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ABSTRACT

This thesis describes an analytical study of in-situ creep behavior in
ice-rich permafrost. An incremental initial strain procedure was formulated
to solve steady state creep problems using the finite element method. Two
case histories were analyzed where naturally occurring creep had been

monitored for several years.

The numerical analyses of the left bank of the Great Bear River at the
proposed Arctic Gas crossing has shown that the steady state creep in the
ice-rich glaciolacustrine clay at the site can be model led by a simple power
law with an exponent of 3.0 and a coefficient of 3.33 x 10-9 kpa—3 yr=1.
This strain rate is six times slower than the value for polycrystalline ice
at an equivalent tfemperature. The exact form of +the constitutive

relationship for the glaciodeltaic sand overlying the clay remains unclear.

A review of the available in-situ deformation studies carried out at
the Fox Tunnel near Fairbanks, Alaska, showed +that attenuating creep
behavior extended well over one year and contributed significantly to the
total room closure. In this case, the flow law for polycrystalline ice did
not yield an upper bound solution to the observed room closure measurements.
However, it is felt that the difference lies in time-dependent failure
caused by stress release which was not accounted for in the numerical

model.
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CHAPTER |

INTRODUCT I ON

1.1 General

Depletion of conventional oil and gas reserves has led to an increase
in resource exploration activity in the northern frontier lands of Canada
and the United States during the past decade and into the foreseeable
future. Rising world energy prices has enhanced the economic feasibility of
exploiting these reserves and fransporting them to market. The largest such
project completed to date is the Alyeska Pipeline which transports Alaskan
North Slope oil to a shipping terminal at Valdez. The first major northern
oil pipeline to be completed in Canada will be the 900 km long pipeline
forecast to be in place by 1985 to transport oil south from the expanded oil
field in Norman Wells, N.W.T. to Zama, Alberta where it will connect with an

existing pipeline.

Resource exploration and development will require major civil works to
be constructed on or within permafrost. These structures will present
unigue problems to engineers as the strength and deformation behavior in
frozen soil will respond in both the time and thermal! domain. The presence
of ice as either discrete segregated structures or in the pore spaces,
imparts a major influence on the creep behavior that characférizes frozen

soil.

The in-situ creep behavior of frozen soil will have a major influence
on establishing geotechnical design guidelines that ensure serviceable
foundation performance for structures founded in permafrost. Ladanyi (1972)

has developed an engineering theory for creep in frozen soils. The finite



element technique 1is now routinely used for solving a large class of
engineering problems. The aim of the research reported herein was to use
the finite element technique to predict the in-situ creep deformation

patterns in ice-rich permafrost foundation soils.

To date, these are only two documented case histories comparing long
term in-situ and laboratory creep behavior of frozen soil. An analytical
study was carried out by Thompson and Sayles (1972) in conjunction with a
field program of the U.S. Army Cold Regions Research and Engineering
Laboratory (USA CRREL) in the Fox Tunnel north of Fairbanks, Alaska. In-
situ measurement of creep deformations were carried out for three and one
half years. Savigny (1980) reported the results of an extensive field and
laboratory program on the proposed Arctic Gas crossing of the Great Bear
River near Fort Norman, N.W.T. Naturally occurring creep movements in the

left bank of the Great Bear River were recorded for a two year period.

1.2 Scope of Thesis

Chapter || presents a review of the rheological behavior of frozen
soil. Since the deformation behavior of frozen soil is governed by the
amount of ice present, a detailed review of the deformation behavior of
polycrystalline ice is presented. This is followed by a review of the
deformation behavior for reconstituted frozen soil and natural permafrost.
The existing constitutive relationships for creep in natural permafrost
samples are examined. An upper bound flow law for +he creep in ice-rich

fine-grained permafrost is presented at the conclusion of this chapter.

Chapter 11l presents the theoretical basis for the incremental initial
strain procedure for solving for the stress state in a non-linear viscous
medium. The treatment is restricted to steady state creep problems since
the empirically developed constitutive relationship for frozen soil is given
by a simple power law relating strain rate to stress. The development of

the plane strain finite element programme CREEP is also presented.



Finite element analyses of the in-situ creep behavior of the left bank
of the Great Bear River at the proposed Arctic Gas crossing is presented in
Chapter V. These analyses were carried out in an attempt to verify the
simple power law as the constitutive equation governing the behavior of

frozen ice-rich, fine-grained permafrost soils.

The in-situ deformation behavior at the Fox Tunnel at Fairbanks, Alaska
is examined in Chapter V. A synthesis of all the in-situ deformation
studies reported in the literature for the Fox Tunne! was carried out in an
attempt to gain some insight into the deformation processes surrounding

underground openings in frozen ground.

The final chapter presents a summary of the results of this research as
well as the limitations of the current analytical approach. Recommended
suggestions for future analytical and laboratory creep studies in frozen

soils are also presented.

The formulation of the finite element equations for solving creep
problems with the incremental initial strain procedure is presented in
Appendices A and B. A user's manual and programme listing for the finite
element programme CREEP are given in Appendices C and D, respectively. The
accuracy of the finite element programme is compared with a thick wall

cylinder closed form solution in Appendix E.



CHAPTER |1

RHEOLOGICAL BEHAVIOR OF FROZEN SOILS

2.1 General

An understanding of the deformation behavior of frozen ground over a
wide range of stress and temperature conditions is required before a
numerical analysis can be carried out. Deformation behavior of frozen
ground is generally governed by the amount of ice present and its

temperature.

Laboratory studies over the past two decades have focussed attention on
deriving empirical constitutive relationships describing the stress-strain-
time behavior of frozen soils. Many of the early studies were restricted to
short duration creep tests on ice and remoulded frozen soils at stresses and
temperatures well beyond the range of interest of practical geotechnical
problems. As the major factors influencing the creep behavior of frozen
soil have been delineated, specifically the soil temperature and ice
structure, the need for high quality, long term, low stress creep tests on

natural permafrost samples has arisen.

The following sections will present a brief review of the time-
dependent load-deformation behavior of ice, remoulded frozen soil and
natural permafrost soils as it relates to low stress creep behavior. Unless
otherwise mentioned, stress and temperature conditions commonly encountered

in geotechnical engineering are assumed.



2.2 Composition of Frozen Soil

Frozen soil can be considered as a complex, four phase, natural
formation, consisting of solid mineral particles, ice, unfrozen water and
gases. The solid mineral particles present in a frozen soil have an
important influence on its geotechnical properties. The primary factors are
the grain size and shape as well as the physicochemical nature of the
mineral surfaces, which are determined by the mineralogical composition and
the cations present. The gaseous phase consists of water vapour and has an

insignificant influence on the behavior of frozen soils.

Unfrozen water is present in two states as strongly bound and loosely
bound water. The strongly bound water is adjacent to the soil particle.
The very high electro-molecular forces present in this layer of water
suppresses the formation of ice crystals, even at very low temperatures.
The intermolecular forces are also present in the loosely bound water
surrounding the strongly bound water. However, this layer is capable of

releasing the heat of crystallization at temperatures below 0°C.

The amount of unfrozen water present in a frozen soil depends on its
temperature, specific surface and type of soil mineral present and chemistry
of the pore water. Each frozen soil is characterized by a specific curve

retating its unfrozen water content and temperature.

Of all the phases present in frozen soil, ice is the most important
component in the rate, time and temperature dependent properties which
characterize frozen soil. lce can be present both as discrete segregated
structures and in the pore spaces of the soil mass. lce present in frozen

soils is generally polycrystalline.



The reader is referred to Anderson and Morgenstern (1973) for a

complete summary of conditions affecting the state of frozen ground.

2.3 Creep of lIce

The presence of ice dominates the time-dependent characteristics of
frozen soil. Ilce 1H is the predominant ice type found in frozen soil. The
structure of ice 1H is hexagonal. Each crystal consists of layers of
hexagonal rings, referred to as the basal planes. The perpendicular

direction to the basal plane is the optic or 'C' axis.

Single crystals of ice deform readily at low stresses along discrete
bands parallel to the basal plane of the crystal structure. This type of
deformation is referred fo as basal glide (easy glide). Single ice crystals
will also deform in the perpendicular or non-basal direction (hard glide).
However, for a given strain rate, the applied stress can be as much as 20

times greater for hard glide than for easy glide.

Polycrystalline ice 1is composed of randomly oriented single ice
crystals. Physical processes observed during the deformation of
polycrystalline ice are dislocation climb, grain boundary slip, cavity
formation at the grain boundaries, recrystallization and microcracks

developing info ice grains (Michel, 1978).

The deformation response of polycrystalline ice subjected to a load
consists of four distinct regions as illustrated by curve |l in Figure 2.1.
Each of these regions consist of:

1) instantaneous elastic strain (0A)

2) creep strain in a primary mode at a decreasing strain (AB)



3) secondary creep at a constant minimum strain rate (BC)
4) tertiary creep at an accelerating strain rate leading to
failure (CD)

The shape of the creep curve is a function of the stress level and ice
temperature. For a given temperature, secondary creep is suppressed at high
stress levels (undamped creep) while primary creep (damped creep) dominates

at low stress levels.

Creep tests on polycrystalline icé in compression, tension, shear and
other specialized loading configurations have been carried out to evaluate
the form of the constitutive equation. Glen (1975) has recognized wo
possible ways of identifying a flow law. The first flow law would relate
stress to strain rate at a very long time under the application of load
allowing recrystallization to occur. The second form of the flow law
relates the secondary strain rate to stress before any recrystallization of
the ice. At higher stresses, the first flow law would produce deformation
rates greater than the minimum (or secondary) rate because recrystal lization

may produce a grain size and orientation more favorable for plastic flow.

The constitutive equation of polycrystalline ice is most commonly
represented empirically by the simple power law. , Experimental evidence has
shown that the power creep law represents the steady state creep data in the
low to intermediate stress range. From a practical viewpoint, +this
mathematical representation of creep behavior is simpler to use than a
physical theory (i.e. rate process theory) because the material parameters

are kept fo a minimum.



The simple power law relating strain rate to stress is given by:

g = Aon (2.1)

1

where = axial strain rate (time)”

Me
1

g = axial stress
A = coefficient (function of temperature and ice type)

n = creep exponent

In order to extend uniaxial creep data to multi-axial stress states, it
is common practice to adopt the ‘concept of effective stress, ggs and
effective creep strain rate, 59- Several definitions of effective stress
and strain rate have been put forward in the metal and ice creep |iterature.

Some of these are listed in Table 2.1.

The definition of effective stress is defined by the square root of the
second invariant of the deviatoric stress tensor multiplied by a constant.
Likewise, the effecfivé strain rate is defined in a similar manner except
that the second invariant of the strain rate tensor is used. The difference
between the alternate definitions lies in the value of the constant. Since
the stress is raised to an exponent in the simple power law, the magnitude
of the constant will influence the effective strain rate in a non-linear
manner as shown in Figure 2.3. As shown in the figure, the effective strain
rate can change by a complete order of magnitude depending on which
definition of effective stress is chosen. The steady state creep law for

ice at -2°C (Morgenstern et al., 1980) is plotted in Figure 2.3.



TABLE 2.1 DEFINITIONS OF EFFECTIVE STRESS AND
EFFECTIVE STRAIN RATE

Source Effective Stress Effective Strain

Rate

Odgvist (1966)

Y §
Dorn et al (1945) \/_B_\LJZ 2 \/E

Ladanyi (1972) 2
Finnie & Heller (1959)

Nye (1957)

Vi
J2
a K3
Meier (1959) 2 Vs Jo
‘/3

N

ag €
Vialov (1962) Vi, \/2—«2

second invariant of deviatoric stress tensor

[

where JZ

second invariant of strain rate tensor

[XN]
[
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In This work, the effective stress and strain rate as defined by

Odgvist (1966) has been used, i.e.:

o =\/_3_\/J§=‘/% e (2.2)

¢ = 2. fig = ¢ (2.3)
e 3 ¥ V%eiJ‘iJ‘

These definitions are adopted because they recover Norton's law, i.e.

equation 2.1, for the special case of uniaxial stress. The flow law now

becomes:

g€ = Aoe (2.4)

Since the effective stress is a function of the deviatoric stress only,

the strain rate is independent of the hydrostatic state of stress.

An extensive review of the secondary creep data of polycrystalline ice
was carried out by Morgenstern et al. (1980). Based on this review, the
authors presented the values shown in Table 2.2 for the parameters A and n

in the power law.

A more detailed review of the rheological characteristics of polycrystalline

ice has been prepared by Glen (1975), Roggensack (1977) and Sego (1980).
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TABLE 2.2  CREEP PARAMETERS FOR POLYCRYSTALLINE |ICE

Temperature (°C) A(kPa=Syr=1) n
-1 4.5 x 10-8 3.0
-2 2.0 x 1078 3.0
-5 1.0 x 10-8 3.0
-10 5.6 x 1079 3.0
2.4 Creep of Frozen Soil

Vialov (1963) described the physical processes involved in the time
dependent plastic deformation of frozen soils. The application of a load
causes local stress concentrations at soil-ice contacts leading to pressure
melting of the ice. A pressure gradient resulting from differences in
surface tensions causes the water to migrate to regions of lower stress
where it then refreezes. The pressure melting process is accompanied by a
breakdown of the ice and structural bonds of the soil grains and plastic
deformation of the ice, causing a rearrangement of the mineral particles.

The end result is the process known as creep.

Many laboratory studies have been carried out in order to determine the
empirical creep parameters for reconsituted frozen soils and natural
permafrost soils. The creep tests carried out on remoulded frozen soils are
helpful in determining the various factors that influence the creep rate of
frozen soils. However, many of these tests were carried out beyond the
temperature and stress range of practical interest in geotechnical

engineering.



A second difficulty encountered when applying the creep parameters of
reconstituted frozen soils to natural permafrost soils is reproducabi lity of
the ice facies in the remoulded samples. In natural permafrost samples, the
ice is present in the pore spaces as well as in the form of reticulate and
segregated ice. Laboratory evidence of Savigny (1980) shows deformations
localized along segregated ice in natural permafrost soils. Since the
reticulate ice structure can not be reproduced in reconstituted frozen

samples, natural permafrost samples must be tested.

Vialov (1959) describes the stress-strain response of a frozen soil as
damped or undamped creep. Damped deformations occur when the applied stress
is less than the long term strength of the frozen soil. Damped creep
behavior is characterized by an instantaneous elastic displacement followed
by primary creep where the deformation rate continuously decreases with
time. Curve 11l in Figure 2.1 is typical of damped creep behavior.
Undamped deformations occur when the applied stress exceeds the long term
strength. In undamped creep, the transient stage gives way to a steady
state period where +the strain rate reaches a minimum value. The

deformations continue to grow until they reach a limiting value or the onset

of tertiary creep where the deformation rate will accelerate fto failure. A
typical undamped deformation response is given by curves | and |} in Figure
2.1,

Damped creep deformations are prevalent in dense, ice-poor frozen
soils. Since ice has a zero long term strength, its deformation behavior is
characterized by undamped creep. The deformation response of ice-rich

frozen soils will lie somewhere between these two limiting cases.
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Weaver (1979) proposed a classification system for frozen soils based
on frozen bulk density that relates to low stress creep behavior. This

classification system is shown in Table 2.3.

A generalized theory of creep of frozen soil put forward by Ladanyi
(1972) advocates a mathematical rather than a physical treatment of undamped

creep behavior. The proposed uniaxial power creep Ilaw describing steady
state creep is defined as:

n
&, = Ec(ce/oc) (2.5)

1

where: O temperature dependent creep coefficient

™
H

c secondary strain rate corresponding
to the application of the stress, oo

>
1}

creep exponent

This form of the power law is similar to that given by equation 2.4 except
that it is given in a normalized form. Making use of the definitions of
effective stress (equation 2.2), the strain rate for an axially symmetric
state of stress (i.e. 05 = o3) Is given by:

s _ e - n
se - sc[(o1 03)/0C] (2-6)

where; 09 - o3 = principal stress difference



TABLE 2.3  FROZEN SOIL CLASSIFICATION SYSTEM
(Proposed by Weaver, 1979)

SOIL TYPE DESCR[PT ION

Dirty lce ~- applies fto ice *that has a low solids
concentration

-~ Y= 0.9 - 1.0 Mg/m>

- the soil particles present reduce
the average grain size of the jce
crystals resulting in higher creep
rates than pure ice

Very Dirty Ice - applies to ice that has medium to
high solids concentration

= Y=0.9 - 1.0 and 1.6 - 1.8 Mg/m>

— very little grain to grain contact
between soil particles

- lower secondary creep rates than
polycrystalline ice because soil
impedes dislocation movement

lce~Poor Frozen —- applies to saturated frozen soil

Soii whose deformation patterns are
characterized by primary creep

= Y=1.7 - 1.8 and 1.9 - 2.0 Mg/m>

lce-Rich Frozen - applies to soils that have a

Soil continuous network of segregated ice

- the overall creep response is
complex and is very sensitive to the
reticulate structure of the segregated
fce, bulk density grain size and
ground temperature




The strain rate derived from equation 2.6 is independent of the
hydrostatic pressure. The hydrostatic stress can be expected to influence
the stress-strain rate behavior up to failure of unconsolidated frictional
earth materials. Ladanyi (1972) extended the stress-strain rate
constitutive law to account for the mean normal stress using a two or three

parameter failure theory.

