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Abstract 

 

Multiple novel and rapidly changing environmental factors (i.e. anthropogenic stressors) are 

increasingly affecting ecological communities, and their functional roles in ecosystems.  

Consequently, freshwater biodiversity has declined worldwide; however, the functional impacts 

of this loss should be contingent upon local species’ traits and the potential for tolerant species to 

compensate for sensitive taxa.  In a metacommunity (i.e. a set of local communities connected 

regionally by species dispersal) context, stressor resistance may further depend on the arrival of 

stress-tolerant colonists from the regional species pool.  My research, in collaboration with 

international colleagues, combines quantitative literature review, a manipulative field 

experiment, and innovative multivariate analyses of continental-scale observational data to 

address scientific knowledge gaps concerning the impacts of multiple stressors on freshwater 

communities.   

First, a meta-analytic approach was used to assess the tendency for freshwater stressors to 

interact by comparing the independent and combined effects of paired stressors across 286 

experimental responses from 88 published articles.  The nature of multiple stressor interactions is 

a key source of uncertainty for conservation practitioners, as co-occurring stressors may generate 

unanticipated non-additive interactions (i.e. ecological surprises) that either dampen or amplify 

their individual direct effects.  Net impacts of stressors varied, but were less than expected (i.e. 

antagonistic) overall, indicating a potentially high degree of co-adaptation to stressors within 

freshwater ecosystems.  Further, aggregate functional properties of communities were less 

sensitive than biodiversity, suggesting that compensation by stress-tolerant species may 

frequently lessen the functional consequences of co-occurring environmental changes.   
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Among the greatest threats to freshwater ecosystems are climate change and biological 

invasions.  There is also growing evidence to suggest that cold-adapted mountain lake 

communities are uniquely sensitive to warming and impacts from exotic sportfish, which have 

been introduced to create angling opportunities around the world.  To explore potential 

interactions among invasive fish, higher temperatures, and importation of a regional species 

pool, I conducted a large outdoor mesocosm experiment introducing rainbow trout to planktonic 

communities collected from fishless alpine lakes.  Fish introduction exerted strong negative 

impacts on prey species richness and biomass production, which were relatively unaffected by 

warming.  However, importation of fish-tolerant species from neighbouring lakes rescued local 

alpine zooplankton communities from the adverse predatory effects of exotic salmonids.  These 

findings indicated that native species’ traits mediate the impacts of invasive species and 

highlighted the importance of maintaining habitat connectivity to buffer against future stressors.   

Finally, I compiled and analyzed historical zooplankton records for 1,234 waterbodies 

across the North American Cordillera, from Yukon Territory, Canada, to California, USA, to 

evaluate the hierarchical importance of fish introduction and climatic factors among the multiple 

covarying local and regional drivers of continental-scale biodiversity patterns.  Spatially 

structured local environmental factors (climate, catchment features, and fish stocking history) 

explained more variance in species composition than the degree of connectivity among sampled 

sites or their geographic variables.  Further, the inferred effects of species sorting and dispersal 

processes varied based on species’ traits.  These findings highlighted the greater sensitivity of 

mountain lake communities to local catchment and climate conditions than dispersal limitation, 

and the importance of terrestrial–aquatic linkages and fisheries management under a changing 

climate.   
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 My doctoral research provides several novel insights into the impacts of multiple 

stressors on ecological communities, with clear implications for the conservation of freshwater 

resources.  I discovered that stressor interactions are frequently antagonistic, and using mountain 

lakes as a model ecosystem, I found that species’ traits play an important role in mediating 

metacommunity assembly and stressor response along geographic gradients.  By integrating 

experimental and observational evidence, my thesis demonstrates a rigorous scientific approach 

to identifying the functional consequences of global change.    
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Here, my thesis reflects publications and a submitted manuscript prepared in collaboration with 

fellow researchers.  Citations for individual studies and author contributions are as follows. 

A version of Chapter 2 has been published as: Jackson MC, Loewen CJG, Vinebrooke 

RD & Chimimba CT. (2016) Net effects of multiple stressors in freshwater ecosystems: a meta-

analysis.  Global Change Biology, 22, 180–189.  As denoted in the final published version of the 

paper, Jackson MC and I contributed equally to this work and share lead authorship.  Jackson 

MC conceived of the idea for this study and initiated data compilation.  We both contributed 

substantially to data collection and manuscript composition; however, my role involved greater 
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Chapter 1: Introduction 

 

Research background and rationale 

Global change in freshwater communities 

At the current rapid pace of global change, multiple covarying environmental factors are 

increasingly affecting ecological communities (Crain et al. 2008, Darling & Côté 2008, Brown et 

al. 2013, Ban et al. 2014).  These often novel and extreme anthropogenic perturbations (i.e. 

stressors), including climate warming and biological invasions, threaten native biodiversity 

(Pimm et al. 1995, Vinebrooke et al. 2004, Brook et al. 2008), with more drastic impacts often 

occurring in freshwaters than in terrestrial or marine ecosystems (Ricciardi & Rasmussen 1999, 

Sala et al. 2000, Jenkins 2003, WWF 2014).  Freshwater ecosystems are particularly vulnerable 

to global change (Dudgeon et al. 2006, Ormerod et al. 2010) as they occupy low points on 

landscapes, integrating the effects of multiple local and regional processes (Williamson et al. 

2009).  Biodiversity conservation is critical; however, faced with the inevitable loss of 

freshwater species owing to multiple anthropogenic pressures, there is an essential and urgent 

need to fill scientific knowledge gaps concerning the functional consequences of global change 

and the mechanisms by which stressor resistance operate in aquatic communities (Hooper et al. 

2005, Dudgeon et al. 2006).   

 The threats to global freshwater biodiversity are numerous.  In addition to direct 

overexploitation of species from unsustainable harvest practices (WWF 2014), major stressors 

include contaminants (i.e. xenobiotics), acidification, nutrification, habitat alteration/degradation 

(e.g. physical manipulation, sedimentation, and altered hydrology), climate change (e.g. 

increasing temperature and ultraviolet radiation), and biological invasions (Sala et al. 2001, 

Dudgeon et al. 2006, WWF 2014).  Recent attempts to curb global biodiversity losses have been 

hindered by deficient or misallocated efforts and largely failed to achieve international targets 

(Tittensor et al. 2014).  Effective ecological management necessitates knowledge of both the 

types of stressors affecting communities and their relative consequences.  For instance, 

biological invasions have been identified as one of the greatest threats to biodiversity and 

ecosystem functioning globally (Vitousek et al. 1997, Sala et al. 2000, Pimentel et al. 2004); 
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however, difficulties predicting invasion impacts, which are frequently context dependent, have 

diminished the success of invasive species management (Byers et al. 2002, Hulme et al. 2013, 

Ricciardi et al. 2013, Simberloff et al. 2013).  An improved predictive understanding of the 

impacts and hierarchical importance of ecological stressors is vital for enhanced prioritization of 

sparse conservation resources.   

Multiple stressor interactions 

A key source of uncertainty in global change scenarios is the propensity for stressors to interact 

so as to mediate their individual direct effects (Sala et al. 2000, Brook et al. 2008).  Interactions 

among multiple concurrent stressors are of critical importance because they may generate 

ecological impacts that differ markedly from the sum of their independent effects (e.g. Folt et al. 

1999, Christensen et al. 2006, Harvey et al. 2013), yet they are often challenging to predict 

(Paine et al. 1998).  Such frequently unanticipated interactions, or ecological surprises, modify 

the combined impacts of stressors either antagonistically (i.e. lessened impact) or synergistically 

(i.e. greater impact), depending on the similarity of their independent effects (Vinebrooke et al. 

2004).  For instance, if stressor impacts are highly redundant, then their combined effects on 

biodiversity should be less than additive, as both stressors should eliminate the same set of 

species.  Conversely, synergy may occur where the effect of one stressor amplifies the impacts of 

another, exceeding thresholds or generating positive feedbacks that intensify species’ 

vulnerabilities (Brown et al. 2008).  While there is increasing evidence for the prevalence of non-

additive interactions among stressors, particularly in marine ecosystems (Crain et al. 2008, 

Darling & Côté 2008, Harvey et al. 2013, Przeslawski et al. 2015), syntheses concerning 

freshwater ecosystems are lacking (but see Heugens et al. 2001, Darling & Côté 2008).   

Biodiversity and functional traits 

Biodiversity, a natural capital stock developed over billions of years of evolutionary trial and 

error, has tremendous cultural, aesthetic, scientific, and recreational value; however, a diversity 

of life also contributes vast benefits through the provision of various ecosystem goods and 

services (Costanza et al. 1997, de Groot et al. 2002, Hooper et al. 2005).  Species diversity 

supports ecosystem functioning and resultant goods and services in several ways. For instance, 

numerical sampling effects (i.e. greater likelihood that important species are present) and 
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positive complementary (i.e. increased niche partitioning) or facilitative species interactions may 

enhance resource use efficiency and increase ecological rates (Hooper et al. 2005, Cardinale et 

al. 2002).  Biodiversity may also offer functional redundancy, whereby multiple species with 

similar functional roles contribute to the stability of ecosystem functioning over time (McCann 

2000).   

In the context of environmental change, functionally redundant species may differ 

considerably in their response to shifting conditions (termed response diversity; Elmqvist et al. 

2003, Nystӧm 2006).  Therefore, more diverse communities should have greater biological 

insurance against ecological stressors, as tolerant species may compensate for sensitive taxa and 

buffer impacts to aggregate ecosystem properties (Loreau et al. 2001, Hooper et al. 2005).  For 

instance, bee species with similar crop pollination functionality possess differing response traits 

mediating their interactions with important ecological stressors, such as land-use changes and 

pesticide application, indicating a potential for species abundance shifts to preserve community 

pollination services under changing landscapes (Williams et al. 2010).  Similarly, a diversity of 

temperature tolerances among species in experimental protist communities supports greater 

biomass production under fluctuating temperature regimes (Leary & Petchey 2009).  These 

examples illustrate the importance of species identity and response trait diversity, rather than 

species richness, for mediating the resistance of ecological communities.  Identifying links 

between environmental change and key functional traits can reveal the potential magnitude of 

stressor impacts on native biodiversity, as well as their latent consequences for ecosystem 

functioning (e.g. Statzner & Bêche 2010, Darling et al. 2013, Mouillot et al. 2013).   

Spatial dynamics of stressor resistance 

By integrating the effects of local and regional processes, metacommunities (i.e. sets of local 

communities connected by species dispersal; Leibold et al. 2004) provide a flexible framework 

for considering the cumulative effects of multiple stressors.  In this context, local communities 

share a regional species pool and are shaped by spatial dynamics in addition to more localized 

environmental filters (i.e. abiotic conditions controlling species occurrence) and biotic 

interactions (Amarasekare 2008, Kraft et al. 2015).  Here, high immigration rates from 

neighbouring communities (i.e. mass effects) can prevent local extinctions where species are 

poorly suited (Leibold et al. 2004).  In contrast, dispersal limitation may prevent species from 
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arriving or establishing at locations where they might otherwise thrive (Bohonak & Jenkins 

2003).  In the absence of barriers, dispersal among local communities should allow species to 

colonize new habitats and track changing environmental conditions (Urban et al. 2011).  These 

spatial dynamics emphasize relationships between local and regional factors of metacommunities 

and demonstrate their importance for the maintenance of local community functioning.   

 Species sorting along environmental gradients, whereby regional species colonize 

localities suiting their ecological niches (including breadth of stressor tolerances), provides an 

important means of community adaptability (Leibold et al. 2004).  The spatial insurance 

hypothesis suggests that environmental heterogeneity, and a correspondingly diverse regional 

species pool, should impart resistance to stressed local communities by providing stress-tolerant 

colonists (Loreau et al. 2003).  However, to mitigate the consequences of ecological stressors, 

tolerant regional species must first arrive and establish at impacted communities.  Although often 

perceived as isolated islands, lake communities maintain connectivity by the exceptional 

dispersal abilities of many resident species (Bohonak & Jenkins 2003).  In particular, the passive 

transport of desiccation-resistant propagules by wind and animal vectors (including waterbirds 

and human visitors) permits frequent dispersal of planktonic organisms (Vanschoenwinkel et al. 

2008, Frisch et al. 2007).  Such spatial dynamics may contribute to stressor resistance in lake 

metacommunities by facilitating opportunities for species with varying environmental tolerances 

to access novel habitats and functionally offset local impacts.   

Community assembly along geographic gradients  

Metacommunity boundaries are typically vague and may extend to continental scales for 

long-distance dispersers (Viana et al. 2016, Heino et al. 2017).  Although dispersal probabilities 

inherently decrease with increasing distance between habitats (Heino et al. 2015), waterbirds 

permit dispersal of several aquatic species, including plankton, over hundreds of kilometers – 

particularly along major migratory routes such as the Pacific Flyway (Viana et al. 2013).  Given 

sufficient time, chance dispersal of planktonic organisms should permit species sorting in 

relation to environmental conditions over broad geographic extents (e.g. Viana et al. 2016, Heino 

et al. 2017).  However, the hierarchical importance of dispersal relative to the various climatic 

factors and local lake characteristics (including presence of invasive species and linkages with 

terrestrial habitats) driving species composition at large spatial scales is often obscured by spatial 
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variation (i.e. autocorrelation) among environmental filters, and thus difficult to separate 

(Legendre 1993, Dray et al. 2006).  Carefully devised experiments can be used to isolate 

individual mechanisms and provide strong inference on the basis of hypothesis testing (Platt 

1964), but manipulative studies are also inherently limited in their ability to reflect the 

complexities of natural ecosystems (Quinn & Dunham 1983).  As such, matching experimental 

findings with prudent analysis of observational data provides a means of verifying ecological 

hypotheses regarding the causes of broad-scale biodiversity patterns and the implications of 

global change.   

Mountain lakes as a model ecosystem 

Mountain regions provide unique opportunities to evaluate species diversity patterns over 

highly heterogeneous landscapes, as environmental conditions (e.g. climate and land cover) 

change rapidly along elevation gradients (Rahbek 1995, Lomolino 2001).  Mountains are also the 

source of headwaters and often located within protected areas (Kollmair et al. 2005).  These 

attributes make mountain lakes useful model ecosystems for studying the subtle effects of 

regional biodiversity drivers with minimal confounding anthropogenic influence (e.g. human 

land-use).  Further, mountain regions are experiencing increased warming relative to lower 

elevations, especially at higher latitudes (Bradley et al. 2004, Nogués-Bravo et al. 2007, Pepin et 

al. 2015), and thus cold-adapted mountain lake communities are practical sentinels for the effects 

of global climate change (Williamson et al. 2009).  North American mountain lakes have also 

been widely impacted by exotic salmonid stocking programs to enhance angling opportunities 

(MacCrimmon 1971, Crawford & Muir 2008).  Knowledge of the impacts of these non-native 

sportfish relative to other local and regional factors of lake metacommunities, and their potential 

interactions with other stressors (e.g. climate warming), is important for informing fisheries 

management and may offer valuable insights into how native communities respond to invasive 

predators in a rapidly changing world.   

Research objectives 

Chapters 2–4 are versions of published or submitted manuscripts addressing the following 

research objectives: 
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Research objective 1 (chapter 2): Synthesize the existing primary scientific literature to uncover 

the nature of multiple stressor interactions in freshwater ecosystems.   

a) Quantify the cumulative mean interaction type and frequency of interaction types across 

studies.   

b) Assess how the net effects of multiple stressors vary among response metrics, levels of 

biological organization, organism types, and specific combinations of stressors.   

Research objective 2 (chapter 3): Test experimentally for the effects of exotic trout on fishless 

alpine lake zooplankton communities and interactions between native species diversity and 

impact resistance.   

a) Assess how invasion impacts differ in the context of climatic warming.   

b) Advance our understanding of the scale-dependency of ecological insurance (i.e. local 

versus regional resistance).   

c) Investigate the components of biodiversity important for biotic resistance (i.e. species 

richness versus species identities and underlying functional traits).   

d) Explore the functional consequences of invasive predators and the use of functional trait–

impact associations for predicting the magnitude and direction of stressor impacts.   

Research objective 3 (chapter 4): Disentangle the hierarchical importance of environmental and 

spatial factors driving zooplankton composition patterns in mountain lake communities observed 

across the North American Cordillera.   

a) Assess the degree of spatial structure in species variance at a continental scale.   

b) Rank the consequences of climatic factors, catchment/lake features, and fish stocking 

history over broad geographic gradients.   

c) Infer the relative importance of species sorting versus dispersal limitation in shaping the 

composition of local communities.   

d) Examine links between key functional traits and metacommunity factors.   
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e) Unravel the sensitivity of mountain lakes communities to global change, including 

climate warming and sportfish introduction, and the implications of species traits for 

functional resistance.   
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Chapter 2: Net effects of multiple stressors in freshwater ecosystems: a meta-

analysis
 

Note:  a version of this chapter has been published as Jackson MC, Loewen CJG, Vinebrooke RD & Chimimba CT. 

(2016).  Global Change Biology, 22, 180–189 (doi:10.1111/gcb.13028).   

Introduction 

The rise of ecological surprises in the primary scientific literature highlights the growing 

uncertainty over the cumulative impacts of multiple novel and extreme environmental changes 

(i.e. stressors; e.g. Paine et al. 1998, Christensen et al. 2006, Lindenmayer et al. 2010, Dehedin et 

al. 2013, Harvey et al. 2013).  There is increasing evidence from marine environments that these 

stressors, such as rising temperatures, biological invasions, and habitat destruction, act 

synergistically to exacerbate biodiversity loss and ecological degradation (Crain et al. 2008, 

Harvey et al. 2013, Przeslawski et al. 2015).  Interactions among stressors are at the core of these 

unexpected net ecological impacts (Sala et al. 2000) as they can generate complex effects that 

lessen or amplify the direct single effect of each stressor.  The reported prevalence of non-

additive effects of stressors across many marine ecosystems (Crain et al. 2008, Darling & Côté 

2008, Harvey et al. 2013, Przeslawski et al. 2015) attests to an urgent need to fill knowledge 

gaps in freshwater ecosystems (Root et al. 2003, Ormerod et al. 2010, Staudt et al. 2013, Hering 

et al. 2015).   

Empirical evidence of the net effects of multiple stressors on freshwaters remains very 

limited (but see Christensen et al. 2006, Darling & Côté 2008, Mantyka-Pringle et al. 2014) 

despite their impacts often being greatest on freshwater biodiversity (Jenkins 2003, WWF 2014).  

Freshwater ecosystems are particularly vulnerable to global change (Dudgeon et al. 2006, 

Ormerod et al. 2010) as they often occupy low points in landscapes, integrating the effects of 

local catchment and regional atmospheric processes (Williamson et al. 2009).  In comparison, 

recent meta-analyses of the marine literature show that the net impact of multiple stressors are 

frequently either greater than (i.e. a synergistic interaction; Crain et al. 2008, Harvey et al. 2013, 

Przeslawski et al. 2015) or equal to (i.e. an additive effect; Ban et al. 2014, Strain et al. 2014) the 

sum of their single effects.  Net effects of two or more stressors that were less than the potential 

additive outcome (i.e. an antagonistic interaction) were less common.  Such variation in the net 

effects of stressor combinations depends in part on how impact is measured, as different 

http://onlinelibrary.wiley.com/doi/10.1111/gcb.13028/abstract
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biological receptors will inherently vary in their responsiveness to environmental change (termed 

response diversity; Elmqvist et al. 2003).  For example, compensatory species dynamics within a 

stressed community may result in measurable changes in biodiversity while muting changes in 

function (e.g. primary production; Vinebrooke et al. 2003).  

Theoretical models that predict the combined impact of stressor pairs on populations or 

communities are often based on an evaluation of the similarity of their independent impacts 

(Vinebrooke et al. 2004).  For instance, if stressors A and B are highly redundant and both 

extirpate or negatively influence the same set of species in a community, then their net impact on 

species richness or functional performance (e.g. productivity or abundance) can be less than the 

sum of their independent effects (an antagonistic interaction).  In contrast, synergy between 

stressors A and B can occur if species are affected, or thresholds are exceeded, only upon 

exposure to both stressors, resulting in their combined impact being greater than the sum of their 

single effects (a synergistic interaction).  If stressor A affects a different set of species than 

stressor B, then their net impact on the community can equal the sum of their direct effects (an 

additive effect).  In some cases, the net effect of stressors A and B may actually be in the 

opposite direction (positive or negative) than predicted based on their independent effects 

(Piggott et al. 2015).  For instance, Christensen et al. (2006) found that warming reversed the 

positive effect of acidification on phytoplankton.  We term such interactions reversals, perhaps 

representing the greatest of all ecological surprises.   

Here, we synthesize findings from dual-stressor studies in freshwater ecosystems to 

address two main questions: (i) what is the cumulative mean interaction and frequency of 

interaction types across all studies? and (ii) how do interactions vary among response metrics 

and stressor pairs?  We also focused on how higher temperatures associated with climate change 

interact with other key stressors to impact ecosystem properties.  We used a meta-analytical 

approach to optimize our ability to both conduct a powerful quantitative test of the nature of 

interactions between stressors affecting freshwater ecosystems and identify testable hypotheses 

(Gurevitch et al. 2000, Parmesan et al. 2013, Hillebrand & Gurevitch 2014). 
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Materials and methods 

Data search and selection criteria 

To identify papers reporting an influence of multiple stressors on freshwater ecosystems we 

searched the ISI Web of Knowledge database (http://apps.isiknowledge.com) between July 2013 

and March 2014 for the key word combination: (“synerg*” or “antagon*” or “additive” or 

“combined” or “multiple” or “factorial” or “experiment”) and (“freshwater” or “river” or 

“stream” or “lake”) and (“impact” or “effect”).  In total, approximately 11,000 papers were 

screened for our study.  We only considered those papers that investigated quantifiable effects of 

stressors independently and in combination compared to a stressor-free control, in nature or 

under experimental conditions.  We only used papers that reported on the effects of extreme or 

novel manipulations of environmental conditions (i.e. stressors) rather than natural disturbances 

or interactions (e.g. competition or predation) with native species.  Reported stressors included 

acidification, higher temperatures, ultraviolet radiation (UVR), contamination (xenobiotics or 

salinity), nutrification, habitat alteration (physical manipulation, sedimentation, altered flow 

regime or drought), and invasive species.  Data were acquired directly from text and tables, from 

figures using Data Thief software (Tummers et al. 2010), or by contacting the corresponding 

authors (see Appendix A-1 for full list of data sources).   

We use the term observation to refer to individual responses used in our analyses, and the 

term paper to refer to their source documents.  In several cases, multiple observations were 

extracted from individual papers when either several experiments were conducted (i.e. using 

different sets of species, study locations, or stressor combinations) or various organism groups 

were measured (i.e. producers, invertebrates, or vertebrates).  If not appropriately summarized at 

the organism group level (e.g. producer), observations were extracted on distinct functional 

groups (e.g. phytoplankton and periphyton).  If a study examined the impact of multiple stressors 

experimentally over time, we only collected the longest time period (before complete mortality).  

When stressor recovery was included in the study, we used the final sampling point before the 

recovery period.  If a study examined the effect of different degrees of stress (e.g. low and high 

nutrient enrichment) we only considered the most severe scenario (i.e. high nutrient enrichment), 

with the exception of studies where the most extreme scenario caused 100% mortality in 

response organisms; in these cases, we used the second most severe scenario.  Several 
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ecotoxicology studies tested the effects of a toxicant across a wide range of temperatures; in 

these cases, we compared ambient temperatures (usually defined in the papers) to warming of 

4−10 ºC, based on warming predictions by the Intergovernmental Panel on Climate Change 

(IPCC 2013).  Experiments consisted of laboratory/microcosm studies (taking place inside), 

mesocosm studies (taking place in outdoor tanks) and in situ studies (taking place in natural 

systems). 

We considered the following response currencies or metrics: (i) survival, (ii) growth/size, 

(iii) condition, (iv) reproductivity, (v) behaviour, (vi) total biomass/abundance, (vii) diversity, 

and (viii) leaf decomposition.  We included leaf decomposition as it is an important aspect of 

freshwater ecosystem functioning and was measured in several of our selected papers.  If the 

response of an organism group to dual stressors during a single experiment was assessed using 

multiple metrics (e.g. plant biomass and plant diversity), we treated each as an independent 

observation only for inclusion in our full dataset.  The full dataset was used for our full global 

random effects meta-analysis and our mixed effects response metric analyses (detailed and 

pooled; Table 2.1).  Our full dataset initially contained 318 observations; however, we excluded 

32 observations where the calculated predicted net effects were deemed impossible (see Effect 

size calculation and interpretation below for details).  Thus our full dataset was reduced to 286 

observations. 

For the remainder of our comparisons, we excluded all diversity metrics (n = 31) and 

reduced our dataset to include only the most inclusive response metric per experiment for each 

organism group.  For experiments where multiple response metrics were reported, the most 

inclusive response metric was selected where community responses were preferred over 

population or organism-level responses, and metrics were selected in favour of 

biomass/abundance over survival, survival over growth/size, growth/size over condition, 

condition over reproductivity, and reproductivity over behaviour.  If the same experiment 

measured impact separately on multiple organism groups (e.g. producers and invertebrates), then 

each observation was retained.  This reduced, most inclusive response metric, dataset (n = 230) 

was used for the majority of our meta-analyses (i.e. those not specifically comparing response 

metrics; Table 2.1) to minimize data non-independence.  For each observation, we extracted 

mean, standard deviation, and sample size values for each treatment combination (stressor A; 
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stressor B; stressor A and B; no stressor control).  We also retained relevant categorical data (e.g. 

location and response metric) for each observation.   

Table 2.1  Meta-analytic models with details of category levels (where n ≥ 8) and datasets used. 

