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SUMMARY

Density-dependent constraints on parasite growth, survival or reproduction are thought to be important in preventing the
unchecked increase in parasite numbers within individual hosts or host populations. While it is important to know where,
and with what severity, density dependence is acting within the parasite life-cycle, interpretation of data from natural
infections is difficult. In this paper, we present a Monte Carlo simulation technique for examining such data for evidence
of density dependence. We also describe how this technique may be used to distinguish among mechanisms hypothesized
to generate density-dependent phenomena.
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INTRODUCTION

Density dependence is recognized as an important
factor in parasite population biology that prevents an
exponential increase in parasite population size
through effects on the establishment, reproduction
or survival of individual parasites as a function of the
number of other individuals within the same host
(Keymer, 1982). In the case of reproduction, density
dependence can occur through direct effects on the
per capita egg production of individuals or indirectly
through decreased growth, delayed maturation and/
or reduced life-span of the parasite. Evidence for
density dependence exists for a wide range of
parasites (see reviews cited by Keymer, 1982; Scott
& Lewis, 1987). It may result from competition
among parasites for host resources (see for example
Smith, 1984), from host immunological responses
(Wakelin, 1986) and/or from direct parasite—parasite
interactions (see for example Zavras & Roberts,
1985).

Rational design of control strategies for helminths
of human and veterinary concern requires knowledge
of the form and severity of density dependence
(Keymer, 1982; Smith, 1984; Medley & Anderson,
1985; Dietz, 1988). However, in many situations it is
impractical or unethical to do the experimental
infections necessary to provide this information. In
the context of human gastrointestinal nematodes,
relevant data are usually obtained by quantifying
parasite egg production in faecal samples, then
counting expelled worms following anthelmintic
treatment (Keymer & Slater, 1987). Interpretation
of these data can be problematic because of variation

among hosts in estimated per capita egg production
of parasites, even when intensities of infection are
similar. This may be due to inherent errors in egg
counts (Hall, 1982; Sinniah, 1982) and in recovery of
adult parasites (Keymer & Slater, 1987), or to
heterogeneity of the host population (Keymer &
Slater, 1987). An additional complication comes
from sampling biases associated with the aggregated
distribution of helminths in the host population
(Keymer & Slater, 1987).

This study was stimulated by a provocative paper
by Keymer & Slater (1987). They suggested that an
illusion of density dependence could be generated by
heterogeneity among hosts and high numbers of
lightly infected hosts. In examining their paper, it
was clear that a fundamental factor had been
disregarded, namely the inherent differences in
reproductive capacity among individual parasites
(Dobson, 1985; Shostak & Dick, 1987; Jackson &
Tinsley, 1988). While a low average parasite fec-
undity per host can indeed indicate a density-
dependent depression of the fecundity of individual
parasites within that host, it might also indicate
simply the chance occurrence of many parasites with
low inherent reproductive capacity. The relationship
between the fecundity of individual parasites, and
their average fecundity per host at various densities,
is central to discriminating between these possi-
bilities. We examined this relationship in a manner
that permitted the use of an underlying theoretical
framework for development of a practical test which
uses data that can be obtained easily from naturally
infected hosts. Average parasite fecundity is easily
estimated from all hosts. More importantly, hosts
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infected with one parasite also provide an indication
of individual variation in fecundity among parasites
that are under minimal influence of parasite density.

In this study, we develop a simulation technique
for examining data from natural infections to
determine the extent to which estimates of per capita
egg production suggest density dependence. Then,
we explore modifications of the technique that may
permit discrimination among competing hypotheses
regarding the mechanism(s) that generate density-
dependent phenomena.

The approach we adopted is in part an extension
of a study by Pacala & Dobson (1988). They used
95% confidence limits (C.L.), generated by simu-
lation, to evaluate whether age-related changes in
parasite intensity indicate density-dependent para-
site-induced host mortality. We used a Monte Carlo
simulation procedure to generate sets of data under
different assumptions of density dependence. Using
the simulated data, we calculated the average
fecundity per host and examined the distributions of
these values as intensity of infection increases. We
also compared predicted patterns with sets of real
data.

THE SIMULATION PROCEDURE

By simulation, we generated individual hosts with
defined resources available to support the repro-
duction of their parasites. We gave each host a
known number of parasites, and each parasite its
own potential reproductive output. We assumed that
the reproductive output of the parasite population is
reduced below its potential, when the total re-
productive potential of all parasites within a host
exceeds the capacity of that host to support that
reproductive effort. For convenience, this simulation
is presented in the context of parasite productivity
expressed as fecundity. The principle can be applied
equally to other traits.

Definitions

Nt intensity, the number of parasites present in
host, j .

P M j the maximum potential egg production of
parasite, i (expressed/day or /g of faeces, or
as egg content).

Pf j the number of eggs actually produced by
parasite, i (expressed/day or /g of faeces, or
as egg content) in host, j .

PavgJ the mean per capita egg production of all
parasites in host, j .

Pnet j total egg production of all parasites in host,
j -

i/max} maximum resources (expressed in same
units as P) available in host, j , for use in
parasite egg production.