Vialov (1962) proposed that the strength of a frozen soil can be
represented by a series of Mohr failure envelopes, each one corresponding to
a specific time to failure. Assuming validity of the Mohr-Coulomb failure
criterion in the pre-failure state, the dependence of strain rate on mean

normal pressure for an axially symmetric stress state is expressed as:

n
o o [(f+2)(01-0%) ~ 3(f-1)0
SO 173 o (2.7)
e c 30
c
where: f o= (1 +sing)/(1 - sing)
O’m = (01+02+03)/3
¢ = angle of internal friction
For a frictionless soil, f = 1, equation 2.7 simplifies to equation

2.6. Equation 2.7 assumes full mobilization of internal friction over the
pre-failure state. This assumption leads to a non-zero strain rate at a
zero stress difference. Thus, application of equation 2.7 should be
restricted to strains close to failure. This limitation may also be

overcome by assuming a time dependent angle of internal friction.

Ladanyi (1972) used the extended von Mises failure criterion to account
for effect of mean normal stress on strain rate for frozen soils with low

internal friction. For an axially symmetric state of stress, the strain
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rate can be expressed in terms of mean normal stress and principal stress

difference as:

n
. . (r+1)(oq-02) = 3(r-1)o
o=, 1773 m (2.8)
e c 20
c
where r = ratio of uniaxial compressive

strength to uniaxial tensile strength

Equation 2.8 is subject to the same |imitations as equation 2.7 in that
a zero stress difference gives a non-zero strain rate assuming a constant
strength ratio, r. The limitation of equations 2.7 and 2.8 are overcome by

simply assuming the strain rate in a pre-failure state is independent of
hydrostatic stress and only the creep strength is made a function of the

mean normal stress. This is consistent with the experimental findings of

Sayles (1973) at higher strain rates and confining pressures.

From a practical viewpoint, the engineering theory is more favourable
than a theory describing creep in terms of more fundamental laws of physics
because the required number of experimental material parameters are kept to

a minimum.

Tests on ice-rich remoulded frozen soils have been carried by Vialov
(1962), Perkins and Ruedrich (1973) and Sayles and Haines (1974) and others.
Although the existence of a true steady state in the shorter duration tests
is questionable. The longer duration tests generally show creep exponent

values approaching a value of 3.0.

A comprehensive study of creep of frozen sands carried out by Sayles

(1968) showed that strain rates continued to attenuate with time for tests
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carried out at stress levels below the long term strength. Damped creep
behavior was also observed by Sayles and Haines (1974) in unconfined
compression creep on fine-grained remoulded frozen samples when the strain

did not exceed 20% over the test duration.

The influence of confining pressure on the creep rate of remoulded
frozen Ottawa sand was studied by Sayles (1973). The findings of this study
reported that the amount of creep strain can be reduced by increasing the
confining pressure. Primary creep was still evident at strains exceeding
20%. A separate study carried out by Alkire and Andersland (1973) showed an
exponential decrease in creep strain rate with an increase in confining
pressure. Application of confining pressure enhances the frictional

behavior of the sand.

Many recent laboratory studies have focussed attention on measuring the
empirical parameters in the constitutive equation for natural permafrost
soils. Thompson and Sayles (1972) studied the in-situ horizontal and
vertical closure of the Fox Tunnel in Alaska. The roof of the tunnel was
overtain with 17 m of frozen ice-rich Fairbanks silt. Samples of the silt
were tested in unconfined compression at stress levels between 250 and 2000
kPa. The test temperature was 1.7°C. They concluded the constitutive
equation for the frozen silt has the same form as equation 2.4 with an
exponent of 4. Numerical analysis of the room predicted a closure rate more

than 3 times fasfer in the field than that measured in the laboratory.

Roggensack (1977) tested ice-rich fine-grained glaciolacustrine clay
from the Mackenzie River Valley. Triaxial constant stress creep tests were
carried out at deviatoric stress levels between 20 and 400 kPa and
temperatures close to -1°C. This data is shown in Figure 2.3. Although the

data showed considerable scatter, especially at stresses below 100 kPa, a



bilinear flow law was fit to the data. A power law fit to the data above
100 kPa gives an exponent of 2.75 which is slightly faster, but consistent
with the value for polycrystalline ice. In the low stress range, transient
processes play 2 dominant role in the overall deformation response of the
samp le. Increasing the confining pressure did not have as a significant
effect on decreasing the creep rate as was reported for coarse-grained soils

(e.g. Sayles, 1973; Alkine and Andersland, 1973).

McRoberts et al. (1978) tested undisturbed ice-rich sil+ from Norman
Wells, N.W.T. Constant stress creep tests were carried out in a triaxial
cell at deviatoric stress levels between 10 and 690 kPa. Tes+t temperatures
ranged from -1 to -3°C. Their resulfs are shown in Figure 2.4, adjusted to
a reference temperature of -1°C. An upper bound to their data is given in

terms of a bilinear flow law:

1.6 x 10-7 1.5 x 10-14
;- 3y 22X s (2.9)
(1-my1.8 ¢ (1-T)1:8 4
where t, = axial strain rate (yr™ )
04 = deviatoric stress (kPa)
T = temperature (°C)

Al'l but one of the samples tested at a deviatoric stress exceeding 400

kPa terminated in failure.
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In the low stress range the value of the creep exponent is 3.0,
consistent with polycrystalline ice. Tertiary creep may be influencing the

strain rates in the high stress range.

Savigny (1980) tested fine-grained, ice-rich glaciolacustrine clay
samples from the proposed Arctic Gas crossing of the Great Bear River,
N.W.T. Constant stress triaxial creep tests were carried out at stress and
temperature conditions simulating field behavior. The faboratory results
reported showed no correlation with the flow law for polycrystalline ice
(Morgenstern et al., 1980). Savigny (1980) attributed this scatter to the
ground ice structure and the generation of a non-uniform stress fields

within the specimens in response to application of confining pressure.

Nixon (1978) reviewed the data of Roggensack (1977) and McRoberts et
al. (1978). He proposed a ftentative upper bound to the creep rates of
McRoberts et al. (1978) at a temperature of -2.5°C and stress less +han 100
kPa:

2, = 2.135 x 1078;° (2.10)

1

where the units are in (years)”' and kPa.

2.5 Conclusions

The combined results of Roggensack (1977), McRoberts et al. (1978) and
Savigny (1980) are shown in Figure 2.5. The two flow laws shown in this

figure are:
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D] flow taws for polycrystalline ice (Morgenstern et al., 1980)

2) tentative upper bound to soil data of fine-grained ice-rich

soi! proposed by Nixon (1978) extended above 100 kPa.

With a few exceptions, the laboratory data fall within a narrow band at
stress levels exceeding 75 kPa. Below this stress, transient processes may

still dominate.

Based on the data presented in Figure 2.5, it can be concluded that the
creep law of polycrystalline ice represents a reasonable upper bound to the
constitutive behavior of fine-grained, ice-rich permafrost. Exceptions to

this occur in the high stress range where the creep tests terminated in

failure.
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CHAPTER 111
FINITE ELEMENT CREEP ANALYSIS
3.1 General

The primary problem faced by geotechnical engineers concerned with the
design and construction of large structures founded on permafrost is the
determination of the stress state in the frozen soil. Experimental evidence
has shown that time-dependent deformations govern the behavior of frozen
soils. The viscous nature of the ice present in discrete layers and in the
pore spaces will cause ice-rich soils to creep at very low deviatoric stress

levels.

Hoff (1954) simplified the determination of the stress state in a non-
linear viscous medium by proposing the elastic analogue. The analogue

simply states that:

"The stress distribution in a body whose deformations are governed by a
generalized version of a non-linear creep law is the same as that in a
non-linear perfectly elastic body provided that the stress-strain law

and the boundary conditions are suitably chosen".

There are two methods which can be used to solve creep problems:

[ direct iteration procedure - the final solution is obtained by an

iterative solution of the non-linear equations

25
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2) incremental procedure - the final solution is obtained by solving
a number of linearized problems between the initial and final
time.

tn the finite element method, the inclusion of creep behavior is most easily
handled by using an incremental procedure and treating the creep strains as

initial strainse.

The formulation of the incremental procedure was presented by Mendelson
et al (1959). In their approach, they extended the solution of plastic flow
problems using the method of successive approximations to include creep
behavior with arbitrary creep laws. In this method, the elastic solution is
used to calculate the first approximation to the creep strains. These
strains are then used to calculate a new stress and total strain state
within the body. An improved creep strain approximation is then computed
and the procedure is repeated until convergence is obtained for that time
interval. Essentially, +his solution technique is iterative within each
time increment. Creep solutions were presented for uniaxial creep in a flat

plate and a biaxial case of rotating disks.

Lin (1962) also presented an incremental procedure for analyzing plates
subject to bending with arbitrary creep characteristics. However, in this
approach the creep strain increments were treated as equivalent loads and
edge moments. This procedure is much less complicated than the method
presented by Mendelson et al. (1959) since the method of successive
approximations may require several interations within +the same +ime

interval.

The application of the finite element method for solving non-linear creep

problems using an incremental procedure where the creep strains are treated
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as initial strains has been studied by many researchers over the past 15

years. The incremental initial strain procedure is widely used because:

1 it is independent of the type of creep law used;
2) it provides a description of the intermediate stages of creep
3) it is quite simple to extend basic finite element codes to include

nonlinear effects arising from creep.

Gerstenkorn and Kobayashi (1966) used the method to solve for creep
deformations in a thick-walled cyliqder subjected to an internal pressure.
Greenbaum and Rubinstein (1968) developed a finite element procedure to
study the time-dependent behavior of axisymmetric bodies such as thick-
walled cylinders fitted with different types of end closures. Sutherland
(1970) extended the work of Greenbaum and Rubinstein (1968) +to include

problems subject to plane stress and plane strain conditions.

The incremental initial strain procedure was used by Emery (1971) +o
study the creep behavior of slopes and excavations in rock, cohesive soils
and ice. Nair and Boresi (1970) used the incremental solution method to
study the time~dependent behavior of circular cavities in rock sub jected to
a hydrostatic pressure. This procedure was also’used by Van Winkel et al,

(1972), to predict time-dependent deformation of circular openings in salt

media.

A variable stiffness method for creep analysis was presented by Kim and
Kuhlemeyer (1977). This method allows the use of relatively large time
intervals for which the initial strain procedure would become unstable.
However, the disadvantage of this method is the additional computer time
associated with regeneration of the structure stiffness matrix at the end of
each time interval. This method has proven useful in soil-structure

interaction problems where the structure exhibits material non-linearity.
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Thompson and Sato (1976) and Dawson and Tillerson (1977) reported a
finite element formulation for simulating the creeping flow of an
incompressible material. The stress-strain rate response of the material
can either be linear (i.e. Newtonian fluid) or non-linear (i.e. non-
Newtonian fluid). This method allows the ability to follow the flow through
very large changes in material geometry. Velocity components are chosen as

the primary variables.

The velocity field is constrained by the material incompressibility
condition. This constraint is incorporated into the potential enerqgy
functional through the use of a Lagrange multiplier. The multiplier is
physically interpreted as the mean nprmal stress or the pressure within the
element. Thus, approximating functions for the pressure as well as the
velocity for each element must be chosen. This adds greatly to the solution

time required to solve the field equations.

Numerical difficulties arise when +rying to satisfy the material
incompressibility constraint. To ensure complete incompressibility
everywhere within the element, the approximating functions chosen for the
pressure within the element must be the same degree as that used for the
element strain. Thus, if a linear approximation to the pressure field is
chosen, a full quadratic approximating function must be chosen for the
components of the velocity field. The éomplefe incompressibility
restriction on the velocity field has been shown to be give slow convergence

for coarse element grids.

Material incompressibility can be satisfied in an average sense over
the entire element. This is accomplished by assuming a constant pressure
and linear variation for the strain rates and dilatation within each

element, In this approach, the total volume of the element remains
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unchanged although local incompressibilities within the element are s+ill
free to exist. Relaxation of the incompressibility constraint will give
more accurate results for coarse element layouts. However, the constant
pressure assumption requires a fine element layout in situations where an

accurate evaluation of element stresses are desired.

3.2 [ncremental Initial Strain Procedure
As a material undergoes creep, the stresses, ¢ ijr in the body
will change with time as shown schematically in Figure 3.1. tn  the

incremental procedure, the smooth stress-time curve is replaced by a series
of incremental steps. Each step consists of a constant stress period,

AT, followed by an instantaneous increment of stress.

The fundamental assumption in the incremental creep solution technique
is that the time can be subdivided into sufficiently small time intervals
such that the stress can be assumed constant within each time interval. Hf
valid, the non-linear creep problem can be solved as a series of |inear
problems for each time interval using the stresses of the previous time
interval to calculate new increments of creep strain and treating them as

initial strains for the current time period.

The following assumptions are made in order to establish a stress-

strain relationship for a creeping material:

D) there is no volume change associated with the creep strains

2) for an isotropic material the principal directions of the strain
rate and stress tensors coincide;

3) the creep rate is independent of any superimposed hydrostatic

state of stress;
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4) the generalization of the uniaxial creep laws to the multiaxial
state of stress should recover the uniaxial relationship for the

case of uniaxial stress.
Assumptions 1, 2 and 3 can be stated mathematically as:

AE.. = a S, . (3.1)

where: a = constant of proportionality

This equation states that the- increments of creep strain rate are
proportional to the instantaneous values of the deviatoric stress tensor and

are independent of stress history.

Substituting equation 3.1 into Odgvist's definition of effective strain

rate (i.e. equation 2.3) and making use of the definition of effective

stress yields:

a =

;méz/ae) (3.2)
2

Substituting equation 3.2 into 3.1 gives the stress-strain rate relationship
for a creeping material:

aeY . =3 (38%5 ys (3.3)
e e |
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For the plane strain case, the following equations are valid:

gz = 1[(0’ =g )2 + (o' -g )2 + (0 -0 )2 + 61‘2 ] (3.4)
e ‘5 X 'y y z zZ X Xy
02 = 20057+ 92+ 5% s w207 (3.5)
€ 3 X y Xy Xy
L .C
Aex = (Aee/ae)(ZGX—oy-cz)/z (3.6)
22% = (48%6 126 0 =0 ) /2 (3.7)
y e e y z X
.C - .C
Aez = (Aee/oe)(ZGZ ox oy)/z (3.8)
oC — OC ’
AYXY = 3(Ase/oe)rxy (3.9)

The essential feature of the incremental procedure is to proceed in
small intervals of time and relate an increment of strain to an increment of
stress. The final stress and strain state in the body is obtained by

summing each increment.

At the beginning of each time interval, the stresses, elastic strains
and creep strains are known from the calculations of the previous time
increments. At time t=0, the elastic solution is used as the starting
point. The incremental procedure for each increment of +time can be

summarized by the following five steps:
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1) obtain the value of the effective stress (oe) from the stresses

(OEJ) determined from the previous time step;

2) calculate the effective creep strain increment (Aey) by substi-

tuting the effective stress (05) (determined from step 1) into the

appropriate creep relationship;

3) calculate creep strain increments (Ae?J) in each direction with

the stresses (67;) of the preceding time step, the effective
stress (og) (from step 1) and the effective creep strain increment

(ae_) (determined in step 2);

4) treating the creep strain increments (Aeij) (calculated in step 3)
as initial strains and using the constitutive equations, boundary
conditions and equilibrium equations for the particular problem,
calculate the increment of stress (Ao?j ) at the end of the time
interval; (the initial strains are converted to ficticious creep

forces applied at the nodal points);

. C
5)  the incremental stresses (Aeij) (obtained in step 4) are added to
the stress of the previous time increment to obtain a new stress

distribution for the current time interval.

This procedure is repeated for each time interval until either the
final time is reached or until the stress distribution does not change (i.e.
a sTeady state condition has been achieved). As long as the incremental
stresses are small compared to the previous stresses, the basic assumption
of the incremental procedure is not violated. Generally, this condition can
be met by selecting time increments small enough Yo vyield the desired

accuracy without employing iterative techniques.
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3.3 Cumulative Creep Rule

In general, the effective incremental creep strain rate is a function
of the effective stress, total effective creep strain, temperature and the
strain history of the material. Thus, a general! functional form of AsCe
is expressed as follows:

C C
AEe = F(O » Ee’ T, -t-) (3010)

[}

where: T temperature

time

Materials exhibiting damped creep response have a strain rate that is a
function of time as well as applied stress. An expression must be obtained
from constant stress creep tests that is able to predict the strain rate
under varying states of stress. Assume the damped constant stress creep

data can be presented by an empirical relationship of the form:

e = Ao t (3.11)
e

where: m = time exponent

The creep strain rate can be obtained by differentiating equation 3.11

with respect to time:

. m~-1
€y T f(ge, 1) = mAgeT (3.12)
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where: f(o,,1) = general function form expressing the creep strain rate

as a function of applied stress and time.

The time variable can be eliminated from the creep strain rate

expression by substituting equation 3.11 into equation 3.12:

mA1/m0n/m€(1—1/m)

e fe (3.13)

Ee = g(ce, se) =

where: g(oe,ee) = general function form expressing the creep strain
rate as a function of applied stress and total creep

strain.

