

DIENNES THE

NAME OF AUTHOR NOM DE L'AU	ITEUR AHINTEISTEN	2 KALIBONA	~ HA HISHSHE	nustle inter 1.	
TITLE OF THESIS THIRE DE LA TH	iese HAV CONT	BILL SULPAY	HNDIRI	CANCE PULLE	
	TOOL STRUCT	it include	HIVES	A CHILL Y	 - ((1)),
	OF ALPERIA	NO. PARALIU	E JELD CLE	ANNA 12H	 1. /f
UNIVERSITY UNIVERSITE	ALRER M.				
DEGREE FOR WHICH THESIS WAS GRADE POUR LEQUEL CETTE TH	PRESENTED IESE FUT PRÉSENTÉE //H.S.	CRE OF SCIENCE	C AGRIC	c în N	
YEAR THIS DEGREE CONFERRED A			•		
NAME OF SUPERVISOR/NOM DU D	IRECTEUR DE THÈSE	HI'S DATLE	· · · · · · · · · · · · · · · · · · ·		 ,

Permission is hereby granted to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or sell copies of the film.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

L'autorisation est, par la présente, accordée à la BIBLIOTHÈ-QUE NATIONALE DU CANADA de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film. L'auteur se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés

ou autrement reproduits sans l'autorisation écrite de l'auteur.

FOULIATEY SIGNED /SIGNE DATED / DATE 20 NEUNGAMO RWAMPARA PERMANENT ADDRESS/RÉSIDENCE FIXÉ ARARA UGAND A (EH)

National Library of Canada

Cataloguing Branch Canadian Theses Division

Ottawa, Canada * K1A 0N4 - ,

NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

*

Bibliothèque nationale du Canada

Direction dy catalogage Division des thèses canadiennes

AVIS

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qual d'impre sion de certaines pages peut laisser à dourer, succiron i les pages originales ont été dactylogre anne ser un ruban usé où si l'université nous a fait pars composite de mauvaise qualité.

Les docu d'un font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS REÇUE

THE UNIVERSITY OF ALBERTA

AN ECONOMIC OUTPUT AND PRICING POLICY FOR SERVICE . CO-OPERATIVES: A CASE STUDY OF ALBERTA CO-OPERATIVE SEED CLEANING PLANTS

by

J. KARIBONDU-KARABASHENSHEIRE AHIMBISIDWE

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF RURAL ECONOMY

ł

EDMONTON, ALBERTA SPRING 1978

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research, for acceptance, a thesis entitled "An Economic Output and Pricing Policy for Service Cooperatives: A Case Study of Alberta Co-operative Seed Cleaning Plants" submitted by J. Karibondo-Karabashensheire Ahimbisibwe in partial fulfillment of the requirements for the degree of Master of Science.

Supervisór

ille m. mill

1. 1

DATE 20. January 1978

42

DEDICATED TO

Z. KARABASHENSHEIRE KARIBONDO

and

J. KANAGANWA KARIBONDO

#

ABSTRACT

This study is aimed at providing the Board of Directors of the co-operative seed cleaning plants in Alberta with an appropriate pricing output, and reserve policy. Current pricing and reserve practices have made these plants dependent on government grants for renovations and construction. Several steps are followed in solving these problems. The analysis of the application of co-operative principles by Alberta plants shows that they follow the accepted co-operative principles and business practices, with the exception of the one of providin education to their members. Their objective is to operate at their least average total costs.

The empirical results of the demand characteristics for Alberta plants show that their customers are not price-responsive. The Board of Directors can therefore increase prices, within the limits of the ones reviewed in this study, without changing the demand for seed cleaning services. The total cost and total variable cost functions are cubic functions of the plants' output. The plants' average total cost, marginal cost, and average variable cost curves, are U-shaped; their behaviour is therefore consistent with economic theory.

The empirical study of the pricing strategies for Alberta plants shows that they price at their long-run break-even point, which is also their economic capacity and optimum output of 475,000 bushels of seed. Their output is, however, less than their economic capacity, and their

v e

average revenue is 1 as than their average total cost. Their reserves are not cumulative, and are less than the required construction costs, because depreciation is based on historical data.

This study, therefore, recommends that calculations for depreciation should be adjusted to reflect increases in the plants' construction costs. Their reserves should be cumulative and earn interest. The prices should be adjusted to match the plants' adjusted average total costs, and throughput should be increased.

ACKNOWLEDGEMENTS

I am very grateful, both to the Government of Uganda for nominating me to this programme, and to the Canadian International Development Agency (CIDA) who financed it.

Thanks are due to my Supervisor, Dr. L. P. Apedaile for his help and constructive criticisms of this research. Dr. M. Lerohl, my former Supervisor, deserves my appreciation for his devotion and sincere advice. I am indebted to Dr. T. Manning, whose expertise in methodology helped me to improve the quality of this thesis.

Special thanks go to my great and hard-working parents, who toiled day and night to provide me with the education and the encouragement I needed. Dr. MacMillan, Dr. Petersen, Dr. Phillips, and Dr. Jai Prakash Mishra, deserve my appreciation for their valuable advice and driticism of this investigation. Mr. J. Copeland and Mr. C. Shier, who devoted a lot of their time to the analysis of my models, also deserve my special thanks.

My appreciation must also be expressed to my typist, Mrs. Joy Kaiser, for the excellent and efficient typing and editing job she did. Thanks also to Miss Susan Schultz who typed the first draft of this research.

Lastly, many thanks to the staff and students of the Department of Rural Economy, and to my friends, who helped in making my stay in Edmonton a happy and worthwhile one.

vii.

•		TABLE OF CONTENTS	
	•		Page
	ABSTRAC		v
		EDGEMENTS	vii
	LIST OF	TABLES	х
	LISȚ OF	FIGURES	xi
	LIST OF	MAPS	xii
	CHAPTER		
	I	INTRODUCTION	1
		`Objectives of Alberta Co-operative Seed Cleaning Plants	1
		Problem Analysis	2
		Organization of the Study	3
	I I•	ALBERTA MUNICIPAL CO-OPERATIVE SEED CLEANING PLANTS .	10
		Background	10
		Organization	15
		Seed Cleaning	19
		Sources of Finance and Reserve Practices	20
	III	METHODOLOGY	26
		Introduction	
		Selection of the Sample	26
		Application of Co-operative Principles and Business Practices by Alberta Plants.	26
		The Models Used in this Study	29
		Hypotheses	30
			32
		viii	
		i	

CHAPTER	· ·	Page
	Pooling Cross-Section and Time Series Data	34
	The Plants' Pricing and Output Policy	· 35
IV C	O-OPERATIVE PRINCIPLES AND BUSINESS PRACTICES	37
,	Application of Co-operative Principles and Business Practices to Alberta Co-operative Plants	• 43
V EN	IPIRICAL RESULTS AND ECONOMIC INTERPRETATIONS	48
ь	Demand Analysis	48
	Analysis of the Cost Functions	51
	The Total Cost Function .	51
	The Variable Cost Function	54
	The Average Variable Costs Function	55
	Pricing and Output Policies for Alberta Plants	57
VI SU	MMARY, CONCLUSION AND RECOMMENDATIONS	64
BIBLIOGRAPHY		69
APPENDIX A	Data Used in the Initial Study Which Tested the Price Model	73
APPENDIX B	Supporting Data for This Study	76

ix

LIST OF TABLES

• -

c

	Table	· · · · · · · · · · · · · · · · · · ·	Page
	1.1	Service Charges for Shareholders of Selected Large Volyme Alberta Plants (in &/Bushel)	3
	1.2	Service Charges for Shareholders of Selected Small Volume Alberta Plants (in ¢/Bushel)	4
	1.3	Total Number of Bushels of Seed Cleaned by the Selected Alberta Plants (1970 - 1975)	7
	2.1	Notices of Alberta Co-operative Seed Cleaning Plants and Years When They Were Built	13
	2.2	Number of Employees, Shareholders, Meetings, Attendance, and Days of Operation Per Annum for Selected Large Volume Alberta Co-operative Seed Cleaning Plants	17
•	2.3	Number of Employees, Shareholders, Meetings, Attendance, and Days of Operation Per Annum for Selected Small Volume Alberta Co-operative Seed Cleaning Plants	18
	2.4	Funds Flow Analysis for Ten Selected Alberta Plants, 1972 - 1975	- 24
	4.1	Application of Co-operative Principles and Business Practices by Twelve Selected Large Alberta Municipal Co-operative Seed Cleaning Plants	41
	4.2	Application of Co-operative Principles and Business Practices by Seventeen Selected Small Volume Alberta Municipal Co-operative Seed Cleaning Plants	45
	5.1	Test of Significance for $\hat{\beta}$ -Coefficients and R ² for the Demand Model for the 29 Selected Alberta Plants, 1970 - 1975	49
	5.2	Relationship of Average Revenue to Minimum Long Run Average Total Costs for 29 Selected Plants, 1971 - 1975	57
-	5.3	Average Total Cost for the Selected Alberta Plants at Different Levels of Output, 1971-75 (in ¢/Bushel)	60
	5.4	Straight Lir, Do: le Declining and the Sum of the Years Digits opposiation from Historical and Adjusted Construction Costs for Beiseker Seed Cleaning Plant, 1957 - 1975	62

.

LIST OF FIGURES

		•
Figure		Page
2.1	Hierarchy	16
5.1	The Demand Curves for the 29 Selecter Alberta Plants	r, c
5.2	The Total Cost Curve for 29 Selected Alberta Plants	50
5.3	The Total Variable Cost Curve for 29 Selected * Alberta Plants	Ę.,
5.4	Prices and Output for Alberta Plants, 1974 - 1975	58

÷

.

٠

8

,

•

LIST OF TYPS

Map Page ø 2.1 Alberta Huma ipal co-operative and cleaning Plants, 1975 "<u>1</u>1 Ley to Map 2.1 · · · · . ••••• 1.1 . 3.1 Alberta Municipal Co-operative Seed clear - Finits Selected for Study in this Research 23 . •• ۰. ş 2 6 xii.

CHAPTER I

INTRODUCTION

Objectives of Alberta Co-operative Seed Cleaning Plants

This research concerns Alberta service co-operative seed cleaning plants, hereinafter referred to as 'plants', which provide seed cleaning¹ facilities to the farmers in the Province of Alberta. They are owned, controlled and financed by shareholders who agree among themselves to share such risks and benefits that accrue to them in proportion to their patronage. Their objectives are:

 to provide an efficient and inexpensive seed cleaning service to the co-operative shareholders;

2. to charge prices which enable the shareholders to recover the costs of cleaning seed without making profit; and

3. to follow the universally-accepted principles and practices of co-operation.

As they strive to achieve the above objectives, they also encounter some problems. These problems are discussed in the following section.

Seed cleaning is the process whereby weed seeds, other crop seeds, stems, leaves broken seed, and dirt are removed from seed, and seed is separated ding to width and length.

1

In the day-to-day operation of these plants, diverse problems are encountered. These problems are:

1. inadequate reserves;

2. under-utilization of their capacity; and,

3. operating at a loss.

Some of these plants operate at a loss, as is shown in Tables B-14 and B-15¹. For instance, 14% of the selected plants operated at a loss between 1973 and 1975; this was an improvement compared with 24% of the plants which operated at a loss in 1971. These calculations are shown in Table B-15. The possible cause of this problem seems to be inappropriate pricing.

According to the Field Crops Section of the Department of Agriculture, the plants' pricing policy is based on guesswork. As a result, prices are not adjusted according to changes in output, as is shown in Tables 1.1 and 1.2. Pricing issues are also related to the plants' reserve strategies.

The plants in Alberta are faced with the problem of escalating capital costs, as indicated in Table B-7. The cost of constructing one plant (which was stable and equal to \$39,000 between 1948 and 1954) increased after 1955; it was \$270,000 by 1975, and \$350,000 at the beginning of 1977. However, calculations for depreciation are based on historical data. Consequently, the plants' reserves are not enough to meet their construction and renovation costs (see Tables B-12 and B-13).

Table numbers preceded by a letter indicate in which Appendix the Table is to be found.

Code Number ⁺⁺ 1970	1971	1972	1973	1974	1975
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.88 7.00 7.00 6.50 8.00 7.00 7.00 7.00 6.00 5.50 6.00 7.00	.56 0.67 8.11 6.67 7.63 6.67 7.63 9.54 9.54 9.54 5.72 7.63 7.63 7.63	6.54 6.21 7.54 7.09 7.09 7.09 7.09 8.87 8.87 7.09 7.98 7.98 7.98	$\begin{array}{c} 6.70 \\ 5.60 \\ 8.40 \\ 6.40 \\ 12.00 \\ 8.00 \\ 8.00 \\ 9.60 \\ 8.80 \\ 8.80 \\ 8.80 \\ 8.80 \\ 8.80 \\ 8.80 \\ 8.80 \\ 8.80 \end{array}$	6.77 6.49 9.02 7.22 10.83 8.66 8.66 8.65 9.38 8.66 8.66 8.66 10.10

Table 1.1

SERVICE CHARGES* FOR SHAREHOLDERS OF SELECTED** LARGE VOLUME® ALBERTA PLANTS (IN C/BUSHEL)

*These service charges are the averages of several prices paid during different periods of the year, and are deflated with the consumer price indexes in Table B-5 (1971 = 100%).

**Selected plants, as hereinafter referred to, are the Alberta service co-operative seed cleaning plants randomly selected for the sample studied in this research.

[†]Large volume plants, as hereinafter referred to, are those plants which cleaned 300,000 or more bushels of seed in 1973.

^{t†}Plant code numbers (1 through 29) as used throughout this study are not the same as the numbers used in Maps 2.1 and 3.1.

Source: Questionnaire

Table 1.2

SERVICE CHARGES* FOR SHAREHOLDERS OF SELECTED SMALL VOLUME** ALBERTA PLANTS (IN c/BUSHEL)

Code Number	1970	1971	19,2	1973	1974	1975
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	$\begin{array}{c} 7.00\\ 8.00\\ 7.00\\ 7.50\\ 6.00\\ 7.50\\ 6.00\\ 6.67\\ 8.00\\ 7.30\\ 7.00\\ 6.00\\ 7.00\\ 6.00\\ 7.00\\$	$7.00 \\ 8.00 \\ 7.00 \\ 7.50 \\ 6.00 \\ 8.50 \\ 6.00 \\ 6.67 \\ 8.00 \\ 7.30 \\ 7.00 \\ 6.00 \\ 7.00 \\ 6.00 \\ 7.00 \\ $	8.11 7.63 6.91 8.58 6.20 9.06 6.67 7.31 8.58 6.96 6.67 6.67 6.67 5.72 6.67 7.63 7.63	7.54 7.98 6.43 8.87 7.32 9.31 6.21 6.21 6.80 8.87 7.76 7.09 6.21 6.21 5.32 7.09 7.09 7.09 7.09	7.60 8.00 6.60 8.80 6.60 8.40 7.20 7.73 8.80 7.00 7.20 6.66 6.66 8.00 7.20 8.00 8.00	$\begin{array}{c} 8.30 \\ 7.94 \\ 6.31 \\ 10.10 \\ 7.40 \\ 11.19 \\ 8.66 \\ 6.98 \\ 9.38 \\ 7.76 \\ 7.22 \\ 6.01 \\ 7.58 \\ 7.22 \\ 6.01 \\ 7.58 \\ 7.22 \\ 6.49 \\ 7.22 \\ 8.66 \end{array}$

*These service charges are the averages of several prices paid during different periods of the year, and are deflated with the consumer price indexes in Table B-5 (1971 = 100%).

**Small volume plants, as hereinafter referred to, are those plants which cleaned less than 300,000 bushels of seed in 1973.

Source: Questionnaire

,

¥ .

For instance, in 1975 the individual selected plants' reserves ranged from \$0 to \$63,708. This amount was less than the required construction costs of \$270,000 and renovation costs of approximately \$100,000. The cause of the problem of low reserves seems to be both inflation and inadequate reserves policy. In addition to the problem of low reserves, the Government of Alberta has changed its policy regarding grants to the plants.

The policy of the Alberta Department of Agriculture and the municipalities up to December 1975 was to provide two-thirds of the money required for building and renovating plants (Tables B-7, B-8, and B-9). For example, the Department of Agriculture and the municipalities each contributed \$15,000 out of the \$45,000 required for constructing the Beiseker Seed Cleaning Plant in 1957. This policy was, however, changed to that of making the plants self-reliant after 1980. To enforce this policy, grants from the Department of Agriculture were limited to a maximum of \$15,000 (Tables B-8 and B-9). This means that plants can expect no more than \$30,000 from the municipalities and the Alberta Department of Agriculture. The Department of Agriculture believes that the financial problems of these plants can be solved by raising the seed cleaning service rates and by having an adequate reserves strategy.

The plants in Alberta are also faced with the problem of excess capacity. The plants' capacity can be defined in two ways--by the engineering definition and by the economic definition.

