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Abstract

In this work we will construct the table of irreducible characters for the group of

unitary 2 x 2 matrices over a finite field. The table and the methods for its construc-

tion will show interesting connections to the table and methods of construction of

the table of irreducible characters for the general linear group.
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Introduction
The irreducible characters of GL2(Fq) are well known, being given for example
in Fulton and Harris[FH]. Less well known are the irreducible characters of the
subgroup of unitary matrices; they are stated, tersely and without much explication,
in the 1963 paper “On the Characters of the Finite Unitary Groups” by Veikko
Ennola[E], in Annales Academi Scientiarum Fennic Mathematica. The aim of the
present work will be to construct and fully justify the character table for U2(Fq2),
hereafter denoted G. One of the chief difficulties in this task is the determination
of the conjugacy classes, as in the unitary group we cannot exploit the Jordan form
or rational canonical form of a matrix. Although there is no simple connection
between the conjugacy classes of a group and those of its subgroups, we will see a
very close resemblance between the forms of conjugacy class representatives of the
general linear group and those of the unitary group. In addition, we will find that
characters of the two groups have, in a loose sense, the same dimension, and that the
character values of conjugacy classes with similar forms are the same. Finally, we
will see that the methods used for discovering the characters for the general linear
group have their almost exact counterparts for the unitary group.

Arguments concerning finite fields sometimes require special treatment where
the characteristic of the field is 2. In this work the several modifications for p = 2

will be put in a separate chapter in order to preserve continuity of the main argu-
ment.
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Representations and Characters
We will begin by recalling some facts about representations and characters. We
follow Fulton and Harris here, and assume that in all cases G is a finite group.

Let V be an n dimensional complex vector space. We define a representation

of G on V to be a homomorphism ρ : G → GL(V ) from G into the group of
automorphisms of V . When ρ is understood, V itself is sometimes called the repre-
sentation. If W is a subspace of V such that for all g ∈ G,w ∈ W : ρ(g)(w) ∈ W ,
then we say that W is a subrepresentation of G. A representation V is called irre-

ducible if it has no proper non-trivial subrepresentations. The concept of irreducible
representation is important because it can be shown that any representation is the
direct sum of irreducible representations, so that we need only seek irreducible rep-
resentations of a group.

A tool that has proved useful in understanding representations is that of charac-
ters. Given a representation V ofG, we define the character of V to be the complex
function χV on the group given by χV (g) = Tr(ρ(g)), i.e. the trace of ρ(g) on V .
It is clear that the character value of g does not depend on a choice of basis, and
also that character values are constant on conjugacy classes of G, i.e. it is a class

function of G. If we denote by C the space of class functions on G, then we can
define a Hermitian product on C. If α and β are two class functions on G, we define
(α, β) = 1

|G|
∑

g∈G α(g)β(g); it can be shown that a representation V is irreducible
if and only if its character χV satisfies (χV , χV ) = 1. In this work, we are aiming
at the complete table of irreducible characters of the unitary group; it can be shown
that the number of such characters is equal to the number of conjugacy classes of
G.

Finally, we recall the concept of induced representations.1 Given a subgroup
H ofG, we can restrict any representation V ofG to a representation ofH , denoted
ResGHV . We would like to be able to go the other way, i.e. given a representation
of H , to recover a representation of G. For the present work we are specifically
interested in taking a character on H and lifting it to a character on G. To see how
this might be done, suppose first that we already have a character on G, and let us

1This part is from section 3.3 of Fulton and Harris
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see what it might mean to lift ResGHV to the original character on G. Let W ⊂ V

be a subspace of V that is invariant under the action of H . Given any g ∈ G, the
subspace gW will depend only on the coset gH that g lies in, since if g′ ∈ gH , then
for some h ∈ H we have g′W = (gh)W = g(hW ) = gW . If for some σ ∈ G/H
we write σW for this subspace, then it may be the case that every v ∈ V can be
written uniquely as a sum of elements of such subspaces, that is V =

⊕
σ∈G/H σW .

If this is the case, we say that V has been induced byW , and we write V = IndGHW ,
or IndW . In the present work, we will have three occasions to induce a character
on G from an existing one on some large subgroup. To find the character values of
IndW , we note that any g ∈ G maps σW to gσW , so that the trace of g will be
calculated using only those cosets σ fixed by g, i.e. if s ∈ σ, we want gσ = σ, or
s−1gs ∈ H so that we get:

χIndW (g) =
∑
gσ=σ

χW (s−1gs), s arbitrary in σ.
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Hermitian Forms and Finite Fields
On a complex vector space V , a Hermitian form is a map H : V × V → C such
that for all u, v, w ∈ V, a, b ∈ C.:

• H(u+ v, w) = H(u,w) +H(v, w)

• H(u, v + w) = H(u, v) +H(u,w)

• H(au, v) = aH(u, v) = H(u, av)

• H(v, u) = H(u, v)

The form is called non-degenerate if for all v ∈ V , there exists a w ∈ V such
that H(v, w) 6= 0, and a vector space having a non-degenerate Hermitian form is
called a unitary space. In order to have such forms on vector spaces over a finite
field, there must be something like conjugation on the field, and it is not obvious
that this is always possible. Therefore in this chapter we will identify those finite
fields that admit a conjugation, and we will examine two important subgroups of
the group of units of the field as well as homomorphisms onto these subgroups, all
of which will figure prominently in this work. In addition, we will show that all
non-degenerate Hermitian forms on finite dimensional vector spaces of the same
dimension are equivalent in a sense that will be defined; this is important since we
shall change forms at times for computational convenience.

0.1 The Field

In what follows, we shall assume the characteristic of the field is odd. Conjugation
in C is an automorphism of order two, thus we must identify those finite fields
allowing such an automorphism. The order of a finite field F is necessarily pk for
some prime p and positive integer k, and the group of automorphisms of the field is
cyclic of order k; therefore F will have an automorphism of order 2 if and only if
k is even. To construct such a field, we begin with any finite field Fq ; q = pk, and
take a quadratic extension of it (unique up to isomorphism) to get Fq2 . This is done
by adjoining to Fq a square root of any generator of F×q .
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Having formed the quadratic extension Fq2 of order q2, we have the automor-
phism α : Fq2 → Fq2 given by α(x) = xq. That this is an automorphism follows
from the prime characteristic of the field; that it is of order two follows from the
fact that the group of units of Fq2 form a multiplicative group of order q2 − 1.

0.1.1 Two Important Homomorphisms on F×q2

There are two important maps on F×q2 that will come up frequently in this work, and
we briefly describe them here:

(i) The norm map, N : F×q2 → F×q2 , is given by N(x) = xx, with kernel denoted
L = {x ∈ F×q2|xx = 1}. Recalling that F×q2 is cyclic of order q2 − 1, let ε be
a generator of this group; then L will be generated by εq−1, since xx = 1 ⇔
xq+1 = 1, and therefore |L| = q + 1. We claim that N(F×q2) = F×q : for any
x ∈ F×q2 , xx ∈ F×q , and the norm map is onto because N(ε) = εq+1, which
has order q − 1 and so generates F×q .

(ii) Another important map is Q : F×q2 → L, given by Q(x) =
x

x
. Its kernel F×q is

of order q − 1; this means there will be q + 1 cosets of the kernel, and since
the order of L is q + 1, we see that the map Q is surjective. We will also find
occasion to use the fact that there are q − 1 elements of F×q2 that map to any
x ∈ L under Q.

