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Abstract

Spiral Magnetic Resonance Imaging (MRI) has traditionally presented more technical and

computational challenges compared to its traditional Cartesian counterpart, notably a sus-

ceptibility to blurring artifacts, especially when scan parameters are non-optimal, and a

heavier computational load both at the image reconstruction, and post-processing level.

This research is aimed at improving the efficiency of data acquisition, transmission and

post-processing for spiral MRI, which continues to become a more common sequence choice

in applications where speed, signal-to-noise ratio and geometrical accuracy are key require-

ments. In the first part of this thesis, we cover the fundamentals of spiral trajectory design

and acquisition, image reconstruction by means of fast Gaussian gridding, and a rapid

method for deblurring a large in vivo dataset. In the second part, we introduce a novel

technique for compressing spiral MR data acquired from a multi-channel coil array, with

applications in wireless transmission and data storage. The compressed images are indis-

tinguishable from the originals even though the data has been compressed by a factor of 3

or more.
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CHAPTER 1

Overview of the Thesis

1.1 Motivation for the Project

Traditionally, Computed Tomography (CT) has been a 3D imaging modality of choice in

many branches of medicine, partly because it provides useful images with high signal-to-noise

ratio (SNR) and satisfactory contrast, but also because it is still available at a lower cost,

is more user-friendly and has fewer contraindications than Magnetic Resonance Imaging

(MRI). In recent years, however, MRI has rivaled the use of CT in certain applications

of neurology and oncology, by virtue of its superior soft-tissue contrast, and its ability

to display physiological information [1–4]. Furthermore, although traditionally bone has

been difficult to image with MRI, new pulse sequences and hardware have been designed

which now enable the visualization of bone, and the measurement of bone density [5], even

permitting the diagnosis of dental cavities [6], thus leaving little behind that only CT can

perform. Nevertheless, MRI is not about to replace CT in all areas of diagnostic imaging,

because it cannot compete in terms of imaging speed, SNR and accuracy [7, 8]. Accuracy

refers to how geometrically similar an image resembles the actual object, without taking

random noise and spatial resolution into account. Geometrical distortions and artifacts

degrade the accuracy of an image, by showing features that are distorted, blurred, or that

do not exist in the object being imaged. As demonstrated in Tab. 1.1, for a given field-of-

view (FOV) and pixel resolution, the intrinsic physics of MRI require a trade-off between

imaging speed, SNR and accuracy. Consider for example a simple Cartesian gradient-echo

image (to be discussed in the next chapter). We may achieve higher SNR by acquiring

the whole dataset twice, and averaging the signal, which increases the scan time, but does

not affect the accuracy; alternatively, we can decrease the sampling bandwidth so as to

boost the SNR by the same amount, which does not affect the scan time substantially, but

1
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Speed SNR Accuracy Protocol
low low high h-BW GRE
low high low l-BW GRE
high low low EPI

Table 1.1: Intrinsic trade-offs between imaging speed, SNR and geometrical
accuracy in MRI, assuming the same repetition time TR. Three protocols are
given as an example: a highest-bandwidth gradient-echo (h-BW GRE), a lowest-
bandwidth gradient-echo (l-BW GRE) and an echo-planar imaging (EPI) se-
quence.

causes the geometrical accuracy to deteriorate. Consequently, much MRI research is aimed

at improving at least one of these three things.

In this thesis, I investigate how spiral MRI may be made efficient at three impor-

tant levels: data acquisition, transmission and post-processing. A new technique of data

compression is also explored, which could potentially enable the transmission of MRI data

from a high-density detector array through a single wireless link, such as the presently-

available IEEE 802.11n protocol. I use a gradient-echo spiral pulse sequence throughout

the thesis, for three basic reasons. First, spiral MRI is one of the most efficient (ratio of

total data acquisition time to the total scan time) sampling trajectories presently available

[1, p.928]. In general, the more dead-time a sequence contains, such as the time needed

to rewind the phase-encode gradient, the less efficient it is. Secondly, a spiral trajectory

leads to an isotropic point-spread function (PSF) which does not cause sequence-dependent

spatial distortions [1], but may instead require image post-processing to correct for blur-

ring. Finally, non-Cartesian imaging is expected to become more prominent in the future,

especially with the recent proliferation of Ultra-short echo-time (UTE) MRI, which enables

the visualization of the musculoskeletal system and bone [9]. Techniques applied to spiral

MRI are also applicable to other non-Cartesian pulse sequences, such as radial acquisitions

used in UTE-MRI.