Model Categorical levels Dataset 

1) Full global model --- Full 

(n = 286) 

2) Detailed response metrics Animal survival; animal growth/ size; plant 

growth/ size; animal condition; animal biomass/ 

abundance; plant biomass/ abundance; animal 

diversity; plant diversity; leaf decomposition 

Full 

(n = 286) 

3) Pooled response metrics Diversity; functional performance Full 

(n = 286) 

4) Reduced global model --- Reduced 

(n = 230) 

5) Response level (i.e. level 

of biological organization) 

Community; population; organism Reduced 

(n = 230) 

6) Organism group Vertebrate; invertebrate; producer Reduced 

(n = 230) 

7) Stressor-pair Contamination × Habitat Alteration; 

Contamination × Invasion; Contamination × 

Nutrification; Contamination × Warming; Habitat 

Alteration × Nutrification; Invasion × Invasion; 

Invasion × Nutrification; Nutrification × UVR; 

Nutrification × Warming; Warming × UVR 

Reduced 

(n = 229*) 

Note:  each meta-analytic model treats observation ID as a random effect; dashes denote meta-

analytic model is non-categorical; reduced dataset is the most inclusive response metric dataset; 

and * denotes one observation dropped from model because stressor-pair was not replicated. 

Effect size calculation and interpretation 

Interaction effect sizes were calculated for each observation in our dataset using Hedges d, an 

estimate of the standardized mean difference not biased by small sample sizes (Gurevitch & 

Hedges 2001).  The interaction effect size for each observation was calculated by comparing the 

null predicted additive effect to the actual observed effect of both stressors.  Each interaction 

effect size was therefore based on the absolute difference between the observed net impact of 

dual stressors against a hypothetical additive outcome based on the sum of their single 
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independent effects.  For each mean response variable (X) from the four treatment groups (i.e. 

control (u), stressor A (A), stressor B (B) and both stressors A and B (AB)), the predicted additive 

effect (𝑋𝑝) was calculated as: 

𝑋𝑝  =  (𝑋𝐴 − 𝑋𝑢)  +  (𝑋𝐵 − 𝑋𝑢)  +  𝑋𝑢 

At this stage, we removed any studies from our dataset (n = 32) where the predicted 

effect was deemed impossible (e.g. survival greater than 100% or biomass less than zero).  

Hedge’s d effect sizes were then calculated for each observation by comparing the predicted 

additive effect with the actual observed effect of both stressors applied in combination (AB, o): 

𝑋𝑜 − 𝑋𝑝

𝑆
 𝑗 

where j is a weighting factor based on the number of replicates (n), calculated as: 

1 −  
3

4 (𝑛𝑜  +  𝑛𝑝 − 2) − 1
 

S is the pooled standard deviation, calculated as: 

√
(𝑛𝑜 − 1)𝜎𝑜

2 + (𝑛𝑝 − 1)𝜎𝑝
2

𝑛𝑜 + 𝑛𝑝 − 2
 

and the predicted standard deviation (𝜎𝑝
2) was calculated by pooling 𝜎𝐴 and 𝜎𝐵 and the pooled 

sample size (𝑛𝑝) was calculated as 𝑛𝐴 +  𝑛𝐵.  Finally, the variance (𝑉𝑑) around each interaction 

effect size (d) was calculated as: 

𝑛𝑜 +  𝑛𝑝

𝑛𝑜𝑛𝑝
+  

𝑑2

2(𝑛𝑜 +  𝑛𝑝)
 

Because stressors may impart either negative or positive effects on biological receptors, 

we inverted the response direction (∓) of interaction effect sizes for which the predicted additive 

effects (𝑋𝑝) were negative (i.e. where both single effects were negative, or if in opposing 

directions, where the negative effect had the higher absolute value; Piggott et al. 2015).  This 

allowed us to compare interaction effect sizes regardless of their directionality (Piggott et al. 
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2015).  As a result, an interaction effect size (d) of zero represents an exact additive effect of the 

two stressors (i.e. their combined impact is equal to the sum of their single effects), while a 

positive d denotes a synergistic interaction (i.e. a combined impact greater than the sum of their 

single effects) and a negative d reflects either antagonism or a reversal interaction (a combined 

impact less than the sum of their single effects; Fig. 2.1).  To distinguish between antagonistic 

and reversal interactions, we compared the direction (negative or positive, relative to the control) 

of the observed response to both stressors applied in combination (𝑋𝑜) with the direction of their 

predicted additive response (𝑋𝑃), and assigned reversals where they were opposite.  Interaction 

significance was assessed using 95% confidence intervals calculated around each effect size 

(from a t-distribution), such that any interactions with intervals crossing zero were deemed 

additive (Fig. 2.1).  

 

Fig. 2.1  The theoretical interactive effects of stressors A and B applied in combination, relative 

to their predicted additive response (= 0).  Negative effect sizes (less than zero) represent 

antagonism or reversals (i) and positive effect sizes (greater than zero) represent synergistic 

interactions (ii), but only if their confidence intervals do not cross the x-axis.  Interaction effect 

sizes with confidence intervals that overlap with zero were considered to be additive (iii). 
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Statistical analyses 

Mean interaction effect sizes across studies were estimated from weighted meta-analyses.  In 

each analysis, observation ID was treated as a random effect to account for the random 

component of effect size variation among observations, and inverse unconditional variance 

weights (w) were calculated for each interaction effect size as: 

1

𝑉𝑑 + �̂�𝑝𝑜𝑜𝑙𝑒𝑑
2  

 

where �̂�𝑝𝑜𝑜𝑙𝑒𝑑
2  is the pooled between-study/within-class variance estimated from the meta-

analytic model (see Gurevitch & Hedges 2001 for further details of random/mixed model 

analysis).  In addition to using random effects meta-analyses to assess the global mean 

interaction effect sizes across all observations included in our full and reduced datasets, we 

conducted a series of mixed effects meta-analyses where selected categorical moderators were 

treated as fixed effects to assess mean interactions at each categorical level (where n ≥ 8; Table 

2.1).   

Using our full dataset, we conducted a detailed response metric analysis to evaluate the 

sensitivity of different response metrics to multiple stressors (Table 2.1).  We followed this with 

a pooled response metric analysis, where response metrics were reassigned as either diversity 

(plant or animal diversity) or functional performance (all other response metrics), to assess the 

sensitivities of these broader response categories.  We then used our reduced dataset to estimate 

mean effect sizes across receptor categories (response levels and organism groups) and stressor-

pair combinations (Table 2.1).  Percentile bootstrapped 95% confidence intervals (represented by 

the lowest and highest 2.5% of bootstrapped values) were calculated around each mean 

interaction effect size to assess significance (Fig. 2.1).  Similar to the interpretation of interaction 

effect sizes for single observations, a positive mean effect reflects synergy, a negative mean 

effect reflects antagonism (reversals could not be distinguished with this method), and cases 

where the confidences intervals crossed zero were deemed additive.  

In addition to the quantitative synthesis described above, we complemented each meta-

analytic model with a vote-counting analysis to describe the frequencies of interaction types 

(including reversals) across individual observations.  Randomization tests of independence 
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(Monte Carlo approximation using 9,999 permutations) were used to assess whether the 

frequencies of interaction types differed significantly among levels of each categorical moderator 

where n ≥ 8 (Table 2.1).  Randomization tests, rather than standard chi-square tests of 

independence, were used because of their utility for assessing data with small with group sample 

sizes and expected frequencies (Roff & Bentzen 1989).  Interaction frequencies should be 

interpreted as the commonality of interaction types, as opposed to the mean interaction effect 

sizes obtained from our weighted meta-analytic models, which reflect the combined responses 

across studies.  Therefore, smaller interaction effect sizes, which may frequently be assigned as 

additive in individual studies, may be revealed as non-additive by mean interaction effect sizes 

owing to greater statistical power.   

Weighted meta-analyses were conducted in MetaWin Version 2.1 (Rosenberg et al. 2000) 

and the R computing program was used to perform independence tests (R Core Team 2016).  To 

assess the robustness of our results, we conducted several additional analyses to investigate 

potential publication bias and the sensitivity of our findings to variation in sample sizes and 

effect size outliers (Appendix A-2).  Although we found some evidence of asymmetry around 

our overall mean effect size estimate, we suspect this may be at least partially attributable to the 

considerable data heterogeneity observed.  Nevertheless, the results of our sensitivity analyses 

indicate that our meta-analytic findings are robust to such variations.   

Results and discussion 

Stressor interactions across response metrics 

We found 88 articles representing 286 separate observations (i.e. biological responses) to 

multiple stressors that met our selection criteria.  In addition, 11 articles fitting our criteria were 

not included because we were unable to extract the data or the study did not report margins of 

error (listed in Appendix A-1).  The majority of the research was carried out in North America 

(46 of 88 articles), followed by Europe (30) and New Zealand (7).  All of the studies were 

conducted experimentally in laboratories (57), outdoor mesocosms (210), or in situ (19).  

Additional meta-analytic summary results (Table A-3.1) and heterogeneity estimates (Table A-

3.2) are available in Appendix A-3. 
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Individual observations in our full dataset were most frequently antagonistic (40%; 

compared with 26% synergistic, 19% additive, and 15% reversed), and the mean interaction 

effect size across all responses was also significantly less than additive (i.e. antagonistic; Table 

A-3.1).  Multiple stressors exerted significant antagonistic effects on animal abundance/biomass, 

animal condition, animal growth/size, animal survival, and plant diversity (Fig. 2.2a).  Additive 

mean stressor effects were identified for the other four response metrics (decomposition, animal 

diversity, plant abundance/biomass, and plant growth/size; Fig. 2.2a).   

 

Fig. 2.2  The mean interaction effect sizes (Hedge’s d and bootstrapped 95% confidence 

intervals; a) and frequencies (%) of interaction types (b) for different response metric categories.  

Interaction types are additive (black), antagonistic (dark grey), synergistic (white) and reversals 

(light grey).  The number of observations/studies included in each category is indicated in 

parentheses.  Mean responses are only presented where n ≥ 8.   
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One possible explanation for widespread antagonism between freshwater stressors 

involves asymmetry of their single effect sizes.  Here, the larger magnitude of the worst stressor 

completely overrides the effect of the weaker stressor, thereby negating its contribution to their 

net impact (Folt et al. 1999, Sala et al. 2000).  The detected prevalence of antagonisms also 

suggests that exposure to one stressor often results in greater tolerance to the other (Vinebrooke 

et al. 2004).  Here, a potential mechanism involves hard selection for tolerant organisms that are 

co-adapted to both stressors, thereby reducing their combined impact.  Alternatively, acclimation 

to each stressor may involve the same behavioural or physiological mechanism, which would 

result in exposure to one stressor inducing greater tolerance against the other.   

Frequencies of interaction types varied significantly (χ
2
 = 40.36; P = 0.019; df = 24; 

n = 272) and non-additive interactions were collectively more common than simple additive 

scenarios.  Antagonisms occurred most often with animal condition (76.47%), synergies and 

reversals with plant growth/size (62.50% and 25.00%, respectively), and additive effects with 

plant diversity (44.44%; Fig. 2.2b).  The highly variable nature of stressor interactions across 

these response metrics highlights the importance of currency selection when quantifying the net 

ecological impact of multiple stressors.  

Stressors also exerted differing interactive and additive effects on functional performance 

and diversity responses, respectively.  The mean interaction effect size for functional 

performance responses was antagonistic, while the mean effect of stressors on diversity was 

additive.  Additive and reversal interactions occurred most frequently with diversity metrics 

(32.25% and 16.13%, respectively), while antagonistic and synergistic interactions occurred 

more frequently with functional performance metrics (41.57% and 27.06%, respectively); 

however, the frequencies of interaction types did not differ significantly (χ
2
 = 4.87; P = 0.174; 

df = 3; n = 286). 

Compensatory species dynamics may explain the different mean interactive effects 

observed for stressor impacts on freshwater diversity and functional performance.  The 

frequency of additive responses by diversity to dual stressors suggests that species eliminated by 

one stressor were often not the same that are eliminated by a second stressor.  However, the 

prevalence of antagonism at the functional performance level suggests the remaining tolerant 

species may frequently compensate functionally for species loss, thereby reducing the net 
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functional consequences of the stressors.  Although the prevalence of functional species 

compensation has been debated in the literature (Houlahan et al. 2007, Gonzalez & Loreau 

2009), several lines of evidence show it can help stabilize stressed freshwater communities (e.g. 

Klug et al. 2000 Fischer et al. 2001, Vinebrooke et al. 2003, Downing et al. 2008).  Our findings 

suggest that functional resistance to stressors is not simply a function of biodiversity, but more 

often indicative of species identity and associated traits (e.g. Smith & Knapp 2003, Vaz-Pinto et 

al. 2013).  Thus, functional resistance should be related to the response diversity of stressed 

communities (Elmqvist et al. 2003, Nystrӧm 2006, Mori et al. 2013).  As a result, our findings 

point to freshwater biodiversity being more sensitive than functioning to the cumulative impacts 

of multiple stressors.   

Stressor interactions across receptor categories 

For analyses of receptor categories and stressor pairs (see Stressor interactions across stressor 

pairs below), we considered only the most inclusive response metrics (i.e. the reduced dataset) to 

avoid pseudoreplication.  As a result, our dataset was reduced to 230 observations for these 

analyses (Table 2.1).  The majority of observations examined responses at the community level 

and the most frequently examined organisms were invertebrates (Fig. 2.3).  The global mean 

interaction effect size was significantly antagonistic (Table A-3.1) and of the 230 observations 

considered, 94 (40.87%) were antagonistic, 64 (27.83%) were synergistic, and 34 (14.78%) were 

reversals, while 38 (16.52%) were additive.   

The cumulative mean interaction effect of stressors was significantly antagonistic at the 

community and organism level but additive at the population level (Fig. 2.3a; Table A-3.1).  

However, the frequencies of interaction types did not differ significantly among levels of 

biological organization (χ
2
 = 11.39; P = 0.074; df = 6; n = 230).  While antagonistic interactions 

were most frequent at the organism (65.22%) and community (40.88%) levels of biological 

organization, synergies and reversals occurred most frequently at the population level (37.14% 

and 17.14%, respectively), and additive interactions were most common at the community level 

(18.98%; Fig. 2.3b).   
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Fig. 2.3  The mean interaction effect sizes (Hedge’s d and bootstrapped 95% confidence 

intervals; a, c) and frequencies (%) of interaction types (b, d) for different receptor categories, 

including level of biological organization (a, b) and organism group (c, d).  Interaction types are 

additive (black), antagonistic (dark grey), synergistic (white) and reversals (light grey).  The 

number of observations/studies included in each category is indicated in parentheses.  Mean 

responses only presented where n ≥ 8.   

Dual stressors exerted significant antagonistic effects on invertebrates and vertebrates, 

while primary producers responded in an overall additive fashion (Fig. 2.3c; Table A-3.1).  

However, frequencies of interaction types were similar across all organism groups (χ
2
 = 5.70; 

P = 0.457; df = 6; n = 224).  Antagonistic responses occurred most frequently for invertebrates 

(45.21%) and vertebrates (46.43%), synergies and reversals were most common with primary 

producers (34.74% and 16.84%, respectively), and additive interactions most often affected 

invertebrates (19.18%; Fig. 2.3d).  These results were surprising because sensitivity to global 

change is often thought to increase with trophic position (e.g. Crain et al. 2008, Petchey et al. 

1999), particularly with warming, as metabolic demands increase faster than ingestion rates with 
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higher temperatures (Vucic-Pestic et al. 2011).  Here, the different responses of consumers and 

primary producers highlight the potential for multiple stressors to weaken trophic interactions 

and promote algal blooms. Many of the synergistic responses by primary producers involved net 

positive effects by stressors such as nutrification, UVR, and warming.  In fact, 36 of the 64 

synergistic interactions in our analysis were positive, and of these, 21 showed an increase in 

producer performance.  Globally, correlative evidence suggests that nutrients and climate interact 

synergistically to increase the overall percentage of cyanobacteria in shallow lakes (Kosten et al. 

2012).  Experimental evidence supports these observations, showing warming and nutrient 

enrichment can exert a synergistic positive effect on phytoplankton growth (e.g. Doyle et al. 

2005).   

Stressor interactions across stressor pairs 

Table 2.2  The number of stressor-pair observations meeting our data slection criteria (n = 230). 
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Acidification 0 3 2 0 0 3 5 

Contamination  6 19 11 14 6 33 

Habitat alteration   4 2 21 1 6 

Invasion    13 10 0 7 

Nutrification     0 10 41 

UVR      0 13 

Warming       0 

 

Ten stressor pairs had sufficient observations (n ≥ 8) for a comparison of their mean interaction 

effects (Table 2.2), which varied with their identity (Fig. 2.4a).  Net effects were significantly 

antagonistic for contamination × invasion, contamination × warming, and warming × UVR; 

however, effects were additive for the remaining seven stressor pairs, including nutrification 

paired with warming, habitat alteration, invasion, and UVR (Fig. 2.4a).  Although the 

frequencies of interaction types were not significantly different among stressor pairs (χ
2
 = 28.25; 
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P = 0.402; df = 27; n = 185), antagonistic effects occurred most frequently when warming 

occurred with UVR (61.54%), synergistic interactions occurred most often with nutrification and 

UVR (50.00%), reversal interactions were linked with warming and nutrification (26.83%), and 

additive interactions were common with paired invasions (30.77%; Fig. 2.4b).  

 

Fig. 2.4  The mean interaction effect sizes (Hedge’s d and bootstrapped 95% confidence 

intervals; a) and frequencies (%) of interaction types (b) for different stressor-pair combinations.  

Interaction types are additive (black), antagonistic (dark grey), synergistic (white) and reversals 

(light grey).  The number of observations/studies included in each category is indicated in 

parentheses.  Mean responses only presented where n ≥ 8. W = warming; C = contamination; 

H = habitat alteration; I = invasion; N = nutrification; and U = ultraviolet light radiation. 

When higher temperature interacted with a second freshwater stressor, the mean 

interaction was antagonistic overall (d = –0.68; 95% CI = –1.1 to –0.3; n = 105).  This finding is 

in contrast to studies of marine ecosystems where both Crain et al. (2008) and Harvey et al. 

(2013) found that warming most often interacted with a second stressor to produce a synergistic 

response.  However, a recent re-analysis of the data presented by Crain et al. (2008) suggests that 

their original methods may have overrepresented synergies (Piggott et al. 2015).  Furthermore, 

Ban et al. (2014) found that the mean effect of multiple stressors in coral reefs was additive 
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overall, and it is important to note that different ecosystem types face different combinations of 

key stressors (Jenkins 2003, Pratchett et al. 2011).  Lake (1990) suggested that benthic 

communities in freshwater and marine ecosystems may react differently to certain disturbances 

because of differences in the proportion of mobile versus sedentary biota.  More general 

differences between freshwater and marine responses may be based on how specific stressors 

interact with inherent ecosystem properties.  For example, Bancroft et al. (2007) predicted that 

UVR impacts should vary between marine and freshwater environments owing to differing 

optical qualities of the water; however, they were unable to detect significant differences from 

their meta-analysis.  Additionally, the effects of some stressors (e.g. salinity and metal 

contaminants) may differ among freshwater and marine receptors based on physiological 

differences between biota (Hall & Anderson 1995, Heugens et al. 2001).   

Higher environmental variability of smaller aquatic ecosystems may also foster greater 

species adaptation to stressors.  Freshwaters generally experience much greater thermal variation 

than marine systems, so freshwater ectotherms might be better adapted to temperature changes 

than those from more thermally buffered marine ecosystems.  For example, water fleas (Daphnia 

spp.) that are often focal species in lakes and ponds have been shown to be highly responsive 

(Colbourne et al. 2011) and capable of rapidly evolving in the face of environmental change (De 

Meester et al. 2011).  Aquatic organisms also tend to be most sensitive to multiple-stressor 

effects near their thermal tolerance limits (Heugens et al. 2001), so more detrimental stressor 

interactions might be expected in marine ecosystems where species’ ranges are often strongly 

aligned with their thermal limits (Pratchett et al. 2011, Sunday et al., 2012).  Indeed, differences 

in how marine and freshwater ecosystems respond to similar stressors may depend on 

characteristics of the biological receptors and the environmental context, including the different 

communities, mechanisms, ecological networks, and abiotic conditions present (Bancroft et al. 

2007, Tylianakis et al. 2008, Segner et al. 2014).   

Three stressor-pair combinations had sufficient samples sizes for detailed analysis of 

interaction effects by level of biological organization or organism type (n ≥ 8 for receptor 

categories within stressor pairs).  The mean interaction effect size was significantly additive 

when nutrification was paried with warming or habitat alteration (Fig. 2.4a), regardless of level 

of biological organization or organism group.  Contamination paired with warming had a 
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significant antagonistic interaction overall (Fig. 2.4a) and at the organism level (d = –0.77; 95% 

CI = –1.3 to –0.3; n = 10); however, the interaction was additive at the population (d = –1.27; 

95% CI = –3.6 to 0.4; n = 11) and community (d = –0.26; 95% CI = –0.7 to 0.2; n = 12) levels.  

Similarly, the mean interaction between contamination and warming became additive when 

considering only studies which measured impacts on vertebrates (d = –0.26; 95% CI = –1.0 to 

0.5; n = 12).  These results suggest that the type of organism and level of biological organization 

are both important in predicting the combined impacts of specific stressor pairs. 

Reversal interactions as extreme ecological surprises 

Reversal interactions (similar to the mitigating synergisms discussed by Piggott et al. 2015) were 

found in 34 of 230 observations (14.78%) from our reduced dataset.  Although they were the 

least common type of interaction, reversals warrant special consideration because they reflect net 

effects that may differ markedly from those predicted by the typically assumed model of 

additivity (Piggott et al. 2015).  Reversal interactions often involve the weaker of two stressors 

inverting the effect of the stronger.  For instance, application of excess nutrients surprisingly 

reversed the toxic effect of atrazine on tadpoles as the additional resources likely permitted 

greater detoxification rates and stimulated growth, resulting in increased survival (Boone & 

Bridges-Britton 2006).   

Our findings showed that the stressor most commonly associated with reversal 

interactions was warming (19.05% of warming interactions; Fig. 2.4b).  The greater likelihood of 

reversal interactions when a stressor is paired with higher temperatures might be related to the 

stimulatory effect of warming.  As nearly all biological activity increases with warming (Brown 

et al. 2004), temperature changes arguably have the greatest potential to mediate the effects of 

other more damaging stressors.  For example, Thompson et al. (2008) found that warming 

reversed the negative effect of excess nitrogen supply on growth by alpine phytoplankton, 

possibly because higher temperatures stimulated enzymatic conversion of nitrate and ammonia.  

In contrast, Linton et al. (1997) showed that higher temperatures could reverse the stimulatory 

effects of sublethal ammonia enrichment on juvenile rainbow trout (Oncorhynchus mykiss) by 

increasing metabolic costs to where ammonia detoxification and growth rates were reduced.  In 

these cases, warming directly altered the mechanisms by which the dominant stressors affected 

the biological receptors.  However, like other non-additive scenarios, reversals may also manifest 
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from complex indirect interactions (e.g. Messner et al. 2013).  Given the complexity of 

ecological responses to temperature changes (Petchey et al. 1999, O’Connor et al. 2009, Dossena 

et al. 2012, Stendera et al. 2012) and their potential role in generating non-additive interactions 

with other stressors (Crain et al. 2008, Harvey et al. 2013), we might then expect even more 

ecological surprises in a warmer future.   

Conclusions 

We discovered a prevalence of antagonistic interactions between freshwater stressors across 

most receptor categories considered in our analysis (Table A-3.1).  Thus, there may exist a high 

potential for co-adaptation within freshwater ecosystems to minimize the net effects of multiple 

stressors.  Alternatively, antagonism may be attributable to a high degree of asymmetry in the 

magnitude of independent effects between freshwater stressors (Folt et al. 1999).  In this case, 

ranking the worst stressor driving an antagonistic interaction would be essential to forecasting 

their cumulative impacts on a freshwater ecosystem (Sala et al. 2000, Piggott et al. 2015).  

However, our evidence of predominantly antagonistic responses by freshwater organisms should 

not lessen the need to reduce exposure to stressors as their net effects were still mostly negative.  

The urgency of these findings is underscored by a recent global assessment that compared 

multiple-stressor-induced average population declines of 76% among freshwater species to 39% 

among terrestrial and marine species since 1970 (WWF 2014).   

Non-additive interactions characterized 83% (192/230) of the cumulative impacts of 

multiple stressors in our reduced, most inclusive response metric, dataset (81% or 233/286 in our 

full dataset).  Mean interaction effect sizes varied significantly among stressor pairs and levels of 

receptor categories.  Our analyses revealed different interactions for some stressor pairs 

(switching from antagonistic to additive, or vice versa) when only considering subsets of the 

data.  This suggests that both stressor identity and characteristics of the ecological response (e.g. 

level of biological organization and organism type) are essential in predicting interactions 

between multiple stressors in freshwater ecosystems.   

Our findings have implications for conservation management of freshwater ecosystems.  

For stressor pairs that generate additive or synergistic effects, management focusing on a single 

stressor should render a positive outcome (Brown et al. 2013).  However, in communities 



32 

 

affected antagonistically by stressor pairs, both stressors may need to be removed or moderated 

to produce any substantial ecological recovery due to positive co-tolerance (Brown et al. 2013, 

Piggott et al. 2015).   

Our findings evoke several testable hypotheses for further investigation.  Firstly, the 

observed trend of stressor synergies increasing the productivity of primary producers suggests 

that higher temperatures, UVR exposure, and nutrient enrichment may jointly stimulate harmful 

algal blooms.  Secondly, functional performance metrics appeared less sensitive overall than 

diversity metrics to dual stressors, highlighting the need for further investigation into the extent 

to which functional compensation occurs in stressed ecosystems.  Thirdly, although we have 

demonstrated a clear predominance of antagonistic stressor interactions in freshwaters, further 

studies are needed to determine the specific underlying ecological mechanisms (e.g. asymmetry 

of stressor magnitudes, hard selection for co-adapted organisms, or similarity in behavioural or 

physiological acclimation).  Finally, perhaps most interesting is our finding that multiple stressor 

interactions differ between freshwaters and marine ecosystems and, although we have suggested 

several potential explanations, more research is needed to elucidate the specific physiological, 

genetic, or environmental drivers behind these differences.   
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Chapter 3: Regional diversity reverses the negative impacts of an alien 

predator on local species-poor communities
 

Note:  a version of this chapter has been published as Loewen CJG & Vinebrooke RD. (2016).  Ecology, 97, 2740–

2749 (doi:10.1002/ecy.1485). 