0.2 The Hermitian Form for Finite Vector Spaces Over
Finite Fields

Having shown which finite fields can admit order 2 automorphisms, we define Her-
mitian forms on these vector spaces over such fields in the same way as for complex
vector spaces, and we recall a few facts about Hermitian forms that will be impor-
tant in the sequel:

• If we have chosen a basis β = {x1, x2, . . . , xn} for a finite dimensional vector
space V over a finite field, then each Hermitian form H will be associated
with a Hermitian matrix M whose elements satisfy mji = mij . Then for any
u, v ∈ V we will haveH(u, v) = utMv.
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• As is in the case of symmetric bilinear forms, if a Hermitian form H is non-
degenerate on a sub-spaceW of V , (i.e. ifW ∩W⊥ = 0) then V = W⊕W⊥.

• If we change to a new basis β′, with the change of basis matrix P : β′ → β,
then the matrix M of the Hermitian form H will change to M ′ = P tMP .
This motivates the following definition of equivalence of Hermitian forms:
given vector spaces V1, V2 with respective non-degenerate Hermitian forms
H1,H2, we call the forms H1 and H2 equivalent if there exists an isomor-
phism τ : V1 → V2 such that for all v, w ∈ V1,H1(v, w) = H2(τv, τw).

• The following fact is less elementary than the previous three, and thus will
need to be justified, using an argument from Grove (chapter 8) :

If V1, V2 are vector spaces of the same finite dimension, over a fi-
nite field, with respective non-degenerate Hermitian formsH1,H2,
then the two forms are equivalent.

To show this , we begin with the quadratic (Hermitian) form: Q(v) = H(v, v),
and show that if H is non-zero then for some v ∈ V , Q(v) 6= 0. Suppose
the contrary. As H is non-zero, we can choose v, w ∈ V with H(v, w) = 1.
Then supposing Q(v) = 0 for all v ∈ V , let a be arbitrary in F×q2 , so that
calculation gives 0 = Q(v + aw) = a + a. Setting a = 1 implies that the
field characteristic must be 2, but then we have a = −a = a , which is a
contradiction since the conjugation map was to have order 2.

Now we can show that a unitary space has an orthogonal basis {vi} with
Q(vi) = ci ∈ F×q , so that the the matrix for H is diagonal with mii = ci. We
choose v1 with Q(v1) = c1 ∈ F×q , and let W1 =< v1 >. It is clear that H
is non-degenerate on W1, so that V = W1 ⊕W⊥

1 . Proceeding inductively on
W⊥

1 gives the result.

Next we show that a basis exists for V such that the matrix for H will be
the identity matrix. We have shown that the norm map is onto F×q , thus we
take di ∈ F×q2 and didi = c−1i , so that Q(divi) = 1. Finally, to show the
equivalence of forms, suppose that we have unitary spaces V1, V2 with corre-
sponding Hermitian formsH1,H2 . We choose bases so that the matrices for
both forms are identity matrices. Now if P is any matrix (of the right size of
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course) such that P tP = I , then P , together with the identification of the ele-
ments of V1 and V2 with their coordinate vectors, will provide an isomorphism
from V1 to V2 such that for vectors v, w in V1, H1(v, w) = H2(Pv, Pw), and
thus the two forms are equivalent.

All of this justifies our intended use of two forms in this work. The first given by the
matrix

(
0 1
1 0

)
, and the second by

(
1 0
0 1

)
. The notion of equivalence of forms means

that switching between one and the other is only a matter of changing bases.
It is worth mentioning that, using the first form,

(
a b
c d

)
will be unitary if and only if:

ad+ cb = 1

ac+ ac = 0 = bd+ bd

while for the second form we require:

aa+ bb = 1 = cc+ dd

ab+ cd = 0

Finally we note that the great advantage of the form
(
0 1
1 0

)
is that it permits the use

of the upper triangular subgroup of G (the Borel subgroup); the other form does
not.
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The Conjugacy Classes of U2(Fq2)
0.3 Counting the Unitary Group

Let V be a 2 dimensional vector space over Fq2 and let G be the group of unitary
2 × 2 matrices over the same field. We begin by finding |G|: if we take

(
1 0
0 1

)
as

the matrix of our Hermitian form, then A ∈ G will be unitary if and only if for any
u, v ∈ V :

(Au)t
(
1 0
0 1

)
(Av) = ut

(
1 0
0 1

)
v

which implies:

A
t
A =

(
1 0
0 1

)
So that A

t
is the inverse of A. Writing A as

(
a b
c d

)
, the determinant of A as D, and

equating the conjugate transpose with the inverse gives:(
a c

b d

)
=

1

D

(
d −b
−c a

)
,

so that d = aD, and c = −bD. Calculating the determinant in the usual way gives
D = ad− bc = aaD+ bbD ⇒ aa+ bb = 1. Furthermore, since the determinant of
A
t

is the conjugate of the determinant of A, we see thatDD = 1 ( and that there are
therefore q + 1 choices for the determinants of unitary matrices in G). Thus using
the standard Hermitian form

(
1 0
0 1

)
, A will unitary if and only if it is of the form:(
a b

−bD aD

)
where D is of norm 1, and aa + bb = 1. We count |G|, by taking the following
cases:

• if a = 0, then aa+ bb = 1 implies that b is of norm 1, hence there are (q+1)

choices for b. Since there are (q + 1) choices for the determinant, there are
(q + 1)2 such matrices.
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• similarly, if b = 0 there are (q + 1)2 matrices.

• if a and b are both not zero then aa ∈ Fq\{0, 1}, so there are q − 2 choices
for aa, and this determines bb. Then there are q + 1 choices for a (the size of
the cosets of the kernel of the norm map), and q + 1 choices for b. We still
have (q + 1) choices for the determinant, therefore there are (q − 2)(q + 1)3

choices in this case.

Totalling the three cases, we get |G| = 2(q+1)2+(q−2)(q+1)3 = (q−1)q(q+1)2.

0.4 The Conjugacy Classes

Presently, we will show that the eigenvalues of any element of G lie conveniently
in Fq2; for now we note that it allows us to organize the search for conjugacy class
representatives by partitioning the elements of G according to their eigenvalues
thus:

(i) one eigenvalue, and diagonalizable

(ii) one eigenvalue, but not diagonalizable2

(iii) two eigenvalues, neither of norm 1

(iv) two eigenvalues, both of norm 1

Two observations here before proceeding:

• Since the product of distinct eigenvalues equals the determinant which lies in
the subgroup L , then distinct eigenvalues must either both be norm 1, or both
not norm 1.

• In order that the above partition be exhaustive of G, we need to show that all
eigenvalues of unitary 2× 2 matrices over Fq2 lie in Fq2 . We can represent an
element of G by (

a b

−bD aD

)
thus it suffices to show that the discriminant of the characteristic equation is a
square in Fq2 . It is clear that the discriminant is (a+aD)2−4D. SinceD ∈ L,
it is equal3 to x

x
for some x in Fq2 . Thus we can rewrite the discriminant as:

2In the general linear group, this would imply a Jordan form; in the unitary group this is not so.
3This is because the map Q in the previous chapter was surjective
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(ax+ ax)2 − 4xx

x2

The denominator of the fraction is a square, and since the numerator is in-
variant under conjugation it lies in Fq and is thus also a square. Therefore the
discriminant is a square, and the eigenvalues of every element of G lie in Fq2 .

