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ABSTRACT

w -

¥1 this dissertation the method of identity coefficients is used
to ;tuﬁy several aspects of the genetic structure of populations. This
method involves the construction of recursion félatiéﬁihip‘i for the
probabilities that a specific sample of gametes are, or are not,

-

identical.

The problems considered are the expected amount of squared
linkage disequilibrium between Lthree loc: in a random mating
population and between two loci in a partially selfing population. The
variance of the two-locus, squared linkage disequi.ibrium in a random
mating population is examined. The effects %f intragenic recombination
among three sites wvithin a gene are determined. The effect of
intragenic recombination within a hybrid population and the effect on

1ance of

!

the variance of homozygosity are examined. The va

homozygositly within a structured population is deriveda

e

- -
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Theoretical population genetics is an attempt to describe
mathematically the genetic structures of populations and to determine

the consequences of natural processes (such as Mendelian inheritance

[ ol

and selection on such struétures). In the following chapters severa
different problems relevant to theoretical population genetics are
examined. Each chapter deals with a different probles.

¢
All of these problems are connected by the method used to solve

them. This wethod has a long history and requires an introduction. In

[+]

general, the approach is to define a variable, or a set of variables
L

%
which define the identity relations among a specific set of genss and

to determine hoys these variables change each generation. The resulting

tem of recursion relationships is at least informative and can

8y

often be solved.

While studying the effects of inbreeding on guinea pigs, Wright
(1921) found it useful to define a coefficient, f, which describes the
degree of inbreeding. This coefficient was defined as the genetic
correlation between uniting gametes for a wmodel with two equaily
frequent alleles. Wright (1922) then extendsed the method and allowed
the correlation f to be defined for all gene frequencies. He <caiied
"H.s correiation 'he :nbreeding coefficient. The concept of a variab.e

ved ‘- be very useful. Wr.gr!

o

def.ne ‘'he effects ~f :nbkreeding pr

f - ‘ Lan S e ; 5 - Hardy we -~he g



equilibrium then the expected frequency of the genotypes AA, Aa and aa
would be pz + pgf, 2pq(l-f) and q: + pqf. Thus, inbreeding increases
the frequency of homozygotes and decreases the frequency of
heterozygotes. Perhaps based on this simple formula, Wright (1951)
changed the definition, notation and name of f. He defined the

‘inbreeding coefficient (or fixation index) F" as the deviation from

Hardy—Weinberg proportions.

Another approach to define the degree of inbreeding was taken by

Bernstein (1930), Haldane and Moshinsky (1939), Cotterman (1940) and

-

Malecot (1948). These authors used only préb:bility arguments. Malecot

(1948) defined the 'coefficient de consanguinite EH” as the
probability that the two genes of an individual, M, are identical by

descent. Thig has caused some confusion since f, as a probability, can
take values (0, 1) while f, as a correlation, can take values (-1, 1),

Furthermore, when the correlation is greater than zero, both indices

are equivalent for many models. It is therefore impor

e

ant to realize

Laud

that these quantities are distinct even though they may have the same

values. Unfortunately, the name "inbreeding coefficient” (variously

designated f or F) for both indices is now firmly entrenched in the
literature (eg: Cavalli-5forza and Bodmer, 1971; Crow and Kimura,

=

1970; Jaquard, 1974; Lewontin, 1974; Li, 1978; Malecot, 1969;

Roughgarden, 1979; Spiess, 1977; Wright, 1969). In the following,

"inbreeding coefficient”" will refer to Malecot's definition.

Malecot (1948) extended the method to consider the probability

that the genes of two individuals are identical by descent. He defined

the "coefficient de parente f L“ as the probability that a gene,

=i



chosen at random from individual I, is identical by descent to a gene
chosen at random from individual L. This coefficient has also proved

to be ve . useful and is in common use.

A cursory examination of popular texts demonstrates that wmany

ent names are used for® this coeffic.ient. Malecot (1969) has

diffe

by}

translated it as the "coefficient of coancestry” and alsoc as the

"coefficient of kinship" (from Crow and Kimura, 1970). Crow and Kimura

o

(1970) call it both the "coefficient of kinship” and the "coefficien
of consanguinity"”. Jaquard (1974), Ewens (1979) and Cavalli-Sforza and
Bodmer (1971) use the term "coefficient of kinship” while Kempthorne

(1957) uses "ecoefficient of parentage”. Falconer (1960) and

Roughgarden (1979) prefer "coefficient of coancestry”. And finally,
Spiass (1977) calls it the ‘'coefficient of transmission”. The

confusion is added to by Roughgarden's (1979) definition of the

"kinship coefficient” as the wmean number of alleles identical by

#

These two variables are not, however the final word. The whole
concept can be extended quite generally to consider the probabilities
of identity among the genes of any particular sample of gameltes. Again

this has been done independently by several suthors.

Harris (1964) described a set of coefficients to study inbreeding
and called these "probabilities of alikeness by descent''. Cockarham
(1971) has alse defined a set and simply termed the cosfficients as
probabilities, or as two, three, etc. '"-gene probability funetions",

Gillois (1964), Jagquard (1974), Chevalet and Gillois (1977, 1978) and

Chevalet et al. (1977) have defined a set of coafficients to describe

i —_— —



the genetic structure of a population. They use the name "coefficients
of identity by descent”. The inbreeding coefficient and the
coefficient of kinship (or whatever i3 preferred) are relegated to
special identity coefficients. Some of these coefficients are
identical to Cotterman's "k coefficients”. Serant (1974, 1976/ defines
a set of coefficients to deal with two-locus ﬁrabl:-; (see alsoc
Haldane, 1950 for the effects of inbreeding with linked loci). He

calls all of these "inbreeding coefficients” and uses a “kinship

.

process’” to derive the recursion relationships. Finally, Cockerham and
Weir (1968) define another set of coefficients which they call

"descent measures'’ (Cockerham and Weir, 1973).

Herein, we have followed Jaquard, Gillois and Chevalet and called
the variables we are using, '"identity coefficients”. Again following
these authors, we have designated these variables with Greek letlers.
We do not however, impose the restriction that the relationship amsong
gameles must be by descent’”. We consider only their identity by
"state', whether or not the gametes carry the same alleles. This is a

simpler sssumption and allows different (and perhaps easier)

formulations to be made for some models.

In the following chapters several different problems are examined
to demonstrate the power of this method. Hence several different sets
of coefficients are required and are defined in each chapter. The
definition of each coefficient is valid only for that chapter.
Although a general definition of all cosfficients may be possible,

this definition would, of necessity, be complicated. As stated above,

coefficients can be defined for any desired probability. Therefore, it



seemed appropriate to define each coefficient in the context of the
problem and to use s notation which imparts as much information as
possible in a simple manner. Beyond this, attempls were made Lo define
the coefficients in a consistent way. For other symbols, the notation

which 13 standard in the literature is used.

For the most part, the recursion relationships are placed 1in
sppendices. This helps to make the biological relevance of the results
clear. Most of these recursion relationships were solved numerically
using the IMSL subroutine LEQTIF on an Amdahl 470V/8 1in double
precision. This subroutine solves the equations wusing Gaussian
eliminstion (Crout algorithm) with partial pivoting and row scaling.
Since the equations solved are approximstions, the answers obtained
are accurate to the degree that these approximations are correct. To
be pro;iso. the ;,lativo si1ze of the perturbstion in the answers is of
the same order of magnitude as the relative size of the perturbation
in the system of equations (Noble and Daniel, 1977, Theorem 5.9). The
;raphs’woro produced using the University of Alberta's CGPL and CPLT3D

subroutines. .

All of the problems approsched involve s finite population size
and fall into two broad categories. The first category deals with
linkage disequilibrium (a measure of the correlation between alleles
at different loci) in a8 finite population and in the absence of
selection. The second category deals with some effects of intragenic
recombination. In chspter 2 it is sﬂ;vn that the effect of

recombination within a gene on the expected homozygosity increases

when recombination can occur between a larger number of sites. The



same mode! shows that the squared linkage disequilibrius betwsen thres
loci can be relatively large. In chapter 3 the expescted squared
linkage disequilibrium, when partial selfing occurs, 1s determined. It
is shown that the linkage disequilibrius can be much larger than that
expected for a randomly mating populstion. The theory developed féf

ed to a population with

wu—

randomly mating populations can be applie
partial selfing using a simple transformation which defines
"effective'" values for the rate of recombination and the population
size. Chapter 4 examines the ability of recombination within genes to
create unique alleles in hybrids. It is alsoc shown that when such
recombination occurs, a randomly wmating population may maintain a

1" 4

greater number of alleles than does s structured population. Chapter 5

nce of hosozygosity in a

describes a -otﬁpd to find the vari
structured population. It is shown that the variance is gquite
sensitive to the amount of migration. However, the variance can be
accurately estimated from the amount ‘sgphha-azy;aigty Chapter 6
examines the varian;o of homozygosity for s gens ;hiﬁh consists of two
sites, and the variance of squared linkage disequilibrium. It i1s shown
that the coefficient of variation of the linkage disequilibrium is

often greater than 100%.



Chapter 2
The Expected Variance of Linkage Disequilibrium Between

Three Loci in a Finite Pepulation

Introduction

Since linkage disequilibrium can be generated by epistatic

selection betwveen loci, this quantity has been extensively used in the

the effects of selection in natural populations. Linkage
disequiliBcium can also be generated by other factors such as recent
admixture, assortative mating and random drift in a finite population.
Therefore, in order to determine whether the observed values could be
caused by random drift, it is necessary to determine the expected

isequilibrium in a finite populatian

[«8

valus of the variance of linkage

I

Robertson (1968) and Ohta

-

without selection. This was done by Hill an
and Kimura (1969) for the two-locus model, with two alleles per locus
and no mutation, by Weir and Cockerham (1974) for the two-locus wmodel
without mutation and by Hill (1975) for the infinite alleles, two-
locus model. Experimental studies of linkage disequilibrium, while

stermine the

-8

determining such two-loeus linkage disequilibria, often

strength of three-locus linkage disequilibria as well (eg: Allard et

al.. 1972; Langley et al., 1974; Mukai et al., 1974; Brown e

[ad
-
I

1977). The study of the expected value of the variance of three-locus
linkage disequilibrium in a finikfe population has been less well
developed. Hill (1974a, 1974b) has studied the transient behavior of

three-locus linkage disequilibrium with two alleles at each locus and



has found that, although three-loc linkage disequilibrium dacays
faster than two-locus linkage ipequilibrium, both can reach

appreciable levels before declining to zero,

Here, the expected variance of three-locus linkage disequilibrium
is determined in the absence of selection. This is done for ‘the
infinite alleles wmodel (Kimura and Crow, 1964), using identity
coefficients and then solving the equations numerically on a computer.
It is shown that the variance of three-locus linkage disequilibrium is
of the same order of magnitude as the variance of two-locus linkage
disequilibrium. Hence, even if third order linkage disequilibrium is
observed at appreciable values between closely linked loci this is not
necessarily an indication of selection. This wmodel can alsc be

ation between three sites to show

I
=1

interpreted as intragenic recomb
that a gene consisting of three sites can have many wmore alleles

present than genes with either one or (wo sites.

-

The three loci are designated as A, B and C with mutation rates,

vy » v2 and v3, reapectively. Let r;> be the probability of

recombination between A and B, r,; between B and C and r|3; between A

and C. It is useful to define x, as the probability of recombination

between B and C but not between A and B, x, as the probability of

&

recombination between A and B but not between B and C and x, as the

probability of recombination between A and B and betwsen B and C,
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N(ryp*ry3-ry3)

(Strobeck, 1976).

The three-locus model used Mere assumes a finite population size
of 2N gametes and the infinite alleles wmodel of Kimura and Crow
(1964) . Following the Wright-Fisher model, the chromosomes of the
from the chromosomes of the past generation. Each gamele chosen may or
may not be a recombinant with the probabilities given above. For
example, for any two arbitrary gametes a;b;c, and a b-c ., the meiotic
product a.b,c. will be selected with pfﬁbibility 4x,. The sampling
process is continued until 2N new gametes have been generated. A
similar method was used (Strobeck and Morgan, 1978) to snalyze a two

site model.