It is important to note that the preceding terms are
defined with respect to the host and parasite
population at the time they are sampled. Samples
of hosts harbouring a strongly seasonal parasite, for
example, would have a lower Pmax ( if the sample was
taken when few worms had yet matured.

Assumptions

(1) The observed P , } is determined by Pmax , of
parasite, i, by Hmax } of host, j , and by N}. (2) If
Hm&x j exceeds the combined Pmax,< of all parasites in
host, j , then each parasite will produce eggs at a level,
Pmax (, and the total egg production, Pnet;- equals the
combined Pmax ,. (3) If the combined Pmax , of all
parasites in host, j , exceeds Hmax p resource limita-
tions occur and reduce egg production by some or all
parasites in host, j , such that P( t ^ Pmax ( and Pnet t =
Hraax,f (4) ̂ nax,ia n d Hm*x,i m a y vary among parasites
and among hosts, respectively. (5) Hosts acquire
parasites independently of Pmax , and Hm&x v (6) The
appropriate sampling distributions for Pmax and i?m a x

are those that describe the range of characteristics of
individual parasites and hosts at the time the host
population is sampled.

The following decision rule was used to estimate
PavgJ in host, j :

pav = Pnetj/Njt (1)

m3iSj.

where Pnet;. = EPmaxlj when E Pmax ( s sj Hn

a n d Pnetj = £Pi,i = Hmzxj w h e n ? Pm*x,U > flm»

The Monte Carlo simulation to create hypothetical
host-parasite assemblages involved the following
steps. (1) Define sampling distribution for Hmax as
either normal or log-normal with given mean (/i) and
standard deviation (cr). (2) Define sampling dis-
tribution for Pmax as either normal or log-normal
with given [i and cr. (3) Initiate creation of host, j ,
with Nj parasites. (4) Choose i?m a x 3- at random from
specified distribution of Hmax. (5) Choose Pmax t at
random, N} times, from specified distribution of
-fmax, ^ become Pmax>li,, Pw,2,p.... Pmax,A%r (6)
Calculate PavgJ, using equation (1). (7) Repeat steps
3-6 for> = 1000 hosts. (8) Repeat steps 3-7 for JV, =
1-^30. (9) Using the 1000-PavgJ. values for each
infection intensity, 95 % C.L. were determined
empirically as the highest and lowest values that
were not included in the upper and lower 2-5 % of
observations.

It is important to note that the C.L. constructed
from this simulation, for the special case of normally-
distributed P m a x ( with no density dependence, could
equally be generated analytically. The standard
deviation of the sample distribution of Pavg } in this
situation is the standard error (S.E.) of the mean for
Pmax (, given a sample size, j :

= S.E. (P m a x ( ) = O- (Pmax,()/V.7, (2 a)
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Table 1. Sampling distributions used in computer simulations

(Set numbers correspond to those used in text and figures.)

529

Set

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

max

Form*

N
N
N
N
N
N
L
L
L
L
L
L
N
N
N
N
N
L
L
N
N
N

1000
1000
1000
1000
1000
1000

6-9028:
6-9028}
6-9028}
6-796§
6-796§
6-796§

1000
1000
1000
1000
1000

6-796§
6-796§

1000
1000
1000

o-

100
100
100
500
500
500

0-09975}
009975}
009975}
0-473§
0-473§
0-473§

100
100

0
500
500

0-473§
0-473§

Variable ||
Variable I
Variable!!

#max

Form*

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N •

N
L
N
L
N
N
N

—t
10000
2000

—t
10000
2000

—t
10000
2000

—t
10000
2000

20000
20000
20000
10000

91673?
10000

916735

10000
2000

a

0
1000

200
0

1000
200

0
1000

200
0

1000
200

2000
0

2000
3000

0-29365
3000

0-29365
0

1000
200

* N, normal distribution; L, log-normal distribution.
f Arbitrarily high value to eliminate density-dependent effect.
} Arithmetic equivalent: ft = 1000; a = 100.
§ Arithmetic equivalent: /i = 1000; a = 500.
5 Arithmetic equivalent: fi = 10000; a = 3000.
|| Variance increasing with intensity, j : a = (01 +0-1 0 — 1)) fi-

and the 9 5 % C.L. are:

(Pm a x i) . (2 b)

These limits are relatively insensitive to departures
of Pmax j from normality, due to the Central Limit
Theorem (Sokal & Rohlf, 1981). Using the simu-
lation to generate C.L. was more tedious than using
the analytical approach. However, this method
enabled us to use the same technique for comparison
of predictions in the absence of density dependence,
to predictions when density dependence was simu-
lated.

RESULTS OF THE SIMULATIONS

Sampling distributions for the simulations repre-
sented various combinations of /<., er, and form of
distribution of Pmax and Hm3x. A normal distribution
was the basic form used, but many traits (including
egg production) exhibit a positively skewed dis-
tribution (Dobson, 1985; Keymer & Slater, 1987;
Shostak & Dick, 1987). Skew was simulated by
drawing values from a log-normal distribution
(discarding values more than 3 s.D. above the mean).
The /i and a chosen for skewed distributions had

arithmetic fi and cr comparable to the normal
distributions with which they were compared.