It is clear that integration of equation 3.12 and 3.13 will not give
the same result for the general case. Two basic rules that are currently
used to describe the time dependency of strain for creep in metals, plastics

and concrete are the strain hardening law and the time hardening law.

The strain hardening law for a set of isothermal constant stress curves
is illustrated in Figure 3.2. This hypothesis implies the creep strain rate
is a function only of the instantaneous value of stress and the total
accumulated creep strain. A change in stress state is represented by a
horizontal line from one constant stress curve to the new stress curve at
The same total creep strain. The total +time is given by the sum of all
constant stress time intervals. This concept assumes a mechanical-equation-
of-state exists for a creeping material relating the variables stress,
strain and strain rate. The behavior is independent of the stress history
the material was subjected to in the early stages of creep. This is

analogous to the theorem proposed by Odquist (1966) which stated:
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"If a test piece is subjected to a series of positive stress values,

()"I, 0'2, see,y, (O
at

n» €ach acting during a time period aty, Ato, «es,

n» Then the resulting total creep is independent of +he order in
which the stress values were applied, each during its respective time

period".

The time hardening concept for a set of isotherma! constant stress
creep curves is illustrated in Figure 3.3. This cumulative rule assumes the
creep strain rate is governed by the instantaneous value of the stress and
total time from the beginning of the test and is independent of the stress
history of the material prior to any point in time. A change in stress
state is represented by a vertical line from one constant stress curve to
the new stress curve at the same total elapsed time. The total accumulated
creep strain is given by the sum of the creep strain increments during each

time interval.

The validity of these two hypothesis have not been specifically studied
in creep tests on permafrost samples. Experience gained in metal and
plastic creep as well as undrained creep behavior of cohesive soils suggests
tThat the strain hardening cumulative creep law adequately describes the
creep strain rate under varying stress conditions. Ladanyi and Johnston
(1973) used the strain hardening hypothesis to determine the in-situ creep
parameters for a frozen varved silty clay from multistage pressuremeter
data. The strain hardening cumulative creep law can also be used to predict
the creep rate of a material under varying temperature conditions (Dorn,
1961).

Derivation of a cumulative creep law which included all the factors
governing the creep rate of a material would be a formidable +ask.
Cumulative creep laws have been put forward in the metal creep |iterature
which take stress and temperature history into account. However, these can

lead to untractable mathematical expressions.
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3.4 Finite Element Formulation of Incremental Initial Strain Method

The basis of the finite element method is to represent the continuum as
an assemblage of finite elements. These elements are interconnected at a
finite number of points referred to as nodal points. Approximating
functions are chosen to represent the variation of the field variable over
the element. A variational principle of mechanics is used to derive the
equilibrium equations for each element. The equilibrium equations for the
entire body are obtained by summing all the individua! element equations
with proper regard to displacement continuity at the nodal points. The
boundary conditions are applied and the entire set of equations are sotlved

to obtain the unknown displacements at the nodal points.

In the present study, the Theorem of Minimum Potential Energy is used
to formulate the cquilibrium equations. The elements used are constant
strain triangles. Within each element, displacement functions are chosen
such that inter-element compatability is maintained. The displacements are
assumed to be linear functions of the coordinates. The potential energy of
an element is calculated by subtracting the work done by the external forces
from the stored strain energy. Minimization of the potential energy yields
the equilibrium equations for the element. The equilibrium equations for
the entire assemblage are obtained by summing the individual element
confributions. The resulting set of linear algebraic equations are solved
for the unknown displacements. A detailed derivation of the equilibrium
equations for the constant strain triangle element can be found in numerous

standard finitc element texts [see e.q. Desai and Abel (1972) and
Zienkewicz (1977)].

The creep problem is solved by assuming The change in total strain

during one time interval is composed of a change in elastic and creep
strains.
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T E C C
Ae, = Ae_ * Ae, = 1lac ~v(ao +ao )1 + ae

X X X E X Y Z X
_ C C

Ae = Ae” + Ae_ = |[Ac =v(Ao +Ac )] + As (3.14)
X E Y z X Y
AET = AeE + AeC = |lAo -v(Ag +Ao )] + AeC
Z X X 'E z X Y z

where the superscript T, E and C denote total, elastic and creep

respectively.
Plane strain problems have a kinematic constraint placed on the strain

in the Z direction (i.e. AeT,=0). Thus, the third expression in equation

3.14 gives the value for the stress in the Z direction:
Mo = v(bo_+ho ) - EAeC (3.15)
z X Y z

Substituting equation 3.15 into the first two expressions in equation 3.14

yields:
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T 2 C C
de, = LU=y )ag —v(1+u)ag 1 + Ae + vAe
X e X y X z
(3.16)
AET = I[(1—v2)Ao =v({1+v)ag 1 + AEC + vAeC
Y E Y X Y Z

Equation 3.16 shows that to account for plane strain, a strain equal ‘o

;: must be added to the strains in the X and Y directions. The

increments of creep strain AE?J are calculated from equation 3.3.

vie

The strain-displacement relations and application of the Theorem of
Minimum Potential Energy vyields the equilibrium equations for one time

interval as:

[K}1{aq} = {P} + {FC} (3.17)

where: [K] structure stiffness matrix

{49} = incremental nodal displacements
{P} = nodal load vector
{FC} = vector of 'fictitious' nodal loads due to an increment of

creep strain.

The introduction of creep strain increments into the equilibrium equations

using the initial strain method is given in Appendix A.
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At the end of each +time interval, the vectors {P} and {FC} and
boundary conditions are known. Equation 3.17 is solved for the unknown
displacement increments by the Choleski square root method for symmetrically
banded matrices. For linear elastic analysis, the structure stiffness
matrix does not change with time and need only be generated once for the
initial time increment and stored to be used for each successive time
increment. Should the magnitude of the displacements become excessive, the
geometry may need to be updated and the stiffness matrix regenerated to
reflect the new grid geometry. This was not necessary for the small

displacement problems considered in this research.

3.5 Time Increment Selection

The selection of a time increment to ensure the solution process remain
stable is very important in the incremental procedure. During the early or
transient stages of creep, the stresses are changing very rapidly so it is
necessary to select small time increments. As the solution approaches a

steady state condition, the magnitude of the time interval can be increased.

Experience of Greenbaum and Rubinstein (1968), Sutherland (1970) and
Emery (1971) shows that the solution process becomes unstable if the maximum
change in creep strain is larger than the effective creep strain. The

magnitude of time intervals chosen is a function of the stress state in the

body and the specific form of the creep law.

The initial time increment is chosen such that the maximum ratio of the
effective creep strain increment to the effective elastic strain is equal to

or less than Ngs» (+8e:
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(2eC/2ef1 < (3.18)
e e Mnax (@]

where: .04 < N < «10

Successive Time increments are computed on the basis of the fractional

change in maximum effective stress allowed per time interval, i.e.:

ATi+1 = [w/(Aoe/oe)max] ATi (3.19)
where; i) 035 < < .10
or ii) 1.2 < w/(AOe/Oe)max <2.0

The maximum ratio of effective creep strain increment to the effective
elastic strain for successive time increments must also satisfy:
E

C
[Ase/Aee]ma>< < ", (3.20)

where: 0.1 < np < 1.0

The optimum values for Mo, M1 and W are a function of the specific
creep law and the stress state that exists in the body. Thus, it is

advantageous to compute the value for the time interval internally.

The manner in which the program calculates the time interval is as
follows:

1) Assume for generality the creep behavior of +the material is
governed by the creep relationship given by equation 3.11, i.e.:
(the steady state creep law is derived from this expression by

setting m = 1.0), i.e.:
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2 The initial time interval is computed by combining equation 3.18

with the above primary creep relationship:

( -
pe, = [n (g ) mM gy t/m (3.21)
1 O e max

where: E = Young's modulus

The effective stress is calculated based on the elastic stress
distribution at + = 0.

3) Succeeding time intervals are obtained by computing the maximum
ratio (4%/%) max @nd satisfying the conditions given by equation
3.19. A further restriction on succeeding time intervals to

prohibit divergence is satisfaction of equation 3.20.

A ficticious time, T¢y is introduced for materials governed by a
primary creep law and obeying a strain hardening cumulative creep law. The
fictitious time is required fo calculate the effective creep strain
increments for all increments i (where i =2, 3, ..., n) total number of
increments) :

wh™ - M (3.22)

C _ n
beg = Ace[(+f f

where the fictitious time is given by:

f.o= 1eC/acM 1/ (3.23)
f e e
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The ficticious time concept is illustrated in Figures 3.4 for an

increasing and decreasing stress case.

Once a steady state condition is reached the stresses do not change
with time and the creep strains can be extrapolated to the final time. Two

tests can be made to check for the existence of steady state creep:
1) Check the maximum fractional change in effective stress, i.e.:

[Ace/oe]max <o (3.24)

2) Check the maximum change in effective stress per unit time, i.e.:

[ -1' < L]
Aoe/A i]max X (3.25)

Values of p and x depend on the specific problem to be solved.

The steady state condition checks can also be used to monitor the
stability of the solution procedure. Erratic fluctuations of the maximum
fractional change in effective stress or the maximum change in effective
stress per unit time would indicate solution insfébili+y. To alleviate this

problem, smaller values of ng» n1s» a@nd o are required.

3.6 Finite Element Programme

The finite element programme for time dependent creep deformation
analysis was originally developed by Emery (1971) at the University of
British Columbia. Minor changes were made to the programme after it was

obtained by the University of Alberta.



The incremental initial strain method described in a previous section,

is used To solve the creep response. The programme is capable of solving

isothermal creep problems with linear elastic material behavior in plane
strain situations only. The element type used is the constant strain
triangle. External loads consist of nodal point loads and/or gravity
loading.

The general form of the flow law implemented into the programme is given by:

n n

. 1 "2 m
€g = [A1°e + Azoe 1t (3.26)
where: ¢g = effective strain rate
0o = effective stress
t = time
A1,Ap = creep coefficients
Ny,ny = creep stress exponents
m = creep time exponent
The parameters ALy Ag, ny» N, and m are material constants. This

general form of flow law was selected because it degenerates to a simple

power law, a bilinear flow law and a primary (i.e. fransient) power law.

A stop and restart capability has been implemented into the finite
element program. This feature allows the creep solution to be interrupted
after a specified time or number of increments. Solution resul+ts up to that
point may be examined, or material properties and/or externally applied

loads altered to reflect changes in the creep simulation.

A users' manual for the program CREEP is presented in Appendix C. The
programme |isting is given in Appendix D. A comparison of the closed-form
thick wall cylinder solution with the finite element results is presented in

Appendix E.
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CHAPTER 1V

IN SITU CREEP ANALYSIS OF A SLOPE IN ICE-RICH PERMAFROST

4.1 General

The proposed Arctic Gas pipeline route crosses the Great Bear Rjver 7.2 km
above the confluence of the Mackenzie and Great Bear Rivers (see Figure
4.1). The left bank of the Great Bear River is consistently steeper than
the right bank for several kilometres upstream or downstream from +he
crossing. Naturally occurring creep was a concern at this particular site
because the left bank rises at an averrage slope 22 degrees over 46 m from
river level to the local plain level (see Figure 4.2). Mean river elevation
fs 56 m a.m.s.l. The local plain elevation is 102 m a.m.s.l. The tcp of

the plain has very little topographic relief south of the slope crest.

The left bank of the Great Bear River at the proposed Arctic Gas crossing
was studied by Savigny (1980). An extensive site investigation programme
including drilling, sampling and instrumentation was carried out.
Undisturbed permafrost core samples were obtained for high qual ity
laboratory testing. The instrumentation was carefully monitored for a two
year period. This chapter presents the results of a finite element
prediction of the in-situ creep behavior of the pfoposed Arctic Gas crossing

of the Great Bear River.

48
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4.2 Site Geology

The sequence of geologic sediments encountered at the boreholes drilled
at This site are shown in Figure 4.3. The slope is composed mainly of sand
and clay. Till outcrops near river level. The river has formed in

interbedded clay and sand which overiies shale and siltstone bedrock.

The shale and siltstone bedrock are highly weathered and soft. These
rocks can be likened to an overconsolidated soil. The bedrock is overlain
by an alluvial deposit of interbedded silty clay and sand approximately
6.7 m thick. The two major components of this unit are highly plastic silty

clay and clayey silt. Ground ice is present in either reticulate or
segregated forms.

A dense glacial till of Wisconsin age lies unconformably on the
alluvial deposits. The soil matrix consists of a low to medium plastic
sand-silt-clay mixture. The till is highly fissured where it outcrops alfong

the vatley wall. Pore ice and reficulate ice are the two most common types
of ground ice present.

A fine-grained glaciolacustrine clay rests on the till and is overlain
by glaciodeltaic sand. The glaciolacustrine clay was deposited in ice
dammed lakes in late Wisconsin time. The soil matrix consists of a mediumn
to highly plastic silty clay. This deposit is approximately 18 m thick at
the proposed crossing site. The glaciolacustrine clay is ice-rich.
Reficulate ice is most common with primary vertical veins and secondary
horizontal veins. {ce veins up to 20 cm thick have been observed.
Stratified ice is also common at the *ill contact. The ice content of this

unit increases where the clay outcrops along the valley wall.
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The uppermost unit at this site is a 20 m +thick stratum of
glaciodeltaic sand. This material was deposited following the disappearance
of the large ice dams upstream on the Mackenzie River near Fort Good Hope,
N.W.T. The sand is medium to fine grained with thin fayers of low plastic

silt common throughout. Excess pore ice is the dominant type of ground ice.

Some steeply dipping ice veins are also present but not to any great
extent. The thickness of the active layer in the sand varies anywhere from
3 to 5 m.

4.3 Field Instrumentation

The field instrumentation installed on the left bank of the Great Bear

River at the proposed pipeline crossing consisted of:

D) borehole inclinometers to record in-situ downslope creep
velocities in ice-rich permafrost soils (boreholes GB1A, GB2 and
GB3);

2) thermistors to measure the in-situ geothermal gradient (boreholes
GB1A, GB2 and GB3);

3) piezometers to measure pore pressures below the base of the
permafrost (boreholes GB18 and GB3A).

The location of all the boreholes is shown on Figure 4.2.

The pore pressures measured at borehole GB3A show a close
correspondence between river level elevation and hydrostatic pore pressure.
This is to be expected because the coarse alluvium that lies on top of the

bedrock at this site provides a free drainage path.
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The ground temperature contours below the depth of zero mean
temperature fluctuation for the left bank of the Great Bear River at the
proposed pipeline crossing are shown in Figure 4.4. These contours were
inferred from the thermistors installed in boreholes GB1A, GB2 and GB3. The
temperature data indicate that the permafrost at this site is warm (i.e.

warmer than -3°C).

At the top of the slope (GB1A) the active layer is approximately 3 m
thick and the depth of annual zero mean temperature fluctuation is 9 +to
10 m. The depth of permafrost inferred from the geothermal gradient is at
teast 61 m. The temperature readings over the two year period show that

removal of the surface vegetal cover has initiated a warming trend.

The thermal regime of the slope differs from that on top of the slope.
This s primarily due to the aspect of the slope and the difference in
vegetation. Along the slope the active layer is apbroximafely 1.2 m thick
and the depth of annual zero mean temperature fluctuation is 6 fo 7 m. At
approximately mid-height of the slope, the mean ground surface temperature
is -3.3°C and near the toe of the slope, the warming effect of the Great
Bear River increases the mean ground surface temperature to -2.5°C. The
steeper thermal! gradient measured near the toe of the slope (borehole GB3)
is also a result of the thermal disturbance offered by the Great Bear River.
The base of the permafrost rises to the river bed elevation as permafrost is

absent below the Great Bear River.

Three inclinometers were installed to monitor downslope creep

movements:
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i) inclinometer GB1A was installed at the fop of the slope through
the glaciofluvial sand and glaciolacustrine clay and terminates in

the silty clay till;

ii) inclinometer GB2 was installed at mid-height of the slope where
the glaciolacustrine clay outcrops along the valley wall and

terminates at the base of the till;

i1i) inclinometer GB3 was installed near the toe of the slope through
the glaciolacustrine clay and till and terminates at the base of

the interbedded clay and sand.

The location of each inclinometer is shown in Figure 4.5. The
inclinometers were read on twelve occasions over a two year period extending
from May 6, 1975 to June 14, 1977.

The inclinometer data show a strong correlation between deformations
and ice lenses in the glaciolacustrine clay. |In zones containing large ice
lenses separated 1 to 2 m apart, the movements were large and abrupt and are
concentrated at the ice lense location. In zones where the ice lenses are
spaced closer than 1 m, the movements are generally smaller and more gradual
through the zone. No net transverse slope movements of any practical value

were recorded.

Movements recorded in the overlying sand are much more inconsistent
than those measured in the clay. Savigny (1980) attributes this to drilling
difficulties encountered in the granular material causing disturbed zones
around the hole which lead to non-uniform stress distributions in the frozen

sand.
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The velocity versus depth profiles for all three inc!inometer locations
are shown in Figure 4.6. A net downslope velocity was recorded through the
medium to high plastic glaciolacustrine clay at hole GB1A. The maximum
velocity was recorded near the sand-clay contact. Erratic movements were

recorded between the 29 m and 34 m depth.