Introduction 

Spatial processes play a central role in driving ecosystem dynamics (Massol et al. 2011) and 

shaping the outcome of biotic interactions (e.g. Cottenie & De Meester 2004, Howeth & Leibold 

2010).  For instance, species dispersal among local communities (i.e. metacommunities) affects 

food web structure and biodiversity by providing novel colonists or maintaining local 

populations via mass or rescue effects (i.e. a net influx of individuals preventing local species 

extinction; Loreau & Mouquet 1999, Leibold et al. 2004, Amarasekare 2008).  By permitting 

access to the regional species pool, dispersal links local communities with broader regional 

processes, influencing their evolutionary and functional progression (Bohonak & Jenkins 2003).  

Species immigration from neighboring habitats may also impart functional resistance to 

local communities against environmental change or anthropogenic stressors.  As a source of 

biological insurance, biodiversity should buffer against the adverse functional consequences of 

species loss (Loreau et al. 2001, Hooper et al. 2005).  Correspondingly, biodiversity across a 

heterogeneous landscape should impart resistance to stressed local communities via the 

colonization of tolerant individuals from a diverse regional species pool (i.e. spatial insurance; 

Loreau et al. 2003), though experimental evidence is limited (but see Thompson & Shurin 2012, 

Symons & Arnott 2013).  In the context of invasive species, these insurance principles are 

similar to the biotic resistance hypothesis, which predicts that invaders exert less impact on more 

diverse communities (Elton 1958, Levine et al. 2004).  However, trait variations among species 

may evoke markedly different responses to environmental change (Hooper et al. 2005).  

Therefore, community resistance should depend more on the identity of species and their 

functional diversity (i.e. positioning in functional trait space) than merely species richness (e.g. 

Daneshgar & Jose 2009, Mouillot et al. 2013).  Knowledge of species-specific responses, and 

their underlying traits, is thus essential to predicting a stressor’s impact. 

http://onlinelibrary.wiley.com/doi/10.1002/ecy.1485/full
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Biological invasions are among the greatest threats to global biodiversity and ecosystem 

functioning (Vitousek et al. 1997, Sala et al. 2000, Byers et al. 2002, WWF 2014) and 

international efforts have been ineffective at reducing their ecological footprint (Tittensor et al. 

2014).  The limited success of invasive species management has often been attributed to 

challenges with predicting their impacts, which are frequently context dependent (Hulme et al. 

2013, Ricciardi et al. 2013).  Invasion effects may be mediated by characteristics of the recipient 

community (Ricciardi et al. 2013) or interactions with other environmental stressors (Ruiz et al. 

1999, Jackson et al. 2016), such as climatic change (Rahel & Olden 2008).  A better 

understanding of invasion impacts is urgently needed to inform and prioritize prevention and 

control measures (Byers et al. 2002, Hulme et al. 2013).   

Mountain lakes are excellent venues for exploring the effects of regional species diversity 

on local communities as environmental heterogeneity along elevation gradients provides high 

regional diversity relative to species-poor local alpine communities (Rahbek 1995).  There is a 

long precedent of stocking exotic sportfish in mountain lakes, which has aided the establishment 

of self-sustaining populations and impacted freshwater communities globally (MacCrimmon 

1971, Knapp et al. 2001).  There is also growing evidence that mountain regions are 

experiencing pronounced warming (Pepin et al. 2015), and that coldwater-adapted communities 

in high-elevation lakes are inherently sensitive to climate change (Parker et al. 2008, Battarbee et 

al. 2009).  For instance, warming may reduce concentrations of large herbivorous zooplankton 

and subsequently increase primary production in alpine lakes (Holzapfel & Vinebrooke 2005).   

To test for interactions among an alien predator, prey diversity, and warming, I conducted 

an experiment that involved introduction of the widespread invasive apex predator 

Oncorhynchus mykiss, a regional species pool of potential prey, and higher temperatures to a 

previously fishless local alpine lake zooplankton community.  Here, I used a functional approach 

to test the hypothesis that, in the absence of dispersal limitation, access to a regional species pool 

lessens stressor impacts on local communities by increasing local response diversity (i.e. 

variation in functional traits associated with environmental tolerance).  I also tested whether 

higher temperatures would modify (i.e. amplify or dampen) invasion impacts.  Since visually 

feeding predators and higher temperatures are both expected to disproportionally suppress large-

bodied species (Brooks & Dodson 1965, Moore & Folt 1993), I hypothesized that redundancy in 
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their independent effects on community functional structure should yield less than additive net 

effects (i.e. an antagonistic interaction) when applied in combination.   

Materials and methods 

Experimental design 

Outdoor mesocosms were established using 1,000-L translucent polyethylene tanks (~1 m
3
) for 

eight weeks (July–September 2013) at the Barrier Lake Field Station, which is located at the 

eastern edge of the Canadian Rocky Mountains, Alberta, Canada (51°01′37″ N, 115°02′08″ W).  

Water from a nearby spring was collected and passed through a 250 µm mesh-size metal sieve to 

exclude macroinvertebrates before being used to fill the tanks.  Zooplankton were obtained from 

three fishless alpine lakes by vertical hauls of each water column with a 63-μm-mesh conical net 

(see Table B-1.1 in Appendix B-1).  These sites (Bighorn, Pipit, and Snowflake) were typical 

pristine alpine lakes, selected based on historical evidence of similar conditions (e.g. 2,226–

2,353 m asl, 9.7–12.2°C early-summer surface temperature, 4–6 μg/L total phosphorous, and 

0.5–0.8 mg/L dissolved organic carbon).  Live zooplankton were immediately helicoptered to the 

field station and mixed in a 1,000-L holding tank.  Equal aliquots of the assembled local species 

pool were then transferred to each of the mesocosms and left to equilibrate to tank conditions for 

5-d prior to experimental manipulations.  Mesocosms were open to the air by a 20 cm diameter 

opening, which was covered with 1 mm mesh-size covering.   

Treatment application 

All combinations of two crossed experimental treatments, each consisting of two levels, were 

replicated eight times for a total of 32 tanks.  An invasion treatment was achieved by randomly 

assigning half of the tanks to receive a single O. mykiss fingerling obtained from a local hatchery 

(Ackenberry Trout Farms, Camrose, Canada).  Introduced fish had a mean weight of 0.06 kg 

(SD = 0.02) and mean fork-length of 16.1 cm (SD = 1.8).  Linear regression analyses showed 

that variation in fish weights did not significantly influence final zooplankton biomass 

(P = 0.723) or phytoplankton chlorophyll concentrations (P = 0.985).  A warming treatment was 

achieved using four 300-W submersible heaters (Hagen, Montréal, Canada) per mesocosm to 

simulate 48-h heating events by amplifying daytime warming and sustaining elevated 

temperatures through the night.  A pulsed warming protocol was chosen as few studies have 
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examined the effects of climatic variability on alpine lake communities (Parker et al. 2008) 

despite expectations of increasing temperature extremes, particularly at higher elevations 

(Rangwala et al. 2012, Pepin et al. 2015).  In addition, changes in thermal variation and extreme 

climate events (e.g. heat waves) frequently impact biota more than increasing mean temperatures 

(e.g. Smale & Wernberg 2013, Vasseur et al. 2014).  Data loggers were deployed to record 

temperatures at 10 minute intervals in each tank for the entire experiment.  The mean surface 

temperature difference between ambient (18.6° ± 2.5°C [mean ± SD]) and warmed mesocosms 

(20.1° ± 2.4°C) was 1.6°C; however, temperature differences ranged from 0°C to more than 

6.0°C (see Fig B-2.1 in Appendix B-2).   

After one month of stressor exposure, I applied a third factor (local vs. local + regional 

species pool) to determine whether regional colonists would rescue the local community by 

compensating for (i.e. offsetting) any loss of secondary production resulting from exposure to 

fish introduction or warming.  The regional species pool treatment was achieved by inoculating 

half the mesocosms with individuals collected from 25 regional lakes and ponds in Banff, Yoho, 

Kootenay, and Peter Lougheed Mountain Parks (Table B-1.1).  The sampled sites varied in their 

fish presence, near-surface temperature (10.4–21.5°C), elevation (1165–2687 m above sea level), 

and morphometry (e.g. total depth of <2.0–>20.0 m).  Zooplankton were collected by either 

vertical or horizontal hauls (depending on depth and orientation of the water body) using a 63 

µm mesh-size conical net and transferred daily to a 1000-L holding tank.  Regional zooplankton 

were provided over two successive inoculations (Regional A on day 29 and Regional B on day 

34), to increase lake coverage while minimizing time spent by live organisms in the intermediate 

holding tank, at concentrations of 18 and 9 μg/L, respectively.  In total, the regional species pool 

provided 15 novel crustacean taxa, whereas the local species pool consisted of six species (Table 

3.1).  Larvae of the dipteran Chaoborus were also introduced as part of the regional species pool.  

Though important predators in many fishless montane lakes, low Chaoborus densities in the 

mesocosms (<0.1 organisms/L) likely limited their influence on zooplankton communities (see 

Fig B-3.1 in Appendix B-3).  Tanks that did not receive a regional species pool treatment were 

provided an equal volume of heat-killed plankton to account for nutrient and water additions.   
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Table 3.1  List of taxa and functional traits. 

Taxa/group Code 
Species 

pool 
Motility 

Feeding 

mode 

Body size 

(mm) 

Arctodiaptomus arapahoensis Aara Regional Rapid Filtration 1.25 

Acanthocyclops vernalis complex Aver Local Rapid Raptorial 0.82 

Acanthodiaptomus denticornis Aden Regional Rapid Filtration 1.46 

Aglaodiaptomus leptopus Alep Regional Rapid Filtration 1.81 

Bosmina longirostris Blon Regional Slow Filtration 0.35 

Ceriodaphnia quadrangula Cqua Regional Slow Filtration 0.55 

Chydorus sphaericus Csph Regional Slow Filtration 0.32 

Daphnia spp. DAPH Local Slow Filtration 1.54 

    D. middendorffiana --- Local Slow Filtration --- 

    D. pulex --- Local Slow Filtration --- 

    D. mendotae --- Regional Slow Filtration --- 

    D. dentifera --- Regional Slow Filtration --- 

    D. Unidentified --- Regional Slow Filtration --- 

Diacyclops navus Dnav Regional Rapid Raptorial 0.81 

Diacyclops thomasi Dtho Regional Rapid Raptorial 0.84 

Diaphanosoma birgei Dbir Regional Slow Filtration 0.97 

Eucyclops agilis Eagi Local Rapid Raptorial 0.86 

Hesperodiaptomus arcticus Harc Local Rapid Filtration 2.50 

Leptodiaptomus nudus Lnud Regional Rapid Filtration 1.16 

Leptodiaptomus sicilis Lsic Regional Rapid Filtration 1.05 

Leptodiaptomus tyrrelli Ltyr Local Rapid Filtration 1.24 

Macrocyclops albidus Malb Regional Rapid Raptorial 1.28 

Scapholeberis kingi Skin Regional Slow Filtration 0.56 

Unidentified calanoid UCAL Regional Rapid Filtration 1.36 

Unidentified cyclopoid UCYC Regional Rapid Raptorial 0.80 

Calanoid copepodid JCAL Local Rapid Filtration 0.96 

Cyclopoid copepodid JCYC Local Rapid Raptorial 0.58 

Note:  dashes indicate species value recorded at genus level. 

Sample collection and processing  

Crustacean zooplankton were collected immediately prior to the application of the treatments, to 

confirm that the starting communities were similar among tanks.  Although some pre-treatment 

variation was observed (Fig. 3.1), differences in initial taxonomic richness and total biomass 

estimates were not significant (Table 3.2).  Thereafter, samples were collected biweekly to 
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permit assessment of treatment effects over time, while balancing sampling and enumeration 

constraints during the eight-week experiment.  Zooplankton were collected by allowing 40-L of 

water to pass through a 63 µm mesh-size sieve from a spigot near the bottom of each mesocosm, 

while gently mixing the water column from above with a paddle.  One tank was lost after day 14, 

and thus the factorial design was unbalanced for the remainder of the experiment (n = 3 for 

warming × fish present × local species only, but n = 4 for all other treatments).  For the final 

sampling event (day 56), the remaining 840-L of water was sampled from each tank. All samples 

were immediately preserved in 70% ethanol.   

Macrozooplankton (>250 μm) body counts and length measurements were conducted 

using stereoscopic microscopy (10–60x magnification).  Length measurements were obtained for 

the first 25 detected specimens of each taxon to derive biomass estimates for each sample using 

length–weight regression (Dumont and Balvay 1979, McCauley 1984, Culver et al. 1985).  Most 

zooplankton were identified to species (Edmondson 1959).  Species traits were assigned based 

on generalizations of their taxonomic groups (Table 3.1).  Cladocerans and copepods were 

assumed to differ based on their predator escape response, with copepod motility expected to be 

much faster owing to the use of their urosomes and multiple pairs of swimming legs (Williamson 

& Reid 2010).  Similarly, cladocerans and calanoids were treated as selective suspension feeders 

while the generally more carnivorous cyclopoids were designated as raptorial/grasping feeders, 

as they actively orient themselves to attack their prey rather than passively obtaining food via 

currents (Barnett et al. 2007).  Body sizes listed in Table 3.1 were obtained by averaging all 

length measurements for a given taxon, across the entire experiment.  Methodological details for 

the concurrent sampling and analysis of algal samples are provided in Appendix B-4.   
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Table 3.2  Results of Poisson regression for taxonomic richness and analysis of variance for total 

zooplankton biomass over time. 

Event and 

treatment 

 Total taxonomic richness  Total biomass 

 df LR χ2 P (>χ2)  SS df F P (>F) 

Day 0          

    F  1 0.000 1.000  <0.001 1 0.001 0.977 

    T  1 0.000 1.000  0.017 1 0.623 0.437 

    F x T  1 0.000 1.000  0.048 1 1.743 0.198 

    Error  28    0.769 28   

Day 14          

    F  1 8.183 0.004*  2.367 1 38.464 <0.001* 

    T  1 0.028 0.867  0.019 1 0.302 0.587 

    F x T  1 0.250 0.617  0.001 1 0.002 0.964 

    Error  28    1.723 28   

Day 28          

    F  1 23.439 <0.001*  5.802 1 80.469 <0.001* 

    T  1 0.001 0.978  0.013 1 0.177 0.677 

    F x T  1 0.009 0.925  0.008 1 0.117 0.736 

    Error  27    1.947 27   

Day 42          

    F  1 6.097 0.014  1.438 1 41.542 <0.001* 

    T  1 0.805 0.370  0.165 1 4.757 0.040 

    P  1 3.029 <0.001*  1.125 1 32.481 <0.001* 

    F x T  1 0.309 0.579  0.026 1 0.754 0.394 

    F x P  1 9.758 0.002*  1.990 1 57.468 <0.001* 

    T x P  1 0.513 0.474  0.001 1 0.038 0.848 

    F x T x P  1 0.141 0.708  0.015 1 0.437 0.515 

    Error  23    0.796 23   

Day 56          

    F  1 2.451 0.118  0.058 1 0.452 0.508 

    T  1 0.009 0.924  0.048 1 0.377 0.545 

    P  1 61.780 <0.001*  1.077 1 8.406 0.008* 

    F x T  1 0.063 0.801  0.002 1 0.014 0.908 

    F x P  1 7.829 0.005*  3.518 1 27.465 <0.001* 

    T x P  1 0.540 0.462  0.006 1 0.043 0.838 

    F x T x P  1 0.254 0.615  0.019 1 0.150 0.703 

    Error  23    2.946 23   

Note:  boldface type and * denote significance at α = 0.01 (Bonferroni-adjusted 

alpha); LR χ2, likelihood-ratio chi-square statistic; and abbreviations are F = fish 

presence, T = temperature, and P = species pool.   



46 

 

Statistical analysis 

To assess aggregate community responses to each treatment combination and test the hypotheses 

that local impacts are antagonistic and buffered by importation of a regional species pool, 

treatment effects on taxonomic richness and total community biomass were analyzed for each 

sampling date using Poisson regression and analysis of variance (ANOVA), respectively.  

Significance levels (i.e. α values) were adjusted from 0.05 to 0.01 using a Bonferroni correction 

to account for multiple comparisons.  To assess treatment effects across individual taxa, the final 

community biomass distribution was analyzed by permutational multivariate analysis of variance 

(MANOVA; Wang et al. 2012).  A non-parametric approach was used because MANOVA has 

been shown to lack robustness against multinormality, especially with low or unequal sample 

sizes (von Eye & Bogat 2004).  Separate univariate linear regressions were fit for each taxon and 

summarized by a multivariate F statistic to assess the strength of treatment effects.  The 

significance of treatment effects were estimated by performing 1,000 residual resampling 

iterations, accounting for correlation between response variables by shrinking the estimated 

correlation matrix (Wang et al. 2012).  Multiple testing was applied to assess the significance of 

each taxon’s response using the false discovery rate method to adjust P values (Benjamini & 

Hochberg 1995).   

To test the hypothesis that stressor resistance is mediated by functional trait variation, 

interspecific trait–treatment associations were analysed using R-mode linked to Q-mode (RLQ) 

and fourth-corner analyses, in accordance with methodological refinements by Dray et al. 

(2014).  RLQ analysis is a three-table ordination method that relates species traits to 

environmental factors by maximizing their covariance based on taxonomic performance across 

sites (Dolédec et al. 1996).  First, taxa biomass by tank data were analyzed using correspondence 

analysis (L).  Row (tank) and column (taxon) weights derived from the correspondence analysis 

were then used for multiple correspondence analysis of categorical treatment by tank data (R) 

and principal component analysis of functional trait by taxa data (Q), respectively.  RLQ analysis 

subsequently combined these three separate ordinations (R, L and Q) to describe their joint 

structure by performing a double inertia analysis of R and Q, linked by L, which finds linear 

combinations of treatments and traits (RLQ axes) that maximize their covariance (Dolédec et al. 

1996).  Associations were evaluated visually after the global significance of the RLQ was 
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assessed using a sequential two-model Monte-Carlo test with 49,999 permutations to test 

whether community biomass distribution was linked to both trait composition and experimental 

treatments (i.e. testing the L-R link by permuting tank vectors and the Q-L link by permuting 

taxon vectors; Dray et al. 2014).  The significance of each bivariate trait–treatment association 

was then tested by fourth-corner analysis (Legendre et al. 1997), using similar sequential 

permutations (Dray et al. 2014). 

All statistical analyses were conducted using R (R Core Team 2016).  Parametric 

ANOVA tests were performed using the function ‘anova’ implemented in the ‘car’ package (Fox 

& Weisberg 2011), permutational MANOVA tests were performed using the function 

‘anova.manylm’ implemented in the ‘mvabund’ package (Wang et al. 2012), and RLQ and 

fourth-corner analyses were performed using the functions ‘rlq’, ‘’randtest’ and ‘fourthcorner’ 

implemented in the ‘ade4’ package (Dray & Dufour 2007).  Taxa biomass data were log10(x + 1) 

transformed prior to analysis to improve homoscedasticity and dampen outliers.  

Results 

Aggregate community response to stressors 

Prior to importation of the regional species pool, introduced fish reduced significantly local 

taxonomic richness and total community biomass relative to controls (Fig. 3.1; Table 3.2).  

Thereafter, imported species offset significantly the fish effects (i.e. a fish–regional diversity 

interaction; Table 3.2).  Specifically, imported species reversed the negative effect of fish on 

local taxonomic richness on days 42 and 56 (Fig. 3.1a).  Similarly, amendment of the local 

communities with the regional species pool eliminated the negative effect of fish on total 

community biomass by day 42, and reversed the effect by day 56 (Fig. 3.1b).  The warming 

treatment exerted neither significant direct or indirect community-level effects.  In comparison, 

local taxonomic richness remained stable in the controls throughout the experiment (Fig. 3.1a) 

and total zooplankton biomass declined to ambient source lake concentrations (8.4–21.5 μg/L) 

by day 14 (Fig. 3.1b).   
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Fig. 3.1  Zooplankton (a) taxonomic richness and (b) total biomass over time.  Stressor effects on 

local (white circles) and regional (black circles) communities were compared against stressor-

free controls with local zooplankton species only.  Vertical line represents application of regional 

dispersers.  Data are mean values ± SE of the difference between sample means (n = 8 for days 

0–28, except n = 7 for fish + warming on day 28; n = 4 for days 42–56, except n = 3 for fish + 

warming + local species only).   
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Fig. 3.2  Individual taxa biomass on the final sampling event.  Stressor effects on members of the 

local and regional communities were compared relative to local and local + regional species pool 

controls, respectively.  Taxonomic codes are defined in Table 3.1.  Data are mean taxonomic 

responses from day 56 ± SE of the difference between sample means (n = 4, except n = 3 for fish 

+ warming + local species only).  

Community response diversity 

The imported regional species pool also mediated the effects of introduced fish on the 

community biomass distribution (P = 0.001).  In particular, amendment of the local alpine 

community with montane species increased the diversity of species responses to the presence of 

fish (Fig. 3.2).  Fish suppressed larger alpine Daphnia spp. and Hesperodiaptomus arcticus while 
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stimulating imported smaller montane cladocerans (Bosmina longirostris and Ceriodaphnia 

quadrangula) and cyclopoids (Diacyclops thomasi and Acanthocyclops vernalis complex; Fig. 

3.2).  The results of univariate tests of the effects of experimental treatments on individual taxa 

are reported in Tables B-5.1 and B-5.2 in Appendix B-5.  None of the taxa were significantly 

affected by warming.   

 

Fig. 3.3  R-mode linked to Q-mode (RLQ) biplot showing relationships between experimental 

treatments and zooplankton functional traits.  Treatment effects, including fish presence (no fish 

or fish), temperature (ambient or warming) and species pool (local or local + regional), are 

presented as vectors (black arrows).  Functional traits, including motility (slow or rapid), feeding 

mode (filtration or raptorial) and increasing body size, are presented as group centroids (black 

circles).   
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Functional trait–treatment associations 

R-mode linked to Q-mode axis 1 captured 93.23% of the total association between traits and 

environmental treatments (i.e. co-inertia), accounting for the majority of their relation.  The 

global RLQ model was deemed significant following the sequential testing of community 

biomass distribution links with experimental treatments (P < 0.001) and trait composition (P = 

0.022).  Summary statistics showed that RLQ axis 1 performed well in describing the covariance 

between the treatment matrix (R) and the trait matrix (Q; covariance = 0.894) while maintaining 

a strong correlation with the initial unconstrained ordination of sample scores (correlation = 

0.676; Table B-5.3).  Body size was significantly associated with fish presence and species pool 

(P = 0.024 for both; Table B-5.4).  RLQ analysis associated increasing body size with the local 

alpine community under fishless conditions, and decreasing body size with importation of the 

regional species pool and introduced fish (Fig. 3.3).  Similarly, raptorial feeding and rapid 

motility were associated, albeit non-significantly, with local communities exposed to fish and 

ambient temperatures; while filter-feeding and slow motility were most prevalent in regionally 

amended local communities under warmed, fishless conditions (Fig. 3.3).   

Discussion 

I discovered that importation of a regional species pool assembled from an environmentally 

heterogenic region could rescue a species-poor, unproductive local community from the impacts 

of a novel predator.  Naturally fishless alpine lake communities consisting of relatively large 

species were maladapted to, and therefore, suppressed by, introduced rainbow trout.  

Surprisingly, colonization by certain imported montane species not only negated, but later 

reversed the negative impacts of non-native trout on alpine communities.  Analysis revealed that 

interspecific variation in body size best explained the interactive effects of the introduced 

invader and regional species pool on the local community.  Below, I provide context and 

potential explanations for these key findings.   

Although the regional species pool inocula significantly increased taxonomic richness 

across treatments (Fig. 3.1a), regional species failed to proliferate in the unstressed local 

communities and total zooplankton biomass increased only in the presence of fish (Fig. 3.1b).  

These results show that mass effects (i.e. high immigration rates) did not cause the biomass 
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response.  Rather, access to a regional species pool permitted the establishment of several fish-

tolerant colonists, which functionally overcompensated for (i.e. more than offset) the loss of 

biomass incurred by suppression of the more sensitive alpine taxa (Fig. 3.2).  These findings 

agree with the spatial insurance hypothesis that greater metacommunity diversity should impart 

resistance to stressed local communities via the supply of stress-tolerant individuals (Loreau et 

al. 2003); however, others have found mixed support.  Here, possible confounding factors are 

differences in the nature of stressors (i.e. type and magnitude; Thompson & Shurin 2012, 

Symons & Arnott 2013) or dispersal treatments, which may introduce novel predators (Atobe et 

al. 2014) or tolerant species with poor resource-use efficiency (Matthiessen et al. 2010, Eggers et 

al. 2012).  In comparison, I attribute increased invasion resistance by my dispersal treatment to 

both the severe initial impact of my invasion treatment, and the relatively high diversity and 

productive capacity of tolerant colonists in my regional species pool.   

The unexpected net positive effect of the regional species pool and an invasive predator 

on zooplankton richness and biomass was likely caused by size-selective fish predation releasing 

smaller regional species from the influence of larger, dominant alpine taxa.  For instance, large 

herbivores (e.g. Daphnia spp.) frequently monopolize food resources and competitively exclude 

smaller zooplankton species in the absence of visual predators (Gliwicz 1990).  I found that fish 

stimulated algal production, creating a glut of resources available for consumers able to cope 

with the invader (Appendix B-4).  The local community lacked such invasion-tolerant 

consumers, but aggregate community-level impacts were reversed by access to the regional 

species pool, which supplied several montane species likely already adapted to fish presence.  

This result shows how regional dispersal can mediate the local effects of biotic interactions 

(Cottenie & De Meester 2004, Howeth & Leibold 2010) and is consistent with other predator 

introductions that have increased prey diversity (e.g. Shurin 2001, Donald & Anderson 2003).   

Spatial insurance effects require adequate propagule pressure to permit establishment of 

taxa from neighboring communities (Loreau et al. 2003).  However, passive dispersal rates are 

difficult to measure and generally underestimated by colonization rates and population genetics 

(Bohonak & Jenkins 2003).  For example, Allee effects (i.e. mate limitation and reduced 

population growth at low densities) may constrain colonization success by obligate sexual 

species (Kramer et al. 2008).  Similar to the seeds of plants, crustacean zooplankton exhibit 
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specific traits enabling long-distance passive overland dispersal (Bohonak & Jenkins 2003).  For 

instance, cladocerans reproduce asexually to colonize novel habitats (Williamson & Reid 2010), 

and desiccation-resistant propagules (e.g. cladoceran ephippia and copepod diapause eggs) 

permit frequent transport by wind (Vanschoenwinkel et al. 2008) and waterfowl (via exterior 

attachment or passing through their digestive tracts; Proctor & Malone 1965, Frisch et al. 2007).  