To describe the behavior of the system from one generation to the
next requires twenty eight different identity coefficients. Three of

ine the probability of identity at each of the

-y
o

these variables de

hown for the two-locus model,

three loci, A, B and C. As has besen
=

another three variables are required when genes at two loci are

considered jointly. Since there are three pairs of loci for the three-
locus model (AB, AC and BC), this adds another nine variables. A

further sixteen are necessary when the three loci are considared

jointly. These coefficients involve <choosing twe to six distinct

gametes at random without replacement. For clarity those which involve



rt

wo disiinc! gametes are dencted by 4, three gametes by [, four
gametes by =, five gawetes by *‘ and those involving six distinct

which loci are beaing

L
L]

gametes by .. Letlers i1n the subscripts indica
considered and a slash is used to seperate those loci which come from
different chromosomes. The coefficients are defined in Table 2.1. The

sixteen coefficients used by Hill (1974b, Table 3), each a product of

derived from these coefficients by a linear

L]
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If QA/A is the probability that two genes are identycal, then
@A/A has the recursion relationship
: {1 1
- -—= + - ==
v Pasa T 70D {EH (1= 290 %a/a

where y, is the mutation rate to neutral, distinct allekes at that
locus (Kimuras and Crow, 1964). The recursion relationships for two

linked loei, ( $AB/AB . FAB/AfB and ;A/A/B/B ) are,derived by

Strobeck and Morgan (1978). Those for *a/B* ‘c/ce ®ac/BC" Y AC/ACT

and A are the same except that

TBc/B/c * “ac/a/c’ “s/B/c/c A/A/C/C
mutation rates and recombination rates have to  be changed

appropriately. These recursion relationships are included in Appendix

1.

The recursion relationships for three loci are more complicated

than those for two loci and it would be very time consuming to vrite

them down. It is therefore useful to make some initial approximations.

-1
It is assumed that N >> 1, vy = O(N ) and all of the regombination

parameters are of O(N )., Terms with O(N ) are neglected in writing

the recursion squations 2in ffect the answers only
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to O(N ) (Noble and Daniel, 1977, Theorem 5.9). The recursion
relationships for the expected values: of the 28 coefficients over

replicate populations are given in Appendix 1. Additionally let )

® v ®wvy = ., r;>2=r::=rand ry3 ® rj;*r23. This is equivalent to
a8 wmodel with complete interference. However, a model without
interference implies r;: = ry- + r-; - 2ry-r-: but by assumption r.o-,
r;; << 1 and thus ry3 = rj: * r-:. The model therefore holds both with

or without interference. Making these substitutions in the equations

implies that

“Oa/a T %B/B T Pc/c .

*AB/AB ™ ®BC/BC
TAB/A/B = "BC/B/C
8A/A/B/B = 8B/B/C/C
TABC/AB/C = TABC/BC/A
SAB/AB/C/C = ®BC/BC/A/A

SAB/AC/B/C ™ “BC/AC/A/B

*AB/A/B/C/C ™ “BC/A/A/B/C
which reduces the number of necessary coefficients to nineteen. Even
if an explicit equilibrium solution 1is obtained for each of the
coefficients, such solutions would be too complicated to be of value

and therefore the equilibrium solutions for various parameter values

are obtsined numerically on a computer.
[

Cockerham and Weir (1973), Serant (1974, 1976) have shown that
there is a simple relationship between these identity coefficients and
gene frequency moments, as is shown in Table 2.2. This table gives the

gene ffoquoncy moment to which each of the nineteen coefficients

12
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correspond 1in expectatig Bare, £, is the frequency of the gamete
P 1 pe g di® gkt q y 3
carrying tie i-th allele at locus A, the j-th ailele at locus B and

the k-th allele at locus C; fij’ is the frequency of the gamete

carrying the i=th allele at locus A and the j-th allele at locus B;
pi‘ qj and r, are the frequencies of alleles i, j and k at loci A, B

and C respectively. The expected linkage disequilibrium, ECDij).
between alleles a, and bj can be expressed as
(

E(D,,) = E(fij - piqj)

The natural extension of this quantity for three loci is

+ 2p g, r, )

= E( £ - -f . r 1947k

Py P T FoplPs T Eia9y T By

(Hill, 1976). For the model used here both E(Dij) and E(Dijk) Are Zzero

nd k, however they have non-trivial variances. Hill

E(

for all 1, j

(1975) determined that at equilibriums

22
160 v (BMw+eNr+5)
‘2 ) - ~ —
(15013

11 12 3y 2 21 2 211 )
(1+4Hv) (2560 v +1928 v r+32N vr +320M v +152N wr+BN r +10BNw+26Nr+9)

3 ey | T : zZZDE - o ———!—*77
With three loci E( , k) can be approximated as

11k°1 5
[ 3
corrr ¢V irrrf 2 . A
g Ryt . f -2 F,r - , P, -
P T E e e T Mgty fe T it Py
PR
2f f g, * 4af *+ f r *
"yt teey LIS TP
2 f 2 q af v
FERLAPTA L FEPARTL L R
¥ A = [F ¥ -
3 S S L
* = - ouaf - Fo* &
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Ir

*Cac/anc - T Tasc/acs ™ Tanc/anic *

ABC/ABC ABC/BC/A

™

“ac/amic * Sacrac/aa * Bacnc/ian * Banc/asc T

“acr/aramre * Baciacram t Baasacare = Yaciannre *

4 in o+ &Y

Sa/anrere = *Pansarmicic * ananmicic

@8 long as N is large. Using the values obtained for the identity

B3 2
cosfficients, E(§§£Dijk) can be determined for any values of Nr and
Ny.
: - c (T2 : LZIy?
Figu .1 giva vali : 3 ) .
igure 2.1 gives the value of E(ijD;j) (2.1:); and E(ijkDijk)

£ i

M

(2.1b) for 4Nv = 2.0, 1.0 and 0.5 with 10 < Nr £ 10 . It shows that
while the variance of three-locus linkage disequilibrium is generally
smaller than twe-locus they are of the same order of magnitude. Both
second and third order linkage disequilibria change values slowly when

Nr is less than 0.00 and are negligble when Nr is greater than 10.0.

. . N R
———— - P =130 +53a 10740 41086 +460)
K . = —= ——= - - == == - —_ - .= _——
- AR I G B - I - 3
- -hich 18 HLs - . g s 3. Ma “hene =

.+ mode. zar aisc be interpre‘ecd as “rree 5. €s <1'F.7 2 $1 9§ F

.
[}
™



Figurs 2.1: The c:p::tjd squared linkage disequilibrium b-tu-in
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is approximately the expected homozygosity of a single gene
°ABC/ABC 1 PP y P ygosily [ 4 1

with three sites. Figure 2.2 gives the effective number of alleles

]

Ny = 2.0, and

(one over the homozygosity) for 0
r=0, u, 2y, S5u, 104 and r >> ., where .. refers to the total mutation
rate of the gene (. = 3. for the three site model) and similarly
r = r;; = r;-*r>; 1s the recombination rate within the whole gene. The
effective number of alleles is larger when the gene consists of three
sites than when the gene consists of two sites. Howsver, a comparison
of Figure 2.2a taken from Strobeck and Morgan (1978, Figure 1) with
Figure 2.2b shows that the two site model! is a good approximation of

the three site model if r < 2.

Susmary

The variance of three-locus linkage disequilibria for an
equilibrium infinite alleles model is solved numerically on a
computer, using identity coefficients. It is shoewn that the variance
of three-locus linkage disequilibrium created by random drift,
although smaller than the variance of two-locus linkage
disequilibrium, is of the same order of magnitude. Hence third order
disequilibria are not necessarily good indications of selection. The
formula for the variance of linkage disequilibrium 1s given when there
is no recombination between the genes. This wmodel <can also be
interpreted as intrsgenic recombination between three sites within a

gene,

18
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Figure 2.2: The effective number of alleles for a gene consisting

of two sites (a), and of three sites (b).
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Chapter 3

Selfing

Introduction

There have been several studies on the amount of linkage
disequilibrium found in natural populations. Most of these studies
found no significant linkage disequilibrium between loci that are not
associated with an inversion (Lewontin, 1974; Langley, I{o and

Voelker, 1977). However, in plant populations that are partially-

elfing, a significant amount of linkage disequilibrium is
consistently present (Brown, 1979). This  observed linkage

disequilibrium could be generated either by selection with epistatic

interactions between the loci or by random drift. In order tlo

determine whether or not this observed disequilibrium could be a
h

result of random drift, it is necessary to know the amount of linkage

disequilibrium expected in a partially selfing finite population

without selection.

The expected amount of linkage disequilibrium in a finite
population with random mating has been studied extensively. These
studies have assumed two alleles at sach locus with no mutation (Hill

and Robertson, 1968; Ohta and Kimura, 1969), a two-locus model with no

mutation (Weir and Cockerham, 1974) or an infinites number of allelas



st each locus with mutant alleles differing from all pre-existing ones

(Hill, 1975) i.s. the infinite-allels model of Kimura and Crow

(1964). In this chapter, the amount of linkage disequilibrius expected

in a finite populat ign assuming the infinfte allele model and partial

selfing is derived using identity coefficients. It is shown that the

formulas for the expected sum of squares of the linkage disequilibria
and the squared standard linkage disequilibrium are equivalent to

those from random mating with a reduced recombination value and a

reduced population sizas.

Theory

Before considering random drift of two loci in a finite
population that is primarily selfing, the one-locus wmodel is

daveloped.

-

et the population consist of N diploid individuals that produce
offs ng by both seifing and outcrossing. Let S be the proportion of
pr y i

the offspring of an individual that are produced by selfing and 1-§

the proportion of offspring produced by outcrossing. Each of the N

"

individuals in the next generation is the offs spring of either one
individual selected at random (if i1t is produced by selfing) or two
individuals selected at random without replacement (if it is produced
by outcrossing) from the present generation. If S = 1/N, then there is

random union of gametes.

Two identity coefficients are needed to describe the baehaviaor -f

[\



the system from one generation to the next. One coefficient, y(A/A)‘
is the probability that the :Hu genes of an individual are identical
(Malecot's inbreeding coefficient). The other coefficient, @(A)(A)‘ is
the probability that two genes selected from two different individuals
are identical (Malecot's kinship coefficient). (The notation used for
the subseripts is explained when considering the two-locus model.)
Since the probability of an offspring having its two genes identical
is 1/2 + 1/2v(A/AJ oif it is produced by selfing and i(A)(A) if it is
produced by ocutcrossing,

Yoasn | = (W {S(%+%Y(A/A)> +(1-8)0 ) 0} (1a)

, o g L v ,
Yaya) T AW i ROPY ay) + (- D000 ) (1b)

where L is the mutation rate to unique alleles. These relations define

the expected value of the coefficients in the next ;:ﬂiff?iaﬂ in terms

of their previous values.

Ift N > 1 and D(%)i then these equations can be approximsted
by

Yasay| T SOMEY 0+ (1=S)0 0 (2a)

if terms of D(%) or less are neglected, and

- 2u)e (2b)

4 H ot

, N
Payay T RO )t U (A) (A)

if terms of D(%?) or less are neglected. At equilibrium

5+ (- é)i

>
i

w "
LA/ A)

from (2Za) and substituting this value into (2b)



- 1 1 i
‘M) TT T R - s T 1 F 4N _u (3a)

and therefore

; - 1 + 2NuS 1+ 2NuS (3b)
(A/A) 1 + 4Ny - 2NuS 1+ AHEQ )

where Ne = (1- %S)N. It can be verified that these are the approximate
equilibrium values of equations (la) and (1b) by substitution or from
the theory of perturbed matrices (section 5.5, Noble and Daniel,
1977). 1f N 1s the probability that two genes chosen randomly from

the population without replacement (not necessarily from two different

individuals) are identical, then

1

AT AT Yam YOS

1,
¢ 1% 7 Y

since N >> 1 (Cockerham, 1967).

We now turn our attention to the two-locus model. Denote the two
loci by A and B, and let r be the recombination value between them.
Let N be the number of diploid individals, S5 be the proportion of
selfing and | and . be the mutation rates to uniqus alleles at the A

and B loci, respectively.

Sixteen 1dentity coefficients are required to deseribe rando

drift of two loci in a finite populatin that is partially selfing.
These identity coefficients involve randomly choosing chromosomes

without replacement from one, two, three or four different individuals

-

and A respectively. The following notation

and are denoted by v, 3,

24



18 used in the subscripts: parentheses are used to separate the
contributed by differeant individuals,

the genes

example,
genas at
inidivual

genes on

*1%

*(aB) (A/B)

and a, _b, _, respeclively,

genes
and slashes are used to separate
contributed by different chromosomes of an individual. For

is the probability of identity at both loci if the

the A and B loci are chosen from one chromosome of one

and from different chromosomes of another individual. If the

the two chromosomes of an arbitrary individual are dencted by

then the sixteen identity

S 12742

coefficients are given in Table 3.1.

The
sixtesen

Appendix

recursion relationships for the expected values of the

identity coefficients over replicate populations are given in

2. At equilibrium,

: WS ¢ (1900 )

. 2N .
(a/n) 1 s

\
=
=

(/)

. NS+ (1-S)6

Toaan) " T

(AB) (AB)

. iicgggl a-s

(AB) (A/W) -8

(Al)(A)(!)

