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Abstract

In recent years, Underwater Sensor Networks (UWSNs) have attracted attention for

their potential use in many applications. To name a few, UWSNs have been consid-

ered in studying marine life, oceanographic data collection, monitoring underwater

oil pipelines, and a variety of military and homeland security applications.

UWSN deployments can be either static, semi-mobile, or mobile. For such

networks, localization of nodes and observed events arise as a fundamental task

where the obtained location information can be used in data tagging, routing, and

node tracking. Analyzing the ability of an UWSN to perform a localization task is

most challenging for networks with uncontrollable mobile nodes.

In this thesis, we approach the above class of problems by adopting a probabilis-

tic graph model to describe node location uncertainty in semi-mobile and mobile

deployments. Using the above model, we formalize a probabilistic node localiza-

tion performance measure, and a corresponding problem to compute the measure.

Using the theory of partial k-trees, we develop an exact algorithm that runs in

polynomial time, for any fixed k. We next consider the structure of network con-

figurations that contribute to solving the formalized problem. We call such struc-

tures pathsets. We then devise an iterative algorithm that aims to generating a most

probable pathset in each iteration. In addition, we present numerical results that

illustrate the quality of the obtained solutions, and the use of the devised algorithms

in UWSNs design.
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Chapter 1

Introduction

Underwater Sensor Networks (UWSNs) have attracted significant at-

tention in recent years as useful systems that serve many applications.

In many such networks, nodes can move freely with water currents, and

during any interval of time, few nodes can rise to surface to use their

GPS devices to determine their geographic location. Thus, other nodes

should rely on collaborative work to be able to localize themselves. In

this chapter, we consider such networks. We formalize a problem on

quantifying the likelihood that a given node in a mobile UWSN can

localize itself.

1.1 Introduction

An Underwater Sensor Network (UWSN) is composed of communicating nodes

that can be used to perform various actions in underwater environments. The do-

mains of applications of such networks are diverse, and include the following ex-

amples (see, e.g., [2] and [25]):

• Scientific applications: e.g., observing geological processes

• Military applications: e.g., conducting surveillance missions

• Industrial applications: e.g., determining routes for underwater cables

The design of UWSNs, however, faces a number of challenges such as
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• Challenges of the underwater communication channel: several studies

have reported that the underwater environment poses problems for radio fre-

quency communication, optical communication, and acoustic communication

(see, e.g., [2] and [25]). Currently, acoustic communications offer the most

practical solution at the expense of providing low bandwidth and long com-

munication delays.

• Challenges due to node mobility: UWSNs deployments are classified as

static, semi-mobile, or mobile [20]. Static networks have nodes attached to

underwater ground or anchored buoys. Semi-mobile networks may have col-

lection of nodes attached to buoy with limited mobility. Mobile networks

may be composed of drifters with no self mobility capability. This type of

UWSNs is very useful. However, nodes in such networks are subject to large

scale movements, and hence, present a challenge in analyzing the network.

In this thesis, we consider mobile networks where nodes can travel freely. Our

interest is in developing methodologies that allow a designer to analyze the like-

lihood that nodes in a mobile network can localize themselves. To present more

details, we review in the next two sections information about modelling nodes that

move freely with water currents.

1.2 Node Mobility Model

The work of [10] has adopted a kinematic mobility model of UWSNs called the

meandering current mobility model. The model is useful for large coastal envi-

ronments that span several kilometers. In [10], the authors have used a simulation

approach that uses the adopted kinematic model to analyze several network con-

nectivity, coverage, and localization measures of UWSNs. The kinematic model is

a differential equation whose solution gives a trajectory of a node that moves with

water currents. The equation is given below.

ψ(x, y, t) = −tanh[
y − B(t)sin(k(x− ct))√
1 + k2B2(t)cos2(k(x− ct))

] + cy (1.1)
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where B(t) = A+ ε cos(ωt) and the x and y velocities are given by

ẋ = −∂ψ

∂y
; ẏ =

∂ψ

∂x
(1.2)

In [10], the authors explored the trajectories generated using the following set-

tings: A = 1.2, c = 0.12, k = 2π/7.5, ω = 0.4 and ε = 0.3. The trajectories

generated by the above equations are very sensitive to the initial deployment point

at time t = 0, and typically include many vortexes. Our work in this thesis does

not use such kinematic model directly. Rather, it uses the concept of probabilistic

graphs introduced next. Constructing a probabilistic graph, however, can use the

above kinematic model as a means of computing the required parameters.

1.3 Probabilistic Graph Model

Our work in the thesis abstracts away from the use of detailed knowledge of node

movement trajectories, as given by the above kinematic model. Rather, we adopt

a simple discrete probabilistic model for mobility. Namely, after some time inter-

val T from network deployment time, we model the UWSN using the concept of

probabilistic graph G = (V,EG,Loc, p) where

• V is the set of nodes of the UWSN

• For each node x there is a finite set of regions that form the locality set of node

x, denoted Loc(x) = {x(1), x(2), · · · }, where each x(i) is a well defined

region that node x can visit at the end of the time interval T of interest.

• If node x in region x(i) ∈ Loc(x) can communicate with node y in region

y(j) ∈ Loc(y) then we set the link indicator EG(x(i), y(j)) = 1. Else, we set

EG(x(i), y(j)) = 0.

• The probability that node x is in region x(i) (at the end of time T of interest)

is px(i).

The information required to construct such a probabilistic graph can be obtained

by generating many trajectories using the kinematic equation presented in the pre-

vious section, and analyzing the location of the nodes after T units of time have
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elapsed. Different construction methods can lead to different probabilistic graphs

on different sets of regions. We leave the problem of constructing an accurate prob-

abilistic graph that models a given UWSN (at some time T ) as a topic of future

research, and assume that such a graph G is given as input.

1.4 Problem Formulation

In this section, we formulate the main problem dealt with in the thesis. An anchor

node is a node that can determine its location (e.g., by using a GPS). A non-anchor

node relies on contacting at least 3 of its neighbours who know their locations to

localize itself. The argument is transitive, that is, each of these neighbours can

either be an anchor node, or an ordinary node that has succeeded in localizing itself

by contacting at least 3 of its neighbours that have localized themselves.

Definition (the P-LOC problem). Given a probabilistic graph G = (V,EG,Loc, p),

a subset Vanchor ⊆ V of anchor nodes, and a target node t, find the probability

PLoc(G, Vanchor, t) (or, PLoc(G, t), for short) that node t can be localized. �
The formulation of the P-LOC problem shares some aspects with the class of

network reliability problems, discussed in [13]. For network reliability problems,

a node (or link) can either be operating or failed with some known probability. In

our problem, a node can be in any one of a possible set of regions (its locality

set) with some known probability. The computation of the measure PLoc(G, t) can

proceed as follows. First, we recall that each node x ∈ V can be in any given region

x(i) ∈ Loc(x) with probability px(i). If such an event occurs, we say that node x

is in state x(i). We use the notation (x, x(i)) (or, (x, i) for short) to refer to node

x being in state x(i). When each node x in the probabilistic graph G is in one of

its possible |Loc(x)| states, we obtain a network state T of the probabilistic graph.

T is written as T = {(x, i) : x ∈ V and x(i) ∈ Loc(x)}, or T = {(x(i) : x ∈
V and x(i) ∈ Loc(x)} for short.

The probability that state T arises is Pr(T ) =
∏

(x,i)∈T px(i). A network state

T is operating if the target node t can be localized in state T . Else (if t can not be

localized in T ), then state T is failed. We further denote by OP (G, Vanchor, t) (or,
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OP (G, t) for short) the set of all operating network states of G. Since OP (G, t) is

a set, any pair of network states contained therein differ in the state of at least one

node. So, we can write:

PLoc(G, Vanchor, t) =
∑

T∈OP (G,t)

Pr(T ) (1.3)

We also need the following definition. The underlying graph of a probabilistic

graph is defined as follows:

• V (the set of nodes of the UWSN) is the set of nodes of the underlying graph.

• An edge (x, y) exists in the underlying graph iff EG(x(i), y(j)) = 1 for some

indices i and j in the locality sets of nodes x and y, respectively.

Example. Figure 1.1 illustrates a probabilistic graph on 6 nodes. Each node

has a locality set of two regions (e.g., {t(0), t(1)}). Numbers inside rectangles

are probabilities in the model. Coloured blue rectangles correspond to anchor

nodes. Node t is a target node to be localized. We then note that state T =

{t(0), v0(1), v1(0), v2(1), v3(0), v4(1)} is an operating state where the target t can

localize itself. �

Figure 1.1: Probabilistic graph of an UWSN
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1.5 Thesis Organization and Contribution

The main contributions of the thesis are in chapters 3 and 4. In Chapter 3, we

present an exact solution to the P-LOC problem when the underlying graph of the

probabilistic graph is a partial k-tree, k ≥ 1. The algorithm runs in polynomial time,

for any fixed k. In Chapter 4, we present an iterative algorithm that can compute

exact solutions if allowed sufficient number of iterations. Otherwise, the algorithm

provides a lower bound (LB) on the solution. Finally, Chapter 5 concludes with

some remarks and possible future research directions.