In the context of stocked mountain lakes, zooplankton dispersal rates are uncertain and likely 

highly variable; however, attaching to boats of visiting anglers or flocks of migrating waterbirds 

could facilitate the movement of many migrants simultaneously.  Although the dispersal 

treatment likely exceeded natural dispersal rates over the course of the experiment and thus 

accelerated the arrival of potential colonists, the recovery of certain stocked mountain lakes (e.g. 

Donald & Anderson 2003) suggests that regional migrants would eventually establish themselves 

and bestow a comparable, if delayed, rescue effect in invaded natural ecosystems.  My results 

demonstrate the mechanistic potential for arriving species to mitigate local impacts of an invader, 

and underscore the conservation importance of maintaining regional biodiversity and 

connectivity in the face of global change.   

While the biotic resistance hypothesis has mostly been related to community invasibility 

(Ricciardi et al. 2013), my results suggest that diverse communities are also more resistant 

against the impacts of invasion.  I found that regional species pool inocula successfully increased 

the number of taxa in the zooplankton communities (Fig. 3.1a); however, the greater response 

diversity in the regional species pool also reflected the importance of species identity in driving 

biotic resistance.  Specifically, the responses of individual taxa varied and aggregate community 

responses to invasion were driven by the losses and gains of a few dominant taxa (Fig. 3.2).  The 

biomass contributions of most taxa changed very little with fish invasion, and those that 

responded positively (i.e. Bosmina longirostris, Ceriodaphnia quadrangula, and Diacyclops 

thomasi) were present only in the regional species pool (Fig. 3.2).  Although the more diverse 

regional species pool contained greater resistance, my findings agreed with those of other studies 

in which community functioning (Lepš et al. 2001) and response to invasion (Daneshgar & Jose 

2009) and species loss (Harvey et al. 2013) were mediated by the unequal contributions of 

certain dominant species (i.e. selection effects).   
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Significant trait–treatment associations suggest that differences in the invasion responses 

of individual taxa were related to variation in functional attributes.  I found that smaller body 

sizes were associated with the fish invasion and regional species pool treatments using RLQ and 

fourth-corner analyses (Fig. 3.3; Table B-5.4).  These associations linked community functional 

structure (i.e. abundance or productivity weighted distribution of species in functional trait 

space) with response to environmental change, and explained the reversal interaction between 

fish invasion and regional species pool treatments on community biomass.  The smaller body 

sizes associated with taxa from the regional species pool permitted a positive response with fish 

presence, while the larger body sizes associated with taxa from the local species did not.  

Selection for small-bodied species in invaded communities indicates that prey community body 

size distribution may forecast the ecological impacts of invasion by planktivorous fish.  Though 

the positive relationship between prey body size and vulnerability to visual aquatic predators is 

well established (Brooks & Dodson 1965), several additional traits potentially scale with body 

size (e.g. metabolism and dispersal ability) and others have noted the importance of this master 

trait for general ecosystem functioning and stressor resistance (e.g. Moore & Folt 1993, Hooper 

et al. 2005, Barnett et al. 2007, Ohlberger 2013, Boukal 2014).   

Another factor thought to influence invasion impacts is environmental context, but 

contrary to my predictions, impacts were unaffected by higher temperatures.  I had hypothesized 

that thermal stress would suppress larger stenothermic macrozooplankton, favouring smaller 

species that may also be less susceptible to fish predation.  However, warming treatments had no 

significant effect on either zooplankton taxonomic richness or total biomass, and did not interact 

with invasion treatments (Fig. 3.1; Table 3.2).  This was unexpected as biotic interactions 

involving fish are often sensitive to climatic variation (e.g. Gyllström et al. 2005, Hein et al. 

2014, MacLennan et al. 2015).  Though the warming treatment may have failed to generate 

significant effects because of its short duration or low magnitude of change, my results were 

similar to those of Jansson et al. (2010) who also found that fish presence exerted a much greater 

effect than temperature on cold-water lake zooplankton community structure.   

Together, these findings point to metacommunity functional structure as a key 

determinant of the local and regional impacts of an invader.  Though the relatively simple local 

alpine communities provided minimal resistance to invasion, my results show how importation 
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of a regional species pool can dramatically alter the functional outcome of invasions by 

increasing response diversity.  However, widespread invasions and other persisting regional 

stressors also increase the risk of biotic homogenization (Beisner et al. 2003) where diminished 

diversity may limit the resilience of native communities and their functional resistance to further 

environmental change (Olden et al. 2004).  By assessing changes in community functional 

structure through links between stressor impacts and the prevalence of specific functional traits, 

biodiversity experiments can avoid restrictive interpretations of species-level sampling effects 

(i.e. greater likelihood of detecting tolerant species with increasing richness; Huston 1997) and 

reveal a stronger predictive understanding of community stressor response (Mouillot et al. 2013).  

My results demonstrate the use of RLQ and fourth-corner analyses as tools for exploring the 

magnitude and direction of impacts from invasive species and other ecological stressors. 
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Chapter 4: Environmental and connectivity drivers of lake metacommunities 

along the North American Cordillera
 

Note:  a version of the chapter has been submitted for publication as Loewen CJG, Strecker AL, Larson GL, Vogel 

A, Fischer JM & Vinebrooke RD (2017). 

Introduction 

A long-standing challenge faced by ecologists and conservation biologists has been to unravel 

the multiple sources of variation affecting species composition of communities (Whittaker 1960, 

Jost et al. 2010, Anderson et al. 2011, Legendre & De Cáceres 2013).  Here, covariance among 

environmental drivers can often confound ecological interpretations from observational studies, 

especially when data are spatially structured or evaluated over large geographic extents (Dray et 

al. 2006, Qian & Ricklefs 2012).  Integration of species’ response traits is also required, as they 

modify the effects of deterministic processes (e.g. environmental filtering and non-random 

dispersal) on species composition (Thompson & Townsend 2006, Farjalla et al. 2012).  

Identification of critical environmental and spatial structures, and the traits that mediate species’ 

responses to these structures, is essential to filling knowledge gaps concerning how communities 

are assembled and respond to environmental changes (McGill et al. 2006, De Bie et al. 2012, 

Henriques-Silva et al. 2016, Loewen & Vinebrooke 2016).   

The metacommunity concept (Leibold et al. 2004) provides a flexible framework for 

considering regional (e.g. atmospheric conditions, dispersal limitation) and local (e.g. abiotic 

tolerance, biotic interactions) drivers of species composition (e.g. Cottenie & De Meester 2004).  

Considerable interest exists in ranking the relative importance of assembly processes and their 

support for metacommunity paradigms (e.g. Cottenie 2005, Soininen 2016); however, there is 

also concern over restricting focus to specific typologies and objectionable space-for-dispersal 

assumptions (Anderson et al. 2011, Brown et al. 2017).  To improve spatial interpretations, 

Monteiro et al. (2017) suggested that the dispersal limitation of communities be inferred from 

multispecies connectivity estimates, based on distances between occupied habitats.  While there 

is a long precedent of evaluating spatial processes in metapopulations using patch connectivity 

(e.g. Moilanen 1999, Hanski & Singer 2001), this approach has only recently been applied to 

reveal dispersal limitation in natural metacommunities (Monteiro et al. 2017).  Thorough 

investigation of the regional and local drivers of metacommunities also necessitates that the scale 
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of inquiry be sufficiently broad to capture the amount of variation in environmental and spatial 

variables required for rigorous testing (Willig et al. 2003, Brown et al. 2017).  For instance, 

Soininen (2016) pointed to studies conducted over large geographic scales as better highlighting 

the role of spatial structures (i.e. dispersal limitation); however, there have been few studies of 

metacommunity structure at even broader continental scales (e.g. Viana et al. 2016, Heino et al. 

2017).   

Lake communities are integrators of local catchment and atmospheric processes, 

positioning them well as sentinels of the multiple agents of global change (Jackson et al. 2016), 

especially in mountainous regions (Williamson et al. 2009).  For instance, climate factors and 

terrestrial subsidies regulate energy and mass inputs to aquatic food webs, respectively (Juday 

1940, Leavitt et al. 2009, Marcarelli et al. 2011).  Freshwater communities are further influenced 

by terrestrial landscape characteristics (e.g. land cover, lithology, and topography), which 

mediate local hydrological and water quality conditions (Likens & Bormann 1974, D’Arcy & 

Carignan 1997, Hudson et al. 2003, Camarero et al. 2009), and invasive species, including 

globally introduced predatory salmonids (Crawford & Muir 2008, MacLennan et al. 2015).  

Mountain regions are also excellent venues for addressing biogeographical questions concerning 

species diversity because they inherently contain high levels of environmental heterogeneity 

(Lomolino 2001).  Further, mountains are the source of headwaters and often exist in remote or 

protected areas, thereby offering unique opportunities for detecting subtle effects of regional 

drivers not blurred by the confounding impacts of more pronounced local perturbations (e.g. 

human land-use; Kollmair et al. 2005).   

I examined zooplankton beta diversity patterns (defined here as variance in species 

composition; Legendre & De Cáceres 2013) across the North American Cordillera to infer the 

relative importance of community assembly processes and generate hypotheses of how these 

communities respond to environmental change.  Zooplankton are useful model organisms in 

ecology and biogeography because they disperse widely, have central roles in aquatic food webs, 

and reproduce rapidly – making them responsive to environmental variation (Lampert 2006).  

Given the vast geographic scale of my investigation (spanning nearly 30° of latitude), I expected 

that spatially structured environmental filters would explain a large proportion of total species 

variance.  For instance, I predicted that strong regional climate signals would covary with space 
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and climate-sensitive land cover types (e.g. forested areas and wetlands).  A functional approach 

was also used to uncover deterministic links among species’ traits and environmental and spatial 

constraints.  Here, I hypothesized that occurrence of smaller species better adapted metabolically 

to thermal variation (Moore et al. 1993) and avoidance of size-selective predation (Brooks & 

Dodson 1965, Loewen & Vinebrooke 2016) would be less related to lake temperature and the 

presence of invasive fish, respectively.  Finally, if dispersal limitation is trait-based, then the 

spatial configuration of suitable habitats should impose non-random species selection (Edelaar & 

Bolnick 2012).  Thus, I also predicted stronger spatial patterning of obligate sexual than 

cyclically parthenogenetic asexual species due to suspected Allee effects (i.e. mate limitation; 

Kramer et al. 2008), as overland dispersal by zooplankton is passive and potential topographic 

barriers to dispersal are common in mountain regions.   

Materials and methods 

Study area and zooplankton data 

Crustacean zooplankton communities were assessed for 1,234 mountain lakes and ponds along 

the North American Cordillera, from the Mackenzie Mountains in the Yukon Territory to the 

Sierra Nevada in California, USA (Fig. 4.1).  The geographic positions of sampling locations 

spanned large, continental-scale latitudinal (29.6° or 3,292 km), longitudinal (17.7° or 1,585 

km), and elevation (3,741 m asl) gradients.  Historical data were obtained following an extensive 

review of available literature.  Data sources included 30 published articles, 32 government 

reports, and results from previously unpublished surveys (see Appendix C-1 for full list of 

references).  Unpublished results include internal reports communicated by government 

scientists (Environment Canada, National Park Service, and United States Forest Service) and 

supplementary records from past surveys.  Data for each site are cumulative records of all 

species occurrences.  Most samples had been collected over the past 50 years (Fig. 4.2).  

Although sampling effort varied among locations (1–11 years), samples were generally collected 

following a standard protocol for evaluating pelagic zooplankton communities during the open-

water season (May–September).  Zooplankton were collected by pulling conical nets (mesh-size 

of 250 µm or smaller) through the water column, either vertically from near the center of the lake 

or horizontally from the shore, depending on depth.  Samples were preserved with ethanol or 

dilute formalin solution and later enumerated by stereoscopic microscopy.   
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Fig. 4.1  Surface water sampling locations across the North American Cordillera.  Shaded relief 

imagery developed by Esri.  Map projection is custom complex Transverse Mercator.   
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Fig. 4.2  Distribution of zooplankton sampling events.  Counts are the number of locations 

sampled each year (1922–2015).  Counts do not indicate duplicate samples collected within a 

single year.  Exact sampling dates were uncertain in some instances and several were inferred 

from associated water quality monitoring programs.   

Species-level records were standardized to follow taxonomy established by Edmondson 

(1959), with updates.  Species occurring in fewer than 5% of sites were excluded from analyses 

because records of rare species were deemed less reliable and also contribute less to turnover 

than common species in aquatic metacommunities (Heino & Soininen 2010).  Records for certain 

potentially hybridizing or otherwise difficult to distinguish species were combined to improve 

consistency: Daphnia pulicaria was merged with Daphnia pulex, Diaphanosoma brachyurum 

was merged with Diaphanosoma birgei, Diacyclops bicuspidatus thomasi was merged with 

Diacyclops thomasi, and Daphnia galeata mendotae and Daphnia mendotae were merged with 

Daphnia galeata.  Only species-level identifications were considered.  Twenty-nine species were 

evaluated and assigned categorical traits based on their reproductive biology and body size 

(Table 4.1).  Reproductive categories represent a major functional division between cyclically 

parthenogenetic asexual cladoceran and oblitate sexual copepod zooplankton. Body sizes 

classifications (small or large) were based on a natural break in the distribution of body lengths, 

at 1.37 mm.  Historical body length measurements (MacLennan et al. 2015, Loewen & 

Vinebrooke 2016) were supplemented with records compiled by Hébert et al. (2016).  For some 

species where body length measurements were unavailable, length estimates were taken from a 

similar member of the same genus.   
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Table 4.1  Zooplankton functional trait classifications and estimated body lengths (mm). 

Traits Asexual Sexual 

Small Chydorus sphaericus (0.32)
 

Alona guttata (0.35)
 

Bosmina coregoni (0.40)
 

Bosmina longirostris (0.40)
 

Ceriodaphnia quadrangula (0.55)
 

Diaphanosoma birgei (0.61)
 

Holopedium gibberum (0.77)
 

Polyphemus pediculus (0.83)
 

Daphnia longiremis (0.84)
 

Daphnia dentifera (1.17)
 

Microcyclops varicans (0.59) 

Diacyclops thomasi (0.92) 

Leptodiaptomus angustilobus (1.05) 

Leptodiaptomus signicauda (1.05) 

Eucyclops agilis (1.10) 

Acanthocyclops vernalis (1.20) 

Leptodiaptomus tyrrelli (1.24) 

   

Large Daphnia galeata (1.50)
 

Daphnia pulex (1.75) 

Daphnia schödleri (1.93) 

Daphnia middendorffiana (2.00) 

 

Cyclops scutifer (1.50)
 

Epischura nevadensis (1.75) 

Aglaodiaptomus leptopus (2.00) 

Macrocyclops albidus (2.00) 

Hesperodiaptomus arcticus (2.50) 

Hesperodiaptomus franciscanus (2.50) 

Hesperodiaptomus kenai (2.50) 

Hesperodiaptomus shoshone (2.50) 

 

Environmental variables 

Sets of environmental predictors, including climate (mean annual air temperature, total annual 

precipitation, and mean incoming solar radiation), catchment/lake conditions (morphometry, land 

cover, and lithology), and introduced fish status (present/absent), were estimated at each 

sampling location (Table 4.2).  Climate and catchment/lake variables were derived using ArcGIS 

for Desktop (Esri 2016).  Variables were natural log-transformed to increase linearity where 

doing so improved model fit, and standardized (i.e. centered and scaled) to account for differing 

measurement units.  Fish introduction status was estimated at each waterbody following a review 

of historical salmonid stocking and occurrence records (see Appendix C-2 for full bibliography).  

A potential for zooplankton communities to be affected by introduced fish was assumed where 

records indicated recent stocking efforts or presence of exotic species prior to sampling.  
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Waterbodies were assumed to have not been stocked in the absence of such historical accounts.  

Fish introduction status was treated as a binary variable (present or absent).   

Table 4.2  Summary statistics for environmental parameters. 

Parameter Min Max Mean Median SD 

Climate      

Annual Mean Air Temperature (K)
 

264 284 275 275 3 

Annual Total Precipitation (mm)
 

253 3,375 1,173 770 761 

Mean Solar Radiation (WH/m
2
)

 
528,484 1,191,327 859,434 882,191 108,794 

     

Catchment/Lake – Land Cover (proportion)     

Agricultural 0 0.0050 0.000005 0 0.0001 

Barren Land 0 1.0000 0.2191 0.0598 0.2857 

Developed (Non–Vegetated) 0 0.2655 0.0019 0 0.0133 

Forest (Coniferous) 0 1.0000 0.4756 0.4967 0.3525 

Forest (Deciduous) 0 0.7866 0.0146 0 0.0466 

Forest (Mixedwood) 0 0.2615 0.0047 0 0.0193 

Grassland/Herbaceous 0 0.9192 0.0770 0.0302 0.1199 

Perennial Ice/Snow 0 1.0000 0.0227 0 0.0761 

Shrub/Scrubland 0 1.0000 0.1235 0.0742 0.1464 

Surface Water 0 0.4884 0.0506 0.0318 0.0618 

Wetlands (Emergent/Herbaceous) 0 0.4286 0.0045 0 0.0243 

Wetlands (Wooded/Shrub) 0 0.6000 0.0058 0 0.0291 

     

Catchment/Lake – Lithology (proportion)     

Acidic Plutonics 0 1.0000 0.1349 0 0.3086 

Acidic Volcanics 0 0.9490 0.0053 0 0.0530 

Carbonate Sedimentary Rock 0 1.0000 0.0220 0 0.1173 

Evaporite 0 0.0028 0.000003 0 0.00009 

Metamorphic Rock 0 1.0000 0.0558 0 0.2025 

Mixed Sedimentary Rock 0 1.0000 0.2847 0 0.4294 

Non–Acidic Plutonics 0 1.0000 0.0117 0 0.0807 

Non–Acidic Volcanics 0 1.0000 0.3167 0 0.4330 

Non–Carbonate Sedimentary Rock 0 1.0000 0.1261 0 0.2911 

Pyroclastics 0 0.7063 0.0019 0 0.0253 

Unconsolidated Sediment 0 1.0000 0.0408 0 0.1435 

      

Catchment/Lake – Morphometry      

Catchment Area (m
2
) 3,469 46,543,543,866 216,487,160 1,490,667 1,852,186,244 

Catchment Aspect (°) 3 322 169 170 48 

Catchment Slope (°) 0.0002 40.6467 16.5434 16.5366 9.1297 

Lake Area (m
2
) 95 592,000,943 5,141,734 47,264 35,008,039 

Lake Perimeter (m) 43 680,290 8,708 974 38,689 

      

Fish Introduction (present/absent) 0 1 0.49 0 0.50 
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Watershed delineation and subsequent geoprocessing were based on one arc-second (<30 

m) resolution digital elevation maps (DEMs) from the National Elevation Dataset (U. S. 

Geological Survey 2016a), and the locations of 1:24,000 scale hydrological features from the 

National Hydrography Dataset (U.S. Geological Survey 2016b) and the National Hydrology 

Network (Natural Resources Canada 2004).  Geographic coordinates for sampling locations were 

spatially joined with waterbody polygons and confirmed/corrected using satellite imagery (Esri 

2016).  Study areas were projected and analyzed using standard state plane or regional 

projections to minimize local measurement error.   

Terrain preprocessing and watershed delineation procedures were adapted from Esri 

(2013) for dendritic drainages.  DEM manipulation involved filling all sinks to resolve erroneous 

pits and ensure continuous flow through each hydrological system.  DEMs were then 

reconditioned to emphasize known drainage networks by burning a 10 m trench along stream 

polylines (AGREE method; Hellweger 1997).  Because DEMs lacked bathymetry information, 

lake polygons were levelled and dropped by 10 m to improve consistency around their 

perimeters.  I then filled any new sinks in the DEMs (created during reconditioning or levelling 

procedures) and delineated watersheds for each lake polygon from estimated flow direction 

grids.   

Catchment and lake boundaries were used to overlay grids of relevant climate and 

landscape attributes and calculate zonal summaries for each sampling location.  Mean catchment 

aspect, mean catchment slope, and minimum lake elevation were estimated from unprocessed 

DEMs.  Catchment and lake sizes were calculated directly from their feature layers.  Fifty year-

mean annual total precipitation at each catchment and annual mean air temperature at each lake 

surface (1950–2000) were calculated from 30 arc-second (~1 km) grids interpolated from 

monthly climate records (Hijmans et al. 2005, Commission for Environmental Cooperation 

2011).  Mean incoming solar radiation was estimated at each waterbody using the Area Solar 

Radiation tool (Esri 2016).  Direct and diffuse insolation (WH/m
2
) was calculated over an 18 

week period (May 20–September 23), approximating the open-water season in North American 

mountain lakes.  Calculations were based on geographic positions (latitude and elevation), 

proximal topography (i.e. shadow cover), and atmospheric conditions (i.e. cloud cover).  

Waterbody elevations and 20 km upward-looking viewsheds (512 x 512 cells) were estimated 
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from unprocessed DEMs.  Mean latitude and cloud cover (1950–2000; University of East Anglia 

Climatic Research Unit 2012) were estimated individually for groups of waterbodies occupying 

cells on a 0.5 degree grid.  Cloud cover estimates were used to calculate transmittivity (t) as: 

𝑡 = (0.7 × 𝑃𝑐𝑙𝑒𝑎𝑟) + (0.3 × 𝑃𝑐𝑙𝑜𝑢𝑑𝑦) 

and diffuse proportion (d) as: 

𝑑 = (0.2 × 𝑃𝑐𝑙𝑒𝑎𝑟) + (0.7 × 𝑃𝑐𝑙𝑜𝑢𝑑𝑦) 

where Pclear and Pcloudy were the estimated proportions of clear and cloudy days, respectively 

(adapted from Huang et al. 2008).  The standard overcast model was used to estimate diffuse 

radiation (i.e. incoming flux varied with zenith angle).  Viewshed calculations used 64 azimuth 

directions to capture complex topography.   

 Land cover characteristics at each catchment were calculated from one arc-second (<30 

m) resolution grids derived by the Earth Observation for Sustainable Development of Forests 

(2006) project and the National Land Cover Database (U.S. Geological Survey 2014) from 

various Landsat imagery and ancillary data (circa 2000–2001).  The data were merged and 

reclassified to 12 cover classes, including: surface water, perennial ice/snow, developed (non-

vegetated), barren land (rock/sand/clay), coniferous/evergreen forest, deciduous/broadleaf forest, 

mixedwood forest, shrub/scrubland, grassland/herbaceous, agricultural (cropland/pasture), 

wooded/shrub wetland, and emergent/herbaceous wetland.  Undefined areas (including cloud 

cover and shadows) were subtracted from the total catchment area before calculating the 

proportional representation of each land cover class.   

Catchment lithology was calculated from 7.5 arc-second (<250 m) resolution grids 

assembled for the Global Ecological Land Unit Map (Sayre et al. 2014).  Lithology classes 

included acidic plutonics, acidic volcanics, carbonate sedimentary rock, evaporite, metamorphic 

rock, mixed sedimentary rock, non-acidic plutonics, non-acidic volcanics, non-carbonate 

sedimentary rock, pyroclastics, and unconsolidated sediment.  As with land cover estimates, 

undefined areas were subtracted from the total catchment area before calculating the proportional 

representation of each lithology class.   
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Spatial variables 

Sets of spatial predictors, including geographic positions, spatial autocorrelation (space), and 

patch connectivity, were estimated at each sampling location.  Geographic positions included the 

latitude, longitude, and elevation of each waterbody.  Positive spatial autocorrelation (space) was 

modelled using distance-based Moran’s eigenvector maps (dbMEMs), which were derived from 

a matrix of minimum planar distances between lake polygons, truncated by the largest distance 

in a minimum spanning tree (290,189 m; Dray 2006, Dray et al. 2017).  Tests using larger 

truncation thresholds did not improve model fit (results not shown).  Distances were estimated 

using a custom Transverse Mercator projection centered over the study area.   

Dispersal limitation was inferred from patch connectivity using methods and code from Monteiro 

et al. 2017.  Connectivity was modeled using two multispecies metrics, distance to nearest 

occupied lake and average connectivity (Hanski & Singer 2001), computed by combining single 

species estimates.  Average connectivity was calculated as: 

𝑐𝑖𝑘 = ∑ 𝑜𝑗𝑘

𝑛

𝑖=1
𝑖≠𝑗

exp (− 
𝑑𝑖𝑗

𝛼
) 

where c is the connectivity value for the kth species at lake i, o is the occupancy state (present = 

1 or absent = 0) of species k at lake j, d is the minimum planar distance between lake polygons i 

and j, and α is a constant controlling the exponential dispersal kernel (Monteiro et al. 2017).  As 

zooplankton dispersal rates are poorly understood, especially at large scales, an iterative 

procedure was used to select single α values for the overall community and each functional 

group that maximized species variance explained by c (Monteiro et al. 2017).  I tested 100 values 

of α between the minimum (1 m) and maximum (3,482,204 m) distances between lake polygons.   

Statistical analyses 

Variation in species composition linked to environmental and spatial predictors was assessed by 

transformation-based redundancy analysis (tbRDA) and variation partitioning of Hellinger-

transformed species presence-absence data (Peres-Neto et al. 2006, Legendre & De Cáceres 

2013, Monteiro et al. 2017).  Hellinger pre-transformation on presence-absence data preserves 

Ochiai distances, which are metric, and is appropriate for canonical variation partitioning 
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(Legendre & De Cáceres 2013, Monteiro et al. 2017).  Parsimonious environmental and spatial 

autocorrelation models were obtained by partial tbRDA and automatic forward stepwise 

selection, using permutation tests (with 100,000 residual iterations) to find statistically 

significant explanatory variables that maximized explained variance (i.e. adjusted R
2
; Blanchet et 

al. 2008, Oksanen et al. 2017).  Forward selection was also applied to obtain optimal climate and 

catchment/lake predictor sets (see Table C-3.1 in Appendix C-3 for final environmental models).   