T h e sampling distributions of Pmax and i?m a x for
each simulation are summarized in Table 1, along
with a code for reference among text, tables and
figures.

Density independence

Density-independent data were simulated using a
sampling distribution with i?m a x } P ZPmax ( i at all
intensities. Variability in Pavg among simulated hosts,
and the corresponding C.L., was widest in single-
worm infections and declined rapidly as intensity of
infection increased (Fig. 1, Sets 1, 4, 7, 10). The C.L.
were symmetrical when Pmax was normally distri-
buted (Fig. 1 A, B) or skewed with low variability
(Fig. 1 C), but were asymmetrical at low intensities
when ^n a x were drawn from a skewed distribution
with high variability (Fig. 1D). These results,
supported by the Central Limit Theorem, suggest
that changes in assumptions regarding the form of
the sampling distribution of Pmax in the parasite
population will have relatively minor effects. More-
over, the asymmetry resulting from skewed -Pmax

affected primarily the upper C.L., and it is the lower
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2500

0 5 10 15 20
Intensity

Fig. 1. Effect of sampling distribution of Pmax on
predicted 95 % confidence limits for per capita parasite
productivity. Set numbers refer to parameters described
in Table 1. (A) Normal Pmax with low variability. (B)
Normal Pmox with high variability. (C) Skewed Praax with
low variability. (D) Skewed Pmax with high variability.
Each figure includes a simulation of no density
dependence ( ), and density dependence at an
intensity of 10 ( ) or 2 ( ).

C.L. that is of concern in detecting density-dependent
effects. We interpret observations falling below the
lower C.L. as representing an unusually small PAvg if
the hypothesis of density independence is true.

Introduction of density dependence

To simulate density dependence, ji (Hm&x) was set to

•Set 4 Set 16 • Set 17

Set 10 - — Set 18 Set 19

10 15 20
Intensity

25 30

Fig. 2. Effect of sampling distribution of Hmax on
predicted 95 % confidence limits for per capita parasite
productivity. Set numbers refer to parameters described
in Table 1. (A) Normal Pmax with high variability. (B)
Skewed Pmax with high variability. Each figure includes a
simulation of no density dependence ( ), and
density dependence at an intensity of 10, with normal
Hmls ( ) or skewed i^max ( ).

levels that allowed E Pmax ,-;- to exceed Hmax in heavily
infected hosts. Pmax were sampled from normal
distributions with low (Fig. 1 A) and high (Fig. 1 B)
variability, and from skewed distributions with low
(Fig. 1C) and high (Fig. 1D) variability. In all
simulations, Pavg varied similarly with respect to
parasite intensity and the severity of the density-
dependent constraint (extent to which average Hm&x

exceeded average .Pmax)- Per capita egg production
mirrored density-independent results at low inten-
sities, and declined in a reverse-sigmoid fashion as
intensity increased. When density dependence was
severe (low Hmax), Pavg dropped steeply (Sets 3, 6, 9,
12). When it was less severe (high Hmax), the drop in
.Pavg occurred at higher intensities and was less steep
(Sets 2, 5, 8, 11).

Additional simulations explored effects of the
form of the distribution of Hm&x. Hosts with i/max

drawn from normal (Fig. 2 A) and skewed (Fig. 2B)
distributions were paired with parasites drawn from
normal (Sets 16, 18) and skewed (Sets 17, 19)
distributions of Pm&x. The C.L. were similar in all
cases, suggesting that changes in assumptions re-
garding the form of the sampling distribution for
Hmax would, as for Pmax, have only minor effects.

A comparison of C.L. produced under assumptions
of density independence and density dependence
(Figs 1 and 2) shows overlap of C.L. at low intensities,
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Table 2. Index of detectability of density dependence, DI, for each
simulation

(Values for ffmai and Pmax are the mean and standard deviation, with the form of
the sampling distribution indicated by N = normal and L = log-normal.)

Hmal = 2000 ± 200 (N)
Pmax = 1000 ±100
Pmax = 1000 + 500

H M J = 10000+1000 (N)
•Pmax= 1000+100
^max= 1000+500

Hmax= 10 000 ± 3000 (N)
Pmax = 1000 ±500

H m K = 10000 ± 3000 (L)
•̂nax= 1000 ±500

£>/

1-4 (Set 3,N)
2-2 (Set 6, N)

1-2 (Set 2, N)
1-6 (Set 5, N)

2-1 (Set 16, N)

2-1 (Set 18, N)

1-4 (Set 9, L)
2-2 (Set 12, L)

1-3 (Set 8, L)
1-6 (Set 11, L)

2-2 (Set 17, L)

21 (Set 19, L)

but non-overlap at higher intensities. This suggests
that, although the effects of density dependence may
be indistinguishable from background variation at
low intensities, the effects may be distinguishable
statistically at higher intensities.