1.6 Literature Review

Currently, there is extensive research on localization of UWSNs (see, e.g., the sur-

veys in [11, 16, 17]). Results on the following specific directions appear in the

literature.

• Minimizing localization time by packet scheduling [26, 27]

• Combining localization with time synchronization [22]

• Localization in 3-dimensional spaces [12]

• Improving localization accuracy [7, 8, 29]

• Using prediction in localization [14, 30, 31]

• GPS free localization [24]

• Localization in 2-tier hybrid sensor networks [23]

In the above research work, node mobility is considered a challenging aspect

that has been dealt with directly in a relatively few papers. Approaches for handling

mobility in such papers can be roughly classified as being suitable for either small

scale mobility, or large scale mobility. In a small scale mobility, node movement is

analyzed either over a short period of time, or when a node is constrained to travel a

relatively short distance. An example of a short period of time is a time period that

6



allows a node to receive multiple consecutive packets. An example of a constrained

node movement is when the node is anchored to the underwater ground using a rope.

On the other hand, in a large scale mobility, nodes can travel considerable distances

over longer periods of time. Examples of work done on localization of nodes subject

to large scale mobility include the work of [31] and [22], as highlighted below.

• In [31], the authors consider seashore environments where nodes are located

near the seashore. The authors observe that some existing results in hydro-

dynamics demonstrate that the moving speed of such nodes changes contin-

uously and show certain semiperiodic properties. In addition, spatial corre-

lations between node movements exist in such environments. That is, move-

ment of one node is closely related to its nearby nodes.

Using the above assumptions, the localization scheme devised in [31] adopts

a linear prediction method, explained in [28], to predict node mobility. The

prediction method is applied over adjacent windows of fixed-length time in-

tervals, called prediction windows. In this work, mobility prediction is used

to reduce the number of transmitted messages when the scheme has confi-

dence in the obtained values.

• The work of [22] also deals with large scale mobility by adopting yet another

mobility prediction scheme. The scheme utilizes an adaptive estimation ap-

proach, called interactive multiple mode (IMM), explained in [4]. As men-

tioned in [22], the IMM filter runs a bank of filters in parallel where each filter

incorporates all possible moving patterns of a node. A Markov chain transi-

tion matrix is introduced to characterize the transition probability of a node’s

moving pattern from one mode to another. Using the above method, the au-

thors have considered two moving patterns of a node with added Gaussian

noise: a uniform motion along a straight line with a constant velocity, and a

maneuver motion where some nodes make coordinated turns with a constant

turn rate using constant speeds. In addition, they obtain simulation results

using the random walk pattern, and the meandering current mobility model.

In this work, mobility prediction is used to improve localization accuracy.
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We note that the two latter reviewed publications utilize methods to predict the lo-

cation of a mobile node to either reduce the number of messages transmitted by a

protocol (and, hence, reducing a node’s energy consumption), or improve the local-

ization error. In such approaches, nodes take a corrective action if the prediction

method is conceived to produce values different from some measured values. We

note, however, that such approaches are not suitable for tackling the P-LOC prob-

lem investigated in the thesis. On the other hand, our work in the thesis shows the

suitability of using the probabilistic graph model.

1.7 Concluding Remarks

In this chapter we have introduced the concept of probabilistic graphs as a way to

model location uncertainty in UWSNs with free nodes moving according to water

currents. We have also introduced the probabilistic location problem (P-LOC) that

is investigated in the rest of the thesis. In the next chapter, we give background on

the classes of partial k-trees used in our first algorithm.
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Chapter 2

Background on k-Trees and Partial

k-Trees

In this chapter, we give some preliminary information on the classes of

k-trees and partial k-trees. The information is required to present our

algorithm in the next chapter.

2.1 Graph Notation

We start by reviewing some standard graph theoretic notation. An undirected graph

G = (V,E) has a set V of nodes (or vertices), and a set E of edges (or links). The

following notation will also be encountered in our presentation.

• degG(v) denotes the degree of node v in graph G.

• NG(v) denotes the set of neighbouring nodes of v in graph G.

• An induced subgraph G′ ⊆ G on a set V ′ ⊆ V of nodes contains all edges of

G where the two end nodes of each edge lie in V ′.

• A clique is a complete graph. A k-clique is a clique on k nodes.

• A separator in a graph G is a subset of nodes whose removal splits G into

two, or more, components.
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2.2 The k-Trees Family

The Classes of k-Trees. The notion of k-trees, for any fixed k ≥ 1, is described in

the early work of [5, 6]. We use the following definition.

Definition. For a given integer k ≥ 1, the class of k-trees is defined as follows.

A k-clique is a k-tree. Furthermore, if Gn is a k-tree on n nodes then so is the graph

Gn+1 obtained by adding a new node, and making it adjacent to every node in a

k-clique of Gn. �
Thus, conventional trees are 1-trees. A k-leaf of a k-tree G on k + 1, or more,

nodes is a node whose neighbours induce a k-clique. Note that by repeatedly delet-

ing k-leaves from a k-tree Gn, on n ≥ k nodes, one reduces Gn to a k-clique. Such

a sequence of nodes is called a k-leaf elimination sequence.

Example. Figure 2.1 sketches part of a 3-tree G. G has a 3-leaf vb. �

Figure 2.1: A fragment of a 3-tree

The following lists some basic properties of k-trees. References [3,18] mention

other properties.

Lemma 1 1. Every k-tree that is not a clique has at least two non-adjacent

k-leaves.

2. Given a k-tree G, and a k-clique subgraph H ⊆ G, there exists a k-leaf

elimination sequence that reduces G to H .

3. Given two non-adjacent nodes u and v of a k-tree G, a subgraph induced on

any minimal (u, v)-separator is a k-clique. �

The Classes of Partial k-Trees. For a given k, a partial k-tree is a subgraph of

a k-tree. A leaf of a partial k-tree G is a node x that is a k-leaf in some embedding
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of G in a k-tree G̃. A perfect elimination of x from G is the elimination of x and

its incident edges and the addition of the necessary edges to complete NG(x) to

a clique. A k-perfect elimination sequence (k-PES) of a graph G is an ordering

(v1, v2, · · · , vn), or an ordering of (v1, v2, · · · , vn−k) for short, of VG such that

1. degG(v1) ≤ k, and

2. for i = 2, 3, · · · , the degree of vi in the graph obtained by perfectly eliminat-

ing v1, · · · , vi−1 is at most k.

Example. For the graph G in figure 2.2, (va, vb, vi, vj, vk, vl) is a 3-PES. �

Figure 2.2: A Partial 3-tree

For any fixed k, the class of partial k-trees is related to another well known

class, called graphs with tree-width ≤ k (see, e.g., [9]).

Relation to Other Graph Classes. Several classes of graphs are known to be

partial k-trees for fixed k [9]. For example

• series-parallel graphs, and outerplanar graphs are partial 2-trees.

• Halin graphs and Y-Δ graphs are partial 3-trees.

• An n× n grid, n ≥ 2 is a partial n-tree.

2.3 Concluding Remarks

In this chapter we have presented some preliminary information on the classes of

k-trees and partial k-trees, and their relations to other classes of graphs. In the next

chapter, we present our algorithm to solve the P-LOC problem on partial k-trees,

for any given k.
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Chapter 3

A Partial k-tree Algorithm

In this chapter, we consider instances of the P-LOC problem where

the underlying graph G is a partial k-tree, k ≥ 1, that is a subgraph of

a k-tree, denoted G̃. In addition, we assume that G is given as input

together with a k-perfect elimination sequence (PES) that reduces G̃

to a k-clique containing the target node t. For such problem instances,

we present a dynamic programming algorithm to solve the problem

exactly. The exact algorithm runs in polynomial time, for any fixed k.

The chapter starts by reviewing relevant system model information pre-

sented in previous chapters. We then present the main ingredients of a

dynamic programming algorithm that solves the P-LOC problem ex-

actly. The presented algorithm follows a framework in the literature

that has enabled the solution of other optimization and enumeration

problems on graphs. The algorithm is implemented in the C++ lan-

guage with the use of the Standard Template Library (STL). The source

program is about 1500 lines. To verify the correctness of the implemen-

tation, we present some ideas that we have used.

3.1 System Model Summary

We recall that an instance of the P-LOC problem is specified by the parameters

(G, Vanchor, t) where

• G is a probabilistic graph, G = (V,EG,Loc, p), on the following parameters

12



– V is a set of UWSN nodes

– EG(x(i), y(j)) = 1 iff the two nodes x and y are assumed to reach each

other when located in the regions x(i) and y(j), respectively

– Loc(x) is the locality set of node x

– px(i) is the probability that node x is located in region x(i)

• Vanchor is a subset of anchor nodes of V

• t ∈ V is a non-anchor node to be cooperatively localized using other nodes.

We use n = |V | to denote the number of nodes in G. To simplify notation

(when no confusion can arise), we also use the symbol G to denote the underlying

graph of the probabilistic graph G. The underlying graph is defined as follows:

• V (the set of nodes of the UWSN) is the set of nodes of the underlying graph

• Edge (x, y) is in the underlying graph (written as E(x, y) = 1) iff EG(x(i), y(j)) =

1 for some indices i and j in the locality sets of nodes x and y, respectively.