Following model selection, fractions of variation linked to environmental and spatial 

predictors were evaluated by variation partitioning analyses.  First, the relative importance of 

environment was compared against the space and geographic predictor sets (Model 1).  I then 

probed the environmental component, evaluating variation attributable to specific sets of 

environmental predictors (climate, catchment/lake, and introduced fish) while controlling for the 

effects of space (Model 2).  The total and unique fractions of variation attributable to individual 

environmental predictors (e.g. solar radiation and separate land cover classes) were also 

estimated, treating the full forward selected environmental model and space as covariables 

(Model 3).  Finally, I assessed the spatial component of variation in greater detail, comparing 

spatial autocorrelation (space), patch connectivity, and environmental components (Model 4).  

Analyses were repeated for each reproductive (sexual vs. asexual) and body size (small vs. large) 

group to evaluate the role of traits in mediating species’ response to environmental and spatial 

structures.   

All analyses were conducted using R (R Core Team 2016).  Hellinger transformation, 

model selection, redundancy analysis, and variation partitioning analysis were conducted using 

the ‘decostand’, ‘ordi2step’, ‘rda’, and ‘varpart’ functions in the ‘vegan’ package (Oksanen et al. 

2017).  Distance-based Moran’s eigvenvector maps were computed using the ‘dbmem’ function 

in the ‘adespatial’ package (Dray et al. 2017).  Explanatory connectivity matrices were computed 

using methods and code from Monteiro et al. 2017.  A Fisher’s exact test was conducted using 

the base R function (R Core Team 2016) to confirm that the traits were orthogonal (P = 0.26).   

As this study is a quantitative synthesis of multiple historical data sources, there exists 

potential for my results to reflect biases among individual sampling locations or studies.  To 

evaluate the extent to which my interpretations may be confounded by variations in sampling 

effort, sampling year, or data source (i.e. research group or taxonomist), I conducted a series of 
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sensitivity analyses.  Results of these analyses indicate that my findings are robust and support 

the following interpretations (see Appendix C-4 for details).   

Results 

Environment and space best explained variance in species composition (Model 1), describing 

22.86 and 24.73% of total variance, respectively (Fig. 4.3a).  Geography explained 15.87 % of 

total species variance; however, only 0.28 % of variation was uniquely attributed to geographic 

position (compared to 3.24 and 5.40 % for environment and space, respectively).  The majority 

of species variance linked to geography also covaried with environment and space (12.81 %; Fig 

4.3a).  These results showed that species variance along the geographic scale of the investigation 

was largely captured by the environmental and spatial autocorrelation predictors considered, 

though each total and unique fraction of species variance was significant (Table C-3.2).   

The predictive variables better explained variance among obligate sexual (copepod) and 

large species than asexual (cladoceran) and small species (Fig. 4.3b).  For instance, space 

uniquely explained 7.15 and 8.21 % of species variance for sexual and large species, 

respectively, compared to 4.66 and 4.40 % of variance for asexual and small species.  Similarly, 

environmental variables uniquely captured 4.27 and 2.95 % of species variance for large- and 

small-bodied species, respectively, though variance attributable to environment was similar 

among sexual and asexual species (3.17 and 3.53 %, respectively).  Otherwise, the ranked 

importance of explanatory matrices was the same across all trait groups (i.e. space > environment 

> geography; Fig. 4.3b) and all testable fractions of species variance in Model 1 were significant 

(Table C-3.2).   
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Fig. 4.3  (Model 1) Total, unique, and shared proportions of variance in species composition 

(adjusted R
2
) attributable to environment (Env), space (Spa), and geography (Geo) predictor sets 

for the (a) overall community (n = 1,234) and (b) species trait groups (n = 1,155, 1,103, 1,014, 

and 1,142 for sexual, asexual, large, and small species, respectively).  Res refers to model 

residuals.   

Analysis of environmental predictor sets when controlling for spatial autocorrelation 

(Model 2), showed that variance in species composition was more influenced by local 

catchment/lake features than climate or fish introduction (Fig. 4.4a).  Each environmental 

predictor set was significant, but most variance was linked to space (Table C-3.3).  For instance, 

covariance among climate, catchment/lake features, and space accounted for the largest fraction 

of explained variation, both overall (Fig. 4.4a) and across trait groups (Fig. 4.4b).  Although fish 
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introduction explained relatively little variation compared to the multi-parameter catchment/lake 

and climate predictor sets (Fig. 4.4), fish were of greater importance in the context of unique 

variance linked to individual environmental parameters (see Model 3; Fig. 4.5).   

 

Fig. 4.4  (Model 2) Total, unique, and shared proportions of variance in species composition 

(adjusted R
2
) attributable to climate (Cli), catchment/lake (Cat), fish introduction (Fis), and space 

(Spa) predictor sets for the (a) overall community (n = 1,234) and (b) species trait groups (n = 

1,155, 1,103, 1,014, and 1,142 for sexual, asexual, large, and small species, respectively).  Res 

refers to model residuals.   
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Fig. 4.5  (Model 3) Total and unique proportions of variance in species composition (adjusted 

R
2
) attributable to individual environmental variables for the overall community (n = 1,234) and 

species trait groups (n = 1,155, 1,103, 1,014, and 1,142 for sexual, asexual, large, and small 

species, respectively).  Unique species variance estimates are semipartials (conditioned by other 

environmental [Env] parameters and space [Spa]).  Orange shaded variables are climate (Cat) 

parameters, blue shaded variables are catchment/lake (Cli) parameters, and the pink shaded 

variable is fish status (Fis).   
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Climatic factors were the most important environmental variables individually (Model 3); 

however, the relative ranking of parameters varied based on functional traits (Fig. 4.5).  For 

instance, air temperature and precipitation explained more variance among large species, while 

lake area was of greater importance to smaller species (Fig. 4.5).  Environmental associations 

also varied based on reproductive biology as obligate sexual copepods had stronger links to 

barren lands than asexual cladocerans, which were generally more associated with forested areas 

(Fig. 4.5).  Total variance attributable to introduced fish was of intermediate importance; 

however, fish effects were generally less spatially autocorrelated than other predictors and thus 

variance uniquely linked to fish was relatively large and exceeded that of ang single 

catchment/lake variable (Fig. 4.5).  Fish effects also varied between trait groups as total and 

unique species variance (controlling for both environmental and spatial parameters) were 

marginally greater for larger species (Fig. 4.5).  Total variance linked to fish was also greater for 

asexual species; however, fish effects were more spatially autocorrelated for asexual species, 

making their interpretation less certain (Fig. 4.5).  Total fractions of species variance were 

significant for nearly all individual environmental parameters (except evaporate lithology for 

small species); however, unique variance partitions conditioning for space were insignificant for 

several land cover and lithology types (Table C-3.1).   

Connectivity explained less total species variance (16.99%) than the environment and 

space predictor sets (Model 4; Fig. 4.6a).  Connectivity and space, which were both based on 

distances between lake polygons, covaried among themselves and with environment (Fig. 4.6a).  

Species variance uniquely attributable to connectivity was relatively low (0.57 %), but 

significant (Table C-3.4).  The fractions of variance attributed to potential dispersal limitation 

(i.e. unique variation attributable to connectivity in addition to that shared with space) were 

greatest for obligate sexual and large species (Fig. 4.6b).   
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Fig. 4.6  (Model 4) Total, unique, and shared proportions of variance in species composition 

(adjusted R
2
) attributable to environment (Env), space (Spa), and connectivity (Con) predictor 

sets for the (a) overall community (n = 1,234) and (b) species trait groups (n = 1,155, 1,103, 

1,014, and 1,142 for sexual, asexual, large, and small species, respectively).  Res refers to model 

residuals. 

Discussion 

I found that zooplankton beta diversity across the North American Cordillera was explained by 

multiple covarying local and regional drivers, and mediated by species’ functional traits.  

Climate, catchment/lake, and spatial components of the geographic factor (i.e. autocorrelation) 

best explained variance in species composition (Fig. 4.4), supporting biogeographic theories that 
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relate spatial variation and geographic gradients to the origin and maintenance of species 

diversity patterns (e.g. Lomolino 2001, Willig et al. 2003).  Local catchment/lake features were 

the most important set of environmental predictors (Fig. 4.4); however, the relative importance 

of single parameters varied by trait, and climate and fish introduction generally captured the 

most unique variation individually (Fig. 4.5).  Species variance showed a large amount of spatial 

structure, but because processes other than dispersal can cause spatial autocorrelation, I used a 

multispecies patch connectivity framework to infer dispersal dynamics (Monteiro et al. 2017).  I 

found that patch connectivity was more important for larger, sexual (copepod) species, but this 

broader regional factor explained less variation than local environmental constraints (Fig. 4.6).  

Together, my findings highlight the hierarchical importance of local and regional factors of 

metacommunity assembly in mountain lakes, and provide insight into how communities may 

respond to future environmental changes.   

The broad geographic gradients covered by my study enabled a unique perspective on 

biodiversity patterns in relation to environmental variation.  Climate factors and several 

catchment/lake features (e.g. lithology and climate-mediated land cover types) were spatially 

structured and covaried with geographic position (Fig. 4.3).  However, the limited influence of 

geography relative to environment (in terms of uniquely explained variation; Fig. 4.3) provided 

evidence for determinism in the system, as neutral theory predicts that community dissimilarity 

should primarily increase with distance (Willig et al. 2003).  Rather than constituting opposing 

viewpoints, though, random and non-random processes may jointly influence community 

composition with varying effects on species mediated by functional traits (Thompson & 

Townsend 2006).  For instance, I found that both total and unique variation attributable to 

environment were greater for larger species (Fig. 4.3), a finding that agreed with Farjalla et al. 

(2012), who proposed that determinism increases with organism size.  My results also suggested 

that determinism is greater for sexual species, perhaps because limited dispersal (and thus 

potential to generate rescue or mass effects) reduces their occurrence under less favourable 

conditions.   

The lead ranking of catchment/lake features across functional trait groups (Fig. 4.4) 

highlights the importance of terrestrial–aquatic linkages.  Terrestrial influences on aquatic 

ecosystems include direct energy and mass subsidies (Juday 1940, Leavitt et al. 2009, Marcarelli 
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et al. 2011) in addition to indirect effects of catchment morphometry, lithology, and land cover 

on local hydrological and water quality conditions (e.g. D’Arcy & Carignan 1997, Camarero et 

al. 2009).  Here, catchment morphometry (particularly slope) dictates local water residence time 

and overland flow rates, as well as the transport of various dissolved and particulate substances 

(including carbon, phosphorous, and nitrogen; Likens & Bormann 1974, D’Arcy & Carignan 

1997).  Similarly, groundwater inputs to mountain lakes are affected by catchment lithology, 

which influences their conductivity, alkalinity, and concentrations of heavy metals (Marchetto et 

al.1995, Füreder et al. 2006, Camarero et al. 2009).  For instance, weathering of highly soluble 

carbonate rocks is a major contributor to elevated pH and total alkalinity in alpine waters 

(Camarero et al. 2009).  Allochthonous (i.e. terrestrially-derived) inputs, which vary with land 

cover, subsidize aquatic food webs and further alter water chemistry (Likens & Bormann 1974).  

Human-impacted land cover types (e.g. agricultural and urbanized lands), which are of critical 

relevance globally (Carpenter et al. 1998), had little influence on community variation in my 

study because mountain headwaters are largely undeveloped and most are in protected areas 

(Kollmair et al. 2005).  While topography and surficial geological conditions are inherently 

stable, land cover types such as forests, wetlands, and perennial snow and ice (i.e. glaciers) are 

relatively sensitive to environmental changes.  For example, glaciers are projected to decrease by 

90% by 2100 in the Canadian Rocky Mountains (Clark et al. 2015), and to disappear in the USA 

by 2030 (Hall & Fagre 2003).  Aquatic habitat coupling with these sensitive land cover types is 

critical, as their influence on the loading of suspended sediments and dissolved nutrients into 

freshwater ecosystems will have implications for future water quality and productivity (D’Arcy 

& Carignan 1997, England & Rosemond 2004, Vinebrooke et al. 2010).   

My results also suggest that climate has a critical role in species sorting along geographic 

gradients, as precipitation, temperature, and solar radiation parameters explained the most 

variation in overall community composition individually (Fig. 4.5).  These results support 

previous studies, which have shown that larger species are more affected by temperature (Moore 

et al. 1993), and that solar radiation is a major factor of diversity patterns in temperate lakes 

(Pinel-Alloul et al. 2013, Lyons & Vinebrooke 2016).  However, the chief importance of total 

annual precipitation regimes in driving planktonic community composition across mountain 

lakes is less recognized (but see phytoplankton response from Parker et al. 2008).  Precipitation 

can affect lake alkalinity and inputs of heavy metals, dissolved organic carbon, and turbidity, 



82 

 

influencing water clarity and productivity (e.g. Hudson et al. 2003), but the most obvious effect 

of precipitation is influence on local hydrology.  Across the study region, lakes received the most 

precipitation during winter months (November–February; data not shown), when precipitation 

falls as snow.  The total volume of accumulated winter snowpack subsequently dictates critical 

spring-time hydrological conditions.  For instance, low winter snow accumulation may lead to 

reduced water levels or desiccation in smaller temporary ponds, while high rates of runoff from 

large snowpack may disrupt pelagic biota in mountain lakes (Girdner & Larson 1995).  Even in 

remote regions, meltwater can provide ion pulses or deposit persistent pollutants accumulated 

over winter snowpack (Carrera et al. 2001).  The relatively large proportions of species variance 

attributable to temperature, solar radiation, and precipitation highlight the vulnerability of 

mountain zooplankton communities to climate change, which may be compounded by climate-

mediated changes to other environmental variables, such as land cover alterations or enhanced 

predation rates by exotic fishes (Messner et al. 2013, Symons & Shurin 2016).   

Salmonid introductions have impacted freshwater ecosystems globally (Crawford & Muir 

2008).  In western North America, stocking programs have spread native fish species (e.g. 

Oncorhynchus clarkii and O. mykiss) outside of their historical ranges and introduced exotic 

species that had previously not occurred (e.g. Salvelinus fontinalis and Salmo trutta) – often into 

historically fishless lakes where native biota were maladapted to the alien predators (Knapp et 

al.2001).  I found that fish introductions exerted a relatively large unique effect on zooplankton 

composition, which varied based on species’ functional traits (Fig. 4.4).  However, the total 

variance explained by fish introduction was less than anticipated, possibly because their effects 

were confounded by differences between stocking programs (e.g. species or density stocked), the 

overlapping distributions of native fishes, or environmental context (e.g. Messner et al., 2013).  

As predicted from previous studies (e.g. Brooks & Dodson 1965, Loewen & Vinebrooke 2016), 

variation attributable to the introduced predators was size-selective and marginally greater for 

large species (Fig. 4.4b).  Further, I found evidence that fish effects were stronger for asexual 

(cladoceran) species; however, this result is uncertain because species variance was confounded 

by spatial autocorrelation (Fig. 4.4b).  A possible explanation for a greater influence of fish on 

asexual zooplankton is differences in swimming behavior and predatory escape response.  For 

instance, Daphnia spp. (which are cyclically parthenogenic) are conspicuous to visual 

planktivores and more easily captured than obligate sexual (copepod) species (Hutchinson 1967, 
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Drenner et al. 1978).  My results demonstrate the historical legacy of fish stocking in North 

America and, controlling for confounding local and regional factors, highlight the general 

sensitivity of freshwater communities to invasive predators.   

Zooplankton can passively disperse between isolated lake habitats by wind or animal 

vectors.  For instance, desiccation-resistant propagules can attach to the exterior of passing 

organisms (including migrating waterfowl or human anglers) and survive long-distance transport 

in bird digestive tracts (Green & Figuerola 2005).  Because zooplankton dispersal rates are 

challenging to measure directly, ecologists often infer dispersal dynamics from species’ spatial 

distributions.  I estimated community dispersal limitation using multispecies patch connectivity 

estimates derived from common metapopulation metrics (Monteiro et al. 2017).  This novel 

approach permits evaluation of dispersal patterns without space-for-dispersal substitution, a 

frequent assumption that has been contested because patterns of spatial autocorrelation may be 

confounded by unmeasured environmental variables, which are themselves spatially structured 

(Anderson et al. 2011, Brown et al. 2017, Monteiro et al. 2017).  I found that connectivity 

covaried strongly with space, since both predictors were based on distances between lakes; 

however, connectivity explained less variance in species composition (Fig. 4.6).  I also found 

that connectivity explained less variation than environment (Fig. 4.6), suggesting that species 

sorting along environmental gradients may be more important than dispersal limitation in 

mountain zooplankton communities.  Still, I found that a considerable amount of spatial 

autocorrelation remained unaccounted for by environment and connectivity predictors (Fig. 4.6), 

pointing to the existence of other unmeasured sources of spatial variation.  I also discovered that 

variation attributable to connectivity was greatest for large and obligate sexual species (Fig. 

4.6b).  These findings show that zooplankton dispersal is non-random, and support past studies 

that have identified size-selective passive dispersal limitation (e.g. van de Meutter et al. 2008, De 

Bie et al. 2012) and the potential for Allee effects to constrain colonization by obligate sexual 

copepods (Kramer et al. 2008).   

While my results are correlative, and thus cannot provide causal evidence of community 

assembly or species’ response to environmental constraints, the patterns observed in my study 

generate several interesting hypotheses.  For instance, the prevalence of trait-based variation in 

response to environmental and spatial structures highlights the importance of deterministic 
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processes driving zooplankton community composition.  The role of climate factors, in addition 

to other climate-sensitive catchment attributes (e.g. barren, forest, wetland, and perennial 

ice/snow land covers), underscores the sensitivity of mountain lake communities to climate 

change.  In particular, the discovered significance of annual precipitation suggests that changes 

to rain/snow regimes may exert considerable influence on communities by altering their local 

hydrological and/or water quality conditions.  Conversely, several important environmental 

variables are inherently constant (e.g. lithology and catchment morphology) and thus may act to 

stabilize communities in times of change.   

To my knowledge, this study is the largest and most comprehensive assessment of 

freshwater zooplankton beta diversity to date – and the first to organize the trait-based 

hierarchical importance of climate, terrestrial–aquatic habitat coupling, invasive species, and 

patch connectivity on metacommunity structure at a continental scale.  Thus, my findings offer 

insights into the potential impacts of increasingly rapid environmental changes on aquatic 

biodiversity and their functional consequences across a broad range of lakes.  For instance, larger 

species were more influenced by temperature and fish introduction, suggesting they may be 

sensitive to climate warming and biological invasions.  Larger and sexual (copepod) species 

were also the most structured by patch connectivity, highlighting how they may have limited 

potential to track changing environmental conditions.  In contrast, variation in smaller and 

asexual (cladoceran) species were less structured by temperature and connectivity, reflecting 

perhaps their greater dispersal ability and potential for rescue effects on stressed populations or 

communities.  These findings suggest that species’ traits play an important role in deterministic 

species sorting and dispersal processes that will mediate future community responses to global 

change.     
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Chapter 5: Conclusions 

 

Research synthesis and implications 

My doctoral research addresses several scientific knowledge gaps concerning the consequences 

of global change on freshwater ecosystems, with emphasis on the spatial dynamics of stressor 

resistance in mountain lakes.  Major research findings and their implications are discussed 

below.   

Quantitative review 

Using a meta-analytic approach, my collaborators and I integrated 286 responses of 

freshwater ecosystems to paired stressors and discovered that their cumulative mean effect size 

was less than the sum of their independent effects (i.e. antagonistic) overall (Objective 1a).  

Antagonism was also the most prevalent interaction type, followed by synergies, simple additive 

scenarios, and reversals.  As anticipated given the diversity of responses, multiple stressor effects 

varied based on stressor identity and characteristics of the ecological receptor, including 

response metric, level of biological organization, and organism group (Figs 2.2–2.4; Objective 

1b).  For instance, the net effects of paired stressors on diversity and functional performance 

metrics were additive and antagonistic, respectively; suggesting that compensatory dynamics by 

stress-tolerant organisms may reduce the functional consequences of multiple freshwater 

stressors.  Interestingly, the mean net effects across all stressor pairs and response metrics were 

consistently antagonistic or additive, in contrast to the greater prevalence of synergies reported in 

marine systems (e.g. Crain et al. 2008, Harvey et al. 2013, Przeslawski et al. 2015).  A possible 

explanation for greater antagonism between freshwater than marine stressors is that the greater 

environmental variability of smaller aquatic ecosystems fosters greater adaptive potential.   

These meta-analytic findings generate several interesting hypotheses (see Future 

Research Directions below) and have direct conservation applications.  Non-additive interactions 

were far more common than simple additive scenarios; however, knowledge of how specific 

stressors interact is critical to effectively manage their impacts.  For instance, efforts allocated to 

ameliorating either stressor in a synergistic interaction should yield a significant positive 
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outcome (Brown et al. 2013).  Management focusing on either stressor in an additive interaction 

should also improve conditions, but more effort will be required to achieve a similar level of 

recovery than for synergies.  Antagonistic interactions pose a unique challenge since each 

stressor may need to be moderated to effectively reduce their combined impact, especially if 

their independent effects are highly redundant (Brown et al. 2013).  Reversals were the least 

common interaction type; however, these interactions warrant special consideration because they 

may generate highly unexpected outcomes.  For instance, minor stressors may invert the 

independently positive effects of other co-occurring factors, to deleterious effect.  Further, 

reversal interactions were most commonly associated with warming, suggesting that climate 

changes may generate more ecological surprises in the future.  Generalities uncovered by the 

meta-analysis can help inform individual management actions focused on alleviating or 

preventing impacts of multiple ecological stressors and improve global forecasting of freshwater 

biodiversity and ecosystem functioning scenarios.   

Experimental study 

Using an experimental approach, I tested the effects of two globally pervasive freshwater 

stressors, climatic warming and aquatic invasive species, with particular relevance to mountain 

lake communities.  In addition to the independent and combined effects of these stressors, I 

evaluated the moderating influence of species diversity and the potential for regional species to 

provide functional rescue effects to species-poor communities.  Zooplankton from previously 

fishless alpine lakes had low resistance against introduced rainbow trout, which significantly 

reduced taxonomic richness and biomass production; however, warming failed to elicit any 

significant independent or interacting effects (Fig. 3.1; Objective 2a).  In contrast, colonization 

by several imported stress-tolerant montane species from the regional species pool offset, and 

eventually reversed, the negative impacts of invasion – resulting in net positive effects on the 

zooplankton community (Fig. 3.1; Objective 2b).  Though access to the regional species pool 

successfully increased the richness of the prey community, the positive biomass interaction with 

invasion treatments was driven by the positive responses of a few key taxa.  This finding 

suggests that species identity and functional traits were important in driving biotic resistance 

(Fig. 3.2; Objective 2c).  Further, significant associations between smaller body size and the 

regional species pool and invasion treatments suggested that community body size distribution is 
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a useful predictor of the impacts of salmonid introductions (Fig. 3.3; Objective 2d).  In addition 

to showing how functional compensation can mediate the consequences of biological invasions, I 

demonstrated the novel application of a quantitative functional approach as a tool for exploring 

the direction and magnitude of impacts from multiple ecological stressors.   

 These experimental findings have clear implications for fisheries management.  For 

instance, my results provide evidence that more diverse communities have greater invasion 

resistance.  This is relevant to environmental agencies, such as Parks Canada, who have long 

debated the tradeoffs involving exotic sportfish populations and the merits of removing aliens 

from certain mountain lakes to reestablish their historically fishless state and native species 

diversity.  The reversal interaction, whereby stress-tolerant colonists arriving from the regional 

species pool overturn the effect of fish, highlights the importance of maintaining habitat 

connectivity for spatial insurance.  These spatial dynamics also show how a metacommunity 

perspective can alter experimental predictions of stressor impacts, as artificial communities 

lacking connectivity may respond very differently than those open to dispersal from 

neighbouring communities.  Further, these results reveal the potential utility of assisted species 

migration for curbing stressor impacts.  For instance, stressor-tolerant species may be collected 

and moved to impacted communities in order to maintain their ecological functioning; however, 

biological introductions may have unintended consequences and any such actions should be 

considered carefully.   

My experimental results also corroborate certain findings from our quantitative review.  

Higher temperatures did not interact significantly with the invasion treatment, supporting the 

meta-analytic finding that invasion × warming interactions are additive overall (Table A-3.1).  

Further, the meta-analysis indicated a potential for compensatory dynamics to limit the 

functional impacts of ecological stressors relative to their biodiversity impacts, particularly for 

animal receptors (Fig. 2.2).  The experiment also demonstrated a potential for functional 

compensation in stressed communities; however, experimental results were driven by spatial 

insurance rather than stressor co-tolerance.   
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Observational study 

Using an observational approach, historical zooplankton records for 1,234 waterbodies 

were integrated to evaluate the hierarchical ranking of multiple environmental and spatial factors 

driving mountain lake zooplankton composition at a continental scale.  Zooplankton 

communities were spatially structured; however, geographic positions explained less species 

variance than environmental predictors (Fig. 4.3; Objective 3a).  The combined effects of 

catchment/lake morphometry, land cover, and lithology explained more variation in zooplankton 

beta diversity than climate or fish introduction (Fig. 4.4), but individual climate factors and fish 

introductions were generally more important than any single climate/lake feature (Fig. 4.5; 

Objective 3b).  The high rankings of climate factors, as well as fish introduction and several 

climate-sensitive land cover types, indicate potential sensitivity of mountain lake communities to 

climate change and future biological invasions.   

Multispecies connectivity estimates were used to infer dispersal limitation among lake 

communities and reveal that dispersal processes explained less variation than species sorting 

along spatially structured environmental gradients (Fig. 4.6; Objective 3c).  The importance of 

dispersal and species sorting processes varied based on species body size and reproductive mode, 

and larger and obligate sexual copepod species were generally more structured by deterministic 

community assembly processes (Objective 3d).  For instance, larger species were more 

influenced by temperature and fish introduction, suggesting they may be sensitive to climate 

warming and biological invasions (Fig. 4.5).  Larger and sexual species were also the most 

structured by patch connectivity, highlighting how they may have limited potential to track 

changing environmental conditions.  In contrast, variation in small and asexual species were less 

structured by temperature and connectivity, reflecting perhaps their greater dispersal ability and 

potential for rescue effects on stressed populations or communities (Fig. 4.6; Objective 3e).   