Examination of the GB1A borehole stratigraphy reveals that this depth
interval corresponds to a zone containing large pervasive ice lenses spaced
greater than 1 m apart. The velocity maxima within this zone coincide with
the location of large ice lenses. Above the 29 m depth and below the 34 m
depth, there is a pseudo-linear increase in velocity with increasing
distance away from the base of the clay layer. The steeper velocity
gradient above 29 m is a result of large ice lenses spaced closely together.

Below 34 m, the ice lenses are much smaller.

A uniform downslope velocity was recorded in the upper 12 m of the
overlying sand at hole GBIA. The magnitude of this velocity is
approximately one half of the velocity recorded in the clay just below the
sand/clay contact. The 12 o 20 m depth interval of the sand predominantiy
shows an upslope velocity. The abrupt change at 12 m from upslope “o
downslope velocity could possibly be due to a large ice vein. At borehole

GB1, a large ice vein was observed 13 m below the surface.

No net creep movements were recorded in the transverse-to-slope

direction at the GB1A inclinometer.

The velocities recorded through the medium +to high plastic clay are
very erratic at the GB2 inclinometer location. Savigny (1980) describes two

causes for the erratic in-situ velocity:
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1) difficulties encountered in installation and monitoring of

instrumentation

2) existence of in-situ sheared material as evidenced by the numerous

slickensides in the core samples retrieved from this hole.

A small net downslope creep movement is evident in the silty clay +ill
at the GBZ location. There is a pseudo-linear increase in creep velocity

from the base of the *ill up to the till/glaciolacustrine clay contact.

A net downstream creep velocity was recorded in the glaciolacustrine
clay at the GB3 inclinometer location. The velocity gradient appears to be
fairly uniform. Erratic fluctuations in velocity exist between 2 and 4 m.
The GB3 borehole description reveals that this depth interval coincides with

a zone of small ice lenses that are widely spaced.

4.4 Finite Element Analyses

The stratigraphy of the left bank of the Great Bear River at the
proposed crossing site was discretized for the finite element analysis as
shown in Figure 4.7. The finite element grid consisted of 22.5 m of sand
overlying 15.5 m of medium to high plastic glaciolacustrine clay. The stiff
glacial till +that underlies the clay was not 'discrefized. The finite
element grid was fixed at the clay/till interface to account for the very

high in-situ modulus of the till.

The finite element programme CREEP computes movements in the plane of
the slope only. Transverse-to-slope movements are assumed to be zero. The
inclinometer data reveals that no net transverse-to-slope movements were

recorded at hole locations GB1A and GB3. At hole GB2, the transverse-to-
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siope velocity recorded in the glaciolacustrine clay is greater than the
parallel-to-slope velocity. However, for reasons noted in The previous

section, the data for hole GBZ is not considered reliable.

Elastic material properties were assigned on the basis of data
presented in the l|iterature. Mean values of bulk unit weight for the sand
and clay were assigned on the basis of measured values obtained from the

frozen core samples. The elastic material properties for the sand and clay

are summarized in Table 4.1.
TABLE 4.7

ELASTIC MATERIAL PROPERTIES FOR FROZEN GLACIODELTAIC
SAND AND GLACIOLACUSTRINE CLAY

PROPERTY SAND CLAY
Young's Modulus 4900 MPa 785 iPa
Poisson's Ratio .495 .495
Unit Weight 1.84 Mg/m3 2.04 Mg/m3

Creep properties of the sand and clay were altered to obtain close
agreement with the in-situ behavior. Two finite element creep simulations

were carried out.
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The first creep analysis assumed that the sand and clay would creep at
the same rate. A review of the rheological behavior of frozen soils
presented in Chapter |l concluded that the stress versus strain-rate
relationship for polycrystalline ice represents an upper bound +to the
constitutive behavior of fine-grained, ice-rich permafrost soils. Using

this argument, the flow law used in the first analysis was:

= 2.0 x 10'803 (4.1)

It was expected that this flow law would overestimate the creep
velocities in the sand and clay. The degree of overestimation would be
greatest in the sand. Laboratory samples of the sand could not be obtained

for laboratory creep testing because of sampling difficulties.

The predicted creep velocity profiles for all three inclinometer
locations are shown in Figure 4.8. The in-situ creep velocities are also
shown in this figure. At inclinometer locations GB1A and GB3, the predicted
velocity profile generally has a similar form to the in-situ profiles.
However, the magnitude 1is much greater. As expected, there 1is no
correlation between measured and observed creep velocities at inclinometer
location GB2.

A close examination of the magnitude of predicted velocities versus the
observed values revealed that the difference between the two is a constant
factor. The creep strain rate varies linearly with the coefficient in the
simple power tlaw. Hence, a proportional change in the coefficient will

reduce the predicted velocities to the observed values.
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The predicted velocities were approximately six times greater than the
in-situ values, To reduce the predicted velocities proportionately, the
coefficient in the simple power law was set equal to one sixth of its

original value. Thus, the flow law for the sand and clay now becomes:

e = .33 x 10'803 (4.2)

The exponent was left unchanged from its original value of 3.0.

The predicted velocities reduced by a factor of six are shown in Figure
4.9. There is good agreement between the predicted and in-situ velocity
profiles for the GBIA and GB3 inclinometer locations through the clay
stratum. There is some discrepancy in the upper 2 to 3 m of +the GB3 hole
due to the influence of the steel casing (Savigny, 1980). Also, the datum
for the finite element zero velocity at the GBIA and GB3 holes were
translated horizontally to account for the in-situ movement which occurred

in the underlying till.

The predicted in-situ creep law is shown in Figure 4.10 along with the
flow law for ice (Morgenstern et al., 1980) and the upper bound for soil
data as proposed by Nixon (1978). The predicted flow law shows good
agreement with the laboratory data. As shown in this figure, the laboratory

data overestimate the in-situ creep rate.

The accumulated creep displacement pattern after a steady state
condition was achieved is shown in Figure 4.11. The displacement profiles

versus depth are indicative of non-Newtonian fluid behavior.
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The preliminary finite element creep analysis has shown that the in-
situ creep behavior of the ice-rich glaciolacustrine clay can be modelled
with the simple power law. However, the agreement between predicted and
observed velocities +through the sand at inclinometer GBIA is less
convincing. At the outset, there was some doubt regarding the form of the
constitutive behavior of the sand and whether the sand would creep at all.
The ice-rich glaciolacustrine clay was expected to creep much faster than
the overlying sand. This would set up tensile stresses in the sand near the
sand/clay interface. Evidence of a complex stress state at this interface

is revealed by the observed erratic movements at the base of the sand.

Selection of a suitable constitutive relationship for the sand is
difficult due to the lack of long term low stress creep data for natural
coarse-grained permafrost soils. Creep tests on reconsituted frozen sands
have shown that the deformations continue to attenuate with time at stress
levels below the long term strength (Sayles, 1963). Creep deformations in
sand have also been shown to be a function of confining pressure (Sayles,
1973; Alkire and Anderstand, 1973). There is also the ques+ion of the form
of the constitutive refationship for the sand under tensile stresses. Since
unfrozen sand has zero tensile strength, all the tensile stresses must be
transmitted through the ice phase. Hawkes and Mellor (1972) have shown that
the wuniaxial strength of polycrystalline ice is similar in tension and
compression at slow strain rates. However, the creep behavior of coarse-
grained ice-poor frozen soils may differ considerably in tension and
compression. In a compression creep test on a coarse-grained frozen soil,
there are two components which resist deformation. First, there are the
time-dependent deformations occurring in the ice phase and secondly, inter-
particle friction must also be overcome. In a tension creep test only the
ice phase will resist the application of load since the interparticle

friction has been reduced to zero. To investigate these points, a second



59

creep analysis was carried out in which the sand was restricted to deform

elastically. The clay was assigned the flow law given by equation 4.2.

The predicted velocity profiles for +this analysis at all three
inclinometer locations is shown in Figure 4.12. Restricting the sand +o
deform elastically impedes the creep deformations in the clay at +he GB1A
and GB2 inclinometer locations. At these two inclinometer locations, the
predicted velocities do not agree either in form or magnitude with the
observed data. The predicted velocities at the GB3 inclinometer are only
slightly reduced from the analysis assuming uniform creep properties because

this region is well beyond the influence of the sand stratum.

The displacement pattern for the second creep analysis is shown in
Figure 4.13. In this case, the clay is being extruded out between the sand
and underlying tilt. As the distance downslope from the point the sand
pinches out increases, the displacement pattern begins to resemble non-

Newtonian fluid behavior as it did in the first creep analysis.

The extrusion of the clay leads to very high horizontal +tensile
stresses in the sand as shown in Figure 4.14. The magnitude of the tensile
stresses indicate the formation of tensile failure zones propagating through

the sand as it restricts the downslope movement of the underlying clay.

4.5 Assessment of Analytical Results

On the basis of the finite element creep analysis of the left bank of
The Great Bear River at the proposed Arctic Gas crossing, it can be
concluded that the in-situ creep behavior of the glaciolacustrine clay can
be accurately represented by the simple power law. The flow law given by

equation 4.2 oprovided +the best fit between observed and predicted
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velocities. The exponent in the power law is the same as that for
polycrystalline ice, however, the coefficient is one sixth of the ice value
(Morgenstern et al. 1980).

The in-situ creep behavior of the sand may also be represented by the
simple power law. However, this remains inconclusive until! further insight
is gained into the in-situ stress state in the sand. Confining the sand to
behave elastically poses much too serious a restriction on creep movements
in the clay. The in-situ creep behavior indicates the clay creeps at a
faster rate than the sand. The dissimilar in-situ creep behavior in the
clay and sand would set up a complicated stress field at the sand/clay
interface. It is believed that The.fasfer creep movements in the clay is
causing tensile failure in the sand. Thus, to more accurately model +the in-
situ behavior of the sand, inclusion of a tensile failure criterion would be
necessary. Approximate numerical techniques are available for treating soil
and rock as either a 'no “tension' or 'limited tension' material.
Application of such procedures is severely limited in frozen soil mechanics
since very little is known about their constitutive behavior under tensile

stress conditions.

The largest discrepencies between observed and predicted velocity
profiles appear to coincide with regions that have experienced failure. Two
such zones are the base of the sand at inclinometer GB1A and the entire
thickness of clay at GB2 inclinometer location. It is believed that the
abrupt change in the in-situ creep properties between the clay and sand has
lead to the development of a zone of tensile failure in the lower 8 m of
sand. The wupper 12 m of the sand, which is well beyond the zone of
influence of the sand/clay interface, generally shows a uniform downslope

velocity.
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Another such zone occurs at the GB2 inclinometer location. The sand
deposit pinches out just upslope of this borehole. The stiffer sand appears
to impede the creep velocity in the underlying clay. Downslope of the GB?
inclinometer, the in-situ creep behavior of the clay is not influenced by
the overlying sand and creeps at a faster velocity than the clay underlying
the sand. The upslope restraint offered by the sand and the downslope pull
of the unrestrained creep in the clay would lead to horizontal stress
relaxation at GB2. It is believed that numerous slickensided surfaces
observed in the core of borehole GB2 occurred as a resul+t of continued
horizontal stress relief while the vertical stress remained constan+ at the

overburden pressure.

The in-situ creep behavior of +the clay at inclinometer GB3 is not
influenced by the sand. The steady state stress field in the clay in the
vicinity of GB3 lies well beyond the disturbing influence of the sand.

4.6 Modelling Ice-Rich Permafrost as a Two-Phase Continuum

At the proposed Arctic Gas crossing of the Great Bear River, the data
gathered from inclinometer - locations GBIA and GB3 clearly show that
velocities are erratic and more movement is associated with the large ice
lenses where they are widely separated (Savigny, 1980). The constant stress
creep tests carried out on samples obtained from the field program all
showed that the deformation behavior was affected by the ground ice
stucture. Savigny (1980) reported that samples tested with a reticulate ice
structure all failed along the soil/ice interface wi+h virtually no shearing
through the soil. One sample +tested with stratified ice oriented
perpendicular to the direction of load application failed by radial tensile
failure in the soil. It is clear from the foregoing points, the ice

structures present in an ice-rich permafrost play an important role in
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establishing the overall deformation behavior of the soil mass. Thus, there
is good reason to believe that the segregated ice features can be treated as

discontinuities in a frozen soil matrix.

In the field of rock mechanics, the presence of discontinuities has
long been recognized by engineers designing structures in the rock. The
behavior of a rock mass is not only a function of the intact rock but also

the nature and extent of the discontinuities present.

Generally, all rock masses contain planes of potential weakness which
come in all lengths and spacings and have varying degrees of influence on
the overall rock mass properties. ,-A geological field investigation can
accurately map the orientation and absolute position of the more important

discontinuities so that their influence on the rock mass behavior can be

adequately evaluated.

Conventional finite element analysis utilizes the continuum approach
which enforces material compatability throughout the body being analyzed.
The continuum approach may be entirely adequate when dealing with small
joint spacings relative to the size of +the structure being analyzed.
Situations where rocks deform along preexisting planes of weakness present
additional degrees of freedom to the rock mass. Thus, the analytical model

must allow relative movement +o obtain a realistic solution.

When dealing with a single very important discontinuity whose
orientation and position are known with confidence, it is possible +to
represent plane of weakness explicitly and calculate the resulting stresses
and deformations in the.rock mass. Several interface elements have been
developed over the past ten years for solving problems that involve relative

movement,
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Goodman et al. (1968) introduced a four node displacement discontinuity
element. Zienkiewicz et al. (1970) presented a continuous isoparatric
interface element with l|inear strain along the element and uniform strain
across its thickness. Ghaboussi et al. (1973) advocates the use of relative
displacement as an independent variable to prevent adjacent blocks of
continuous elements from penetrating into each other. Simmons (1981) used a
thin linear strain isoparametric continuum element to mode! shearband

yielding and strain weakening in dense, structured soils.

The essential feature in using these interface elements is to be able
to predict the location of a shearzone or map a through-going discontinuity.
Little is known about the aerial exfenf of individual lenses of segregated
ice or reticulate ice veins. The ice lenses may vary from hairline cracks
to massive ice bodies with vast horizontal and vertical extent. The factors
governing the amount and distribution of ground ice are the type of host
material, availability of moisture, rate of freezing and geologic history of
events. The most common form of segregated ice in the glaciolacustrine clay
at the proposed Arctic Gas Crossing site was reticulate ice with smaller
amounts of segregated and stratified ice. The thicker primary veins in the
reticulate ice structure are typically vertical making lateral correlation

of these ice features very difficult.

The variability of ground ice is of major gignificance when studying
the stability of buried, warm pipelines operating through permafrost.
Determination of the amount and distribution of ground ice is essential for
evaluating the configuration of the thawed ditch bottom profile. The
lateral variation of ground ice can be determined by visual examination of
ditch walls or detailed logging of continuous undisturbed samples obtained

from closely spaced boreholes.
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Mapping of ground ice structures found on ditch walls will provide the
most reliable estimate of +the continuity of individual ice features.
However, an undertaking of this sort would be very costly. Ditch wall
disturbance as a result of overbreak would preclude the use of a blast and
backhoe operation to excavate +the ditch. Large diameter bucket wheel
ditchers produce a smooth and relatively undisturbed ditch wall ideal for
observing the ground ice structure. Very few ditfching trials have been
carried out and reported in the public literature. Also, the few trials
that have taken place were primarily concerned with the ability of the
diftcher to excavate frozen permafrost rather than mapping the ground ice

structures.

Detailed logging of the ice structures observed in undisturbed
permafrost core samples obtained from closely spaced boreholes would be much
more expedient. The ground ice may appear to be much more variable in the
undisturbed core samples than that actually present in the soil mass.
However, an estimate of the variability of ground ice in the soil mass can
be obtained by a statistical evaluation of the observations at individual

boreholes.

Use of statistical analysis to solve variabiftity problems in
geotechnical engineering is relatively recent. Quality control on
construction projects and to a lesser extent the analysis of laboratory test
data are two areas where much of the application of statistical techniques
has taken place. Ideally, a known statistical model would be used to
describe the population under consideration. Holtz and Krizek (1971)
studied several foundation case histories and found that the laboratory test

data essentialy conform to the Gaussian or normal! distribution.
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Speer et al. (1973) reported the results of a ground ice variability
study undertaken by Mackenzie Valley Pipeline Research Limited (MVPRL). The
purpose of the ice variability study was to assess the amount of ground ice
and its distribution in the thawed zone below a warm oil pipeline buried in
ice-rich permafrost. The thaw settlement potential of representative
geologic units through which the propsed pipeline might be buried is

required to compute pipe stresses under operating conditions.

When fine~grained ice~rich permafrost soil thaws, water is released and
settlements develop as the water is expelled from the pore space due to the
soils self weight and applied loads. Laboratory studies have shown that for
light loadings in relatively ice-rich soils, a major portion of the thaw
settlement occurs during the thaw stage. This component of settiement is
Independent of external loading and is caused by excess water draining away.

A rough estimate of the thaw settlement for ice~rich soils can be obtained
from the thickness of visible ice lenses. Thus, it would seem reasonable to

assume that the variation in thaw settlement provides an estimate of the

variability of ground ice.

Field and laboratory studies were carried out by MVPRL to study ground
ice variability in silt and clay soils. The lateral variation of ground ice
content was studied in rectangular arrays of closely spaced borings. An
estimate of the total potential settiement was calculated from an empirical
correlation between frozen bulk density and thaw strain derived from
laboratory tests on undisturbed core samples obtained during the field

investigation.