" (4)
. Paw TG ) )

&, . - —
(AM/B) (A) ) - s

D ey aer
* (/) (3) A

(AB) (A) (B)

) !ﬁi(“ A, " (1- S)A
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Table 3.}: Definitions of identity coefficients for a partial

selfing population,

Yamy = Pag%85))

Q(A)(A) - P(ailsajl)
Y (AB/AB)
* (AB) (AB)
* (AB) (A/B)
® (AB/B) (A)
* (AB/A) (B)
¢
(A/A) (B/B)
¢
(A/B) (A/B)
r
(AB) (A) (B)
r
(B/B) (A) (A)
T
(A/A) (B) (B)

Tearmy (A) (B)

By e ) ®

The genes of the two chromosomes of an individual are denoted by

a by, and a;,b,,, respectively. ("z" {s read "is identical to").

.P(

P(a; =a;,

P(ailsajl

P(ailsajl

P(nilsajl

P(a iy

P(a; 23,

P(a; =a

3:1°%

Ya/p) = P(R;y%b;5)

‘e fTCaTn
and bi;;bizj
and bils jl)
and b., =b.

and b._=b

b.,=

and b;,2b.y)

and bjlzbjz)
and bilibjz)
and bilsbkl)
and bilsbiZ)
and bjlzbkl)
and b

i2°%x1)

and bjlsbll) .



S (T T0 A YT

(A/8) (A) (B) T

52(1s48) + 362(1-57 (e .t . 1-53%01. 388 )
. B . ks §54ﬁ537 ;f (I;S)COKA)(éj *(!)(!13 (1-5° (1 ?flfjAJ(!JLA)(!J
(A/A) (/D) (1« %8)(1 - 4§)°

w2 (1ohate 3.2 . . (1-5701. 3&ya B
; bl MO T T WU YO YO R R ST OT IO

i s = o = o o —
(A/B) (A/B) (1 » W0 - 45)2

from (Al). Substituting these values into (A2) gives the equilibrium
values of the .1dentity coefficients $(A)(A)‘ *(B)(B)' '(AB)(AB) "

and 4 as shown :n Table 3.2, where

(A) (B) (A) (B)

U= N(1- %5)u = N

T (AB) (A) (B)

V.= N(- 48)v = N_v

R = N(1-5)r = N(1- %5)(1-S)r/(1- 45) = Nofe

by substituting the equilibrium values from Table 3.2 into (4).

In order to compare these results for a partially selfing
population to the equivalent results for a random mating population,

it is necessary to define five further identity coefficients. Three of

without replacement from the population. One coefficient involves

choosing three chromosomes and one coefficient involves choosing four

chromosomes. (The chromosomes sre not necessarily from different

individuals). If an arb

[

trary chromesome is denoted by a,b, then the

five identity coefficients are

(87
~d



28

6+UIT+ (A+N) S+ HBU(A+N) 9L+ (A+N)OB+ M (A+D)OT+U  (A+IDBE+ (A+1)T¢ v 1y

; [6+397+ (A#1) 95+ B +H (A+N)IL+ , (A+N)08+ U (A+NIOT+Y , (A+ID)BB+ _(AS)TE] (AFT) (it o1 |
! 6+U9T+ (A+N)¥S+ UB+A (A+N) 9L+, (A+N)08+ H(A+M) 9T +Y , (A+MIBE+  (A+M)ZE+(+ (A+11)T | i’

~m+¢o~¢ﬁ>+:vvm+~¢w¢zA>+:voh+NA>*:vcm¢NzA>+:voﬁ¢zwﬁ>§:vwv¢mA>.:..m#A,#.ﬁ

m.¢o~+A>,:vvm+mam+zﬁ>+=voh+uA>*=vow+~xA>.=Vo~*zm~>,szv*mA>‘:v~w._m‘mu.A).;_,_.:

- Am<VAm<v»
: N _ Av+l _ () (),
. . A 1 ’
, ’ v+l (V)G
t ﬂ =

‘uotieqndod Burjyres Arretrized ‘931UTy B 10 SIUILDI
A313U9pT 9yl jo sanjea umiiqQipinba pajdadxy 7y

“ -



(Strobeck and Morgan,

coefficien

Tap T

ts

-y

‘re effect

o
an
»

1

1

T

AR AT INTY

in Tabie 1.2

ing wi:th a

r = s
o

of part.iai

rotli- 5
i se.f.ng

% By (aB)

"t

BRTING)

~

Y

A [B)

L]



variation of linkage disequilibrium expected in a finite population
(Serant, 1976; Strobeck and Morgan, 1978). If p, is the frequency of

the i-th allele a, at the A locus, qj the frequency of the j-th allels

bj at the B locus, and Eij - Piqj * Dij the frequency of the

chromosome a where D is the linkage disequilibrium between 8,

ibj' N 1] ' 1

and bj' then the -ipiﬁtsd sum of squares of the linkage disequilibria

£ 0,2 = I 16V 2av) -1 ][4 (UsV) 2 2Re5] e
Ty M (104U) (1+4V) [32(UsV) >+ 4B (UoV) 2R 16 (U+V)RZ+ 80 (U+V) 2+ 76 (UsV)R+BRZ + 54 (U+V) +26R+9]

and the squared standard linkage disequilibrium

E(ZI D,.%)

o 2o i M 4U)eaRes

¢ EC: PiPL 39 16 (U+V)2+24 (U+V)R+8R%+32 (UsV)+26Re11
i,k j,1 }
ifk j#l

(Hill, 1975). In Figures 3.1 and 3.2, the equilibrius values of

. . - 3
EC-D ) and 4 are plotted for 10 < Nr = 10 and with NuL = N. =
O |
C.25 and 1.0 and § = 0.0, 0.5, 0.9, 0.9% and 1.0 It 1s seen that
D and Td. remain significantly greater than zero for

“-reasing.y larger values of Nr as S approaches one and are not

mwetions of the recombination value 1f S = 1. If r = 0, E(iEDgi) has
s max.m.m Va.ue when LU = V 0.505, whereas R I d;crca;;ﬁg
r f L - V. Therefore. .ncreasing the proportion of selfing
ceases "hHe va,ue of o but may increase or decrease £ = D - e=
- “t..8. *he squared sTandard :nkage A-gegu: k- ow = -



Figure 3.1: The expacted valus of the squared linkags

disequilibrium for Ny = Nv = 0.25 and 1.0 and with partial

selfing at a rate S = 0.0, 0.5, 0.9, 0.99, and 1.0 (-~ - § = 0.0,

- - §=0.5 —- §=0.9, —-- §=0.99, — §=1.0).

I
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Figure 3.2: The expected value of the squared standard 1inkgjc
disequilibrium for Nu = Nv = 0.25 and 1.0 and with partial
selfing st a rate S = 0.0, 0.5, 0.9, 0.99, and 1.0 (— - § = 0.0,

- - §=0.5,-- §=09, --- 5§=0.99, — §=1.0).
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L]
Discussion
The results in the previous section show that there is

[ 1

significant variance in the expected linkage disequilibrium due to
random drift in a partially selfing population if
Nr =N(1-S)r 51
e e

and the mutation rates . and . are of the order 1/N. It is, therefores,

appropriate to examine the sxperimental data collected from

populations of partially selfing plants to see if the observed linkage

disequilibrium can be explained by mutation and random drift. The

magnitude of (1-5S)r will be used as an indicator of whether the

observed linkage disequilibrium could be due to random drift. Since
=L )
the msutation rate is generally assumed to be between 10 and 10

the population size wust be larger than approximately 10 if the

variation is to be maintained in the population. Thersfore, (1=-S)r

| ]
[

—f

must{ be less than 10 before the observed linkage dissquilibrius i

likely to be the result of random drift.

In barley, Horedeum vulgare, Allard and his co-workers (Allard,

Kahler and Weir, 1972; Weir, Allard and Kahler, 1972, 1974) found
significant linkage disequilibrium between four esterase loc: 1in

Composite Cross V. Three loci, A, B and C, are closely linked and the

fourth locus 1s unlinked to the other thres. The recombination value

between the three |inked loc, are estimated 'c be rAE = 2.0027%,
r = 0.0 48 a ¢ = Z.0C%5 a3+ . er ar B 4 - ke esx .ma‘e

e
L]



of the proportion of selfing is S = 0.9943 (Allard, Kahler and Weir,
1972). Therefore, the value of (1-S)r between AB, AC and BC are
0.000013, 0.000027 and 0.000034, respectively. These values are in the
range such that linkage disequilibria could be generated by random
drift. However, since Composite Cross V was initiated in 1941, a
transient analysis is more appropriate than the comparison of the
observed sum of squares of the linkage disequilibria or the squaraesd

standard linkage disequilibrium to that expected at equilibrium.

Also, the linkage disequilibrium between six loci, four esterase
loei E;, E,, Eg and E;;., a phosphatase P5, and an anodal peroxidase

APX., has been analyzed in Avena barbata, the slender wild oat, by

Allard et al. (1972). Three loci, Pg,APX; and E;; are linked, and the

¥
recombination values are EPS!APXE = 0.04, fAPXSEEgg = 0.23 and
r = 0.25 (Marshall and Allard, 1969). The proportion of selfing

Pe-Eyg 7
has been estimated to be approximately S = 0.98 (Marshall and Allard,
1970; Hamrick and Allard, 1972). Therefore, the smallest value of (1-
S)r, which is between P: and APX:, is 0.0008. This value is small
enough that random drift might have a significant effect if the size

of the effective population " is relatively small, but the actual

population size was esti:mated to be approximately 50,000,

These two examples show tha! random drift might explain some of
the l.nkage di.sequ:..:bri:um -bserved :n natural populalions. However,

random dr:f! :s un..ke.y *c be ‘'he cause of the observed rinkags



Summary

The variation of linkage disequilibrium expected in a finite,
partially selfing populatien is analyzed, assuming the infinite allele
model. Formulas for the expected sum of squares of the linkage
disequilibria and the squared standard linkage disequilibrium are
derived from th:'oquilibriun values of sixteen idantity coefficients
required to describe the behavior of the system. These formulas are
identical to those obtained with random wmating if the effective
population size

Ne = (1- LS)N
and the effective recombination value
re = (1-8)r/ (1= 48)
where S 1is the proportion of selfing, are substituted for the
population size and the recombination value. Therefore, the sffect of
partial selfing at equilibrium is to reduce the population size by a

factor 1- 45 and the recombination value by a factor (1-5)/(1- %S§).



Chapter 4 '

"y

Increased Effective Number of Alleles Found in Hybrid

Populations due to Intragenic Recombination

Introduction

’

Hybridization is recognized as a common feature of many natural
populations and has numerous implications in the study of speciation.
One unusual feature of hybrid populations is the presence of alleles
which do not f{i:t in either of the parental populations. These unique
alleles have ﬁ:in observed by Hunt and Selander (1973) in Mus musculus

Busculus and M. m. dowesticus hybrids and by Sage and Selander (1979)

in Rana berlandieri and R. utriculata hybrids. Two explanations have

been proposed to explain their presence: These unique alleles may be
due [o increased mutation rates in hybrids (Thompson and Woodruff,
1978) or they may be the result of intragenic recombination between
different alleles of the parental populations (Watt, 1972). Ohno at

al. (1969), McCarron

al. (1974), Freeling (1976), Koehn and Eanes

| -
fal

(1976) . Morgan and Strobeck (1979), and Tsuno (1981) have observed

patte

~r
"~
L
al
=
-
o
e

variability which they attribute to intragenic

In order to determine if intragenic recombination can sxplain the
presence of 'hese rare alleles, wa hsve constructed s wmodel to
ceferm.me  Tte amc.nt f variabi.ily expected in a finite hybrid

& - ¢ 455 .med ‘o consist of individuals
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rom sach parental population which can mate either with individuals

(]

from the same or from the opposite parental population. Therefore, the
model wused i1s one with two semi-isolated populations which exchange a
proportion of their genes each generation. To allew for the
possibility of intragenic recombination, the genes are assumed to
consist of two sites or parts. It has been shown that both intragenic
recombination and population subdivision can increase the variability
maintained in a finite population. Intragenic recombination
significantly increases the effective number of alleles whenever

Nr > 1 and r > & (where N 13 the population size, . i the wmutation

o
-

rate to neutral alleles and r is the recombination rate betwveen Lwo
sites within the gene) (Strobeck and Morgan, 1978). Subdivision of a
population can also increase the effective number of alleles in the
total population (of size 2N) because a different group of alleles is
maintained in each of the subpopulations, although each subpopulatien
{of size N) has reduced variability (H;l;cat‘ 1948) . Nei and Feldman
(1972) and Chakraborty and Nei (1974) have also studied gene
differentiation and rates of change of homozygosity 1n a subdivided

population (for a review see Felsenstein, 1976; Maruyama, 1977).