The engineering definition of capacity is given by Professor Smithies in the following way:

By full capacity output, I mean the output that the existing

stock of equipment is intended to produce under normal working conditions with respect to hours of work, number of shifts, and so forth.¹

Thus, the plant's full capacity is its technical capacity to produce a specified amount or quantity of services and/or goods in a given period of time, such as a day, a year, or its lifetime. The engineering full capacity of Alberta selected plants is 150 bushels per hour for plants with one indent², and 187 bushels per hour for plants with two indents. (Tables B-10 and B-11) This means that the plants with one indent should clean 264,000 bushels of seed, working eight hours a day for 220 days per annum³. The calculations are outlined in the footnote to Table B-10. The plants with two indents should clean 329,120 bushels of seed to operate at full capacity. However, as shown in Table 1.3, some of the plants clean less than 264,000 bushels of seed per annum. The percentage of selected plants which cleaned less than 264,000 bushels of seed per annum ranged from 59% in 1970 to 17% in 1975.

The economic definition of the plant's full capacity is its optimum plant output which, in turn, is defined as: "That output level associated with full competetive equilibrium."⁴ In the case where an individual firm is facing an ill-defined or institutional market, capacity may be defined as that output level at which the firm's average cost

¹Uganda Economics Association, *The Uganda Economic Journal*, Volume 1, Number 3 (Kampala: Makerere Institute of Social Research Publications, P.O. Box 16022, 1973), p.310.

²The indent cylinder separator is the machine used by the plants to separate seed according to its length.

³220 days are the possible working days, excluding Saturdays, Sundays, and the public holidays in Alberta.

⁴Uganda Economics Association, *op. cit.*, p.310.

D

. . Table 1.3

320,010 354,198 99,972 361,731 449,232 352,772 301,182 378,338	LA 398,293 325,669 205,023 414,038 652,472	RGE VOLUME 416,561 280,872 232,621	PLANTS 411,613 339,112	380,439	300 700
354,198 99,972 361,731 449,232 352,772 301,182	325,669 205,023 414,038	280,872			300 700
332,088 267,970 30,428 65,100	346,880 331,755 338,371 410,578 438,424 302,785 243,196	355,896 575,765 371,756 323,223 358,922 416,633 306,706 331,808 233,502	333,482 372,503 588,985 314,566 414,532 351,529 417,607 367,628 361,731 304,250	430,516 288,607 349,232 584,204 399,597 482,226 343,275 469,876 335,344 351,612 311,895	398,76 412,58 354,477 400,09 664,333 402,698 440,108 381,076 384,941 362,136 219,214 321,363
	SMA	LL VOLUME F	LANTS		
80,217 89,516 10,908 48,853 32,223 07,586 48,606 36,756 37,908 03,121 08,181 32,017 52,932 8,294 0,519 4,712 7,530	264,984 217,670 216,098 242,255 242,246 217,975 276,085 294,425 167,310 215,161 203,277 284,319 278,402 249,612 235,525 218,312 266,571	195,908 219,190 283,522 215,259 242,738 276,974 262,398 273,851 152,983 215,548 163,845 256,789 246,266 206,644 213,107 187,199 286,368	181,847 269,365 289,395 255,098 255,423 263,957 255,607 288,361 179,939 205,519 174,371 266,841 261,245 232,939 254,424 176,475 291,582	270,821 296,280 300,529 285,128 300,655 313,468 286,925 301,813 201,895 298,294 203,408 293,086 268,521 211,374 263,906 205,383 332,609	305,000 313,864 352,929 259,120 269,697 264,786 363,988 305,703 210,000 329,625 229,466 304,464 261,539 288,114 292,658 250,055 360,877
70 - 59%	5 1971 - 419				
	30,428 65,100 80,217 89,516 10,908 48,853 32,223 07,586 48,606 36,756 37,908 03,121 08,181 32,017 52,932 8,294 0,519 4,712 7,530 rcentage eaned les 70 - 59% 75 - 17%	30,428 302,785 65,100 243,196 80,217 264,984 89,516 217,670 10,908 216,098 48,853 242,255 32,223 242,246 07,586 217,975 48,606 276,085 36,756 294,425 37,908 167,310 03,121 215,161 08,181 203,277 32,017 284,319 22,932 278,402 8,294 249,612 0,519 235,525 4,712 218,312 7,530 266,571	30,428 302,785 331,808 65,100 243,196 233,502 SMALL VOLUME F 80,217 264,984 195,908 89,516 217,670 219,190 10,908 216,098 283,522 48,853 242,255 215,259 32,223 242,246 242,738 07,586 217,975 276,974 48,606 276,085 262,398 36,756 294,425 273,851 37,908 167,310 152,983 03,121 215,161 215,548 08,181 203,277 163,845 08,181 203,277 163,845 03,121 215,161 215,548 08,181 203,277 163,845 02,017 284,319 256,789 23,932 278,402 246,266 8,294 249,612 206,644 0,519 235,525 213,107 4,712 218,312 187,199 7,530 266,571 286,368 rcentage of selected large and e	30,428 302,785 331,808 361,731 65,100 243,196 233,502 304,250 SMALL VOLUME PLANTS 80,217 264,984 195,908 181,847 89,516 217,670 219,190 269,365 10,908 216,098 283,522 289,395 48,853 242,255 215,259 255,098 32,223 242,246 242,738 255,423 07,586 217,975 276,974 263,957 48,606 276,085 262,398 255,607 36,756 294,425 273,851 288,361 37,908 167,310 152,983 179,939 03,121 215,161 215,548 205,519 08,181 203,277 163,845 174,371 02,017 284,319 256,789 266,841 2,932 278,402 246,266 261,245 8,294 249,612 206,644 232,939 0,519 235,525 213,107 254,424 4,712 218,312 187,199 176,475	30,428 302,785 331,808 361,731 351,612 65,100 243,196 233,502 304,250 311,895 SMALL VOLUME PLANTS 80,217 264,984 195,908 181,847 270,821 89,516 217,670 219,190 269,365 296,280 10,908 216,098 283,522 289,395 300,529 48,853 242,255 215,259 255,098 285,128 32,223 242,246 242,738 255,423 300,655 07,586 217,975 276,974 263,957 313,468 84,606 276,085 262,398 255,607 286,925 367,756 294,425 273,851 288,361 301,813 37,908 167,310 152,983 179,939 201,895 32,017 284,319 256,789 266,841 293,086 29,32 278,402 246,266 261,245 268,521 8,294 249,612 206,644 232,939 211,374 0,519 235,525 213,107 254,424 <t< td=""></t<>

3

TOTAL NUMBER OF BUSHELS OF SEED CLEANED BY THE SELECTED ALBERTA PLANTS (1970-1975)

. 7

. . 0

ç

3

1

,

is at a minimum. By either definition, plants within an imperfect market structure likely operate at less than full capacity when they are producing where their marginal cost is equal to their marginal revenue.

Capacity under-utilization is caused partly by lack of storage facilities and partly by seasonal demand patterns which might, in fact, be an indirect cause of the low net earnings. Most of the farmers prefer to have their seed cleaned in late winter and spring. Consequently, seed cleaning plants' capacities are under-utilized during summer and fall. Overtime operations during peak seasons, and unused capacity at other times, contribute to higher operating costs and management problems. The quality of cleaned seed inevitably goes down during the spring rush. The public policy question becomes that of determining the plants' reserve, output and pricing policies.

The purpose of this study is to develop a pricing framework based on costs, reserve requirements, and the demand characteristics of seed cleaning services.

Organization of the Study

Chapter I identifies and analyzes the plants' problems, and proposes methods for solving them. This study is based on the background information presented in Chapter II about the history of the plants, their organizational structure, nature of business, and sources and applications of finance. The methods used in this study are presented in Chapter III. The first part of Chapter IV reviews internationally-accepted co-operative principles and business practices; the empirical results from a test of the applicability of these principles and practices to selected Alberta seed cleaning plants form the

second part of Chapter IV. Chapter V analyzes and interprets empirical results of the pricing and output policies based on the plants's costs, reserve requirements, and demand characteristics of the seed cleaning service. Conclusions based on the analyses and economic interpretations in Chapters IV and V are then used, in Chapter VI, to make recommendations for an appropriate economic output and pricing policy for cooperative seed cleaning plants in Alberta.

9

¢

.

CHAPTER II

ALBERTA MUNICIPAL CO-OPERATIVE SEED CLEANING PLANTS

Background

Before the introduction of seed cleaning plants in Alberta, farmers were faced with the problems of the spread of noxious weeds and lack of adequate seed cleaning facilities. The Department of Agriculture introduced portable seed cleaning equipment for farmer groups in the 1930's. The late 1940's saw the introduction of the stationary custom cleaning plant when portable equipment was assembled in the vacant army drill hall at Camrose. In co-operation with the farmer shareholders' co-operatives and the municipalities, the Department of Agriculture embarked on the task of constructing large wood crib stationary plants. The initial machinery consisted of four cylinder indent machines, and some plants included a buffer machine. The holding capacity of these plants was about 10,000 bushels, and throughput averaged one hundred bushels per hour. Dockage removal averaged 25%, and cleaning charges were 3¢ to 4¢ per bushel on incoming weight. To date, Alberta has seventy-five co-operative seed cleaning plants strategically located throughout the province. (Map 2.1) The progress made in the construction of seed cleaning and treating facilities in Alberta from 1948 to 1975 is shown in Table 2.1. Four plants were built in the 1940's, thirty plants in the 1950's, thirty-four in the 1960's, seven plants

KEY TO MAP 2.1

NAMES OF ALBERTA MUNICIPAL CO-OPERATIVE SEED CLEANING PLANTS (1975)

.

1.	. Manning		26. Stony Plain	49	. Innisfail
2.	Grimshaw		27. Mundare	50	<i>b</i>
3.	Nampa		28. Vegreville	51.	e e
4.	Fairview		29. Innisfree	52.	
. 5.	Dawson Creek	٠.	30. Vermilion	53.	(· · · · · · · · · · · · · · · · · · ·
6.	Rycroft		31. Paradise Valley	54.	5
7.	Falher		32. Holden	55.	
8.	High Prairie	•	33. Leduc	56.	
9.	Valleyview		34. Warburg	57.	
10.	Sexsmith		35. Wetaskiwin	58.	Strathmore
11.	Wembley		36. Camrose	59.	Okotoks
12.	Boyle	2	37. Strome	60.	Blackie
13.	Barrhead		38. Lougheed	61.	Queenstown
14.	Westlock		39. Wainwright	62.	Nanton
15.	Radway		40. Edgerton	63.	Vulcan
16.	Vilna		41a. Provost	64.	Carmangay
17.	Bonnyville		41. Ponoka	65.	Enchant
18.	Morinville		42. Bashaw	66.	Granum
19.	Gibbons		43. Forestburg	67.	Coaldale 💍
20.	Josephburg		44. Alliance	68.	Taber (Fincastle)
21.	Willingdon		45. Coronation	69.	Craddock
22.	St. Paul		46. Stettler	70.	Foremost
23.	Myrnam,		47. Clive	71.	Milk River
24.	Clandonald		48. Bentley	72.	Medicine Hat
25.	Marwayne				

.

Table 2.1

NAMES OF ALBERTA CO-OPERATIVE SEED CLEANING PLANTS AND YEARS WHEN THEY WERE BUILT

Period	Number	Plant Names and Years Built
1940s	4	1948: Camrose 1949: Morinville, Westlock, Wetaskiwin
1950s	30	1951: Marwayne
		1952: Mundare, Vegreville 1953: Rosebud, Strome, Vermilion 1954: - Igheed, Myrnam, Paradise Valley, Willingdon 1955: Leduc, Stony Plain
	7	1950: Balzac, Blackie 1957: Alliance, Beiseker, Fincastle, St. Paul, Strathmore 1958: Innisfree, Radway, Sexsmith, Thurse Will
1960s	34	1959: Bashaw, Carmangay, Innisfail, Hanton, Okotoks
	,	1960: Barrhead, Falher, Holden, Provost, Queenstown, Rycroft, Stettler 1961: Bentley, Carstairs, Craddock 1962: Delia, Fairview, Grimshaw, Ponoka 1963: Gibbons, Granum 1964: Coronation, Dawson Creek, Medicine Hat, Warburg 1965: Olds, Oyen
		1965: Olds, Oyen 1966: Edgerton, Forestburg, High Prairie, Nampa 1967: Boyle, Milk River 1968: Clive, Coaldale, Enchant 1969: Manning, Vilna
970s 🤪	7	1970: Lisburn 1971: Bonnyville, Clandonald 1972: Valleyview 1974: Foremost, Josephburg, Wembley 1975: Hussar
DTAL	75	•

.

Source: Department of Agriculture: Seed Cleaning Plants Analysis. 1969-1975.

were constructed between 1970 and 1975, and there are plans to build ten more plants.

There are several seed cleaning markets¹ which coincide with the location of the plants in Alberta as shown on Map 2.1. The plants' locations are separated by a distance of approximately fifty miles, with each plant serving a market within a twenty-five mile radius.

The plants in each market sell their seed cleaning services to many buyers who, in 1075, ranged from 150 to 550 shareholders. The shareholding customers account for 950 of the total number of buyers in each market. The number of sellers found in each market varies. The markets which are far removed from other seed cleaning plants have one seller (one plant) of seed cleaning services. Others overlap, and farmers in the periphery of these markets have a choice of several plants where they can have their seed cleaned.

The seed cleaning service is differentiated according to quality, distance, and the managers' efficiency, reflected in lower prices and less time taken for cleaning seed. There is freedom for the buyers and sellers to enter or leave the market. However, this freedom is limited by the high construction costs and volume of seed required to justify the introduction of a new plant or the abandonment of one already in operation. All plants determine the prices at which the seed cleaning service should be sold. Labour is mobile, while plants are immobile.

¹"A market may be loosely defined as an area or setting within which producers and consumers are in communication with one another, where supply and demand conditions operate, and the title to goods is transferred. The actual movement of goods in space or time is usually but not necessarily involved." Raymond G. Bressler, Jr. and Richard A. King, Markets, Prices an Interregional Irade (New York: John Wiley and Sons, Inc., 1970), pp. 74,75.

In summary, Alberta plants have many buyers of a differentiated seed cleaning service. Each plant determines its seed cleaning service prices, and entry and exit is limited by the heavy construction costs involved, and seed availability. The plants, therefore, operate under conditions of imperfect competition. Their operation is based on the following organizational structure.

3

Organization

The day-to-day business of the plants is carried out by the paid management responsible to an elected Board of Directors. (Figure 2.1) The Board of Directors, in turn, is accountable to the shareholders of the co-operative seed cleaning plant. Alberta co-operative plants are affiliated with a central board, called "The Association of Alberta Co-Op Seed Cleaning Plants Limited." Each plant has nine members on the Board of Directors, six of whom are elected by members, two are appointed by the municipality on the recommendation of the Service Board, and one is appointed by the Minister of Agriculture in the Province of Alberta. The Field Crops Commissioner is an ex-officio member of the Board of Directors¹. The term of office for the members of the Board of Directors is three years, with the exception of the first elections, when two directors with the highest votes serve for a period of three years; the third_and fourth, respectively, serve for two years; the fifth and sixth members remain in office for one year. This system was designed to ensure continuity in the running of the plant's affairs. A substantial number

¹From Alberta Department of Agriculture, Suggested Supplemental By-Laws for Seed Cleaning Plants Co-operatives Incorporated Under the Provisions of the Co-operative Association Act (Edmonton: Department s жŲ

of farmers in Alberta are members of the co-operative seed cleaning plants.

Figure 2.1

HIERARCHY

Legend:

The direction of the arrow shows the flow of power. For ample, the Board of Directors is responsible to the share holders.

Relationship does not involve power. For example, the Association of Alberta Co-Op Seed Cleaning Plants Limited does not control plants.

The total number of Alberta plants' shareholders was 20,431 members in 1973. The number of shareholders of each plant varies, ranging from 150 to 1,300 in 1977¹. However, the average number of shareholders for the seven selected large plants was 404, and that of the eight selected small plants was 376 members. (Tables 2.2 and 2.3) The plants in Alberta hold one annual general meeting, which is usually not well attended. The average attendance at general meetings for the

¹From Alberta Department of Agriculture, Seed Cleaning Plants Annual Reports (1970-77). Table 2.2

•

.

NUMBER OF EMPLOYEES, SHAREHOLDERS, MEETINGS, ATTENDANCE, AND DAYS OF OPERATION PER ANNUM FOR SELECTED LARGE VOLUME ALBERTA CO-OPERATIVE SEED CLEANING PLANTS

Attendance at General	19 19 19 15 10 10 10 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20
General Meetings	
Share- holders	705 * 463 317 363 350 600 600 600 2,830 404.29
Seasonal Employees	0 0 0 0 0 0 0 0 0 0 0 0 0 0
Permanent Employees	22 22 22 22 22 22 22 22 22 22 22 22 22
Days of Operation Per Annum	232 270 210 280
Code Number	<pre> 2 2 3 5 6 6 6 7 7 8 8 9 10 11 12 11 12 12 TOTAL *() ind</pre>

17

4

0

**Average is column total divided by number of plants in the respective column which supplied data.

Source: Questionnaire , Table 2.3

.

