The Build Dependency perspective of Android’s Concrete Architecture

Wei Hu, Dan Han, Abram Hindle, Kenny Wong
University of Alberta
Department of Computing Science
Edmonton, Canada
{whu4, dhan3, abram.hindle}@ualberta.ca, kenw@cs.ualberta.ca

Abstract—Android is an operating system designed specif-
ically for mobile devices. It has a layered architecture. In
this paper, we extract Android’s concrete layered architecture
by analyzing the build dependency relation between Android
sub-projects and use it to validate the proposed conceptual
architecture. Our experiment shows that Android’s concrete
architecture conforms to the conceptual architecture. Fur-
thermore, we show that the extracted architecture conveys
more valuable information than the conceptual architecture
and further demonstrate its potential benefits in studying the
impact of changes.

Keywords-Dependency; Android; Architecture;

I. INTRODUCTION

Android is an operating system designed specifically for
mobile devices. It has a layered architecture. As shown in
Figure 1, Android’s conceptual architecture consists of four
layers: Applications, Application Framework, Libraries and
Android Runtime and Linux Kernel. Linux Kernel layer
provides core system service like memory management and
driver models; Android Runtime layer is built on the top
of the Linux Kernel layer and hosts Java Virtual Machine
and Java core programming library; Libraries layer provides
a set of C/C++ libraries used by other system components;
Application Framework layer offers a development platform
for developers and manages upper layer applications; Appli-
cations layer consists of Java applications that are built on
the top of Application Framework layer [1].

In a layered architecture, the build and execution of upper
layer components must depend on lower layer components
[2], [3]. Hassan et al in [2] and Grosskutth et al in [3]
leverage such dependency relations to validate and refine
the proposed conceptual architecture. They use the depen-
dency relations to discover concrete software architecture
and subsequently compare the concrete architecture with
the conceptual architecture. Wermelinger et al in [4] also
build Eclipse Plugins’ concrete structure using dependency
relations.

In this paper, we infer Android-4.0.1’s concrete architec-
ture by analyzing the dependency relations between Android
sub-projects and use the concrete architecture to validate the
conceptual architecture in [1]. The extracted concrete archi-
tecture follows the development view in [5] since it focuses
on the software modules in the development environment.

The reminder of this paper is organized as follows: In
Section II we describe how we extract the Android’s con-
crete architecture from build dependency relations. Then in
section III, we present our experiment results with a depen-
dency DAG (directed acyclic graph), compare the Android’s
concrete architecture against the conceptual architecture and
demonstrate the extracted concrete architecture’s potential
benefits. Finally in section IV, we end this paper with
conclusion and future work.

II. EXTRACT CONCRETE ANDROID ARCHITECTURE

German et al in [6] originally defines the concept of
inter-dependencies as a package as “the set of packages that
are required to build and execute the package, but are not
distributed with the original application”.

Take the case of Android system, it has a set of sub-
projects that are combined in a fashion that each sub-project
has a separate folder and also a separate build system but
its build and execution may require the build of other sub-
projects (like the execution of applications written in Java
requires the build of Android Java Virtual Machine). In this
paper, we denote dependencies of a sub-project of the set of
sub-projects that are required to build that sub-project.

To extract the Android’s concrete architecture, we first
identify the dependency relations, relate sub-projects to their
dependencies and then visualize the Android layered archi-
tecture with a dependency-DAG (directed acyclic graph). As
shown in Figure 2, the process for extracting the Android’s
concrete architecture consists of the following steps:

A. Build from source code to generate the build trace

As Android-4.0.1 employs “make” [7] to build the sub-
projects, we compile the non-kernel source code using
“make” in its debugging mode to get the build trace.
The exact debugging flags we use is “-w -—-debug=v
—--debug=m -p”.

Since the Android kernel has its own build system and
the build of kernel does not interact with the non-kernel
source code, we only compile and mine the Android-4.0.1
non-kernel source code in this paper.

B. Identify the file level dependency relations

We use MAKAO [8] (a reverse-engineering framework
for build systems) to automatically analyze the build trace

APPLICATIONS

Contacts

Browser

APPLICATION FRAMEWORK

Window

Activity Manager Manager

Package Manager ey

LIBRARIES

Surface Manager Frat‘nee"ini-‘acrk SQlLite

OpenGL | ES

SGL SsL

Resource
anager Manager

FreeType WebKit

Content View
Providers System

Location Netification
Manager Manager

ANDROID RUNTIME

Core Libraries

oV ™

Machine

Linux KERNEL

Display

Driver Camera Driver

Keypad Driver WiFi Driver

Flash Memory Binder (IPC)
Driver Driver

Audio Power
Drivers Management

Figure 1: Android’s Conceptual Architecture. [1]
This figure is reproduced from work created and shared by the
Android Open Source Project and used according to terms described in the
Creative Commons 2.5 Attribution License.

of Android to discover the dependency relations between
files. After gaining the knowledge of file level dependency
relations and files mapped to sub-projects, we subsequently
identify the dependency relations between sub-projects.