Two arrays were drilled in lacustrine silts and clays deposited in a
proglacial lake. These deposits are considered texturally similar to those

encountered at the proposed Arctic Gas crossing of the Great Bear River.
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The Norman Wells study site is located approximately 3 km northwest of the
airport runway at Norman Wells. The Landing Lake array is located
approximately 53 km northwest of Norman Wells on the east bank of the
Mackenzie River. At both sites, reticulate and segregated ground ice
structures were present in the lacustrine silt and clay. Massive ice

structures were not observed.

The estimated total thaw settlement for the Norman Wells and Landing
Lake study sites are shown in Figure 4.15. The depth interval that thaw
settlements were calculated was 2 to 13 m. There is good reason to believe
that for a uniform stratigraphic unit, the ground ice will be a normal Iy
distributed variable. The combined data for the Norman Wells and Landing
Lake arrays plotted in terms of a thaw settlement probability distribution
on normal probability paper is shown in Figure 4.16. The observed data
shows [ittle scatter about the theoretical normal distribution. Also shown
in the figure are the results of the Kolmogorov-Smirnov goodness of fit test
evaluated for normality at the 20% significance level. This test indicates
that the thaw settlement in lacustrine silts and clays of the Mackenzie

River Valley can be described by a normal distribution.

Although the foregoing has shown that the variability of ground ice in
a uniform stratigraphic unit can be considered to be normally distributed,
it has done little to elucidate the lateral extent of individual ice lenses.
One method of estimating the applicable horizontal scale for a given depth
interval is to observe the surface profile of ground which was once frozen
but has subsequently thawed such as seismic cutlines, 'Highways and

airstrips.

A mathematical description of the overall ground ice correlation

between pairs of points at various arbitrary spacings is through the concept
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of an auto-correlation function. This function is defined as the product of
the deviations from the mean thaw settlement measured at pairs of points
spaced an arbitrary distance, ﬂ, apart averaged over the entire population,

ie:

n-k
RIKY = 112 (x-X)(x. -%X)] (4.3)
n-k i=1 [ itk
where: R(k) = auto-correlation at spacing k
n = total number of observations
X, = observation at point i

i
X = mean

For the thaw settlement data, the auto-correlation function expresses
the dependence of the correlation between settliements measured at boreholes
i and T + k on the distance, kﬂ, between boreholes. The distance at which
the auto-correlation falls to zero indicates the horizontal scale over which
the thaw settlements can be correlated. The product of the deviations from
the mean thaw settlement spaced further than this distance can be expected
to be as often positive as it is negative. Thus, the expected value of the
sum of these products should be zero beyond the correlation distance for a

very large population.

The auto-correlation function determined from the Norman Wells and
Landing Lake thaw settlement data is shown in Figure 4.17 The correlation
is almost zero for 15 m and fluctuates about zero at greater spacings
between boreholes. This suggests that thaw settliements are only weakly
correlated at boreholes spaced 15 m apart. No data is available at spacings
less than 15 m since +the closest borehole spacing at these two ice
variability ftest sites was 15 m. Field observations of disturbed areas in

tacustrine silts and clays of the Mackenzie River Valley indicate that 15 m
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represents an upperbound for the distance at which ground ice content is

correlated.

The thaw settlement data represents a one-dimensional integration of
the ground ice conditions at a particular borehole over a given depth
interval. The data derived from the MVPRL ice variability test sites at
Norman Wells and Landing Lake suggest that for a uniform stratigraphic unift,
the overall ground ice content of the soil mass can be described as a
normally distributed variable. The ground ice content at a particular point
is completely independent of neighboring points separated a distance of
15 m. Thus, the time-dependent deformation behavior of ice-rich frozen soil
is most appropriately treated analytically by assuming homogeneity for the

ice-rich permafrost until a better understanding of the lateral extent of

individual ice lenses is obtained.
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CHAPTER V

IN-SITU CREEP ANALYSIS OF FOX TUNNEL

5.1 General

The Fox Tunnel is located approximately 16 km north of Fairbanks,
Alaska. The tunne! was excavated into perenially frozen silts. These silts
have been of an economic interest in the Fairbanks area since the turn of
the century because of the need to remove thick sections of the material +o
expose the underlying gold-bearing gravels. The ofd mining practice
consisted of stripping the overburden of perenially frozen silt to expose
the gravels which were subsequently worked with dredges. The Fox Tunnel
excavations were part of two separate research programs from 1966 to 1969.
The objectives of these research projects were to investigate methods of
subsurface exploration in perenially frozen ground and evaluate subsurface

openings as a shelter, storage space and site for military activities.

The first stage of this project was to excavate a tfunnel 110 m long in
the winters from 1963 to 1966 as shown in Figure 5.1. The excavation was
carried out using a continuous mining machine and a modified blasting
technique. The tunnel was excavated through ice-rich Fairbanks silt for its
entire length. The tfunnel portal was excavated into a near-vertical sil+
escarpment left from old placer mining operations. Closure measurements
were undertaken following the mining operations. In November, 1966, a
1.22 m ventilation shaft was drilled from the surface and connected to +the
end of the tunnel. The ventilation shaft was left open the first winter to
allow the heavier cold winter air to circulate through the tunnel by natural

convection. The cooler air lowered the tunnel wall temperature from =1.0°C

86
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to -6.7°C (McAnerney, 1968). The lower ground temperature substantially
. decreased the closure rate of the tunnel. Deformations have been negligible

since the ventilation stack was drilled.

The second stage of this project involved excavating a winze from the
existing tunnel to provide access to the stratigraphically lower gold
bearing gravels and bedrock. This phase of the project is shown as the
shaded portions in Figure 5.2. This phase was a cooperative effort between

the U.S. Bureau of Mines (USBM) and the U.S. Army Cold Regions Research and

Engineering Laboratory (USA CRREL). The winze terminates in a room;
designated as Room B by +the USA CRREL. A second room USBM Room A, was
excavated south of +he inclined winze. The winze and two rooms were

excavated using air and conventional blasting techniques. Slabbing of the
gravel occurred in regions where the thickness of gravel separating the
ceiling from the silt was thin. This necessitated that this material be
scaled from the roof to ensure a safe working area. Extensive deformation
studies were carried out in both rooms (Thompson and Sayles, 1972;

Pettibone, 1973). These will be discussed in a subsequent section.

5.2 Site Geology

The sequence of geologic sediments encountered in the main tunnel and
winze excavation exposures are shown in Figure 5.3. The disintegrated
schist bedrock at the tunnel site is mantled by unconsolidated, ice-cemented
silts and gravels. Immediately overlying the bedrock are the gold-bearing
gravel deposits. The gravel is capped by a thick re-transported silt

deposit.

The floor of both rooms excavated at the end of the winze consist of

Birch Creek schist. The bedrock is perenially frozen and deeply weathered
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in these exposures. X-ray diffraction analyses performed on samples of the
decomposed bedrock just below the gravel/bedrock interface showed a high

montmorillonite peak (Selliman, 1972).

A stream deposited gravel layer Ilies unconformably on top of the
bedrock. Stream deposition was inferred from the strong imbrication of the
pebbles and cobbles. The average thickness of the gravel deposit in this
region is approximately 4 m. Pockets of fine-grained materials are
interbedded in the sand. The gravel is perenially frozen and bonded with
ice. Pore ice is visible in the voids but the particles retain grain-to-

grain contact.

A thick deposit of silt, the uppermost unit at this site, lies
unconformably on top of the gravel. Although irregular, the silt-gravel
contact is sharp. The silt deposit ranges in age from !llinoian to recent.
The Illinoian deposits contain considerably less ground ice and organic
matter than the younger units. The overlying silt of Wisconsin age is
characterized by large ice wedges. Retransported silts of recent age mantle
the top of the upland plain at the tunnel site. Generally, there are two
types of ground ice present in the frozen sil+; ice lenses and masses formed
by ice segregation, and the massive ice structures of Aufeis (buried ice).

Ice volumes range from 54 to 79%.

5.3 In-Situ Deformation Studies

The in-situ creep movements of the ice-rich Fairbanks silt were studied
independently by Swinzow (1970), Thompson and Sayles (1972) and Pettibone
(1973).
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The closure rate of the main tunnel was measured by Swinzow (1970)
immediately following the final excavation season. No details on +he type
of instrumentation or the exact time the measurements were recorded are
given. Horizontal and vertical closure measurements were recorded at +wo
different locations, Sta. 1450 and Sta. 3+50 (45.7 m and 106.7 m,
respectively, from the portal). The closure measurements recorded at the
two tunnel sections are shown in Figures 5.4. The air temperature in the
tunnel at the time the readings were recorded was very close to the melting
point of ice (McAnerney, 1968). Measurements recorded over a 3200 hour +ime
span showed that the deformation rate continued to attenuate with +ime.
Very little difference was noted between horizontal and vertical closure of
the tunnel at both locations. A closure of 14.6 cm was recorded at the
instrumented section furthest removed from +the tunnel portal. The
difference in overburden between these two sections was only 2.1 m. The
difference in closure between the two measuring stations is likely due to
temperature since the end of the tunnel was consistently warmer during the
observation period (Swinzow, 1970). The closure measurements clearly showed
that artificial ventilation was inadequate to control +the deformations
within tolerable limits. In December, 1965 a vertical ventilation shaft was
drillted at the end of the tunnel. Cold winter air created by the chimney
effect lowered the temperature of the surrounding silt to -6.7°C and -10°C
at distances of 0.61 m and 2.35 m from the tunnel wall. The colder tunnel

wall temperature has subsequently reduced closure substantially.

McAnerney (1968) measured the vertical deformation of the tunnel at
eight deformation points as shown in Figure 5.5(a). The readings plotted
for one year commencing in April, 1966, are shown in Figure 5.5(b). The
readings recorded by Swinzow in 1965 are supérimposed on this plot. Note
that the deformation is negligible after the ventilation shaft is opened and

cold winter air enters the tunnel by natural convection.
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Field observations of the USBM room were reported by Pettibone (1973).
The USBM room was initially excavated 4.6 x 15.2 x 2.4 m high. n
subsequent weeks 2.3 m was slabbed from each side to widen the room +o
approximately 9 m, The room was instrumented with vertical deformation

points as excavation proceeded.

The instrumentation was designed to measure mass movement independent
from parting. Floating points used fto measure mass subsidence consisted of
1.8 m long steel rock bolts embedded in the roof in overbored holes. the
parting was measured with a 152 mm wood dowe! placed adjacent to the rock
bolt. A 0.6 mm long rock bolt was permacreted into the bedrock floor
directly underneath the rock bolt and wood dowel. Two thermocouple strings

were installed in the roof and one in the wall.

The in-situ creep deformation versus time plot for one of the measuring
points is shown in Figure 5.6. Deformation readings commenced in early
February, 1969. Subsidence of the USBM room increased rapidiy as the room
was enlarged. Following excavation, +the deformation rate dropped
substantially. The room temperature up to mid-April was approximately
-6.7°C.  From mid-April to mid-July, 1969, the room temperature increased to
about -3.3°C. The accompanying increase in deformation rate caused some
thin slabbing near the back of +the room. In early August, 1969, an
insulated bulkhead was installed at Sta. 1+420. Following this the
temperature increased rapidly and was maintained at approximately -2.2°C.
The bulkhead was removed in early January, 1970. During the period the
bulkhead was in place, the rate of floor to roof closure continually
exceeded the closure between the floor and 1.8 m depth into the roof.
Hydraulic props, installed as a safety precaution under portions of the roof
that were scaling, continued to pick up load during this period indicating
that they were picking up load from overall mass subsidence in addition to
the dead load of the slab.
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After the bulkhead was removed, the closure rate has decreased +o
approximately 1.5 cm/yr. This is consistent with the observations in +he
CRREL room. Colder average temperatures for the duration of observations in
the USBM room resulted in less closure in this room Thén the CRREL room. |In
all, 30 cm of floor to roof deformation was recorded in 37 months wi+th
parting accounting for approximately 20% of total room closure. Several
cracks were observed in the roof in April, 1970. Pettibone (1973) concludes
that vertical separation and expansibn of the formation account for +the

measured parting.

Thompson and Sayles (1972) reported the results of a finite element
simulation of the closure of the USA CRREL room in the Fox Tunnel.
Horizontal and vertical closure measurements were reported for one vyear.

Laboratory samples were obtained from uniaxial creep testing.

The authors used the simple power law to predict the in-situ behavior
of the room. They concluded that the form of the flow |aw predicted the in-
situ behavior quite well. However, the back-calculated flow |aw predicted a
creep rate 3.3 times faster than had been established in the taboratory on
the same frozen silt. A few comments can be made regarding the analysis

carried out by Thompson and Sayles (1972).

A two dimensional finite element analysis was used to mode! the room.

The actual field configuration was three-dimensional. [t is common practice
to assume that sections within three tunnel diameters will be influenced by
the end-restraint offered by the tunnel face. Both of the instrumented
sections in this room are within this distance. The end effects of the room

would delay the onset of in-situ steady-state creep.
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There is a slight error involved in the boundary condition assumed
along the gravel-bedrock interface. In their analysis, Thompson and Sayles
(1972) assume the base of the gravel is free to translate in the horizontal
direction due fo a lean clay that is present immediately below the gravel-
bedrock contact. The decomposed bedrock exposed at the base of the gravels
in this room are perenially frozen and no excess segregated ice features
were observed (Sellman, 1972). Thus, the clay would offer some frictional

resistance which would decrease the predicted creep rate.

The form of the constitutive relationship of the placer gravels is
questionable. The initial finite element simulations indicated that in-situ
behavior of the room could not be predicted assuming constitutive models
which exhibit continuously decreasing creep rate with time {Thompson and
Sayles, 1972). The simple power law for the gravel was arrived at by a best
fit to the actual field curves. The average density and moisture content of
the gravel is 2.08 Mg/m3 and 10%, respectively. Sellman (1972) described
the gravel as retaining grain-to-grain contact with no massive ice forms

present.

In light of the review of the constitutive behavior of frozen soils
presented in Chapter 2, it would appear that the behavior of the frozen
gravel will be governed by frictional response. Swinzow (1970) reported
that a room excavated in cold, densly packed, permafrost till did not deform
in excess of measurement error after 3 years of operation. Thus, depending
on temperature, the in-situ deformation behavior of the gravel may be more
accurately represenfed by elastic behavior or a creep law which is a

function of confining pressure.
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Examination of +the laboratory creep data of the Fairbanks sitt is
necessary to establish whether a steady state condition did exist.
Unconfined compression creep tests were performed on undisturbed samples of
" frozen Fairbanks silt obtained from +the +tunnel exposure. The fest
temperature was -1.7°C and the stress levels ranged from 245 kPa to 2100
kPa. A simple power law was fitted to the laboratory creep data with the

following parameters:

2= 1.16 x 107%™ (5.1)

where the units for strain rate and stress are year=! and kPa, respectively.

Thompson and Sayles (1972) reported strains in the laboratory typically
in excess of 40% in 8 days. Tests performed by Savigny (1980) on ice-rich
fine-grained glaciolacustrine clay showed that compatability at the soil-ice
interface would not exist at strains of +his magnitude. Thus, the minimum
strain rates measured in the laboratory may well exceed the steady-state

rate and the exponent of 4 is considered high.

A more detailed investigation of the U.S. Army CRREL Room was
undertaken to gain further insight into the in-situ creep behavior of the

frozen silt.

The horizontal and vertical closure of the USA CRREL room were
monitored at two instrumented test sections, Sta. 1+83 and Sta. 2+02. The
horizontal and vertical room deformations at each section were recorded
between four closure points installed in the roof, walls and floor. Each
point consisted of a 32 mm diameter wooden dowe! embedded 0.3 m into +the
permafrost. A steel tape in conjunction with a steel ruler with an accuracy

of 1.6 mm (1/16 inch) was used to measure the closure between opposing
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points in the walls, and roof and floor. In-situ ground temperatures were
monitored by four strings of thermocouples installed at Sta. 1+96. The
thermocouples were installed in the roof, floor and each side wall. The
ground temperatures were recorded at 0.3 m intervals from the walls and roof

to a total depth of 1.83 m.

The closure and temperature instrumentation could not be installed for
three weeks after the room was excavated. An insulated bulkhead was
installed at the entrance to the room (Sta. 1+81) approximately eight weeks
after the initial closure and temperature readings were recorded. The
purpose of this bulkhead was to maintain a constant room temperature thus
minimizing the effect of seasonal fluctuations in air temperature on the
permafrost temperature. Approximately 18 weeks later, a second bulkhead was
installed by the USBM at Sta. 1+20 and subsequently removed five months

after installation.

The vertical and horizontal closure measurement recorded at Sta. 1+83
and 2+02 in the USA CRREL room are shown in Figures 5.7 and 5.8,
respectively. The in-situ ground temperatures measured in the roof and
walls are also plotted in Figures 5.7 and 5.8. The vertical and horizontal
closure rate determined from the closure versus time data (Figures 5.7 and
5.8) is shown in Figure 5.9. The closure observations were recorded for a

period of 3.65 years.

The vertical and horizontal closure measurements increased rapidly
during the first year of observations. This is probably due to the general
warming trend in the surrounding permfrost as indicated by the temperature
measurements. After removal of the USBM bulkhead at Sta. 1+20, the rate of
closure decreased as a consequence of the cooler permafrost temperatures.