Since the same symbol G is used to refer to a probabilistic graph and its under-

lying graph, sentences involving the relation EG(x(i), y(j)) refer to G as a proba-

bilistic graph. On the other hand, statements such as E(x, y) = 1, or references to

induced subgraphs of G refer to G as a conventional (deterministic) graph.

In this chapter, we deal with instances (G, Vanchor, t) of the P-LOC problem

that satisfy the following properties:

1. The underlying graph G in the given instance is a partial k tree, k ≥ 1, on n

nodes, n ≥ k. We denote by G̃ a k-tree of which G is a subgraph.

2. G̃ has a given k-perfect elimination sequence PES = (v1, v2, · · · vn−k). The

removal of nodes in the PES from G̃ reduces the graph to a k-clique, say H .

We require that the target node t be a node in H . By Lemma 1 in chapter 2,

this requirement can always be satisfied.
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Note that, the existence of G̃ (specified by property 1) and a PES (specified by

property 2) is assured since every underlying graph G (with no loops or parallel

edges) is a partial k-tree for k = n− 1.

Using the above concepts, we now highlight the main ingredients in the algo-

rithm. Our presentation follows closely the presentation of [21] which in turn builds

on the presentations of many previous algorithms in the literature.

3.2 Overview of the Algorithm

The overall structure of the algorithm relies on the following concepts.

C1. The order of processing nodes by the dynamic programming algorithm

C2. The way a subgraph is reduced onto a separator clique of the k-tree G̃

C3. The specification of the dynamic program state types used to make the algo-

rithm efficient

C4. The specification of tables and data structures used to store the states of the

dynamic program

For concept C1, the algorithm processes the nodes in the order of the given

PES = (v1, v2, · · · vn−k). As mentioned earlier, we require that the remaining

clique of G̃ on nodes {vn−k+1, · · · , vn} (obtained after processing and eliminating

nodes in the PES) to contain the target node t. To clarify the processing of a typ-

ical node vi in the PES, we use the following notation. The notation refers to the

fragment of a 3-tree illustrated in figure 3.1.

Figure 3.1: A fragment of a 3-tree
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• Kvi,base: the k-clique to which node vi is attached in the recursive construc-

tion of the graph G̃ according to the reverse of the PES given. In our example

of figure 3.1, we assume that Kvi,base is the triangle (vj, vk, vl).

• Kvi,1, Kvi,2, · · · , Kvi,k: the k k-cliques involving node vi when vi becomes a

k-leaf. Each k-clique is made of node vi and k− 1 other nodes in Kvi,base. In

our example of figure 3.1, one may set, e.g., Kvi,1 to the triangle (vi, vj, vk).

After processing and deleting all nodes in the prefix (v1, v2, · · · , vi−1) of the

PES, node vi becomes a k-leaf in the current reduced graph of G̃. Information

about certain subgraphs on the deleted nodes are maintained in tables associated

with the k-cliques Kvi,base, Kvi,1, Kvi,2, · · · , Kvi,k. We use Tvi,α to denote the table

associated with clique Kvi,α, where α = base, 1, 2, · · · , k.

Example. In figure 3.2, we assume that vb and va have been deleted to make vi

a 3-leaf. The information about the induced subgraph on nodes {va, vb, vi, vj, vk} is

summarized in table Tvi,1 associated with the separator clique Kvi,1 = (vi, vj, vk).

�

Figure 3.2: A 3-tree fragment

For concept C2, we say in our example above that the induced subgraph on

nodes {va, vb, vi, vj, vk} is reduced onto the clique (vi, vj, vk). Prior to processing

node vi, the algorithm maintains in each table Tvi,α, where α = base, 1, 2, · · · , k,

information about a subgraph of G, denoted Gvi,α that has been reduced onto the

clique Kvi,α. Each such table Tvi,α is initialized to store information about the k-

clique Kvi,α itself.

For concept C3, we note that the algorithm needs to store information about

useful network states of the graph Gvi,α in table Tvi,α. As explained in Chapter 1,

15



a network state of a probabilistic graph assigns to each node x a region in its lo-

cality set Loc(x). The worst case number of possible useful network states of any

subgraph processed in the algorithm, say Gvi,α, grows exponentially with the num-

ber of nodes in the subgraph. The dynamic program strives to achieve efficiency

by consolidating information about many network states that are considered of the

same type. For our P-LOC problem, the needed dynamic program state types are

defined next.

Definition (state types of the P-LOC problem). Let Gvi,α be a subgraph that

has been reduced onto the clique Kvi,α. Denote by Vvi,α the set of nodes of Gvi,α.

Let S = {va(ia) : va ∈ Vvi,α, ia ∈ Loc(va)} be a network state of Gvi,α. Then the

type of network state S is the following set defined on the nodes (x1, x2, · · · xk) of

the separator clique Kvi,α:

type(S) = {(xi, loc(xi), count(xi), anchors(xi)) : i = 1, 2, · · · , k}

where for each node xi in the clique, we have

• loc(xi): the location of node xi in the state S (that is, the region in Loc(xi)

assumed by node xi in network state S)

• count(xi) ∈ {0, 1, 2, 3}: For an anchor node xi, or a node that has been

localized thus far, count(xi) = 3. For a non-anchor node xi that has not been

localized thus far, count(xi) is the number (at most 2) of anchor neighbours,

or neighbours that have been localized in the subgraph Gvi,α processed thus

far.

• anchors(xi): For an anchor node xi, anchors(xi) = ∅. For a non-anchor

node xi, anchors(xi) is the set of anchor neighbours, or neighbours that have

been localized in the subgraph Gvi,α processed thus far. If node xi has more

than 3 anchor or localized neighbours, then it suffices to store only 3 such

nodes.

�
Example. In figure 3.2, denote by Gvi,1 the graph induced by the set of nodes

{va, vb, vi, vj, vk}. Gvi,1 is reduced onto the triangle Kvi,1 = (vi, vj, vk). Sup-

16



pose that S = {va(1), vb(2), vi(1), vj(2), vk(3)} is a possible network state of Gvi,1,

where the indices inside brackets are for possible node regions. Suppose also that

in state S all edges shown in the figure exist between the five nodes. In addition,

assume that vb and vj are anchor nodes. Then,

type(S) = {(vi, loc = 1, count = 2, anchors = {vb, vj}),
(vj, loc = 2, count = 3, anchors = ∅),
(vk, loc = 3, count = 1, anchors = {vj})}.

Storing such a state type in table Tvi,1, when node vi becomes a 3-leaf, allows the

algorithm to forget about the exact connections in subgraph Gvi,1 during subsequent

processing steps. �
For concept C4, each table Tvi,α, α = base, 1, 2, · · · , k, provides key-value

mapping where

• each key is a network state type of the graph Gvi,α reduced thus far onto the

clique Kvi,α, and

• each value is the probability of obtaining a network state of Gvi,α having the

type specified by the corresponding key.

Example. Consider the previous example on the subgraph Gvi,1 induced by

the set of nodes {va, vb, vi, vj, vk}. When node vi becomes a 3-leaf, table Tvi,1

stores many network state types as keys. Let S be the state in the example, and let

key = type(S). The value Tvi,1(key) is the probability of obtaining a network state

of subgraph Gvi,1 of this particular type. Network state S of the previous example

is one such network state accounted for by entry Tvi,1(key). �

3.3 Main Algorithm

The overall algorithm presented in this chapter is organized around the following

two functions:

Function Main (Algorithm 1): This function reduces the structure of the prob-

abilistic graph (and the underlying partial k-tree) G by iteratively processing and

then deleting nodes according to the given PES = (v1, v2, · · · , vn−k). After n− k
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iterations, the solution is computed from the table associated with the remaining

k-clique on nodes (vn−k+1, · · · , vn) (which, by design, contains the target node t).

Function Merge (Algorithm 2): The function takes as input two tables, de-

noted T1 and T2, associated with two overlapping cliques. It generates a new table,

denoted Tout, by processing each pair of records in T1 and T2, respectively, to create

a new record (to be stored in Tout).

Algorithm 1: Function Main(G, Vanchor, t, PES)

Input: An instance of the P -LOC problem where G has a partial k-tree
topology with a given PES=(v1, v2, . . . , vn−k)

Output: PLoc(G, t)
Notation: Temp is a temporary table.