C. Infer the dependency relations between sub-projects

We infer the dependency relations between sub-projects
from the known file level dependency relations. To better
explain the identify process, we use Figure 3 as an example.
In Figure 3, the concrete directed lines represent build
dependent relations between objects and the dashed directed
lines stand for dependency relations between sub-projects.
For example, the red line labeled with “depend” means the
the build of object baz depends on the object foo.o.

Theoretically, sub-project foo can be identified as sub-
project bar’s dependency if the build of sub-project bar
depends on objects in the folder of sub-project foo. However,
in Android, instead of keeping the intermediate object files
locally in its own folder, each sub-project outsources the
generated binaries and libraries to a particular public folder
called “out”. So in the case of Figure 3, instead of depending
on the objects in sub-project foo’s folder, the build of sub-
project bar requires the build of object foo.o which was
originally generated by sub-project foo but is now being
placed in folder “out”.

To handle the offloaded intermediate object files, we adopt
a slightly-modified identification algorithm. At a high level,
We mark sub-project foo as sub-project bar’s dependency
if there exists an object baz in folder “out” such that the
production of baz depends on libraries and headers (.o, .so,
.h and .jar files) from sub-project foo and source files (.java,

source build file subproject
code trace dependency dependency
[make |——[MAKAO |——— Infer

Figure 2: The process for extracting the Android’s concrete
architecture.

folder “out”

project foo

projectbar

Figure 3: Infer the dependency relations between
sub-projects.

.c and .cpp files) from sub-project bar. In this case, sub-
project foo is a dependency of sub-project bar.

III. EXPERIMENT

Our algorithm extracts the dependency relations among
90 sub-projects out of 240 sub-projects. The generated
dependency DAG (directed acyclic graph) is processed by
GUESS [9] (an exploratory data analysis and visualization
tool for graphs and networks) and is shown in Figure 4.

In Figure 4, each node represents one sub-project, each
directed edge indicates one sub-project connects to one of its
dependencies. We manually classify the 90 sub-projects into
the class of applications, application framework, libraries,
android runtime and linux kernel by their functionality.
In this figure, blue nodes represent Framework layer sub-
projects; Pink nodes represent Java Core Programming Li-
brary; Yellow nodes represent Dalvik, which is Java Virtual
Machine; Purple nodes represent Applications layer sub-
project; Red nodes represent the prebuilt kernel binary that
is shipped together with the platform source code and Green
nodes represent Libraries layer sub-projects.

A. Discussions

What does the Android’s concrete layered architecture
look like?

o Most of the applications depend on sub-project “frame-
workBase” at application framework layer and sub-
project “libCore” at runtime layer; Part of the appli-
cations depend on sub-projects at libraries layer and
prebuilt kernel binary.

This observation verifies that applications are built on
the top of the application framework layer, runtime
layer, libraries layer and linux kernel layer.

o Most of the sub-projects at application framework layer
depend on sub-project “libCore” at runtime layer,
part of the sub-projects at application framework layer
depend on prebuilt kernel binary and one application
framework layer sub-project “mock” depends on sub-
project “javassist” at libraries layer
This observation verifies that application framework
layer is built on the top of the libraries layer, runtime
layer and linux kernel layer.

o Part of the sub-projects at libraries layer depend on
sub-project “libCore” at the runtime layer and part of
the sub-projects at libraries layer depend on prebuilt
kernel binary
This observation verifies that the libraries layer is built
on the top of the linux kernel layer

o Sub-project “Dalvik” depends on prebuilt kernel binary
This observations verifies that the runtime layer is built
on the top of the linux kernel layer

o There exists no lower layer sub-project whose build
depends on an upper layer sub-project
In terms of “upper” and “lower”, we mean the layer
defined in Android’s conceptual architecture

The extracted Android’s concrete architecture, or to say
the dependency DAG, actually validates the conceptual
architecture in [1]. All the upper layer is built on the top of
the lower layer and there exists no lower layer sub-project
whose build depends on an upper layer sub-project.

What is the potential benefits of the extracted Android
concrete architecture?