It is shown here that, at equilibrium, the combination of
intragenic recombination and population subdivision increases the
effective number of alleles maintained in a population beyond the sum
of the effects of each process alone. This effect is greatest when the
recombination value is large and hybridization (migration) occurs at
an  intermediate rate. The transient behavior of the system shows that

sympatry of two previocusly 1solated populations ecan increase the

-

effective number of alleles maintained in each population and in the



hybrid population above their equilibriums values for long periods of
time after the beginning of hybridization. These results imply that
intragenic recombination may be the cause of the observed unique

alleles in hybrid populatiens.

Thaory

Let the population consist of two semi-isolated subpopulations
with N; and N, dipleid individuals. Each generation, the i-th
subpopulation receives a proportion l-m of its genes from itself and

n. The gametic ii:gitiéﬂ

Q

i
a proportion L from the other subpopulati
considerad here is equivalent to individual migration for the

parameter values of interest to this study. Each gene is assumed to
consist of two sites or parts, dencted a and b, which recombine with a
probability of r. Both site a and site b can mutate to unique,
selectively neutral forms or "alleles” (as in the infinite alleles
model of Kimura and Crow, 1964). Let this mutation rate per gamete per

and ,. for site b. Therefore, the mutation

-

generation be ., for site

rate of the gene is U = .| + .- per gamete per generation.

Malecot (1948), Maruyama (1970) and Nei and Feldman (1972) showed
that the behavior of a single locus in such a subdivided population
can be described by three identity coefficients (denoted by

defined as

.y nd . ) ). , i
f@i@r 0 Y@@ ™ Y@ e,

the probability that two genes, chosen randomly without feplacement

from subpopulation ., are .dentical (that is, both genes carry the



[ 4
same allele) and ?(8)1(8)2 is defined as the probability that a gene
chosen from subpopulation 1 is identical to a gene chosen from
subpopulation 2. The recursion relationships for the expected values

of d over replicate populations

Yan @y Y@ ™ Y.,

are

g 2 21 1 ‘\ 21 1
7(.)1(.)1 (1-vy) [(l-‘:) rﬁ_l + (1~ ﬁl—)'(.)l(‘)l] + 2-1(1*1)?(.)](.)2 + l][*z‘i; + (1- E)Y(.)z(.)zl]

- 2 1 1
'(.)l(.)z = (1-v)) [(1‘-])(1-.2)'(.))(.)2 + .](1_.2)[Zl-z + (1~ ‘ZN—Z)’(.)Z(.)Z]

1 1
+ w2 (57 ¢ O )% ) * "‘"'h)x(-)zJ

- 2 2 1 L 1
Y@ aay, = VD) [“"2) (3 * - @ Vaypa) ] * 20mD ¥, () *+ malggr + (- z-_,)'(.),(.),l]

(where the ' indicates the value of the coefficient in the next

generation). These same relationships hold true for a single site
e . v v

within a gene and those for a second site, ( (), (b)), ()1 (b),

and ), are also the same but with v] replaced by v,.

HOROR

This approach, using identity coefficients, can be extended to
consider two linked sites (within a gene) in two subpopulations.
Although genes actually consist of many sites the consideration of two
sites 1is an appropriate model to indicate if intragenic recombination
has any significant effect. The widespread occurence of introns in
eukaryotic genes (Gilbert, 1978; Crick, 1979) facilitates
recombination between exons and this model is‘ a fairly accurate
representation of a gene with a single intron (the sites being

~

identified with the exons).

41
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To describe the behavior of this system from one generation to
the next requires 26 identity coefficients (c;ch the probability that
a particular sample of genes, picked at random without replacement,
are identical at the a and/or b sites). The symbol ¥ is used to
designate the probability that two gametes have identical a (or b)
sites. The symbols ¢, [ and 4 are used to designate probabilities of
identity at both the a and b sites chosen from two, three and four
gametes respectively. Each symbol is subscripted to indicate how the

gametes are chosen. The coefficient for example, 1is

®(ab) | (ab),’

defined as

= Prob( a,, za

117342 and bilfbjz )

?(ab) | (ab) -

where an arbitrary gamete chosen from the first subpopulation is

denoted by .ilbil' an arbitrary gamete <chosen from the second
subpopulation 1s denoted by ajlij and where " - " should be resad .3
1dentical !c' . The def.nitions of the 26 coefficients are giver .-
Table 4.1
"omp.e'e e-.:s. .~ -e.ationships for these 26 coeffic.erts ~a. s
ee- der:vec anc .f Nl e rem T O(l/Nii and terms of .1 *
« ¢ neg.ecled the recurs. rn reiationsh:ps for the expected values
e - eff.c.ents over replicate populations simplify to the form g:.er

‘rrencix & bquations similar to those given here were developec -

e ar” "G with N = Nt although ne aralvsis of the equa’ions .-
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transient values of homozygosity for a single locus with two
populations of size N; and N, differ little from those with two
populations each of size N = (N;+N;)/2. We also find that solutions to

the equations are not changed qualitatively when it is assumed that

"

2= N, vi=v;=" vand m = m = u. These assumpticns greatly

simplify the equations at equilibrium since not all 26 coefficients
are then required. The number of necessary coefficients is reduced to

11 since

Y@@, " Y@z T ey " Y am;

Yz = Y, m,
o “

(ab) ) (ab) (ab) 2 (ab);
r . F. .

(ab) ) (&)1 (b)1 ~ T(ab)a(a)a(d),
‘} B e = [ - r, . = T .

(sb);(a))(b); (ab)y(a)3(b), (ab) 2(a)2(B); (ab)3(a) | (b);
Tiab);(a)a(0)z = T(ab)za), (b)),
Sa) @) @)y " ) )z (a)2(b);
Fea) () (8 () T Bla) (0) (@)1, T Ara) (b2 (a) (3 T Bla)z(b) (8) (b,
Bla) () z(a) )y~ Blaryib)ca)g(by,

ius values of

-y

T.even coefficients were used to determine the equilib
‘rne .dent.ity coefficients. If the coefficients initially satisfy the
acove equal:ties and the above assumplions are met then the

eff. .. ents wili sat.sfy these equalities for all time. Therefore.
"hese .. coefficients were alsc wused to study the transien'
The equilibrium identity coefficients were found by solvin,

e svs'em of 1.  linear equations with  particular values of the

e’ . . m.gral..or  ang cecombinalion  rales. The va.ues of 'hes~
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Results and Discussion

@cib)I(ib)l is the expected homozygosity in
subpopulation 1 of a gene consisting of two sites (each with s
mutation rate V). The expected homozygosity in subpopulation 2,

is the same as in subpopulation 1 because of the

@ (ab), (ab),’

ssumptions of equal mutation rates, migration rates and population

sizes. The effective number of alleles, a meaasure of variability,

e l/;(sb) (ab),;’ £ the

subdivision is known to an observer, n is the appropriate measure of

within each subpopulation is therefors n

Tt

variability in a subdivided population. However, in many cases the
E 3
population may be spatially or ethologically subdivided and not

recognized as such by an observer.- In this case genes would be sampled

randomly from each group and the expscted homozygosity would be

Ny(N:=-D) N M3 Nz (Nz=1)
. = L = == = - — & . e [ ]
N #NZ N N -1 T (ah) . (ab)y NN (WpeNg=1) T(ab);(ab); (M +Nz) (N|+Nz=1) "{ab);(ab);

i~ "he appr-opriate effe ° ¢ number of alleles would be

- S SRy 7 37('5'{‘ :
— & * ) CE T *
Loy §oeNo-1 it . ak K HM; (N HN--]) "&bl (ah) 3 N, R

i

/

[



since N),N; >> 1, With the above assumptions

1

*
g, - - I e
¢ lap),ab), ¥ P (ab), (ab),

In a hybrid population between twoe races or species the genes would be

*
sampled at random from each group and therefore ng should be used as

The effective number of alleles at equilibrius in a single
. -3
subpopulation, n,, is given in Figure 4.1 for 4Nu = 2.0 , 10 < 4Nr
3 =3
10 and 10 < 4Nm 5 10 . It shows that migration (hybridization) and

B

e

recombination each significantly increases the number of alleles

maintained in a population when &4Nm > 1 or 4Nr > 1. When both

migration and recombination ocecur together the wffective number of

alleles 13 increased beyond the sum of the incresses dus to sach

process alone. This is Dbecause recombination requires initial

ke

L

variability to be present before it can generate more varia ility. The

migration introduces new alleles which can then recombine with other
a..eies. It can be seen that the change in ng between low and high
amounts of both migration and recombination is very large (an ng of 13
‘ersus 97, Hence, the effective number of alleles in a natura,

“CFu.alion can be very large due to just these two processes, when

To'n recombination and migration rates are sufficiently large. When

7e mulat.on rale .5 smai.er than 4N, = 2.0, the graphs show the same
LA Tom 2 . esse’ aegriee From s!.cdies crn ‘hree s:'es .° can e
, s a - = - & o , - .



Figure 4.1: The equilibrium effective number of alleles

maintained in esch of the two subpopulations (4Nu = 2.0).






In.a hybrid population the effective number of alleles at

equilibrium I3 n_- This  quantity (plotted in Fig. 4.2 for
-3 3 -3 3 o
10 < 4Nm < 10, 10 < 4Nr < 10 and 4Ny = 2.0 (2a) or 4Ny = 1.0

(2b)) is quite different from the effective number of alleles in one
lubpopulitién. Again, smaller mutation rates show the same relative
effects as in Fig. 4.2b) but the effect is smallar in magnitude. There
is i#prtigu: when recombination is large and hybridization occurs at

an intermediate rate. Since each subpopulation maintains a different

erray of alleles, hybridization can introduce new alleles to one
population which can then recombine to create neaw variability. These
recombinants are combinations which do not exist in either parental
population and would appear as alleles unique to the hybrid
population. Without recombination the variability introduced by
hybridization is already present in the total population and does not
increass n:; Intragenic recombination can, therefore, account for the

unique alleles seen in hybrid populations and perhaps for some of the

mutants found i1n hybrid dysgenesis (Thompson and Woodruff, 1978).

The decrease on either side of the optimum as the hybridizatien
rate changes 1s the result of several factors. First, new combinations
will be created only if one of the a and b sites which recombine are

of a form., or “allele’, which does not exist in one of the

suopopulations. Therefore. as the rate of hybridization .ncreases anc

*
"he simiiarity of alleles from each subpopulation increases “-e
zhance thatl recombinants will be new alleles decreases. "r ‘Fe e

nand., a very sma.. ra‘'e f rybriciza'.rr c-es “cf mltogice s

49



Figure 4.2: The wequilibrium effective number of  alleles
maintained when gametes are sampled at random from each

subpopulation (4.2a 4Nu = 2.0, 4.2b 4Nu = 1.0).
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It has been shown by Malecot (1948) that the effective number of
alleles in the entire population increases as the migration rates
betwsen the subpopulations decrease. As shown in Figure 4.2 this is

not always true vhen intragenic recombination occurs. In a population

with noe recombination and no migration betwesen subpopulations,
* . CoL . . .. . .

EE = 2+8Nu, while in a population with large migration rates,
né = ]+BNy. Therefore, for fixed 4N. and no recombination, a

Population with no migration between subpopulations always has wmore

variability than with free migration. However, when the recombination

value is high, - s
* 1 .
C om = — — —— - = 2 + 8Nu + Sﬁzuz
M BE i,,,; )é +i( 0) *é(il )? v ]
4 142Ny 20 7 4 1+2Nu
in a population with no migration between subpopulations. In a
population with free migration
. 1
1 . —— — —_— —— = ] + 8Ny + 16NZ,2
e I LT T I TUT o T Al
47 1+4NL 27 1+4Ny 4" 1+4Ny
]
‘h..s. whern the recombination value 1 high, a populatioen with fres

migral.on belween subpopulations wili have wmore variability when

N N ... Trn.s c.fference .3 because ‘he amount of variability
age’ e mb.mal.n can creale LK F [ i near, tRcreasing



It has been suggested that some hybrid populations may be stable
over long periods of time (Mayr, 1963, pp 368-379: Short, 1972; Hunt
and Selander, 1973). In this case the equilibrium analysis above is

t it

eppropriate. However, if the hybrid population is relatively rece
18 necessary o consider the transient behavior. In order to
investigate how the effective number of alleles changes over time in a
non-equilibrium population, it if appropriate to assume that the tweo
subpopulations initially are at equilibrium with ne hybridization, ie:

ibrium valuass of the coefficients when - " = 0.