1 Initialization: initialize a table TH for each k-clique H of G̃. TH contains all
possible state types on nodes of H .

2 for (i = 1, 2, . . . , |V | − k) do

3 Temp = Tvi,1

4 for (j = 2, 3, . . . , k) do

5 Temp = Merge (Temp, Tvi,j)
end

6 Tvi,base = Merge (Temp, Tvi,base)
7 foreach (key ∈ Tvi,base) do

8 delete vi and its associated position from key
end

end

9 return PLoc (G,t)
=

∑
values in table Tvn−k,base corresponding to state types
where target node t can localize itself
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Algorithm 2: Function Merge(T1, T2)

Input: Two tables T1 and T2 that may share common nodes
Output: A merged table Tout

1 Initialization: Clear table Tout

2 set C = the set of common nodes between T1 and T2

3 foreach (pair of state types key1 ∈ T1 and key2 ∈ T2) do

4 if (any node in C lies in two different positions in key1 and key2) then

5 continue

end

6 set keyout = the state type obtained from node positions in key1 and key2
7 set pout = T1(key1)× T2(key2) adjusted to take the effect of common

nodes in C into consideration
8 if (keyout ∈ Tout) then

9 update Tout(kout) +=pout
end

else

10 set Tout(keyout) = pout
end

end

11 return Tout

3.3.1 Function Main

Function Main (Algorithm 1) iteratively reduces the structure of the k-tree G̃ into

a k-clique (vn−k+1, · · · , vn) containing the target node t. The initialization step

computes a table TH associated with each k-clique H in the k-tree G̃. Initializing

table TH takes into account all possible network states on nodes of H . For each

network state S of H , the adjacency relations EG(., .) of the probabilistic graph

applied to node positions in state S are used to determine the key type(S). The

probability Pr(S) of the network state S then contributes to the probability value

stored in TH(type(S)).

The main loop (the loop in Step 2) iteratively processes and deletes nodes in the

PES. The main loop has two parts:

• The first part (Steps 3 to 6) process a node vi by merging a sequence of tables

(Tvi,α : α = base, 1, 2, · · · , k) into one table. Tables are merged in pairs with

the use of table Temp to store intermediate results. Table Tvi,base stores the

final result.
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• The second part (the loop in Step 7) trims table Tvi,base by removing the k-leaf

vi from each key in the table.

After removing the n− k nodes in the PES, table Tvn−k,base contains state types

over the remaining k-clique (vn−k+1, · · · , vn) (containing the target node t). The

last step computes the answer PLoc(G, t) form that table.

3.3.2 Function Merge

Function Merge (Algorithm 2) takes as input two tables T1 and T2 that typically

have a set C of common nodes. For example, for the partial 3-tree fragment in figure

3.2, T1 (respectively, T2) may be associated with clique (vi, vj, vk) (respectively,

(vi, vk, vl)). Here, the set of common nodes C = {vi, vk}. Each table Ti, i = 1, 2,

stores information about some subgraph, Gi, that has been reduced onto some k-

clique Ki. The function works by processing each pair of state types (table keys)

key1 ∈ T1 and key2 ∈ T2. key1 and key2 are compatible if each common node in

C assumes the same region in both keys. Processing compatible state types key1

and key2 results in a new state type, denoted keyout, and an associated probability

value, denoted pout.

To explain the processing done on compatible keys key1 and key2, we consider

two network states: Si, i = 1, 2, where Si is a network state of the subgraph Gi

(reduced onto clique Ki), and keyi = type(Si). Merging network states S1 and S2

gives the union state S1

⋃
S2. Such union is possible if the two keys key1 and key2

are compatible. In such cases, the desired state type keyout = type(S1

⋃
S2), and

the desired pout is the probability that a network state of type keyout arises in the

graph G1

⋃
G2. The type type(S1

⋃
S2) can be deduced by examining type(S1),

type(S2), and the connectivity between the nodes in cliques K1 and K2 when their

nodes are located according to the network state S1

⋃
S2. The probability pout is the

product T1(key1) × T2(key2) divided by a correction term that takes into account

the common nodes in the set C. This term equals
∏

px(i) where x(i) is common

between key1 and key2
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3.4 Correctness

To show correctness, we use an approach similar to the one used in [21]. In the

proof approach, a table Tvi,α is considered complete with respect to the graph Gvi,α

that has been reduced onto the clique Kvi,α if

1. for each key ∈ Tvi,α, the corresponding value Tvi,α(key) is the probability of

obtaining a state over the subgraph Gvi,α of type key, and

2. each key not in Gvi,α does not contribute to computing the solution PLoc(G, t).

One can then show that at the start of each iteration specified by Step 2 of

function Main if vi is a node in the current graph then each table Tvi,α, α =

base, 1, 2, · · · , k, is complete with respect to the graph Gvi,α reduced thus far onto

the clique Kvi,α . This loop invariant can be shown by induction on the number of

iterations done in the loop.

We remark that the above correctness argument applies to any k-perfect elimi-

nation sequence, k ≥ 1, where the removal of the first (n−k) nodes in the sequence

reduces the graph to a k-clique that includes the target node t. As mentioned in the

section on software verification below, this aspect is used to verify the correctness

of our C++ implementation of the algorithm.

3.5 Running Time

Let n be the number of nodes in G, and �max be the maximum number of locations

in the locality set of any node in G. We then have the following result.

Theorem 1 In the algorithm, we have

1. The maximum length of any table is O((4�max)
k).

2. The worst case running time is O(n · (4�max)
2k).
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Proof.

• Part (1) follows since each key in any table has k nodes, and each node can

have a count value in the set {0, 1, 2, 3}, and a location in one of at most �max

locations. Thus, the number of keys (i.e., the table length) is O((4�max)
k).

• Part (2) follows since function Merge processes O((4�max)
2k) pairs of keys

on each call, and the main function calls Merge O(n) times.

�

3.6 Software verification

The devised algorithm is implemented in C++ with the use of the STL (Standard

Template Library) container classes. The program length is about 1500 lines (with

debugging code). To check correctness of the implementation, we have used the

following approaches.

• Testing using probabilistic graphs with a small number of states (e.g., ≤ 16),

and verifying the result manually.

• Solving a given instance using two different PESs and verifying that we ob-

tain the same result.

• Testing using probabilistic graphs with simple structure. For example, prob-

abilistic graphs whose underlying graphs are paths. Or, more generally, an

underlying graph that has a cutedge (x, y). For such graphs, nodes x and y

can assume positions where x can not reach y, or they can assume positions

where x can reach y. See, e.g., figure 3.3. The final result can be obtained

from the two subgraphs that arise if we remove the edge (x, y).

3.7 Numerical Results

We postpone the presentation and discussion of numerical results until the next

chapter where we present another algorithm for solving the P-LOC problem.
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Figure 3.3: A probabilistic graph whose underlying graph contains a cutedge (x, y)

3.8 Concluding Remarks

The classes of partial k-trees, k ≥ 1, form an important hierarchy of graph classes

for algorithm design. In this chapter, we have presented an algorithm that gives

exact solutions to the P-LOC problem on such classes. The algorithm runs in poly-

nomial time for any fixed k. In the next chapter, we devise another algorithm to

solve the P-LOC problem. Numerical results on the performance of the two algo-

rithms are presented after introducing the second algorithm.
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Chapter 4

A Factoring Algorithm

In the previous chapter, we have presented an exact algorithm to solve

the P-LOC problem. The algorithm requires embedding of the under-

lying graph in a k-tree, k ≥ 1. The running time of the algorithm

grows exponentially with k, and it requires running to completion to

get a result.

In this chapter, we devise an algorithm that uses a different approach

to tackle the P-LOC problem. Given a probabilistic graph G of an in-

stance of the P-LOC problem, the algorithm works by generating sta-

tistically disjoint network configurations of G through an iterative pro-

cess. The algorithm then computes a lower bound (LB) on PLoc(G, Vanchor, t)

from the generated configurations where the target node t can be local-

ized. The algorithm can also generate exact results, if sufficient itera-

tions are performed. In addition to presenting the main algorithm, we

present several numerical results to explore its performance and use.

4.1 Definitions and Notations

Throughout this chapter, we deal with a given instance of the P-LOC problem

described by the parameters (G, Vanchor, t), where G = (V,EG,Loc, p) is a proba-

bilistic graph. In this section, we start by introducing the following concepts needed

to present our algorithm: node states, network states, network configurations, and

pathsets.
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Node states. We recall that each node x ∈ V can be in any given region x(i) ∈
Loc(x) with probability px(i). If such an event occurs, we say that node x is in state

x(i). We use the notation (x, x(i)) (or, (x, i) for short) to refer to node x being in

state x(i).

Network states. When each node x in the probabilistic graph G is in one of its

possible |Loc(x)| states, we obtain a network state T of the probabilistic graph. T

is written as T = {(x, i) : x ∈ V and x(i) ∈ Loc(x)}, or, T = {x(i) : x ∈
V and x(i) ∈ Loc(x)} for short, as mentioned in chapter 1.

Example. Suppose that V = {v1, v2, v3, v4}, and the locality set of each node v ∈
V has 2 regions, then T = {(v1, 2), (v2, 2), (v3, 2), (v4, 2)} is a possible network

state. �
The probability that state T arises is Pr(T ) =

∏
(x,i)∈T px(i). A network state

T is operating if the target node t can be localized in state T . We write op(T ) = 1

if T is operating. Else (if t can not be localized in T ), then state T is failed, and we

write op(T ) = 0. We further denote by OP (G, Vanchor, t) (or, OP (G, t) for short)

the set of all operating network states of G. Since OP (G, t) is a set, any pair of

network states contained therein differ in the state of at least one node. So, we can

write:

PLoc(G, Vanchor, t) =
∑

T∈OP (G,t)

Pr(T ) (4.1)

Network Configurations. A network configuration C assigns a state to some (but

not necessarily all) nodes of a probabilistic graph G. Nodes not bound to a state

in C are called free nodes. Thus, e.g., the null configuration where C = ∅ is a

valid configuration where all nodes are free. The probability that a configuration

C arises is Pr(C) =
∏

(x,i)∈C px(i). We adopt the convention that if C = ∅ then

Pr(C) = 1.0. A configuration C is operating (written op(C) = 1) if the target node

t can be localized using only the assigned nodes in C (i.e., without the help of any

free node in C). Else, C is a failed configuration, and we write op(C) = 0.
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Statistically disjoint (s-disjoint) configurations. Two configurations C1 and C2

are s-disjoint if there exists at least one node that occurs in both configurations, and

this node is assigned to different states in the two configurations. Such a difference

between C1 and C2 allows us to write Pr(C1

⋃
C2) = Pr(C1) + Pr(C2). Here,

C1

⋃
C2 refers to the event that either exactly C1 occurs, or exactly C2 occurs.