Disentangling the multiple sources of variation affecting species composition of 

communities is a persistent challenge for applied ecologists and biogeographers alike.  Efficient 

use of limited conservation resources necessitates knowledge of both the types of processes 

affecting ecological communities and their relative importance.  Though manipulative 

experiments provide critical details of stressor impacts in isolation, they often fail to account for 

spatial dynamics and other confounding factors of natural ecosystems.  Thus, by revealing the 
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hierarchical organization of metacommunity drivers across a broad range of lakes, I was able to 

uncover the tangible effects of local stressors and climatic conditions – providing valuable 

insights for natural resource and protected areas managers concerned with biodiversity 

conservation at large spatial scales.  Further, my novel assessment of spatial variation among 

multiple covarying environmental factors advances our theoretical understanding of lake 

community assembly.   

 My observational findings also verify several of my experimental results.  Foremost, both 

studies revealed a relatively large independent effect of fish introduction that was mediated by 

the functional traits of receiving communities.  Specifically, findings associated smaller body 

size with fish tolerance and provided some limited evidence for the importance of predator 

escape response, which differs between cyclically parthenogenetic asexual and obligate sexual 

species (Figs 3.3 & 4.5).  Similarly, the relationship between body size and temperature detected 

during the experiment marginally supported that observed in lakes across western North America 

(Figs 3.3 & 4.5).  However, the negligible impact of experimental warming contrasted the high 

ranking importance of temperature in natural lake communities (Figs 3.1 & 4.5).  These 

conflicting results may have arisen from the low magnitude (1.6°C mean difference) or duration 

(56 days) of change in warmed mesocosm compared to the 20°C range in 50-year mean annual 

temperatures estimated for lakes within the study region (Table 4.2).  Further, experimental 

findings suggested that fish introductions can elicit severe local impacts on alpine zooplankton 

communities, which may be mediated by the arrival of regional fish-tolerant colonists (Fig. 3.1).  

Though the observational analyses were unable to distinguish among specific mechanisms of 

spatial dynamics, the lesser importance of fish introductions relative to climate in natural lake 

communities (Fig. 4.4) may reflect variable invasion resistance along geographic gradients (i.e. 

greater resistance by montane communities) or rescue effects as natural communities are open to 

dispersal from neighbouring lakes. Alternatively, predation by native fish species may have pre-

conditioned communities in certain stocked lakes to the impacts of exotic planktivores.  Both the 

observational and experimental studies point to the importance of spatial dynamics for stressor 

resistance, as dispersal permits species to colonize novel habitats and track environmental 

changes.  My research also highlights the importance of metacommunity functional structure, as 

species traits controlling stressor tolerance and dispersal ability will dictate the winners and 

losers of global change scenarios and their functional consequences.   
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Future research directions 

My thesis findings evoke several testable hypotheses and future research considerations, 

including: 

1) Whether higher temperature, UVR exposure, and nutrification synergistically stimulate 

primary production.  The meta-analytic results indicate a possible synergy; however, future 

studies should investigate the potential for these stressors to increase the prevalence or 

magnitude of deleterious algal blooms.   

 

2) Whether functional endpoints are consistently less sensitive than species diversity to the 

effects of multiple ecological stressors.  The meta-analytic results indicate differing 

sensitivities between response metrics; however, future studies should investgate the extent 

of functional compensation in freshwaters and whether compensatory dynamics are more 

prevalent under specific circumstances.   

 

3) Which specific mechanisms drive antagonism among freshwater stressors.  The meta-

analytic results indicate that antagonism is prevalent in freshwaters; however, future studies 

should investigate whether this result is most commonly linked to asymmetry of stressor 

magnitudes, hard selection for co-adapted organisms, or similarity in behavioural or 

physiological acclimation, and whether mechanisms vary depending on characteristics of the 

stressors or biological response.   

 

4) Why freshwaters are less sensitive to multiple stressor effects than marine ecosystems.  

Comparison of the meta-analytic results with previous reports suggests a disparity between 

freshwater and marine ecosystems; however, future studies should consider the potential 

physiological, genetic, spatial, or environmental drivers for perceived differences. 

 

5) How the nature of multiple stressor interactions vary within more detailed stressor and 

receptor classes.  The meta-analytic results show trends in stressor interactions across broad 

categories (e.g. habitat alteration and biological invasion); however, as additional 

experimental responses become available, future studies should examine further sources of 

heterogeneity.  For instance, experiments may consider whether interactions involving 

biological invasions differ if the invader is a predator or a competitor, or whether interactions 

with habitat alteration vary baesd on the type of alteration. 

 

6) Whether stressor interactions involving greater numbers of stressors lead to deleterious 

synergistic meltdowns.  The prevalence of antagonism involving freshwater stressor pairs 

indicates a certain resistance or co-tolerance to multiple stressors; however, as additional 

experimental responses become available, future studies should examine whether increasing 

numbers of stressors weaken biological resistance and generate more detrimental feedbacks.   
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7) Whether the nature of multiple stressor interactions vary based on stressor magnitudes.  Both 

the meta-analytic and experimental results fail to address how variations in stressor 

magnitude, for instance degree of temperature increase or rate of predation by biological 

invaders, influence the outcome of multiple stressor interactions; however, future studies 

should consider this potential moderator.  

 

a) Future studies should investigate whether predictable thresholds exist where increasing 

stressor magnitudes overwhelm the resistance of biological receptors and switch the 

outcome of their interactions. 

 

b) Future studies should scrutinize potential thresholds involving temperature variations, 

given the global relevance of climate warming and the potential for higher temperatures 

to generate problematic reversal interactions.  Manipulative experiments should focus on 

realistic stressor magnitudes for future global change scenarios.   

 

8) Whether the nature of multiple stressor interactions vary based on the order of stressor 

application.  Both the meta-analytic and experimental results fail to address how the 

sequential application of stressors might pre-condition biological receptors for subsequent 

pressures and influence the outcome of multiple stressor interactions; however, future studies 

should consider this potential moderator.   

 

9) Whether the nature of stressor interactions vary based on duration of stressor exposure.  Both 

the meta-analytic and experimental results fail to address how exposure time might influence 

the outcome of multiple stressor interactions; however, future studies should consider this 

potential moderator.   

 

a) Future studies should utilize species with rapid reproductive rates and consider stressor 

impacts over several generations to assess potential evolutionary responses.   

 

10) Whether the nature of stressor interactions vary based on community connectivity.  The 

meta-analytic results fail to address how dispersal processes might influence the outcome of 

multiple stressor interactions; however, based on experimental findings indicating the 

importance of spatial insurance, future studies should consider this potential moderator.   

 

11) Whether species plasticity mediates functional stressor resistance.  The experimental results 

fail to adress the potential role of intraspecific trait variation in mediating stressor response; 

however, future studies should consider the importance of species plasticity for increasing 

response diversity.   
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12) Whether habitat complexity mediates functional stressor resistance.  The experimental results 

fail to address the role of physical habitat structure in mediating stressor response; however, 

future studies should consider the importance of habitat (e.g. depth and macrophyte refugia) 

for providing organisms opportunities to avoid stressors.   

 

13) Which specific mechanisms relate terrestrial–aquatic linkages and climate filters to species 

composition.  The observational results suggest that topography, land cover, lithology, and 

climate factors (especially precipitation) play important roles in driving beta diversity at large 

spatial scales; however, future studies should evaluate the specific mechanisms (e.g. 

hydrological controls or water quality effects) responsible for observed patterns.   

 

14) How species composition patterns are affected by interactions among ecological stressors 

and community assembly processes at large spatial scales.  The meta-analytic results indicate 

that multiple stressor impacts are frequently non-additive; however, the observational results 

fail to address potential interactions among multiple covarying metacommunity predictors.  

Future studies should quantify interactions between relevant environmental and spatial 

parameters, including cross-scale interactions between local and regional factors.  

 

15) Which factors mediate the predatory effects of exotic sportfish across lakes.  The 

observational results suggest that fish introductions explain less species variance than 

indicated by the experimental results; however, neither study reflects heterogeneity in fish 

communities.  Future studies should consider how fish impacts differ based on species 

identity, variation in stocking density, time since initial stocking event, and the potential 

influence of native fish populations where present (e.g. greater food web complexity with 

native piscovores).   

 

16) How the composition of mountain lake communities have been altered by recent climate 

changes.  The observational results were robust to variation in sampling date; however, better 

temporal data would permit future studies to consider how lake communities and 

environmental variables have changed over time.   

 

17) How species dispersal is limited by the topographic complexities of mountain regions.  The 

observational study evaluated connectivity based on planar distances between occupied lake 

habitats; however, future studies should consider topographic dispersal barriers (i.e. 

mountain ridges) and how they modify spatial dynamics.   

 

a) Future studies should investigate zooplankton affinity for specific dispersal vectors (e.g. 

individual species or groups of waterbirds) and evaluate whether topographic barriers 

limit their movement.  For instance, there are knowledge gaps concerning the selection of 
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waterbodies by migratory birds along elevation gradients and whether climate change 

will influence their usage of alpine habitats in the future.   

 

b) Future studies should improve connectivity estimates by supplementing analysis of 

species distributions with molecular analysis of population genetic dissimilarities.   

 

c) Future studies should address the uncertainty regarding potential dispersal limitation and 

rescue effects in alpine communities by evaluating the merit, feasibility, and potentially 

unintended consequences of assisted species migration to maintain ecosystem functioning 

at high elevations and latitudes.   

 

d) Future studies should use natural ecosystems along elevation gradients for long-term 

manipulative experiments to enhance our knowledge of community assembly and the 

potential for rescue effects to curb the functional consequences of global change.    
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Appendix A-2: Sensitivity analyses 

Publication bias 

A common concern with contemporary meta-analyses is the potential for publication bias to 

influence mean effect size calculations (Nakagawa & Santos 2012).  Publication bias is typically 

propagated by the greater likelihood of publication for experiments with significant results, 

which may skew meta-analytic findings (Rosenthal 1979).  To test for publication bias and 

assess its potential impact on our results, we used the following multistep approach.   

First, we evaluated our data graphically with funnel plots comparing our standardized 

interaction effect sizes against their pooled sample sizes (calculated as np + no, where np was 

calculated as nA + nB and no = nAB) and estimated precision (1/variance; Fig. A-2.1).  Here, 

significant asymmetry around the mean interaction effect size may indicate publication bias; 

however, asymmetry may also be caused by chance or by true heterogeneity in the dataset 

(Nakagawa & Santos 2012).   

Visual assessment of our funnel plots suggested a potential bias towards negative 

(antagonistic) interaction effect sizes, as indicated by outlying data points (Fig. A-2.1a, b).  We 

followed this visual assessment with Spearman rank correlation and Eggers regression tests to 

statistically evaluate data asymmetry, using MetaWin Version 2.1 (Rosenberg et al. 2000) and 

the ‘metafor’ package (Viechtbauer 2010) in the R computing program (R Core Team 2016), 

respectively.  Statistically significant correlations/regressions may indicate publication bias 

towards larger effect sizes (Begg 1994, Egger 1997).  Results of Spearman rank correlation tests 

indicated a significant relationship between effect size and variance (n = 286, rs = –0.254, 

P <0.001) and a non-significant relationship between effect size and pooled sample size 

(n = 286, rs = 0.016, P = 0.794).  Similarly, the Eggers regression tests indicated a significant 

relationship between effect size and standard error (n = 286, z = –10.370, P = <0.001) and a non-

significant relationship between effect size and pooled sample size (n = 286, z = –1.153, P = 

0.249).   

Although our funnel plot assessments and regression/correlation-based tests both 

indicated significant asymmetry in our dataset, these results do not necessarily indicate 

significant publication bias as data asymmetry may also be attributable to chance or true 
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heterogeneity in the dataset (Nakagawa & Santos 2012).  Thus, these results require careful 

interpretation with consideration of the total amount of heterogeneity present and whether 

publication bias is in fact the most reasonable mechanism to explain the specific asymmetries 

observed.  For instance, our results suggest a potential bias towards negative interaction effects 

sizes (and antagonisms); however, we might intuitively expect that interactions involving 

synergies would have a greater likelihood of being over-reported in the literature because they 

represent more dramatic scenarios.  Further, we compare a diverse set of measurements from 

stressor experiments on different organism groups and across levels of biological organization in 

our global meta-analysis, and thus the considerable heterogeneity observed in this analysis (Q total 

= 912.70) was expected.  To explain this variance we used a series of mixed effects categorical 

meta-analyses using biologically relevant moderators.  Indeed, we found that levels of these 

moderators varied in their mean effect sizes (see Table A-3.1 in Appendix A-3), reflecting the 

variable responses of the groups to multiple stressor impacts. 

Nevertheless, we conducted a series of tests to assess the sensitivity of our global meta-

analysis to effect size outliers (potential publication bias).  First, we used Rosenthal’s method to 

estimate a fail-safe number, which is the number of nonsignificant or missing observations that 

would be needed to change the significance of our findings (Rosenthal 1979).  A fail-safe 

number larger than 5(n) + 10 (where n is the number of studies in the meta-analysis) is generally 

considered to be robust against publication bias (Rosenthal 1979).  We used MetaWin Version 

2.1 (Rosenberg et al. 2000) to estimate a fail-safe number of 24,797, which far exceeds the 

minimum recommended number based on our sample size (24,797 > 1,440).  This suggests that 

our overall estimate is reliable, even with the observed data asymmetry.  Secondly, we used the 

‘metafor’ package (Viechtbauer 2010) in the R computing program (R Core Team 2016) to 

conduct a trim and fill analysis.  Similar to the fail-safe number, this approach is used to assess 

the impact of potentially missing observations on the meta-analytic results (Nakagawa & Santos 

2012).  However, trim and fill analysis failed to identify any missing studies needed to restore 

symmetry (missing studies = 0), though it performed poorly (P = 0.50 that the model estimated 

the correct number of missing studies), likely owing to the considerable heterogeneity in our 

dataset.   
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Fig. A-2.1  Funnel plots of standardized interaction effect sizes (Hedge’s d) against pooled 

sample sizes (a and c) and precision estimates (b and d).  Plots (a) and (b) present our entire 

dataset (n = 286; 13 data points not shown where effect sizes >20 (n = 4) or <20 (n = 9)) and 

plots (c) and (d) present our dataset reduced to test for sensitivity to outlying effect sizes and 

potential publication bias (n = 245).  Effect sizes omitted for our publication bias sensitivity 

analysis are coloured red (a and b); dashed horizontal lines indicate weighted mean interaction 

effect sizes; and dotted vertical lines indicate a pooled sample size of 26 (used as a cut-off to 

reduce our dataset for our sample size sensitivity analysis).   
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Finally, to demonstrate the robustness of our global meta-analytic findings in spite of any 

publication bias, we re-analyzed our dataset after omitting potential effect size outliers.  We 

identified 41 potential effect size outliers based on a visual assessment of our funnel plots (red 

data points in Fig. A-2.1a, b).  Even after removing these data points, our random effects model 

found a significantly antagonistic mean net effect (d = –0.2720 with upper and lower 

bootstrapped confidence intervals of –0.4602 and –0.0877, respectively; Fig. A-2.1c, d).  

Together, these results suggest that our meta-analytic findings are robust to data asymmetry, 

regardless of whether the observed pattern reflects publication bias or true heterogeneity. 

Table A-2.1  Mean interaction effect sizes for levels of moderators where more than three 

studies were omitted after excluding those studies with large sample sizes (replication ≥ 12 or 

pooled sample ≥ 26). n = group sample size; d = mean effect size; CI = 95% bootstrapped 

confidence intervals; and Interaction = mean interaction type.   

Analysis / level 

Full dataset Reduced dataset 

Interaction n d CI n d CI 

        

Global analysis 230 -0.65 -0.95 to -0.33 202 -0.69 -1.04 to -0.36 Antagonistic 

        

Level of organization        

Population 70 -0.60 -1.21 to 0.08 55 -0.66 -1.04 to 0.16 Additive 

Organism 23 -0.91 -1.47 to -0.41 10 -1.43 -2.63 to -0.53  Antagonistic 

        

Stressor-Pair        

Contamination x Habitat 

alteration 

19 -0.25 -1.07 to 0.86  16 -0.09 -1.04 to 1.26 Additive 

Contamination x Warming 33 -0.87 -1.69 to -0.18  18 -1.34 -2.43 to -0.39 Antagonistic 

        

Response Level        

Vertebrate 56 -0.62 -1.15 to -0.10   37 -0.75  -1.32 to -0.16 Antagonistic 

 

Sample size 

Similar to the publication bias sensitivity analysis, we explored the sensitivity of our analyses to 

variation in study sample size.  Specifically, observations with larger sample sizes are expected 

to have lower variance and thus carry more weight in our meta-analytic models.  To test the 

robustness of our dataset to such variations, we explored how observations with large sample 

sizes (control replication of ≥ 12 or pooled sample size ≥ 26) may skew our results by re-
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analyzing our data with these points omitted (n = 28; Fig. A-2.1a, c).  We found that the mean 

effect size did not change significantly overall, or in any categorical grouping (where at least 

three studies were omitted; Table A-2.1).  Since the mean effect sizes were similar to those 

calculated based on our entire dataset, and none of the interaction type assignments changed 

(Table A-2.1), this further demonstrates the robustness of our meta-analytic results.   
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Appendix A-3: Detailed meta-analytic results 

Table A-3.1  Summary statistics for meta-analytic models. 

Model  Dataset Fixed effect Level of fixed effects n d L CI U CI INT 𝜎̂𝑝𝑜𝑜𝑙𝑒𝑑

2
 

          

1) Full global Full --- Overall 286 -0.68 -0.94 -0.41 Ant 2.58 

          

2) Detailed 

response metric 

Full Detailed response 

metric 

Animal biomass / 

abundance 

68 -0.85 -1.34 -0.37 Ant 1.99 

   Animal condition 17 -1.01 -1.65 -0.51 Ant 0.40 

   Animal diversity 22 -0.27 -0.95 0.35 Add 1.44 

   Animal growth / size 30 -0.94 -1.98 -0.16 Ant 2.99 

   Animal survival 30 -1.34 -2.69 -0.18 Ant 6.30 

   Behaviour 4 -1.16 -2.90 0.41 Add 3.03 

   Decomposition 14 0.12 -0.83 1.36 Add 2.88 

   Other biomass / 

abundance 

4 0.45 -0.73 1.84 Add 1.21 

   Other survival 2 -1.95 -4.86 0.14 Add 11.35 

   Plant biomass / 

abundance 

66 -0.58 -1.21 0.02 Add 3.80 

   Plant diversity 9 -0.87 -1.35 -0.44 Ant 0.00 

   Plant growth / size 16 0.57 -0.99 2.40 Add 6.92 

   Reproductivity 4 -0.86 -1.51 -0.30 Ant 0.27 

   Overall 286 -0.69 -0.96 -0.42 Ant 2.86 

          

3) Pooled 

response metric 

Full Pooled response 

metric 

Diversity 31 -0.44 -0.96 0.06 Add 1.11 

   Functional 

performance 

255 -0.72 -1.03 -0.42 Ant 2.68 

   Overall 286 -0.68 -0.97 -0.42 Ant 2.59 

          

4) Reduced 

global 

Reduced --- 

 

Overall 230 -0.65 -0.96 -0.34 Ant 2.76 

          

5) Response 

level 

Reduced Level biological 

organization 

Community 137 -0.63 -0.98 -0.27 Ant 3.01 

   Organism 23 -0.91 -1.47 -0.41 Ant 0.50 

   Population 70 -0.60 -1.21 0.08 Add 4.72 

   Overall 230 -0.65 -0.95 -0.34 Ant 2.84 

          

6) Oransim 

group 

Reduced Organism group Bacteria 2 0.32 0.14 0.49 Syn -0.34 

   Fungi 2 0.72 -1.06 2.54 Add 5.89 

   Invertebrate 73 -1.18 -1.75 -0.66 Ant 2.76 

   Producer 95 -0.30 -0.80 0.22 Add 4.07 

   Vertebrate 56 -0.62 -1.15 -0.10 Ant 2.42 

   Virus 2 -1.18 -2.66 -0.07 Ant 2.54 

   Overall 230 -0.65 -0.96 -0.33 Ant 2.82 

          

7) Stressor 

pairs 

Reduced Stressor-pair Acidification x 

Contamination 

3 -1.08 -1.86 0.28 Add 1.03 
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Model  Dataset Fixed effect Level of fixed effects n d L CI U CI INT 𝜎̂𝑝𝑜𝑜𝑙𝑒𝑑

2
 

   Acidification x 

Habitat Alteration 

2 -4.80 -7.95 -2.98 Ant 9.81 

   Acidification x UVR 3 2.45 -0.50 19.65 Add 17.20 

   Acidification x 

Warming 

5 -0.81 -3.54 0.44 Add 1.20 

   Contamination x 

Contamination 

6 -2.17 -4.39 -0.36 Ant 2.10 

   Contamination x 

Habitat Alteration 

19 -0.25 -1.07 0.86 Add 3.87 

   Contamination x 

Invasion 

11 -1.40 -2.92 -0.20 Ant 9.16 

   Contamination x 

Nutrification 

14 -0.19 -1.94 1.31 Add 4.59 

   Contamination x 

UVR 

6 -0.46 -1.41 0.22 Add 0.57 

   Contamination x 

Warming 

33 -0.87 -1.69 -0.19 Ant 1.54 

   Habitat Alteration x 

Habitat Alteration 

4 -1.02 -3.84 2.02 Add 8.08 

   Habitat Alteration x 

Invasion 

2 -2.51 -2.73 -2.30 Ant -0.55 

   Habitat Alteration x 

Nutrification 

21 -0.13 -1.15 0.82 Add 3.02 

   Habitat Alteration x 

Warming 

6 -2.35 -4.60 -0.94 Ant 2.65 

   Invasion x Invasion 13 -0.43 -0.95 0.02 Add 0.91 

   Invasion x 

Nutrification 

10 -0.70 -4.06 1.38 Add 12.84 

   Invasion x Warming 7 -0.40 -0.88 0.18 Add 0.22 

   Nutrification x UVR 10 0.23 -2.12 2.24 Add 9.13 

   Nutrification x 

Warming 

41 -0.46 -1.38 0.39 Add 5.10 

   Warming x UVR 13 -0.99 -1.79 -0.21 Ant 0.81 

   Overall 229 -0.67 -0.97 -0.37 Ant 3.16 

Note:  models 1 and 4 are global random effects meta-analytic models using observation ID as a 

random effect; Models 2–3 and 5–7 are mixed effects meta-analytic models using observation ID 

as a random effect and the categorical moderators as fixed effects; reduced dataset is most 

inclusive response metric dataset; n = number of the studies; d = mean interaction effect size; L 

CI and U CL =  lower and upper bootstrapped 95% confidence interval; INT = assigned 

interaction type, where Ant =  antagonistic, Add = additive, and Syn =  synergistic;  𝜎̂𝑝𝑜𝑜𝑙𝑒𝑑

2
 = 

pooled variance; and dashes denote no fixed effect in meta-analytic model.   
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Table A-3.2  Heterogeneity estimates for meta-analytic models. 

Model 

Total  

heterogeneity 

Between-class  

heterogeneity 

Within-class  

heterogeneity 

1) Full global 912.70 -- -- 

2) Detailed response metric 874.40 18.49 855.91 

3) Pooled response metric 911.47 0.67 910.80 

4) Reduced global 736.77 -- -- 

5) Response level 729.23 0.57 728.66 

6) Organism group 731.14 10.44 720.70 

7) Stressor pairs 699.24 29.10 670.15 

Note:  dashes denote value not applicable. 
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Appendix B: Supplemental information for chapter 3 

 

Appendix B-1: Sampling locations 

Table B-1.1  Waterbodies sampled for local and regional species pools. 

Lake ID 

Species 

pool Ecoregion Location 

Fish 

present 

Easting 

(m) 

Northing 

(m) 

Elevation 

(masl) 

Temp 

(°C) 

Max 

depth (m) 

Bighorn 

Lake 

Local Alpine Banff No 593902 5702351 2353 9.7a 9.2a 

Pipit Lake Local Alpine Banff No 578772 5719046 2226 10.8a 20.6a 

Snowflake 

Lake 

Local Alpine Banff No 580862 5716976 2347 12.2a 12.5a 

3 Lakes 

Valley 

Lower Lake 

Regional A Subalpine Peter 

Lougheed 

No 621449 5631198 2299 16.1 <2.0 

3 Lakes 

Valley 

Pond 

Regional A Subalpine Peter 

Lougheed 

No 621064 5630928 2262 11.9 2.5 

Burstall 

Lake 

Regional A Montane Peter 

Lougheed 

Yes 617324 5626895 1953 12.3 6.0 

Chester 

Lake 

Regional A Subalpine Peter 

Lougheed 

Yes 621614 5630327 2244 14.0 13.2 

Copper 

Lake 

Regional A Montane Banff Yes 575145 5679342 1430 19.9 11.0 

East Ridge 

Pond #1 

Regional A Alpine Banff No 582006 5717765 2300a NM <2.0 

Gully Pond 

#1 

Regional A Alpine Banff No 581807 5717727 2249 NM <2.0 

Herbert 

Lake 

Regional A Montane Banff Yes 553950 5701253 1652 15.7a 13.3a 

Johnson 

Lake 

Regional A Montane Banff Yes 605893 5672786 1419 19.5 2.6 

Kingfisher 

Pond 

Regional A Montane Banff Yes 558000 5696395 1591 18.0a 6.1a 

Little 

Herbert 

Lake 

Regional A Montane Banff Yes 554430 5700345 1585 17.1a 8.2a 

Plateau 

Pond A 

Regional A Alpine Banff No 571611 5692591 2687 15.4 <2.0 

Smith Lake Regional A Montane Banff Yes 574985 5678141 1560 18.2 9.0 

Snowflake 

Pond 

Regional A Alpine Banff No 581417 5717972 2289 15.5 <2.0 

Two Jack 

Lake 

Regional A Montane Banff Yes 604917 5676089 1495 20.2 12.1 

Daer Lake Regional B Montane Kootenay No 574024 5627729 1165 18.9 <2.0 

Dog Lake Regional B Montane Kootenay Yes 575486 5626002 1200 20.6 3.8 

Emerald 

Lake 

Regional B Montane Yoho Yes 532511 5699190 1303 15.7 20.0 
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Lake ID 

Species 

pool Ecoregion Location 

Fish 

present 

Easting 

(m) 

Northing 

(m) 

Elevation 

(masl) 

Temp 

(°C) 

Max 

depth (m) 

K4 Pond Regional B Montane Kootenay No 575805 5625299 1194 21.5 <2.0 

Kootenay 

Pond 

Regional B Montane Kootenay Yes 567391 5638269 1182 20.4 8.8 

Moraine 

Lake 

Regional B Subalpine Banff Yes 556926 5686097 1870 10.4 7.0 

Sherbrooke 

Lake 

Regional B Subalpine Yoho Yes 542590 5700624 1801 11.5 6.3 

Upper 

Waterfowl 

Lake 

Regional B Montane Banff Yes 525336 5744252 1662 11.2 8.3 

Vista Lake Regional B Montane Banff Yes 568252 5676861 1571 16.1 6.3 

Wapta Lake Regional B Montane Yoho Yes 545010 5698867 1588 10.8 7.3 

Note:  northing and easting coordinates are Zone 11 Universal Transverse Mercator (UTM), 

North American Datum (NAD) of 1983; elevations are reported as metres above sea level (masl); 

temp refers to near-surface temperature measurements collected at the time of sampling; NM 

indicates temperature measurements were not collected; and 
a 
denotes measurement obtained 

from historical summer survey. 
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Appendix B-2: Surface water temperatures 

 

Fig. B-2.1  Surface temperatures in mesocosms over time.  Data ranges for each group of 

replicates are reported relative to mean control temperatures for warmed tanks.  Warming A and 

B denote mesocosm groups that alternatively received 48-h periods of heating.   