Now we list some conjugacy class representatives, using the Hermitian form(
0 1
1 0

)
unless otherwise indicated. We cannot say at this point that our list is ex-

haustive; for example in item 2 below there could be matrices with one eigenvalue,
not diagonalizable that are not conjugate in the unitary subgroup to an element of
the form

(
x y
0 x

)
. We will know that we have an exhaustive list only when we have

accounted for all of the elements in G.

(i) A =
(
x 0
0 x

)
This requires xx = 1, so that x ∈ L. Therefore there are q + 1

such class representatives. Since each of these is in the center of G, the size
of each conjugacy class is 1, and we have accounted for q + 1 elements.

(ii) A =
(
x y
0 x

)
, y 6= 0. In order forA to be unitary we must have x of norm 1, and

y
y
= −x

x
(from the remark at the bottom of page 11). This last equality means

that y must map to −x
x

under the map Q mentioned in the previous chapter,
and we have remarked that this gives q − 1 choices for y . Thus naively we
have (q + 1)(q − 1) choices for this type of conjugacy class representative.
We will show, however, that

(
x y
0 x

)
∼
(
x z
0 x

)
if and only if y and z are both

sent to the same element under the map Q : F×q2 → L, that is, they are both
in the same coset of F×q , the kernel of the map . As a result there will be only
q + 1 such class representatives:

First let z = ky, k ∈ F×q . Then k = aa for some a ∈ Fq2 since it is in
the image of the norm map. Then we will have

(
x y
0 x

)
∼
(
x z
0 x

)
, using

conjugation by
( a 0
0 1

a

)
.

Next, suppose that
(
x y
0 x

)
∼
(
x z
0 x

)
. Then for some P =

(
a b
c d

)
∈ G,

P−1
(
x y
0 x

)
P =

(
x z
0 x

)
, implying that c = 0 , and also that d = 1

a
. Then

P−1
(
x y
0 x

)
P =

(
x ddy
0 x

)
=
(
x z
0 x

)
, so that z = ky, k ∈ F×q , with k = dd.

The centralizer of
(
x y
0 x

)
is easily seen to be

(
a b
0 a

)
where b is allowed to be

zero, giving q choices for b(since either b = 0 or b and a map to the same
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element under Q), and q + 1 choices for a, since it is in L. Therefore the
centralizer has q(q+1) elements, so that each conjugacy class has |G|/q(q+
1) = (q − 1)(q + 1) elements. This type of class representative therefore
accounts for (q − 1)(q + 1)2 elements.

(iii) A =
(
x 0
0 y

)
, y 6= x. Since x 6= 0, and xx 6= 1, (y 6= x and xy = 1 means

xx cannot be equal to 1) there are (q + 1)(q − 2) choices for x, and y is
determined by x. Now since

(
x 0
0 y

)
∼
(
y 0
0 x

)
in G, using P =

(
0 1
1 0

)
then we

have (q+1)(q−2)
2

such class representatives.

The centralizer of A is the set of unitary matrices of the form
(
a 0
0 d

)
of which

there are q2 − 1 as a 6= 0 , and d is determined by a. Thus the size of each
conjugacy class is |G|/(q2 − 1) = q(q + 1), so that this type of conjugacy
class representative accounts for (q+1)(q−2)

2
q(q + 1) = (q−2)q(q+1)2

2
elements.

(iv) A =
(
x y
y x

)
, y 6= 0 (if y = 0 we have a scalar matrix) A has distinct eigen-

values x± y, and they are norm 1 since, from page 12 we have xx+ yy = 1

and xy + yx = 0; summing these equations shows that x + y ∈ L, while
subtracting them shows x − y ∈ L. To count these class representatives we
assume first that x = 0; this gives q + 1 choices for y ∈ L. If x and y are
not zero, we choose two elements u1, u2 ∈ L, and let x = u1+u2

2
, y = u1−u2

2

so that x ± y ∈ L. Since x 6= 0 6= y, then u2 6= ±u1, giving (q + 1)(q − 1)

choices for this case. In all we have q(q+1) representatives, but we note that(
x y
y x

)
∼
(
x −y
−y x

)
using conjugation by

(
a 0
0 −a

)
where aa = −1, and so we

have q(q + 1)/2 conjugacy class representatives of this type.

The centralizer of A is the set of elements of the form
(
a b
b a

)
where a or b

(but not both) can be zero. Taking cases where only a = 0, only b = 0, and
neither a nor b is zero, we see the order of the centralizer is (q + 1)2, so that
the number of elements in each conjugacy class of this type is |G|/(q+1)2 =

(q−1)q. Therefore this type of conjugacy class accounts for (q−1)q2(q+1)/2

elements.

Totalling the number of elements from our 4 types of conjugacy classes gives:

(q+1)+(q−1)(q+1)2+
(q − 2)q(q + 1)2

2
+
(q − 1)q2(q + 1)

2
= (q−1)q(q+1)2 = |G|

11



Since we have accounted for the number of elements in G, we can say now
that our list of conjugacy class representatives was complete.

Therefore we have shown that the conjugacy classes of the unitary 2 x 2
matrices over a finite field, together with the number of elements in each
class are:

representative no. elements no. classes total elements

ax =
(
x 0
0 x

)
1 q + 1 q + 1

bx,y =
(
x y
0 x

)
, y 6= 0 (q − 1)(q + 1) q + 1 (q − 1)(q + 1)2

cx,y =
(
x 0
0 y

)
, y 6= x q(q + 1)

(q − 2)(q + 1)

2

(q − 2)q(q + 1)2

2

dx,y =
(
x y
y x

)
, y 6= 0 (q − 1)q

q(q + 1)

2

(q − 1)q2(q + 1)

2

Table 1: Conjugacy Class Representatives of G

From the chart the total number of conjugacy classes is (q + 1)2, hence this is the
number of irreducible characters that we must find.
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The Irreducible Characters ofU2(Fq2)
If α : F×q2 → C× is a 1 dimensional character on F×q2 , we can form a 1 dimensional
character on G by sending any A ∈ G to α(det(A)). Since the determinant of a
unitary matrix is of norm 1, there will be q + 1 such 1 dimensional characters, Uα
on G:

representative:
(
x 0
0 x

) (
x y
0 x

) (
x 0
0 y

) (
x y
y x

)
Uα: α(x)2 α(x)2 α(x)α(y) α(x2 − y2)

Next we consider the permutation representation of the coset space of the Borel
subgroup of G: B = {

(
a b
0 d

)
|
(
a b
0 d

)
∈ G}. If b = 0 there are q2 − 1 choices for a

(it just needs to be in F×q2), determining d . If b 6= 0, there are q2 − 1 choices for

a , determining d, and q − 1 choices for b, since bd + bd = 0 implies
b

b
= −d

d
;

this means (using the map Q from page 9) that Q(b) = −d
d
∈ L, so there are q − 1

choices for b. This gives |B| = (q2 − 1) + (q2 − 1)(q − 1) = (q − 1)q(q + 1), so
that [G : B] = q + 1. The coset representatives for B will be elements of the form(
1 0
t 1

)
, together with the element

(
0 1
1 0

)
. Since we are using the Hermitian form with

matrix
(
0 1
1 0

)
we must have t + t = 0. Thus t = 0 or Q(t) = −1 , so there are q

choices in all for t , giving the required number of coset representatives. To show
that these representatives lie in distinct cosets of B, suppose first, that for coset
representatives

(
1 0
r 1

)
and

(
1 0
s 1

)
,
(
1 0
r 1

)−1( 1 0
s 1

)
=
(

1 0
r−s 1

)
∈ B. This implies that

r = s. Next we note that
(
1 0
t 1

)−1( 0 1
1 0

)
=
(
0 1
1 −t

)
∈ B, is impossible; therefore the

previously mentioned elements form a transversal for B.
In the permutation representation of the coset space of B, the character value

of g ∈ G will be the number of cosets σ that g fixes, and gσ = σ is equivalent
to s−1gs ∈ B where s is arbitrary in σ. For convenience, we will use the coset
representative for s. We now consider the fixed point set of each type of conjugacy
class representative:

(i)
(
x 0
0 x

)
: This element is in B, and also in the center of G; thus for all coset

representatives s,

s−1
(
x 0
0 x

)
s =

(
x 0
0 x

)
∈ B
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so that this element fixes all q + 1 cosets of B.

