id'] = project_data['project_id']

 bs_data_df['mod_date'] = mod_date

 project_data_df.fillna('').to_sql("Projects", **kwargs)

 bs_data_df.fillna('').to_sql("Project_original_baselines", **kwargs)

 bs_data_df.fillna('').to_sql("Project_current_baselines", **kwargs)

 conn.close()

 messagebox.showinfo("Data Saved", "Data has been saved.")

 self.update_project_button.config(state="disabled")

 [self.project_info_widgets[label].config(state="disabled") if (label == "Description" or label in self.dict_combobox) else

self.project_info_widgets[label].config(state="readonly") for label in self.project_setup_labels]

 [self.project_ob_widgets[label].config(state="disabled") if (label.endswith('(mm/dd/yyyy)') or label in self.dict_combobox)

else self.project_ob_widgets[label].config(state="readonly")for label in self.project_baseline_labels]

2.2 WORK PACKAGE UPDATE FRAME

 def create_update_wp_info(self):

 self.update_wp_info_frame = tk.LabelFrame(self.root, text="WORK PACKAGE UPDATE", **self.fonts["labelframe1"])

 self.update_wp_info_frame.grid(row=0, column=1, padx=20, pady=20, sticky="nsew")

 # Project Name ComboBox

 project_name_label = tk.Label(self.update_wp_info_frame, text="Project Name:", **self.fonts["label1"])

150

 project_name_label.grid(row=0, column=0, padx=10, pady=10, sticky="w")

 # Populate ComboBox with project names

 conn = sqlite3.connect(self.db)

 project_names = pd.read_sql('SELECT DISTINCT "project_name" FROM "Projects"', conn)['project_name'].to_list()

 conn.close()

 self.project_name_combobox = ttk.Combobox(self.update_wp_info_frame, values=project_names, state="readonly",

**self.fonts["combobox1"])

 self.project_name_combobox.set("Select Project Name")

 self.project_name_combobox.grid(row=0, column=1, padx=10, pady=10, sticky="w")

 self.project_name_combobox.bind("<<ComboboxSelected>>", self.update_wp_names)

 # Work Package Name ComboBox

 wp_name_label = tk.Label(self.update_wp_info_frame, text="Work Package Name:", **self.fonts["label1"])

 wp_name_label.grid(row=1, column=0, padx=10, pady=10, sticky="w")

 self.wp_name_combobox = ttk.Combobox(self.update_wp_info_frame, **self.fonts["combobox1"])

 self.wp_name_combobox.grid(row=1, column=1, padx=10, pady=10, sticky="w")

 self.wp_name_combobox.config(state="disabled")

 # Show Work Package Button

 show_wp_button = tk.Button(self.update_wp_info_frame, text="Show WP Information", command=self.show_wp_details,

bg="cadetblue1",fg="gray25", font=("Didot", 9, 'bold'))

 show_wp_button.grid(row=0, column=2, padx=10, pady=5, sticky="e")

 #Update Original Baseline Button

 self.update_cb_button = tk.Button(self.update_wp_info_frame, text="Update WP Original Baseline",

 command=self.open_update_cb_window, **self.fonts["button2"])

 self.update_cb_button.grid(row=1, column=2, padx=10, pady=5, sticky="e")

 self.update_cb_button.config(state="disabled")

 return self.update_wp_info_frame

 def open_update_cb_window(self):

 selected_wp_name = self.wp_name_combobox.get()

 if selected_wp_name == "Select Work Package Name" or (not selected_wp_name):

 messagebox.showerror("Error", "Please select both Project Name and Work Package Name.")

 return

 self.wp_name = selected_wp_name

 # Create a new window

 self.cb_window = tk.Toplevel(self.root)

 self.cb_window.resizable(False, False)

 self.cb_window.title("Update Original Baseline WP")

 project_name_label = tk.Label(self.cb_window, text= f'Project Name: {self.project_name}', **self.fonts["label2"])

 project_name_label.grid(row=0, column=0, padx=20, pady=4, sticky="w")

 wp_name_label = tk.Label(self.cb_window, text= f'Work Package Name: {self.wp_name}', **self.fonts["label2"])

 wp_name_label.grid(row=1, column=0, padx=20, pady=4, sticky="w")

 project_id_label = tk.Label(self.cb_window, text= f'Project ID: {self.project_id}', **self.fonts["label2"])

 project_id_label.grid(row=0, column=1, padx=20, pady=4, sticky="w")

 wp_code_label = tk.Label(self.cb_window, text= f'Work Package Code: {self.wp_code}', **self.fonts["label2"])

 wp_code_label.grid(row=1, column=1, padx=20, pady=4, sticky="w")

 # Create a frame for Current Baseline

 cb_frame = tk.LabelFrame(self.cb_window, text="WP Current Baseline", **self.fonts["labelframe2"])

 cb_frame.grid(row=2, column=0, columnspan=2, padx=20, pady=2, sticky="ns")

151

 # Entry labels and fields

 self.baseline_widgets = {}

 conn = sqlite3.connect(self.db)

 wp_cb_data = pd.read_sql(f'SELECT * FROM "Work_package_current_baselines" WHERE

"work_package_code"="{self.wp_code}" ORDER BY "mod_date" DESC LIMIT 1', conn)

 conn.close()

 for i, label in enumerate(self.wp_baseline_labels):

 label_widget = tk.Label(cb_frame, text=f"{label}:", **self.fonts["label1"])

 label_widget.grid(row=i, column=0, padx=10, pady=5, sticky="w")

 value = wp_cb_data.loc[0, label.replace(' ', '_').lower()]

 if label.endswith('(mm/dd/yyyy)'):

 widget = DateEntry(cb_frame, **self.fonts["dateentry1"])

 widget.delete(0, tk.END)

 widget.insert(tk.END, value)

 else:

 widget = tk.Entry(cb_frame, **self.fonts["entry1"])

 widget.insert(tk.END, value)

 widget.grid(row=i, column=1, padx=10, pady=5, sticky="ew")

 self.baseline_widgets[label] = widget

 # Save Button

 save_button = tk.Button(self.cb_window, text="Save WP Current Baseline", command=self.save_baseline_data,

bg="#9370DB", fg="white",font=("Didot", 10, "bold"))

 save_button.grid(row=3, column=0, columnspan=2, padx=10, pady=10)

 def save_baseline_data(self):

 # Extracting data from entries

 bs_data = {label.replace(' ', '_').lower(): widget.get() for label, widget in self.baseline_widgets.items()}

 # Check for incomplete fields

 incomplete_fields = [label for label, value in bs_data.items() if not value.strip()]

 if incomplete_fields:

 messagebox.showerror("Work Package Current Baseline Incomplete Fields", "Please complete the following fields: " + ",

".join(incomplete_fields))

 return

 bs_data_df = pd.DataFrame(bs_data, index=[0], columns=bs_data.keys())

 bs_data_df['work_package_code'] = self.wp_code

 bs_data_df['mod_date'] = datetime.now().strftime('%Y/%m/%d %H:%M:%S')

 # Update the project data dictionary

 conn = sqlite3.connect(self.db)

 kwargs = {'con': conn, 'if_exists': 'append', 'index': False}

 bs_data_df.fillna('').to_sql("Work_package_current_baselines", **kwargs)

 messagebox.showinfo("Success", "Data saved successfully.")