	Attendance at General heetings 20 15 15 15 15 15 20 20 20 275 275 275 20.9 (21)
S OF OPERATION LVE	General General Meetings
VDANCE, AND DAYS OF 3ERTA CO-OPERATIVE	Share- bolders 400 340 337 470 169 380 417 2,814 351.75 376
MEETINGS, ATTENDANCE, SMALL VOLUME ALBERTA CO CLEANING PLANTS	Seasonal Seasonal Employees 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SHAREHOLDERS, FOR SELECTED SEED	Permanent Employees 2 2 2 2 2 2 2 2 1 1 1 1-9/14 1.8 (2)
NUMBER OF EMPLOYEES, PER ANNUM	Code Days of Imber Operation 13 220 14 * 15 * 16 250 17 250 18 250 19 260 20 260 21 260 22 250 23 260 21 260 22 255 23 240 24 1,910 26 240 27 275 28 280 29 240 74 1,910 age** 238.75 Average 242
N	Code Number 13 14 15 16 17 17 18 19 20 21 20 21 22 23 23 24 25 25 25 26 TOTAL Average** Sample Average

۱

18

ð

.

**Average is column total divided by number of plants in the respective column which supplied data.

Source: Questionnaire

į

plants examined in this study was twenty-one members.

Employment opportunities offered by these co-operatives are low. The average number of employees, for the sample used in this study, was one seasonal and two permanent employees.

Seed Cleaning

As already defined, seed cleaning is the process whereby weed seeds, other crop seeds, stems, leaves, broken seed, and dirt, are removed from seed to produce a high quality product for planting. The plants in Alberta use three machines to accomplish this work: (1) the air and screen machine; (2) the indent cylinder separator; and (3) the precision grader.

The air and screen machine has an air leg which removes pieces of pod hulls, dust and other high chaffy material. The scalper screen removes long straw and large bulky trash. The top screen in each shoe scalps off large material, and the bottom screen sifts out dirt, splits, broken or undersized kernels, and the small trash. Seed is subjected to a second air separation before it is discharged. The main function of the air and screen machine is, therefore, to separate light material and small seed from the rest of the seed.

The index cylinder separator 1 is used to separate seed according to length. The precision grader 2 separates seed according to width.

¹"The indent cylinder separator is a rotating, almost horizontal cylinder with a movable, horizontal separating trough mounted inside it. Thousands of half-round recesses or indents line the inside surface of the cylinder. As the cylinder revolves, it creates centrifugal force which helps to hold seed in the indent. Short seeds are held in the indent until the cylinder turns to the point where the indent is inverted enough for gravity to cause the seed to fall out of the indent into an adjustable trough." Krishan

Sources of Finance and Reserve Practices

The biggest source of finance for the plants is the provincial and municipal grants which accounted for two-thirds of the plants' construction and renovation costs up to December 25, 1975, as is explained" in Tables B-7, B-8, and B-9. This source, however, is now restricted to \$15,000 each from the Department of Agriculture and the municipality during the period 1975 to 1980, after which the plants are expected to be self-sufficient. The average amount of grants to the ten selected plants in Table 2.4 was \$5,848 for the period 1972 to 1975.

The second source of finance for Alberta plants is that of depreciation. For the ten selected plants in Table 2.4, it accounted for an average of \$3,768 between 1972 and 1975.

Net earnings are another source of finance for the plants. As indicated in Table 2.4, the ten plants averaged \$2,308 between 1972 and 1975. The rest of the sources of finance include: reduction of prior years' dividends, income tax refunds, interest from savings certificates, decrease in inventory; increase in accounts payable, and decrease in deposits on shares.

Kumar Chawla, *Evaluation of Seed Cleaning Machines* (Edmonton: Engineering Field Services Branch, Alberta Department of Agriculture, 1977), p.6.

²"The grader is a size separator that classifies seed either by width or thickness. It employs cylindrical screens or "shells" that are mounted horizontally and have slotted or round perforations. In operation, the seed lot to be separated is fed into one end of the rotating shell where it tumbles and migrates towards the tail end. Separation is made by the perforation located in the bottom of the grooves. The rim of the grooves turns the seed up on edge so that its side or thickness dimension is presented to the perforation. Thin seed falls through, while thick seed is rejected. The No. 6 Carter precision grader is designed to use six perforated cylinders for sizing material." Chawla, *Op. Cit.*, p.11.

\$	Total	8,015 12,222 9,235	6,713 8,785 5,370 5,370	11,187	1,238 5,263 5,503 5,503	 22,614 11,446 6,533			
	גמונסל וודינ	;;;	:/:::	: :::	1 1 1 1	1111	1 1111		
·	transer 100 Ya trudit 101 Ya trudit	W							
	siteoqod nrio	1 1 1 1						~	
1975	itorease arounts eceivable ale of	8 8	: ::::	[#s] [10.01			
1972 - 1	ni esserce no stisco sersis		-	(292) 	112	1 1 1 1	184		
PLANTS,	no brułść Jizogą(: : <u>;</u> ; ;	::::	: : : :	1111			
- Table 2.4 FUNDS FLOW AVALYSIS FOR TEN SELECTED ALBERTA PLANTS, 1972 - 1975 PART 1: SOURCES OF FUNDS	◆ Increase ofdsys9 .rjoof fdsys9 .rjoof		, 	(2,096) 2,929 230		20		ţ	
Table 2.4 Selected Al	sale of Fixed Assets •		₩.É.	1111	::::		::::		
TA FOR TEN SI	Decrease in Decrease in			 904 516		1,000 	1,200 35 		
PPP	Savings Certificates			1111	::::	::::			•
- LOK ANA	Reduction of Prior Years' Dividends		366 33	::::		1,000 1,000 1,018 938.			
I SOND	xsT emoonl	1 4	1111,				::::		
L .	Grants Beceived	3,555 		1111	6,450 	6,261 	3,952 		
	Sales of Shares	550 150 200		 3950 600	450	500 900 700	240 840 200	·	
	Depreciation	1,986 2,377 2,795 2,099	4,724 5,597 5,137	3,336	4,325 3,648 3,648 	3,224 2,679 2,894 3,127	5,390 4,340 3,231		•
	Net Earnings for the Year	1,823 9,695 6,440 4,414	(3,242) 2,458 	4,028 (1,539)	(8,912) 1.620 1.014	10,629 6,752 1,903 3,426	222 1 (2,740)		· .
	Year	1975 1974 1973 1973	1975 1974 1973 1972	1975 1974 1973 1972	1975 1974 1973 1973	1975 1974 1973 1972	1975 1974 1973 1972		
-	Plant	Beiseker	Edgerton	Bentley	Gibbons	Innisfai]	Warburg		

0

.

. 7

	Total	13,517 13,517	: :::	10,275	40,299 17,277 53,487 4,377	332,715	29 11,473	
	รมุขอา แม่อ				S	•	1 15,000	
	יואלערלנא סר וואפילמינ וואפילא סר						1 5,000 16	
	í denesti í	:::					I 974 5	
	Sale of Sale of Term Deposits				8		8,000 g	
	Decrease In Recounts Receivable				1111	575	د 192	
	no saised Decrease in Decrease in		::::	: : : :	;;;;	345	c 9	
() 2	no bruten Deposit			::::	120	120	120	•
Table 2.4 PART I: SOURCES OF FUXOS (cortinied)	Increase/ Decrease in Accts, Payable		.	::::		1.033	271	-
rable 2.4 S OF FUXOS	sjeza Fixed Assets	111		;;;;	21,633 2,700	24,333	12,157	
Ta	Decrease In Іпуелбогу		1141	::::		3,655 3,655	H	
ART I:	senives Certitises	1111	7,000	::::		7,000	7,500	
à	Reduction of Prior cars' Dividends					4,355 6	726	*
	XsT smoonl		28		1	1 28	28	
	Grants Received	3,600 3,600 	9,725 	4,140 	11,250	56,633 9	5,248	
	Shares Shares	600 600 	1,035 	850 400	16,750 19,000	46,310 23	2,035	
	Depreciation	4,398 4,898 		4,222 3,033	7,837 2,415 2,847 3,295	97,382 i 26	3,768	
	senings JeW for the Year	4,419 4,419	3,168 	1,063 277.	(4,162) 6,862 6,690 1,592	63,325 27	2,308	
	Year	1975 1974 1973 1973	1975 1974 1973 1973	1975 1974 1973 1973	1975 1974 1973 1973 1972			
	Plant	Grimshaw	Medicine Hat	Fairview	more	TOTAL No. of Observations	AVERAGE	
			,		^{ور} می ا			, o

Year Year Year Year Year Year 1975 1973 1975 1973 1975 1900 1975 1900 1975 1900 1975 1900 1975 1900 1975 550 1975 550 1975 500 1975 500 1975 500 1975 500 1975 500 1975 500 1975 500 1975 500 1975 500 1975 500 1975 500 1972 50 1972 50 1972 50 1973 50 1973 50 1974 50 1975 50 1975 50
--

•

Table 2.4 (continued) PART II: APPLICATION OF FUNDS

•

•

•

. . . .

I

-

· .
Plant	Year	Redemption . of Shares	Purchase of Purchase of Term Deposits	To esencing sterzh berif	29x6T	ettlene9 xeT	fo Jnemye9 Sbnebivi0	Construction Annoss Ansa	Deferred Cered	Incréase In Inventory	Increase in Prepaid Expenses	nt essenont Sociones Acconsister Acconsister	آوثا	սով ու եքրերն	adi is sbau Po poinaipef Tear ad	he Year an of the Year
Grimshaw	1975 1974 1973 1973	850 250 	1111	4,500 4,500	1111			1111		149 149 	1 : : : :	4 111	ທີ່ທີ່	8,018 8,018 8,013	1 22 .) <u>2</u> 21
Medicine Hat	1975 1974 1973 1972	589	1111	9,936	4 1			::::	1111			1111	10,539	10,417		ь Г Т Т
Fairview	1975 1974 1973 1972	400 550	[]]]	9,196 120	; ; ; ;			[]]]				[]]	9,595 570	679 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23,583 	24,252
Strathmore	1975 1974 1973 1973	1 1 1 2	 61,700	62,749 45 381 50	;;;;	::::		2,402 477	11,142	1111	.: 	::::	63,748 13,529 62,553	(23, 449) 3, 688 (4, 071)	29,267 33,331	32,948 29,260
TOTAL No. of Observations		9,039 23	101,063	119,757	11. 1	9,931	4,862	2,879	11.1:2	1,322	80 4	1,502 . 2	251,950 251,950 29	124,304	392,573 . 19	455,069
AVERAGE		393	16,843	5,987	14	1,665	607	607 1,439 11,142	11,142	333	9.5	301 -	9, 033	4,303	20.667	01.5.22

PART II: APPLICATION OF FUNDS (continued) Table 2.4

. .

• • 1

.

•

،

ь.

1

Source: Plants' Annual Financial Reports.

•

•

The funds are mainly spent on the purchase of term deposits and fixed assets. The average amount of money spent on buying term deposits, as shown in Table 2.4, was \$16,843 between 1972 and 1975 for the ten selected plants; an average of \$5,987 was spent on buying fixed assets; and the average amount of money spent on the payment of redemption of shares and taxes was \$393 and \$607 respectively.

In summary, there are four important sources of plant reserves: (1) grants; (2) sales of shares; (3) depreciation; and (4) net earnings. Their total must be increased to fill the gap left after the termination of the government grants. Furthermore, reserves should be cumulative over time. However, the figures in Tables 2.4, B-12 and B-13, show that the plants' reserves have not been accumulating over recent years.

Reserves constitute the financial basis for construction and renovation of plants in the absence of government grants. With limited opportunity to sell shares, reserves must be financed from depreciation and net earnings. Depreciation may be adjusted to reflect the increasing construction costs, and seed cleaning prices must be increased to match the increase in depreciation and to expand net earnings.

CHAPTER III

METHODOLOGY

Introduction

Chapter I of this enquiry identifies and analyzes the problems of seed cleaning plants in Alberta as: (1) operating at a loss; (2) underutilization of their capacity; and (3) inadequate reserves. The possible causes of these problems are: inappropriate pricing (service charges) and output and reserve policies. The following data are required for formulation of the appropriate policies for the plants in Alberta: (1) the plants' costs, i.e. total, fixed, variable, average total, and marginal; (2) the plants' revenue, i.e. total, average, and marginal; (3) service charges; (4) throughput; (5) the plants' capacity; and (6) the application of co-operative principles and business practices. A sample was selected to facilitate the collection of these data.

Selection of the Sample

A stratified random sample of twenty-nine Alberta plants was selected because a properly sampled population gives reliable and un= biased estimates of population parameters at a fraction of the cost of

full enumeration. The identification and location of each of the twentynine plants is indicated on Map 3.1. Twenty-nine plants were considered to be a good sample size, because they represent 50% of the fifty-eight plants that had data for at least five years. "Throughput was used in stratification because it was related to the plants' capacity utilization problem, and it is the independent variable of the functions used in this analysis. The fifty-eight plants were first divided into two sections according to throughput, and then were arranged alphabetically in each stratum. The plants which cleaned 300,000 or more bushels of seed in 1973 were grouped together, while the second group was composed of those which cleaned less than 300,000 bushels of seed. Throughput of 300,000 bushels of seed was chosen because it was the mid-figure of the seed cleaning plants' throughput for 1973. The purpose of stratifying was to find the differences and/or similarities between the large and small volume plants.

In a simple random sample, each element has equal probability of being chosen. Assuming the population size is N, the probability of selecting one element is 1/N. Cards or slips of paper may be used in this method, and are normally numbered according to the number of elements there are in the population. They are put into a container, mixed · thoroughly, and then picked one at a time until the number of cards or slips of paper is equal to the sample size required. Alternatively, a table of random numbers can be used in selecting a simple random sample.

A table of random digits consists of a series of the digits 0, 1, ..., 9, each digit occurring with the same relative frequency, but in a manner deemed to be random. The population is numbered serially, and an arbitrary point on the table of random digits is chosen as

ì

-28

the starting point. A consistent path on the table of random digits is followed until the required sample size is selected. The use of a simple random sample facilitates the use of probability models of distribution. Conclusions are made from the results of the application of probability models.

A questionnaire was formulated and tested on two plants to find out how much time it was going to take to answer all the questions, and to test for their clarity. A final questionnaire was then designed, based on the results of the test of the first one. The plants included in the sample received this questionnaire before they were visited, giving the managers enough time to work out some of the required data, such as the costs of production, revenue and service charges for the years 1970 to 1975. These plants were later visited to coffect the questionnaires and to carry out on-the-spot interviews, which included questions raised by the managers. Secondary data, collected from the annual financial reports of the plants, were also used. The following procedure was used in this research.

Application of Co-operative Principles and Business Practices by Alberta Plants

This research reviews the development of co-operative principles and business practices, and finds out whether the plants in Alberta apply them. Ten questions were used in testing the application of these principles and practices by the selected plants in Alberta. The method of scoring was 10% where co-operative principles and/or business practices were applied, and 0% if they were not followed. The conclusions drawn from this analysis show the pricing objectives of the plants in Alberta,

<u>.</u>

 $\{ i, j \}$

and are used in determining the plants' output, price, and re espolicy.

The Models Used in This Study

The pricing and output policies for co-operative plants are derived from calculations of marginal cost, marginal revenue, price, average revenue (demand), average total cost, and the average variable cost. These calculations are, in turn, derived from their respective total costs, total iable cost, and demand functions.

The total cost model used in this study was defined as:

$$TC = \alpha_{0} + \alpha_{1}Q + \alpha_{2}Q^{2} + \alpha_{3}Q^{3} + U$$

where Q = bushels of seed cleaned

TC = total cost in dollars U = the error term, and α = parameter estimates meet Chiang's¹ restrictions MC = TC¹ = $\alpha_1 + 2\alpha_2 Q + 3\alpha_3 Q^2$ ATC = $\frac{TC}{Q} = \alpha_0 Q^{-1} + \alpha_1^\circ + \alpha_2 Q + \alpha_3 Q^2$

The total variable cost model used in this research was as follows:

TVC = $\gamma_0 + \gamma_1 Q + \gamma_2 Q^2 + \gamma_3 Q^3 + U$ where TVC = total variable costs

¹"In sum, therefore, the coefficients of the total cost function should be as follows: a,c,d >0; b <0; b² <3ac." Alpha C. Chiang, *Fundamental Methods of Mathematical Economics*, Second Edition (New York: McGraw-Hill Book Company, 1974), pp.264,265. $\gamma_0 = intercept$ U = error term

The average variable cost function is therefore as follows:

AVC =
$$\alpha_0 Q^{-1} + \alpha_1 + \alpha_2 Q + \alpha_3 Q^2$$

The demand model used in this research was:

$$P = \beta_0 + \beta_1 Q + U$$

where P = price

Q = bushels of seed cleaned

U = error term

The marginal revenue function is therefore equal to:

$$PQ = \beta_0 + 2\beta_1 Q$$

where $\beta_1 < 0$ under imperfect competition

or $\beta_1 = 0$ under perfect competion. Average revenue σ

is equal to demand.