—

the aqui
Hybridization, at a constant rate, is then introduced and the change
i@ the value of the coefficients ovef time is followed (again -mutation
rates, migration rates and population sizes :Qi assumed to be equal

for each of the subpopulations). Figure 4.3 shows the results with n,

w

plotted for N = 10 , 4Ny = 2.0, 4Nr = 0.1, 1.0, 10.0 and 4Nm = 10.0.
The abscissa gives the number of generations starting at generation #0
(each subpopulation at equilibrium with no hybridization) and each
generation up to #10,000. The iquilibriZg that will eventually be
resached is indicated by an arrow. For all values of 4Nr, the transient
value of n, (the effective number of alleles ;ithiﬁ one subpopulation)

shows an increase above the eventual equilibrium as hybridization and

recombination introduce nev alleles to the subpopulation and

rift eliminates alleles. With

a

thereafter a slow decline as random

-y

easing values of 4Nr the difference between the maximum n_  and the

inc
eventual equilibrium becomes larger. In all cases the equilibrium is

above the initial value and the transient n, becomes higher still.

*
Figure 4.4 gives the results for n, for the same parameter values

.
[



Figure 4.3: The effective number of alleles in each subpopulation

after two isolated populations begi

hybridization with each

other (4Ny = 2.0, 4Nm = 10.0, N = 10 ).
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Figure 4.4: The effective number of alleles maintained when
gametes are sampled at random from each subpopulation after two
isolated populations beg.r hyrr.d.zat.on with wesch other

4N. = 2.0, 4Nm = 10.0, N =
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as Figure 4.3, For a small 4Nr, n* goes straight toward a lower
e

equilibrius value (though very slowly): whereas with a large 4Nr, n
overshoots its equilibrium value which 1is larger than the initial
value.\ Since n; is & measure of the total population variability, if
the two subpopulations were to instantanecusly mix there would be no

* - = = = B < = = B -
change in n . Therefore, initially the only new variability in the

total populatien 1i1s crested by recombination. Without this

e

recombination, new alleles would be formed only by mutation.

Figures 4.3 and 4.4 show that the effects of past events will bs

retained in a population for a very large number of

™~
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e |
[ ]
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[ ]
~
-
[ ]
3
[
~
-
-
-

makes the utility of an equilibrium analysis questionable, because the
approach to such an equilibrium 1s very slow. For example, when

*
4Nw = 1.0 and 4Nr = 10.0, nE
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equilibrium even after 10,000 generations have passed. Similarly, n,

must exceed the equilibrium before returning to 1t many generations

later; however, when 4Nm = 1.0 and 4N. = 2.0, n_ has not yet increased

up to the equilibrium after 10,000 generations. Other hybridizations

cr events of importance to the population are certain to occur bef

o

re
ar  equilibrium 18 reached. Also the effects of hybridization can

hybrid population than those expected

w
©
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L1
lal

ol
L]
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L
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L
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L

ar  equ:i.ibrium population. [In pgeneral n increases above the

#5...:0raum, though the length of time 15 prohibitive when 4Nm 13

*
Ta.. anc n  ai.so increases above the equilibrium when 4Nr is large.

. ]
mav 5e d:ffica.t *tc observe the initial effects of hybridization on

L 7
2’ © [aiame ers ~"€#ca.se n changes s.ovwly. From Figure 4.4 -
.
-
a arges asvmp® a nceed a i



would be noticeable after 125 generations.

This study indicates that homozygosity is hot an effective way to
determine if intragenic recombination is an important factor in
creating new alleles in a hybrid population. This determination might,
however, be done at the molecular level by sequencing the DNA. If one

’
bart of the gene had a sequence characteristic of one subpopulation

and another region of the gene was characteristic of the other

subpopulation then intragenic recombination would be indicated.

Summary

A two site, infinite allele model is used to study the influence
of intragenic recombination on the effective number of neutral alleles
in a hybrid population. It is shown that the combination of intragenic
recombination and hybridization can have a large effect on the
effective number of alleles in a population at equilibrium and an even
iarger effect when the population i1s not at equilibrium. When 'he
muitation and recombination rates are large, a completely subdividec
popuiation w:i. no! maintain as much variability as a random ma* ;

popu.ation. 2 1s conciuded that unique alie.es i1n hybrid pop..at. <

.C e © rmec >y . 'ragen:c recombina!.on.

5¢



Chapter 5

Variance and Covariance of Homozygosity in a Structured Population

Introduction

The amount of homozygosity is a basic measure of variability in a
-natural populatien. The ;xpiﬁtid homozygosity in a8 finite population
with selectively neutral alleles was first determined by Haldane
(1939) and independently by Malecot (1948) and by Kimura and Crow
(1964). To interpret observed levels of homozygosity it is also
necessary to known the expected variance. The variance of homozygosity
in a finite population with mutation and with selectivaly neutral
slleles was determined by Watterson (1974) and by Stewart (1976), and

the transient behavier by Li and Nei (1975).

A method to derive the variance of homozygosity is developed
here, using 1dentity coefficients. The method is applied to derive the
variance and covar:ance of homozygosity for a structured populstion.
“he population 1s assumed to be divided 1into n partially isolated
subpopulations each with N diploid, randomly mating individuals. The

ar.ance of homozygosity for completely 1solated populaticrs

:nc.uding 1t's decomposition into component parts! has been derivec

v .esgard 198! . The wvar:iance of homozygosity wilhin ea
s.uhorpuiation, ‘he variance of homozvgos:ityv when galie'es are sample«-
a "ara m from "Re s.cr-r..at:-ns and ‘he -covar.ance Lo f SOBCTVEDS
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those expected for a single random matin

Variance of Homozygosity in a Single Population

The variance of homozygosity is first derived for a single

population.

Consider a locus (denoted A) which can have k possible alleles.

Let the population consist of N randomly mating diploid individuals.

per gamete per generation. Thus the total wmutation rate of an

-

k-

allele to any other allele 13 1 per gamete per generation.

When N >> 1, the expected "homozygosity' 1is

k
EEZpi)
i=1
where p i3 the frequency of the i~th allele and the variance of
{ 3
homozygos:ity is
ko koo oo ko
varC T op ) = E(( ) p) ) = EC] p,)
=1 i=1 i=1
LI k k ko,
=E( po) +ECT 7} PyPy) - E Popp)
i=1 i=1j=1 i=]
ik
“r e N ang negiecting terms of order 1/N, the expected
TOMOZVETS TN $ equa. 'c the probability that two gameles, sampled at
‘arc E «:"hou! rer.acemen! Save ‘"hHe same al.ele at iocus A ‘Kimura



formula the variance of .homozygosity can also be exprassad as

" L
identity coefficients. The term E( | P;) is approximately the
s"‘ﬁs -

probability that four gametes sampled without replacement carry

alleles at locus A which are identical in state and can be dencoted

ok
. _ vt - = . . e
Alllli The term E(;uil pipj) 15 approximately the probability that of
it i

four gameles sampled without replacement, two pairs have the same

allele and each pair have different alleles. This probability can b

denot ed All/ll' Thus the variance of homozygosity can be expressed as

To determine recursion relationships for these Eﬁcffiéiintl it is
convenient to define another six identity coefficients. Throughout,
the coefficienls are denoted by ¢ if they involve a sample of two
gaseltes, by [ if they involve a sample of three gametes and by A if

they involve a sample of four gametes. A slash is wused to separate

non-identical genes; and subscripts denote the subpopulation from

which the alleles were chosen. Denoting the allele on an arbitrary’

gamste by a. the nine cosfficients can be definaed as in Table 5.1.
Recursion relationships for the expacted values of the

coefficients over replicale populations are given in Appendix 4.
Although these nine coefficients help to make the derivation more

obvious, only four of them are necessary since

-
{ . + 37 + ., =

' “11l 110 171
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81111 * 411171 " Tin

1171 Y 4711 s t Tan

[

1/N, 4 << 1 and using these identities, the recursion

relationships reduce to those shown in Table 5.2. Therefore at

equilibrium, with A = 4Ny—,

. 1

k-1

31111 - (fi:g%%:%l)\)(?;iil\) Z11/11 = (1*2,:(\)1?3\;131;;;3_“)
V;f(zpi) - fi+§%§é?gié:;%;1kﬁf
This is the same result obtained by Watterson (1974) and Stewart
(1976) .

The variance has a maximum value, for particular values of 4N_

and k., which results in several interesting properti:es. When Kk

Mma: . T

m var.ance of 5.0508 .5 obtained when

= - Fomar T ca: arce 1% o.oui? L

a
&
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As shown by Li and Nei (1975) the system of equations can be

solved at generation t and the variance is given by

@
(D @ ¥ 2 e (0 a2
(1zlpi = Var (1§1pi) - A (a;-20,,7¢ 420 )

-a,-a, )

- 2 g%
A (0(0) G+ 8@ +A£g

1) t Aty

vhere a, = 2(0(0) 11)(16*10A+kﬂ+kA ) / (4+kA) ( 5+kA)
a, = 8(r9- “111-3(¢§?)—;11)(2+A)/(A+g;))/(6+kA)
AL - (1‘- 3% - ZLE%T)
A, = (1 - 5% - 3uE§T) )
o= (- 5% - AuI%T)

in Figure 5.1 the approach to gsu;librign is shown, starting with a
== )
comp.etely homozygous populat¥fon. As tiwe procesds, v;r;;gil;ty

.ncreases within the population. When 4N, < 0.5, the variance of

nowozvg - v quickly increases and then asymptotically approaches 1ts
equi.:® t value. When 4N _ > 0.5, the variance increases up to and
‘her bevond i!s equilibrium vaiue. This is because ‘he var.ance s
maxi1mum when 4N 0.5. The increase :n the var.ance .s .arge wher 4N

s .aTae



Figure 5.1: Variance of homozygosity in a single population over

time, starting with a completely homozygous population.
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Variance of homozygosity for a structured populiation

To determine the variance of homozygosity within subdivided
populations consider n subpopulations each with N diploid individuals.
Each generation a proportion m of the gametes in each subpopulatien
are migrants chosen at randos from the relainin;‘ n-1 subpopulations.
At equilibrium (or with initial conditions such that the probability
of identity/non-identity is independent of the numeration of the

subpopulations, eg: for all i % ; ¢ k are equal) this model

Aiijk
roéuires a minimum of 17 coefficients. These coefficients are defined
in Table 5.3, where .ix is an arbitrary gamete chosen from the i-th
subpopulation. When 1/N, |, m << 1, recursion relationships for the
expected values of the coefficients over replicate populations can be
found and are given in Table 5.4. An analytical solution would be
difficult to find for this system of equations. Therefore, thes

equations were solved numerically by substituting particular values

for the subpopulation size, mutation rate and migration rate.

The variance of homozygosity within the 1-th subpopulation is

2
- + A -
Var, = 8444 11711 " %44

and the covariance of homozygosity between the i-th and j-th

subpopulations 1s

- + -
Coviy = 84433 T %4135 T tu

When gametes are sampled at random from the subpopulations the
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apparent homozygosity is approximately

D |
o
+
e

and the; variance of homozygosity is approximately

1 R
Var = ;g[anu + "(“'”Aiuj + 3("'”Aiijj + 6(""1)(""2“1135,*

(n-1)(n-2)(n-3)A +

tykg ¥ By4/4q * 40D

14719 ¥ 2By 04 *

(n-1)4 + 2(n-1)(n-2)84

11/13 179k + 4(n-1)(n-2)4

13/1k T

(n-1) (n-2) (n-3)4 _ [y 4 nly )2
1j/ke n i1 n 1jj

The following results are for X -+ « or k = 4 and n = 4. The results
for other values of k and n are similar unless stated othervise.

The variance of homozygosity within one of four subpopulations
v L

M

for k > «» and for k = 4 is given in Figure 5.2 with 10 ‘ £ 4Nu = 10

-3 2 .
and 10 < 4Nm < 10 . The results illustrate the effect of the maximum

variance when 4N_. = 0.5. Depending on the amount of wmigration the
equilibrium variance will be higher or lower than tﬁat expacted 1n a
single population. This is because migrants can carry new alleles with
them, augmenting the mutation rate so that it is closer to or excesds
the maximum. When k = 4 (as is appropriate for a single nuclectide .
the results remain qualitatively the same. When migration occuLrs
between a larger number of subpopulations, the migrants are mc:re

likely to carry different alleles and thus the variance changes fasts:

as the migration rate changes.
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Figure 5.2: Equilibrium wvariance of homozygosity within one of
four subpopulations (5.2a k ~ =, 5.2b k = 4).
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population is considered, the expected variance of homozygosity is
given by sampling gametes at random from each subpopulation. The
result of this is shown in Figure 5.3 with a) k + ®», b) k = 4 and with

)
10 < 4Ny = 10 and 10 < 4Nm 2 10 . When the migration rate is

small, the results change as k changes. This is because the
probability of picking identical alleles from two subpopulations is
zero when k + = and m = 0, but this probability is 1/4 when k = 4,

Thus, the variance of ha:a:y;a:ii§}ig small when k + = but remains

relatively large when k = 4, Th[; effect is more dramatic when n < 4.
4

Te determine the transient behavior of the variance of
homozygosity, each sgbpapulqﬁion is assumed to be initially at
equilibrium with m = 0. Migration, at a constant rate, isx then
iﬂ::édu:iﬂ and the change in the value of the coefficients avnrtti!:
is followed by iterating the equations in Table 5.4. This is done for
4Nm = 10.0 and k + = and the results are shown in Figure 5.4. The

equilibrium that will eventually be reached is indicated by an arrow,

r

Within a single subpopulation (Figure 5.4a) there is a | e« and rapid

[a]

decrease in the variance and then a slow increase back to equilibrium.