(ii)
(
x y
0 x

)
, y 6= 0: Since this element is inB, it certainly fixesB (with conjugation

returning the original element, since we can take the identity matrix as the
coset representative); to show that it fixes no other coset, we consider two
cases:

• if s =
(
1 0
t 1

)
t 6= 0, then s−1 =

(
1 0
−t 1

)
, and s−1

(
x y
0 x

)
s =

(
x+ yt y

−yt2 x− yt

)
This is not in B, since both y and t are not zero.

• if s =
(
0 1
1 0

)
, then s−1 = s, and s−1

(
x y
0 x

)
s =

(
x 0
y x

)
which is not in B

since y 6= 0.

Therefore this type of element fixes 1 coset of B.

(iii)
(
x 0
0 y

)
, y 6= x : This element is in B, and therefore fixes it, and conjuga-

tion (by say, the identity matrix) just returns
(
x 0
0 y

)
. But if s =

(
0 1
1 0

)
then

s−1
(
x 0
0 y

)
s =

(
y 0
0 x

)
, which is in B. On the other hand if t 6= 0:

(
1 0
−t 1

)(
x 0
0 y

)(
1 0
t 1

)
=

(
x 0

yt− xt y

)

which is not in B since yt − xt = 0 implies y = x. Therefore this type of
conjugacy class representative fixes 2 cosets of B.

(iv)
(
x y
y x

)
, y 6= 0: This element has distinct norm 1 eigenvalues, as will s−1

(
x y
y s

)
s

for any coset representative s. This last expression cannot be in B then, since
for
(
a b
0 d

)
∈ B, if aa = 1, then d = 1

a
= a. Therefore this element fixes no

cosets of B

We subtract the character of the trivial representation from that of this permutation
representation to get an irreducible character V , of dimension q:

(
x 0
0 x

) (
x y
0 x

) (
x 0
0 y

) (
x y
y x

)
V: q 0 1 −1

14



Now we can tensor4 V with Uα to get an irreducible character of dimension q:
Vα = V ⊗ Uα :

representative:
(
x 0
0 x

) (
x y
0 x

) (
x 0
0 y

) (
x y
y x

)
Vα: qα(x)2 0 α(x)α(y) −α(x2 − y2)

There are q + 1 such characters because there are q + 1 of the form Uα.
The next character comes from inducing a 1 dimensional character on B.

We start with 1 dimensional characters α, β on F×q2 . Using these, we get a 1
dimensional character φ, on the diagonal subgroup {

(
a 0
0 d

)
|
(
a 0
0 d

)
∈ G} where

φ[
(
a 0
0 d

)
] = α(a)β(d). This character can be lifted to B by sending

(
a b
0 d

)
to

α(a)β(d); calculation shows that this is indeed a character on B, and it is this
character that will be induced to G. From previous work we know :

•
(
x 0
0 x

)
fixes all q+1 cosets ofB, and for any coset representative s, s−1

(
x 0
0 x

)
s =(

x 0
0 x

)
since this conjugacy class representative is in B and in the center of G,

therefore the induced character value of
(
x 0
0 x

)
is (q + 1)α(x)β(x).

•
(
x y
0 x

)
fixes only B and s−1

(
x y
0 x

)
s =

(
x y
0 x

)
, so that it will have an induced

character value of α(x)β(x).

•
(
x 0
0 y

)
fixes B (with conjugation giving the original element) and

(
0 1
1 0

)
B,

and in the latter case, it becomes
(
y 0
0 x

)
after conjugation, so that the induced

character value here is α(x)β(y) + α(y)β(x).

•
(
x y
y x

)
fixes no cosets of B, and so has an induced character value of 0.

We will call this character Wα,β , and its values are summarized below:

representative:
(
x 0
0 x

) (
x y
0 x

) (
x 0
0 y

) (
x y
y x

)
Wα,β: (q + 1)α(x)β(x) α(x)β(x) α(x)β(y) + α(y)β(x) 0

To give conditions on α, β that make Wα,β irreducible, we recall that they are 1
dimensional characters on F×q2 . Let ε be the generator of F×q2 , and let µ be any
(q+1)st root of unity. We claim thatWα,β is irreducible if and only if β(ε) 6= µα(ε).

To see this, we work out the Hermitian product of the character with itself,
multiplying the value in the third column by its complex conjugate, to get g(k) =

4Here we are following Fulton and Harris, section 5.2, in their development of the character table
for the general linear group.
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2+ψ(k)+ψ(k−1) where ψ = α
β

is a 1 dimensional character on F×q2 , and k = xx ∈
F×q . Now if β(ε) = µα(ε), then since F×q is generated by ε(q+1), ψ is trivial on F×q
and g(k) = 4 for every element in the third column. Thus the Hermitian product
will be:

1

|G|
[
(q + 1)2(q + 1) + (q − 1)(q + 1)2 +

4(q − 2)q(q + 1)2

2

]
= 2

so that Wα,β is not irreducible; in fact inspection shows in this case that Wα,β =

Uα ⊕ Vα.

On the other hand if β(ε) 6= µα(ε) then ψ is not trivial on F×q . We will show
presently that this implies

∑
x∈F×

q
ψ(x) = 0, or

∑
x∈F×

q \{1} ψ(x) = −1. Supposing
this to be true, we calculate the contribution of the third column to the Hermitian
product indirectly: in summing g(k) over the conjugacy class representatives

(
x 0
0 y

)
,

we include an extra element from each conjugacy class:
(
y 0
0 x

)
. This doubles the

sum, because g(k) is the same for both
(
y 0
0 x

)
and

(
x 0
0 y

)
(the k values of these

elements are inverses of each other, but g(k) = g(k−1)). The reason for including
these extra elements is that it allows the following grouping argument.

We are summing g(k) = 2+ψ(k)+ψ(k−1) over all matrices of the form
(
x 0
0 y

)
where k = xx and x ∈ F×q2\{L}. These elements are determined by the value of
x, so there are (q2 − 1) − (q + 1) = (q − 2)(q + 1) of them, and they can be put
into q + 1 sets of size (q− 2), in each of which k ranges over all values in F×q \{1}.
To construct such a set, for each k ∈ F×q \{1}, we include one element

(
x 0
0 y

)
where

xx = k; there will be q + 1 of these sets because that is the order of the kernel
of the norm map. Summing g(k) over the elements in one of these sets will give
2(q − 2)− 1− 1 = 2(q − 3) because

∑
k∈F×

q \{1} ψ(k) =
∑

k∈F×
q \{1} ψ(k

−1) = −1.
We have q+1 such sets giving a total of 2(q−3)(q+1), but we doubled our sum by
including extra elements, so the contribution of the conjugacy class representatives
of the third column is (q − 3)(q + 1). The Hermitian product is:

1

|G|
[
(q + 1)2(q + 1) + (q − 1)(q + 1)2 + (q − 3)q(q + 1)2 + 0

]
= 1

and Wα,β is irreducible when β(ε) 6= µα(ε).
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Now we justify the claim that if ψ is not trivial on F×q , then
∑

x∈F×
q
ψ(x) = 0.