The ordinary least squares estimating technique was chosen because of the following advantages:

1. the ordinary least squares method does not require many observations, and its computational procedure is simple; and

2. parameter estimates obtained by the ordinary least squares estimate without bias are the true parameters of the population. This study was based on the ordinary least squares assumptions outlined by Koutsoyiannis.

1"1. U_j, the error term, is a random variable representing a linear combination of omitted minor variables. 2. $E(U_j) = 0$ for all i. This means that the mean of U_j is zero.

Hypotheses

The significance of parameter estimates is tested by using the t-statistic at the 95% level of significance. The null hypothesis is that the $\hat{\alpha}$ -, $\hat{\gamma}$ -, and $\hat{\beta}$ -coefficients of the explanatory variables of the total cost, variable costs, and the demand models are not significantly different from zero.

The null hypotheses are:

 H_{Ω} : $\hat{\beta}_{i} = 0$ for the demand function, $H_0 : \hat{\gamma}_i = 0$ for the variable cost function, and $H_0: \hat{\alpha}_i = 0$ for the total cost function.

The alternative hypotheses are:

 $H_1: \hat{\beta}_i \neq 0$ $H_1: \hat{\alpha}_i \neq 0$ $\cdot_{2}H_{1}:\hat{Y}_{1}\neq 0$

meaning that the parameter estimates are significantly different from zero. The importance of this test is to find out if the parameter

3. There is constant variance of U in each period.

4. U; has a normal distribution. 5. $E(U_i, U_j) = 0$ for all i not equal to j. This means that the values of U; are independent of each other.

6. The error term is independent of the explanatory variables in the total cost, variable costs, and demand models.

7. The independent variables are not perfectly linearly correlated.

8. The explanatory variables are measured without error.

9. The relationship is correctly specified." A. Koutsoyiannis, Theory of Econometrics: An Introductory Exposition of Econometric Methods (London: The Macmillan Press Ltd., 1973), pp.54-57.

estimates of the independent variables could be relied upon in explaining the variability of the dependent variable which was total cost, price, and variable costs in this study. If the paramter estimate of the explanatory variable is significant, it means that that independent variable cannot be ignored when considering factors which are likely to influence the total costs, total variable costs, and price.

The multiple coefficient of determination is tested with the F-statistic at the 95% level of confidence. The null hypothesis is $H_0 : R^2 = 0$, meaning that the explanatory variables are not significant in explaining the variability of the dependent variable. The alternative hypothesis is $H_1 : R^2 \neq 0$, meaning that the independent variables are significant in explaining the variability of the variability of the dependent variables.

The covariances from the computer printout of the explanatory variables are used to test for the presence of multicollinearity. The presence of multicollinearity means that one of the assumptions of the ordinary least squares method has been violated. The parameters are indeterminate, making it difficult to obtain numerical values for each parameter separately, and the standard errors might be large. The explanatory variables are said to be collinear if the t-tests are insignificant, while their multiple coefficient of determination is significant at the same levels and vice versa. The importance of this test is to isolate those independent variables which would make the results of the regression analysis inadequate in explaining the variability of dependent variables at a specified level of confidence.

Autocorrelation or serial correlation of the random variable is a case where some of its variables are not independent of each other. It may be caused by any of the following:

1. omitted explanatory variables;

2. mis-specification of the mathematical form of the model;

3. interpolations in the statistical observations; and

4. mis-specification of the true random term. Autocorrelation may affect the parameter estimates and the standard errors in the following ways:

1. The variances of the parameter estimates and those of the error term may be underestimated, thus resulting in inefficient predictions based on the ordinary least squares estimates.

2. The parameter estimates of the ordinary least squares may be statistically unbiased even when the residuals are serially correlated if the expected value of the parameter estimates is equal to the true parameter.

The Durbin-Watson Statistic is used to test for the presence of autocorrelation. The null hypothesis is H_0 : D.W.S. <dl. The alternative hypothesis is H_1 : D.W.S. >du. The test is said to be indeterminate if the calculated Durbin-Watson Statistic is dl <D.W.S. <du.

Solutions for autocorrelation depend on its causes. If it is caused by omitted variables, the model may be redefined to include all the relevant variables. If autocorrelation is a result of misspecification, it may be solved by changing the initial mathematical form of the model.

Pooling Cross-Section and Time Series Data

The cross-section and time series data used in this research were pooled because twenty-seven out of the twenty-nine selected plants had the same engineering capacity. The disadvantage of pooling the data was that it obscured the effects of volume of throughput on management, cost profiles, and reserve problems, which would have been obtained by separate cross-sectional analysis of the larger and smaller volume plants.

The Plants' Pricing and Output Policy

Since the co-operative plants' objective is to operate at cost, i.e. to recover their costs of production without making profit, they can price either where their average cost is equal to average revenue or where their marginal cost is equal to their average total costs. The third pricing strategy will be to equate marginal cost to marginal revenue to determine optimum output. As indicated above, this pricing strategy requires information about marginal revenue. For the approach to be reliable, however, the plants' costs should have depreciation which has been adjusted according to changes in the constructions costs.

The fourth pricing strategy is to price on the long-run average cost curve according to a prior determination of throughput, using the mathematical average cost function. Deflated data, with 1971 as the base year, is used so as to facilitate the calculation of prices for different outputs in the subsequent years. The minimum price should be the one obtained at the plants' optimum economic capacity, which is the minimum point on the long-run average cost curve.

Reserves for these plants will be determined in the following way: Calculations for depreciation, based on historical data, will be adjusted annually with the annual percentage increases in the plants' construction costs. For instance, if depreciation for a plant's third year is \$3,000 and the percentage increase in its constructions costs

is 10%, depreciation should be \$3,300.

In summary, the econometric pricing strategies for the plants will depend on the results obtained from the demand and cost analysis. Plants may choose from among four pricing strategies, which form the main subjects of the subsequent chapters. Following the choice of strategy, the indicated price must be adjusted to accommodate a suitable reserve policy.

CHAPTER IV

CO-OPERATIVE PRINCIPLES AND BUSINESS PRACTICES

The first step in this study was to look at the historical. development of co-operative principles and business practices following the Industrial Revolution in Europe in the mid-1700's. The Industrial Revolution in Europe caused technological advancement which, in turn, led to mechanization and the introduction of factories. There was an increase in the production of goods and services, which raised the standard of living and lowered the prices for goods and services. The feudal system collapsed, and mercantilism was replaced by open competition. Although the Industrial Revolution in Europe brought technological progress, it also produced social and economic problems. The workers were exploited, self-sufficiency in agriculture was abandoned, the rate of accidents increased, and unemployment, hunger or shortages of f and class conflicts were common. Economic cycles of inflation an deflation followed.

Solutions to the problems of the Industrial Revolution had to be found. People like Karl Marx and Friedrich Engels proposed the abolition of capitalism and the introduction of a state-controlled system. Others, such as the Rochdale Pioneers and Raiffeisen insisted on the preservation of capitalism and working out ways of improving it.

The Rochdale Pioneers made the work of Robert Owen bear fruit.

by introducing the Rochdale Pioneers' Society in 1844, based on the following principles: open membership, one man-one vote, cash trading, membership education, political and religious neutrality, no unusual risk assumption, limited interest on stock, goods sold at regular retail prices, and limitation on the number of stores owned and net margins distributed according to patronage. These co-operative principles are discussed below.

The Rochdale Pioneers were interested in having a co-operative society which would be open to all people who were interested in joining it, irrespective of their sex, race, religious and political beliefs. They went ahead and introduced a society based on open membership. The only barrier to entry was based on bad character or behaviour. Modern co-operatives differ in executing this principle. Before joining a co-operative, application forms are filled out and submitted to the Board of Directors who have the power to reject or accept the applicant. Sometimes it is necessary to limit membership where forces outside the management's control dictate that this be done, such as limited capacity for processing facilities. Co-operatives have certain requirements which applicants have to pass before they are accepted as members. Membership is voluntary, however, and all members are considered to be equal.

The Rochdale Pioneers introduced another principle, that of one man-one vote. This principle gave all members of a co-operative equal voting power, irrespective of the number of shares held and investments each member had with the co-operative. This principle is not practiced by all co-operatives to date. Several methods of voting are used. These methods are:

1. One man-one vote.

2. Vote according to patronage on a dollar volume or some other basis, but with a limitation on votes cast.

3. One man-one vote, plus additional votes based on patronage, on shares of stock, or on some other basis.

4. Vote according to shares of stock. Mississippi Cooperative law provides for an option of voting according to shares of stock, for example.¹

Some economists, such as Ewell Pau! Roy and Emelianoff, argued that it was unfair to expect members holding different shares and investments within a co-operative to have equal votes. Digby went further and stated that even societies making up the British Wholesale Societies held one vote per co-operative society at quarterly meetings, plus additional votes which were proportional to their patronage with the British Co-operatives Wholesale. He insisted that there should be a limit in voting power, but not necessarily one man-one vote. Emelianoff argued that:

Cooperatives vote equally in their associations because they are, for all practical purposes, economically equal, not because they strive for economic equality. There cannot be a more striking and persuasive illustration of this fact than the very case of the Rochdale Pioneers themselves, who were perfectly equal in their poverty.² This principle, which was introduced to ensure that co-operatives were democratically controlled, is still practiced by many co-operatives. Members of a co-operative have equal voting power and equal control over the affairs of their co-operative. Voting by proxy is permitted in some

¹Ewell Paul Roy, *Cooperatives: Today and Tomorrow*, Second Edition (Danville, Illinois: The Interstate Printers and Publishers, 1969), pp. 202, 203.

Ibid., p.203.

co-operatives and disallowed in others.

Cash trading was introduced to encourage thrift on the part of the members and, at the same time, to safeguard the co-operative organization as a whole against loss and possible bankruptcy through bad debts. To date, some co-operatives offer credit facilities, especially in those areas where they are competing with other business enterprises which offer credit facilities. Although cash trading is a good business practice, it may not be regarded as a co-operative principle.

The Rochdale Pioneers provided education to members of their co-operative, because they needed training in business practices and about co-operation. There are co-operatives to date which organize courses for their members and employees; other co-operatives do not organize courses for their members, but all the co-operatives provide knowledge about their co-operative during meetings. Ewell Paul Roy argued that membership education is not a co-operative principle because it is not universally practiced by all co-operatives.

Religious and political neutrality were necessary when the Rochdale Pioneers started their consumer co-operative, because they were interested in getting many members so as to expand their businesss. Most modern co-operatives are open to people of all religions and political parties. There are, however, some co-operatives which are organized on political and religious bases. Religious and political neutrality are not co-operative principles because there are co-operatives which have members of one religion or one political party, yet they are co-operatives. It is, however, advisable for co-operatives to accept membership irrespective of political and religious beliefs.

The Rochdale Pioneers introduced the principle of no unusual risk

assumption because they did not have enough capital. The no unusual risk assumption is not regarded as a co-operative principle because it is very difficult to measure or estimate risk or unusual risk. Speculative ventures may, however, be avoided.

Payment of patronage rebates to the co-operative shareholders, from the co-operative's net earnings, is one of the universally accepted co-operative principles. Rebates are paid to the shareholders of the co-operatives according to the volume of business they have carried out with the co-operatives.

Limited interest on stock was practiced by the Rochdale Pioneers as one of their co-operative principles. The aim of this principle was to discourage outside investors who were not members of co-operatives. Limited interest on capital was introduced for the benefit of those co-operatives which did not deal in stocks. The Rochdale Pioneers had a 5% fixed interest rate. However, the rate depended on the supply and demand for money prevailing in the country concerned at a particular time. In some co-operatives, interest is not paid on common stock, because each member has one share. Limited interest is, however, paid on preferred stock. In the United States of America, the maximum limited interest rate for co-operatives is 8%.

The Rock Pioneers' principle of limited number of shares to be owned by each shareholder of a co-operative, is common in many cooperatives today. The aim of limiting the number of shares held was introduced to ensure that the co-operative would be controlled by all members and not a few rich patrons. Ewell Paul Roy argued that this principle was illusory because the principle of one man-one vote ensured a equal control of the co-operative's affairs. Secondly, limitation on

the interest rate paid to the preferred stock eliminated the danger of having members investing too much stock with their co-operatives. How ever, limited numbers of shares, plus one man-one vote principles, enequal control of the co-operative by all the patrons.

The Rochdale Pioneers had to make a choice betwee -> pricina policies. One of the policies was to sell at market prices, while the second one was to sell at that price which would have enabled them to cover their operating costs plus interest on stock without making net earnings. The Rochdale Pioneers decided to sell at market prices so as to avoid price wars. To date some co-operatives sell at market prices, while others sell at true costs of production. This is not a cooperative principle, because it is not universally practiced by cooperatives. The policy of selling at prices which can earn revenue enough to cover the costs of production for goods and services is not easy to implement where management cannot easily account for all costs of production and where net earnings are required for future capital investments in the co-operative. Selling at a true cost passes on low prices to the members day by day, while selling at market prices passes on the rebate at the end of the financial year. Co-operatives have to act in accordance with the prevailing marketing conditions under which they are operating.

In summary, the International Co-operative Alliance regards a true co-operative as one which follows the principles of open membership, one shareholder-one vote, limited interest on either stock or capital, limited number of shares owned by each shareholder, and payment of patronage rebates according to participation. The practices which are accepted by the International Co-operative Alliance are co-operation

among co-operatives, voluntary affiliation, plus freedom from state control. While the Rochdale Pioneers advocated cash trading, membership education, political and religious neutrality, no unusual risk assumption, and goods sold at market prices as co-operative principles, they are regarded by today's co-operatives only as good business practices.

Application of Co-operative Principles and Business Practices to Alberta Co-operative Plants

The second step of this research was to test for the application of co-operative principles and business practices to Alberta municipal service co-operative seed cleaning plants. Five principles and five business practices were included in a questionnaire sent to a sample of plant managers. The method of scoring was to allot ten points for the correct application of one co-operative principle or one business practice, and zero for incorrect application of either a co-operative principle or a business practice. The empirical results are presented in Tables 4.1 and 4.2.

The selected large plants follow the principles of open membership, one shareholder-one vote, limited interest on either stock or capital, limited number of shares owned by each shareholder, and payment of patronage rebates according to participation. (Table 4.1) In addition to the co-operative principles discussed above, the large plants follow the business practices listed below:

1. they co-operate with other co-operatives;

2. they have voluntary affiliation and are free from state control.

3. goods and services are sold to the shareholders at prices

V Table

X

APPLICATION OF CO-OPERATIVE PRINCIPLES AND BUSINESS PRACTICES BY TWELVE SELECTED LARGE ALBERTA MUNICIPAL CO-OPERATIVE SEED CLEANING PLANTS

Į[

Questibnnaire

Source:

44

1,100

50

120

20

120

92.5

. 33

Ð

100

100

100

83.33

100

100

100

100 .

100

Percentage

	0	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
SELECTED SMALL	$\begin{bmatrix} u_{0}, v_{0} \\ u_{1}, v_{2}, v_{0}, v_{0} \\ u_{1}, v_{2}, v_{0}, v_{0} \end{bmatrix} = \begin{bmatrix} u_{0}, v_{0} \\ u_{1}, v_{2}, v_{0}, v_{0} \\ u_{1}, v_{2}, v_{0}, v_{0} \end{bmatrix}$	
Y SEVENTEEN SELE PLANTS	U Je Jodo O Je	
CES BY SEVE	50, 50, 0000000000000000000000000000000	
ESS PRACTICES BY SEED CLEANING P	$\begin{bmatrix} \mu_{\mu} & \mu_{\mu} & \mu_{\mu} \\ \mu_{\mu} & \mu_{\mu} & \mu_{\mu} \\ \mu_{\mu} & \mu_{\mu} & \mu_{\mu} & \mu_{\mu} \\ \mu_{\mu} & \mu_{\mu} & \mu_{\mu} & \mu_{\mu} & \mu_{\mu} & \mu_{\mu} \\ \mu_{\mu} & \mu_{\mu} & \mu_{\mu} & \mu_{\mu} & \mu_{\mu} & \mu_{\mu} & \mu_{\mu} \\ \mu_{\mu} & \mu_$	
Table 4.2 PERATIVE PRINCIPLES AND BUSINESS ALBERTA MUNICIPAL CO-OPERATIVE SE	40 0 000000000000000000000000000000000	
PRINCIPLES JNICIPAL CC	$\begin{array}{c} \mathcal{A}_{i} \\ \mathcal{A}$	
CO-OPERATIVE F ALBERTA M	232 232 232 232 232 232 232 232 232 232	
ON OF CO-C	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	
APPLICATION OF	6	
	Percentage	

•

٩.