Lower wmigration rates <cause slower rates of <change and highsr
migration rates cause faster rates of éﬁ;ngi. but the results rems:.r
similar. Note that ths time scale is very large in these graphs. Fer

i

example, if N 10

nd a generation length of 20 vyesrs for wman i3
sssumed, the time scale covers wmwore than half a millien yeasars.
Nevertheless, the value of the variance of homozygosity at time t = 0
(when 4N = 0.125) is closer to its equilibrium value than at f.me

t = 3N. When gametes are chosen at random from the subpopulati.ons. the

=13 < e
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Figure 5.3: Equilibrium variance of homozygosity sampFing at

random from four subpopulations (5.3a k + =, 5.3b k = 4).
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Figure 5.4: Trapmsient variance of homozygosity within one of four

’ S
subpopulations (5.48 k + =) and the transient variance of

homozygosilty sampling at random from four subpopulations (5.4b,

kK + =).
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results shown in Figure 5.4b are obtained. In this case there is not a
drastic decrease in the variance. In general there is /(/{slou,
monotonic increase in the variance toward the new equilibrium. Again
.
when 4N|; is small it takes a large number of generations to approach
the equilibrium. When k and n are small, the variance of homozygosity,
picking gametes at random from the subpopulations, does not decrease
over time. In this case the initial variance of homozygosity is <close
to the equilibrium vaslue and only minor changes occur. The variance of
homozygosity within a subpopulation also shows smaller ghanges when k
is small. |

Figure 5.5 shows the correlation coefficient for homozygosity
3

=1

between two subpopulations with 10 < 4Ny < 103 and 10_ < 4Na < 102.
The correlation coefficient is almost identical whether k - » (5.5a)
or k = 4 (5.5b). Hal;cot {1948) showed that ‘when 4Nm > 1, the alleles
of two subpopulations are very similar (oij x 011). Figure 5.5 shcws
that this is also true for the second moment of frequencies for
several subpopulations and with an infinite or finite number of
alleles. Over a short range of 4Nm, the subpopulations change from

being unrelated to strongly correlated. Presumably this is also true

for all gene frequency moments.

Most natural populations are subdivided in some way and this
creates problems for many statistical tests. For example Ewens' (1972)
method for estimating 4N_. considers only a single population. To
extend the method for a structured population would be difficult. It
18, therefnre necessarv 'c known how strongly the subdivision affo;ts

the variance ¢ r~omczvgosity {(and higher moments) relative to that



Figure 5.5: Equilibrifui correlation coefficient of homozygosity

between two of four subpopulations (5.5a8 k -+, 5.5b k = 4).
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expected in a single population. To do this we have used the
homozygosity within a subpopulation to €aleulate the appropriate yalue

of 4N_. for a single population, from the relation

! -
R O
T ,
= ? = = .
k-1 i1 k=1

H
This value of 4Ny was then substituted into Stewart's (1976) formula

| 4
to give an expected variance of homozygosity. The ratio of the true

variance [o this expected value i3 given in Figure 5.6. As can be

e

seen, this ratio is close to one for all 4N ,, 4Nm and &k +- =, k = 4,

The maximum and minimum of the ratio is 1.039 and 0.881 in Figure
5.6a) and 1.051 and 0.986 in Figure 5.6b), respectively. When n = 2,
the ratioc 1is aeven clossr to ranéi If the behavior of higher order
moments are reflected by that of the variance, this suggests thst ‘many
statistical tests may be ;pp:cpfiiEGIS applied to a subpopulation
which has ﬁi;r;éian with other subpopulations. Similar results were
found in the simulations of Ewens and Gillespie (1974) and Slatkin
(1982) .

If hovever the subdivision is unknown to an observer, this is no

H

longer trus. Figure 5.7 shows the ratio of the true variance to the
expected variance when genes are jampled at random from four

subpopulations. When k is large, the actual variance of homozygosity

is much smaller than the variance appropriate for the expected level

‘of homozygosity. Therefore, an ocbserver mus{ know the subdivisions of

thg} population under study. The simulstion studies of Ewens and

Gillespie (1974) suggested that population subdivision, with larger

migration rates, does not invalidate the use of Ewens' theory. The

i
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Figure 5.6: Ratio of the actual variance of hemozygosity within

one of four subpopulations to the expected variance for a single

population with the same variability (5.6a k + =, 5.6b k = 4).



b)

10

10

-1

) §
XN
j 4

4Ny’

UL
X XAX

ORI LT

%

-
=
=
gl
=
T
:u:ﬁ:i
-
s, -
-
-
o
ot
i
ot
-

4Nm

Ratio

4



Figure 5.7: Ratio of the actusl variance of homozygosity sampling
gn-o“ at random from four subpopulstions to the expected
ce

or a single population with the same variability (5.7a

]

vari

k -+ oo, 5.7§k!‘i)-
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li;ulation of Slatkin (1982) suggests the opposite when the migration
rétes are small. As noted by Slatkin this is due to the difference in
the -igration ratos.,fto- Figure 5.7a) we can quantify th; range of
-~- where this change takes place as IQE < 4Nm < lDli Figure 5.7b)
shows that the ratio 1s again close to one when k is small. The
maximum and‘ minimum of the ratio is 1.057 and 0.061 in Bigure §§7i3j
and 1.139 and 0.995 in Figure 5.7b), respectively. Thus :;an Lf (ii\gi

population is subdivided, estimates of the wutation rates of

nucleotides (eg: using Ewens' 1974 method) may be appropriate.

Su:L;ry ol

The variance of homozygosity for a k-allele model with n

y using

e

partially isolated subpopulations is derived numerical

identity coefficients. Within a single population the variance has =

maximus of approximately 0.05. Thus the transient varisnce may
increase and then decrease over time when 4Ny > 0.5. This maximum &lseo
causes the variance within a subpopulation tec depend strongly upon the
migration retes with other subpopulations. The variance 1is not
strongly influenced by the number of alleles possible at a locus
unless the population is presumed panmictic, but is actually
subdivided. When the latter is true, the variance is higher with small
migration rato; when k is small. The trasnsient behavior of the
variance of homozygosity shows that a large number of generations may
be required to approach equilibrium values. The results suggest th‘;ti

in many situations, the variance of homozygosity may be adsquately



estimated from the amount of variability present. If the results for

higher order moments are similar, statistical lests need not

structured populations as a special case.

considar
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. Chapter 6
Two-Locus, Fourth Order Gene Frequency Moments:
Implications for the Variance of Squared Linkage Disequilibrium and

the Variance of Homozygosity

. ] * C

Introduction

v

The partial differential equations for a diffusion approximation
which describe the behavior of two, linked, neutral loci in a finite
population have been known for a long time (Kimura, 1955). However,
the equations are too complicated to be easily soived. One way to

.
circumvent this problem is to evaluate only the moments of gene
frequencies. It is known (eg: Hill and Robertson, 1968; Serant and
Villard, 1972; Weir and Cockerham 1974; Serant, 1974; Hill, 1975: Li
and Nei, 1975; Strobeck and Morgan, 1978; and others) that these
moments follow simple recursion relationships which can be solved.
This approach is wused here to evaluate the two-locus, fourth order
gene frequency moments. The results are applied to two - problems; the
variance of The expected squared !linkage disequilibrium and the

variance of homozygosity of a gene with recombination between- two

sites.

Linkage disequilibrium is a wmeasure of nonrandom associstion

between alleles at different loci. It can be defined as
D - £

1J 13 ~ P19y

~9]1-



j‘ )

- e
where Eij is the frequency of gametes with the i-th allele at locus A
and j-th allele at locus B and where p, and q, are the corresponding

i B

allele frequencies. Both selection and random d

ift due to a finite

b

papulation size can cause a nonrandom association. The sum of squares

of the liﬁkggs disequilibria,

I~
e
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n
1
e
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e
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is a measure of the average disequilibria between two loci. It is a
component of the squared correlation of gene frequencies, enters into
the standard Chi square test and is of interest itself. Therefore, it

18 necessary to know the size of the variance that can be expected in

a2 natural population. The results presented here demonstrate that the

standard deviation 6&f (i?Dij) will usually be lar. than the mean and

can be much larger for realistic mutation rates.

The method can also be used to find the variance of homozygosity
for a gene consisting of two sites between which recombination occurs.
It is known that recombination occurs within genes and the discovery
that introns are prevalent in most sukaryotic genes facilitates such
recombination. It has been shown by ﬁaﬂt:izirla simulation (Strobeck
and Morgan, 1978) that intragenic recombination significantly
increases the variance of homozygosity if 4Nu > 1.0 and r > U. The

results confirm and extend this prediction.



" Theory

Consider two loci (denoted A and B).in a fiaété population with
2N gametes. The gametes in each generation are prédué:d following a
Wright-Fisher model (Ewens, 1979). Let the mutation rate to unique,

selectively neutral alleles b€ .. and .. per gamete per gerwration, at

loci A and B, respectively. Let the recombination rate between the two

umed that 1/2N, .-, .-, r << 1 and

loci be r. Thfau;ha;ti it 15 ass
= A 2

terms of order (1/2N) , v;, v;, r or higher are neglected.
To define the necessary system of squations to find fourth order
moments requires a minisum of 50 identity coefficients, each the

probability that a particular sample of gametss have (or do not have)

identical alleles. These coefficjents can be dencoted

ijx/ymn/p/q
To define these coefficients, consider a sample of i+j+k*L+m+n+p+q
gametes drawn at random, without replacement (a group of | gametes, a

group of | gametes and so on). Signify the gametes in each of these

C . 1 I . .
roups with superscript roman numerals, eg: let 8 (or bx) denote the

allele &t locus A (or locus B) from the x-th gamete of the first group

(
P .1 - ; : , \
of i gameles and a_~ denote the allele at locus A from the x-th gamete

x

=

-
e
[y}
4
>
-
=]
-

of the second group of ;| gametaes,

o 7 I S I |
"1jk/Lmn/p/q A | 1 %1 b
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where "=" should be read "is identical to" and "¥" should be read "are
not identical to”. These coefficients are defined diagrammatically

;% the probabiiitly That (i)

[« %

Figure 6.1 and in in words, ﬁijk/imﬁ/p/q

identical; (11)

g
L

all genes at locus A carried by the i*j*p gametas a
all genes at locus A carried by the i*m+q gametes are identical; (i,

that the alleles (i) and (ii) are different; (iv) all genes at locus B

t

carried by the i*k*q gametes are idenfical; (v) all genes at locus B
carried by the i+*n*p gametes are identical; and (vi) that the allelss
in (iv) and (v) differ. Note that these coefficients apply to a

specific sample of gametes. For example, the probability that any one

o _ o : = A 3 3 ) ~ S .t7 ~ o _ : |
ef three genes differ i 3®QED/DLD/O/O while *020/010/0/0 % the

probability that a particular gene differs. In general (with i, j, k,

£, =, n, p and q gametss in sach group). the number of ways gametes

€an be sampled is *
(1+§+k+24mtn+p+q) ! -
{14k 2 min!plqlx
L
; £
where, if i=2=p=q=0 then
x=4 if j=m$0 and k=n40
' x=2 if j=w40 or k=n$0
x*] otherwvise 5

if i, &, p eor q*O then
x=4 if i1={=p=q and j=m and k=n

x=2 if i=q and %=p and j==m



Figure 6.]1: Diagrammatic definition of the i1dentity coefficients
(All of the alleles in a vertical column must be identical, a

slash separates non-identical alleles and the lstters 1indicate

the number of gametes sampled).
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x=2 if {=p and l=q and k=n
x=2 if i=L and p=q and j=m and ke=n
x=] othervise

®

For convenience, let
S - $
1jk/000/0/0 ik

The general recursion relationship for the expected values of the

coefficients over replicate populations is derived in Appendix 5. The
set of equations, necessary to determine Lhe variance of linkage
disequilibrium, is given in Appendix &. Particular values for the

recombination and mutati:on rate ware substituted into these sgquations.
The equstions were then numserically solved on a computer to delermine

the equilibrium values of the identity coefficients.