Use of network configurations versus use of network states. Let C be a configu-

ration of the given probabilistic graph. Denote its set of free nodes by Cfree. From

the above definitions, it follows that configuration C encodes shared information

between possibly many network states. Each such network state T satisfies T ⊇ C

(i.e., all assignments in C appear in T ). For such cases, we say that network state T

is covered by configuration C. Thus, if OPconf (G, Vanchor, t) (or, OPconf (G, t) for

short) is a set of pairwise s-disjoint operating configurations that covers all operat-

ing states in OP (G, t) then we can write

PLoc(G, Vanchor, t) =
∑

V ∈OPconf (G,t)

Pr(C) (4.2)

The advantage of designing an iterative algorithm that utilizes Equation 4.2

(rather than using Equation 4.1) is that the size of a good covering set OPconf (G, t)

of operating configurations is typically much smaller than the size of the set of all

operating network states OP (G, t). However, generating such a good covering set

of configurations requires carefully designed algorithms. The work of [1, 15] in-

dicate the benefits of using configurations as the basis for designing an algorithm.

Our work here extends such an approach to tackle the P-LOC problem.

Network pathsets. A pathset is an operating network configuration. We use this

term as it is heavily used in the related literature on network reliability problems

(see, e.g., [13]).
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4.2 A Factoring Theorem

Our devised algorithm requires a method for generating pairwise s-disjoint pathsets

in a systematic way. Our approach to generate such a set relies on the use of an

extended form of a factoring theorem. The theorem is discussed in [13] and [19]

in the context of network reliability problems with 2-state (operate/fail) nodes. A

similar, but extended approach is also used in [1] in the context of wireless sensor

networks (WSNs) with 2-state nodes, and [15] in the context of WSNs with 3-

state nodes. In these latter references, the authors employ mechanisms to extend

configurations to pathsets and then use the generated pathsets to guide the factoring

process. We use a similar approach in this chapter.

To present the theorem, we introduce the following notations. Let G = (V,EG,Loc, p)

be a probabilistic graph, and v ∈ V be one of its nodes with region v(i) ∈ Loc(v).

Denote by G• (v, i) the constrained probabilistic graph G where node v is assigned

region v(i) ∈ Loc(v).

Theorem 2

PLoc(G, t) =
∑

v(i)∈Loc(v)
pv(i)× PLoc(G • (v, i), t)

The Theorem follows since the right hand side (RHS) exhausts all possible

states of node v. The above theorem shows factoring on a single node. There

are many situations where our algorithm performs factoring on a sequence of nodes

to generate multiple configurations. To present more details, we mention that the

algorithm applies factoring in the following program context.

1. The algorithm has computed (in a table called R) a set of s-disjoint configu-

rations.

2. The algorithm selects a configuration C that has a high probability Pr(C) to

process further.

3. The algorithm calls a function, called E2P (extend to a pathset), to compute

an extension configuration Cnew such that C
⋃

Cnew is a pathset
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Three cases arise depending on whether function E2P fails or succeeds to ex-

tend C as follows:

• Case 1. Function E2P fails to extend C, and C has no free non-anchor nodes.

• Case 2. Function E2P fails to extend C, and C has at least one free non-

anchor node v.

• Case 3. Function E2P succeeds in extending C to C
⋃

Cnew.

Our factoring algorithm handles each case as follows.

• Case 1. Since C has no free non-anchor node, and C can not be extended so

that the target node t can be localized, it follows that C does not cover any

pathset. Configuration C is assigned a BAD state and ignored.

• Case 2. The algorithm uses the free non-anchor node v for factoring by

generating the set of configurations

– C = {(C, (v, α)) : v(α) ∈ Loc(v)} where |C| = |Loc(v)|

The notation (C, (v, α)) refers to the configuration obtained by adding (v, α)

to configuration C. As will be detailed later, this case may arise even though

C is in fact extensible; that is, function E2P may give false negatives.

• Case 3. The algorithm uses the node-state pairs in Cnew, say Cnew = ((v1, α1),

(v2, α2), · · · , (vr, αr)) to perform factoring. This is done by generating the

following r sets of configurations:

– C1 = {(C, (v1, α1)) : α1 	= α1} where |C1| = |Loc(v1)| − 1

– C2 = {(C, (v1, α1), (v2, α2)) : α2 	= α2} where |C2| = |Loc(v2)| − 1

– C3 = {(C, (v1, α1), (v2, α2), (v3, α3)) : α3 	= α3} where |C3| = |Loc(v3)|−
1

– · · ·
– Cr = {(C, (v1, α1), (v2, α2), · · · , (vr, αr)) : αr 	= αr} where |Cr| =
|Loc(vr)| − 1
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The following theorem is needed to show correctness.

Theorem 3 1. In Case 2, the set C is a maximal set of new configurations that

can be generated by node v, and added to table R while preserving the pair-

wise s-disjointedness property.

2. In Case 3, the set Call= C1

⋃
C2

⋃ · · ·Cr

⋃{(C,Cnew)} (the last configu-

ration in the union is the pathset C
⋃

Cnew) is a maximal set of new configu-

rations that can be generated by nodes of the computed configuration Cnew,

and added to table R while preserving the pairwise s-disjointedness property.

Proof. For Case 2, one may verify that the set C is a maximal set of pairwise

s-disjoint configurations that can be generated by using node v. To see that the

pairwise s-disjointedness property is maintained after adding the new set to table R,

let C ′, C ′ 	= C, be a configuration in table R that exists before adding C. Let C ′′ ∈
C be one of the added configurations (containing node v). Since configuration C ′′

contains configuration C, it follows that C ′ is also s-disjoint from C ′′, as required.

For Case 3, one may verify that any two configurations in Call are s-disjoint.

Moreover, no new configuration that extends C by using nodes in Cnew can be added

to this set without violating the s-disjointedness property. Hence, Call is a maximal

set of configurations that satisfies the pairwise s-disjointedness property. The proof

to show that all configurations in Call can added to table R while preserving s-

disjointedness follows the same argument as in Case 2. �

4.3 Main Algorithm

The overall algorithm presented in this chapter is organized around the following

three functions:

• Function Main (Algorithm 3): This function implements a loop responsible

for generating and managing network configurations. The function termi-

nates by computing a lower bound (or an exact solution) on PLoc(G, t).
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• Function Factor (Algorithm 4): This function is called from the main func-

tion. It is responsible for generating pairwise s-disjoint configurations, and

extending some of these configurations to pathsets.

• Function E2P (Algorithm 5): This function is called from function Factor to

extend a given configuration C to a pathset, denoted C
⋃

Cnew.

In this section, we present the details of function Main and Factor. Our design

of these two functions follows closely the design presented in [15].

4.3.1 Data Structures

Function Main maintains the generated configurations in a table, denoted R. Table

R is managed by adding new configurations to it. R[i] denotes the ith row (record)

in the table. Each row in table R is a 4-tuple, denoted (C,Cnew, state, p), where

• C is a configuration of the probabilistic graph G

• Cnew is an extension to the configuration C, typically computed by function

E2P, so that C
⋃

Cnew is a pathset. Cnew is initialized with the empty set.

• state: each record in table R is in one of 3 possible states:

– ACTIV E: Each iteration of the main loop of function Main chooses

an ACTIV E record R[i] to process by attempting to extend its config-

uration R[i].C to a pathset by calling function E2P.

– GOOD: a record R[i] that the algorithm succeeds in extending to a

pathset and using it to generate new configurations is given the GOOD

state after processing.

– BAD: a record R[i] whose configuration R[i].C has no free nodes and

can not be extended to a pathset is given the BAD state.

• p: For a GOOD record R[i], we set R[i].p = Pr(C
⋃

Cnew). For an ACTIV E

record, R[i].p = Pr(C). Initially, table R stores the null configuration defined

by R[0] = (C = ∅, Cnew = ∅, state = ACTIV E, p = 1.0).
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4.3.2 Function Main

Function Main (Algorithm 3) takes as input an instance of the P-LOC problem, and

invokes a main loop to generate and store s-disjoint configurations in table R. At

the end, the function returns the sum of the probabilities of GOOD configurations

in the table. If the algorithm is run to completion (i.e., all ACTIV E nodes are

processed), the sum gives the exact solution PLoc(G, t). Else, the sum gives a LB

on the solution. In more detail, Step 1 initializes table R with a single configuration

(the null configuration). Steps 2 to 5 form the main loop. New configurations

are generated by calling function Factor to process a selected record R[i]. Step 6

computes the final result.