More generally, let G be a finite group, and let ψ be a 1 dimensional non-trivial
character on G. Since ψ is 1 dimensional it is a homomorphism, and since it is
non-trivial, there exists y ∈ G such that ψ(y) 6= 0. Therefore we can write:

∑
g∈G

ψ(g) =
∑
g∈G

ψ(yg)

=
∑
g∈G

ψ(y)ψ(g)

= ψ(y)
∑
g∈G

ψ(g)

so that (1− ψ(y))
∑

g∈G ψ(g) = 0, and since ψ(y) 6= 1, then
∑

g∈G ψ(g) = 0.

To count the number of characters Wα,β , we recall that we began with the one
dimensional character on the diagonal subgroup that sent

(
a 0
0 d

)
to α(a)β(d) where

α and β were one dimensional characters on F×q2 . We lifted it to B, then induced to
G. There are q2 − 1 one dimensional characters on the diagonal subgroup, because
it is isomorphic to F×q2 . We can form all of these characters by holding α fixed,
and letting β vary over the entire group of characters. However we cannot have
β(ε) = µα(ε), and this eliminates q+1 characters, since there are that many (q+1)st

roots of unity. This gives q2− 1− (q+1) = (q+1)(q− 2), but when we induce to
G, switching α and β makes no difference. Thus we get (q+1)(q−2)/2 irreducible
characters of this form.

Thus to this point we have found

(q + 1) + (q + 1) +
(q − 2)(q + 1)

2
=

(q + 1)(q + 2)

2
irreducible characters

Subtracting this from the required total of (q + 1)2 gives q(q + 1)/2 remaining. To
find these we begin by inducing a representation from another large subgroup of G.

Let H ⊆ G be the subgroup of all matrices of the form
(
x y
y x

)
. We note that

in an element of this subgroup, unlike a conjugacy class representative of the same
form, y can be zero. Note also that, as we saw on page 18, the eigenvalues of every
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element of this subgroup will have norm 1. The order of H is readily seen5 to be
(q + 1)2, so that [G : H] = (q − 1)q. To find coset representatives, we define an
equivalence relation on the Borel subgroup: let two elements in this subgroup be
similar if and only if one is a scalar multiple of the other by a norm 1 element. Since
|B| = (q − 1)q(q + 1) , and there are q + 1 elements of norm 1, we get (q − 1)q

equivalence classes. We claim that the set formed by taking an arbitrary element
from each of these equivalence classes will be a transversal for H .

To see this, suppose first that
(
a b
0 d

)
∈
(
e f
0 h

)
H . Then we have

(
e f

0 h

)−1(
a b

0 d

)
∈ H ⇒

(
a
e

b
e
− df

eh

0 d
h

)
∈ H ⇒ a

e
=
b

f
=
d

h
= x, for some x ∈ Fq2

These equalities hold since, for the matrix on the right to be in H , a
e

must equal
d
h

, and b
e
− df

eh
must be equal to zero, which implies that b

f
= d

h
. Thus we have:(

a b
0 d

)
= x

(
e f
0 h

)
, and 1 = ad = 1(ex)(hx) = (eh)xx = xx

Next, suppose that
(
e f
0 h

)
= x

(
a b
0 d

)
with xx = 1. Then

(
e f

0 h

)−1(
a b

0 d

)
=

1

x

(
a b

0 c

)−1(
a b

0 d

)
=

1

x
0

0
1

x


which is in H since

1

x
is of norm 1.

Therefore the number of elements of B in any coset of H must be either 0 or
q+1, but as there are (q−1)q cosets ofH , then there must be q+1 elements ofB in
each coset in order to account for the order of B in the partition of G into the cosets
of H . Now for each conjugacy class representative g of G, we find all σ ∈ G/H
such that gσ = σ or s−1gs ∈ H , with s arbitrary in σ:

•
(
x 0
0 x

)
: as this element is in both H and the center of G, it fixes all cosets and

s−1
(
x 0
0 x

)
s =

(
x 0
0 x

)
for any s, a coset representative of H .

•
(
x y
0 x

)
: for any coset representative s =

(
a b
0 d

)
, s−1

(
x y
0 x

)
s =

(
x dy

a
0 x

)
, and this

is not in H since d, y 6= 0 ⇒ dy/a 6= 0. Therefore this representative fixes
no cosets.

5This follows from the ideas used to count the conjugacy classes with representatives of this
form, while also accounting for the case where y = 0.
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•
(
x 0
0 y

)
: the eigenvalues of this element are both not norm 1; therefore for any

coset representative s, s−1
(
x 0
0 y

)
s cannot lie in H , and this element fixes no

cosets.

•
(
x y
y x

)
: for any coset representative s =

(
a b
0 d

)
we have

s−1
(
x y
y x

)
s =

x− by

d

−b2y
ad

+
dy

a
ay

d
x+

by

d


For this to be in H we require first, that

by

d
=
−by
d
⇒ b = 0, since y 6= 0.

This gives:

 x
dy

aay

d
x


.

Now we require that
a

d
=
d

a
⇒ d = ±a. Thus the coset representative s will

be either:

(
a 0
0 a

)
∈
(
1 0
0 1

)
H = H , or(

a 0
0 −a

)
, with aa = −1; there are q + 1 such elements of G, all in the

same coset of H .

Therefore
(
x y
y x

)
fixes two cosets of H , and we note that:

for s =
(
a 0
0 a

)
, s−1

(
x y
y x

)
s =

(
x y
y x

)
, whereas

for s =
(
a 0
0 −a

)
, s−1

(
x y
y x

)
s =

(
x −y
−y x

)
.

Next we take a 1 dimensional character on H as follows: if α, β are distinct 1
dimensional characters on the subgroup L, then we have a 1 dimensional character
φ on H by sending

(
x y
y x

)
to α(x + y)β(x − y). Inducing this to G, and writing m

for x+ y and n for x− y, we get:

representative:
(
x 0
0 x

) (
x y
0 x

) (
x 0
0 y

) (
x y
y x

)
IndGHφ: (q − 1)qα(x)β(x) 0 0 α(m)β(n) + α(n)β(m)
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To calculate the Hermitian product of this character with itself, we multiply
the value in the fourth column by its complex conjugate to get: 2 + γ(k) + γ(k−1)

where γ =
α

β
is a non-trivial character on L (since α and β were distinct), and

k =
m

n
∈ L\{1} since m = n ⇒ y = 0 which is not possible . Now we want to

sum g(k) = 2 + γ(k) + γ(k−1) over the conjugacy class representatives
(
x y
y x

)
, but

in order to facilitate a convenient grouping in the sum, we include elements of the
form

(
x −y
−y x

)
, which is conjugate to

(
x y
y x

)
. Since there are q(q + 1)/2 conjugacy

class representatives of the form
(
x y
y x

)
, we are summing over q(q + 1) matrices in

all. We form sets of q elements each such that in each set any k = m/n will take on
all values in L\{1}. There will be q+ 1 such sets, since for any such k, m ∈ L can
be chosen freely, determining n . Summing over such a set of q matrices will give
2q−1−1 = 2q−2, and summing over the q+1 such sets gives 2(q−1)(q+1). We
divide this by 2, because g(k) for

(
x −y
−y x

)
equals g(k) for

(
x y
y x

)
. The Hermitian

product is:

1

|G|
[(q − 1)2q2(q + 1) + (q − 1)2q(q + 1)] = q − 1

so that IndGHφ is not irreducible.