,

t i

5

Source: Questionnaire

•

45 .

ŝ

which are enough to recover their operating costs without making profit; and,

4. entrance to the co-operative is open to all farmers, irrespective of their religious or political beliefs.

4.2

The co-operative business practice which 58.67% of the large selected plants do not apply is that of providing education to co-operative shareholders, the management, and the public. Failure to carry out this co-operative practice could be related to the following: (1) low net earnings, shown in Tables B-14 and B-15; (2) the reserves problem, indicated in Table 2.5; and, (3) attitudes. Most of the managers interviewed are of the opinion that education for the shareholders is not necessary.

The small volume seed cleaning plants differ slightly from the larger ones in the application of co-operative principles and business practices. They also apply all the co-operative principles and practices with the exception of the practice of educating their members and the plants' management. One of the small plants uses one shareone vote, instead of one shareholder-one vote. Another co-operative uses a five shares-one vote system, instead of one shareholder-one vote. The principle of open membership is violated by one of the small cooperative seed cleaning plants which have predetermined membership. The principle of limited or no interest rate for share capital is violated by four of the small seed cleaning plants.

In summary, both large and small volume selected Alberta municipal co-operative seed cleaning plants follow the principles of cooperation as approved by the International Co-operat (liance in Vienna in 1966, with the exception of the principle of providing

education to their members. They endeavour to operate on a non-profit basis, providing seed cleaning services at the lowest possible cost. For this policy to succeed, however, calculations for depreciation must be based on adjusted rather than on historical data, the aim being to have adequate prices and reserves.

47

ł

CHAPTER V

EMPIRICAL RESULTS AND ECONOMIC INTERPRETATION

Demand Analysis

The third step in this research was to study the characteristics of the demand for seed cleaning by Alberta co-operative seed cleaning plants. The following demand function was used in this analysis:

$P = \beta_0 + \beta_1 Q + U$

 $\int \hat{Q}$ = the amount of seed cleaned in hundreds of thousands of bushels

U = the error term

Demand analysis for twenty-nine selected plants, using crosssectional data, showed that R^2 was not significant at a 95% level of confidence for any of the separate estimates for the six years from 1971 through 1975, as presented in Table 5.1. The t-test showed that none of the parameter estimates, except the one for 1974, was significant at a 95% level of confidence. The annual horizontal demand curves, plotted in Figure 5.1 show that the plants' demand characteristics are apparently those of perfect competition. However, these appearances are misleading, as the co-operatives were found to operate under conditions of imperfect competition. Table 5.1

•

TEST OF SIGNIFICANCE FOR JHE Â-COEFFICIENTS AND R² FOR THE DEMAND MODEL FOR THE 29 SELECTED ALBERTA PLANTS 1970 - 1975*

ì

Intercept eff 6.93 -0 7.21 -0 7.236)++ 0 (7.36)++ 0 (7.35)++ 0 (7.72) 0.0 (9.97) 0.0						•			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	rear	Intercept	Co- efficient	Standard Error	Calculated T-Value	Signi-	"2**	Calculated	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1970	6.93				TTCant	Ł	F-Value	r U.95, df†1.27
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$)	-0.04	1.58	26	at to.60			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1971	7.21	-0.01				000.0	.07	4:212
$ \begin{pmatrix} 7.02 \\ (7.36) + + \\ (8.3) \end{pmatrix} = 0.01 0.02 0.58 \text{at to.} 70 0.012 .33 \\ (8.3) \\ (8.3) \\ (8.3) \\ (8.3) \\ (7.72) \\ (7.$			1 a ''	10.	84	at to.70	0.026	ŗ	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1972	7.02	0.01		- (./1	=
$ \begin{pmatrix} 7.35 \\ (8.3) \\ (7.32) \\ (7.72) \\ ($		(1.36) 77		20.0	0.58	at to.70	0 012	Ċ	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1973	7.35	-0.0005					.33	=
		(8.3)		0.02	-0.03	not sinni-	c		
(7.72) 0.03 0.03 2.04 at to.95 0.134 4.17 (9.97) 0.03 0.03 1.00 at to.80 0.036 1.00	1974	6.18	0.05	\$ () ()		ficant	-	0	=
$\binom{7.20}{9.97}$ 0.03 0.03 1.00 at to 80 0.036 1.00		(7.72)	•	0.03	2.04	at to gr			
(9.97) 0.03 0.03 1.00 at to.80 0.036 1.00	1975	7 20					U.134	4.17	=
0.030 1.00		(9.97)	U.U3.	0.03	1.00	at to 80			
						••••	0.030	1.00	=
	**	01,000-000 101 01,02		used in this	analvsis				
	cleaned	by the plants	1	t at 95% lev	el of signifi.				
				ted by the s	eed cleaning.	cuice, umply1	ng that the	amount of soo	T
	Ŧ	uegrees of fr	eedom		6	JULICES CHARGE	d.		5
<pre>**All R² were not ignificant at 95% level of significance, implying that the amount of seed tDegrees of freedom</pre>									

ttFigures in parentheses are the real annual average revenue.

49

•

) je

Į.s

The conclusion to be drawn from this analysis is that the plants' customers were not strongly price-responsive. The Board of Directors can therefore charge seed cleaning service rates at least within the range of price observed without affecting the demand for the service.

Analysis of the Cost Functions

There were several cost functions used in this empirical study of the plants' costs, and they were: total cost, total variable cost, total average cost, marginal cost, and average variable cost. Crosssectional and time series data were deflated and pooled in this analysis because the capacity for twenty-seven of the twenty-nine plants was the same. It was deflated with the annual consumer price indexes in Table B-6 to facilitate the comparison of annual prices for different outputs. The empirical results of this analysis are discussed in the following paragraphs.

The Total Cost Function

5

The total cost function for twenty-nine selected Alberta plants was:

$$C = \alpha_0 + \alpha_1 Q + \alpha_2 Q^2 + \alpha_3 Q^3 + U$$

Its empirical results were:

	ĉ	=	-4.73	+ 2.020	$-0.05Q^2 +$	0.0005Q ³
Standard err				(0.93)	(0.03)	(0.0002)
Calculated T-values (3,				(2.179)	(-1.898)	(2.312)
$R^2 = 0.5275$. F ((3,	170) =	63.25	D-Watsor	1 = 2.32

The signs of the coefficient estimates for the cubic total cost function

were consistent with Chiang's¹ restrictions, with the exception of the sign for the intercept, which was negative. These restrictions, which apply to a cubic function, are:

1) $\hat{\alpha}_{0}$, $\hat{\alpha}_{1}$, $\hat{\alpha}_{3} > 0$ 2) $\hat{\alpha}_{2}$, <0 3) $(\hat{\alpha}_{2})^{2} < 3\hat{\alpha}_{3}\hat{\alpha}_{1}$

The ordinary least squares estimates of the total cost cubic function were used to plot the total cost curve in Figure 5.2. The parameter estimates for Q and Q² were significant at 95% level of confidence. The coefficient estimate for Q² was significant at 90% level of confidence. The F-test for R² showed that it was significant at 95% level of confidence. The implications of this analysis were that a 95% level of confidence could be placed in the cubic function of throughput in explaining variations in total costs for the plants.

The-test for autocorrelation showed that there was no autocorrelation while the one for multicollinearity revealed that the explanatory variables were collinear as expected with this specification.

The estimates of the total cost function were used to plot the total cost curve presented in Figure 5.2. Its shape and behaviour is consistent with economic theory. It has two bends, suggested by $Chiang^1$ and $Stafford^2$. The empirical results of the total cost function were used to derive the marginal cost and the average cost functions which were later used in determining prices and output for Alberta plants.

¹Alpha C. Chiang, Op. Cit., pp. 264,265.²Stafford, Op. Cit., pp. 28,125.

· .

. . . .

The average total cost function was obtained by dividing ordinary least squares estimates of the total cost function by the number of bushels of seed cleaned by Alberta plants. These estimates were:

$$\hat{ATC} = -4.73 \ Q^{-1} + 2.02 - 0.05Q + 0.0005Q^2$$

The average total cost curve plotted from its function first decreases with the increase in output, until the plants' minimum average cost of 9¢ (1975 prices) is reached at the plants' economic capacity of 475,000 bushels of seed, after which it rises. (Figure 5.4) Its U-shape is consistent with economic theory.

The marginal cost function is the first derivative of the total cost function. The results were as follows:

$$MC = 2.02 - 0.1Q + 0.00150^2$$

The marginal cost curve is U-shaped, as shown in Figure 5.4. It decreases with increase in output until it reaches its minimum, after which it rises. It reaches its minimum before that of the average total cost curve. It cuts the average total cost curve at its minimum. The behaviour of the plants' marginal cost curve is consistent with economic theory.

The Variable Cost Function

The following total variable cost function was used in this analysis:

 $TVC = \gamma_0 + \gamma_1 Q + \gamma_2 Q^2 + \gamma_3 Q^3 + U$

Its ordinary least squares regression estimates were:

 $\hat{TVC} = -7.91 + 1.400 - 0.030^{2} + 0.00030^{3}$ Standard errors = (0.77) (0.02) (0.0002) Calculated T-values = (1.82) (-1.47) (1.72) R² = 0.45 F(3,170) = 46.42 D.W. = 2.4 Table values = F(3,170) = 2.60 du = 1.7

The signs of the coefficient estimates were consistent with Chiang's¹ restrictions which are: γ_0 , γ_1 , $\gamma_3 > 0$; $\gamma_2 < 0$; and $(\gamma_2)^2 < 3\gamma_1\gamma_3$. The t-test indicated that the parameter estimates of the total variable cost function were not significant at a 95% level of confidence. They were, however, significant at a 90% level of confidence.

The F-test for the R^2 showed that it was significantly different from zero at 95% level of confidence. A 95% level of confidence can therefore be put in the plants' output, explaining variations in the total variable costs. The ordinary least squares estimates were used in protting the total variable cost curve seen in Figure 5.3. Its shape is consistent with economic theory.

The Average Variable Costs Function

The following average variable costs function was obtained by dividing the total variable costs estimates with the bushels of seed cleaned by Alberta plants:

$$\hat{AVC} = -7.91 \ Q^{-1} + 1.40 - 0.03Q + 0.0003Q^2$$

The average variable cost curve plotted from this function declines with the increase in output until it reaches its minimum, after which it rises. (Figure 5.4) It is consistent with economic theory.

¹Alpha C. Chiang, *Op. Cit.*, pp.264,265.

Pricing and Output Policies for Alberta Plants

The fifth step of this study was to determine empirically, the output and pricing policies for Alberta strates. The results presented in Figure 5.4, and in Table 5.2 below, show that they priced at their long-run break-even point which is their minimum average total costs.

Table 5.2

Year	Average Revenue = Price	Plants' Minimum Average Total Cost	Price-ATC
1971	7	6	1
1972	7	7	0
1973	8	7	1
1974	8	8	, *
1975	. 10	о	1

RELATIONSHIP OF #VERAGE REVERUE TO MINIMUM LONG RUN AVERAGE TOTAL COSTS FOR 29 SELECTED PLANTS, 1971-1975

This is consistent with their co-operation business practice of charging prices which are enough to recover their total cost of cleaning seed which are enough to recover their total cost of cleaning seed which are enough to recover their total cost of cleaning seed which are enough to recover their total cost of cleaning seed which are enough to recover their total cost of cleaning seed which are enough to recover their total cost of cleaning seed which are enough to recover their total cost of cleaning seed which are enough to recover their total cost of cleaning seed which are enough to recover their total cost of cleaning seed which are enough to recover their total cost of cleaning seed total total cost of the twenty-four of the twenty-four of seed. (Table 1.2) In 1975, for instance, twenty-four of the twenty-four

The conclusion drawn from this analysis was that the plants' prices were marginally higher than their long-run minimum average total costs, but lower than the actual average cost for their throughput, hence their low net earnings for the period 1970 - 1975 in Tables B-14 and B-15. They should price at their average total costs at their respective levels of output as the calculations in Table 5.3 show.

Secondly, their pricing policy should be related to their reserve policy. Calculations for depreciation should be adjusted with the percentage increase in construction costs as explained in Table 5.4. For example, the total adjuste depreciation for Beiseker Seed Cleaning

ant in 1975, using the s line method, would have been \$77,325 instead of \$42,750 obtained if calculations are based on historical data. Adjusted depreciation of \$77,025, plus the interest rate earned over nineteen years, should give an amount which is not far from the 1975 plants' cost of \$270,000. Increase in depreciation should lead to higher total costs and low net earnings, if prices are not adjusted. Prices should be changed to reflect changes in the plants' average total cost.

Thirdly, the empirical analysis of the plants' reserve policy between 1970 and 1975 in Tables B-12 and B-13 showed that they were not . cumulative over years. The plants' reserves set aside for construction purposes should be cumulative over the life of the plant, which is approximately twenty years.

In summary four pricing and output strategies were considered in this analysis. They were: pricing at (1) minimum average total costs; (2) breakeven point; (3) where marginal revenue is equal to marginal cost; and (4) at the average cost of the plant. Alberta plants 59

o
Table 5.3

, r

AVERAGE TOTAL COST FOR THE SELECTED ALBERTA PLANTS AT DIFFERENT LEVELS OF OUTPUT, 1971 - 1975 (IN CENTS PER BUSHEL)

Bushels			Years	P	
of Seed	1971	1972	1973	1974	1975
100,000	11.00	11.5	12.4	10.7	
150,000	10.7	11.2	12.4	13.7	15.2
200,000	9.8	10.3		13.4	14.8
250,000	8.9	9.4	11.1	12.3	13.6
300,000	8.1		10.1	11.2	12.4
350,000	7.5	8.5	9.2	10.2	11.2
400,000	7.0	7.8	. 8.4	9.3	10.4
430,000		7.4	» 7.9	8.8	9.7
450,000	6.9	7.2	7.7	8.6	9.5
475,000	6.8	7.1	7.6	8.5	9.39
500,000	_ 6 ₀ 4	6.7	7.3	8.1	8.9
	6.8	7.0	7.6	8.4	9.35
550,000	7.0	7.3	7.8	8.7	· 9.7
600,000	7.4	7.8	8.3	9.3	10.3
700,000	9.8	9.5	10.2	11.3	
800,000	11.6	12.2,	13.1	14.5	* 12.5 ···
900,000	15.2	15.9	17.1	19.0	16.1
000,000	19.7	20.7 .	22.2		21.1
			در	24.7	27.3

Table 5.4

	······································			G PLANI,	1957 -	1975		
	ио	Increase truction	Stra Line	ight Method		Declin- Method	Years	of the ' Digits thod
Year	Plants' Constructi Costs	Annual Incr in Construc Costs	Historical	Adjusted	Historical	Adjusted	Historical	Adjusted
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975	45,000 48,000 51,000 51,000 51,000 51,000 54,000 60,000 72,000 75,000 82,500 102,000 108,000 144,000 270,000	$\begin{array}{c} 0\\ 3,000\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 3,000\\ 6,000\\ 3,000\\ 7,500\\ -\\ 3,000\\ 12,000\\ 3,000\\ 12,000\\ 3,000\\ 12,000\\ 126,000\\ 126,000\end{array}$	2,250 2,250	2,250 2,400 2,550 2,550 2,550 2,550 2,550 2,550 3,000 3,000 3,600 3,750 4,125 - 4,275 5,100 5,400 7,200 13,500	4,500 4,050 3,645 3,280 2,952 2,657 2,391 3,743 1,743 1,569 1,412 1,271 1,144 1,029 926 834 750 675		4,285 3,683 3,174 2,740 2,370 2,053 1,779 1,542 1,335 1,154 994 852 725 610 505 409 319 235 154	4,285 3,955 3,174 2,983 2,370 2,053 1,779 1,728 1,678 1,154 1,565 981 1,011 591 802 434 749 1,354
TOTAL Book	(19) Value		42,750 2,250	77,025	38,917 6,083	119,483 <i>·</i>	16,082	140,882

STRAIGHT LINE, DOUBLE DECLINING AND THE SUM OF THE YEARS' DIGITS DEPRECIATION FROM HISTORICAL* AND ADJUSTED** CONSTRUCTION COSTS FOR BEISEKER SEED CLEANING PLANT, 1957 - 1975

*Historical construction cost of the plant is the initial cost of building the Beiseker seed cleaning plant in 1957.

**Adjusted data is the book value of the plant plus the annual increases in construction costs.

Note: Straight Line Method: DSL = $\frac{0.C.-S.U.}{n}$

where OC = original cost of the plant

~

Table 5.4 (continued)

SV = salvage value of the plant replaced n = expected economic life of the plant and is equal to 20 years.

Double Declining Method:

$$Dddb = \frac{2}{n}R$$

where R = the remaining book value n = expected economic life of the plant which is 20 years in this case.

The Sum-of-the-Years-Digits Method:

 $Dsotyd = \frac{n-i}{En} (OC - SU)$

Source of data:

The Alberta Department of Agriculture, Field Crops Section, Seed Cleaning Programme (Edmonton, Department of Agriculture, 1948-1977).