147 

 

Appendix B-3: Chaoborus larvae biomass 

 

Fig. B-3.1  Chaoborus larvae biomass in mesocosms over time.  Stressor effects on Chaoborus 

in local (white circles) and regional (black circles) communities were compared against stressor 

free controls with local zooplankton species only.  Vertical line represents application of regional 

dispersers.  Data are mean values ± 1 standard error (SE) of the difference between sample 

means (n = 8 for days 0–28, except n = 7 for Fish + Warming on day 28; and n = 4 for days 42–

56, except n = 3 for Fish + Warming + Local Species Only).   
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Appendix B-4: Algal community assessment 

Sample collection and analysis 

Phytoplankton (free-floating algae) samples were collected from the water column of each 

mesocosm concurrent to the collection of zooplankton samples (i.e. days 0, 14, 28, 42 and 56).  

To concentrate phytoplankton, 500–1000 mL of water was filtered on to Whatman GF/F filter 

papers for each sample.  Periphyton (attached algae) was sampled from each mesocosm at the 

middle (day 28) and end (day 56) of the experiment.  Samples were obtained by pressing 3.8 cm 

diameter felt pads against the mesocosm floors using a wooden stick and slowly rotating to 

scrape off and collect algae beneath the pad.  For each sampling event, three replicate periphyton 

samples were obtained from each mesocosm.  Phytoplankton filters and periphyton pads were 

immediately placed in petri dishes, wrapped in aluminum foil and stored on ice.  Samples were 

transported to the University of Alberta where total chlorophyll concentrations were measured as 

a proxy for algae abundance/biomass using high-performance liquid chromatography (HPLC) 

following standard methods (described by Vinebrooke & Leavitt 1999).   

The effects of treatments on total chlorophyll concentrations in phytoplankton and 

periphyton communities were analyzed for each sampling date using parametric analysis of 

variance (ANOVA).  Data were log10(x+1) transformed prior to analysis and the value of α was 

adjusted from 0.05 to 0.01 using a Bonferroni correction to account for multiple comparisons.   

Results 

Total chlorophyll concentrations in phytoplankton communities were similar among mesocosms 

(mean = 0.18 µg/L) on day 0, prior to the application of experimental treatments (Fig. B-4.1).  

Warming did not significantly affect phytoplankton communities; however, the presence of fish 

significantly increased total chlorophyll concentrations on each sampling event (Fig. B-4.1; 

Table B-4.1).  There was a significant interaction between warming and fish on phytoplankton 

on day 28, where the effect of fish only occurred under warmed conditions (Fig. B-4.1; Table B-

4.1).  The addition of regional zooplankton species after day 28 had no significant effect on 

phytoplankton communities (Fig. B-4.1; Table B-4.1).  Similarly, fish presence significantly 

increased total chlorophyll concentrations in periphyton communities, while warming and 

regional zooplankton species had no significant effects (Fig. B-4.2; Table B-4.2).   
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Table B-4.1  Results of ANOVA for total phytoplankton chlorophyll concentrations over time. 

Event Treatment SS df F P (>F) 

Day 0 Fish presence 0.0011 1 0.160 0.692 

 Temperature 0.0001 1 0.016 0.900 

 F x T 0.0401 1 5.855 0.022 

 Error 0.1918 28 --- --- 

Day 14 Fish presence 1.8211 1 14.813 0.001* 

 Temperature 0.0153 1 0.124 0.727 

 F x T 0.0017 1 0.014 0.906 

 Error 3.4424 28 --- --- 

Day 28 Fish presence 0.6312 1 10.238 0.004* 

 Temperature 0.3346 1 5.427 0.028 

 F x T 0.7659 1 12.422 0.002* 

 Error 1.6647 27 --- --- 

Day 42 Fish presence 0.8157 1 18.879 <0.001* 

 Temperature 0.0503 1 1.165 0.292 

 Species pool 0.0750 1 1.737 0.201 

 F x T 0.0652 1 1.509 0.232 

 F x P 0.0149 1 0.345 0.563 

 T x P 0.0714 1 1.652 0.212 

 F x T x P 0.0649 1 1.502 0.233 

 Error 0.9938 23 --- --- 

Day 56 Fish presence 0.6422 1 21.010 <0.001* 

 Temperature 0.0265 1 0.868 0.361 

 Species pool 0.0128 1 0.420 0.523 

 F x T 0.0299 1 0.979 0.333 

 F x P 0.0158 1 0.518 0.479 

 T x P 0.0203 1 0.663 0.424 

 F x T x P 0.0338 1 1.106 0.304 

 Error 0.7030 23 --- --- 

Note:  boldface type and * denote significance at α = 0.01 (Bonferroni-adjusted); F = Fish 

Presence; T = Temperature; P = Species Pool; and dashes denote values are not applicable. 
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Table B-4.2  Results of ANOVA for total periphyton chlorophyll concentrations over time. 

Event Treatment SS df F P (>F) 

Day 28 Fish presence 2.4779 1 56.148 <0.001* 

 Temperature 0.0189 1 0.427 0.519 

 F x T <0.0001 1 0.001 0.980 

 Error 1.1474 26 --- --- 

Day 56 Fish presence 0.5275 1 7.798 0.010* 

 Temperature 0.0353 1 0.521 0.478 

 Species pool 0.0416 1 0.615 0.441 

 F x T 0.0029 1 0.042 0.839 

 F x P 0.0007 1 0.010 0.922 

 T x P 0.0527 1 0.779 0.387 

 F x T x P 0.0645 1 0.953 0.339 

  Error 1.5559 23  ---  --- 

Note:  boldface type and * denote significance at α = 0.01 (Bonferroni-adjusted); F = Fish 

Presence; T = Temperature; P = Species Pool; and dashes denote values are not applicable. 
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Fig. B-4.1  Total chlorophyll concentrations in phytoplankton communities over time. Stressor 

effects on mesocosms with local (white circles) and regional (black circle) zooplankton species 

pools were compared against stressor free controls with local zooplankton species only.  Vertical 

line represents application of regional dispersers.  Data are mean values ± 1 standard error (SE) 

of the difference between sample means (n = 8 for days 0–28, except n = 7 for Fish + Warming 

on day 28; and n = 4 for days 42–56, except n = 3 for Fish + Warming + Local Species Only).   
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Fig. B-4.2  Total chlorophyll concentrations in periphyton communities over time. Stressor 

effects on mesocosms with local (white circles) and regional (black circle) zooplankton species 

pools were compared against stressor free controls with local zooplankton species only.  Data are 

mean values ± 1 standard error (SE) of the difference between sample means (n = 8 for day 28, 

except n = 7 for Fish and Fish + Warming; and n = 4 for day 56, except n = 3 for Fish + 

Warming + Local Species Only).  
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Appendix B-5: Detailed statistical results 

Table B-5.1  MANOVA table (part 1) summarizing the significance of treatment main effects on 

final taxa biomass. 

Analysis  

Fish presence Temperature Species pool 

F P (>F) F P (>F) F P (>F) 

Full multivariate analysis 126.22 0.001* 7.40 0.916 168.96 0.001* 

Arctodiaptomus 

arapahoensis 

3.51 0.292 0.06 0.967 2.26 0.403 

Acanthocyclops vernalis 

complex 

11.77 0.019* 0.51 0.799 8.75 0.042* 

Acanthodiaptomus 

denticornis 

2.72 0.343 0.31 0.869 12.30 0.013* 

Aglaodiaptomus leptopus 0.06 0.967 0.57 0.828 5.86 0.051 

Bosmina longirostris 11.00 0.013* 0.03 0.971 11.24 0.008* 

Ceriodaphnia quadrangula 12.91 0.008* 0.60 0.799 15.00 0.008* 

Chydorus sphaericus 11.94 0.008* 0.12 0.939 12.45 0.008* 

Daphnia spp.  57.08 0.008* 0.42 0.828 3.28 0.280 

   D. middendorffiana -- -- -- -- -- -- 

   D. pulex -- -- -- -- -- -- 

   D. mendotae -- -- -- -- -- -- 

   D. dentifera -- -- -- -- -- -- 

   D. unidentified -- -- -- -- -- -- 

Diacyclops navus -- -- -- -- -- -- 

Diacyclops thomasi 9.80 0.013* 0.44 0.846 19.52 0.008* 

Diaphanosoma birgei 1.61 0.280 0.41 0.967 1.14 0.665 

Eucyclops agilis 10.37 0.008* 0.10 0.941 2.26 0.392 

Hesperodiaptomus arcticus 6.07 0.090 0.01 0.971 8.68 0.040* 

Leptodiaptomus nudus 1.74 0.516 1.41 0.498 5.74 0.048* 

Leptodiaptomus sicilis 1.06 0.806 0.09 0.925 3.21 0.280 

Leptodiaptomus tyrrelli 1.80 0.464 2.05 0.434 22.08 0.008* 

Macrocyclops albidus -- -- -- -- -- -- 

Scapholeberis kingi 1.34 0.498 0.25 0.891 51.43 0.008* 

Unidentified calanoid -- -- -- -- -- -- 

Unidentified cyclopoid -- -- -- -- -- -- 

Calanoid copepodid 1.54 0.446 0.31 0.925 2.19 0.353 

Cyclopoid copepodid 21.36 0.008* 0.08 0.956 5.16 0.134 

Note:  boldface type and * denote significance at α = 0.05; significance determined using 

residual (without replacement) resampling and a correlation matrix shrunk by 0.692 to account 
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for correlation among response variables; univariate P-values adjusted for multiple univariate 

tests using the false discovery rate method; F = Fish Presence; T = Temperature; P = Species 

Pool; Daphnia spp. were analyzed as a single group; and D. navus, M. albidus, unidentified 

calanoids and unidentified cyclopoids were not included in analyses due to their limited 

occurrence, hence their values are replaced by dashes.  

Table B-5.2  MANOVA table (part 2) summarizing the significance of treatment interaction 

effects on final taxa biomass. 

Analysis  

F x T F x P T x P F x T x P 

F P (>F) F P (>F) F P (>F) F P (>F) 

Full multivariate analysis 15.92 0.389 117.77 0.001* 13.45 0.617 15.42 0.485 

Arctodiaptomus 

arapahoensis 

0.02 0.971 2.73 0.343 0.00 0.996 0.00 0.975 

Acanthocyclops vernalis 

complex 

1.78 0.446 11.10 0.024* 0.21 0.917 1.10 0.607 

Acanthodiaptomus 

denticornis 

0.56 0.799 2.21 0.421 0.03 0.968 0.27 0.869 

Aglaodiaptomus leptopus 2.56 0.390 0.38 0.869 0.21 0.925 2.00 0.434 

Bosmina longirostris 0.09 0.941 18.85 0.008* 0.09 0.941 0.42 0.828 

Ceriodaphnia 

quadrangula 

0.69 0.760 28.21 0.008* 0.13 0.930 0.34 0.869 

Chydorus sphaericus 0.02 0.971 23.53 0.008* 0.01 0.974 0.34 0.869 

Daphnia spp.  0.44 0.828 15.74 0.008* 0.06 0.967 0.01 0.971 

   D. middendorffiana -- -- -- -- -- -- -- -- 

   D. pulex -- -- -- -- -- -- -- -- 

   D. mendotae -- -- -- -- -- -- -- -- 

   D. dentifera -- -- -- -- -- -- -- -- 

   D. unidentified -- -- -- -- -- -- -- -- 

Diacyclops navus -- -- -- -- -- -- -- -- 

Diacyclops thomasi 1.04 0.663 27.46 0.008* 3.45 0.279 2.92 0.390 

Diaphanosoma birgei 0.60 0.892 1.54 0.498 0.42 0.892 0.52 0.869 

Eucyclops agilis 0.06 0.967 1.76 0.446 0.01 0.971 0.01 0.971 

Hesperodiaptomus 

arcticus 

0.11 0.939 9.46 0.048* 0.01 0.971 0.01 0.971 

Leptodiaptomus nudus 2.00 0.446 2.26 0.421 1.89 0.434 1.77 0.434 

Leptodiaptomus sicilis 0.01 0.971 0.67 0.772 0.01 0.971 0.00 0.996 

Leptodiaptomus tyrrelli 3.60 0.279 8.93 0.042* 5.64 0.134 3.50 0.286 

Macrocyclops albidus -- -- -- -- -- -- -- -- 

Scapholeberis kingi 0.20 0.914 1.79 0.446 0.05 0.967 0.26 0.892 

Unidentified calanoid -- -- -- -- -- -- -- -- 

Unidentified cyclopoid -- -- -- -- -- -- -- -- 

Calanoid copepodid 1.26 0.607 3.62 0.171 1.30 0.578 0.51 0.869 

Cyclopoid copepodid 0.13 0.925 1.98 0.434 2.13 0.434 1.84 0.434 
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Note:  boldface type and * denote significance at α = 0.05; significance determined using 

residual (without replacement) resampling and a correlation matrix shrunk by 0.692 to account 

for correlation among response variables; univariate P-values adjusted for multiple univariate 

tests using the false discovery rate method; F = Fish Presence; T = Temperature; P = Species 

Pool; Daphnia spp. were analyzed as a single group; and D. navus, M. albidus, unidentified 

calanoids and unidentified cyclopoids were not included in analyses due to their limited 

occurrence, hence their values are denoted replaced by dashes.    

Table B-5.3  RLQ summary statistics: eigenvalues (with percentage of total inertia projected in 

brackets) for the first two axes of the separate RLQ analyses (R for MCA of categorical 

treatments by tanks; L for CA of taxa biomass by tanks; and Q for PCA of mixed categorical and 

continuous traits by taxa) and the final RLQ; and RLQ axis covariance between R and Q and 

correlation with L (with percentage of optimal canonical correlation preserved in brackets). 

Analysis and value Axis 1 Axis 2 

Preliminary ordinations   

R (treatments x tanks) eigenvalue 1.4557 (48.52%) 0.9925 (33.08%) 

L (taxon biomass x tanks) eigenvalue 0.7057 (38.62%) 0.3772 (20.65%) 

Q (traits x taxa) eigenvalue 1.7105 (57.02%) 1.1040 (36.80%) 

   

RLQ ordination   

Eigenvalue 0.7986 (93.23%) 0.0576 (6.73%) 

Covariance 0.8936 0.2400 

Correlation 0.6757 (80.43%) 0.2422 (39.43%) 
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Table B-5.4  Results of fourth-corner analysis testing links between experimental factors and 

zooplankton functional traits. 

Factor Functional trait Statistic Obs P 

Fish presence Motility χ
2 

24.2279 0.8893 

 Feeding mode χ
2
 70.1992 0.6195 

 Body size Pseudo-F 940.5228 0.0243* 

     

Temperature Motility χ
2
 10.2176 0.6195 

 Feeding mode χ
2
 13.1595 0.6195 

 Body size Pseudo-F 1.8392 0.8893 

     

Species pool Motility χ
2
 1.3899 0.8893 

 Feeding mode χ
2
 1.0804 0.8893 

 Body size Pseudo-F 354.9444 0.0243* 

Note:  boldface type and * denote significance at α = 0.05; significance determined using 

sequential randomization testing, by sites and taxa, using 49,999 permutations; and P-values 

adjusted for multiple univariate tests using the false discovery rate method.    
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Appendix C: Supplemental Information for Chapter 4 

 

Appendix C-1: Zooplankton data references 
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Appendix C-3: Detailed statistical results 

Table C-3.1  Total and unique proportions of variance in species composition attributable to 

individual environmental predictors (Model 3). 

Group / Parameter Total Adj R
2
 

Unique Adj R
2
 

Env Conditioned
 

Unique Adj R
2
 

Env + Spa Conditioned 

Overall (n = 1,234)       

Annual Total Precipitation 
a,b,c 

0.0639 *  0.0093 *  0.0030 *  

Annual Mean Air Temperature 
a,b,c 

0.0612 *  0.0114 *  0.0028 *  

Mean Solar Radiation 
a,b,c 

0.0525 *  0.0081 *  0.0014 *  

Mixed Sedimentary Rock 
a,b,c

 0.0511 *  0.0023 *  0.0002  

Barren Land 
a,b 

0.0462 *  0.0025 *  0.0009 *  

Forest (Coniferous) 
a,b 

0.0444 *  0.0009 *  0.0006 *  

Non-Acidic Volcanics 
a,b 

0.0433 *  0.0025 *  0.0003  

Lake Perimeter 
a,c 

0.0393 *  0.0004 ‡  0.0004 ‡  

Forest (Mixedwood) 
a,b,c 

0.0392 *  0.0020 *  0.0009 *  

Lake Area 
a,b,c 

0.0389 *  0.0012 *  0.0010 *  

Grassland/Herbaceous 
a,b,c 

0.0364 *  0.0011 *  0.0003   

Catchment Area 
a,b,c 

0.0349 *  0.0006 *  0.0003  

Perennial Ice/Snow 
a,b,c 

0.0338 *  0.0016 *  0.0003  

Forest (Deciduous) 
a,b,c 

0.0313 *  0.0016 *  0.0006 *  

Wetlands (Emergent/Herbaceous) 
a,b,c 

0.0272 *  0.0017 *  0.0006 *  

Fish Introduction 
a 

0.0209 *  0.0037 *  0.0025 *  

Catchment Slope 
b 

0.0194 *  ---  ---  

Non-Carbonate Sedimentary Rock 
a,b,c 

0.0182 *  0.0006 *  0.0003  

Acidic Plutonics 
a,b,c 

0.0128 *  0.0040 *  0.0008 *  

Non-Acidic Plutonics 
a,b,c 

0.0123 *  0.0010 *  0.0004 ‡  

Shrub/Scrubland 
a,b,c 

0.0122 *  0.0009 *  0.0004 ‡  

Surface Water 
a,b,c 

0.0121 *  0.0015 *  0.0010 *  

Unconsolidated Sediment 
a,b,c 

0.0119 *  0.0031 *  0.0002   

Carbonate Sedimentary Rock 
a,b,c 

0.0115 *  0.0011 *  0.0004 ‡  

Wetlands (Wooded/Shrub) 
a,b,c 

0.0103 *  0.0012 *  0.0008 *  

Metamorphic Rock 
a,b,c 

0.0065 *  0.0024 *  0.0008 *  

Pyroclastics 
c 

0.0065 *  ---  ---  

Developed (Non-Vegetated) 
a,b,c 

0.0044 *  0.0007 *  0.0003   

Acidic Volcanics 
a,b,c 

0.0034 *  0.0011 *  0.0010 *  

Catchment Aspect 
c 

0.0014 *  ---  ---  

Evaporite 
c 

0.0008 *  ---  ---  

Agricultural 
b,c 

0.0007 ‡  ---  ---  

       

Asexual (n = 1,103)       

Annual Total Precipitation 
a,b,c 

0.0705 *  0.0149 *  0.0057 *  

Annual Mean Air Temperature 
a,b,c 

0.0581 *  0.0118 *  0.0042 *  

Mean Solar Radiation 
a,b,c 

0.0529 *  0.0064 *  0.0008 ‡  

Lake Perimeter 
a,b,c 

0.0513 *  0.0001  0.0001  

Lake Area 
a,b,c 

0.0511 *  0.0010 ‡  0.0007 ‡  
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Group / Parameter Total Adj R
2
 

Unique Adj R
2
 

Env Conditioned
 

Unique Adj R
2
 

Env + Spa Conditioned 

Mixed Sedimentary Rock 
a,b,c 

0.0473 *  0.0017 *  0 †  

Catchment Area 
a,b,c 

0.0435 *  0.0010 ‡  0.0013 *  

Non-Acidic Volcanics 
a,b 

0.0424 *  0.0017 *  0.0003  

Forest (Coniferous) 
a,b 

0.0406 *  0.0018 *  0.0027 *  

Forest (Mixedwood) 
a,b,c 

0.0394 *  0.0027 *  0.0008 ‡  

Grassland/Herbaceous 
c 

0.0382 *  ---  ---  

Forest (Deciduous) 
a,b,c 

0.0371 *  0.0008 ‡  0.0005  

Barren Land 
b 

0.0313 *  ---  ---  

Perennial Ice/Snow 
a,b,c 

0.0290 *  0.0017 *  0 †  

Fish Introduction 
a 

0.0259 *  0.0059 *  0.0023 *  

Wetlands (Emergent/Herbaceous) 
b,c 

0.0255 *  ---  ---  

Non-Carbonate Sedimentary Rock 
a,b,c 

0.0235 *  0.0006  0.0003  

Surface Water 
a,b,c 

0.0184 *  0.0028 *  0.0015 *  

Non-Acidic Plutonics 
a,b,c 

0.0156 *  0.0018 *  0.0010 *  

Shrub/Scrubland 
a,c 

0.0153 *  0.0013 *  0.0009 *  

Acidic Plutonics 
a,b,c 

0.0128 *  0.0019 *  0.0002  

Carbonate Sedimentary Rock 
a,b,c 

0.0129 *  0.0006  0.0003  

Wetlands (Wooded/Shrub) 
a,b,c 

0.0123 *  0.0008 ‡  0.0006  

Pyroclastics 
c 

0.0082 *  ---  ---  

Unconsolidated Sediment 
a,b,c 

0.0079 *  0.0030 *  0.0005  

Metamorphic Rock 
a,b,c 

0.0076 *  0.0037 *  0.0008 ‡  

Catchment Slope 
b 

0.0075 *  ---  ---  

Acidic Volcanics 
a,b,c 

0.0042 *  0.0013 *  0.0018 *  

Developed (Non-Vegetated) 
c 

0.0029 *  ---  ---  

Catchment Aspect 
c 

0.0011 ‡  ---  ---  

Evaporite
 

0.0005 ‡  ---  ---  

Agricultural 0.0005 ‡  ---  ---  

       

Sexual (n = 1,155)       

Annual Total Precipitation 
a,b,c 

0.0672 *  0.0084 *  0.0019 *  

Mean Solar Radiation 
a,b,c 

0.0634 *  0.0113 *  0.0020 *  

Annual Mean Air Temperature 
a,b,c 

0.0633 *  0.0140 *  0.0019 *  

Mixed Sedimentary Rock 
a,b,c 

0.0566 *  0.0041 *  0.0005 ‡  

Barren Land 
a,b 

0.0519 *  0.0028 *  0.0022 *  

Non-Acidic Volcanics 
a,b,c 

0.0484 *  0.0040 *  0 †  

Forest (Mixedwood) 
a,b,c 

0.0469 *  0.0019 *  0.0017 *  

Forest (Coniferous) 0.0411 *  ---  ---  

Lake Perimeter 
c 

0.0377 *  ---  ---  

Lake Area 
a,b,c 

0.0370 *  0.0023 *  0.0014 *  

Grassland/Herbaceous 
a,b,c 

0.0348 *  0.0026 *  0.0006 ‡  

Catchment Area 
a,b,c 

0.0348 *  0.0009 *  0.0001   

Forest (Deciduous) 
a,b,c 

0.0326 *  0.0028 *  0.0007 ‡  

Wetlands (Emergent/Herbaceous) 
a,b,c 

0.0321 *  0.0030 *  0.0010 *  

Perennial Ice/Snow 
a,b,c 

0.0314 *  0.0014 *  0.0010 *  

Catchment Slope 
a,b 

0.0280 *  0.0006 ‡  0.0004  

Fish Introduction 
a 

0.0176 *  0.0024 *  0.0031 *  
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Group / Parameter Total Adj R
2
 

Unique Adj R
2
 

Env Conditioned
 

Unique Adj R
2
 

Env + Spa Conditioned 

Non-Carbonate Sedimentary Rock 
b,c 

0.0170 *  ---  ---  

Shrub/Scrubland 
a,b 

0.0162 *  0.0019 *  0.0009 *  

Unconsolidated Sediment 
a,b,c 

0.0155 *  0.0016 *  0 †  

Acidic Plutonics 
a,b,c 

0.0141 *  0.0041 *  0.0006 ‡  

Non-Acidic Plutonics 
c 

0.0131 *  ---  ---  

Wetlands (Wooded/Shrub) 
a,b,c 

0.0120 *  0.0021 *  0.0013 *  

Carbonate Sedimentary Rock 
a,b,c 

0.0114 *  0.0018 *  0.0003  

Surface Water 
a,b,c 

0.0098 *  0.0005  0.0002  

Metamorphic Rock 
a,b,c 

0.0080 *  0.0030 *  0.0012 *  

Pyroclastics 
c 

0.0065 *  ---  ---  

Developed (Non-Vegetated) 
a,b,c 

0.0049 *  0.0009 *  0.0001  

Acidic Volcanics 
a,b,c 

0.0038 *  0.0009 *  0.0006 ‡  

Catchment Aspect 
c 

0.0019 *  ---  ---  

Agricultural 
b,c 

0.0011 *  ---  ---  

Evaporite 
c 

0.0007 ‡  ---  ---  

       