1.2 Organization of the Thesis

This thesis consists of three main chapters. Chapter 2 covers the basic theory of MRI physics

behind modern MRI, serving as general background for the rest of the thesis.

Chapter 3 covers the advanced theory of data acquisition, image reconstruction and

post-processing of spiral MRI in details, demonstrating how high-resolution, artifact-free

images may be obtained provided that certain considerations are met. An important feature

of this chapter includes a fast and reliable technique for deblurring a large spiral MR dataset,

which is applicable to any situation where resolution and geometrical accuracy is crucial,



CHAPTER 1. OVERVIEW 3

e.g., MRI-based Radiation Treatment Planning (RTP). Finally this chapter also serves as

relevant background for the material presented in chapter 4.

Chapter 4 focuses on efficient data transmission, being motivated by the present

technological race towards large multi-detector arrays. While parallel imaging with high-

density arrays may be the key to speeding up MRI acquisition, it comes with its own set of

challenges, which includes dealing with the bulkiness and interference of multi-coil coaxial

cables, increased data memory and processing time. The bulkiness of multiple coaxial

wires has motivated research in using digital wireless links or optical links on coils. Philips

Healthcare have already manufactured an on-coil digitizer combined with a fiber-optical

link (branded “DirectDigital RF” technology) as part of their new Ingenia MRI scanner,

which is expected to improve image SNR by up to 40% (visit: http://www.healthcare.

philips.com/us_en/products/mri/systems/Ingenia30T/index.wpd). As shown in Tab.

1.2, existing wireless links do not achieve sufficiently high data rates required by large multi-

channel arrays at present. For instance, consider a typical sampling rate of 1000 samples

taken in 5 ms for one channel (200 kHz bandwidth), each sample occupying 16 bits of

memory for each of the real and imaginary part, as calculated in Eq. (1.1), this yields a

data-rate requirement of 6.4 Megabits per second per channel used:

1000 samples/channel

5× 10−3 s
× 16 bits/samples× 2 = 6.4 Mbits/s/channel. (1.1)

Thus, given the presently-available IEEE 802.11n standard, and assuming that the

digitized data from multiple MRI channels are combined prior to transmission over a single

wireless link, 23 channels (= 147 Mbit/s) could be theoretically supported by the system.

However, high-density arrays of up to 128 channels have been tested and found beneficial [10–

12]. Also, the unconventional environment within the MRI suite (e.g., a large static magnetic

field strength, and reflective walls shielded with copper) means that realistic transmission

rates could be further reduced. The chapter presents a novel technique for compressing the

data to be transmitted from a high-density array to the computer reconstruction console by

up to a factor of 4, resulting in a potential increase in the maximum number of supported

channels to 92, using typical 802.11n rates.

http://www.healthcare.philips.com/us_en/products/mri/systems/Ingenia30T/index.wpd
http://www.healthcare.philips.com/us_en/products/mri/systems/Ingenia30T/index.wpd
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Wireless Standard Theoretical max Typical data-rate Max # channels
data-rate (Mbits/s) (Mbits/s) supported

IEEE 802.11a-1999 54 22 3
IEEE 802.11b-1999 11 6 1
IEEE 802.11g-2003 54 19 3
IEEE 802.11n-2009 600 150 23

WiMedia Alliance UWB 480 110 17

Table 1.2: List of wireless protocols with relevant specifications (see:
http://en.wikipedia.org/wiki/IEEE_802.11#ref_80211ns_sgiB2 & http://

en.wikipedia.org/wiki/Wireless_USB). Maximum number of supported MRI
channels is calculated according to Eq. (1.1), assuming the typical data rate.