Source of formulae:

John A. Hopkin, Peter J. Barry, and C. B. Baker, *Financial Management in Agriculture* (Danville, Illinois: The Interstate Printers and Publishers, Inc., 1973), pp.99-100.

applied all four strategies in the long run. However, they did not adjust depreciation, which would have led to higher average costs and prices.

•

· · · ·

CHAPTER VI

SUMMARY, CONCLUSION AND RECOMMENDATIONS

The purpose of this study was to develop a pricing and output framework based on costs; reserves requirements, and the demand characteristics of Alberta co-operative seed cleaning plants. The four pricing strategies proposed and analyzed in this study were to price at the plants' (1) average total costs; (2) break-even point; (3) capacity; and (4) optimum output. These strategies required the following data:

- total costs, total variable costs, marginal costs, and average total cost;
- service charges, total revenue, average revenue and marginal revenue, net earnings;
- the number of bushels cleaned;
- 4. shareholding and non-shareholding customers;
- 5. depreciation, share capital and the plants' reserves; and
- 6. application of co-operative principles by plants.

To facilitate the collection of these data, a stratified simple random sample of twenty-nine plants was selected for this study. These plants were 50% of the fifty-eight that had data for at least six years, from 1970 to 1975. A questionnaire was drafted and tested on two plants before it was sent to the managers of the twenty-nine plants selected. The managers were given at least three weeks within which to complete the questionnaires. They were later visited to explain some parts of

64

the questionnaire which they might not have Understood, and to collect the questionnaires. The data collected was supplemented with secondary data from the plants' annual financial reports kept by the Field Crops Section of the Department of Agriculture. Data were then used in the empirical study of the demand characteristics, nature of costs, and the reserves policy for Alberta plants.

The first step of this research was to analyze the development of the internationally-accepted principles of co-operation and business practices since the Industrial Revolution in Europe in the mid-1700's. The practices accepted by the International Co-operative Alliance were: open membership, one shareholder-one vote, limited interest on either stock or capital, limited number of shares Owned by each shareholder, and payment of patronage rebates according to participation. The practices accepted by the International Co-operative Alliance were: cooperation among co-operatives, voluntary affiliation, and freedom from state control. The co-operatives today regard the following as business practices: cash trading, membership education, Political an religious neutrality, no unusual risk assumption, and goods sold at market prices.

The second step was to test for the application of co-operative principles and business practices by Alberta blants. They applied all the co-operative principles except that of providing education to their members (which was due to their attitudes and low net earnings.) Their objective was to price at their least cost, and the rebates were credited to the shareholders' share capital.

The third step was to test for the dem_{and} characteristics of \cdot Alberta plants. Their prices did not change according to the changes in the amount of seed cleaned, implying that their customers were not price-responsive. The Board of Directors could change prices without affecting the demand for the seed cleaning service.

The fourth step was to study the nature and behaviour of the plants costs. The total cost and total variable costs were cubic functions of the plants' throughput. The shape and behaviour of the marginal, average total and average variable cost curves were consistent with economic theory.

The fifth step was to analyze the pricing strategies for Alberta plants. The results showed that they priced at their long-run breakeven point, which was the same as their economic capacity of 475,000 bushels of cleaned seed, and their optimum output. Their average revenue was either equal to their minimum average total cost, or higher by one cent. The amount of seed cleaned by these plants was, however, less than their economic capacity of 475,000 bushels of seed. Their average revenue was therefore less than the average total cost corresponding to their throughput. The recommendation, based on this analysis, is that prices should be increased so as to equate their average revenue with their average cost. Their throughput should also be increased to their economic capacity so as to lower their average costs.

纭

The sixth step was to study the plants' reserve policy. The empirical results showed that the plants' reserves were not cumulative over the life of the plant. "Depreciation was calculated from historical data and was not cumulative becale it was a book value. The plants, therefore, did not have an appropriate reserve policy. They need one, especially if they are to fill the gap left by the termination of construction and renovation grants from the Alberta government. The

· 5

recommendation, based on this study, is that the plants' depreciation should be adjusted with the increase in the plants' construction costs. It should be set aside for use in constructing the new plant after a period of approximately twenty years. The reserves set aside should therefore be cumulative and earn interest. Prices should be adjusted to reflect increased average total cost, resulting from increasing the depreciation allowance.

The weaknesses of this research are mainly those resulting from the use of pooled data, unadjusted cost data, average prices, and total costs which are less than the actual costs. These weaknesses are discussed below.

The sample which originally comprised two strata of high volume and low volume plants, was later pooled because twenty-seven out of twenty-nine plants had the same engineering capacity of cleaning 150 bushels of seed per hour. The difference in the behaviour of the low and high volume plants with regard to pricing o tput, and the serves strategies, waspobscured by the use of pooled cross-section and time series data.

The prices used in this analysis were the average of the actual seasonal prices used by the plants. These prices are used to persuade the farmers to deliver seed throughout the year, instead of having a rush in spring and late winter. Their average was used in this study because there was no corresponding output for different seasons. The average prices from this analysis are annual prices, and may not help in persuading the farmers to deliver seed in winter and fall to avoid congestion in spring and late winter.

The results of this analysis showed that the cost data used was

٥7

not adjusted to cater to increase in the plants' total costs. The average prices calculated from the empirical average total cost function are therefore less than what they should have been if depreciation had been adjusted.

The third weakness is that of using the total cost data from the financial statements of those plants which clean and treat seed. The expenses for seed cleaning are not recorded differently from those incurred in treating seed. It is therefore not easy to know how much was spent on each, when it comes to items like salaries, wages, audit fees, utilities, insurance, and property taxes. The total cost data used in this analysis is a ratio of the plants' seed cleaning revenue to that of their total revenue.

In conclusion, Alberta co-operative plants pricing objective is to produce at cost by charging prices which are sugh to meet their average total costs. Their reserves should be numulative, and their depreciation should be adjusted to reflect increase in construction costs. Their prices should be increased to reflect increases in their average total cost resulting from increased adjusted depreciation. The amount of seed they clean should also be increased toward their economic capacity of 475,000 bushels.

68

BIBLIOGRAPHY

ALBERTA Department of Agriculture, Seed Crops Section. "Annual Financial Reports for Alberta Cooperative Seed Cleaning Plants." Edmontorial Department of Agriculture, 1970-75.

ALBERTA Department of Agriculture, Seed Crops Section. "Annual Summary of Grain Cleaned by Municipal Co-operative Seed Cleaning Plants." Edmonton: Alberta Department of Agriculture, 1970-73.

- ALBERTA Department of Agriculture, Seed Crops Section. "Seed Cleaning Plants Economic Analysis." Edmonton: Department of Agriculture, 1969-1975.
- ALBERTA Department of Agriculture, Seed Crops Section. Some lemental By-Laws for Seed Cleaning Plant Co-operatives. Education: Alberta Department of Agriculture, 1974.
- ALLEN, R. G. D. Mathematical Economics, Second Ed. on. London: Macmillan St. Martin's Press, 1972.
- BACKMAN, Jules. Price Practices and Price Policies: Selected Writings. New York: The Ronald Press Company, 1953.
- BACKMAN, Theodore N.; William R. Davidson; Wayne W. Talarzyk. Marketing, Ninth Edition. New York: The Ronald Fress Company, 1973.
- BAIN, Joe S. Price Theory. New York: John Wiley and Sons, Inc., 1952.

BAUMOL, William J. Economic Theory and Operations Analysis, Fourth Edition. Englewood Cliffs, New Jersey 07632: Prentice-Hall Inc., 1977.

- BRESSLER, Raymond G., Jr. and Richard A. King. Markets, Prices, and Interregional Trade. New York: John Wiley and Sons, Inc., 1970.
 - CHAWLA, Krishan Kumar. Evaluation of Seed Cleaning Machines. Edmonton: Engineering Field Services Branch, Alberta Department of Agriculture, 1977.
 - CHIANG, Alpha C. Fundamental Methods of Mathematical Economics, Second Edition. New York: McGraw-Hill Book Company, 1974.
 - CHOU, Ya-Lun. Statistical Analysis: with Business and Economics Applications, 2nd Edition. New York: Holt, Rinehard and Winston, 1975.
- CHURCHMAN, C. West. Theory of Experimental Inference. New York: The Macmillan Company, 1948.

COHEN, Morris R. and Ernest Nagel. An Introduction to Logic and Scientific Method. New York: Harcourt, Brace and World, Inc., 1934.

- COPI, Irving M. Introduction to Logic, Third Edition. London: The Macmillan Company, 1968.
- DEWEY, John. Logic: The Theory of Inquiry. New York: Holt, Rinehard and Winston, Inc., 1938.

70

- DUE, John F. and Robert W. Clower. Intermediate Economic Analysis, Resource Allocation, Factor Pricing, and Welfare, Fifth Edition. Nomewood, Illinois: Richard D. Irwin, Inc., 1968.
- DUTA, M. / Econometric Methods. Cincinnati, West Chicago: Southwest Publishing Company, 1975.
- FERGUSON, C. E. Microeconomic Theory, Third Edition. Georgetown, Ontario: Irwin-Dorsey Limited, 1972.
- FRIEDMAN, Milton. Essays in Positive Econordes. Chicago: The University of Chicago Press, 1953.
- GIBSON, W. L., Jr.; R. J. Hildseth; Gene Wunderlich, Editors. Methoda for Land Economics Research. Lincoln: University of Nebraska Press, 1966.
- HARBERGER, Arnold C. Taxation and Welfare. Boston: Little, Brown and Company, 1974.
- HARPER, Donald V. Price Policy and Procedure. New York: Harcourt, Brace and World, Inc., 1966.
- HARRIS, T. D. Cooperative Principles: Their Practice, Problems and Potential in Canada. Winnipeg, Manitoba: Faculty of Agriculture and Home Economics, the University of Manitoba, 1968.
- HEADY, Earl O. and John L. Dillon. Agricultural Production Functions, Fifth Print. Ames, Iowa: Iowa State University, 1972.

HENDERSON, James M. and Richard E. Quandt. Microeconomic Theory: A Mathematical Approach. New York: McGraw-Hill Book Company, 1958.

- HENDRICKSEN, Eldon S. Accounting Theory, Revised E. On. Homewood, Illinois: Richard D. Irwin, Inc.; Georgetown, Ontario: Irwin-Dorsey Limited, 1970.
- HILLIER, Frederick S. and Gerald J. Lieberman. Operations Research, Second Edition. San Francisco: Holden-Day, Inc., 1074.
- HODGES, John C. and Mary E. Whitten. Harbrace College Handbook, 7th Edition. New York: Harcourt Brace Jovanovich, Inc., 1972.
- HOPKIN, John A.; Peter J. Barry; C. B. Baker. *Financial Management in Agriculture*. Danville, Illinois: The Interstate Printers and Publishers, Inc., 1973.

ISH, Daniel. The Limition of Canadian Cooperatives. Toronto: Canadian Tax Foundation, 1975. a Stadewstow, div Alexandrophic Methoda, 2nd Edition. New York: McGraw-Hill (XAPLANE, Afranam. The Configure of Inquiry. "Sorarton: Chandler Publish-ing Company, 19641." $\{ p_{k}^{*} \}$ KOUTSONIAMNIS, A., Theomy of Epiperatoises And Introductory Employition of Econometric Methods, London: Macmillan Press Ltd., 1973. -LARRABEE, Farold Al Selfable Moulidear Selentifie Mathede in the Scolal Studice, Revised Edition. Boston: Houghton Mifflin Co., 1954. NORTEROP, F. S. C. The Depid of The Edicated and the Auranities. Cleveland: The world Publishing Company, 1947. POPPER, Kant R. The Soder of Sodersofie Schoology, New York: Harpen REICHENSACH, Hans, Stee Stee of Solemoinic Philosophy. Berkele,: Subjuensity of California Press, 1951. - City ROBBINS, Librel. An Essay on the Nature and Significance of Esturies Solanog. London: Macmillan and Company, 1932. RGY, Ewell Fault Cooperatives Joing and Junumou, 2nd Edition. Danwille, Illinois: The Indenstate Printers and Publishers, Incl., () SALTER, Leonard A., Jr. 2 Origidal Review of Recemption Land Economice. . Macison: University of misconsin Press, 1967 SKINNER, R. M., FCA; partrer, Clarkson, Gondon and Diplest. 256 Bloon St. E., Toponto: The Ca Chartered Accountants, 1972. RETING FRANC STAFFORD, L. W. T. Maghematics for Economister. London: 8 Street, London MCIN 2-1, Maccoraid and Evans, 1971 istitute of 🔅 TIRABIN, Kate L. A Marine for initere of Terr Engene, Theses, and Dissertations, Fourth Estimation. Chicago: The University of NGANDA Ecchomics Association. The Journa Posturia Journal, Vol. I, No. 3. Kampala: Makerere Institute of Social Research Publications; 1973. . L.* • * WELSCH, Glenn A.; Charles T. Zletkovich; David A. Wilson; Michael Zin. International Accounting. Georgetown, Ontario: Irwin-Dorsey Limited, 1974.

•		2 ¹²		
		· · · ·		
	YAMANE, Taro. Editior 1962.	Mashematice for Economi n. Englewood Cliffs, Ne **:	Sto: An Elementary Survey, S w Jersey: Prentice-Hall, Inc	ecc • •
-\$~	YOUDE, James G. tures.' (Mimeor	"Co-operative Enterpr Wisconsin: Me Univer graphed)	ise in Alternative Market Sci sity of Wisconsin, Ph.D., 196	ruc 56.
••	(1)			
	3 N		🔪 🖉 🖓 👘 🖓 👘	
N.		· · · · · · · · · · · · · · · · · · ·		

APPENDIX A DATA USED IN THE INITIAL STUDY WHICH TESTED THE PRICE MODEL

		· · · ·			
	бнР∪Т	THROUGHPUT (in busheis)	70 71 72 73	3 185741 190973 198795 228499 412192 417470 379887 382750 320010 398793 416561 411613 3564199 355469 245772 339112 3564199 355469 245772 339112 3564199 3554670 219190 269365 99972 2505023 238421 333482 1050450 170163 141275 335482 356429 357567 251959 25697 260651 770163 141757 210003 71659 34575 356575 364569 261661 235157 264809 2155150 261661 235157 264809 2155150 26103 71698 335576 576655 261051 2012 7174976 177745 337517 291919 2713165 551655 551695 165160 24119 27151565 551655 51731 411048 355765 516655 232273 76725 51575 51697 263757 335577 297019 2717156 314556 51731 411048 355765 515655 232273 26497 253575 257575 246057 235157 237505 165160 24116 235555 51565 51565 51751 21054 27338 255752 335577 297019 271756 51565 51565 51753 4109715 216974 263757 335577 297019 271756 51565 51565 51753 217525 216974 263757 235577 297019 271756 51565 51753 217525 21593 255077 235577 297055 217575 276974 165160 24176 235575 275042 235577 297019 271756 51565 515565 515575 276974 235575 276975 276974 260577 295675 276974 260577 295687 235555 275542 235575 275525 275545 235575 275525 275545 235575 275525 275545 235575 276973 255577 263568 235575 276973 25557 235575 276975 276974 255595 275545 255595 275545 255595 275545 255595 275545 255595 275555 255595 255595 275557 255595 25559	
	Table A-1 SERVICE CHARGES, AGE, FIXED COSTS, VARIABLE COSTS, REVENUE AND THROUGHPUT 0.0R ALBERTA CO-OPERATIVE SEED CLEANING PLANTS, 1970-73	FIXED COSTS (in dollars) (in dollars) (in dollars)	~72 73 70 7 0700 0000	6 3455 1283 9983 9911 9911 11841 1184 1184 11941 1694 1694 1505 2055 30543 0549 011450 10539 11561 13058 2277 25610 17559 21029 38570 38570 38570 35670 336510 1561 11561 13056 15570 1556 19556 11561 13056 15530 11561 13056 15530 11561 10230 25550 25570 38570 38570 38570 38570 38570 38570 36500 19566 6809 560 1566 15630 15531 15433 15433 15433 15433 15433 15433 15433 15433 15433 15433 15433 15633 19566 560 19566 1556 19557 13905 15907 15972 25656 18407 13407 12577 1577 15572 2955 19557 2555 1742 24547 2555 2155 2155 2155 2155 2155 2155 215	
t, t,		AGE n years)	8,00 13.14 15 16 881	2 8.00 14 15 16 17 3596 3 8.00 10 14 15 16 17 3864 6 11.00 14 15 16 17 3864 18 3596 7 9.00 3 4 5 17 3864 18 3596 10 11 9.00 3 4 5 175 9096 38 4 5 31450 18 3290 10 11 9.00 3 4 5 17 3864 18 10 12 38 3590 38 3690 36 36 36 36 </th <th></th>	

· .

74

Q,

1

J

ð.