 # Close the window after saving

 self.cb_window.destroy()

 def update_wp_names(self, event=None):

 selected_project_name = self.project_name_combobox.get()

 if selected_project_name == "Select Project Name" or (not selected_project_name):

 messagebox.showwarning("Select Project", "Please select a project Name to view its information.")

 return

 self.project_name = selected_project_name

 conn = sqlite3.connect(self.db)

152

 self.project_id = pd.read_sql(f'SELECT "project_id" FROM "Projects" WHERE "project_name"="{self.project_name}" ORDER

BY "mod_date" DESC LIMIT 1', conn).iloc[0, 0]

 wps = pd.read_sql(f'SELECT "work_package_name" FROM "Work_packages" WHERE "project_id"="{self.project_id}"',

conn)['work_package_name'].to_list()

 conn.close()

 self.wp_name_combobox['values'] = wps

 self.wp_name_combobox.config(state="readonly")

 self.wp_name_combobox.set("Select Work Package Name")

 def show_wp_details(self):

 selected_wp_name = self.wp_name_combobox.get()

 if selected_wp_name == "Select Work Package Name" or (not selected_wp_name):

 messagebox.showerror("Error", "Please select both Project Name and Work Package Name.")

 return

 self.wp_name = selected_wp_name

 # Retrieve work package data

 conn = sqlite3.connect(self.db)

 wp_data = pd.read_sql(f'SELECT * FROM "Work_packages" WHERE "work_package_name"="{self.wp_name}" ORDER BY

"mod_date" DESC LIMIT 1', conn)

 self.wp_code = wp_data.loc[0, 'work_package_code']

 wp_ob_data = pd.read_sql(f'SELECT * FROM "Work_package_original_baselines" WHERE

"work_package_code"="{self.wp_code}" ORDER BY "mod_date" DESC LIMIT 1', conn)

 conn.close()

 self.wp_info_frame = tk.LabelFrame(self.update_wp_info_frame, text="Work Package Information", fg= "teal" ,font=("Didot",

10, "bold"))

 self.wp_info_frame.grid(row=3, column=0, columnspan=4, padx=10, pady=10, sticky="nsew")

 self.wp_info_widgets = {}

 # Create labels and entry widgets for each field

 for i, label in enumerate(self.wp_setup_labels):

 row = i // 2

 col = 0 if i % 2 == 0 else 2

 label_widget = tk.Label(self.wp_info_frame, text=f"{label}:", **self.fonts["label1"])

 label_widget.grid(row=row, column=col, padx=10, pady=5, sticky="ew")

 value = wp_data.loc[0, label.replace(' ', '_').lower()]

 if label in self.dict_combobox:

 widget = ttk.Combobox(self.wp_info_frame, values=self.dict_combobox[label], **self.fonts["combobox1"])

 widget.grid(row=row, column=col + 1, padx=10, pady=5, sticky="ew")

 widget.set(value)

 widget.config(state="disabled")

 elif label == "Description":

 widget = tk.Text(self.wp_info_frame, height=3)

 widget.grid(row=row + 1, column=0, columnspan=4, padx=10, pady=5, sticky="ew")

 widget.insert(tk.END, value)

 widget.config(state="disabled")

 else:

 widget = tk.Entry(self.wp_info_frame, **self.fonts["entry1"])

 widget.grid(row=row, column=col + 1, padx=10, pady=5, sticky="ew")

 widget.insert(tk.END, value)

 widget.config(state="readonly")

 self.wp_info_widgets[label] = widget

 # Add Original Baseline subframe

 ob_frame = tk.LabelFrame(self.wp_info_frame, text="Original Baseline", font=("Didot", 10, "bold"), foreground="teal")

153

 ob_frame.grid(row=row+1, column=0, columnspan=4, padx=10, pady=10, sticky="nsew")

 self.wp_ob_widgets = {}

 for i, label in enumerate(self.wp_baseline_labels):

 ob_row = i // 2

 ob_col = 0 if i % 2 == 0 else 2

 label_widget = tk.Label(ob_frame, text=f"{label}:", **self.fonts["label1"])

 label_widget.grid(row=ob_row, column=ob_col, padx=10, pady=5, sticky="w")

 value = wp_ob_data.loc[0, label.replace(' ', '_').lower()]

 if label in self.dict_combobox:

 widget = ttk.Combobox(ob_frame, values=self.dict_combobox[label], **self.fonts["combobox1"])

 widget.set(value)

 widget.config(state="disabled")

 elif label.endswith('(mm/dd/yyyy)'):

 widget = DateEntry(ob_frame, **self.fonts["dateentry1"])

 widget.delete(0, tk.END)

 widget.insert(tk.END, value)

 widget.config(state="disabled")

 else:

 widget = tk.Entry(ob_frame, **self.fonts["entry1"])

 widget.insert(tk.END, value)

 widget.config(state="readonly")

 self.wp_ob_widgets[label] = widget

 widget.grid(row=ob_row, column=ob_col + 1, padx=10, pady=2, sticky="ew")

 self.edit_wp_button = tk.Button(self.update_wp_info_frame, text="Edit WP Information", command=self.edit_wp_information,

 **self.fonts["button1"])

 self.edit_wp_button.grid(row=4, column=0, padx=10, pady=10, sticky="e")

 self.update_wp_button = tk.Button(self.update_wp_info_frame, text="Update WP Information",

command=self.update_wp_information,

 **self.fonts["button2"])

 self.update_wp_button.grid(row=4, column=1, padx=10, pady=10, sticky="e")

 # Enable the "Update Original Baseline WP" button

 self.update_cb_button.config(state="normal")

 def edit_wp_information(self):

 [self.wp_info_widgets[label].config(state="normal") for label in self.wp_setup_labels if label not in ("Work Package Name",

"Work Package Code")]

 [self.wp_ob_widgets[label].config(state="normal") for label in self.wp_baseline_labels]

 self.update_wp_button.config(state="normal")

 def update_wp_information(self):