The greatest vertical and horizontal movements were recorded at Sta. 2+02.
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After 3 1/2 years of observations, 48 cm and 16.5 cm of vertical and

horizontal movement, respectively, had taken place.

The temperature dependence on in-situ creep behavior is clearly
illustrated by the vertical closure at Sta. 1+83. The first bulkhead was
installed within .75 m of this instrumented section. The colder ambient air
temperature just outside of the room would lower the permafrost temperature
at Sta. 1+83. This would explain the slower vertical deformation rate at
Sta. 1+83. From January, 1970 to October, 1972, the deformation readings
indicate a steady-state closure rate at Sta. 1483 at a velocity of 1 cm/yr.
For the duration of this time interval the permafrost temperature has been

maintained at an average value of -2.2°C.

The vertical closure at Sta. 2402 shows much less sensitivity to

changes in permafrost temperature brought about by installation and removal
of the USBM bulkhead. At this section, the closure rate continued +o

attenuate with time for the entire period of time closure obsevations were
recorded. During the final ten months of observations, the closure rate at
Sta. 2+02 was 2.5 cm/yr.

The horizontal closure at Sta. 1+83 and 2+02 continued to accelerate
for the first year movements were recorded. Following removal of the USBM
bulkhead, the horizontal movements at Sta. 1483 fluctuated seasonal ly with
1.3 cm of net closure being recorded for the final 2.5 years of
observations. During the warm summer months and early fall, 1 to 2 cm of
horizontal movement was recorded. Very little or negative closure was
recorded during the cold winter months. Attenuation of the horizontal
closure rate at Sta. 2+02 was observed for | year following removal of the

USBM bulkhead. Seasonal fluctations have subsequently taken place. One
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centimetre of net horizontal closure was recorded during the final 1.7 years

of obsevations.

A finite element simulation of the USA CRREL room was carried out using
the programme CREEP. The purpose of this simulation was to assess the
validity of the simple power low for ice as an upper bound solution for the

in-situ creep deformations recorded in the frozen silt while the frozen

placer gravels were treated as an elastic material.

The discretized continuum of the CRREL room used for this finite
element simulation is shown in Figure 5.10. Only the Fairbanks silt and
placer gravels were discretized. |t was assumed that the competent bedrock
floor would not contribute to vertical closure of the room. Only one half
of the funnel was analyzed due to symmetry. The thickness of overburden

above the roof centertine was 16.9 m. The ground surface was assumed stress

free. The two vertical boundaries were fixed by roller constraints which
al lowed movement in the vertical direction only. The base of the grave!l was
placed on roller constraints which allowed movement in the horizontal

direction only as was done in finite element analysis carried out by
Thompson and Sayles (1972). The elastic material properties of the frozen

silt and gravel are given in Table 5.1.

The Young's Modulus values and unit weights were obtained from Thompson

(1970). Creep properties of the silt and gravel were assigned the values of

pure ice at -2°C (Morgenstern et al., 1980), i.e.:

-8 53
E = 200 X “O g (5-2)

where the units of stress and strain rate are kPa and yr‘1, respectively.
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TABLE 5.1

ELASTIC MATERIAL PROPERTIES FOR
FROZEN SILT AND GRAVEL
FOX TUNNEL, ALASKA

PROPERTY SILT GRAVEL
Young's Modulus 346 MPa 718 MPa
Poissons' Ratio .495 <450
Unit Weight 1.47 Mg/m3 2.08 Mg/m>

The nodal point labelled V in Figure 5.10 was chosen to represent the
in-situ vertical closure points. The vertical displacement of node V was
assumed to represent the tfotal vertical closure since the closure point

installed in the floor was fixed into bedrock.

The vertical steady-state velocity predicted by the programme CREEP
using the simple power law given by equation 5.2 to mode! the creep behavior
of the frozen silt was 1 mm/yr. The accummulated closure of the node point

labelled H in Figure 5.10 after 2.5 years was 11 mm. The horizontal
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displacement of node H was assumed to be one half of the total hoizontal
closure.  The predicted results are at least one order of magnitude less
than the in-situ measurements. The design of the instrumentation installed
in the CRREL room was such that vertical separation in the ceiling could not
be measured independently of total floor fo ceiling closure. In the USBM
room, 20% of the total room closure was due to parting in the ceiling.
Thus, a portion of the total closure measured in the CRREL room is Pikely

due to vertical separation in the ceiling.

In this case, the simple power law for ice does not represent a valid
upper bound for the in-situ creep behavior of the frozen silt. However,
examination of the closure rate versus time data presented in Figure 5.9
clearly shows that steady-state conai+ions did not exist during the first
year of observations as assumed by Thompson and Sayles (1972). It is
entirely possible that the overall closure measurements that were recorded
consisted of both plastic and creep flow. Plastic flow in this sense refers

to time-dependent failure of the frozen soil.

5.3 Assessment of In-Situ Deformation Behavior

The in-situ deformation studies of the Fox Tunnel reported by Swinzow
(1970), Thompson and Sayles (1972) and Pettibone (1973) all showed that the
deformations in the ice-rich Fairbanks silt became excessive when the room
air temperature approached the ambient soil temperature of approximately
-1.7°C. In each case, the room temperature was lowered to restrain the

movements within tolerable |imits.

The stress release in the ceiling of the USA CRREL room and the USBM
room initiated by excavating the underlying frozen placer gravels is similar

tfo that occurring in a soil mass located above a yielding trap door. In the
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past, it has been recognized that the behavior of a soil immediately above a
flexible underground structure and that of a granular mass above a yielding
bottom of a silo are equivalent for all practical purposes (Ladanyi and
Hoyaux, 1969). This assumption allows arching or bin theory to be used to
estimate the contact pressures between the ground and an underground

structure.

The general expression for the pressure acting on the roof of a tunnel
derived from arching theory is given by:
o = Bly—c/B)(1-e (TaneD/B,
Ktang

where:
Oy

vertical contact pressure

half width of the zone of arching

(half width of the underground rooms in this case)

D = depth of the roof below the surface
y = unit weight of soil above the roof
c + ¢ = shear strength parameters of the soil above the roof

X
1}

ratio between vertical and horizontal stress

It is clear from the above expression +h§+ an underground opening
located in a cohesionless material will not remain stable without additional
ground support provided by a tunnel liner or timber lagging. For an unlined
opening in a cohesive material, the following relationship must be

satisfied:

c > By (5.4)
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I'f the cohesion is less +than BY, the roof of the underground opening
must be supported. For the USA CRREL room, values of B = 2.44m and ¥ =
1.47 Mg/m3 require a minimum cohesion of 35.1 kPa to ensure stability of the-

room.

Vialov (1962) proposed that the strength of a frozen soil can be
represented by a series of Mohr-Coulomb failure envelopes, each one
corresponding to a specific time to failure. The relationship between

maximum shear and normal stress takes the form:

T(f) = C+ + cn+6n¢+ (5.5)

where: (1) shear strength at time = +

oq = maximum normal stress on shear plane

c cohesion and angle of internal friction, respectively

+ 6 T
(functions of time and temperature)

The time variation of the cohesion intercept, C4y» can be described by

c, = B/!n(Tf/B) {(5.6)

where:

>
-
98]
]

experimentally determined material parameters

-+
n

Time to failure

Time and temperature have very little influence on the angle of internal

friction.

The laboratory studies carried out to date indicate that the long term

strength of frozen soil is frictional. The angle of internal friction can
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well be approximated by the effective friction angle for the same soil in an

unfrozen state. For coarse-grained soils, the friction angle is relatively
independent of temperature and strain rate. Frictional resistance is
hindered by the presence of ice in ice-rich frozen soils. In very ice-rich
soils which have very little grain-to-grain contact, the strength will be

that of the ice and in the long term will approach zero.

The general nature of the failure envelopes for frozen soils is
nonlinear. The time variation of the cohesion and angle of internal
friction is reflected by the mutual distribution of each envelope. The
inclination of each envelope represents the time variation of the angle of
internal friction. The loss of cohesion with time is represented by the

cohesion intercept of each envelope.

In predicting the time-dependent settlements for foundations in frozen
soils, Ladanyi (1981) recognized that creep and consolidation can occur
simultaneously in frozen soils containing large amounts of unfrozen water.
Al though the treatment of creep and consolidation as two distinct phenomena
would seem appropriate for predicting delayed settliements in frozen soils,
experimental Iimitations necessitate that these two phenomena be lumped
together. Thus, frozen soil is treated as a quasi-single-phase medium with
an empirically derived creep relationship. Recognizing that under certain
conditions consolidation volume change may have a significant impact on the
delayed settlement of a footing, Ladanyi (1981) studied the frozen soil's
response to a stress increment with the aid of the Rendulic plot. These
plots conveniently enable any given stress increment in a triaxial test to

be separated into its hydrostatic and deviatoric components.

Interaction between strength and deformation is illustrated by

considering a triaxial test on a normally consolidated sample of frozen soil
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containing three phases: mineral particles, ice and unfrozen water. The

sample is initially in equilibrium at point O', Figure 5.11. A significant

difference between frozen and unfrozen soil is +that a total stress
increment, Ag, (0'A), can be applied to a frozen soil exceeding its long
term strength. As the soil is allowed to deform under closed system

conditions, the stresses are internally shared by the mineral particles and
the pore filling. The unfrozen water can only support hydrostatic pressure.
The shear stresses are supported by the mineral phase and temporarily by the
ice. Since the ice phase supports a portion of the shear stress, +the
effective strength is mobilized only to point B'. The hydrostatic pressure
generated by this straining, assumed to be equa! in the ice and unfrozen

water, is given by:

= - 1 .
AUi AOOC* Aooc+ (5.7)

This is somewhat less +than for +the same soil in an unfrozen state.

Similarly, the shear stress, ag acting in the ice phase is given by:

oct,i,

A = A (5.8)

— t
TocT,i Toct AToc+

where: , At .+ and ATéCT are the total applied shear stress increment

and effective shear stress assumed by the soil, respectively.

Maintaining closed system conditions, the frozen soil will creep and the ice
will gradually tfransfer its applied shear stress to the soil skeleton. The
point B' will move along the effective stress path to mobilize full soil

strength at B. Creep brings the ice closer to failure producing a loss of
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strength with time. The failure surface shrinks from its initial position

at t=0 until failure occurs at point A at t = Tae Since point A lies
beyond the long ferm strength, creep failure will inevitably occur. The
. , T . ' . . )
stresses at failure will be ALOCT and AoocT in the soil skeleton, Au; in
the ice and unfrozen water and at . in the ice.
oct, i

Opening the system at point B' will initiate consolidation following
the stress path B'A'. The total deformation of the soil will consist of
consolidation and creep, occurring simultaneously. Full soil strength
mobilization at point A' will depend on the rate of consolidation relative

to the steady state creep rate.

The foregoing example of a triaxial specimen clearly showed that at
least for short term conditions, the strength of the ice matrix can be
relied on tfo support stress increments that exceed the soil's fong term
strength. However, the shape and position of the long term strength
envelope must be known to clearly define the long term response of a frozen

soi! to an arbitrary stress increment.

In using the quasi-single phase approach, it is important that the
stress paths followed in the laboratory to develop the constitutive equation
coincide with those expected under field conditions. The stress paths shown
in Figure 5.11 are for an axially symmetric stress state which would be
suitable for calculating the time dependent response of the frozen soil
underneath a circular footing. Under conditions of plane strain, such as
the stress state in the soil mass surrounding an underground opening, the
use of a simple stress space in which the coordinates are the vertical and
horizontal principal stresses would be more appropriate. This arises from

the fact that the intermediate principal stress is generally unknown.
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The stress paths shown in the Rendulic plot, Figure 5.11, have been
replotted in a vertical and horizontal stress space as shown in Figure 5.12.
fn this plot, the stress paths for undrained extension tests are also shown.
The deviatoric stress is given by either the vertical or horizontal distance
between the point characterizing the stress state and the hydrostatic
pressure line, o'v = g'H.

Al though a clear understanding of effective stress changes in a frozen
soil during shear has not been developed to date, Ladanyi's (1981)
conceptualization provides a useful framework to study the response of a
frozen soil to a stress increment. The interaction between strength and
deformation will shed some |ight onvfhe in-situ deformation behavior of the
CRREL room in the Fox Tunnet.

Excavation of an underground opening will iniftiate deformation in the
soil mass surrounding the opening. Considering the CRREL room at the Fox
Tunnel, the ice-rich silt comprising the roof will deform much more readily
than the frozen dense gravel forming the walls. Downward movement of the
unsupported ceiling must now be resisted by shear stresses that develop at

the interface between the yielding and stationary soil mass.

Before excavation of the USA CRREL room, the vertical stress along the ice-
rich silt/grave! contact was equa! to the ovérburden pressure. After
excavation, the vertical stress along the ceiling of the room is zero. This
stress release is accompanied by a corresponding increase in stress in the
adjoining soil mass above the frozen gravel. Considering the two elements
shown in Fiqure 5.13(a), the stress in element A will be a small fraction of
what it was before excavation commenced. The vertical pressure in element B
will have to increase by the same amount to maintain equilibrium. The

horizontal stress these two elements exert upon each other must remain equal
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and opposite. The induced shear stress at the interface between elements A

and B will cause a rotation of the principal stresses above the tunnel
supports.
Al though +the actual stress paths followed by +the soil elements

surrounding a rectangular opening are quite complicated, some insight into
the interaction between strength and deformation of frozen soil may be
gained by studying the simple stress paths shown in Figure 5.13(b). The
stress release in element A is given by the stress path O'A while an equal
but opposite stress increment is applied to element B, ie. path O'B. As
shown in the figure, the stress release in element A exceeds the long term

oy > oy failure line. However, an equal stress increase in efement B lies
below the long term oy > oy failure line.

This simplified stress path description clearly shows the importance of
considering the stress path in selecting an appropriate constitutive
relationship for predicting the initial time dependent response of the
frozen soil surrounding an underground opening. Since the sfress increase
in the soil above the gravel does not exceed the soil's long term strength,

the creep behavior may well continue to attenuate with time. On the other

hand, the soil above the roof of the Tunnel +that experiences a stress
release that exceeds the soil's long term strength will creep at either a
steady state or decreasing rate. The creep rate will depend on the relative

position of the stress point A with respect fo the service life strength,
envelope for the frozen soil under consideration. Failure will inevitably

occur for the purely frictional long term strength shown in Figure 5.13(b).

Evidence of the frozen silt approaching failure can be inferred from
the vertical closure rate versus time plot at Sta 1+ 83. Installation of

the USBM bulkhead at Sta 1 + 20 increased the permafrost temperature at Sta.
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1+83. The warmer soil temperatures resulted in a 50% increase in vertical
closure rate at Sta. 1+83 over a period of three months. A portion of the
increase is due to the temperature dependence of creep. However, the warmer
soil temperatures wil! increase the unfrozen water content of the frozen
silt. Increasing a frozen soils unfrozen moisture content will shrink the
delayed failure surface from its original position (ie. instantaneous or
short term strength) tfowards the 1fong term failure line. The soil
temperature becomes cooler following removal of the USBM bulkhead at Sta.
1+20. As the soil temperature decreases, its failure surface expands
towards the instantaneous strength. Thus, a numerical prediction of the in-
situ deformation behavior of the CRREL room would have to account for
temperature dependent creep properties and a temperature and time dependent

failure criterion governing the strength of the frozen soit.

The vertical deformation instrumentation installed in the CRREL and
USBM rooms at the Fox Tunnel was not able to measure vertical deformations
in the gravel walls independently of the overall vertical closure of the
room. The arching support provided by the overlying silt (due to the stress
release above the roof) will increase the vertical stress in the frozen
gravel walls in the vicinity of the room. The increase in vertical stress
coupled with a horizontal stress release brought about by excavating the
room will significantly increase the shear stress in the frozen gravel. The
buitd up of shear stress in the frozen gravell walls will lead to time
dependent deformations occurring in the gravel that may eventually lead to

delayed failure.

Thompson and Sayles (1972) incorporated a yield criterion in their
finite element program to account for plastic yield of the material. In
their analysis, the effective stress as defined by Odgvist (1966) was used
as the yield criterion. After each creep increment, the effective stress
for each element was checked to determine whether it had exceeded a given
stress level, Plastic deformations were allowed to take place in all

elements that exceeded the given yield stress. [T is interesting to note
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that when the in situ creep behavior of the frozen silt and gravel was
governed by primary creep, plastic yielding was initiated in the grave!
walls. The elastic-plastic analysis carried out by Thompson and Sayles
(1972) indicate that a catastrophic failure would occur which lead the
authors to conclude that the long term strength of the frozen silt and
gravel was zero and that the in situ creep behavior was more accurately

represented by a steady-state creep relationship.

- The use of effective stress for a failure criterion is over-simplified.
Numerous studies have shown that the strength of frozen soil is governed by
a Mohr-Coulomb failure law where the shape of the failure envelope depends
on soil type, density, ice saturation, temperature and strain rate. The
strength of the gravel will most cérTainly be governed by a Mohr-Coulomb

failure envelope.