Algorithm 3: Function Main(G, Vanchor, t):

Input: An instance of the P-LOC problem
Output: The function generates pairwise s-disjoint configurations, and returns

the sum of the found pathsets
Notation: R is a table that stores the generated configurations

1 Initialization: set

R[0] = (C = ∅, Cnew = ∅, state = ACTIV E, p = 1.0)

(i.e., initially, R has has only one record)
2 for (iter = 1, 2, . . . ,maxIter) do

3 Let i be the index of an ACTIV E configuration with largest probability
in table R

4 Call function Factor: result = Factor(R, i, t)
5 if (result < 0) then

R[i].state = BAD
end

end

6 Return
∑

i = 0, 1, . . .
where R[i].state = GOOD

R[i].p

4.3.3 Function Factor

Step 1 of function Factor (Algorithm 4) calls function E2P (extend to a pathset)

to extend the input configuration R[i].C to a pathset. As mentioned in Section 4.2,

three cases arise. Steps 2, 3, and 5 handle these three possible cases.
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Algorithm 4: Function Factor(R, i, t):

Input: Table R storing network configurations, and an index i of a configuration
R[i].C to use in factoring

Output: If configuration R[i].C can be extended to a pathset a C
⋃

Cnew by
function E2P then apply factoring on the sequence of nodes in Cnew to
generate new s-disjoint configurations. Else, if function E2P fails,
choose a free non-anchor node v to be used in factoring. Else, return
−1 (failure)

1 result = E2P(R[i].C,R[i].Cnew, t)
2 if (result < 0 AND there is no free non-anchor node) then

return result
3 else if (result < 0 AND there is a free non-anchor node v) then

4

1. Generate a set of configurations C from C and node v, as described in case 2
in the text

2. foreach (configuration C ′ ∈ C) insert record
(C ′, C ′

new = ∅, ACTIV E, p = Pr(C ′)) in table R

3. Delete record R[i]

5 else
# an extension Cnew to configuration C is found

6

1. Generate configuration sets C1, C2, · · · from C and Cnew, as described in
case 3 in the text

2. foreach (configuration C ′ ∈ C1

⋃
C2

⋃
C3

⋃ · · · ) insert record
(C ′, C ′

new = ∅, ACTIV E, p = Pr(C ′)) in table R

3. Set R[i].status = GOOD

end

7 return +1

4.3.4 Remarks on the Main Algorithm

We conclude the presentation of the main algorithm by mentioning the following

points that distinguish the above factoring algorithm framework from the frame-

works presented in [1] and [15]:

• Nodes dealt with in this framework are multistate, with a relatively large num-

ber of states (as determined by their locality sets). In contrast, the above
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references deal only with 2-state or 3-state nodes.

• Our framework deals with function E2P that can return false negatives.

• In our framework, if every call to function E2P fails then the framework

computes a LB by factoring on non-anchor nodes (or, an exact solution if

sufficient iterations are allowed).

4.4 Extension to Pathsets

The extension to a pathset (E2P) problem is described as follows: given an in-

stance (G, Vanchor, t) of the P-LOC problem, and a configuration C of the proba-

bilistic graph G, find an extension Cnew such that (a) C
⋃

Cnew is a pathset, and (b)

Pr(Cnew) is as high as possible.

An effective solution to the E2P problem when integrated within the factor-

ing algorithmic framework, presented in the previous section, allows for good use

of each iteration. This follows since each iteration selects one configuration C

from a heap of configurations, and then finds an extension to a pathset with as high

Pr(Cnew) as possible. In this section, we devise a heuristic algorithm for the E2P

problem. Our devised heuristic algorithm can give false negatives, i.e., it can fail

to extend a given configuration C where an extension may actually exist. We first

present the key ideas and data structures, and then present more algorithmic details.

4.4.1 Main Ideas

To extend a given input configuration C to a pathset C
⋃

Cnew, the algorithm em-

ploys two sets of node-state pairs, denoted Qloc and Qunloc. Initially, set Qloc stores

elements (node-state pairs) corresponding to anchor nodes Vanchor. Some of these

pairs are specified in the input configuration C; the remaining elements are gen-

erated from the free anchor nodes. The set Qloc grows in each iteration of the

algorithm as new elements can be localized. The growth stops when an element

corresponding to the target node t is added to the set. Set Qunloc contains elements

(node-state pairs) of nodes that are not yet localized. This set shrinks at each iter-
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ation as new elements can be localized. The shrinking stops when an element that

corresponds to the target node t is removed from the set.

Thus, the probabilistic graph nodes that appear in the elements stored in Qloc

⋃
Qunloc

is the set V of all nodes in G. We remark that the algorithm allows two elements

corresponding to the same probabilistic graph node, say (x, i) and (x, j), where

i 	= j and x(i), x(j) ∈ Loc(x), to appear in Qloc. A difficulty arises in the final

stage of the algorithm if the subset of Qloc considered for computing the extension

Cnew contains such pair of elements. The algorithm executes in two phases.

• Phase 1, the algorithm iteratively selects an element, say (x, i) ∈ Qunloc

that can be localized using three elements in Qloc. The algorithm stores rele-

vant information about this localization operation in an entry denoted Q(x, i)

where Q is a special table intended to store such information. Phase 1 termi-

nates when an element corresponding to the target node t is localized.

• Phase 2, views the subset of elements in Qloc that enable the localization

of the element corresponding to the target node t as set of vertices VH of

a directed acyclic graph H . H has one source vertex corresponding to the

element that includes the target node t. A directed arc from element (x, i) to

element (y, j) exists if (y, j) is used to localize (x, i). The sink vertices in H

are elements of Qloc corresponding to anchor nodes in the UWSN. Phase 2

identifies the set VH of vertices H . To compute the desired extension Cnew,

phase 2 performs the following steps:

– Remove from VH all elements belonging to the input configuration C.

– If the remaining set VH \ C contains two elements (x, i), (x, j), i 	= j,

for the same node x, then the algorithm fails and return −1 to the caller.

– Else, set Cnew = VH \ C, and return +1 to the caller.

4.4.2 Data Structures

As discussed above, the main data structures used are the sets Qloc and Qunloc, and

the table Q(., .). We now present more details about these data structures.
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• Qloc is a set whose elements are node-state pairs that have been localized thus

far. Initially, Qloc has the following elements:

– For each anchor node x assigned to a state x(i) in C, include (x, i) in

Qloc.

– For each free anchor node x where Loc(x) = {x(1), x(2), · · · , x(r)}
add elements {(x, i) : i = 1, 2 · · · , r} to Qloc.

• Qunloc is a set whose elements are node-state pairs that have not been local-

ized thus far. Initially, Qunloc has the following elements:

– For each non-anchor node x assigned to a state x(i) in C, include (x, i)

in Qunloc.

– For each free non-anchor node x where Loc(x) = {x(1), x(2), · · · , x(r)}
add elements {(x, i) : i = 1, 2 · · · , r} to Qunloc.

• Q(., .) is a table that provides key-value mappings. Keys correspond to ele-

ments in Qloc

⋃
Qunloc. Two value types are stored for each key as explained

below:

– Q(x, i).p: the p field is a probability whose meaning depends on whether

element (x, i) appears in Qloc or Qunloc. If (x, i) ∈ Qloc (respectively,

(x, i) ∈ Qunloc) then the value p is final (respectively, temporary). In ei-

ther case, it is intended to reflect the cost incurred in using the element

(x, i) to localize other elements. When p = 1.0, there is no (multi-

plicative) cost incurred in using (x, i). When p is small, there is a high

(multiplicative) cost incurred in using (x, i).

– Q(x, i).adj: the adj field is a set of elements used in localizing node

(x, i). An anchor node x (positioned in any location) does not require

the help of other elements for localization. For such a node x, we set

Q(x, i).adj = ∅.
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Initialization. Immediately after initializing sets Qloc and Qunloc, the algorithm

initializes table Q(., .) for each element (x, i) as follows:

• Permanent settings:

– If (x, i) ∈ Qloc and (x, i) ∈ C then x ∈ Vanchor, and we set Q(x, i).p =

1.0, and Q(x, i).adj = ∅.

– If (x, i) ∈ Qloc and (x, i) /∈ C then x ∈ Vanchor, and we set Q(x, i).p =

px(i), and Q(x, i).adj = ∅

• Temporary settings:

– If (x, i) ∈ Qunloc and (x, i) ∈ C, we set Q(x, i).p = 1.0, and Q(x, i).adj =

∅.

– If (x, i) ∈ Qunloc and (x, i) /∈ C, we set Q(x, i).p = px(i), and Q(x, i).adj =

∅

Example. Figure 4.1 shows an underlying graph (a 4× 4 double-diagonal grid

network) of a probabilistic graph. The probabilistic graph has the following struc-

ture:

• Each node x (0 to 15) has a locality set of two regions: region 0 (1) is the

bottom (respectively, top) rectangle.