 # Create a dictionary to store the work package data

 [self.wp_info_widgets[label].config(state="normal") for label in ("Work Package Name", "Work Package Code")]

 wp_data = {}

 for label in self.wp_setup_labels:

 if label == "Description":

 wp_data[label.replace(" ", "_").lower()] = self.wp_info_widgets[label].get("1.0",'end-1c').strip()

 else:

 wp_data[label.replace(" ", "_").lower()] = self.wp_info_widgets[label].get().strip()

 bs_data = {label.replace(" ", "_").lower(): self.wp_cb_widgets[label].get().strip() for label in self.wp_baseline_labels}

 # Check for incomplete fields

 incomplete_fields = [label for label, value in wp_data.items() if not value.strip()]

 if incomplete_fields:

154

 messagebox.showerror("Project Incomplete Fields", "Please complete the following fields: " + ", ".join(incomplete_fields))

 return

 incomplete_fields = [label for label, value in bs_data.items() if not value.strip()]

 if incomplete_fields:

 messagebox.showerror("Project Original Baseline Incomplete Fields", "Please complete the following fields: " + ",

".join(incomplete_fields))

 return

 conn = sqlite3.connect(self.db)

 kwargs = {'con': conn, 'if_exists': 'append', 'index': False}

 mod_date = datetime.now().strftime('%Y/%m/%d %H:%M:%S')

 wp_data_df = pd.DataFrame(wp_data, index=[0], columns=wp_data.keys())

 wp_data_df['mod_date'] = mod_date

 bs_data_df = pd.DataFrame(bs_data, index=[0], columns=bs_data.keys())

 bs_data_df['work_package_code'] = wp_data['work_package_code']

 bs_data_df['mod_date'] = mod_date

 wp_data_df.fillna('').to_sql("Work_packages", **kwargs)

 bs_data_df.fillna('').to_sql("Work_package_original_baselines", **kwargs)

 bs_data_df.fillna('').to_sql("Work_package_current_baselines", **kwargs)

 conn.close()

 messagebox.showinfo("Data Saved", "Data has been saved.")

 self.update_wp_button.config(state="disabled")

 [self.wp_info_widgets[label].config(state="disabled") if (label == "Description" or label in self.dict_combobox) else

self.wp_info_widgets[label].config(state="readonly") for label in self.wp_setup_labels]

 [self.wp_cb_widgets[label].config(state="disabled") if (label.endswith('(mm/dd/yyyy)') or label in self.dict_combobox) else

self.wp_cb_widgets[label].config(state="readonly")for label in self.wp_baseline_labels]

2.3 WEEKLY PROGRESS

 def create_project_cost_status_frame(self):

 self.project_cost_status_frame = tk.LabelFrame(self.root, text="WEEKLY PROGRESS PER WORK PACKAGE",

**self.fonts["labelframe1"])

 self.project_cost_status_frame.grid(row=0, column=1, padx=20, pady=20, sticky="nsew")

 # Project Name ComboBox

 project_name_label = tk.Label(self.project_cost_status_frame, text="Project Name:", **self.fonts["label1"])

 project_name_label.grid(row=0, column=0, padx=10, pady=5, sticky="w")

 # Populate ComboBox with project names

 conn = sqlite3.connect(self.db)

 project_names = pd.read_sql('SELECT DISTINCT "project_name" FROM "Projects"', conn)['project_name'].to_list()

 conn.close()

 self.project_name_combobox = ttk.Combobox(self.project_cost_status_frame, values=project_names, state="readonly",

**self.fonts["combobox1"])

 self.project_name_combobox.set('Select Project Name')

 self.project_name_combobox.bind("<<ComboboxSelected>>", self.update_wp_combobox)

 self.project_name_combobox.grid(row=0, column=1, padx=10, pady=5, sticky="ew")

 # Work Package Name ComboBox

 wp_name_label = tk.Label(self.project_cost_status_frame, text="Work Package Name:", **self.fonts["label1"])

 wp_name_label.grid(row=0, column=2, padx=10, pady=5, sticky="w")

 self.wp_name_combobox = ttk.Combobox(self.project_cost_status_frame, **self.fonts["combobox1"])

 self.wp_name_combobox.grid(row=0, column=3, padx=10, pady=5, sticky="ew")

 self.wp_name_combobox.config(state='disabled')

155

 # Other labels and entries

 labels = ["Period Number", "Week Ending (mm/dd/yyyy)", "Status at Completion"]

 self.progress_widgets = {} # Dictionary to store entry widgets

 for i, label in enumerate(labels):

 row = i // 2

 col = 0 if i % 2 == 0 else 2

 label_widget = tk.Label(self.project_cost_status_frame, text=f"{label}:", **self.fonts["label1"])

 label_widget.grid(row=row + 1, column=col, padx=10, pady=5, sticky="w")

 if label in self.dict_combobox:

 widget = ttk.Combobox(self.project_cost_status_frame, values=self.dict_combobox[label], state="readonly",

**self.fonts["combobox1"])

 widget.set(self.dict_combobox[label][0])

 elif label.endswith("(mm/dd/yyyy)"):

 widget = DateEntry(self.project_cost_status_frame, **self.fonts["dateentry1"])

 else:

 widget = tk.Entry(self.project_cost_status_frame, **self.fonts["entry1"])

 widget.grid(row=row + 1, column=col + 1, padx=10, pady=5, sticky="ew")

 self.progress_widgets[label] = widget

 self.show_information_button = tk.Button(self.project_cost_status_frame, text="Show Information",

command=self.show_information, bg="cadetblue1",fg="gray25", font=("Didot", 9, 'bold'))

 self.show_information_button.grid(row=3, columnspan=4, padx=10, pady=5)

 return self.project_cost_status_frame

 def show_information(self):

 selected_project_name = self.project_name_combobox.get()

 if selected_project_name == "Select Project Name" or (not selected_project_name):

 messagebox.showwarning("Select Project", "Please select a project Name to view its information.")

 return

 selected_wp_name = self.wp_name_combobox.get()

 if selected_wp_name == "Select Work Package Name" or (not selected_wp_name):

 messagebox.showwarning("Select Work Package", "Please select a Work Package Name to view its information.")

 return

 selected_week_ending = self.progress_widgets["Week Ending (mm/dd/yyyy)"].get()

 if not selected_week_ending:

 messagebox.showwarning("Select Week Ending", "Please insert a Week Ending to view cumulate information.")

 return

 else:

 try:

 week_ending = pd.to_datetime(selected_week_ending, format="%m/%d/%Y").strftime(format="%Y/%m/%d")

 except:

 messagebox.showwarning("Wrong Week Ending", "Please insert a week ending with 'mm/dd/yyyy' format to view

cumulate information.")