Detection of density dependence

Density-dependent effects likely manifest them-
selves gradually as intensity increases. Our concern
is to determine the point where we can say with
confidence that density dependence is occurring.
Detectability may be impaired when the magnitude
of effect and number of host individuals involved is
low. We defined a 'detectability index', DI, to
evaluate objectively the ability to detect density
dependence in various situations: DI = V2/V1,
where VI = /i (i?max)//i(Pmax), and V2 = minimum
intensity for which the C.L. under assumptions of
density independence and density dependence do
not overlap. VI is the maximum intensity at which
the average Hmax provides sufficient resources to
sustain the average Pmax, so we would predict density-
dependent effects in an average host at an intensity
> VI. V2 is the minimum intensity at which one
would detect density dependence reliably, because
per capita parasite fecundity in 95 % of hosts is lower
than that in 95 % of hosts where density dependence
is absent. DI is the multiple by which an observed
intensity would have to exceed the intensity that first
produces density-dependent effects, in order for per
capita fecundity to decline significantly. Density
dependence becomes more difficult to detect as DI
increases from its minimum value of 1. A sample
would need to include increasingly heavily infected
hosts, yet these are the hosts that are infrequent in
abundance.

Values of DI from the previous simulations (Table
2) varied according to the /i and <r of Pmax and Hmax,
but were insensitive to assumptions regarding the
underlying form of the distribution of Pmax or Hma .

Interactions were also evident. For example, an
increase in cr (Pmax) had a greater effect on DI when
fi and a of Hmax were low.

The interaction of i?max and Pmax on the ability to
detect density dependence was explored in greater
detail. We chose fi (Pmax) = 1000 and /i{Hm^) =
2000, 10000 or 20000, to simulate density de-
pendence in an average host at 2, 10, or 20 parasites.
Combinations of er (Pmax) and a (Hmax) were simu-
lated at each /i (Hm&x), and DI were calculated.
Contour maps (Fig. 3) show that DI increased with
any increase in the variation of Hmax or Pmax, but at
different rates. As fi (Hmax) increased, DI became
less sensitive to changes in variation of Pmax, but
more sensitive to variation of//max. Maximum DI in
these simulations were about 2-3, 2-1 and 1-8 (Fig. 3).
It appears that, even under high levels of variation in
Pmax and Hm&K, density dependence would be detec-
ted if a sample included even one host with an
intensity about 2 x the intensity that causes density
dependence.

Interaction of Pm a x and HmdkX

The simulated C.L. under density independence are
a function primarily of parasite intensity and the
variability of Pmax among parasites. However, when
density dependence occurs, variability of Hm a x

among hosts affects the C.L. at higher intensities. It
was just shown that the relationship between these
two sets of C.L. determines the ability to detect
density dependence. It was possible through simu-
lation to separate the contributions of host and
parasite variability (Fig. 4A.). We compared a
simulation where hosts and parasites were both
variable (Set 13), to one where P m a x only was variable
(Set 14) and one where Hm a x only was variable (Set
15). The C.L. were determined by variation in Pmax

at low intensities, and by variation in Hm a x at high
intensities. A clear combined contribution of Hmax
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Fig. 3. Contour plots of DI, the detectability index for
density dependence, as a function of the variability of
Pw and Hmai. (A) /i (Pmax) = 1000; /* (HmJ = 2000. (B)
li (Pmax) = 1000; f, (Hmax) = 10000. (C) n (Pmax) =1000;
/* (̂ max) = 20000. The variances, <r (Pmaic) and a (Hmax),
are scaled relative to their respective means.

and Pmax occurred only within a narrow intensity
range where density dependence first occurred.

Extension of basic model

The basic model assumes constant fi and a of Pmax

and Hmax at all intensities. Modifications are in-

1250

1000 -

7 5 0 -

"> 5O0
•5 1250

10O0 -

750 -

5O0 -

250 -

•Set 13 Set 14 Set 15 A

-m iv.

Set 20 Set 21 Set 22 B

10 15
Intensity

i
20 25 30

Fig. 4. Simulations to identify factors responsible for the
width of confidence limits. Set numbers refer to
parameters described in Table 1. (A) Variability in Pmax

only ( ), ffmax only ( ) or Pmax and jointly
( ). (B) Variance of Pmax increasing with intensity,
with no density dependence ( ), or density
dependence at an intensity of 10 ( ) or 2 ( ).

corporated easily. For example, one might evaluate
the consequences of cr (Pmax) that increases with
intensity, but has constant fi (Pmax), i.e. density
independence. The result (Fig. 4B, Set 20) is a
widening of the C.L. at higher intensity. The degree
of widening depends on the function used to relate
variance to intensity. This wider C.L. reduces the
ability to detect density dependence (compare Fig.
4B with Fig. 1A).

The basic model can be tailored to diverse
biological situations by specifying user-defined func-
tions for fi and a of Pmax and/or i?max. These could
produce specific null hypotheses (density indepen-
dence), or alternate hypotheses that specify density
dependence through various mechanisms.

Summary of theoretical simulations

Assumptions concerning the form (normal versus
log-normal) of the underlying distribution of Pmax in
the parasite population, or H^^,. in the host popu-
lation, had little effect on the ability to detect density
dependence. However, increased variability among
parasites or hosts widened the C.L. for Pavg. Ap-
parently, detection of density dependence is more
difficult when the underlying variability among
parasites in their intrinsic reproductive potential, or
among hosts in their ability to support parasites, is
high.
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Table 3. Sampling distributions used to test hypotheses of density dependence on real data

(See text for details.)