The variance of squared linkage disequilibrium can be expressed

1
var(zmD, R ll(t:n‘j) ) - ;[::n 1)

13
. 7 z 2
° llf:::('lj u 1jgklpkql 13Fh‘ 1, f k:’i‘j*‘fij STLILL LN
2 2 2 112 : 1111
-zttjpipkqj‘l*thlpiqj :!klpiphq ﬂlﬁllllhil q;)] .
2 ERRK!
- '(tj('xj'zlijpiqj*’i‘j)]
112 LRI
. - l(g(fu-bl "1‘;“'“1,&“3 upiqi‘ 113
) 2 IR ) 2
ML "13’kj :‘11 iy Puty ey Pasy” 331; g; Pyaytat Ty yP Pyl
1kt
21 21 112 F EEE

2ftjpipkqj¢ftjpiﬁj =2f h]’l‘i‘j 1Py 3]
z
+ MIZ I (f =2f

2 i 1
tagy 4 TR FTLITLAA A JP;“;’2'1;‘;;’1‘3*‘!1331;'1‘3’;
13 12 B 2

y 2
=2y yp49, ‘t*’ilp 19472¢,P 1‘3‘;**1“1‘131
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where the sums on'i and k extend over all alleles at locus A and j and,

quency moments is

¢ over all alleles at locus B. Each of these gene fr

squivalsnt to an identity coefficient. In particular,

i ix/1mn/p/q

i

Therefore, the variance can be expressed as

— —7,1 o
“"(ffﬂigl = %00 = 3

1Y %% 7 43 T Yoa R

* %200/000/0/2 = **201/010/0/1 * 20270207070 * “*112/010/0/1

= ;1370207070 * *024/02070/0 * *200/000/2/0 = **210/001/1/0

* 2%,20/002/070 * **121/001/170 ~ **131/0028/0 * *042/002/080

* *200/200/0/0 = **200/111/0/0 * **200/022/0/0 * **111/111/0/0
2

. ]
- 410227000 * Yo22/022/0/0 T 200 © 111 * %022’

200

Similarly, for a gene with two sites the variance of homozygosity is

- 2
= %00 * %200/000/0/2 * %200/000/2/0 * *200/200/0/0 = *200



Results & Discussion

sguarasd 1iﬁk;&5 di;n'ui}i um

Variance of

Significant levels of linkage disequilibrium are found frequently
in partially and completely selfing populations and between alleles
associated vwith inversions. In other cases, extensive surveys of
natural populations (Lewontin, 1974; Nevo, 1978% Brown, 1979)
generally show only low levels of linkage disequilibrium. However, ths

Hill (1977) attempted to detérmine the coefficient of variation

(C.V.) for the squared correlation coefficient

b

r = E[D /p(1-p)q(l-q)]

(wvhere D = £.," P4 ) for a two allele model in segregating

populations. His results, using a Taylor's series ion for

[ ]
"

pproxzima
both the mean and variance, indicated that the C.V. could be greater

than one hundred percent. However, the remainder term in the Taylor's

e |
-

ies for the wmean can be l;fz:i This can result in a negative

pproximation to the squared correlation coefficient if thare are rars
alleles in the populstion. This is shown with an example given in
Appendix 7. This wexample assumes that 12 replicate populations are
observed, ten with the most frequent gamete having s frequency of
0.9998, and the other two replicate populations with the most frequent
gamete having a frequency of 0.97 (ten populations are given rare

alleles i1n order to make the effects of the rare alleles more

99
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noticeable). When the expected values for these populations are

substituted into the second order Taylor's expansion of r?

2 ![§1]47 - ( , ![ﬁiP(I‘F}iil*!)] i[rg(lgﬁ)zq;(’l!ﬂi]T
T T R I R T
¢
a8 negative squared correlation 1s found. Since the Taylor's

approximstion to the squared correlation coefficient can be negative
when the mutation rate :is small, the C.V. for the correlation was not

’lculatod.

The coefficient of variation for linkage disequilibrium is shown

v, for 4Nv = 0,125, 0.25, 0.5, 1.0, 2.0,

in Figure 6.2 with vy = v:

4.0. It can be seen that the C.V. will be less than one hundred

Ly |
- ™

percent only when 4Nv is very large. When 4Nv is sgmall, the standa
deviation is several times the size of the mean. The results in Figure
6.2 show that the C.V. is relatively constant for each 4Nv when 4Nr is
large or swmall. For small 4Nv, the minimum' C.V. is reached as r - O
and the wmaximum vwhen 4Nr = 10.0. Note also that as r * = the
expected linkn;ciéigiquilibriuﬁ approachs zero but the C.V. remains
relatively constant. This demonstrates that the distribution must be
hi;hl; skewed. The C.V. appears (o increass exponentially as 4Nv

2

decreases. Since the C.V. is so large the utility of tests based on D

must be questionad.



Figure 6&.2: The percent coefficient of variation for the squared

linkage disequilibrium,
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Variance of homozygosity

The coefficient of variation of howmozygosity when a gene consists
of two sites with recombination betwesn them can alsc be determined.

This model is a good approximafion of a gene with two exons and a

ingle intron. Introns occur in most weukaryolic genes and must

significantly increase recombination withip genes since they can exist

in large numbers and can be a major portion of the gene. For example;

the vitellogenin genes of Xenopus laevis have 33 introns within esach

gene (Wahli et al., 1980): The 12 type | collagen gene of chickens has

more than 49 introns (Vogeli ot al., 1981); the single intron of the

chloroplast tRNA gene in Zea mays i3 more than 9271 of the total

In Figure 6.3 and Figure 6.4 let . = 2. be the mutation rate of

the complete gene (sach site within the gene is assumed to have the

same mutation rate, .). Figure 6.3 shows that the C.V. of homozygosity

increases vhen recombination ocecurs and when the ;ugntian rate of the

complete gens is large, as predicted by Strobeck and Morgan (1978).

]
]

When the r toe u ratio 15 small, the maxisum .V.  occurs when

(1]

@ = 8Nv = 1.5 (Figure 6.3). Whan the wsutation rate is small, the
effocts of recombination become smaller since recombination acts only

on variability already present. The variance of homozygosity when r is

large is given by

™ 40 (6+60+02)

(140) 4 (240)2(34+0)?

One possible way to adjust for the effects of

I
]
-
g |
[}
-~
™
=
pw
Ly
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Figure 6.3: The percent coefficient of variation for the

homozygosity of a gene consisting of two sites.
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Figure 6.4: The ratio of the variance of homozygosity of a gene
consisting of two sites to the variance of homozygosity of a genas

with one site and with the same variability.
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recombination would be to increase the value of © toc mateh the

increased variability due to recombination. In a sense, trying to find
an "effective mutation rate”, This ecan be done by setting

oo (1/@206) = 1. This value of : gives a single locus the same
expected homozygosity. The expected variance of homozygosity for a

single locus model with this = 13

A
P

(1+7) = (2+7) (3+)

(Watterson, 1974; Stewart, 1976). However., :trobeck and Morgan (1978)
argued that the variance of a single jocus model aven with an
increased - would underestimate the true variance. In Figure 6.4 the

ratio of the true variance of howozygosity to the adjusted variance of

a single locus model is compared for 0.0 < " < 4.0. When the amount of

rgc@ibii'iicn is large, the ratio quickly increases above one as the

mutation rate increases. The ratio is small only when © < 0.5 and r

is small. Therefore, intragenic recombination can not be modelled by

increasing the mutation rate because the variance and presumably all

other moments aboul the mean are changed.

Identity coefficients lzggui-d to construct a sufficient set of
equations to determine the fourth order moments of gene frequencies

inked loci. This allows the variance of the expected squared

;\

for tw

linkage disequilibrium to be found. It is shown that the coefficient

Lo
(=]



of variation 1is ;oncr;lly:;f:it:r than one and if the mutation rate 1is
small, the standard deviation is more than four times the size of the
sean. This demonstrates that squared linkage disequilibrium i3 a
highly variable quantity. The variance of homozygosity for a gene
which consists of two sites can also be obtained. Recombination
between these s.les incresases Che variance of homozygosity, suggesting
that intragenic recombination significantly changes all the expected

moments of gene frequencies 1f 4Nu * 1.0 and r > ..

[

o
vy
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Chapter 7

Conclusions

Throughout the preceeding chapters the method of identity
coefficients has been used to solve several problems. This method i3
not the only way in which the problems can be solved. Evaluating the
moments of the continuous diffusion approximation would give similar
answers. Wright's path coefficients wiil give exactly the same
answers. There are probably wany different ways in which these

problems can be approached. The advantage of the wmethod of identity

coefficients (and the other probability methods mentioned in Chapter

Ly |

1) is that it is simple and intuitive. Indeed, the scursion
relationships almost write themselves. When some quantity has been
~determined to be of interest and it has been defined in terms of a
probability, then a recursion relationship can be found for this
quantity using simple prabability arguments. In writing such a
recursion relationship it i1s often found that other probabilities are
required. Recursion rolitiaﬂ;ﬁipi for these probabilities can be
written and wmay suggest that still more are required. Eventually a
complete set is determined and can then be sclved. As stated by
Cockerham (1967), '"While H;lgéat': definitions and msthods must lead
to the same results as doss Wright's, they are generally sesasier to
grasp and apply, requiring only simple probability arguments, for
those not well versed in path coefficients”. The simplicity of this

method makes it very useful and the precesding chapters give only a

slight indication of what can be done using identity coefficients.

-110-
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This method has besn “‘.g: to examine several properties of

linkage disequilibrium in Chapters 2, 3 and 6. In general these

studies point out 2 few problems that wust be considered. First,

/
higher order linkage disequilibria among several loci need not be a

strong indication of the effects of selection. Although smaller than
two-locus disequilibria, three—locus disequilibria 1i1s of the same
order of magnitude. Secondly, the sum of squares of linkage

disequilibrium is not a "wall-behaved" function 1in a partially

selfing, finite population (Chpt. 3). The linkage disequilibria may
increass or decreass with different rates of selfing depending on the

mutation rates. This problem can be circumvented by considering the
standard squared linkage disequilibrium, a quantity related to the
correlation of gene frequencies. However, Chapter 6 shows that there
are problems with this quantity as well. The squared standard linkage
disequilibrium is a first order Taylor's series approximation to the

correlation coefficient. It is shown in Chapter 6 that a second order

Taylor's series approximation can be negative when there are rare

alleles in the population. This qu:itianl'th: accuracy of the Tayler's
series approximation of the squared standard linkage disequilibrium to
the correlation coefficient. In this Ehlpgif we also demonstrate that
a major component of thi1¥ quantity, the sum of squares of the linkage
disequilibrium, has a very large variance (particularly with realistic
mutation rates). These chapters have considered only the value of the
parameters in the whole population. It 1s necessary to determine the:r
expected values in a sample but such a theory would be difficul®

develop.

Lo
-
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The effects of intragenic recombination have been examined in
Chapters 2, 4 and 6. These studies demonsirale soveral properties of
this process. Even though intragenic recombination may be rare it can
have significant effecls in some situations. In hybrid individuals and

individuals with sn interracial background there is a significant

chance that they w=say have unusual or unique combinations of I%Ell

[

tua

"

within their genes. It would be preferable to ®elermine the a
number of alleles <crested in hybrid populations by intragenic
recombination but the effective number of alleles is suggestive. The
importance of these nevw alleles depends partly upon their fitnesses.

Unfortunately, very little is known about the relative fitnesses of

different combinations of sites within genes.

The results in Chapter 6 suggest that intragenic recombination
may significantly alter the distribution of gene frequencies. This
depends on the sizes of the wmutation rates and the amount of
recombination between sites. If these two processes are sufficiently
large, most of the models 1in common use will be compromised. For
example, Ewens' (1972) method to estimate the parameter 4Ny will give
an upwardly biased answer. Since the actual sizes of the recombination
and wmutation rates are not known precisely, it 1s not clear how large
the effects of intragenic recombination will be. The results in
Chapter 2 however, demonstrate that the effects of recombination
between more than two sites within a gene may not have to be

ccns.dered. This study shows that at |east., the overa.! homozvgosity

s a~curately mode.led by gt 3 fwur-e:*e mrde! ~var 3 wids  cgmge  of

x
3



The variance of homozygosity in a structured population is
examined in Chapter 5. It is shown here that the variance strengly
depends on the amount of wmigration betwvesn subpopulations. The

{
expected variance can however., bs accurately estimated using the
amount of variability present within the subpopulations. This suggests

that the tructure of a population, unlike intragenic recombination,

-

alters the distribution of gene frequencies 1n a simple fashion. This

result, along with those of Ewens and Gillespie (1974) and Slatkin

(1982), demonstrates that the standard theories for a randomly mating

population may be applicable to a strucutured population.
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Appendix 2.