• The probability that node x lies in one of its two possible regions appears

inside the respective rectangle. Note that node 0 (and also, 2, 3, and 4) has

zero probability of visiting its top region.

• Nodes on the perimeter (coloured blue) are anchor nodes.

• Node 9 is the target node t.

Now, suppose that function E2P is invoked with input configuration C = {(0, 0),
(2, 0), (3, 0), (4, 0)}. The function selects the following elements to move from

Qunloc to Qloc.
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• Node 5 where Q(5, 0).adj = {(0, 0), (4, 0), (2, 0)} and Q(5, 0).p = 0.9 ×
1.0× 1.0× 1.0 = 0.9

• Node t = 9 where Q(9, 0).adj = {(4, 0), (5, 0), (8, 0)} and Q(9, 0).p =

0.9× 1.0× 0.9× 0.6 = .486

The function then returns Cnew = {(5, 0), (8, 0)}
�

Figure 4.1: Example of function E2P; for each node x, region x(0) (respectivly,
x(1)) is the bottom (respectivly, top) rectangle

4.4.3 Function E2P

Function E2P (Algorithm 5) highlights the main steps of our devised algorithm.

The function takes as input the parameters (C,Cnew, t) of an instance of the E2P

problem, and aims at extending C to a pathset C
⋃

Cnew. The function executes in

two phases.

• Steps 2 to 5 form phase 1. This phase utilizes a greedy strategy to build

Cnew. The greedy strategy selects at each step an element (x, α) with a large

Q(x, α).p probability that can be moved from Qunloc to Qloc. Phase 1 termi-

nates successfully when an element containing the target node t can be moved

to Qloc. The phase terminates with failure (returns −1) if it can not find a way

to localize the target.
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• Phase 2 executes if phase 1 succeeds. In such cases, phase 2 computes an

extension configuration Cnew from the nodes of the DAG H (assuming VH

does not contain two different elements corresponding to one node).

Algorithm 5: Function E2P(C,Cnew, t)

Input: An instance (G, Vanchor, t, C) of the E2P problem
Output: If a solution is found return +1, and a solution in Cnew. Else, return −1.

1 Initialize Qloc, Qunloc, and table Q(., .), as described in the text.
# Phase 1

2 while (target t is not in Qloc) do

3 Choose an element (x, α) ∈ Qunloc that can be localized by elements in
Qloc with a high probability. Give preference to selecting the target node
t.

4 if (no such element (x, α) exists) return −1
5 Let {(yi, αi) : i = 1, 2, 3} be the elements in Qloc used to localize (x, α).

1. Set Q(x, α).p = the product of the p fields in Q(x, α) and Q(y, αi),
i = 1, 2, 3

2. Set Q(x, α).adj = {(yi, αi) : i = 1, 2, 3}
3. Move element (x, α) from Qunloc to Qloc

end

# Phase 2

6 Let VH = the elements that make the vertices of the DAG H
7 if (VH contains two elements corresponding to one node in two different

states) then
return −1

else
set Cnew = VH \ C

end

8 return +1

4.4.4 Running Time

Let n be the number of nodes in G, and �max be the maximum number of regions

in the locality set of any node in G, then we have the following observation.

Theorem 4

Function E2P can be implemented to run in time O((n · �max)
2 · log(n · �max)).

Proof. Phase 1 dominates the running time of function E2P. This phase pro-

cesses elements in Qloc

⋃
Qunloc (at most n · �max elements). The operation of
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selecting an element with the highest probability to move from Qloc to Qunloc can

be implemented by keeping nodes in Qunloc in a maximum heap using the Q(., .).p

values as weights. The theorem then follows since phase 1 iterates at most n · �max

time to determine if the target node t can be localized. Each iteration computes

the effect of the most recently added element to Qloc on the remaining elements in

Qunloc; this step can be done in O(n · �max) time, followed by selecting a node from

Qunloc at the top of the heap, and refixing the heap.

4.5 Numerical Results

We implemented the factoring algorithm and the E2P function in the C++ language

using the STL library of container classes. The overall system is about 800 exe-

cutable lines. In this section we present numerical results that illustrate some as-

pects of the algorithm’s performance and its potential applications. Our test proba-

bilistic graphs have underlying graphs that form double-diagonal grids (abbreviated

x-grids). Figure 4.2 illustrates one rectangle in such a grid. In the figure, each node

x has a locality set with 2 regions Loc(x) = {x(0), x(1)}. In the figure region

x(1) lies on top of region x(0). The four nodes reach each other when they are all

either in location 0, or all in location 1 of their respective locality sets. A L ×W ,

L,W ≥ 1, x-grid has L columns and W rows. We use GL×W to denote such a

graph.

Figure 4.2: Structure of a rectangle in an x-grid
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4.5.1 Results on both the k-tree and factoring algorithms

This set of experiments is intended to verify that the exact solution obtained by

running the k-tree algorithm coincides with the exact solution obtained when the

factoring algorithm is run to completion. Figure 4.4 is an example of underlying

graph used in the testing (a subgraph of G3×4 ). Figure 4.3 is a redrawing of figure

4.4 illustrating that the graph is a partial 3-tree with PES= ( 8 , 9 , 4 , 0 , 1 , 5 , 2 , 3

, 6 ).

Figure 4.3: A partial 3-tree network

Table 4.1 (and also figure 4.5) summarizes the obtained results when solving

the 5 x-grid networks shown in the table. We note that the exact result obtained

in each case is the same. This provides a good evidence of the correctness of the

implementation of both algorithms. The table also reports the running time required

by each algorithm to solve each instance. We remark that in all test cases, the

factoring algorithm is substantially faster than the k-tree algorithm (in some cases,

by a factor of 10). We henceforth restrict our attention to the performance of the

factoring algorithm in the remaining experiments.
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Figure 4.4: Network used in both k-tree and factoring algorithms

Table 4.1: Results on both k-tree and factoring algorithms

Network G
k-tree algorithm Factoring algorithm

PLoc(G) Time (ms) PLoc(G) Time (ms)
G2×2 0.125 4.241 0.125 0.778
G2×3 0.125 11.022 0.125 0.978
G3×3 0.121094 92.948 0.121094 3.885
G3×4 0.110352 150.077 0.110352 5.248
G4×4 0.0805969 170.141 0.0805969 20.792
G5×5 0.0625 254.784 0.0625 5.62

4.5.2 Effect of increasing network size

In these experiments, we investigate the effect of enlarging the network size on

PLoc(G, t). The results are obtained using at most 1000 factoring iterations. Table

4.2 summarizes the obtained results on x-grids ranging from G2×2 to G6×6. Cases

where exact results are obtained are distinguished from cases where LBs are ob-

tained. Figure 4.6 illustrates one of the test networks where the target node (node

15) is at the upper right corner. Anchor nodes in test networks lie on the perimeter.

However, a target node that lies on the perimeter is not an anchor node. As can be

seen, PLoc(G, t) decreases as network size increases. This happens since nodes

needed to localize t get away from anchor nodes as the network size increases.
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Figure 4.5: Results on both k-tree and factoring algorithms

Table 4.2: Effect of increasing network size (results obtained using the factoring
algorithm)

Network

G
Target

node t
PLoc(G, t) Running

time (ms)

Good con-

figurations

Bad config-

urations

Status

G2×2 3 0.125 0.787 2 6 Exact
G3×2 5 0.125 1.018 2 6 Exact
G3×3 8 0.121094 3.59 10 8 Exact
G4×3 11 0.119141 5.884 14 14 Exact
G4×4 15 0.110718 38.45 90 106 Exact
G5×4 19 0.106539 223.918 440 642 Exact
G5×5 24 0.10048 1406 2274 909 LB
G6×6 35 0.0964446 4704.51 3182 128 LB

Figure 4.6: Network G4×4 and target node 15
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4.5.3 Effect of the target node location

The location of the target node t relative to the anchor nodes Vanchor, and the

level of connectivity between t and Vanchor determines the localization measure

PLoc(G, Vanchor, t). To gain more insights into such effects, we have conducted

three sets of experiments.

In the first set of experiments, we consider an UWSN whose underlying graph

is G7×7, as in figure 4.7. Anchor nodes lie on the perimeter of the grid, except

when a perimeter node is the target node t. Table 4.3 shows the results obtained by

the factoring algorithm. The results obtained by the factoring algorithm show that

PLoc(G, t) is best when a target node has at least 3 anchor neighbours (e.g., t = 8

or t = 40). The measure PLoc(G, t) decreases significantly when t does not have

3 anchor neighbours, since at least one non-anchor node should be localized first

(e.g., t = 0, 48, 16, or 32). As the distance between t and anchor nodes increases

(e.g., node 24) the PLoc(G, t) decreases to unacceptable levels, e.g., PLoc(G, t =

24) = 0.0131541.