Parasite Hypothesis* Form Mean S.D. Mean S.D.

Triaenophorus crassus
(egg content)

Proteocephalus pinguis
(jig dry weight)

Protopolystoma xenopodis
(daily egg output)

Ascaris lumbricoides
(eggs/g faeces)

Triaenophorus crassus
(/mi3/1000 in female hosts)

Triaenophorus crassus
(/mi3/1000 in male hosts)

Hymenolepis diminuta
(weight units)

Ho

HB

Ha

o
Hai

L

L

L

L

N
N

N
N

z z z
z

11-76

61

2-1

51801

2023
2023

2023
2023

478
478

Variablef
Variablef

2-33

2

0-4123

1-5847

556
556

556
556

72
72
72
72

2450

1750

4792

4792

686

473

479

479

* Ho: null, no density dependence; Ha, Hai: alternate, density dependence through resource limitation; Ha2: alternate,
density dependence through intra-specific crowding factor: Hai: alternate, density dependence through combination of
resource limitation and intraspecific crowding factor,
f Mean decreasing with intensity, j : fi = 478 (1 — d); d = 0-75/(1 +exp(5 — 0-4 7).

RESULTS BASED ON REAL DATA SETS

To bring this theoretical approach closer to the 'real
world,' we repeated the simulation procedure using
-̂max a nd ffraM estimated from field and experimental
data. A normal distribution was used if data were
symmetrical in distribution, and a log-normal dis-
tribution if data were skewed. The sampling distri-
butions are in Table 3. We then compared the
observed data with C.L. generated under assumptions
of density dependence or independence. We
addressed two questions: (1) Can expected C.L.
(under an assumption of density independence)
provide insight into the expression of density
dependence in field data? (2) Can a simulation
approach provide insight into the mechanism(s)
underlying the density dependence ? We chose seven
data sets from natural and experimental infections.

Triaenophorus crassus fecundity

The egg content of individual T. crassus (Cestoda),
collected from naturally infected pike Esox lucius,
was recorded by Shostak & Dick (1987). We
estimated Pmax from their raw data, by calculating
egg content of individual worms present in fish with
only 1 or 2 gravid worms. Simulated per capita
productivity was expressed as the mean number of
eggs per gravid worm. We simulated intensities of
infection up to 25 worms/host (the maximum in the

data set) and determined C.L. under a null hy-
pothesis, Ho, of no density dependence. All obser-
vations but one fell within these C.L. (Fig. 5 A). We
suggest that these data show no indication of density-
dependent reproduction.

Proteocephalus pinguis weight

Raw data on weights of individual P. pinguis
(Cestoda), from natural infections of pike, were
available from a study by Shostak (1986). Dry
weight/worm was used as the measure of pro-
ductivity. Few fish had single infections, so estimates
for Pmax were based on individuals in fish with fewer
than 15 parasites. Again, an Ho of no density
dependence was used. The observed average worm
weights/host (Fig. 5B) were outside the C.L. in 24 of
the 98 hosts, in disagreement with this simple null
hypothesis. However, the pattern of outliers was also
inconsistent with density dependence. Most (19/24)
of the outliers were above the ex., and at low (< 100
worms) intensities; at higher intensities (> 100
worms), 1 observation was above, 5 within and 2
below the C.L.

Protopolystoma xenopodis fecundity

Jackson & Tinsley (1988) studied egg production by
individual P. xenopodis (Monogenea) in experimental
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Fig. 5. Simulated 95% confidence limits under a null
hypothesis (Ho) ( ) of no density dependence,
applied to observations (A) on four species of parasite.
Parameters for the simulations are in Table 3. (A) Egg •
content of Triaenophorus crassus in the fish host. (B) Dry
weights of Proteocephalus pinguis in the fish host. (C)
Egg production by Protopolystoma xenopodis in the
amphibian host. (D) Faecal egg output by Ascaris
lumbricoides in man.

infections of Xenopus laevis. Mean egg output/day in
single worm infections (taken from Fig. 3 C of
Jackson & Tinsley, 1988) was the estimate for Pmax.
The observed data were grand means across all
hosts, at each intensity (taken from Fig. 6 of Jackson
& Tinsley, 1988). These were compared with c.L.

generated from the simulation under an Ho of no
density dependence (Fig. 5C). All means at inten-
sities of 1-6 were within the C.L., but 2 of 3 means at
intensities of 7-15 were just beneath the lower c.L.
These data suggest weak density dependence, but
more data from hosts infected with 7 or more
parasites are needed. Jackson & Tinsley (1988)
interpreted their data as suggesting two hypotheses:
reduced resource availability that depressed per
capita fecundity when as few as 2 worms were
present, or a statistical phenomenon resulting from
the distribution of samples. Our analysis supports
the former hypothesis at higher intensities, the latter
at lower intensities.