				75
	下 THROUGHPUT (1n bushels)	70 71 72 73	7 404684 374105 361314 35930 7 208035 229789 205320 242499 9 453357 446684 374105 361314 359330 9 453357 446687 442956 54194 9 453357 446687 442956 54194 9 450357 352300 352226 54194 9 301192 331755 32223 17573 35939 9 301192 331755 32273 212993 169393 17573 35773 9 212993 169393 35723 256280 245936 557317 9 365533 35723 250312 215933 15753 35753 9 37753 350323 350276 443757 517437 407450 410573 416633 417637 443763 212993 169324 416633 417637 217437 207181 205076 475468 265736 265736 210321 215163 215464	
ed)	REVENUE (in dollars)	× 70 71 72 73	31332 29774 30976 3037 28778 39993 39522 5682 20961 20961 55807 5580 46942 49034 36519 4305 23357 27357 36534 4676 15514 13202 12712 1456 15514 13202 12712 1456 15514 13202 12712 1456 15514 13202 12712 1456 15533 17222 19354 1623 16553 30523 39355 51294 16753 31722 19781 1624 16753 31722 19781 1624 16623 30523 39355 51294 16753 31722 19781 1624 16763 31722 19781 1634 16773 31451 33785 20152 16773 3132 20153 20153 1678 2015 20158 20154 1774 34637 27054 22055 1774 34637 27054 21132 1774 34637 27152 31322 32757 1774 34637 27152 31322 32757 175 22775 30555 40533 3203 175 22775 30555 4053 175 22775 30555 4053	×.
Table A-1 (continued	VARIABLE COSTS (in dollars)	70 7	6193 6282 21032 2103 12051 16927 25108 4229 13379 13379 10524 4065 15605 16509 2805 2529 15605 16509 2805 2529 15605 16509 2805 2529 15605 16509 2805 2529 15606 12656 11872 1264 17398 16093 12752 9903 11156 12355 12773 9903 11573 12355 12773 9903 11573 12355 12773 9903 1156 12355 1267 12356 12355 1267 12356 12355 1267 12356 12355 1267 12356 12355 1267 1255 12669 1567 1236 17715 2003 1590 22504 17715 2003 1590 22504 17715 2003 1590 22504 17715 2003 1590 22504 17715 2003 1500 10209 10529 1554 27019 0209 10209 1554 27019 1501 14338 16027 2425 27019 0209 10209 1554 2203 2502 1554 2203 2503 23056 22435 27019 0209 10209 1554 2209 1501 1531 2023 1557 2023 2502 1557 2032 2503 1557 2032 2503 2506 22555 27019 1500 22504 17715 2003 1500 2003 2005 2003 2005 2003 2005 2003 1500 2000 2003 2005 2003 2005 2003 2005 2000 2000	
	FIXED COSTS (in dollars)	71 72 73	1975 21911 14037 14702 4559 4579 15589 16015 8687 7749 31630 26623 3311 2885 16509 16509 6246 7468 13304 14702 6246 7468 13304 14260 6245 7468 13304 14260 6245 7468 13304 14260 6245 7468 13304 14260 6245 7489 19915 1033 2333 2346 19915 1033 2333 2346 19915 1033 2333 2346 19915 1033 2333 2346 19915 1033 33772 3772 13391 14212 3324 2406 2393 14125 3324 3405 1233 12324 3233 23285 22995 16122 3294 4211 12652 12632 3394 4217 12652 15253 <td< td=""><td></td></td<>	
	Service AGE (Charge AGE ((¢) (1n years)	70 71 72 77. 7.50 19 20 21 22	8.67 6 7 8 9 7.50 3 4 5 6 6 9 10 11 12 13 14 15 13 14 15 13 14 15 13 14 15 13 14 15 13 14 15 13 14 15 13 14 15 13 14 15 13 14 15 13 14 15 13 14 15 14 15 15 14 15 14 15 15 14 15 15 15 16 16 11 12 13 14 15 15 15 16 16 11 12 13 15 15 16 16 11 13 15 16 16	
	*	1 U) 6	822222648444444444444444444444444444444	4

J

J. 1

75

-						
· · ·	1970	1971*	1972	1973	1974	1975
			LARGE VO	UMĘ PLANTS		
		25,707 22,953 15,789 28,341 52,535 32,780 22,581 23,262 27,563 22,685 19,974 17,756	,264 10,36 11 24.4 43,850 30,080 21,739 20,203 27,000 20,643 26,166 14,816 SMALL VOLU	24,766 20,984 19,727 23,386 42,489 19,535 28,117 21,554 26,048 20,026 24,331 18,462	23,188 23,287 17,786 20,766 42,450 24,518 26,601 24,388 32,512 20,673 23,522 22,133	27,272 20,973 24,909 31,119 74,485 29,225 24,008 27,680 28,862 18,653 16,947 27,717
	19,682 19,513 15,835 16,086 13,493 20,339 14,724 15,498 12,938 14,136 19,198 19,198 19,198 19,198 19,198 19,198 2,716 3,276 2,716 3,545	17,572 16,436 15,835 17,239 13,771 19,650 17,577 20,956 12,571 16,070 20,115 19,198 18,320 17,287 16,893 15,019 18,596	13,255 15,683 17,620 17,473 13,922 17,820 15,729 17,628 10,738 15,086 10,282 17,275 15,842 13,330 15,061 12,467 17,929	ME PLANTS 12,653 35,464 18,799 16,248 13,739 17,649 14,584 17,000 11,011 13,980 11,318 17.767 15,973 14,152 16.014 12,709 19,929	1,8,136 31,975 20,573 20,588 17,560 21,244 13,149 18,044 17,340 20,748 13,276 20,536 14,401 11,391 16,620 16,300 20,796	24,116 28,858 23,252 18,724 18,790 18,223 11,867 17,616 16,121 22,942 14,557 19,583 12,997 10,280 18,845 18,161 26,481

TOTAL REVENUE FOR SELECTED ALBERTA PLANTS (1970 - 1975)

deflate the figures (1971 = 100).

٠

۲

e 0.

. 1

٩

.

FIXED COSTS FOR THE SELECTED ALBERTA PLANTS (1970 - ,1975)

8	1970	1971*	.1972	* 1973	1975	1974
		5	LARGE VOLU	IME PLANTS		
	12,306 10,776 7,884 14,386 13,758 17,745 11,641 12,149 13,939 10,333 12,403 6,706	13,421 10,773 7,844 13,752 26,904 16,951 11,826 12,210 13,939 11,312 13,283 10,072	10,639 11,761 8,198 11,925 21,283 14,426 13,304 13,890 12,677 17,842 9,638 9,020	11,678 13,055 11,292 11,651, 21,872 14,485 14,260 14,125 12,354 12,632 11,548 15,671	15,087 12,315 14,916 14,639 26,669 14,472 13,395 16,260 15,590 12,981 16,350 14,964	16,801 14,360 15,690 17,170 28,120 16,621 24,599 21,562 16.886 12,981 20,467 15,925
			SMALL VOLUM	E PLANTS		
	9,096 8,290 10,575 11,538 9,030 14,106 8,366 13,253 9,157 12,135 12,329 10,951 9,142 7,991 10,616 4,461 5,093	8,711 9,562 10,423 11,769 12,922 14,106 7,740 15,592 9,158 11,452 12,329 12,186 9,215 7,996 10,581 5,072 5,904		8,489 15,433 13,233 10,044 16,006 13,755 12,475 14,702 16,054 9,205 11,885 13,201 10,778 12,415 12,373 11,548 14,309	12,281 15,736 10,293 11,448 13,176 14,951 12,475 17,287 10,250 10,481 11,624 13,585 10,778 9,701 15,732 13,592 14,683	18,821 17,621 12,890 15,299 16,361 14,951 12,475 13,494 11,577 14,762 17,202 16,962 10,778 9,701 20,791 19,772 19,070

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1970	1971*	1972	1973	1074	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		\backslash			19/4	1975
13,34914,905 $22,588$ 13,32413,11015,7628,1968,1967,1869,86615,17211,92719,22016,90216,62320,31611.71119,08617,83718,56319,08513,59714,49013,95515,32712,73216,93817,56120,48923,23119,53319,55319,02719,80222,80523,74525,65924,23612,6687,60815,24812,66613,1809,7937,3615,03811,20014,627SMALL VOLUME PLANTS14,48113,14612,5437,24312,88418,1293,3818,7367,61911,43410,51812,9017,2337,2337,6177,08311,09610,5538,2327,29711,9037,9947,2086,5058,6017,26010,7359,2905,5288,6877,0597,9549,20010,94799,45714,68019,26718,43827,38528,25735,5469,6927,7979,3548,92010,9898,01724,54326,63322,83426,61517,77419,54119,7812,56710,7509,7068,7517,89811,97812,56710,55213,00911,7417,3777,72010,5127,60813,37814,158		\mathbf{i}	LARGE VOL	UME PLANTS		
14,48113,14612,5437,24312,88418,1298,62511,32514,72613,69320,40420,1198,3818,7367,61911,43410,51812,9018,4739,5459,10711,98314,28920,2027,2337,2337,6177,08311,09610,5538,2327,29711,9037,9947,2086,5058,0017,26010,7359,2905,5288,6879,6927,7979,3548,92010,9898,0177,0597,0593,9323,5672,5543,83611,97812,56710,7509,7068,7517,89811,72720,73813,36522,86510,98715,5817,3777,72010,5127,60813,37814,158	13,349 8,196 19,220 28,848 17,837 9,711 15,327 19,533 12,512 25,659	14,905 8,196 16,902 34,353 18,563 12,090 12,732 19,553 12,590 24,236	<pre>*12,588 7,186 16,623 32,809 19,085 15,673 16,938 19,027 12,053 12,668</pre>	13,324 9,866 20,316 3],288 13,597 18,133 17,561 19,802 14,502 7,608	13,110 15,172 11.711 27,436 14,490 14,353 20,489 22,805 13,004 15,248	15,762 11,927 19,086 42,979 13,955 19,802 23,231 23,745 11,737 12,666
8,625 $11,325$ $12,343$ $7,243$ $12,884$ $18,129$ $8,381$ $8,736$ $7,619$ $11,434$ $10,518$ $12,901$ $8,473$ $9,545$ $9,107$ $11,983$ $14,289$ $20,202$ $7,233$ $7,233$ $7,617$ $7,083$ $11,096$ $10,553$ $8,232$ $7,297$ $11,903$ $7,994$ $7,208$ $6,505$ $8,001$ $7,260$ $10,735$ $9,290$ $5,528$ $8,687$ $9,692$ $7,797$ $9,354$ $8,920$ $10,989$ $8,017$ $7,059$ $7,059$ $3,932$ $3,567$ $2,554$ $3,836$ $7,059$ $7,059$ $3,932$ $3,567$ $2,554$ $3,836$ $11,978$ $12,567$ $10,750$ $9,706$ $8,751$ $7,898$ $11,727$ $20,738$ $13,365$ $22,865$ $10,987$ $15,581$ $7,377$ $7,720$ $10,512$ $7,608$ $13,378$ $14,158$			SMALL VOLU	ME PLANTS		
	8,625 8,381 8,473 7,233 20,178 8,232 14,680 8,001 9,692 7,059 24,543 11,978 12,128 11,727 7,377	11,325 8,736 9,545 7,233 20,178 7,297 19,267 7,260 7,797 7,059 26,833 12,567 12,709 20,738 7,720	14,726 7,619 9,107 7,617 15,984 11,903 18,438 10,735 9,354 3,932 22,834 10,750 16,029 13,365 10,512	13,693 11,434 11,983 7,083 10,200 7,994 27,385 9,290 8,920 3,567 26,615 9,706 12,705 22,865 7,608	20,404 10,518 14,289 11,096 10,479 7,208 28,257 5,528 10,989 2,554 17,774 8,751 13,009 10,987 13,378	20,119 12,901 20,202 10,553 9,457 6,505 35,546 8,687 8,017 3,836 19,541 7,898 11,741 15,581 14,158

TOTAL VARIABLE COSTS FOR SELECTED ALBERTA PLANTS (1970 - 1975)

Table B-3

×1

۰.

- - - 2

•1

. •

and the product of

ι

*Consumer price index was used to deflate the figures,
(1971 = 100.)

.

•

e

.

A	1970	1971*	1972	1973	1974	1975
			LARGE VOL	UME PLANTS		
	38,856 24,125 16,040 33,606 42,606 35,582 21,352 27,475 33,472 22,845 38,062 19,886	36,907 25,678 16,040 30,654 61,257 35,514 23,916 24,942 33,492 23,902 37,519 19,865	30,797 23,811 15,006 28,001 53,117 32,851 28,368 30,192 31,124 29,078 21,865 15,968	32,518 24,908 19,886 30,654 50,695 26,449 30,787 30,094 30,763 25,710 17,855 18,943	33,644 22,962 27,104 23,422 48,772 26,068 25,069 33,497 35,277 23,389 28,328 23,171	29,311 26,130 23,249 31,438 63,282 25,955 37,563 38,799 35,937 21,109 27,444 26,125
			SMALL VOLU	ME PLANTS		
	23,577 16,915 18,956 20,011 16,253 34,284 16,598 27,933 17,158 21,827 19,388 35,494 21,120 20,119 22,343 11,838 13,444	21,857 20,887 19,159 21,314 20,155 34,284 15,037 34,859 16,418 19,249 19,388 39,019 21,782 20,705 31,319 12,792 15,420	20,855 29,452 18,340 20,337 19,92 24,75 22,25 31,833 26,865 21,764 15,696 35,626 20,160 27,875 25,645 19,708 24,789	14,775 27,387 23,176 20,89 21,20 22,405 19,063 40,430 23,535 17,087 14,113 38,329 19,269 23,721 33,843 17,855 29,867	22,709 32,992 18,752 23,448 21,636 22,440 17,188 42,087 13,728 19,374 11,853 28,642 17,373 20,770 23,572 24,252 23,240	31,718 32,841 22,208 31,248 22,366 20,252 15,512 45,289 17,048 18,675 16,256 31,788 15,680 18,745 30,593 28,434 31,172

TOTAL COSTS FOR THE SELECTED ALBERTA PLANTS (1970 - 1975)

(1971 = 100.)

ŧ

ł

1

.

				e ⁻ B-5			
		SERVICE (SELECT	HARGES* FOR N €D ALBERTA PL	ON-SHAREHOLI ANTS (IN 271	DERS OF THE		
		•	* •	ੇ⊭ 	,		
	1970	1971	1972	1973 •	1974	1975	-
			LARGE VOLU	JME PLANTS			•
C.	7.88 7.00 9.00 8.50 10.00 8.00 9.00 8.00 7.55 8.00 9.00	7.88 9.00 9.00 8.50 10.00 8.00 9.00 9.00 8.00 7.50 8.00 9.00	8.77 9.00 10.50 9.00 10.00 9.00 10.00 10.00 12.00 8.00 10.00 10.00	8.37 9.00 10.50 10.00 10.00 10.00 10.00 12.00 10.00 11.00	10.38 9.00 12.50 10.00 17.00 13.00 12.00 12.00 13.00 13.00 13.00	11.38 11.00 15.50 12.00 17.00 15.00 14.00 12.00 15.00 14.00 14.00 14.00 16.00	3
			SMALL VOLU	ME PLANTS		•	4
	9.00 11.00 9.00 7.50 8.00 9.50 8.00 9.50 8.00 9.33 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00	9.00 11.00 9.00 7.50 8.00 10.50 8.00 9.33 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.00 9.00 8.67	10.50 11.00 9.25 9.00 8.50 11.50 9.00 9.67 11.00 9.33 9.00 9.00 9.00 9.00 9.00 9.00 10.00 10.00	10.50 12.00 9.25 10.00 10.25 12.50 9.00 9.67 12.00 10.50 10.00 9.00 9.00 9.00 8.00 10.00 10.00	 10.00 13.00 10.25 11.00 11.67 13.00 10.50 11.00 10.33 10.33 10.33 12.38 11.00 12.00 12.00 	13.50 14.00 1 1075 14.00 12.25 14.00 14.00 11.67 15.00 12.50 12.00 10.33 11.75 12.50 11.00 12.00 14.00	· · · ·
	*		arges are the			/	رې

		Ta	able B-6		~	• ·
	(CONSUMER (197	PRICE INE 1 = 100)	DEXES		
Month	1970*	1971	1972	1973	1974	1975
January		97.7	102.5	108.3	118.1	132.4
February		98.1	102.9	108.9	119.3	133.4
March		98.4	103.0	109.2	120.5	134.1
April		99.1	103.6	110.4	121.4	134.8
May	*	99.5	103.7	111.2	123.4	135.9
June		99.7	103.8	1.12.2	125.0	137.9
July		100.5	105.1	, 113.2	125.9	139.8
August		101.2	/105.9	114.7	-127,1	141.2
September		101.0	106.3	115(4	127.9	141.5
October		101.1	106.4	115.7	129.1	142.8
lovember		101.5	106.7	116.6	130.5	144.1
)ecember"		102.2	107.4	117.2	131.8	J44.3
Annual Averages		100.0	104.8	112.7	125.0	138.5

*Indexes for 1970 were not used because their base year was that of 1961.