At this point we observe that the forms of the conjugacy class representatives
for G resemble those of G2(Fq) , and also that the dimensions of the irreducible
characters found so far for G are the same6 as the dimensions of the first 3 irre-
ducible characters for G2(Fq): 1, q, q + 1. Since the fourth irreducible character of
the general linear group has dimension q − 1, it seems worthwhile to try to get a
character of that dimension for the unitary group as well. To this end we first tensor
the characters V and Wα,β to get:

representative:
(
x 0
0 x

) (
x y
0 x

) (
x 0
0 y

) (
x y
y x

)
V ⊗Wα,β: q(q + 1)α(x)β(x) 0 α(x)β(y) + α(y)β(x) 0

The point of this is that we may now imitate the method of Fulton and Harris
(p 70), and consider the following virtual character Xα,β :

Xα,β = V ⊗Wα,β −Wα,β − IndGHφ

6We are using ”same” in a loose sense here, since q is the order of the field in one case but not
the other.
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with dimension: q(q+1)− (q+1)− q(q− 1) = q− 1. Its values on the conjugacy
class representatives are:

representative:
(
x 0
0 x

) (
x y
0 x

) (
x 0
0 y

) (
x y
y x

)
Xα,β: (q − 1)α(x)β(x) −α(x)β(x) 0 −[α(m)β(n) + α(n)β(m)]

and, recalling the contribution from the fourth column that we have already worked
out, we find the Hermitian product of this character with itself to be:

1

|G|
[(q − 1)2(q + 1) + (q − 1)(q + 1)2 + (q − 1)2q(q + 1)] = 1

Therefore since the dimension is an integer greater than zero and the Hermitian
product is 1, Xα,β is irreducible . Since α and β are distinct characters on L, and

after inducing to G, switching α and β makes no difference, there are
q(q + 1)

2
such characters. Summing all of the irreducible characters that we have found gives
a total of :

(q + 1) + (q + 1) +
(q + 1)(q − 2)

2
+
q(q + 1)

2
= (q + 1)2

which is the number of irreducible characters of G, since it is the number of con-
jugacy classes. We summarize the irreducible characters of G = U2(Fq2) below,
writing m for x+ y and n for x− y:

(
x 0
0 x

) (
x y
0 x

) (
x 0
0 y

) (
x y
y x

)
Uα: α(x)2 α(x)2 α(x)α(y) α(x2 − y2)

Vα: qα(x)2 0 α(x)α(y) −α(x2 − y2)

Wα,β: (q + 1)α(x)β(x) α(x)β(x) α(x)β(y) + α(y)β(x) 0

Xα,β: (q − 1)α(x)β(x) −α(x)β(x) 0 −[α(m)β(n) + α(n)β(m)]

Table 2: Irreducible Characters of G
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There is another way7 to get the final irreducible character, that does not use
the somewhat unmotivated virtual character above. We have a character induced
from the subgroup H:

representative:
(
x 0
0 x

) (
x y
0 x

) (
x 0
0 y

) (
x y
y x

)
IndGHφ: (q − 1)qα(x)β(x) 0 0 α(m)β(n) + α(n)β(m)

We will now induce another character from the subgroup K = {
(
x y
0 x

)
} and com-

bine it with the one induced from H to get Xα,β .
We begin by finding the order ofK. Since y can be zero, we have q+1 choices

for x, and q choices for y8. Thus |K| = q(q + 1), and [G : K] = (q − 1)(q + 1).
For the conjugacy class representatives, we first consider equivalence classes of
matrices of the form

(
a 0
c d

)
and

(
0 b
c 0

)
, where two matrices are equivalent if one is

a multiple of the other by an element of Fq2 of norm 1. We will take an arbitrary
element from each equivalence class to form the transversal of G/K. We note that
from the q(q2 − 1) matrices of the form

(
a 0
c d

)
we get q2 − q equivalence classes,

and from the q2 − 1 matrices of the form
(
0 b
c 0

)
we get q − 1 equivalence classes.

The total number of equivalence classes is thus (q − 1)(q + 1) as required.
Next we show that matrices from distinct equivalence classes lie in different

cosets of K:

• claim:
(
a 0
c d

)
∈
(
e 0
g h

)
K ⇔

(
a 0
c d

)
= x

(
e 0
g h

)
, xx = 1. proof:

”⇒”:
(
e 0
g h

)−1( a 0
c d

)
∈ K ⇒

( a
e

0
−ag
eh

+ c
h

d
h

)
∈ K

This implies9 that a
e
= d

h
= c

g
= x ∈ Fq2 , and ad = 1 ⇒ (ex)(hx) =

ehxx = xx = 1

”⇐”:
(
e 0
g h

)
= x

(
a 0
c d

)
, xx = 1 ⇒

(
e 0
g h

)−1( a 0
c d

)
= 1

x

(
a 0
c d

)−1( a 0
c d

)
=( 1

x
0

0 1
x

)
∈ K

• claim:
(
0 b
c 0

)
∈
(
0 f
g 0

)
K ⇔

(
0 b
c 0

)
= x

(
0 f
g 0

)
, xx = 1. proof:

”⇒”:
(
0 f
g 0

)−1( 0 b
c 0

)
=
( c

g
0

0 b
f

)
∈ K ⇒ b

f
= c

g
= x ∈ Fq2 , and 1 = bc =

(fx)(gx) = fgxx = xx.

7Here we are following an idea of C. Bushnell and G. Henniart pp. 47–48, in the case of GL2
8For the reasons mentioned when we counted the Borel subgroup
9The cases with c or g = 0 are omitted here for simplicity; they follow in the same way.
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”⇐”:
(
0 b
c 0

)
= x

(
0 f
g 0

)
, xx = 1 ⇒

(
0 f
g 0

)−1( 0 b
c 0

)
=
(
0 f
g 0

)−1( 0 f
g 0

)
x =(

x 0
0 x

)
∈ K

• Finally,
(
a 0
c d

)
/∈
(

0 n
m 0

)
K, since

(
0 n
m 0

)−1( a 0
c d

)
=
( c

n
d
n

a
m

0

)
, which is not in K.

Therefore the transversal is as was claimed.

Next we find the cosets σ ∈ K such that for a conjugacy class representative
g, we get gσ = σ, or s−1gs ∈ K for an arbitrary s in σ:

(i) g =
(
x 0
0 x

)
. Here, g is in K and in the center of G, so it fixes all of the

(q − 1)(q + 1) cosets of K.

(ii) g =
(
x y
0 x

)
, y 6= 0. First, let σ =

(
a 0
c d

)
K; we will show that g fixes this coset

if and only if c = 0. Letting s =
(
a 0
c d

)
, we find that

s−1gs =

(
x+ cy

a
dy
a

−c2y
ad

x− cy
a

)

and this is in K if and only if c = 0, in which case we get

s−1gs =

(
x ddy

0 x

)
where ad = 1 ⇒ d

a
= dd. Therefore g fixes cosets of the form

(
a 0
0 d

)
K.