Ascaris lumbricoides fecundity

Per capita egg production by female A. lumbricoides
(Nematoda) was determined by Holland et al. (1987).
Faecal egg counts were followed by anthelmintic
treatment to enumerate the female worms. Data
from 51 of the 58 hosts plotted in Fig. 2 of Holland
et al. (1987) could be resolved. We used data from 19
hosts harbouring a single female A. lumbricoides to
estimate Pmax. The c.L. resulting from a simulation
under an Ho of no density dependence (Fig. 5D)
include 44 of 51 observations. The upper c.L. were
well above the highest observations, suggesting that
the skew of Pmax was over-estimated. The deviant
observations, which occurred at higher intensities,
were slightly below the lower c.L. This suggests that
weak density dependence was evident in the range of
intensities sampled, and corroborates the interpret-
ation of Holland et al. (1987). They used multivariate
modelling and concluded that density-dependent
constraints were evident, but not pronounced.

Triaenophorus crassus procercoid volume

Shostak, Rosen & Dick (1985) evaluated the volume
of procercoids of T. crassus in experimental in-
fections of female and male Cyclops bicuspidatus
thomasi. Raw data from that study were used to
evaluate parasite productivity. Pmax was estimated as
the volume of procercoids > 2 weeks old in single-
worm infections of female hosts (even single-worm
infections in male hosts appeared stunted). Observed
mean procercoid volume/female host deviated mark-
edly from c.L. generated under an Ho of no density
dependence (Fig. 6 A). Half of the observations were
below the lower limit at an intensity of 2, and all were
below at intensities of 3-15. In male hosts, under the
same Ho, two observations were below the c.L. in
single-procercoid infections, and all observations
were below the c.L. at intensities of 2-19 procercoids
(Fig. 6B). Together, data from male and female
copepods provide strong evidence for density-
dependent effects on procercoid size. Given evidence
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Fig. 6. Simulated 95 % confidence limits under a null
hypothesis (Ho) ( ) of no density dependence and
an alternate hypothesis (Ha) ( ) of density
dependence based on resource limitation, applied to
observations (A) on mean volume of procercoids of
Triaenophorus crassus in the copepod host. Parameters
for the simulations are in Table 3. (A) Volume in female
hosts. (B) Volume in male hosts.

of density dependence, we repeated the simulation
but assumed that density dependence, limited by
Hmax, was present. To do this, we estimated Hmax in
the same units (volume) as -Pmax, by using asymptotic
totai procercoid volume/host in female and male
copepods (Shostak et al. 1985) to generate the
alternate hypotheses, Ha. The C.L. under Ha included
46 of 50 observations from female copepods (Fig.
6 A), and 49 of 52 observations from male copepods
(Fig. 6B). These comparisons are consistent with the
hypothesis that a single density-dependent factor,
limitation in host size, affects body size of pro-
cercoids.

Hymenolepis diminuta weight

Read (1951) published a scatter plot of 'relative
surface area' (defined as weight'/weight) of the
cestode H. diminuta versus intensity of infection in
rats. We converted these values to weight (arbitrary
units). Mean Pmax was the mean weight of
H. diminuta in the three hosts with single worm
infections. From the literature, the coefficient of
variation of mean weight in single-worm infections
of H. diminuta averages about 15% (8-7-26-3% in
Roberts (1961) 172% in Hesselberg & Andreassen
(1975)); this was used to estimate S.D. (Pmax). Read's
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Fig. 7. Simulated 95 % confidence limits for
observations (A) on mean weight of Hymenolepis
diminuta in the rodent host. Parameters for the
simulations are in Table 3. (A) A null hypothesis (/f0)
( ) of no density dependence, and an alternate
hypothesis (Hal) ( ) of density dependence due to
resource limitation. (B) Alternate hypotheses of density
dependence, due to an intra-specific crowding factor
(Ha2) ( ) or combined effects of resource limitation
and an intra-specific crowding factor (Ha3) ( ).

data fell within the C.L. under an Ho of no density
dependence for hosts infected with fewer than 10
parasites (Fig. 7A), but all observations at higher
intensities were below the lower C.L. This suggested
strong density dependence in this system. We
repeated the simulation, but with an alternate
hypothesis, Hal, of density dependence limited by
Hmax. Hmax was estimated from total parasite weight
in the most heavily infected hosts (intensity ^ 50).
The C.L. under Hal enclosed most values from rats
infected with less than 10 or more than 25 parasites.
However, data from intermediate intensities were
below the lower C.L. We interpret this as suggesting
density dependence, but not operating in accordance
with the single resource limitation assumed in the
model.

Studies in vitro and in vivo on thymidine uptake in
the neck region of H. diminuta (Roberts & Insler,
1982; Zavras & Roberts, 1985; Cook & Roberts,
1991) suggest the presence of an intraspecific
'crowding factor'. We used this phenomenon to
illustrate one way in which our basic simulation
model can be modified to evaluate alternative causal
mechanisms of density dependence. Data from
Roberts & Insler (1982) suggest that production of
the putative crowding factor is density dependent.

PAR 106
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Based on their data, we predicted qualitatively that
inhibition of Pmax due to the crowding factor should
initially increase rapidly with intensity, then increase
at a lower rate, but be unable to completely suppress
growth. For illustrative purposes we used a logistic
function to describe growth depression relative to
intensity, with parameters that produced a maximum
depression of 75 %, approximating the reduction in
thymidine uptake (Roberts & Insler, 1982) observed
using crowding factor from 100-worm infections.
This second alternate hypothesis, Ha2, was identical
to Ho except the mean .Pmax was affected by the
crowding factor. The C.L. under Ha2 (Fig. 7B)
excluded only 8 observations at intensities < 30
worms, a reasonable fit, but excluded all observations
at intensities > 50 worms. The hypothesis of a
crowding factor, acting alone, is not supported.