 return

 self.wp_name = selected_wp_name

 conn = sqlite3.connect(self.db)

 wp_data = pd.read_sql(f'SELECT * FROM "Work_packages" WHERE "work_package_name"="{self.wp_name}" ORDER BY

"mod_date" DESC LIMIT 1', conn)

 self.wp_code = wp_data.loc[0, 'work_package_code']

 wp_ob_data = pd.read_sql(f'SELECT * FROM "Work_package_original_baselines" WHERE

"work_package_code"="{self.wp_code}" ORDER BY "mod_date" DESC LIMIT 1', conn).fillna('')

 wp_cb_data = pd.read_sql(f'SELECT * FROM "Work_package_current_baselines" WHERE

"work_package_code"="{self.wp_code}" ORDER BY "mod_date" DESC LIMIT 1', conn).fillna('')

156

 self.last_weekly_progress_data = pd.read_sql(f'SELECT * FROM "Weekly_progress" WHERE

"work_package_code"="{self.wp_code}" AND "week_ending"<"{week_ending}" ORDER BY "week_ending" DESC LIMIT 1',

conn).fillna('')

 past_week_ending = pd.to_datetime(self.last_weekly_progress_data.loc[0, 'week_ending'],

format="%Y/%m/%d").strftime("%m/%d/%Y")

 self.baseline_information_frame = tk.LabelFrame(self.project_cost_status_frame, text="Baselines Information",

**self.fonts["labelframe2"])

 self.baseline_information_frame.grid(row=4, columnspan=4, padx=10, pady=5)

 # Creating the table baselines information

 self.baseline_table_entries = {}

 for t1_col, (bs, bs_data) in enumerate(zip(["Original Baseline", "Current Baseline"], [wp_ob_data, wp_cb_data])):

 self.baseline_table_entries[bs] = {}

 col_label = tk.Label(self.baseline_information_frame, text=bs, font=("Didot", 9, "bold"))

 col_label.grid(row=0, column=t1_col + 1, padx=10, pady=5)

 for t1_row, label in enumerate(["Budget at Completion ($)", "Duration (days)", "Quantity"]):

 if t1_col == 0:

 row_label = tk.Label(self.baseline_information_frame, text=f"{label}:", **self.fonts["label1"])

 row_label.grid(row=t1_row + 1, column=0, padx=10, pady=5, sticky="w")

 entry = tk.Entry(self.baseline_information_frame, **self.fonts["entry1"])

 entry.grid(row=t1_row + 1, column=t1_col + 1, padx=10, pady=5, sticky="ew")

 entry.insert(0, bs_data.loc[0, label.replace(' ', '_').lower()])

 entry.config(state="readonly")

 self.baseline_table_entries[bs][label] = entry

 self.weekly_progress_frame = tk.LabelFrame(self.project_cost_status_frame, text="Weekly Progress Information",

**self.fonts["labelframe2"])

 self.weekly_progress_frame.grid(row=5, columnspan=4, padx=10, pady=5)

 self.weekly_progress_table_widgets = {}

 row_labels = ["Earned Value Cumulate ($)", "Planned Value Cumulate ($)", "Actual Cost Cumulate ($)", "Quantity Cumulate"]

 col_labels = ["Previous Cumulative", "Current Week", "Current Cumulative"]

 for t1_row, label in enumerate(row_labels):

 self.weekly_progress_table_widgets[label] = {}

 if label == "Actual Cost Cumulate ($)":

 row_label = tk.Label(self.weekly_progress_frame, text=f"{label.replace(' Cumulate', '')}:", fg="blue", font=("Didot", 9,

"underline"), cursor="hand2")

 row_label.bind("<Button-1>", lambda e: self.open_actual_cost_window())

 else:

 row_label = tk.Label(self.weekly_progress_frame, text=f"{label.replace(' Cumulate', '')}:", **self.fonts["label1"])

 row_label.grid(row=t1_row + 1, column=0, padx=10, pady=5, sticky="w")

 col_widget = tk.Label(self.weekly_progress_frame, text=f"{col_labels[0]}\n{past_week_ending}", font=("Didot", 9, "bold"))

 col_widget.grid(row=0, column=1, padx=10, pady=10)

 col_widget = tk.Label(self.weekly_progress_frame, text=col_labels[1], font=("Didot", 9, "bold"))

 col_widget.grid(row=0, column=2, padx=10, pady=10)

 for t1_col, bs in enumerate(col_labels):

 entry = tk.Entry(self.weekly_progress_frame, **self.fonts["entry1"])

 entry.grid(row=t1_row + 1, column=t1_col + 1, padx=10, pady=5, sticky="ew")

 self.weekly_progress_table_widgets[label][bs] = entry

 if t1_row == 0:

 if t1_col == 0:

 col_widget = tk.Label(self.weekly_progress_frame, text=f"{bs}\n{past_week_ending}", font=("Didot", 9, "bold"))

 elif t1_col == 1:

 col_widget = tk.Label(self.weekly_progress_frame, text=bs, font=("Didot", 9, "bold"))

 col_widget.grid(row=0, column=t1_col + 1, padx=10, pady=10)

 if t1_col != 1:

157

 entry.insert(0, self.last_weekly_progress_data.loc[0, label.replace(' ', '_').lower()])

 entry.config(state="disabled")

 def update_all_sum_entries():

 for label in row_labels:

 entry1 = self.weekly_progress_table_widgets[label][col_labels[0]]

 entry2 = self.weekly_progress_table_widgets[label][col_labels[1]]

 entrysum = self.weekly_progress_table_widgets[label][col_labels[2]]

 update_sum_entries(entrysum, entry1, entry2)

 col_widget_btn_sum = tk.Button(self.weekly_progress_frame, text=bs, command=update_all_sum_entries,

 font=("Didot", 9, "bold"))

 col_widget_btn_sum.grid(row=0, column=3, padx=10, pady=10)

 # Adding Comments Label and Entry

 comments_label = tk.Label(self.weekly_progress_frame, text="Comments:", **self.fonts["label1"])

 comments_label.grid(row=5, column=0, padx=10, pady=5, sticky="w")

 self.comments_text = tk.Text(self.weekly_progress_frame, width=50, height=2, **self.fonts["entry1"]) # Adjust width and

height as needed

 self.comments_text.configure(bg="azure")

 self.comments_text.grid(row=5, column=1, columnspan=4, padx=10, pady=5, sticky="ew")

 self.progress_widgets["Comments"] = self.comments_text

 # Adding Save Button

 save_button = tk.Button(self.project_cost_status_frame, text="Save Progress", command=self.save_weekly_progress_data,

bg="#9370DB", fg="white",font=("Didot", 10, "bold"))

 save_button.grid(row=6, column=3, padx=10, pady=10, sticky="e")

 note_label_text = "NOTE: Project Manager or Project Controller only, have permissions to Submit this Form."