Recursion Relationships for the Expected Values of the

Identity Coefficients Over Replicate Populations for
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Appendix & T~
Derivation of the Recursion Relationship
for Two-Locus, Fourth Order Moments
To determine the value of % (the wvalus of the

" "ijk/tmn/p/q

coefficient in the next generation) requires that i+tj+k+Li+mtntptq

gametas be drawn at random, without replacement, from the pressnt

[
i~y

generation. For the moment, assume that none of Chese gametes are the
result of mutation or recombination in the previous generation. Assume

also, that no two of these gamsles are copies of a single gamete in

the previous generation. This will be true with approximate
probability

1 - ul(i¥j*1*i¥P*q) = uz(i*k*g*n*p*q) - f(i*l*?*q)

-1

N K(i+j+k+ i+m+n+p+q) (i+j+k+L+wrn+p+q-1)

When none of these events occur, the sample of gametes will satisfy

the required structure among alleles with probability

.. , '

i1jk/tmn/p/q
This is the first term of the recursion relationship given below; no
events have occured which change the probability from one generation

to the next.

When two of the gametes are copiss of mefe in the previous

w0

ne g

generation it is necessary to determine their probability of identity

/ non-identity. It is convenient to consider the sample of gametes in

-117-



groups (as in the definition of the coefficients). When Cwo g:;:f-:
from the same group are copies of one gamete, their probability of
identity is one and therefore, the probability that the complete
sample of gametes are identical / non-identical is equivalent to the
probability for a sampie with one less gamete in that group. For
example, 1f two of' the gametes in group I are copies of one gamete

. . 1. \ . ) L .
(this can happen in (;) ways), then the probability is

N\

.o,
i-1jk/imn/p/q
—
The probabilities are more complicated when two gametes from different
groups are copies of one gamete in the previous generation. The

derivation of these probabilities will be indicated with three

examples. Example 1: From the definition, gametes in groups I and IV
must have different alleles. Therefore .f gametes from group | and
group IV are copies of a single gamete in the previous generation,
then the probability that these gametes ars not identical is zero.

mele

nd II are copies of ona g

Example 2: If gametes from group I
(this can hsppen in ij ways), then the probability is equivalent to
the probability with one less gamete in group I] because the identity

of group I and II for this gamete is assured, ie:

.. . )
ij-1k/tmn/p/q
Example 3: If gametes from group Il and III arse copies of ons gamete

(this can happen in jk ways), then the probability is squivalent to
L]
that with an extra gamete in group I, consisting of an A locus from

group Il linked to a B locus from group III. ie:

Fielj-1x-1/1mn/p/q

The remaining probabilities are derived in a similar mannar.
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5

When recombination has occurcd,rth: resulting gamete 15 the union
of two loci from two different gametes. Thus, if a gamete in group I
1s the result of recombination (this can happen in i ways with
probability r), then the probability of identity / non-identity in the

previous generation is

i-1j+1x+1/2mn/p/q
That is, the probability with one less gamete in group I and one more
in groups II and III. Tho‘problbility of recombination can be ignored
for gametes in groups II, III, V and VI since only a single locus is
considered for these groups. Fer groups IV, VII and VIII the

probability is similar to that for group 1I.

When a locus has a mutational event the probability of identity /
non-identity is usually zero since an infinite slleles wmodel i3
assumed. There are however, a few iéicial cases th?; such mutations
can contribute to the probability. These occur when there is only one
allele of & locus (A or B) which must be different from one or more
alleles of that locus. This allele will be different with probability
one 1if a mutation occurs. It is then required that the remaining
gametes have the correct probability itruc&ur:. If more than one
allele wmust be identical at the locus then & mutation can not be
allowed. Therefore, to insure only one allele is present, a Dirac
delta function is used

5(x) =0 if x *+0
(x) =1 if x =0
The mutat:ona. events which contribute to the probabil:ty are shown

towards the end of the equation.
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Putting all of this together, the general recursion relationship
for the expected value of the identity coefficient over replicate
populations 1is

-

1
o‘jk/‘.n/’/q |- (1+1oketemtorpiq) (14 )kt temrnrpig-l) - v,({:j*l*-rv*q)

= vp(ttktitniptq) - r(itiepee) ] ® sx/sen/p/q * ﬂ' MA-DO g/ tansp/a *

1k¢

1 L L -
W 1% in/tan/pra t T ¥ gk-1/2mnsprq T I WDyt *

1 1 1
W I 1y-1k-1/tmasp/q ¥ N Iy lk/tmem1/p+1/q D P 1g-1n/tmm/pie *
= g (k-1)0 + 5 kb + = kqe .
™ 1Jk-1/tmn/p/q = W 1ik=-1/Ra~1n/p/q+l D 1ik=-1/tem/p/q
L ge(e-1)e + = tee + = tne .
™ 13k/t-1m/p/q * N ™ igx/tm10/p/q T B 1 gx/1m-1/p/q

1 m(e-1)0 *-J--n . aqé *
™ 13%/te=1n/p/q = W 1ik/t+lm=1n-1/p/q = W 13k/te~1n/p/q

1 1 1
™ PO D tan-1/p/a T W P gk ten-1/p/a ¥ W PO tansp-1/ *

+ Lre

1
N OROD S vmn/pre-1 Y etk 1/ ten/p/q 1ik/t-lwrloel/p/q *

PTO e in/tansl/p-1/q * ¥ jkel/tarin/piq-1 * V18D 00001/ tanro/q *
ViI8(3-D)8UP) 005, s 1amnso/q ¥ V18P DU+ D 00/ tamre1/0/q ¥ VDS 4y one1/pr0 *

v,6(-1)6(t¢q)013k/00n/p/0 - “16‘“'1)6(‘*')'1jk+1/00n/p/o + vza(1-1)6(k*q)003,1°/l_n/p,0 *

Va8 (=814 8, 10y spro * V28A DU, (o sinspro ¥ V28D DI 6ni0/0/q *

Y e
v28im- D8I w0 0/ T 28(P T ik om0/3 g



The recursion relationship can be solved at equilibrium

"
o
[
-
<
»

’1;&/@1;1;(“*3“"‘“"‘“' PRUG) + (1 tempeq) 0, + (1+1+prq)R +

(;ﬂ*ﬂwmﬂﬁﬂw—n] S tA=De s /tansprg * 218 g ik/tmo/ple *

e -1 0aa/p/q * 33D i/ tamsprq * X gtk 1/tamsplg * 2% e/ tan-1/pei/q *

2P s ix/tmmlplq * KD i/ tmsprg * B ket tmeta/prael * P emrpla

D /e tenrpra * e tasprg * 20 e/t 1/p7a ¥ MDY i ta/prq

0t a/telmelo-1/p/q * Yy k/tme10/prq * 2D e/ tmn-1/p/q * 0P e/ tma=1/p/q *

POD g/ mn/pe1/q * D e sprqer * 1

PR yo L/ tmare 1 /p=1/q * B yeri/taeln/prq-1 * 818(1=D8 (1) 00/ rum/o/q *

018(3= 18I 000, 1o/ * L8 DEU*D 00 tme1 /074 * 0 8 (t-1E(m 4 /00ar1/pr0 *

8 (w18 s00nspro * 8 8(a-DéCtrme, i i00aspro * 88 (1=1)6 (k)0 10/ sam/pr0 *
0= 8(1R) 8 ) v /pro * 828 (a=1)6 (1400 1 rmriaspro * 08 (=16 ()8 ome10/0/q *
028(a=1)6CL49) ¢ \\ som0/0/q * B28(P=1)8Ctem) 0, 11y om0/0/4

whars El = 4Nv;, E! = 4Nvz, and R = 4Ny
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: Appendix 6
The Necessary Set of Equations
for Two-Locus, Fourth Order Moments

Several properties of the coefficients must be used to insure the

minimal number of equations. From the definition of the coefficients

it is apparent that

¢. .., ; - S
ijk/imn/p/q imn/ijk/q/p
. .
pin/qmk/i/%
=3
qmk/pin/L/i
A further group of identities among the coefficients occurs when a
single A (or B) allele must be different from one or more A (or B)
alleles. These probabilities can be obtained as the sum of two other
probabilities. A well known sxample for a sangle locus is that the
expected heterozygosity equals one minus the expected homozygosity.

Similar reasoning leads to

*10k/tan/0/q T *00k+1/ian/0/q " '00K/imn/o/qe1

P01k/2mn/0/q ~ 00K/ imn/0/q 00K/ tws 1n/0/q

"00k/tmn/1/q ~ 00K/ tmn+1/0/q 00K/ ¢+ 1mn/0/q

“150/1mn/p/0 = *0j+10/¢mn/p/0 *0j0/mn/p+1/0

"0)1/7mn/p/0 ™ %00/ 1mn/p/0 %050/ imn+1/p/0

o S s .
2)0/imn/p/1 0j0/%m+1n/p/0 0;0/%+1mn/p/0

i3k/10n/p/0 T i k/00n+1/p/0 "ijk/00n/p+1/q

; . = 3 y L
sk 'Cln/p/0 1]k/00n/p/0 lJ*lk/QQﬁ/F/D

ok 00npel T i k+1/00n/p/0 T “i+1jKk/00n/p/0

k mC C g " k/0m*10/0/q  'i,k.0m0/0/q+1



Yiix/om1/0/q T ®ijx/0m0/0/q ~ %ijk-1/080/0/q

*iix/0m0/1/q = ¥ij+1x/0m0/0/q = *i+1jx/0w0/0/q

14 :

When a singie A (or B) allele must be different from zero A (or B)

alleles, then

®01x/00n/0/0 = *00x/01n/0/0 = oox/00n/0/0

. *10k/00n/0/0 = *00k/00n/0/1 ~ *00k+1/00n/0/0
®00x/10n/0/0 = *00k/00n/1/0 ™ *00K/00n+1/0/0
%0j1/0m0/0/0 ™ ®0j0/0q3/0/0 = %0;0/0m0/0/0
®1j0/0m0/0/0 = *0j0/0m0/1/0 = *0j+10/0m0/0/0
0j0/1m0/0/0 = %0;j0/0m0/0/1 = %0j0/0m+10/0/0

These identities can be derived by expressing the coefficients as gene

frequency moments.

Since it is assumed thst v} = v, = Vv, at equilibrium

coefficients are symmetrical for the A and B loci and therefore

Yiix/tmn/p/q " Pixj/inm/a/p T Pnm/inj/p/q
= ®qk-/pnj/i/i
= Qpnj/qk-/l/i

The following definitions are used

it ivjtktlrweneprq < 1 then L0000

% jx/0007070 T *ijx
O = 4Nv

R = 4Nr

the

The necessary systems of equations are derived from the general

equilibrium equation given in Appendix 5 and using the above rules.
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There are four independent eguations and ten systems of equations with

the remaining 46 coefficients. These are

0529(2*1‘9) -2

0030(6+30) = 60
*o40(12440) = 13
%020/020/0/0012748) = 4045, - M5
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D -8 12+46 022 L"OZQJ N
- . F. R
sHi8ex 21 o 210 zfniﬂ * by
4 1330w S NN VA IR F DY
0 -12  20e%0 . 0.+ 68
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1v4e+2R 220 030 210
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12470438 3R 0 0 *310 500 * 300
-4 20+79+2K -1 0 || ; (20, Ghp0 100,
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p(l-plgq(l-q)

sz(l-p)q(liq)

9.

9

#1 - #10

0.9998
0.0001
0.0001

0.0000

9980x10

.9980x10

2 2 2.,, 2 -
p (1-p) q (1-q)° 9.9960x10

Dz/p(l-p)qfliq)

1

.0002x10

9

25

17

8

Appendix 7
Taylor's Series Approximation to r*:

An Example

2,

Populatien
$11 #12
0.9700 0.9700
0.0100 0.0100
0.0200 0.0100
0.0000 0.0100
4.0000x10 " 9.2160%10
1.9404x10 3.8416x10
7.7616x10 1% 3. 5404x10"°
3.7652x107°0 1.4758x10
2.0614x10 " 2.3990x10" "

7

Average

, =6
.6833x10

s aD
4.8192x10

2

1

(%]

.9510x10
.5436x10

. 0009x10

[

9

(v}
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Using the averages as expected values, the Taylor's series

approximations to r- are

r?2 = E[D?/p(1-p)q(l-q)] ' 7 : o
= 0.020009 '

r? = E[D?)/E[p(1-p)q(1~q)] ' - .
= 0.15943 ' ; 1.' . .

3 I o o 1 a1 1.,

2 e[o } E{D p(l-pigli-q)] Kklp (1=p) q (1=9) ]]

s —— s ——————— + —x — ]
Elp{l-pla(l-q}] (0 1E{p(1l-p)q(1~q)] I [p(i-pla(l-n)]

=

= -0.051557