The hypothesis based on resource limitation (Hal)
agreed with observations at low and high intensities,
while the hypothesis based on an intraspecific
crowding factor (Ha2) agreed with observations at
low and intermediate intensities. We simulated the
combined effects of resource limitation and an
intraspecific crowding factor by combining Hal and
Ha2 into a third alternate hypothesis, Ha3. Confidence
limits generated under Ha3 (Fig. 7 B) included all but
8 observations. The data are consistent with effects
of intraspecific crowding at low intensities that are
subordinate to effects of resource limitation at high
intensities.

Summary of simulations on real data sets

In these examples, we evaluated natural or ex-
perimental data with a model assuming no density
dependence. In some cases, this technique provided
a clear indication of the absence or presence of
density dependence, corresponding to conclusions
reached by the original authors using other analytical
procedures. In other cases, it identified intensities
where more data are necessary, or where parameters
may have been estimated incorrectly. We have also
shown two examples of strong density dependence,
one where the data suggest a single density-
dependent phenomenon and another where we
suspect a more complex interaction of multiple
phenomena.

DISCUSSION

Tests for density dependence commonly involve
regression analysis of per capita parasite productivity
against intensity. Usually, few data points are
available for the more heavily infected hosts due to
aggregation of parasites in the host population (see
for example Keymer & Slater, 1987), yet these few
points will influence the regression strongly. Authors

note also a high degree of variability in per capita
productivity among lightly infected hosts (Dobson,
1986; Keymer & Slater, 1987; Shostak & Dick,
1987). This variability, together with limited data on
the heavily infected hosts, can confound the in-
terpretation of regression analyses. In this paper, we
have presented a simple graphical technique that
may aid the interpretation of such data sets.

Theoretical simulations produced similar patterns
over a wide range of values for variables. Application
to diverse real data sets produced C.L. that tracked,
qualitatively, the shape and location of scatterplots
of observed data. Quantitative agreement, allowing
for errors in estimating variables using small samples
from skewed distributions, was also good in most
cases. We emphasize that these results do not verify
the truth of the assumptions underlying the model.
Rather, they show that predictions mimicking reality
can arise from simple assumptions regarding the
biological attributes of host and parasite individuals,
and the manner by which those individuals come
together to form host-parasite assemblages.

An intriguing result of the simulations concerns
the shifting role of parasite and host variability as
determinants of average per capita parasite pro-
ductivity. In single-worm infections, with excess
resources, variation among hosts in per capita
parasite productivity reflects only the variation
among parasites (including any density-independent
host effect). Increased intensity reduces variability
among hosts, since estimated per capita product-
ivities are based on increasing sample size. The
estimates converge toward the parasite population
mean, as long as resources are in excess. When
intensities increase such that resource limitations
occur in some hosts, counter forces are acting. Some
hosts still provide sufficient resources for all their
parasites, but superimposed on this are other hosts
that provide insufficient resources. Their capacity to
provide resources is relatively low, and/or by chance
they are infected by parasites with particularly high
requirements. As intensity increases further, re-
source limitations soon occur in all hosts. Variation
among individual parasites becomes irrelevant, and
variation among hosts solely determines the mag-
nitude of the variability in per capita parasite
productivity, and the ability to detect density
dependence. These results have practical signifi-
cance. Data from low-intensity infections should
provide an estimate of Pmax that is free of density-
dependent host effects. Data from high-intensity
infections where density dependence is evident
should provide an estimate of Hm&x that is free of the
effects of variability among individual parasites.

The theoretical simulations showed that different
subsets of assumptions produce predictable effects
on the C.L., so an unusual pattern in the data can
suggest which assumptions of the model might have
been violated. One example comes from the case of
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H. diminuta. Outlying observations suggested that
density dependence acted differently than through
the mechanism of resource limitation which was
assumed in the basic model. The flexibility of our
approach permitted the incorporation and testing of
multiple mechanisms, requiring only a modification
of the assumption of constant /t (Pmax). A second
example comes from the case of P. pinguis. The C.L.
generated by the model narrowed too rapidly with
increasing intensity. Simulations showed that mak-
ing the assumption that a (Pmax) is an increasing
function of intensity can reduce the rate of narrowing
of C.L. Infection dynamics may provide a biological
basis for this assumption. Assume that lightly
infected hosts are so because they have only recently
acquired their parasites; their parasites would tend
to be uniformly young ( = small), and low cr (Pmax)
would be appropriate. More heavily infected hosts,
presumably infected over a longer time span, would
harbour parasites of increasingly mixed age (and
size), and a higher cr (Pmax) would be appropriate.