Figure 4.7: A G7×7 network (target node location varies on the diagonal)

In the second set of experiments, we focus on the weakest cases in the above set.
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Table 4.3: Effect of varying target location in G7×7 network

Target

position

Target

node t
PLoc(G, t) Running

time (ms)

Good con-

figurations

Bad config-

urations

(0, 0) 0 0.0952197 12611.5 3712 38
(1, 1) 8 0.534746 13421.2 3994 18
(2, 2) 16 0.136642 12804.9 3886 0
(3, 3) 24 0.0131541 12956.9 3096 0
(4, 4) 32 0.132606 8276.2 2810 0
(5, 5) 40 0.534197 10828.7 3380 8
(6, 6) 48 0.0952142 10899.3 3402 24

Namely, the cases conisdered here have underlying grid networks GW×W where the

target node is roughly in the middle (e.g., at coordinates (
W/2�− 1, 
W/2�− 1)),

and anchor nodes are on the perimeter. Table 4.4 presents the results obtained using

the factoring algorithm. The results show the fast diminshing values of PLoc(G, t).

Table 4.4: Results on locating a target node in the middle of x-grid

Network

G
Target

node t
PLoc(G, t) Running

time (ms)

Good con-

figurations

Bad config-

urations

Status

G2×2 0 0.125 0.808 2 6 Exact
G3×3 4 0.855469 19.394 112 56 Exact
G4×4 5 0.696259 411.415 1324 1044 LB
G5×5 12 0.215773 1818.91 2762 30 LB
G6×6 14 0.150527 4956.85 3409 0 LB
G7×7 24 0.0131541 12982.2 3096 0 LB
G8×8 27 0.0148608 22769.2 3455 0 LB
G9×9 40 0.000944996 78497.8 4114 0 LB
G10×10 44 0.00123594 121704 4539 0 LB

In the third set of experiments, we check the weakest and strongest nodes in the

network distribution. The test network size is 5 × 5 where the anchor nodes are

on the perimeter and the target node position varies over all other positions in the

network. If the target node is on the perimeter it becoms a non-anchor node. Figure

4.8 is an example when the target node is node 2. Figure 4.9, shows the results. The

figure shows a symmerty between some nodes in the network.
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Figure 4.8: A G5×5 network (target node location varies over all nodes)
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Figure 4.9: Varying target node location in G5×5

4.5.4 Effect of the number and location distribution of anchor

nodes

An UWSN design problem is to decide on an adequate number and location distri-

bution of nodes that can serve as anchor nodes during a given interval of time. The

objective may be to guarantee a minimum level of localization to each other node.

To serve as anchor nodes, such set of nodes may need to be scheduled to rise to the

surface in a synchronized way to activate their GPS devices. The thesis leaves such
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Table 4.5: Results (LBs) on varying target node location in G5×5

Target

node t
PLoc(G, t) Running

time (ms)

Good configu-

rations

Bad configu-

rations

0 0.100365 5843 2362 987
1 0.276172 10187 3283 296
2 0.180927 9328 3252 252
3 0.276927 8734 2997 287
4 0.10044 5671 2298 932
5 0.275858 9702 3304 318
6 0.573766 11312 3315 268
7 0.43824 8281 3097 160
8 0.575911 10093 3371 200
9 0.276129 9093 3193 293
10 0.179467 9110 3181 268
11 0.437317 8563 3177 218
12 0.215773 7484 2762 30
13 0.439888 7953 3018 178
14 0.181599 9062 3150 300
15 0.276193 8296 2838 278
16 0.575411 9750 3324 212
17 0.439984 8000 3000 179
18 0.574879 9484 3244 191
19 0.275602 7890 2796 258
20 0.100451 5656 2294 932
21 0.27608 8937 3116 284
22 0.181558 9140 3164 306
23 0.275182 8156 2926 268
24 0.10048 5656 2274 909

interesting network design problem as a topic for future research. However, the

algorithms developed in the thesis provide tools to approach such class of UWSN

design problems. To illustrate the use of the devised algorithms as tools, suppose

the underlying graph of an UWSN is the G5×5 graph where only 20% (i.e., 5 nodes)

can be scheduled to rise to the surface to serve as anchor nodes. We assume the

target node is 12 (see, figure 4.10).

Different sets of 5 nodes exist. Table 4.6 lists a collection of 5-node sets that

a designer may wish to assess their benefit. Using the factoring algorithm (1000

iterations, and table of at most 10,000 configurations), one obtains the results in
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Table 4.6.

Table 4.6: Exact results on locating a set of 5 anchor nodes in G5×5

Set of 5 Anchor nodes PLoc(G, t) Good con-

figurations

Bad config-

urations

Running

time (ms)

Case 1: (0, 1, 2, 3, 4) 0.00390625 2 16 6.603
Case 2: (4, 9, 14, 19, 24) 0.0078125 2 14 6.404
Case 3: (3, 4, 8, 9, 13) 0.0 0.0 1 0.407
Case 4: (22, 23, 14, 2, 10) 0.0078125 2 14 7.522
Case 5: (6, 11, 16, 17, 7) 0.3125 8 12 7.474
Case 6: (5, 6, 7, 8, 9) 0.125 2 6 4.639
Case 7: (0, 5, 4, 18, 20) 0.0 0.0 1 0.413
Case 8: (0, 4, 24, 20, 10) 0.0 0.0 1 0.287
Case 9: (7, 17, 13, 18, 24) 0.3125 8 12 8.981
Case 10: (6, 11, 5, 1, 2) 0.09375 4 8 5.481
Case 11: (20, 21, 22, 23, 24) 0.00390625 2 16 9.051
Case 12: (4, 8, 18, 20, 17) 0.125 2 6 2.245
Case 13: (3, 8, 13, 18, 23) 0.125 2 6 4.596

Figure 4.10: A G5×5 network with a middle target node

4.6 Concluding Remarks

In this chapter, we have presented an iterative algorithm that can produce exact re-

sults (if run to completion) for the P-LOC problem. If run for any given user speci-

fied number of iterations, the algorithm gives a lower bound on PLoc(G, Vanchor, t).
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Each iteration of the algorithm selects a network configuration C that has a high oc-

currence probability, and attempts to extend it to a pathset C
⋃

Cnew where Pr(Cnew)

is as high as possible. We have implemented the algorithm, and the obtained results

show that for cases that can be solved exactly within a reasonable time, the devised

algorithm is remarkably faster than the k-tree algorithm presented in the previous

chapter. We have also presented both exact and LB results that are used to de-

velop insight in the dependency of the PLoc(G, t) measure on several probabilistic

graph parameters such as its size, the location of the target node t, and the location

distribution of the anchor nodes.
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Chapter 5

Concluding Remarks

In this thesis, we have considered UWSNs deployed with mobile nodes. During a

given interval of time, not all nodes can obtain their geographic locations on their

own. Rather, a small subset of nodes may be able to rise to water surface and

use their GPS devices to find their locations. Nodes that can localize themselves

without the help of other nodes are called anchor nodes. Non-anchor nodes, during

any interval of time, rely on anchor nodes to localize themselves. Each such node

requires the help of 3 anchor nodes, or nodes that have succeeded in localizing

themselves.

Due to node mobility, nodes can be in different geographic regions with dif-

ferent probabilities. To capture this aspect, the thesis adopts a probabilistic graph

model that abstracts away from detailed knowledge of node movement trajectories.

Rather, the model focuses on determining important geographic regions that can be

visited by the nodes, and probability distributions describing how the nodes visit

such regions.

Using the probabilistic graph model, we formalize a probabilistic localization

problem called the P-LOC problem. The problem asks for computing the proba-

bility that a given target node t can localize itself by collaborating with other nodes

in the network. Solving the formalized problem faces a challenge since the prob-

abilistic graph has an exponential number of states, where each state specifies a

geographic location for each node in the network. We note that although the topic

of localization in UWSNs has been intensively examined in the literature (see, e.g.,

the surveys in [11,16,17]), the research direction taken by the P-LOC problem has
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not been adequately considered.

Our main contributions in the thesis include an exact algorithm to solve the

problem on the class of partial k-trees, k ≥ 1. The partial k-tree dealt with here

captures links in all possible states of the probabilistic graph. The resulting algo-

rithm has a running time that grows exponentially with k. Our second contribution

is an iterative algorithm that works with graph structures, called network config-

urations. The algorithm can produce exact results if run to completion, or it can

produce lower bounds if stopped after a given number of iterations.

For future research, we propose investigating the following related problems.

• In our work, the probabilistic graph G = (V,EG,Loc, p) is assumed to be

given as part of the input. Such a graph is constructed using some physical

mobility model capable of estimating the location of a node under different

physical parameters such as the node’s initial deployment coordinates, direc-

tion and speed of water currents, etc. By varying the set of locations (regions)

in such a model, we obtain different probabilistic graphs. These graphs may

differ in their accuracy in representing the mobile network. More work needs

to be done to identify useful measures that capture the accuracy of a proba-

bilistic graph, and methods of constructing reasonably accurate probabilistic

graphs.

• The factoring algorithm of Chapter 4 relies on using an efficient and accurate

function E2P. Our greedy approach to design the E2P allows the function

to give false negatives. It is of interest to improve the performance of the

function so as to minimize false negative whenever possible.

• Our formalized P-LOC problem concerns the localization of a single node.

Another class of interesting problems is to compute the probability that a

monitored event in a certain area can be localized. The consideration of

an area (rather than a single node) introduces new challenges. It is hoped,

however, that adopting the factoring algorithm to deal with the new class of

problems gives effective results. More work is needed to develop such ideas

further.
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