There are (q− 1) such cosets because there are q2− 1 unitary matrices of the
form

(
a 0
0 d

)
, in equivalence classes each of size q + 1. As we range over all

these cosets, dd of the coset representative
(
a 0
0 d

)
will take on all values in F×q

; this will be important later. Next we show that g fixes no cosets of the form
g =

(
0 b
c 0

)
K. In this case we have

s−1gs =

(
x 0
cy
b

x

)

which cannot be in K because y 6= 0 6= c.

(iii) g =
(
x 0
0 y

)
, y 6= x. Here g has two eigenvalues, and every coset representa-

tive s is invertible. Thus s−1gs will have two eigenvalues, and so cannot be
in K. Thus g fixes no cosets.
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(iv) g =
(
x y
y x

)
, y 6= 0. Here again, g has two eigenvalues, so that s−1gs /∈ K,

implying that g fixes no cosets.

Now we create a character on K as follows: let ψ : F×q2 → C×, and φ :

F+
q2 → C× be 1 dimensional characters. We also require that φ be nontrivial

on the additive subgroup {t ∈ F+
q2 | t + t = 0} ⊆ F+

q2 . Then we define a 1
dimensional character γ : K → C× by γ

(
x y
0 x

)
= φ( y

x
)ψ(x). This seems a bit

contrived, but it carries information about y, and will be just what we need.
First we show that it is in fact a character:

γ
(
1 0
0 1

)
= φ(0)ψ(1) = (1)(1) = 1.

γ
[(

x y
0 x

)( p q
0 p

)]
= γ

(
px py+qx
0 px

)
= φ

(py + qx

px

)
ψ(px)

= φ
(y
x
+
q

p

)
ψ(px)

= φ(
y

x
)φ(

q

p
)ψ(p)ψ(x)

= φ(
y

x
)ψ(x)φ(

q

p
)ψ(p)

= γ
(
x y
0 x

)( p q
0 p

)
Now we give the character values for the conjugacy class representatives. For

g =
(
x 0
0 x

)
we have χIndGKg = (q − 1)(q + 1)ψ(x). For g =

(
x y
0 x

)
we get∑

k∈F×
q
γ
(
x ky
0 x

)
(see the bottom of p 34). We can write this as

∑
k∈F×

q
φ(ky

x
)ψ(x) =

ψ(x)
∑

k∈F×
q
φ(ky

x
). To evaluate this, we write z for y

x
, noting that z + z = 0, so

that 0, k1z, k2z, . . . kq−1z, (where all ki are distinct in F×q ) is the subgroup {t ∈
F+
q2 | t + t = 0} of F+

q2 of order q, so that φ is nontrivial on this subgroup, which
means φ(k1z) + · · ·+ φ(kq−1z) = −1. Therefore χIndGKg = −ψ(x), and we have:

representative:
(
x 0
0 x

) (
x y
0 x

) (
x 0
0 y

) (
x y
y x

)
IndGKγ: (q − 1)(q + 1)ψ(x) −ψ(x) 0 0

If we now recall the character induced from H:

representative:
(
x 0
0 x

) (
x y
0 x

) (
x 0
0 y

) (
x y
y x

)
IndGHφ: (q − 1)qα(x)β(x) 0 0 α(m)β(n) + α(n)β(m)
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we might note that the difference of the dimensions is q − 1. In fact, if we take for
ψ the 1 dimensional character αβ used in H , then defining Xαβ = IndGKγ − IndGHφ
gives

representative:
(
x 0
0 x

) (
x y
0 x

) (
x 0
0 y

) (
x y
y x

)
Xα,β: (q − 1)α(x)β(x) −α(x)β(x) 0 −[α(m)β(n) + α(n)β(m)]

and we have the fourth irreducible character. To count these representations, we
note that using a different nontrivial φ will not make a difference; but α and β were
distinct characters on L, and inducing to G means switching α and β makes no
difference, so we have q(q+1)/2 representations of this type, confirming our result
from before.
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Characteristic 2
In this chapter we will address those parts of the main argument that fail for the case
p = 2 . The central problem is the matrix

(
x y
y x

)
, which serves both as a conjugacy

class representative (in which case y cannot be zero), and as the form of the matrices
in the subgroup denoted H (in which case y or x but not both can be zero). When it
was necessary to merely count this element as a conjugacy class representative, the
count was done easily using the Hermitian form

(
1 0
0 1

)
, but beginning with the list-

ing of the first character on G, we omitted many quirks about this matrix that arise
in characteristic 2, and we will address these here. However we shall begin at the
beginning, modifying the problematic arguments in the same order that they appear
in the main work. The assumption throughout this section is that the characteristic
of the field is 2.

The Quadratic Field Extension: In characteristic 2 all elements of a finite
field are squares, thus we cannot adjoin the square root of some element in Fq in
order to get a quadratic extension. On the other hand, the map g(x) = x2 + x from
Fq to itself is not injective since for any a ∈ Fq g(a) = g(a+1). This implies (since
the field is finite) that the map is not surjective, and that we can therefore find some
m ∈ Fq such that x2 + x + m = 0 will have no roots in the field. Thus if θ is a
root of this equation (in some algebraic closure) then adjoining θ gives a quadratic
extension.

Conjugation in Fq2: Each x in Fq2 will be x = a + bθ for a, b ∈ Fq. Since θ
is a root of x2 + x +m = 0, the sum of θ and θ is 1, so that θ = θ + 1. It follows
that a+ bθ = (a+ b) + bθ.

Eigenvalues: It was easy to show that the eigenvalues of 2 x 2 unitary matrices
lie in Fq2 by looking at the discriminant of the characteristic equation. In charac-
teristic 2 however, the quadratic formula is not available, and it will take a bit more
work to prove the result in this case.

The characteristic equation forA ∈ G is λ2+Tr(A)λ+det(A) = 0. If Tr(A) =
0, the square root of det(A) (which is in Fq2) is a root. If Tr(A) 6= 0, then we make

the substitution y =
λ

Tr(A)
to rewrite the characteristic equation as y2 + y+ d = 0,
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where d =
det(A)
(Tr(A))2

. We note that d ∈ Fq since with det(A) = D = x
x

for some

x ∈ Fq2

d =
D

(a+ aD)2
=

xx

(ax+ ax)2

which is invariant under conjugation and so in Fq. This implies that any root u, of
y2 + y + d = 0, lies in the unique (up to isomorphism) quadratic extension of Fq,
which is just Fq2 . But now any root w of λ2 + Tr(A)λ + det(A) = 0 will be equal
to uTr(A) and so will be in F2

q .

The Conjugacy Class
(
x y
y x

)
, y 6= 0: This conjugacy class is meant to com-

prise the elements of G having distinct, norm 1 eigenvalues, but when p = 2,
(
x y
y x

)
has trace zero, and will therefore have 1 eigenvalue. The solution here is to use the
Hermitian form

(
1 0
0 1

)
(effectively changing bases) so that the conjugacy class rep-

resentative will be
(
x 0
0 y

)
, y 6= x where in this case the eigenvalues are x and y. This

allows us to count the number of such conjugacy class representatives, though as
we will see below, for some calculations, this conjugacy class representative must
be written in a more complicated way.

Character Values: For the representations Uα and V α the character values for
the fourth conjugacy class were given as α(x2 − y2) and −α(x2 − y2) respectively.
For p = 2, these character values are changed to α(xy) and−α(xy), since the value
was based on the determinant.