I+ is possible that the frozen gravel was approaching the failure
envelope and experiencing large vertical strains during the period of time
the soil temperatures increased while USBM bulkhead was in place at Sta
1+20. Thus, vertical displacements in the gravel walls may be superimposed
on to vertical creep displacement in the frozen silt to give the total room
closure as recorded by Thompson and Sayles (1972). The strain rate measured
in the laboratory is independent of the vertical deformations, in the gravel
walls. This is very likely why the creep equafibn which gave the best fit
to the observed room closured yielded a strain rate 3.3 times greater than

the strain rate measured in the laboratory.

5.5 Underground Circular Cavities in Permafrost

Major design considerations of tunnels in frozen ground are stand-up
time, change in diameter of the unlined opening with time and the change in

pressure on the tunne! liner with time. The first +two factors will
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influence the decision on whether or not to support the underground opening
with a tunnel liner. The third factor will provide guidelines for
dimensioning the tunnel liner. A small parametric study of shallow circular
tunnels in frozen ground was carried out to study closure phenomena and the

stress changes in the frozen soil surrounding the opening.

The first part of this study deals with the closure behavior of an
unlined circular opening excavated at various depths in warm ice-rich
permafrost. The warm ice-rich permafrost was chosen as the host soil medium
as it would present an upper bound for the closure rates. A circular
opening was chosen since it is more amenable to simpler analysis under

certain conditions.

The height to diameter (H/D) ratios of the circular openings varied
from 1.5 to 4.0. The finite element mesh for H/D=2.0 is shown in Figure
5.14. A homogeneous soil profile was assumed for all analysis. Material

properties were assigned on the basis of data reported in the literature.

The flow law for frozen soil used in this study was:

: = 2.0 x 10‘803 (5.9)

This flow law is identical to the flow law for ice at -2°C (Morgenstern
et al., 1980) and represents a valid upper bound to the in-situ creep
behavior of fine-grained, ice-rich frozen soils of the Mackenzie River
Valley, N.W.T.

A plot of the closure velocity versus depth of overburden for the
crown, springline and invert of the tunnel is shown in Figure 5.15. The

depth of overburden in this figure is expressed non-dimensionally as the H/D
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ratio. For all three points considered, the closure rate increases with the
depth of overburden. Also, the downward movement of the crown is greater
than the upward movement of the invert creating a sag in the roof. Thus,
for shallow tunnels, the initial circular cross section undergoes a
transition to an oval shape as the frozen soil creeps inward. At greater
depths, this transition will be less pronounced because the relative change
in overburden stress from crown to invert will be smaller. Based on these
preliminary results, it would appear that a circular opening located 9 to 10
diameters below the surface would behave axisymmetrically. This is somewhat

deeper than a circular opening in an elastic soil or rock.

Velocity vectors depicting magnifude and direction throughout the
region analyzed for H/D=2.0 and H/D=3.0 are shownin Figures 5.16 and 5.17,
respectively. The relative magnitude in these figures is given by the
length of the line segment. For both tunnel depths, the frozen soil flows
in towards the opening. The transformed cross section is shown on a grossly
exaggerated scale by the dashed line joining the velocity vectors around the

periphery of the opening.

Contours of effective strain rate for H/D=2.0 and H/D=3.0 are shown in
Figures 5.18 and 5.19, respectively. Although the magnitude of individual
strain rate components are not given by the effective strain rate, the
contours serve the purpose of indicating whe}e the high strain rate
gradients exist. The greatest effective strain rate gradients directly
above the crown of the opening and diminish as one sweeps around from the
crown to the invert. Higher gradients exist for the tunnel located at
H/D=3.0 (see Figure 5.19) indicating *hat the disturbing influence of the
ground surfaces decreases with deeper tunnels. Both Figures 5.18 and 5.19
show the high strain rate gradients extend only 1.5 to 2 tunnel diameters
above the crown of the opening. This zone of influence will decrease with

deeper tunnels.
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It was clear from the foregoing analyses that shallow circular cavities
located in warm ice-rich permafrost would become unstable unless some
measures were undertaken to arrest the deformations. The second part of
this study dealt with the closure of a Iined circular opening in permafrost.
Only one opening located 2 diameters below the surface was analyzed. The
same finite element mesh as shown in Figure 5.14 was used except that a
narrow ring of elements was added to the periphery of the opening to

simulate a 100 mm thick concrete liner. The geometry is shown in Figure
5.20.

This analysis was carried out by calculating the elastic gravity stress
field surrounding the circular opening without the liner elements present.
After this step, the elements representing the tunne! liner were added to
the geometry and the creep solution was initiated. |t was felt that +his

sequence would be more representative of actual construction operations.

The velocity vector diagram for the lined tunnel placed 2 diameters
below the ground surface is shown in Figure 5.21. As shown in the figure,
the tunnel liner plays a significant role in altering the velocity
distribution in the frozen soil! surrounding the opening. The overall
movement of the soil mass and tunnel opening is downward due to gravity
stress. In the vicinity of the tunnel, the creeping frozen soil is
deflected around the tunnel since its stiffness is much greater than that of
the frozen soil. The velocity profile is a function of the stiffness
properties of the tunnel liner. The tunnel liner also serves to drastically
reduce the downward velocity of the crown of the tunnel. |n this case, the
crown velocity is reduced by 3 orders of magnitude for a tunnel at the same

depth with no liner present.
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CHAPTER VI

CONCLUD ING REMARKS

6.1 GENERAL

An analytical study of the in-situ creep behavior in ice-rich frozen
soil has been reported herein. A review of the deformation behavior of
frozen soil has lead to the conclusion that the steady state creep of ice-
rich frozen soil is adequately described by an empirically derived simple
power law which relates strain rate to stress. The flow law for steady
state creep in polycrystalline ice (Morgenstern et al., 1980) represents a
valid upper bound for the constitutive behavior of frozen soil under
equivalent loading conditions. The importance of testing natural permafrost

samples with representative segregated ice features was also noted.

The incremental initial strain finite element procedure was applied to
two case histories of naturally occurring creep in ice-rich permafrost. The
in-situ creep behavior of a relatively steep slope on the left bank of the
Great Bear River at the proposed Arctic Gas crossing was studied by Savigny
(1980). Naturally occurring creep in ice-rich Fairbanks silt at the Fox
Tunnel near Fairbanks, Alaska was studied by Swinzow (1970), Thompson and
Sayles (1972) and Pettibone (1973). The following sections summarize the

major conclusions of the analytical creep studies at these two sites.
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6.2 Conclusions
6.2.1 Great Bear River

The finite element creep analysis of the left bank of the Great Bear
River at the proposed Arctic Gas crossing has shown that the in-situ creep
behavior of the glaciolacustrine clay can be accurately represented by the
simple power law. The flow law which gave the best fit between observed and
predicted velocities had an exponent of 3.0 and a coefficient of

3.33 x 10-9, This strain rate is six times slower than the value for
polycrystalline ice at -2°C (Morgenstern et al., 1980).

The exact form of the constitutive relationship for the glaciodeltaic
sand remains inconclusive. In the first creep analysis, the creep behavior
of the sand was assumed to be given by the simple power law with the same
parameters as those in the glaciolacustrine clay. The velocities predicted
by the simple power law were much greater than the observed values. A
second analysis was carried out in which the sand was treated as an elastic
material. This proved to be much too serious a restriction on the creep
movements in the sand and the glaciolacustrine clay where it was overlain by
sand. This analysis did predict the build up of horizontal tensile stress
in the sand much greater than the sand would be‘able to sustain under in-

situ conditions.

The creep movements recorded at the GB1A and GB3 inclinometer locations
at the Great Bear River showed that more movement was associated with large
ice lenses when they are widely separated (Savigny, 1980). Numerical
modelling of permafrost as composite soil-ice medium would require an
accurate mapping of the lateral continuity of these large ice lenses.

Statistical analysis of the data derived from the MVPRL ice variability
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test sites at Norman Wells N.W.T. and Landing Lake N.W.T. suggest that for a
uniform stratigraphic unit, the overall ground ice content of permafrost can
be described as a normally distributed variable. Thus, for practical
purposes, the assumption of homogeneity 1is valid for predicting overall

time-dependent ground movements in ice-rich frozen soil.

A general conclusion derived from the study of the left bank of the
Great Bank River at fthe proposed Arctic Gas crossing that the time-dependent
deformation behavior of homogeneous slopes consisting of ice-rich fine-
grained permafrost can be modelled by a simple power law. Using the creep
parameters for polycrystalline ice will provide an upper bound to the creep

velocities.
6.2.2 Fox Tunnel

The in-situ deformation studies of the Fox Tunnel reported by Swinzow
(1970), Thompson and Sayles (1972), and Pettibone (1973) showed that
underground openings excavated in warm ice-rich permafrost can become
unstable when the ambient air temperature is near the soil temperature. In
each case, primary creep behavior contfributed substantially to the overall

room closure.

The closure data of the USA CRREL room recérded over a 3 year period
clearly showed attenuating creep for well over one year. The closure versus
time data for the USA CRREL room and the USBM room in the Fox Tunnel both
have the same general form for the first 3 years of operation. Thus,
Thompson and Sayles (1972) were premature in concluding that steady state
creep dominated the closure of the USA CRREL room during the first year of

operation.
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A finite element creep analysis of the USA CRREL room showed that the
simple power law for polycrystalline ice does not represent a valid upper
bound for the in-situ creep behavior of the frozen Fairbanks silt. However,
analyzing the stress changes above a rectangular underground opening in
terms of arching theory clearly shows that the stress paths followed by soil
elements above the roof of the opening are entirely different from that
normally used in constant stress or constant strain rate creep tests. The
strain rate predicted by finite element computations was 3.3 times faster
than the laboratory measured value (Thompson and Sayles, 1972) because the
vertical room closure measurements could not distinguish between vertical
compression in the gravel walls and downward creep movement of the overlying
ice-rich silt. For this particular ﬁase it was not possible to isolate in-
situ creep deformations by measuring the closure between opposing points in

the roof, floor and walls.

6.3 Recommendations for Further Study

The analytical study of naturally occurring creep in a slope and
underground cavity located in ice-rich permafrost has shown that the simple
power law can be used to predict in-situ deformations provided that the

stress does not approach failure.

The largest discrepancies between predicted and observed behavior

appear fo coincide with regions where the stresses experienced by the soil
mass are unlike the stress paths used in laboratory constant stress or
constant strain rate creep tests. This was 1Illustrated at the GB2
inclinometer location at the Great Bear River. The stresses at this
location are altered from the simple shear condition because the downslope
creep movement in the glaciolacustrine clay is impeded by the overlying sand
just upslope of this location. Downsltope of the GB2 inclinometer, the
glaciolacustrine clay creeps at a faster rate since there is no overlying
sand fo restrict movement. Thus, the clay in the vicinity of the GB2

inclinometer would experience an unloading in the horizontal direction.
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The frozen silt above the roof in the USA CRREL room in the Fox Tunnel
experiences an unloading due to excavation of the room. Arching behavior
will transfer the vertical stress release in the roof to the frozen silft
above the walls and to the frozen gravel walls. Thus, while the soi!l which
experiences greater compressive stress may still lie below the compression
failure envelope, the soil above the roof of the tunnel may experience
tensile failure at some time after the room is excavated. The stress state
can become quite complicated whenever two or more frozen materials are
present with different creep properties. Thus, it is important to obtain an
accurate assessment of the creep behavior of the materials relative to each

other.

Future numerical modelling of ice-rich permafrost under complex stress
conditions should be directed towards studying the stress changes
experienced by the soil as deformations develop and to incorporate the
concept of a limiting long term strength into the analysis. Toward this
end, laboratory studies should be carried out to study the creep behavior of
frozen soils under stress conditions that simulate unloading. Also, future
field programs should have carefully designed and installed instrumentation
to ensure that the in-situ creep deformations can be isolated from other

deformation processes which may be occurring simultaneously.
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APPENDIX A
FORMULATION OF FINITE ELEMENT EQUATIONS FOR

INCREMENTAL INITIAL STRAIN PROCEDURE

This appendix presents a brief review of how the incremental theory of
creep is introduced into the finite element method using the initial strain

procedure.

In the incremental theory of creep, the increment of creep strain is
treated as an initial strain for any one time interval and is assumed to be

constant for that time interval.

The increment of +total strain, AeT, for any time interval can be

assumed to consist of an increment of elastic strain, AeE, and an increment

increment of creep strain, AEC. This can be expressed as:

(ae '} = (aet} + (8e©) (A1)

Solving equation Al for the elastic strain gives:

(aefr = (aeTy - {2y (A2)

and applying Hooke's law:

{40} = (Di{ae! - 4e"y (A3)

where: [D] = matrix of elastic constants
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For the linear elastic case, an increment of strain energy density of a body
is given by:

AUCx,y,2) = 1 {acF) (Ao} (A4)
7

Substitution of equation A2 and A3 into A8 gives:

AU, y,2) = 1 {ae’ = 4eC1TIDICae | = 2cC) (A5)
7

An increment of potential energy of a body is expressed mathematically as:

Awp = £ AUy, 2)dV -fv(ihu + YAv + Zaw)dV

- S (T Au+ T AV + T AawdS (A6)
STX y z T

where V represents the volume of the body and ST is the surface on which

last two integrals in equation A6
represent the work done by the external forces; i.e. the body forces X, Y,

surface fractions are prescribed. The

Z, and the surface tractions, T;, T, and T%. The bar denotes quantities

that are prescribed. Substituting equation A5 into A6 yields:
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A = 1 F (8} IDItAe 1AV - 1 5 (ac'} (D1{aeCTaV
p 7 v 2y

C
- % IV{Ae }T[D]{AST}dV + 17 {AEC}T[D]{AeC}dV (A7)
2V

= LS tabOGy Y RV = 5 (au(x,y) {TIdS
2 v ST T

where: {Aw(x,y,z)}T= L au ay az |

X

{F} = (1} =

~NE=<) o

’f
TZ

Using standard finite element calculations, one can write:

{ae} = [B1 {aq} (A8)
{Ab{x,y,z)} = [N] {Aq} (A9)
where Bl = matrix relating element strains to the values of the

displacement at its nodes.

[Nl = coefficient matrix for displacement interpolation model.
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Substituting equation A8 and A9 into equation A7 yields:

T

am =1 f (aqt 1811 IDIIBI(AIAY = £ {aq} (8] ID){ac"} qV
7y v

p

w1 £ (4 T1acCav - 5 tagr i iRy v
7 v v

-1 {Aq}TIN]T{T}dST (A10)
T

The Theorem of Minimum Potential Energy states:
"Of all possible displacement configurations a body can assume which
satisfy compatability on +the constraints or kinematic boundary
conditions, the configuration satisfying equilibrium makes the

potential energy assume a minimum value".

Mathematically, this is expressed as:

star ) =0
Wp (A1)

Taking the first variation of equation A10 with respect to the incremental

displacements, {Aq}, and setting it equal to zero gives:

{S(Aq)}T[fv[B]T[D][B}dV{Aq} - fV[B]T[D]{AeC}dV

| (A12)
- S INITEFYAY - £ N1 T{THdS. = 0
v S T
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Since the variation of +the displacements are arbitrary, +the quantity
enclosed in the brackets must vanish. The variation of the third integral
in equation A10 is zero because it is not a function of +he nodal

displacements. The set of equilibrium equations for each time interval is:

(K1 {aq} = {P} + {AF } (A13)
s s s c's
where:
M el M T
[K} =1z I[K] =3, (S B [DI(BI4V)
s m=1 m m=1 v m
M el M T T
{P}_ =1z {pP} = Z (S IN)AFYdV + S INI'{T}dS_)
m=1 m m=1 "V ST T'm
M el M T C
{AF } =3I {AF } = I, (L [B] IDI{Ae™}dV)
c's m=1 c m m=1 v m

The summation sign is carried over the total number of elements, M, to

obtain the equilibrium equations for the entire assemblage.

The vector {F_.}_. represents the creep strain nodal load vector.
Thus, it can be seen that for each interval of time, creep strains are
allowed to take place. Equivalent nodal forces are then calculated which
would be necessary to cause elastic strains of the same magnitude. These
fictitious nodal forces are then added to the load vector and new set of

nodal displacements are calculated during that time interval with equation
Al13.
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APPENDIX B

CALCULATION OF FICTITIOUS NODAL FORCES

This appendix presents the derivation of the fictitious nodal creep

forces used in the initial strain approach to solving creep problems.

In each time interval, the increment of creep strain is given by the

stress-strain-rate law, i.e.:

ae, . =3 (a8 fo ) s (B1)
J 2 e e i
Using Hooke's law, the increments of creep strain are converted to

incremental creep stresses:
{oc} = [D]{sc} (B2)

The constant stress state for the constant strain Triangular finite element

is represented by Figure B-1(a).

The stresses can be replaced by a set of statically equivalent forces
éc+ing at the node points of the constant strain triangle. Elements with
higher order displacement interpolation functions require that the nodal
forces be work-equivalent loads. However, for the constant strain triangle,

work—equivalent and statically-equivalent loads are equal.