Small (n = 1,142)       

Annual Total Precipitation 
a,b,c 

0.0662 *  0.0085 *  0.0034 *  

Mean Solar Radiation 
a,b,c 

0.0616 *  0.0108 *  0.0016 *  

Mixed Sedimentary Rock 
a,b,c 

0.0544 *  0.0026 *  0 †  

Lake Perimeter 
b,c 

0.0489 *  ---  ---  

Annual Mean Air Temperature 
a,b,c 

0.0488 *  0.0098 *  0.0032 *  

Lake Area 
a,b,c 

0.0485 *  0.0048 *  0.0014 *  

Non-Acidic Volcanics 
a,b 

0.0463 *  0.0038 *  0.0001  

Forest (Mixedwood) 
a,b,c 

0.0446 *  0.0017 *  0.0007 ‡  

Catchment Area 
b,c 

0.0425 *  ---  ---  

Grassland/Herbaceous 
c 

0.0400 *  ---  ---  

Forest (Deciduous) 
a,b,c 

0.0384 *  0.0015 *  0.0002  

Forest (Coniferous) 
a,b 

0.0352 *  0.0025 *  0.0021 *  

Barren Land 
c 

0.0300 *  ---  ---  

Perennial Ice/Snow 
a,b,c 

0.0265 *  0.0015 *  0 †  

Wetlands (Emergent/Herbaceous) 
b,c 

0.0255 *  ---  ---  

Fish Introduction 
a 

0.0217 *  0.0046 *  0.0018 *  

Non-Carbonate Sedimentary Rock 
a,b,c 

0.0211 *  0.0006 ‡  0.0005 ‡  

Non-Acidic Plutonics 
a,b,c 

0.0160 *  0.0017 *  0.0013 *  

Surface Water 
a,b,c 

0.0156 *  0.0024 *  0.0014 *  

Acidic Plutonics 
a,b,c 

0.0146 *  0.0040 *  0.0003  

Carbonate Sedimentary Rock 
a,b,c 

0.0146 *  0.0017 *  0.0002  

Shrub/Scrubland 
a,b,c 

0.0144 *  0.0013 *  0.0008 ‡  

Wetlands (Wooded/Shrub) 
a,b,c 

0.0144 *  0.0014 *  0.0010 *  

Unconsolidated Sediment 
a,b,c 

0.0120 *  0.0043 *  0.0003  

Catchment Slope 
a,b 

0.0101 *  0.0008 ‡  0.0007 ‡  

Pyroclastics 
c 

0.0078 *  ---  ---  

Metamorphic Rock 
a,b,c 

0.0072 *  0.0022 *  0.0013 *  

Developed (Non-Vegetated) 
a,b,c 

0.0052 *  0.0011 *  0.0006 ‡  

Acidic Volcanics 
a,b,c 

0.0031 *  0.0011 *  0.0011 *  
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Group / Parameter Total Adj R
2
 

Unique Adj R
2
 

Env Conditioned
 

Unique Adj R
2
 

Env + Spa Conditioned 

Catchment Aspect 
c 

0.0011 ‡  ---  ---  

Agricultural 
b,c 

0.0007 ‡  ---  ---  

Evaporite
 

0.0004  ---  ---  

       

Large (n = 1,014)       

Annual Mean Air Temperature 
a,b,c 

0.0859 *  0.0190 *  0.0041 *  

Annual Total Precipitation 
a,b,c 

0.0804 *  0.0142 *  0.0034 *  

Barren Land 
a,b 

0.0700 *  0.0039 *  0.0020 *  

Mean Solar Radiation 
a,b,c 

0.0627 *  0.0082 *  0.0023 *  

Mixed Sedimentary Rock 
a,b,c 

0.0586 *  0.0009 ‡  0.0004  

Forest (Coniferous)
 

0.0579 *  ---  ---  

Forest (Mixedwood) 
a,b,c 

0.0516 *  0.0039 *  0.0011 *  

Non-Acidic Volcanics 
a,b,c 

0.0492 *  0.0032 *  0.0005  

Wetlands (Emergent/Herbaceous) 
a,b,c 

0.0403 *  0.0052 *  0.0026 *  

Perennial Ice/Snow 
a,b,c 

0.0398 *  0.0024 *  0.0015 *  

Catchment Slope 
a,b 

0.0391 *  0.0008 ‡  0.0007 ‡  

Lake Perimeter 
c 

0.0374 *  ---  ---  

Lake Area 
a,b,c 

0.0365 *  0.0010 ‡  0.0008 ‡  

Catchment Area 
a,b,c 

0.0360 *  0.0009 ‡  0 †  

Grassland/Herbaceous 
a,b,c 

0.0343 *  0.0017 *  0.0007 ‡  

Forest (Deciduous) 
a,b,c 

0.0307 *  0.0009 ‡  0.0011 *  

Fish Introduction 
a 

0.0229 *  0.0024 *  0.0025 *  

Non-Carbonate Sedimentary Rock 
a,b,c 

0.0209 *  0.0014 *  0.0010 *  

Shrub/Scrubland 
a,b 

0.0207 *  0.0023 *  0.0010 *  

Unconsolidated Sediment 
a,b,c 

0.0160 *  0.0025 *  0.0002  

Acidic Plutonics 
a,b,c 

0.0151 *  0.0058 *  0.0012 *  

Metamorphic Rock 
a,b 

0.0135 *  0.0073 *  0.0004  

Non-Acidic Plutonics 
a,b,c 

0.0122 *  0.0009 ‡  0.0006 ‡  

Carbonate Sedimentary Rock 
b,c 

0.0122 *  ---  ---  

Wetlands (Wooded/Shrub) 
a,c 

0.0106 *  0.0008 ‡  0.0007 ‡  

Surface Water 
a,b,c  

0.0099 *  0.0007 ‡  0.0007 ‡  

Pyroclastics 
c 

0.0071 *  ---  ---  

Acidic Volcanics 
a,b,c 

0.0055 *  0.0009 ‡  0.0005  

Developed (Non-Vegetated) 
a,b,c 

0.0028 *  0.0009 ‡  0.0001  

Catchment Aspect 
b 

0.0023 *  ---  ---  

Evaporite 
c 

0.0011 *  ---  ---  

Agricultural 
b,c 

0.0008 ‡  ---  ---  

Note:  unique variation estimates (semipartials) were obtained conditioning by remaining 

variables from final selected environment (Env) and space (Spa) models; 
a
 denotes parameter 

was selected for inclusion in group full environment model; 
b
 denotes parameter was selected for 

inclusion in group climate or catchment/lake model; 
c
 denotes parameter natural log-transformed 

(parameters with non-detect values were log[x + (0.5⋅lowest detected value)]-transformed); 

boldface type and * denotes parameter estimate P ≤0.01 as determined by permutation testing 
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with 100,000 iterations; boldface type and ‡ denotes parameter estimate P <0.05 and >0.01 as 

determined by permutation testing with 100,000 iterations; and † denotes adjusted R
2
 <0.00005. 

Table C-3.2  Total, unique, and shared proportions of variance in species composition 

attributable to environment, space, and geography explanatory matrices (Model 1). 

Fraction 

Overall 

(n = 1,234) 

Asexual 

(n = 1,103) 

Sexual 

(n = 1,155) 

Small 

(n = 1,142) 

Large 

(n = 1,014) 

df Adj R
2 

df Adj R
2 

df Adj R
2 

df Adj R
2 

df Adj R
2 

Total Env 27 0.2286 * 23 0.2140 * 24 0.2605 * 23 0.2201 * 25 0.3046 * 

Total Spa 53 0.2473 * 32 0.2234 * 53 0.3015 * 33 0.2414 * 46 0.3348 * 

Total Geo 3 0.1587 * 3 0.1427 * 3 0.1896 * 3 0.1641 * 3 0.1954 * 

[a] Unique Env 27 0.0324 * 23 0.0353 * 24 0.0317 * 23 0.0295 * 25 0.0427 * 

[b] Unique Spa 53 0.0540 * 32 0.0466 * 53 0.0715 * 33 0.0440 * 46 0.0821 * 

[c] Unique Geo 3 0.0028 * 3 0.0020 * 3 0.0039 * 3 0.0038 * 3 0.0028 * 

[d] Env + Spa 0 0.0527 0 0.0491 0 0.0596 0 0.0462 0 0.0833 

[e] Spa + Geo 0 0.0124 0 0.0111 0 0.0165 0 0.0159 0 0.0141 

[f] Env + Geo 0 0.0154 0 0.0129 0 0.0153 0 0.0091 0 0.0232 

[g] Env + Spa + Geo 0 0.1281 0 0.1167 0 0.1540 0 0.1354 0 0.1554 

Residual 0 0.7022 0 0.7264 0 0.6477 0 0.7162 0 0.5965 

Note:  boldface type and * denotes parameter estimate P ≤0.01 as determined by permutation 

testing with 100,000 iterations; and Env, Spa, and Geo refer environment, space, and geography, 

respectively. 

Table C-3.3  Total, unique, and shared proportions of variance in species composition 

attributable to climate, catchment/lake, fish introduction, and space explanatory matrices (Model 

2). 

Fraction 

Overall 

(n = 1,234) 

Asexual 

(n = 1,103) 

Sexual 

(n = 1,155) 

Small 

(n = 1,142) 

Large 

(n = 1,014) 

df Adj R
2 

df Adj R
2 

df Adj R
2 

df Adj R
2 

df Adj R
2 

Total Cli 3 0.1371 * 3 0.1341 * 3 0.1593 * 3 0.1283 * 3 0.1973 * 

Total Cat 24 0.1891 * 21 0.1770 * 22 0.2140 * 23 0.1828 * 23 0.2538 * 

Total Fis 1 0.0209 * 1 0.0259 * 1 0.0176 * 1 0.0217 * 1 0.0229 * 

Total Spa 53 0.2473 * 32 0.2234 * 53 0.3015 * 33 0.2414 * 46 0.3348 * 

[a] Unique Cli 3 0.0071 * 3 0.0087 * 3 0.0060 * 3 0.0071 * 3 0.0096 * 

[b] Unique Cat 24 0.0234 * 21 0.0210 * 22 0.0252 * 23 0.0191 * 23 0.0335 * 

[c] Unique Fis 1 0.0025 * 1 0.0023 * 1 0.0031 * 1 0.0017 * 1 0.0025 * 

[d] Unique Spa 53 0.0668 * 32 0.0569 * 53 0.0876 * 33 0.0594 * 46 0.0967 * 

[e] Cli + Cat 0 0.0106 0 0.0098 0 0.0097 0 0.0059 0 0.0181 

[f] Cat + Fis 0 0.0022 0 0.0038 0 0.0009 0 0.0040 0 0.0008 

[g] Cli + Fis 0 0.0002 0 0.0002 0 0.0001 0 0.0002 0 0.0003 

[h] Cli + Spa 0 0.0253 0 0.0196 0 0.0347 0 0.0236 0 0.0360 
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Fraction 

Overall 

(n = 1,234) 

Asexual 

(n = 1,103) 

Sexual 

(n = 1,155) 

Small 

(n = 1,142) 

Large 

(n = 1,014) 

df Adj R
2 

df Adj R
2 

df Adj R
2 

df Adj R
2 

df Adj R
2 

[i] Cat + Spa 0 0.0611 0 0.0485 0 0.0725 0 0.0644 0 0.0711 

[j] Fis + Spa 0 0.0012 0 0.0034 0 0 † 0 0.0027 0 0 † 

[k] Cli + Cat + Spa 0 0.0803 0 0.0807 0 0.0954 0 0.0793 0 0.1137 

[l] Cli + Cat + Fis 0 0.0022 0 0.0019 0 0.0021 0 0.0011 0 0.0019 

[m] Cat + Fis + Spa 0 0.0011 0 0.0011 0 0.0008 0 0.0008 0 0 † 

[n] Cli + Fis + Spa 0 0.0033 0 0.0031 0 0.0038 0 0.0031 0 0.0030 

[o] Cli + Cat + Fis 

+ Spa 

0 0.0082 0 0.0102 0 0.0074 0 0.0081 0 0.0145 

Residual 0 0.7046 0 0.7290 0 0.6513 0 0.7195 0 0.5983 

Note:  boldface type and * denotes parameter estimate P ≤0.01 as determined by permutation 

testing with 100,000 iterations; † denotes adjusted R
2
 <0.00005; and Cli, Cat, Fis, and Spa refer 

to components of variation attributable to climate, catchment/lake, fish introduction, and space, 

respectively. 

Table C-3.4  Total, unique, and shared proportions of variance in species composition 

attributable to environment, space, and connectivity explanatory matrices (Model 4). 

Fraction 

Overall 

(n = 1,234) 

Asexual 

(n = 1,103) 

Sexual 

(n = 1,155) 

Small 

(n = 1,142) 

Large 

(n = 1,014) 

df Adj R
2 

df Adj R
2 

df Adj R
2 

df Adj R
2 

df Adj R
2 

Total Env 27 0.2286 * 23 0.2140 * 24 0.2605 * 23 0.2201 * 27 0.3046 * 

Total Spa 53 0.2473 * 32 0.2234 * 53 0.3015 * 33 0.2414 * 46 0.3348 * 

Total Con 1 0.1699 * 1 0.1366 * 1 0.2216 * 1 0.1722 * 1 0.2409 * 

[a] Unique Env 27 0.0450 * 23 0.0474 * 24 0.0413 * 23 0.0372 * 27 0.0595 * 

[b] Unique Spa 53 0.0506 * 32 0.0469 * 53 0.0610 * 33 0.0457 * 46 0.0648 * 

[c] Unique Con 1 0.0057 * 1 0.0050 * 1 0.0070 * 1 0.0071 * 1 0.0060 * 

[d] Env + Spa 0 0.0353 0 0.0456 0 0.0315 0 0.0320 0 0.0415 

[e] Spa + Con 0 0.0159 0 0.0107 0 0.0269 0 0.0142 0 0.0313 

[f] Env + Con 0 0.0028 0 0.0009 0 0.0056 0 0.0014 0 0.0064 

[g] Env + Spa + Con 0 0.1455 0 0.1201 0 0.1821 0 0.1496 0 0.1972 

Residual 0 0.6992 0 0.7234 0 0.6445 0 0.7130 0 0.5932 

Note:  boldface type and * denotes parameter estimate P ≤0.01 as determined by permutation 

testing; Env, Spa, and Con refer to components of variation attributable to environment, space, 

and connectivity, respectively; and connectivity α constant for overall community = 104,467, 

asexual species = 69,645, sexual species = 104,467, small species = 104,467, and large 

species = 69,645.   
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Appendix C-4: Sensitivity analyses 

As a quantitative synthesis of multiple historical data sources, there exists potential for the 

results to reflect biases among individual sampling locations or studies.  To evaluate the extent to 

which my interpretations may be confounded by variations in sampling effort (i.e. number of 

sampling years integrated for species occurrence estimates), sampling year (i.e. most recent 

confirmed date when multiple samples were taken), or data source (i.e. research group or 

taxonomist) I conducted a series of sensitivity analyses (Tables C-4.1–C-4.3).   

Results of the sensitivity analyses suggest that my findings are robust and support my 

interpretations.  Differences in sampling effort and sampling year explain much less total species 

variance than environment, space, or geography (Tables C-4.1 & C-4.2).  Further, sampling 

effort and sampling year each uniquely explain less than 0.5 % of total species variance and 

impart a negligible influence on the unique contributions of environmental and spatial predictors.  

These results suggest that unique variation attributed to sampling effort and sampling year is 

mostly linked to the unexplained residual fraction of species variance, and does not influence my 

interpretation of spatial or environmental factors.  Conversely, data source explains a much 

larger amount of total variance, which covaries with space, geography, and spatially structured 

environmental variables (Table C-4.3).  This result was expected, as different research groups 

generally collect data at different geographic locations characterized by different spatially 

structured environmental conditions.  Critically though, the ranking of environmental and spatial 

structures was unaffected by data source, indicating that my interpretations are robust.   

Table C-4.1  Total, unique, and shared proportions of variance in species composition 

attributable to environment, space, geography, and sampling effort matrices. 

Fraction 

Overall 

(n = 1,234) 

Asexual 

(n = 1,103) 

Sexual 

(n = 1,155) 

Small 

(n = 1,142) 

Large 

(n = 1,014) 

df Adj R
2
 df Adj R

2 
df Adj R

2 
df Adj R

2 
df Adj R

2 

Total Env 27 0.2286 * 23 0.2140 * 24 0.2605* 23 0.2201 * 25 0.3046 * 

Total Spa 53 0.2473 * 32 0.2234 * 53 0.3015* 33 0.2414 * 46 0.3348 * 

Total Geo 3 0.1587 * 3 0.1427 * 3 0.1896* 3 0.1641 * 3 0.1954 * 

Total Eff 1 0.0074 * 1 0.0063 * 1 0.0096* 1 0.0080 * 1 0.0081 * 

[a] Unique Env 27 0.0322 * 23 0.0353 * 24 0.0313* 23 0.0298 * 25 0.0418 * 

[b] Unique Spa 53 0.0539 * 32 0.0468 * 53 0.0713* 33 0.0440 * 46 0.0818 * 

[c] Unique Geo 3 0.0026 * 3 0.0019 * 3 0.0036* 3 0.0037 * 3 0.0025 * 

[d] Unique Eff 1 0.0022 * 1 0.0025 * 1 0.0012* 1 0.0026 * 1 0.0015 * 
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Fraction 

Overall 

(n = 1,234) 

Asexual 

(n = 1,103) 

Sexual 

(n = 1,155) 

Small 

(n = 1,142) 

Large 

(n = 1,014) 

df Adj R
2
 df Adj R

2 
df Adj R

2 
df Adj R

2 
df Adj R

2 

[e] Env + Spa 0 0.0527 0 0.0493 0 0.0595 0 0.0463 0 0.0830 

[f] Spa + Geo 0 0.0124 0 0.0111 0 0.0161 0 0.0159 0 0.0141 

[g] Env + Geo 0 0.0147 0 0.0125 0 0.0150 0 0.0084 0 0.0228 

[h] Env + Eff 0 0.0001 0 0 † 0 0.0004 0 0 † 0 0.0009 

[i] Spa + Eff 0 0.0002 0 0 † 0 0.0002 0 0 † 0 0.0003 

[j] Geo + Eff 0 0.0002 0 0 † 0 0.0003 0 0.0001 0 0.0003 

[k] Env + Spa + Eff 0 0.0001 0 0 † 0 0.0002 0 0 † 0 0.0002 

[l] Env + Spa + Geo 0 0.1243 0 0.1130 0 0.1472 0 0.1302 0 0.1510 

[m] Spa + Geo + Eff 0 0 † 0 0 † 0 0.0004 0 0 † 0 0 † 

[n] Env + Geo + Eff 0 0.0007 0 0.0004 0 0.0003 0 0.0007 0 0.0005 

[o] Env + Spa + Geo 

+ Eff 

0 0.0038 0 0.0036 0 0.0068 0 0.0052 0 0.0045 

Residual 0 0.6999 0 0.7238 0 0.6464 0 0.7136 0 0.5949 

Note:  boldface type and * denotes parameter estimate P ≤0.01 as determined by permutation 

testing with 100,000 iterations; † denotes adjusted R
2
 <0.00005; sampling effort is the number of 

sampling years integrated for species occurrence estimates at each sampling location; and Env, 

Spa, Geo, and Eff refer to components of variation attributable to environment, space, 

geography, and sampling effort, respectively.   

Table C-4.2  Total, unique, and shared proportions of variance in species composition 

attributable to environment, space, geography, and sampling year explanatory matrices. 

Fraction 

Overall 

(n = 1,127) 

Asexual 

(n = 1,020) 

Sexual 

(n = 1,059) 

Small 

(n = 1,060) 

Large 

(n = 928) 

df Adj R
2 

df Adj R
2 

df Adj R
2 

df Adj R
2 

df Adj R
2 

Total Env 27 0.2319 * 23 0.2172 * 24 0.2647 * 23 0.2242 * 25 0.3094 * 

Total Spa 53 0.2512 * 32 0.2286 * 53 0.3044 * 33 0.2479 * 46 0.3368 * 

Total Geo 3 0.1702 * 3 0.1550 * 3 0.2004 * 3 0.1772 * 3 0.2026 * 

Total Yea 1 0.0348 * 1 0.0361 * 1 0.0328 * 1 0.0458 * 1 0.0210 * 

[a] Unique Env 27 0.0280 * 23 0.0332 * 24 0.0283 * 23 0.0268 * 25 0.0381 * 

[b] Unique Spa 53 0.0535 * 32 0.0481 * 53 0.0690 * 33 0.0448 * 46 0.0793 * 

[c] Unique Geo 3 0.0026 * 3 0.0018 * 3 0.0037 * 3 0.0031 * 3 0.0027 * 

[d] Unique Yea 1 0.0026 * 1 0.0048 * 1 0.0012 * 1 0.0026 * 1 0.0021 * 

[e] Env + Spa 0 0.0421 0 0.0400 0 0.0484 0 0.0330 0 0.0767 

[f] Spa + Geo 0 0.0085 0 0.0091 0 0.0124 0 0.0113 0 0.0107 

[g] Env + Geo 0 0.0160 0 0.0141 0 0.0153 0 0.0091 0 0.0240 

[h] Env + Yea 0 0.0012 0 0.0005 0 0.0011 0 0.0013 0 0.0022 

[i] Spa + Yer 0 0.0009 0 0 † 0 0.0020 0 0.0017 0 0.0019 

[j] Geo + Yea 0 0.0005 0 0.0006 0 0.0008 0 0.0008 0 0.0006 

[k] Env + Spa + Yea 0 0.0028 0 0.0003 0 0.0038 0 0.0030 0 0.0026 

[l] Env + Spa + Geo 0 0.1157 0 0.0993 0 0.1443 0 0.1164 0 0.1530 
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Fraction 

Overall 

(n = 1,127) 

Asexual 

(n = 1,020) 

Sexual 

(n = 1,059) 

Small 

(n = 1,060) 

Large 

(n = 928) 

df Adj R
2 

df Adj R
2 

df Adj R
2 

df Adj R
2 

df Adj R
2 

[m] Spa + Geo + Yea 0 0.0008 0 0.0003 0 0.0004 0 0.0019 0 0 † 

[n] Env + Geo + Yea 0 0 † 0 0 † 0 0 † 0 0 † 0 0 † 

[o] Env + Spa + Geo 

+ Yea 

0 0.0270 0 0.0317 0 0.0242 0 0.0358 0 0.0140 

Residual 0 0.6987 0 0.7184 0 0.6459 0 0.7096 0 0.5946 

Note:  * denotes parameter estimate P ≤0.01 as determined by permutation testing with 100,000 

iterations; † denotes adjusted R
2
 <0.00005; sampling year is the most recent confirmed sampling 

year at each sampling location; locations with uncertain sampling dates were excluded from 

analysis (n = 107); and Env, Spa, Geo, and Yea refer to components of variation attributable to 

environment, space, geography, and sampling year, respectively.   

Table C-4.3  Total, unique, and shared proportions of variance in species composition 

attributable to environment, space, geography, and data source explanatory matrices. 

Fraction 

Overall 

(n = 1,234) 

Asexual 

(n = 1,103) 

Sexual 

(n = 1,155) 

Small 

(n = 1,142) 

Large 

(n = 1,014) 

df Adj R
2 

df Adj R
2 

df Adj R
2 

df Adj R
2 

df Adj R
2 

Total Env 27 0.2286 * 23 0.2140 * 24 0.2605 * 23 0.2201 * 25 0.3046 * 

Total Spa 53 0.2473 * 32 0.2234 * 53 0.3015 * 33 0.2414 * 46 0.3349 * 

Total Geo 3 0.1587 * 3 0.1427 * 3 0.1896 * 3 0.1641 * 3 0.1954 * 

Total Dat 15 0.1877 * 15 0.1911 * 15 0.2075 * 15 0.2071 * 14 0.2119 * 

[a] Unique Env 27 0.0254 * 23 0.0305 * 24 0.0230 * 23 0.0227 * 25 0.0354 * 

[b] Unique Spa 53 0.0369 * 32 0.0341 * 53 0.0497 * 33 0.0251 * 46 0.0617 * 

[c] Unique Geo 3 0.0016 * 3 0.0008 3 0.0018 * 3 0.0017 * 3 0.0023 * 

[d] Unique Dat 15 0.0173 * 15 0.0224 * 15 0.0209 * 15 0.0192 * 14 0.0155 * 

[e] Env + Spa 0 0.0209 0 0.0153 0 0.0265 0 0.0161 0 0.0309 

[f] Spa + Geo 0 0.0019 0 0.0018 0 0.0043 0 0.0018 0 0.0080 

[g] Env + Geo 0 0.0156 0 0.0115 0 0.0161 0 0.0089 0 0.0247 

[h] Env + Dat 0 0.0070 0 0.0048 0 0.0087 0 0.0068 0 0.0074 

[i] Spa + Dat 0 0.0171 0 0.0125 0 0.0218 0 0.0189 0 0.0204 

[j] Geo + Dat 0 0.0012 0 0.0012 0 0.0020 0 0.0021 0 0.0005 

[k] Env + Spa + Dat 0 0.0319 0 0.0338 0 0.0332 0 0.0301 0 0.0524 

[l] Env + Spa + Geo 0 0.0251 0 0.0109 0 0.0443 0 0.0197 0 0.0444 

[m] Spa + Geo + Dat 0 0.0105 0 0.0093 0 0.0122 0 0.0140 0 0.0061 

[n] Env + Geo + Dat 0 0 † 0 0.0015 0 0 † 0 0.0002 0 0 † 

[o] Env + Spa + Geo + 

Dat 

0 0.1030 0 0.1058 0 0.1097 0 0.1157 0 0.1111 

Residual 0 0.6849 0 0.7040 0 0.6268 0 0.6970 0 0.5809 

Note:  boldface type and * denotes parameter estimate P ≤0.01 as determined by permutation 

testing with 100,000 iterations; † denotes adjusted R
2
 <0.00005; data sources are the taxonomist 
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or research group/lab responsible for zooplankton records at each sampling location, and were 

represented by a set of dummy variables; and Env, Spa, Geo, and Dat refer to components of 

variation attributable to environment, space, geography, and data source, respectively.   
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