The Permutation Representation of G/B: The representation denoted V

was derived from a permutation representation of the coset space of the Borel sub-
group. A part of this argument involved showing that the conjugacy class repre-
sentative

(
x y
y x

)
, y 6= 0 fixed no cosets of B, and since

(
x y
y x

)
cannot be used when

p = 2 this argument must be modified. If we use the other Hermitian form as we
did when counting the conjugacy class representatives we face the problem that
this form does not allow upper triangular matrices (apart from diagonal matrices),
therefore our procedure must be a bit indirect: we begin using the form

(
1 0
0 1

)
so that

the class representative is
(
x 0
0 y

)
, y 6= x, then we use the change of basis matrix10(

1 θ
1 θ+1

)
to change

(
x 0
0 y

)
, y 6= x into :

10This is the change of basis matrix that takes us from the form
(
1 0
0 1

)
to the form

(
0 1
1 0

)
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(
(x+ y)θ + x (x+ y)(θ2 + θ)

(x+ y) (x+ y)θ + y

)
with y 6= x. This will be the conjugacy class representative in place of

(
x y
y x

)
, y 6= 0.

Now we can check all cosets of B. Denoting the above representative as A, we see:

(i) if the coset representative is s =
(
1 0
0 1

)
or
(
0 1
1 0

)
,then s−1As is not in B

because the entries of A in the upper right and lower left positions are neces-
sarily non-zero.

(ii) if s =
(
1 0
t 1

)
, t 6= 0, then s−1As gives a value in the lower left element of

(x + y)(mt2 + t + 1), where m = θ2 + θ. This expression cannot be zero
because y 6= x, and because we can show that mt2 + t + 1 = 0 requires
t /∈ Fq, whereas in characteristic 2

(
1 0
t 1

)
is unitary if and only if t ∈ Fq, since

we will have t + t = 0⇒ t = t⇒ t ∈ Fq. To see that no t ∈ Fq is a root of
mt2 + t+1 = 0, let mt = y, multiply the equation by m, and then write it as
y2 + y +m = 0. By construction any solution of this equation is not in Fq,
thus t must not be in Fq.

Therefore A fixes no cosets of B as required.

Induction from H: The subgroup H ,
(
x y
y x

)
, xy 6= 0 that was used in this

work is the subgroup consisting of elements of G that have eigenvalues of norm 1.
In characteristic 2 we must write this subgroup differently; we start by using the
Hermitian form whose matrix is the identity. In this way, H will be

(
x 0
0 y

)
where

y can be equal to x. Now we use the change of basis matrix
(
1 θ
1 θ+1

)
( we change

bases in order to be able to use matrices from the Borel subgroup) to get(
(x+ y)θ + x (x+ y)(θ2 + θ)

(x+ y) (x+ y)θ + y

)

where y can be equal to x. The character t on H that we induced used α and β, 1
dimensional characters on L, and sent the conjugacy class representative

(
x y
y x

)
to

α(m)β(n), while the induced value was α(m)β(n) + α(n)β(m), where m,n were
the eigenvalues. When we rewrite the conjugacy class representative for character-
istic 2, the eigenvalues are now x, y, so that we should expect the induced value to
be α(x)β(y) + α(y)β(x).
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Recall that the conjugacy class representative looks like the subgroup, with
the condition that y 6= x. Now when we check the fix of this conjugacy class
representative on cosets of H , we find that (writing S for (x + y)) for any coset
representative s =

(
a b
0 d

)
, s−1As is :(
Sθ + x+ bS

d
d
a
[S(θ2 + θ)]

aS
d

Sθ + y + bS
d

)
if this is to be in H , then from the lower left entry we have a = d, and from the
entries on the main diagonal we have either of the following possibilities:

• b = 0, so that the coset representative will be (without loss of generality)(
1 0
0 1

)
so that this class representative fixes H itself; to be expected , as this

representative is in H .

• b = d, for then the upper left entry becomes Sθ + y, and the lower right
becomes Sθ + x. This makes the coset representative (without loss of gen-
erality)

(
1 1
0 1

)
which, incidentally, is unitary only for p = 2. Finally, we note

that the character value for this class representative upon induction to G will
be α(x)β(y) + α(y)β(x) as required.

Induction From K: In the induction from the subgroup K, we again used
the conjugacy class representative

(
x y
y x

)
, y 6= 0. For characteristic 2 we replace it

again by (
(x+ y)θ + x (x+ y)(θ2 + θ)

(x+ y) (x+ y)θ + y

)
where y 6= x. Now to show that this fixes no cosets ofK, we note that it has distinct
eigenvalues, so that no conjugate of it can lie in K.
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Conclusion
We conclude with some observations about the similarities between the characters
of the general linear group, and those of the unitary subgroup. For the general linear
group of 2 x 2 matrices over a finite field of order q we have from Harris:(

x 0
0 x

) (
x 1
0 x

) (
x 0
0 y

) (
x εy
y x

)
Uα: α(x)2 α(x)2 α(x)α(y) α(x2 − εy2)

Vα: qα(x)2 0 α(x)α(y) −α(x2 − εy2)

Wα,β: (q + 1)α(x)β(x) α(x)β(x) α(x)β(y) + α(y)β(x) 0

Xφ: (q − 1)φ(x) −φ(x) 0 −(φ(ζ) + φ(ζq))

Table 3: Irreducible Characters of GL2(Fq)

In the fourth row ζ is essentially one of the eigenvalues of
(
x εy
y x

)
, ζq is the other

eigenvalue11, and φ is a 1 dimensional character on Fq2 . These correspond, respec-
tively, to m, n, and αβ in the fourth row of table 4.1.

Let us now compare this to our table of the characters of the unitary group:(
x 0
0 x

) (
x y
0 x

) (
x 0
0 y

) (
x y
y x

)
Uα: α(x)2 α(x)2 α(x)α(y) α(x2 − y2)

Vα: qα(x)2 0 α(x)α(y) −α(x2 − y2)

Wα,β: (q + 1)α(x)β(x) α(x)β(x) α(x)β(y) + α(y)β(x) 0

Xα,β: (q − 1)α(x)β(x) −α(x)β(x) 0 −[α(m)β(n) + α(n)β(m)]

Table 4: Irreducible Characters of G

We notice first, that the dimensions in each case are 1, q, q + 1, q − 1, though q
is the group order only in the general linear group. Next we see that the forms of
the corresponding conjugacy class representatives are almost identical. The fourth
columns differ only in the presence of the epsilon in the general group, and in

11More precisely, ζ = x+ y
√
ε, and ζq = x− y

√
ε.
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the second column the difference arises from the fact that matrices in the unitary
subgroup having one eigenvalue do not necessarily have a Jordan form. Turning
to the character values themselves, we note that almost all corresponding values
are the same; the exceptions arising from the epsilon, and the different form of
the eigenvalues in the fourth column of the last character. We recall also, that in
both tables Wα,β is irreducible if and only if α 6= β, and also that when α = β,
Wα,β = Uα ⊕ Vα.

Next we compare the methods of construction. The first row in each table
comes from mapping the determinant of each element by a 1 dimensional charac-
ter. The second rows are both tensor products of the first row together with the
character formed by subtracting the trivial representation from the permutation rep-
resentation on the corresponding borel subgroup. The third rows are both formed
by inducing a character on the Borel subgoup, and the fourth rows are found by
inducing characters from subgroups having almost identical forms:

(
x εy
y x

)
in the

case of the general group, and
(
x y
y x

)
in that of the unitary group. In addition, the

characters induced from each of these subgroups could be combined with others to
form a virtual character that turned out to be the final one.
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