 note_label = tk.Label(self.project_cost_status_frame, text=note_label_text, font=("Didot", 8, "italic"))

 note_label.grid(row=7, column=0, columnspan=4, padx=10, pady=5, sticky="w")

 self.actual_cost_details= {label: '' for label in self.actual_cost_details_labels}

 def open_actual_cost_window(self):

 selected_project_name = self.project_name_combobox.get()

 if selected_project_name == "Select Project Name" or (not selected_project_name):

 messagebox.showwarning("Select Project", "Please select a project Name to view its information.")

 return

 selected_wp_name = self.wp_name_combobox.get()

 if selected_wp_name == "Select Work Package Name" or (not selected_wp_name):

 messagebox.showwarning("Select Project", "Please select a Work Package Name to view its information.")

 return

 self.wp_name = selected_wp_name

 conn = sqlite3.connect(self.db)

 wp_data = pd.read_sql(f'SELECT * FROM "Work_packages" WHERE "work_package_name"="{self.wp_name}" ORDER BY

"mod_date" DESC LIMIT 1', conn)

 self.wp_code = wp_data.loc[0, 'work_package_code']

 wp_ob_data = pd.read_sql(f'SELECT * FROM "Work_package_original_baselines" WHERE

"work_package_code"="{self.wp_code}" ORDER BY "mod_date" DESC LIMIT 1', conn)

 wp_cb_data = pd.read_sql(f'SELECT * FROM "Work_package_current_baselines" WHERE

"work_package_code"="{self.wp_code}" ORDER BY "mod_date" DESC LIMIT 1', conn)

 conn.close()

 # Create a top-level window

 actual_cost_window = tk.Toplevel(self.root)

 actual_cost_window.resizable(False, False)

 actual_cost_window.title("Actual Cost Details")

158

 project_name_label = tk.Label(actual_cost_window, text=f"Project Name: {self.project_name}", **self.fonts["label2"])

 project_name_label.grid(row=0, padx=10, pady=2, sticky="w")

 wp_name_label = tk.Label(actual_cost_window, text=f"Work Package Name: {self.wp_name}", **self.fonts["label2"])

 wp_name_label.grid(row=1, padx=10, pady=2, sticky="w")

 # Define table columns and rows

 columns = ["Original Baseline", "Current Baseline", "Actual Cumulative"]

 # Create a frame for the table

 table_frame = tk.LabelFrame(actual_cost_window, text='Actual Cost Details', **self.fonts["labelframe2"])

 table_frame.grid(row=2, padx=10, pady=4, sticky='nsew')

 # Creating the table

 self.actual_cost_details_widgets = {}

 for row_index, row in enumerate(self.actual_cost_details_labels):

 # Create a label for the row

 row_label = tk.Label(table_frame, text=row, **self.fonts["label1"])

 row_label.grid(row=row_index + 1, column=0, padx=10, pady=5, sticky="w")

 # Create entry widgets for each column in the row

 for col_index, (column, column_data) in enumerate(zip(columns, (wp_ob_data, wp_cb_data, self.actual_cost_details))):

 widget = tk.Entry(table_frame, **self.fonts["entry1"])

 widget.grid(row=row_index + 1, column=col_index + 1, padx=10, pady=5, sticky="ew")

 if col_index == 2:

 widget.insert(tk.END, column_data[row])

 self.actual_cost_details_widgets[row] = widget

 else:

 widget.insert(tk.END, column_data.loc[0, row.replace(' ', '_').lower()])

 widget.config(state="readonly")

 # Creating column headers

 for col_index, col in enumerate(columns):

 col_label = tk.Label(table_frame, text=col, font=("Didot", 9, "bold"))

 col_label.grid(row=0, column=col_index + 1, padx=10, pady=5, sticky="ew")

 # Add a save button

 save_button = tk.Button(actual_cost_window, text="Save Actual Cost", command=self.save_actual_cost_details,

bg="Mediumpurple3",fg="white", font=("Didot", 9, 'bold'))

 save_button.grid(row=3, columnspan=2, padx=10, pady=10)

 def save_actual_cost_details(self):

 # Check for incomplete fields

 actual_cost_details = {label: self.actual_cost_details_widgets[label].get().strip() for label in self.actual_cost_details_labels}

 incomplete_fields = [label for label, value in actual_cost_details.items() if not value.strip()]

 if incomplete_fields:

 messagebox.showerror("Actual Cost Details Incomplete Fields", "Please complete the following fields: " + ",

".join(incomplete_fields))

 return

 self.actual_cost_details = actual_cost_details

 messagebox.showinfo("Data Saved", "Data has been saved in temporary memory.")

 # Callback function to update Work Package combobox

 def update_wp_combobox(self, event=None):

159

 selected_project_name = self.project_name_combobox.get()

 if selected_project_name == "Select Project Name" or (not selected_project_name):

 messagebox.showwarning("Select Project", "Please select a project Name to view its information.")

 return

 self.project_name = selected_project_name

 conn = sqlite3.connect(self.db)

 self.project_id = pd.read_sql(f'SELECT "project_id" FROM "Projects" WHERE "project_name"="{selected_project_name}"

ORDER BY "mod_date" DESC LIMIT 1', conn).iloc[0, 0]

 wp_names = pd.read_sql(f'SELECT DISTINCT "work_package_name" FROM "Work_packages" WHERE

"project_id"="{self.project_id}"', conn)["work_package_name"].to_list()

 conn.close()

 self.wp_name_combobox['values'] = wp_names

 self.wp_name_combobox.config(state="readonly")

 self.wp_name_combobox.set("Select Work Package Name")

 def update_week_ending_calendar(self, event=None):

 self.wp_name = self.wp_name_combobox.get()

 conn = sqlite3.connect(self.db)

 wp_data = pd.read_sql(f'SELECT * FROM "Work_packages" WHERE "work_package_name"="{self.wp_name}" ORDER BY

"mod_date" DESC LIMIT 1', conn)

 self.wp_code = wp_data.loc[0, 'work_package_code']

 self.data_bd_0 = pd.read_sql(f'SELECT * FROM "Weekly_progress" WHERE "work_package_code"="{self.wp_code}" ORDER