The incremental stresses are related to the nodal forces for each

element as follows:

Fi Y 0 * 7%

% Yi7Y; 0 X% .

i = ’é;‘ "5 ’ 7 :? (B3)
Fyi 0 %k YT Y

ij 0 X "X yi—yj Txy ol

Fyk 0 xi-xJ yj—yk
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The fictitious nodal load vector is computed for each element in +turn and
then summed to obtain the incremental load vector for the entire assemblage.
The incremental load vector is then used to calculate a new set of

incremental displacements for the current time step.
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INPUT DATA FORMAT FOR PROGRAM: CREEP

3k 3k A ok o ok ok ok o ok ok ok sk ok K ok 3k 3k 3k 3k 3k 3K 3k %k 3 ok sk ok ok K ok 3K K Sk 3k Sk K ok oK sk ok K ok ok ok oK 3 ok 3k K 5k K 3k sk sk K sk ok ok ok sk

CARD TYPE NO. 1 - TITLE OF THE PROBLEM [Format(20A4)]

2 %K 2k 2k ok ok ok ok ok ok ok ok 3k ok K 3K 3K Sk ok 3k 3k ok sk 3k ok 3 ok 3k ok ok ok 3K ok 3k 3k 5k 3k 3k ok ok ok ok 3K ok ok K sk Sk 3k 5k 3K sk 3K ok sk ok 3K ok oK 3k K K

Columns Variable Entry
EE 2 2 % 5 5 3 5K 3 K 2K ok kK 5k >k 3 ¥ %k 5k ok
1-80 TITLE Enter the heading information

that is to be printed
with the output

***************************************************************

-any alphanumeric characters can be entered
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***************************************************************

CARD TYPE NO. 2 - PROBLEM SOLUTION CONTROL [Format(2A8)]

***************************************************************

Columns Variable Entry
¥k %K 2k 2 %k XK Xk oK 5K %K %K %K 3K 5 % K %K Xk K %k
1-8 CODE1 START - For an initial run of

the program, all data
is input on cards
RSTART - For a continuation of
a previous problem,
that was terminated
early

9-186 CODE2 RUN - For a normal run of the
program
CONTIN - Write the results of
the final time step
on to tape for
restarting the
problem at a future
date

***************************************************************

-if CODE1 = RSTART, card sets 1, 2, 3, 11, 12, 14 and 15
are required

-to restart a previous problem, the results of the last increment
of the terminated run are read from unit ITAPE
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***************************************************************

CARD TYPE NO. 3 - INPUT AND OUTPUT DESIGNATION [Format(216)]

sk ok ok 2k ok ok >k ok 3k 3k ok K ok ok ok 3K K K oK o oK ok ok sk sk ok ok ok ok K ok 3k ok 3 ok 3 oK 3k 3k ok 3K ok ok ok 3k sk 3k oK oK oK o K 3k ok ok sk ok 3K oK oK K ok

Columns Variable Entry
5K 3 5k K % %k 5 3k ok oK 3k >k %k k %k 3K %K K %k
1-6 ITAPE Unit number from which the

results of a terminated run
will be read

7-12 JTAPE Unit number onto which
the results for the final
time step will be written
for a run that will be
terminated early

***************************************************************

-for an initial run of the program, all the input data is
assumed to be read from cards

-to continue a problem at a future date, a unit number
for JTAPE must be specified; otherwise solution of the
problem will terminate
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***************************************************************

CARD TYPE NO. 4 - MASTER CONTROL CARD [Format(716)]

***************************************************************

Columns
K 3K % ok %k kK %

19-24

25-30

31-36

37-42

Variable
oK % ok %k 2k 3K %k %k

NN

NE

NUE

NUC

NGI

NLC

KV

Entry

5K 5 %k K Kk

Total number of nodes
(maximum of 200)

Total number of elements
(maximum of 300)

Total number of materials
for the elastic solution
(maximum of 20)

Total number of materials
for the creep solution
(maximum of 20)

Gravity loading condition
NGI=0 no gravity load
NGI=1 gravity load

considered

External load condition
NLC=0 no external loads
NLC=1 external loads

considered

Creep condition
KV=0 only an elastic
solution is perfor
KV=1 creep solution is
required

med

***************************************************************
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***************************************************************

CARD TYPE NO. 5 - NODAL POINT DATA [Format(315,2F10.3)]

***************************************************************

Columns Variable
K K ok % ok K kK 3K ok 3k 3K %k K %k %k
1-5 I
6-10 ND(I,1)
11-15 ND(I,2)
16-25 X(1)
26-35 Y(I)

Entry

3 % %k ok K

Node
X-direction boundary
condition code for node I
ND(I,1)=0 fixed in
X-direction
ND(I,1)=1 free

Y-direction boundary
condition code for node I
ND(I,2)=0 fixed in
Y-direction
ND(I,2)=1 free

X coordinate for node number I

Y coordinate for node number I

***************************************************************

-one node per card
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4 ok 2k ok ok ok ok ok K oK 3 ok 3K oK 3k 3K 3k 3k sk ok ok ok ok ok ok ok ok 3k ok ok 3k 3K 3 oK 3K sk ok K 3 ok ok ke ok 3 5K 3k 3K 3K 3 oK ok 3 oK ok 3k 5K ok ok 3 ok oK oK

CARD TYPE NO. 6 - ELASTIC MATERIAL PROPERTIES
[Format(F12.0,2F6.3)]

¥k ok ok ok ok o o ok ok 2k ok ok K 3k 3k 3k 3K 3k ok ok o ok ok ok ok 3k 3k 3k 3k 3k 3 3k oK 3K 3K oK ok % ok ok ok 3k ok ok 5K 3k 3K K 3 oK ok ok oK 3k oK oK o oK 3 oK

Columns Variable Entry
ok 3k % 3k ok Xk ¥ 3 3k K 5K kK kK ok &k 3 %k 3k k
1-12 EI(I) Young’' s Modulus of material
number 1
13-18 Ur(rI) Poisson’s Ratic of material
number [
19-24 UNI(I) Unit weight of material

number [

***************************************************************

-there should be one card for each material up to a maximum of
20

***************************************************************

CARD TYPE NO. 7 - ELEMENT INCIDENCES [Format(6X,516)]

***************************************************************

Columns Variable Entry
2K 3K %k ok oK Xk Kk 5 5K ok 3k ok ok %Kk %k >k 3k %k sk
7-12 NI Corner node number I
13-18 NdJ Corner node number J
19-24 NK Corner node number K
25-30 MET Elastic material number
indicator for each element
31-36 MMET (1) Creep material indicator for

each element

***************************************************************

-one element per card

-node numbers I, J, K are entered in a counter-clockwise
direction: the starting node is arbitrary.
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***************************************************************

CARD TYPE NO. 8 - EXTERNAL LOADING [Format(16)]

***************************************************************

Columns Variable Entry
% % ok %k ok Xk k 3k % %k 5k %k ok %k kK 3 3k % %k %k
1-6 NNL Number of noads loaded

***************************************************************

-if NLC=0, card type no. 7 as well as card type no. 8 must
not appear.

***************************************************************

CARD TYPE NO. S - EXTERNAL LOADS [Format(I16,2F12.3)]

***************************************************************

Columns Variable Entry

K ok ok ok ok ok 2 o ok K K ok ok ok ok ok ok ok
1-6 JNU Node number of loaded node
7-18 FF(1) Load in X-direction

19-30 FF(2) Load in Y-direction

***************************************************************
-one node per card

-this card set must not appear if NLC=0
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***************************************************************

10 - NODAL PRINT OUT CONTROL [Format(12I6)]

***************************************************************

CARD TYPE NO.

Columns
K K ok ok %k ok K

1-6

7-12

13-18

67-72

Variable
oK ok M ok ok >k %k Xk

NNPR(I)

NNPR(I+1)

NNPR(I+2)

NNPR{1+5)

Entry

ok %k %k %k k

Nodal print out control
indicator for node number I
NNPR(I)= 0 print out and
no rotation
-1 do not print
K print out and
rotate an angle
of K degrees.
(K=an integer)

NNPR(I)
NNPR(I)

Nodal print out contro]l
indicator for node number I+1

Nodal print out control
indicator for node number I1+2

Noaa! print out control
indicator for node number I+5

***************************************************************

-twelve nodes per card
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3K ok 3 ok 3K 3K ok o oK Ok 3 oK ok oK ok ok o ok sk K ok ok K K ok ok o Sk 3k 3 3K K 3K 3 3K 3 ok ok ok 3k ok 3K 3K ok 3k oK 3 ok 3K 3K 3 5K 3 ok sk ok ok oK 3 oK oK 3 oK

CARD TYPE NO. 11 - ELEMENT PRINT OUT CONTROL [(Format (1216)]

***************************************************************

Columns
3K % % 3k kK kK %k

1-6

67-72

3K >k o 3 3k 2k vk ok ok ok sk ok 3k 3k 5k 3k >k sk sk ok K 3k ok ok sk ok ok ok ok ok 3k 3k 3k 3K Sk 3k 3k ok ok 3K 3k ok ok ok ok sk 3k % ok 5k sk ok 3k sk sk 3k oK sk ok ok sk sk

-twelve elements per card

Variable
o ok 5k 3k %k ¥ %k Xk

NEPR(I)

NEPR(I+1)

NEPR(I+2)

NEPR(1+5)

Entry

% 3k ok 5k 5k

Element print

indicator for

number I
NEPR(I)= 0

NEPR(I)
NEPR(I)

-1
K

Element print
indicator for
number [+1

Element print
indicator for
number I+2

E]ément print
indicator for
number I+5

out control
element

Print out and
no rotation

do not print
print out and
rotate an angle
of K degrees
(k=an integer)

out cbntrol
element

out control
element

out control
element

-if KV = 0 (i.e., an elastic solution only) no more data is

required

-if a creep solution is desired,

be included.

the following card sets must
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***************************************************************

CARD TYPE NO. 12 - CREEP SOLUION CONTROL CARD
[Format(F12.0,316)]

***************************************************************

Columns Variable Entry
5K % 3K ok ok 5k Xk 3k 3k K K Kk %k 5k %k oK e ke ok %k
1-12 TDM Maximum time allowed for creep
solution
13-18 MNI Maximum number of creep

increments

19-24 NCPR Creep solution print control
NCPR=0 print all output
NCPR=1 print selective
output

25-30 NSPO Total number ofcreep
increments to be printed

***************************************************************

***************************************************************

CARD TYPE NO. 13 - CREEP SOLUTION PRINT CONTROL [Format (1216)]

***************************************************************

Columns Variable Entry
> 3k 3k 3K kK %K X % 3k %K %k 3K ok %k %k % K 2k ok %k

1-6 IPRIN(1) The increment number for which
. . the first set of creep results
are to be printed

IPRIN(IMAX) The increment number for which
the Ith set of creep results
are to be printed
(IMAX = NSPO)

***************************************************************
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K K K K K Ak ok K K kK 3K ok ok 3k 3K ok K K 3K 3k 3K 3 ok ok 3k 3k ok 3k 2k ok 5k K ok 3k K 5k 5k %k 3k ok 3k >k >k >k ok kK 3 vk 5K 3k ok 3k K Sk %k kK 5k 5k kK 3k ok Kk

14 - CREEP MATERIAL PROPERTIES
[Format(2{E15.4,F5.2) ,F5.2)]

k¢ ok ok 3k 3k 2k ok ok ok ok ok ok ok ok R 3k R 3K K 3k 3k 3k ok sk Sk sk sk ok 3k 3k ok ok 3k ok 5k 3k 3K 3K 3K 3K 3K 3k ok ok ok sk K K ok 3K ok K 3k 3k 3k ok >k ok o 3K ok ok %k

CARD TYPE NO.

Columns
ok 3k %k ok K

1-15
16-20

21-35
36-40

41-45

Variable
>k K %k %k %k %k %k %

COEF1(1I)
EXP1(I)

COEF2(1I)
EXP2(I)

EXP3(1)

Entry

% %k %k Xk *k

Coefficient in the creep law

Stress exponent in the creep
law

Coefficient in the creep law

Stress exponent in the creep
law

Time exponent in the creep law

3k 2k 3¢ ok 3K 2k 2K ok ok ok kK %K Ok ok 2K ok 3 3 Sk >k 3k 3k 3K 3R 3k 3k 3k sk sk ok 3k ok ok 3k ok sk ok K 3k 5k 3K 3K K 3k 3k 5k >k ok 3 sk %k 3k oK 3 3k 3k ok K oK ok ok K

-one card for each material

-the general form of the power law creep relationship is:

n n
_ 1
B [A1e

2+ .M
o+ AZGe 1t

= effective strain rate

= effective strain
= time
= coefficients

= creep exponents

time exponent
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4 3 ok 3K oK oK 3 ok ok K 3K K K 3K oK 3K ok ok ok ok o ok ok ok ok ok ok ok 3k ok ok ok ok 3K 3K 3K 3K ok oK 3k o ok oK ok ok 3K 3k 3K oK 3k ok 5K 3 oK ok 3k sk 3k oK 5K % ok K

CARD TYPE NO. 15 - CREEP SOLUTION CONVERGENCE PARAMETERS
[Format{(3f10.3)]

3k 2k ok ok 3k 3K ok ok 3k 3 oK 3K oK 3k ok oK ok ok ok ok ok ok ok ok 3K ok ok sk 3k 3K 5k 3k 3k 3K 5K % 5k ok ok 5K ok 3k ok oK ok 5K 3K 3 3K % 3k ok 3k ok sk 3 oK oK ok ok K

Columns Variable Entry
%K 5k %k %k %k >k Xk 5k %k % %k %k 3k %k %k 5 3K %k %k %k
1-10 ETAQ Maximum ratio of effective

elastic strain to increment of
effective creep strain for
first time interval

11-20 ETAT Maximum ratio of effective
elastic strain to increment of
effective creep strain for
succeeding time interwvals

21-30 OMEGA : Maximum fractional change in
effective stress allowed per
creep increment '

3k 3k ok 3k ok ok ok ok ok ko ok %k oK ok K 3K K 3K Sk %k 3K 3K 3k 3K oK 3k 3k ok ok ok 3k ok ok 3k 5k K 3K 3k ok sk ok ok ok ok 3k Sk K Sk 3K 3 3k %k oK sk %K ok 5K %k % 5K K K

-t{o ensure convergence, ETAQ, ETA1 and OMEGA should lie within
the following ranges:

10 < ETAOQ < 25
1 < ETAt £ 10
0.03 < OMEGA < 0.10

-default values have been set equal to:

ETAO = 25
ETA1 = 10
OMEGA = 0.03

-these default values will produce the minimum time increment
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***************************************************************

CARD TYPE NC. 16 - NODE PRINT QOUT CONTROL (CREEP SOLUTION ONLY)
[Format(1216)]

***************************************************************

Columns Variable Entry
Sk 2K X K %k k k3K ¥k 3K >k %k Kk k 3k %k K %k %k
1-6 NNPR(1) Node print out control

indicator for node number I
NNPR{I)= 0 print out and
no rotation
NNPR(I)=-1 do not print
NNPR(I)= K print out and
rotate an angle
of K degrees
{(k=an integer)

7-12 NNPR(I+1) " Node print out control
indicator for node number I+1

13-18 NNPR(I+2) Node print out control
. . indicator for node number I+2

§7-72 NNPR (1+5) Node print out control
indicator for node number I+5

***************************************************************

-twelve nodes per card
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ke ok 3k ok ok ok ok oKk ok ok ok ok sk sk ok ok ok 3k ok oK oK K 3k ok ok ok ok ok 3k ok 3K ok K 3K 3K ok 3K % ok 3k ok ok oK ok oK 3k K oK oK 3 3 ok 3k 5k 3K oK oK 3 ok oK

CARD TYPE NO. 17 - ELEMENT PRINT OUT CONTROL (CREEP SOLUTION
ONLY) [Format (1216)]

***************************************************************

Columns
L 2 5 3 3

1-6

13-18

67-72

Variable
% 5K 5k %k 3k Kk Kk %k

NEPR(I)

NEPR(I+1)

NEPR(I+2)

NEPR(I+5)

Entry

3K %k 3k ok

Element print

indicator for

number I
NEPR(I)= 0

NEPR(I)=
I1)=

-1
NEPR(I}= K

Element print
indicator for
number I+1

Element print
indicator for
number I+2

E]ément print
indicator for
number I+5

out control
element

Print out and
no rotation

do not print
print out and
rotate an angle
of K degrees
(k=an integer)

out control
element

out control
element

out control
element

************************************************************

-twelve elements per card
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APPENDIX E

THICK WALL CYLINDER CLOSED FORM SOLUTION

This appendix presents a comparison of the finite element results
predicted by the programme CREEP and the closed form steady state creep of a

thick wall cylinder subjected fo a uniform internal pressure.

The finite element grid is shown in Figure E-1. The mesh consists of
90 elements and 61 nodes. The ratio of outer to inner radius is equal to
2.0. The vertical and horizontal boundaries are placed on roller supports

which allow translation in the radial direction onty.

The inner radius is subjected to a uniform pressure of 100 kPa. The

elastic material properties are:

10 x 100 kPa
0.495

m
It

<
il

The flow law of the material is;

e = (1.0 x 10-14)04'5 (E-1)

where the units are kF’a“4'5 and hr-1.

The steady state creep velociy for the inner radius is shown in Figure
E-2. The closed form solution neglects elastic response and thus maintains
a constant value. After approximately 0.75 hr of creep simulation, the
finite element solution predicts a constant velocity 2.2% lower than +he

closed form solution.

The closed form and finite element elastic and steady state effective
stresses are compared in Figure E-3. As shown in the figure, there is very

good agreement for both elastic and steady state creep stresses.
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