Our simulation protocol provides a means of
predicting per capita parasite productivity at any
intensity, given only Pmax, Hmax, and a function
relating them. It predicts graphically the intensity
where density dependence may be first showing its
effects, in the absence of data from that intensity.
This is particularly important for designing follow-
up studies to clarify the situation. Hosts whose data
will be most helpful to test hypotheses can be
identified, and treatments may be allocated to
subjects more optimally within experimental de-
signs. It also predicts the complete distribution of
hosts at different intensities. Although we chose to
present only the C.L. for Pavg, the distributions
generated by simulation permit the calculation of
means, medians, variance, skewness, and other
properties. This enhances the ability to discriminate
among competing hypotheses, compared with tech-
niques where only a single property (such as the
mean) is used.

We fully recognize the simplicity of our approach.
Features such as ontogeny, mate finding, immunity,
and phenotypic plasticity in the expression of
parasite life-history traits, have been condensed into
the two ' black boxes' of Hmax and Pmax. Given the
extraordinary complexity of the host—parasite in-
teraction, together with intra-specific parasite inter-
actions, it could be considered presumptuous that
such a simple framework would have any appli-
cability. However, since natural infections provide
data only on the coarse scale of i?max and Pmax, we
believe that our approach holds promise for (i)
evaluating survey data for evidence of density
dependence, and (ii) generating specific hypotheses
concerning mechanisms of density dependence,
which can then be tested experimentally. Our
simulation model can be used with survey data to
generate expectations under a null hypothesis of no

density dependence. In the absence of density
dependence, there should exist a fi (Pmax) and cr (Pmax)
that generate C.L. which conform closely to obser-
vations on singly- and lightly-infected hosts. These
variables, which then are estimated using only lightly
infected hosts, enable the extrapolation of C.L. to
higher intensities. Then, if even a single heavily
infected host is present in a sample, its per capita
parasite productivity can be evaluated relative to
expectations under the null hypothesis. Pmax may be
estimated directly from data on singly-infected hosts.
If many hosts are lightly infected, but few have
single-parasite infections from which to estimate
Pmax directly, indirect estimation may be used. If Ho

is true, then the fi (Pmax) should be the same at all
intensities, and cr (Pmax) can be estimated by back-
calculation using observations from higher inten-
sities, since it is related to a (Pavg) and to intensity by
equation (2 a). Of course, one should guard against
using data from intensities so high that density-
dependent effects are evident.

An important caveat when using the simulation
model to generate a quantitative null hypothesis is
that the C.L. under the null hypothesis are only valid
assuming that the values for the /i and cr of Pmax are
true. Confidence limits for estimates of means and
standard deviations can be determined (Sokal &
Rohlf, 1981), and a conservative approach might be
to use a low estimate for fi (Pmax), and a high estimate
for a (-Proax)" a s a n u ^ hypothesis. This will render
density dependence more difficult to detect. We
suspect, however, that poor estimates for Pmax will
most likely occur when sample sizes of hosts are too
small to address the question of density dependency
by any method. The same caveat applies when
evaluating hypotheses of density dependence. The
utility of C.L. that are generated depends upon the
accuracy of the estimate of £4iax, and the appro-
priateness of function chosen to relate Pmax to /^ax-

The evaluation of data from dioecious parasites
requires additional assumptions regarding mating
success, if fecundity is used to estimate Pmax. In our
example of A. lumbricoides, we assumed that a
similar proportion of females at all intensities were
mated (including the single-female infections from
which we estimated Pmax). A high proportion of
unmated females in low-intensity infections could
produce a low estimate of fi (Pmax) and a high estimate
of cr (Pmax). In combination, these would reduce the
lower C.L. under the hypothesis of density inde-
pendence, and render density-dependent effects
more difficult to detect. If mating success was
suspected to vary with intensity, constant /i and cr of
Pmax could be replaced by intensity-dependent
functions.

Keymer & Slater (1987) identified various types of
measurement errors that may make detection of
density dependence more difficult. For example, if
only one out of every two worms present is purged
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following anthelmintic treatment, the estimated per
capita fecundity is doubled, but the estimated
intensity is halved, in each host. Our simulation
procedure provides a framework that can be modified
easily to explore the consequences of various types of
procedural considerations.

Keymer & Slater (1987), and the present study,
used different assumptions to simulate the effect of
variability in per capita parasite fecundity on the
ability to detect density dependence. Their simu-
lation assumed that skewed per capita fecundities at
low intensities reflects a skewed distribution of host
suitability, and that the same per capita fecundity
would occur in each host regardless of intensity.
Consequently, high per capita fecundity is as likely
to occur in heavily as in lightly infected hosts. By
contrast, we assumed that the skewed distribution of
observations at low intensities reflects a skewed
distribution of individual parasite productivity.
Our simulation predicts that high per capita fecun-
dities become less likely as intensity increases. The
real data sets examined by Keymer & Slater (1987),
and in our study, support our prediction. We do not
disregard the assumption of variation in host suit-
ability (Keymer & Slater, 1987), but incorporate it
into our model on the scale of the individual parasite.
Our -Pmax describes parasite phenotypes that reflect a
combined effect of parasite genetics and the en-
vironment provided by the host individual.

Our results clearly show, even in the absence of
sampling bias and measurement errors, that natural
variability among hosts and parasites makes density
dependence more difficult to detect. However, they
also show that this variability can be quantified using
data from naturally infected hosts, and used to
construct testable hypotheses on density depen-
dence.
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