BY "week_ending" ASC', conn)

 conn.close()

 self.week_ending_calendar.config(state="readonly")

 last_week_ending = pd.to_datetime(self.data_bd_0.iloc[-1, 0], format="%Y/%m/%d")

 self.week_ending_calendar.set_date(last_week_ending)

 def save_weekly_progress_data(self):

 row_labels = ["Earned Value Cumulate ($)", "Planned Value Cumulate ($)", "Actual Cost Cumulate ($)", "Quantity Cumulate"]

 col_labels = ["Previous Cumulative", "Current Week", "Current Cumulative"]

 progress_data = {}

 for row in row_labels:

 for col in col_labels:

 if col == "Current Week":

 progress_data[row.replace(" Cumulate", "").replace(" ", "_").lower()] =

self.weekly_progress_table_widgets[row][col].get()

 elif col == "Current Cumulative":

 progress_data[row.replace(" ", "_").lower()] = self.weekly_progress_table_widgets[row][col].get().strip()

 for label in self.progress_widgets:

 if label == "Week Ending (mm/dd/yyyy)":

 progress_data["week_ending"] = pd.to_datetime(self.progress_widgets[label].get(),

format="%m/%d/%Y").strftime("%Y/%m/%d")

 elif label == "Comments":

 progress_data["comments"] = self.progress_widgets["Comments"].get("1.0",'end-1c').strip()

 else:

 progress_data[label.replace(" ", "_").lower()] = self.progress_widgets[label].get().strip()

 # Check for incomplete fields

 incomplete_fields = [label for label, value in progress_data.items() if not value.strip()]

 if incomplete_fields:

 messagebox.showerror("Weekly progress incomplete Fields", "Please complete the following fields: " + ",

".join(incomplete_fields))

 return

160

 # Check for incomplete fields

 incomplete_fields = [label for label, value in self.actual_cost_details.items() if not value.strip()]

 if incomplete_fields:

 messagebox.showerror("Actual Cost incomplete Fields", "Please complete the following fields: " + ",

".join(incomplete_fields) + ". Click Actual Cost Details to complete them.")

 return

 for label in self.actual_cost_details:

 label_format = label.replace(" ($)", " Cumulate ($)").replace(" ", "_").lower()

 progress_data[label_format] = round(float(self.last_weekly_progress_data.loc[0, label_format]) +

float(self.actual_cost_details[label]), 3)

 progress_data["work_package_code"] = self.wp_code

 conn = sqlite3.connect(self.db)

 kwargs = {'con': conn, 'if_exists': 'append', 'index': False}

 mod_date = datetime.now().strftime('%Y/%m/%d %H:%M:%S')

 progress_data['mod_date'] = mod_date

 progress_data_df = pd.DataFrame(progress_data, index=[0], columns=progress_data.keys())

 progress_data_df.fillna("").to_sql("Weekly_progress", **kwargs)

 conn.close()

 messagebox.showinfo("Data Saved", "Data has been saved.")

3.0 COST FORECASTING

3.1 COST FORECASTING FRAME

 def create_project_forecasting_frame(self):

 self.forecasting_frame = tk.LabelFrame(self.root, text="PROJECT FORECASTING", **self.fonts["labelframe1"])

 self.forecasting_frame.grid(row=0, column=1, padx=20, pady=20, sticky="nsew")

 # Populate ComboBox with project names

 conn = sqlite3.connect(self.db)

 project_names = pd.read_sql('SELECT DISTINCT "project_name" FROM "Projects"', conn)['project_name'].to_list()

 conn.close()

 project_name_label = tk.Label(self.forecasting_frame, text="Project Name:", **self.fonts["label1"])

 project_name_label.grid(row=0, column=0, padx=10, pady=3, sticky="nsw")

 self.project_name_combobox = ttk.Combobox(self.forecasting_frame, state="readonly", **self.fonts["combobox1"])

 self.project_name_combobox['values'] = project_names

 self.project_name_combobox.set("Select Project Name")

 self.project_name_combobox.grid(row=0, column=1, padx=10, pady=3, sticky="nsw")

 self.project_name_combobox.bind("<<ComboboxSelected>>", self.update_wp_combobox)

 wp_name_label = tk.Label(self.forecasting_frame, text="Work Package Name:", **self.fonts["label1"])

 wp_name_label.grid(row=0, column=2, padx=10, pady=3, sticky="nsw")

 self.wp_name_combobox = ttk.Combobox(self.forecasting_frame, state="readonly", **self.fonts["combobox1"])

 self.wp_name_combobox.grid(row=0, column=3, padx=10, pady=3, sticky="nsw")

 self.wp_name_combobox.config(state="disabled")

 self.wp_name_combobox.bind("<<ComboboxSelected>>", self.update_week_ending_calendar)

 # Week Ending ComboBox

 week_ending_label = tk.Label(self.forecasting_frame, text="Week Ending (mm/dd/yyyy):", **self.fonts["label1"])

 week_ending_label.grid(row=1, column=0, padx=10, pady=3, sticky="w")

 self.week_ending_calendar = DateEntry(self.forecasting_frame, **self.fonts["dateentry1"])

 self.week_ending_calendar.grid(row=1, column=1, padx=10, pady=3, sticky="nesw")

 self.week_ending_calendar.config(state="disabled")

 self.predict_button = tk.Button(self.forecasting_frame, text="Deep Learning Model", width=25, command=self.predict,

 **self.fonts["button2"])

161

 self.predict_button.grid(row=2, column=0, columnspan=4, padx=10, pady=3)

 # Label to display prediction

 '''self.predi_label = tk.Label(self.forecasting_frame, text="Deep learning model to forecast the EAC at the work package

level.", **self.fonts["label1"])

 self.predi_label.grid(row=2, column=0, columnspan=2, padx=10, pady=3, sticky="nw")'''

 return self.forecasting_frame

 def predict(self):

 self.predict_eac()

 self.display_prediction()

 def predict_eac(self,):

 selected_project_name = self.project_name_combobox.get()

 if selected_project_name == "Select Project Name" or (not selected_project_name):

 messagebox.showwarning("Select Project", "Please select a project Name to view its information.")

 return

 selected_wp_name = self.wp_name_combobox.get()

 if selected_wp_name == "Select Work Package Name" or (not selected_wp_name):

 messagebox.showwarning("Select Work Package", "Please select a Work Package Name to view its information.")

 return

 selected_week_ending = self.week_ending_calendar.get()

 if not selected_week_ending:

 messagebox.showwarning("Select Week Ending", "Please insert a Week Ending to view cumulate information.")

 return

 else:

 try:

 week_ending = pd.to_datetime(selected_week_ending, format="%m/%d/%Y").strftime(format="%Y/%m/%d")

 except:

 messagebox.showwarning("Wrong Week Ending", "Please insert a week ending with 'mm/dd/yyyy' format to view

cumulate information.")