Source: Statistics Canada, Consumer Prices and Price Indexes. Catalogue #62-010: Ottawa: Statistics Canada, April - June 1976. p.24.

44

e - -

(

U)

31.

		1910 1977	
Year	Grants from Alberta Department of Agriculture	Plants' Construction Costs	Annual Increase in Construction Costs
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1965 1966 1967 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977	13,000 13,000 13,000 13,000 13,000 13,000 13,000 13,000 13,000 13,000 14,000 15,000 15,000 16,000 16,000 17,000 17,000 17,000 17,000 17,000 17,000 17,000 17,000 20,000 20,000 20,000 25,000 27,500 28,500 34,000 90,000 116,660	39,000 39,000 39,000 39,000 39,000 39,000 39,000 42,000 42,000 45,000 45,000 45,000 45,000 51,000 51,000 51,000 51,000 51,000 51,000 54,000 60,000 72,000 75,000 82,500 102,000 108,000 144,000 270,000 349,980	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 3,000\\ 0\\ 3,000\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$

CONSTRUCTION GRANTS AND COSTS FOR ALBERTA PLANTS 1948-1977

5. Note:

<u>.</u>

From 1948 to 1975, the Alberta Department of Agriculture, the flocal municipality, and the co-operative concerned, each contributed one-third of the construction costs of the plant. However, the maximum agriculture grant from December 26, 1975 to 1980 is \$15,000. Therefore, the amount of \$116,660 for 1977 represents one-third of the construction costs which the plants would have received, and not the actual grants given to them that year.

CONSTRUCTION GRANTS* FROM THE ALBERTA DEPARTMENT OF AGRICULTURE TO THE SELECTED LARGE VOLUME ALBERTA SEED CLEANING PLANTS

Name of Pla	ant	Grant in \$		Year
Beiseker		15,000		1957
Boyle "	•	24,600 10,960		1967
n	c	3,300	• 0	. 1975
Fairview	* (*	17,000		1967
Falher	basen ₽	2 17,000	\diamond \sim	• 19 60
Innisfail "	 3 	, 16,000 15,000	v	1959 、1976
Nanton		, - 16 , Ω00		1959
Provost	£	17,000 15,000		1960 1976
Rycroft 🔗	، در بار روی ا	17,000		1960
Stony Plain	3	14,000 15,000,	÷,	1955 1976
Strathmore "	· ·	15,000 - 11,250 - 50,416		1957 1973 1975
Grimshaw "		17,000 9,403		1962 1975

 \mathcal{W}

Note: These grants were used in either the initial construction, or in the renovation of buildings and machinery for the above selected plants.

C.4

ŝ,

CONSTRUCTION GRANTS FROM THE ALBERTA DEPARTMENT OF AGRICULTURE TO THE SELECTED SMALL VOLUME ALBERTA SEED CLEANING PLANTS

٨

		· ``
Name of Plant	Grant in \$	Year
Bentley	17,000	10(1
Blackie	15,000	1961
"	8,000	1955 1970
Coronation	18,000	1964
Edgerton	.20 , 000	1966
Enchant	25,000	1968
Forestburg	20,000	· 1966
Gibbons	17,000	. 1963
Holden	17,000	. 1963
Medicine Hat	18,000	•
Okotoks "	16,000 4,494	• 1964 1959
Ponoka	17,000	1976
Queens town		~ 1962
Rosebud	17,000	. 1960
Vegreville '	13,000	1952
Vulcan	13,000	1952
Warburg	16,000	1958
Delia	18,000	1964
	17,000	1962
High Prairie	20,000	1966

Note: These grants were used in either the initial construction or in the renovation of buildings and machinery for the above selected plants.

.

.

		Machinery		Plants'
Name of Plant	Indent 💭	Wind and Screen	Precision Grader	Capacity Bushels/Hour
Barrhead	ST4B	CR	· · · · · · · · · · · · · · · · · · ·	150*
Beiseker	ST4A	. CR #M5472	HC6	150
Boyle	HC #SG22	CL #248DH	-	150
Fairview	2HEU	CR #M5472	_	187**
Falher	ST4B	CL #248DH*	_	150
Innisfail	ST4B	CL #248DH -	HC6	150
Vanton	2ST4B	CL #248D	lica	187
Provost	ST4B	CR #M588	_	· 150
Rycroft	ST4B ·	CL #248DH	HCC	150
Stony Plain	HEU	CL	1.1.1	150
Strathmore	ST4B	CL #248DH		150
Grimshaw	HEU #SG22	CL #M588		150

SELEGTED LARGE VOLUME PLANTS' SEED CLEANING MACHINERY AND CAPACITY (1970-1975)

Legend for Manufacturing Companies

 \mathbf{S}

CL: Clipper CR: Crippen HC: Hart Carter

HEU: Hart Emerson Uniflo ST4: Superior Terminal Four

*150 bushels (as used in Tables 1.8 and 1.9,) is the optimum amount of seed which plants can clean per hour to achieve high quality planting seed and still allow enough time for cleaning the machines. The average number of bushels to be cleaned per hour, given in a report on "Evaluation of Seed Cleaning Machines;" by Krishan Kunar Chawla (pp.32-36,) is approximately 170 bushels, if the machines are working one hour continuously. The figure of 150 bushels/hour was recommended by the Engineering Division of the Alberta Department of Agriculture. The plants' capacity per eight-hour day is 1,200 bushels, and the annual capacity for 220 workdays, working one shift (8 hours) is 264,000 bushels, working two shifts (16 hours) is 528,000 bushels, and working three shifts (24 hours) is 792,000 bushels of seed.

**Plants with two indents should be able to increase their capacity by 25%. Their capacity is therefore 187 bushels per hour. The plants' annual capacity for 220 workdays, working one shift (8 hours) is 329,120 bushels, working two shifts (16 hours) is 658,240 bushels, and working three shifts (24 hours) is 987,360 bushels of seed.

- Table B-11

		Machinery		Piants'
Name of Plant	Indent	Wind and Screen	Precision Grader	Capacity Bushels/Hour
Bentley	ST4B	CL #248DH	НСб	150*
Blackie	HEU	CL #248DH	HC6	150
Coronation	HEU #SG22	CL #248DH	_	150
Edgerton	ST4B	CL #248DH	-	150
Forestburg	HEU	CL	HC6	150
Gibbolis	HEU #SG22	CL #248DH	-	150
Holder	HEU #SG22	CL #248DH	HC6	150
Mediçine Hat	HEU #SG22	CL #248DH	HEU	150
Okotoks .	ST4B	CL #248DH	_	150
Ponoka	ST4B	CL #248DH	HC6	150
ueenstown	HEU	CR	HC6	150
Rosebud	HEU #SG22	CL #248DH	HC6	150 150
egreville	ST4B	CR #M5472	_	150
ulcan	ST4B	CR #M5472	SD	150
arburg .	HEU #SG22	CL #248DH	-	150
elia	HEU #SG22	CR #M5472	HC6	150
igh Rrairie	HEU #SG22	CL #SG22		150

ø

Ġ

SELECTED SMALL VOLUME FLANTS' SEED CLEANING MACHINERY AND CAPACITY (1970-1975)

.

Legend for Manufacturing Companies

.

CL: Clipper CR: Crippen HC: Hart Carter HEU: Hart Emerson Uniflo SD: Simon Day ST4: Superior Terminal Four

*See footnote * on Table B-10

.

RESERVES FOR THE SFLECTED LARGE VOLUME ALBERTA CO-OPERATIVE SEED CLEANING PLANTS (1976-1975) -Table 3-12

.

ł

Ċ.

				1971	-	1972						- 1
Name AF ONEN		Other						1973	-	1974		1 -
Halle OT Plant Reserves+	Reserves*	Current Assets**	2956 LVeS	Other Current Åssets	Reserves	0ther Current	Reserves	Other furrent		Other		6/61
Barrhead	25.363	10 575				Assets		Assets	"ESERVES	Gurrent åsser	Reserves	
Rafrober			35,229	\$,713	35.789	130 3					•	
Lavacia	31,000	27,000	310			100.0	•	1	!			1
Boyle	20,000		-	0c1 * /r	46,242	26,660	i				;	
- -	50°,000	4,333	5,000	PAG				!	41,000	50,072	112 61	
Fairview	5 000			5	D	9.518	;				C/C111	
-		14,601	. 5,000	18,144	14 777			4	4, 1/1	1.8.1	3.175	
rainer	366	407				110, 51	;	!	14 000			
lnnicfsij			366	7,555	. 366	3 265				10,531	13,000	
	11,100	17,082	14.210	613 P[8.5	;				11 222	
Nanton	10 523			510.41	10,045	13,994	`;	_			dd2.c1	
		18,853	19,480	22.906	371.11			;	0	42.733		
rrovost	45,000	28.312	45,000			662.01	:	;	;			
Rycroft			000.54	31,504	56.231	19.364				1	43,232	
	!	;	20,794	16.740	241 00		1	!	52 ,864	22,8:2	63 Tra	
Stony Plain	!	!	220 20			10,170	;	1	20 570		,	
Strathmore			120,10	19,438	79,007	. 26.71				691.63	20,570	
,	DCD.02	28,049	16,050	30.635	16 050		1	!	;	1	;	
Grimshaw	8, 196				10,050	37,10,	1					
		147.0			6.354			1	20	37,797	50	
						0,341	;	;	24 535			

** Other current assets include cash, accounts receivable, inventories at cost, accited interest receivable, , and precaid expenses. ch include bank savings accounts, term deposits, etc.

+ (--) Figures were not available.

. ,

A

	-	RESE	RESERVES FOR THE	FOR THE SELECTED SMALL	SMALL VOLUME	L VOLUME ALBERTA CC (1970-1975)	CO-OPERATIVE SEED CLEANING PLANTS	SEED CLEANI	NG PLANTS			
	5	970 .	5	1971	1972					-	•	
	.	Other					161	~7	1974	Ŧ	1975	5
Name of Plant	Reserves*	Current Assets**	Reserves	Other Current Assets	Geserves	Other Current Assets	Reserves	Other Current	Reserves	Other Current	d	Other
Bentley	3,005	12.371	200							Assets	Salacau	Lurrent Assets
Blackle	+		500°C	9,021	:	:						
Coronation	13,339	7.797	151285	6,786	102	7,537	: :	: :	3,005	16,071	S	31 975
Foresthurs	5,300	9,488	2,173	14/ 14/ 8 25/	13,847	16,012	1	; ;		;;;	5,400	19.063
Gibbons ⁻	13,000	12,931	13,000	13.740	10,720	7,812	;	;	20,000	19,566	47,872	14,235
tolden	302.1	19,775	5,389	11,530	5.767	10,455 110	;	.		522,01	0	36,335
Medicine Hat	12 052		12,836	27,334	14 163		;	;	5.306	10 200		33,420
Okotoks		13,260	12,052	20.312	15 062	· · · · · · · · · · · · · · · · · · ·	;	ļ		067.31	5°306	121, 2
Ponoka		8,797	5,000	030, 6		025.22	;	;	35.096	19 510		:
Jueens town	nnn . n	b , 6U3	3,000	7,712	3.030	0, 1/4	:	;		610171	28, 396	22,224
Rosebud	28,740	- CC [[24,726	5,714	24.711		1	:	3,000	12 167	ີ ເ ເ	10,375
/egreville	21.207	190,11	11,693	12,913	20.630	067,01	;	1	: ;		5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12,865
Vulcan .	25.732	23 60E	21, 315	10,918	21,729	8 076	;	;	10,000	27.450		2235
Warburg .			4, FU3	46.480	32, 6.11	16 011	:	:	;		010	517.17
Delia	11.550	12 451	16 170	21,274	10,795	9.169	, ;	, 1	37,126	14,534	; ,	:
High Prairie	13,160	5 168		13,259	20,550	13.350	:	;	13,000	17,619	14 2.5	1. C C C C C C C C C C C C C C C C C C C
			14,101	9,653	15,15	11, 303	: :	:	32,476	4,274		10,140 11,140
								;	15,571	9,535	21.505	
* Decomos								-				

Table 8-13

۲

. .

.

۰÷., .

Reserves are the plants' investments, which include bank savings account, term deposits, etc.

ļ

.

** Other current assets include cash, accounts receivable, inventories at cost, accrued interest feceivable, and prepaid expenses.

t (--) Figures were not available.

• •

ł

89

Table	B-14
-------	------

1	0
NÉT EARNINGS ALBERTA CO	FOR TWELVE SELECTED LARGE VOLUME -OPERATIVE SEED CLEANING PLANTS (1970-1975)

Plant Code	1970	1971	1972	1973	1974	1975	
13	(445)*	2,407	4,372	1,135	(2,765)	1,404	
55	1,930	4,172	6,221	9,520.	9,695	1,824	
12	**	~-	,664	0	(7,104)	3,035	
04	(6,264)	2,833	1,252	3,435	(4,048)	1,063	
07		0	0	0	0	18,316	
49	2,282	4,777	3,426	1,908	- 6,752	10,629	
62	3,793	4,837	4,680	6,147	3,742		
41	•	4,400	2,449	12,330	9,432	6,956	
06		0	0	0	1,805	(674)	
26	5,924	7,050	3,585	213	4,979		
58	848	997	_ <u>`</u> _		6,862	(4,162)	
02		. / 0	0.	1,216	· 209		

* Figures in parentheses represent a Joss.

** Figures missing.

Source: Annual Financial Statements of Alberta Seed Cleaning Co-operative Plants, 1970-75. 90

.

Table	B-15
-------	------

NELE	ARNINGS	5 FOR	SEVENTEEN SELECTED SMALL VOLUME	
AL	BERTA C	0-0PF	ERATIVE SEED CLEANING PLANTS	
			(1970-1975)	

Plant Code	1970	1971	1972	1973	1974	1975
48	2,141	2,608	*	(1,539)**	4,023	7,242
6 0	(86)	(1,576)		, 	414	2,839
45		(2,363)	4,147	3,672 ·	4,005	3,028
40		(200)			2,458	(3,242)
43		1,584	2,814	7	3,661	3,227
19 .			(1,661)	1,014	1,620	
32	665 .	5,070	(350)	(1,056)		
72	(2,033)	2,254	1,861	1,216	4,541	3,168
59	(1,313)	(271)	(4,070)	(1,41.4	6,521	1,975
41	(6,075)	(2,028)	(3,029)	(4,174)	5,662	4,218
61			813	1,113	3,110	472
56	3,716	(505)	2,027	488	8,363	2,309
28	167	523	(1,478	480		_,005
63	5,403	2,648	1,191	6,023	566	
34	1,515	(420)	(2,720)	2,975]	222
52			581	1,116	(218)	2,725.
08		3,740	0	177	· 0	(2,464)

* Figures missing.

.

.....

ŧ,

** Figures in parentheses represent a loss.

Source: Annual Financial Statements of Alberta Seed Cleaning Co-operative Plants, 1970-75.

.

•--

1970 1971 19.029 19.054 15.800 16.150 22.305 17.850 28.150 21.350 21.350					`					
	1	1973	1974	1075			Jepreciatio.	iatic-		
				CIET	1970	1371	:372	£75:	276:	:975
	50 :6,150	15,800	22,139	; ;	2,545	;	2.153	000 0		
		;	23,900	23,150	2,735	;	2 2 2 2	2.735	545 °	;
		; ;			4.210	; ;		;	4.577	5.212
		17.750	002, 22	22,650		: :	, , , , , , , , , , , , , , , , , , ,			
		:	13, 300	19 600		:	3,127	11,133	;	10,405
		;	;	1,500		!	3.00	3,178	3.072	•
		15 176	25,350	25,100		: :		:		201 - C
		35,150	35 150	;		1	יי יי יי		9, 293	5.0.6
		. ;		16 750		3,309		200		į
				DE / * AT		;	1 1 1 1		2,5,5	:
		: :	;	;		;		;	;	4,538
		;	:	1		120 5		1	;	:
20.250 10 200	1 27,039	:	: :	1		101	ייר היי די	!	:	:
		1	;			2,571			;	ł
		` ¦	:			;	525.0	;		:
		!	:	;		ł	:	;	; ;	;
		;	;			1 C	2,375	:	;	:
		; ;		1		57. 1971	-1 6	!	!	
		: :		:			~ ~	!	:	;
				:			2	;	1	:
		1		;		, ,			:	
		:		;		;	/ • • • •	:	;	
		:				011.1	2-1 - 1		1	:
		•				? : :	6,1,10 1,0,10 1,0,10		2,433	
		;	: ;	18./CD 20.303		;		266,2	2.346	5.330 '
		1	,			;	1		026.3	5,521

SIVARE CAPITAL AND DEPRECIATION FOR 29 SELECTED ALBERTA PLANTS, 1970 - 1975

Table 8-16

.

•

1

.

'n Source: Seed Cleaning Plants' Annual Finarcial Reports. doke.

•

-

.

,

•

• 1

ç

١