70

50
1

Total
40

20 30
1

10
1

o :D.:.:_I:I
0 1 2 3

4 5 [} 7

of dependencies

Figure 5: Bar Chart of the number of sub-projects with a
given number of build dependencies.

o The Android’s concrete architecture provides more in-
formation for developers and users than the conceptual
architecture does.

Although the Android’s conceptual architecture is validated
by the extracted concrete architecture, it provides only
general layer-level dependency relations. In other words, it
does not specify any particular sub-project’s dependencies.
Furthermore, there are only 16 non-kernel sub-projects in-
volved in the conceptual architecture in Figure 1.

« The dependency relation is valuable for understanding

the impact of changes
Simply put, changes in a sub-project may affect sub-projects
that depend upon it, consequently the change in the bottom
of the dependency DAG may traverse upwards to affect the
top sub-project. So the dependency DAG provides meaning-
ful information for understanding the impact of changes.

In order to measure the impact of change, we count how

many dependencies (directly and transitively dependent)
each sub-project has by performing a depth-first search on
the dependency DAG. The heavily skewed distribution of
dependencies is depicted in Figure 5. It implies that most of
the sub-projects have four dependencies.

Table I: Top four most common dependencies

number of sub-projects depend upon it

Project name

platform/frameworks/ex 65
platform/frameworks/base 65
platform/libcore 71
platform/prebuilt 76

Correspondingly, we find out the top four most com-
mon dependencies (directly and transitively dependent)

calendar,

DownloadPrc
diff-match

mailcommon,

FrameworkSupport,

rebuilt,

® Framework

® Libcore
Dalvik

@ Application

® Kernel

@ Library

Figure 4: Sub-projects dependency DAG (directed acyclic graph).

in the process of depth-first search and show it in Ta-
ble I. Sub-projects “platform/frameworks/ex” and “platfor-
m/frameworks/base” provides basic application framework
service; “platform/libcore” is the Android Java core pro-
gramming language library and “platform/prebuilt” is the
prebuilt kernel binary. So these four projects actually provide
the basic service for other Android components and thus are
depend upon by the most majority of Android sub-projects.
Also, bugs in these top four sub-projects may affect the most
majority of the Android sub-projects.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have mined the Android concrete archi-
tecture. From the extracted concrete layered architecture, we
validate that the Android’s concrete architecture conforms
to the conceptual architecture. Furthermore, we showed
that the concrete architecture provides more information
than the conceptual architecture offers and demonstrated
the extracted concrete architecture’s potential benefits in
studying the impact of changes.

In the future, we plan to extend our work from project
level dependency relation mining down to file level depen-
dence relation mining. Since in the building, the source
files propagate information from the bottom dependencies
to the top dependent objects, we can study the information
aggregation and distribution during the build process in a
social-network perspective.

ACKNOWLEDGMENT

Thanks to Eleni Stroulia for her valuable comments.

(1]
(2]

(3]

[4]

(5]

(6]

(7]
(8]

(9]

REFERENCES

Android developer guide. [Online]. Available: http://developer.

android.com/guide/basics/what-is-android.html
A. Hassan and R. Holt, “A reference architecture for web

servers,” in Reverse Engineering, 2000. Proceedings. Seventh
Working Conference on, 2000, pp. 150 —159.

A. Grosskurth and M. Godfrey, “A reference architecture for
web browsers,” in Software Maintenance, 2005. ICSM’05.
Proceedings of the 21st IEEE International Conference on,
sept. 2005, pp. 661 — 664.

M. Wermelinger and Y. Yu, “Analyzing the evolution of eclipse
plugins,” Data Processing, p. 133, 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1370750.1370783

P. Kruchten, “The 4+1 view model of architecture,” IEEE
Softw., vol. 12, pp. 42-50, November 1995. [Online].
Available: http://dl.acm.org/citation.cfm?id=624610.625529

D. German, J. Gonzalez-Barahona, and G. Robles, “A model
to understand the building and running inter-dependencies of
software,” in Reverse Engineering, 2007. WCRE 2007. 14th
Working Conference on, oct. 2007, pp. 140 —149.

F. B. Laboratories and S. I. Feldman, “Make — a program for
maintaining computer programs,” vol. 9, pp. 255-265, 1979.
B. Adams, K. De Schutter, H. Tromp, and W. D. Meuter,
“Makao (demo),” in Proceedings of the 23rd International
Conference on Software Maintenance (ICSM), L. Tahvildari
and G. Canfora, Eds. Paris, France: IEEE Computer Society,
October 2007, pp. 517-518.

E. Adar and M. Kim, “Softguess: Visualization and exploration
of code clones in context,” in In the proceedings of the 29th
International Conference on Software Engineering (ICSE07),
Tool Demo, 2007, pp. 762-766.