 return

 self.project_name = selected_project_name

 self.wp_name = selected_wp_name

 conn = sqlite3.connect(self.db)

 wp_data = pd.read_sql(f'SELECT * FROM "Work_packages" WHERE "work_package_name"="{self.wp_name}" ORDER BY

"mod_date" DESC LIMIT 1', conn)

 self.wp_code = wp_data.loc[0, 'work_package_code']

 data_cb = pd.read_sql(f'SELECT * FROM "Work_package_current_baselines" WHERE "work_package_code"="{self.wp_code}"

ORDER BY "mod_date" DESC LIMIT 1', conn)

 data_cb.to_csv(f'Data_{self.wp_name}_cb.csv', index=False)

 data_ob = pd.read_sql(f'SELECT * FROM "Work_package_original_baselines" WHERE "work_package_code"="{self.wp_code}"

ORDER BY "mod_date" DESC LIMIT 1', conn)

 data0 = pd.read_sql(f'SELECT * FROM "Weekly_progress" WHERE "work_package_code"="{self.wp_code}" AND

"week_ending" <= "{week_ending}" ORDER BY "week_ending" ASC', conn)

 self.data_bd = data0

 self.data_bd.to_csv(f'Data_{self.wp_name}_bd.csv', index=False)

 EV_cumulate = data0[data0['week_ending'] == week_ending]['earned_value_cumulate_($)'].iloc[0]

 replaced_value = (data_cb.loc[0, 'budget_at_completion_($)'] - EV_cumulate)

 cb_periods = round((data_cb.loc[0, 'duration_(days)'] / 7),0).astype(np.int64)

 update_statement1 = """

 UPDATE Weekly_progress

 SET Estimate_to_completion = ?

 WHERE week_ending = ? AND work_package_code = ?;

 """

 conn.execute(update_statement1, (replaced_value, week_ending, self.wp_code))

162

 conn.commit()

 data = pd.read_sql(f'SELECT * FROM "Weekly_progress" WHERE "work_package_code"="{self.wp_code}" AND

"week_ending" <= "{week_ending}" ORDER BY "week_ending" ASC', conn)

 data['ETC'] = data['Estimate_to_completion']

 data['EV'] = data['earned_value_cumulate_($)']

 data['%DURATION'] = data['period_number'] * 7 / data_cb.loc[0, 'duration_(days)']

 data['AC'] = data['actual_cost_cumulate_($)']

 data['Labour cost'] = data['labour_cost_cumulate_($)']

 data['Executed quantity'] =data['quantity_cumulate']

 print("data\n", data)

 "el resultado se le suma el actual cost cumulate (varía de semana en semana)"

 self.dataset = data[['ETC', 'EV', '%DURATION', 'AC', 'Labour cost','Executed quantity']]

 if self.wp_name == "Concrete":

 self.model = load_model("model2GRU.h5")

 elif self.wp_name == "Piping (HDPE)":

 self.model = load_model("PIPING_GRU.h5")

 elif self.wp_name == "Barrow Fill":

 self.model = load_model("Fill_GRU.h5")

 else:

 self.model = load_model("model2lstm.h5")

 self.predicts = []

 for i in range(self.dataset.shape[0] - 3):

 dataset_red = self.dataset.iloc[: i + 4].copy()

 print(dataset_red)

 a, b = self.prepare_data_for_prediction(dataset_red, 3, 6)

 etc_predict = self.make_prediction(a,b)[-1]

 self.predicts.append(etc_predict)

 predic_value = self.predicts[-1]

 predic_value = predic_value.astype(float)

 #Updating predict value on the database

 update_statement = """

 UPDATE Weekly_progress

 SET Estimate_to_completion = ?

 WHERE week_ending = ? AND work_package_code = ?;

 """

 conn.execute(update_statement, (predic_value, week_ending, self.wp_code))

 conn.commit()

 conn.close()

 self.eac = self.predicts[-1] + self.data_bd.iloc[-1, 7]

 print("type:", type(self.predicts[-1]))

 self.data_bd.iloc[-1,-1] = float(self.predicts[-1])

 self.data_bd['Estimate_to_completion']=self.data_bd['Estimate_to_completion'].astype('float64')

 # Cost Status Graph

 data_graphic = self.data_bd[['period_number', 'planned_value_cumulate_($)', 'earned_value_cumulate_($)',

'actual_cost_cumulate_($)']]

 index_to_mark = len(data_graphic)

 data_graphic['EAC'] = np.nan

 data_graphic.loc[len(data_graphic)] = [cb_periods, np.nan, np.nan, np.nan, self.eac]

 all_periods = pd.DataFrame({'period_number': range(1, cb_periods+1)})

 all_periods['period_number'] = all_periods['period_number'].astype('int64')

 data_graphic = pd.merge(all_periods, data_graphic, on='period_number', how='left')

 '''data_graphic.loc[:, 'period_number'] = data_graphic['period_number'].apply(lambda x: f'{str(x).zfill(2)}')

163

 data_graphic.set_index('period_number', inplace=True)'''

 self.fig, ax = self.graphic_budget_status(data_graphic, index_to_mark)

 # Cost Status Table

 data_summary_1 = self.data_bd[['period_number', 'week_ending', 'earned_value_cumulate_($)', 'actual_cost_cumulate_($)',

'Estimate_to_completion']]

 data_summary_1['Original Baseline'] = data_ob.loc[0, 'budget_at_completion_($)']

 data_summary_1['Current Baseline'] = data_cb.loc[0, 'budget_at_completion_($)']

 data_summary_1['Estimate at Completion'] = data_summary_1['actual_cost_cumulate_($)'] +

data_summary_1['Estimate_to_completion']

 print('Data Summary type: \n', data_summary_1.dtypes)

 data_summary_1 = data_summary_1.drop('Estimate_to_completion', axis=1)

 data_summary_1['Variance (%)'] = (((data_summary_1['Current Baseline'] - data_summary_1['Estimate at Completion']) /

(data_summary_1['Current Baseline']))*100).round(2)

 columns_to_format = ['earned_value_cumulate_($)', 'actual_cost_cumulate_($)','Original Baseline','Current

Baseline','Estimate at Completion']

 for column in columns_to_format:

 data_summary_1[column] = data_summary_1[column].map('{:,.2f}'.format)

 data_summary_1 = data_summary_1[['period_number', 'week_ending','Original Baseline','Current

Baseline','earned_value_cumulate_($)', 'actual_cost_cumulate_($)','Estimate at Completion','Variance (%)']]

 data_summary_1.rename(columns={'period_number': 'Period Number', 'week_ending': 'Week Ending', 'Original Baseline':

'Original BAC ($)',

 'Current Baseline': 'Current BAC ($)', 'earned_value_cumulate_($)': 'Earned Value Cumulate ($)',

'actual_cost_cumulate_($)': 'Actual Cost Cumulate ($)',

 'Estimate at Completion': 'EAC Predicted ($)', 'Variance (%)': 'Variance (%)'}, inplace=True)

 print("data_summary_1\n", data_summary_1)

 tree = ttk.Treeview(self.forecasting_frame, columns=list(data_summary_1.columns), show='headings', height=6)

 for column in data_summary_1.columns:

 tree.heading(column, text=column)

 tree.column(column, width=tk.font.Font().measure(column.title()))

 scrollbar = ttk.Scrollbar(self.forecasting_frame, orient='vertical', command=tree.yview)

 tree.configure(yscrollcommand=scrollbar.set)

 style = ttk.Style()

 style.configure("LastRow.TLabel", background="yellow")

 # Inserting all rows and tagging the last row

 total_rows = len(data_summary_1.index)

 for i, row in data_summary_1.iterrows():

 if i == total_rows - 1:

 tree.insert('', 'end', values=list(row), tags=('lastrow',))

 else:

 tree.insert('', 'end', values=list(row))

 tree.tag_configure('lastrow', background='violet')

 tree.grid(row=7, column=0, columnspan=4, padx=10, pady=10, sticky="nsew")

 scrollbar.grid(row=7, column=5, sticky='ns')

 self.note_label = tk.Label(self.forecasting_frame, text="Note: Variance (%) calculated as [Current BAC - EAC predicted] /

[Current BAC]",)

 self.note_label.grid(row=8, column=0, columnspan=4, padx=10, pady=3, sticky="nw")

 def series_to_supervised(self, data, n_in=1, n_out=1, dropnan=True):

 n_vars = 1 if type(data) is list else data.shape[1]

 df = pd.DataFrame(data)

 cols, names = list(), list()

 # input sequence (t-n, ... t-1)

164

 for i in range(n_in, 0, -1):

 cols.append(df.shift(i))

 names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)]

 # forecast sequence (t, t+1, ... t+n)

 for i in range(0, n_out):

 cols.append(df.shift(-i))

 if i == 0:

 names += [('var%d(t)' % (j+1)) for j in range(n_vars)]

 else:

 names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)]

 # put it all together

 agg = pd.concat(cols, axis=1)

 agg.columns = names

 # drop rows with NaN values

 if dropnan:

 agg.dropna(inplace=True)

 return agg

 def prepare_data_for_prediction(self, data, n_past, n_features):

 # Ensure all data is float

 values = data.astype('float32')

 # Normalize features using MinMaxScaler

 scaler = MinMaxScaler()

 scaled = scaler.fit_transform(values)

 reframed = self.series_to_supervised(scaled, n_past, 1)

 # Reshape input to be 3D [samples, timesteps, features]

 n_obs = n_past * n_features

 X = reframed.iloc[:, :n_obs]

 X = X.values.reshape((-1, n_past, n_features))

 return X, scaler

 def make_prediction(self, prepared_data, scaler, actual_data=None):

 try:

 prediction = self.model.predict(prepared_data)

 # Adjusting the inversion of scaling

 inv_pred = np.concatenate((prediction, prepared_data[:,-1,-5:]), axis=1)

 inv_pred = scaler.inverse_transform(inv_pred)

 inv_pred = inv_pred[:, 0]

 return inv_pred

 except Exception as e:

 messagebox.showerror("Error", f"Error in making prediction: {e}")

 return None

 def collect_prediction_data(self):

 # Specify the path to your CSV file

 csv_file_path = self.dataset.iloc[:4]

 try:

 # Read the CSV file into a DataFrame

 data = pd.read_csv(csv_file_path)

165

 return data

 except Exception as e:

 messagebox.showerror("Error", f"Failed to load data: {e}")

 return None

 def display_prediction(self):

 self.canvas = FigureCanvasTkAgg(self.fig, master=self.forecasting_frame)

 self.canvas.draw()

 self.canvas.get_tk_widget().grid(row=6, columnspan=4, padx=10, pady=3, sticky="nsew")

 def graphic_budget_status(self, data_graphic, index_to_mark):

 plt.style.use('default')

 font_properties = {'family': 'Arial', 'size': 12}

 fig, ax = plt.subplots(figsize=(11, 4))

 ax.set_facecolor('lemonchiffon')

 print(data_graphic)

 ax.plot(data_graphic['period_number'],data_graphic['planned_value_cumulate_($)'], label='Planned', color='limegreen')

 ax.plot(data_graphic['period_number'],data_graphic['earned_value_cumulate_($)'], label='Earned', color='dodgerblue')

 ax.plot(data_graphic['period_number'],data_graphic['actual_cost_cumulate_($)'], label='Actual', color='deeppink')

 ax.plot(data_graphic['period_number'],data_graphic['EAC'], label='EAC predicted', marker='o', markersize=10,

markerfacecolor='violet', markeredgecolor='violet', markeredgewidth=2)

 ax.axvline(x=index_to_mark, color='r', linestyle='--', label='Status Date')

 ax.spines['bottom'].set_color('black')

 ax.spines['left'].set_color('black')

 x = data_graphic['period_number'].iloc[-1] # Last index of the DataFrame

 y = data_graphic['EAC'].iloc[-1] # Last value of the EAC column

 ax.annotate(f'EAC: {y:,.2f}', xy=(x, y), xytext=(x, 0.9*y),

 arrowprops=dict(facecolor='violet', arrowstyle="->"),

 fontsize=12, fontfamily='Arial', ha='right')

 ax.set_xlabel('Period Number', fontdict=font_properties)

 ax.set_ylabel('Cost ($)', fontdict=font_properties)

 ax.set_title(f'Cost Status\n{self.project_name} - {self.wp_name}', fontdict={'family': 'Arial', 'size': 14, 'color': 'black'})

 ax.set_xticks(data_graphic['period_number'])

 ax.tick_params(axis='x', labelsize=8, colors='black')

 ax.tick_params(axis='y', labelsize=12, colors='black')

 for label in ax.get_xticklabels() + ax.get_yticklabels():

 label.set_fontname('Arial')

 ax.grid(True, which='both', linestyle='-', linewidth=0.5, color='gainsboro')

 ax.legend(prop={'family': 'Arial', 'size': 10}, facecolor='white', edgecolor='black', fancybox=False)

 return fig, ax

def main():

 root = tk.Tk()

 app = ProjectCostManagementApp(root)

 root.mainloop()

if __name__ == "__main__":

 main()