http://en.wikipedia.org/wiki/IEEE_802.11#ref_80211ns_sgiB2
http://en.wikipedia.org/wiki/Wireless_USB
http://en.wikipedia.org/wiki/Wireless_USB


CHAPTER 2

Theory of Magnetic Resonance Imaging

2.1 History

Magnetic Resonance Imaging (MRI) is a field that grew out of the discovery of Nuclear

Magnetic Resonance (NMR) by I. I. Rabi in 1938 [13]. In 1946, F. Bloch and E. M. Purcell

applied the technique to liquids and solids, and successfully explained NMR as the precession

of spins about a magnetic field [14]. R. R. Ernst improved the sensitivity of the NMR

technique by means of RF pulses instead of the previously-used continuous-wave excitation

method, and also applied the Fourier transform to analyze the MR signal [15]. The idea of

using NMR to detect tumors in vivo came from the physician R. V. Damadian in 1971, when

he observed that tumors in mice exhibited different MR relaxation constants compared to

the healthy tissues [16]. Finally, the invention of the modern MRI scanner is attributed to P.

C. Lauterbur and P. Mansfield in the 1970s, following their use of linear gradient magnetic

fields to spatially encode an image in 2D [17, 18]. MRI scanners became commercially

available in the 1980s. Well-known companies of today that manufacture whole-body MRI

scanners include: General Electric, Philips, Siemens, Varian and Toshiba.

2.2 Nuclear Magnetic Resonance

2.2.1 The Concept of Spin

Elementary particles carry an intrinsic angular momentum called spin. The most common

value of spin quantum number is that of particles that make up ordinary matter, including

protons, neutrons and electrons, and consists of two eigenstates: spin up (+1/2) or down

5
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(−1/2) [19]. Isotopes that contain an odd number of protons and/or neutrons have a

magnetic dipole moment and angular momentum, with a non-zero spin, which comes as a

multiple of 1/2 (e.g. 1/2, 1, 3/2, etc). The most common such isotope found in nature is

hydrogen (H1
0 ), which makes it particularly well-suited for performing NMR. The magnetic

dipole moment µ is proportional to the spin angular momentum S

µ = γS, (2.1)

where the proportionality constant γ is called the gyromagnetic ratio (γ = 2.675× 108 rad

s−1T−1 for protons). When a magnetic field interacts with a nucleus that exhibit magnetic

dipole moment, it will exert a torque µ×B on the dipole, with associated energy given by

H = −µ ·B = −γB · S. (2.2)

Without the presence of such a magnetic field, each proton spin is in an indeterminate

sate, which means that its wave function is a linear combination of both the up state

| ↑〉 =

(
1

0

)
with eigenvalue + h̄

2 and the down state | ↓〉 =

(
0

1

)
with eigenvalue − h̄2 ,

where h̄ = 1.05 × 10−34 J s, the reduced Planck constant. However, in the presence of a

static magnetic field, each proton spin will collapse to one of the two possible states, one

being parallel and the other being antiparallel to the magnetic field direction. The energy

difference between the two states is

∆E = γh̄B0. (2.3)

All interactions of the proton spin with a magnetic field may be modelled from a

quantum-mechanical point-of-view by means of the three Pauli spin matrices [19]:

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
, (2.4)

one for each coordinate n, and the spin operator Sn = h̄σn/2. To illustrate the simplest case,

where a proton spin is subject to a static magnetic field along the z-direction (B = B0ẑ),

the wavefunction χ(t) of the spin obeys the Schrödinger equation [19]

ih̄
∂χ

∂t
= −γB0Szχ = −γh̄B0

2

(
1 0

0 −1

)
χ. (2.5)
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2.2.2 The Larmor Frequency

The general solution to Eq. 2.5 is the wave function of the proton spin given by

χ(t) = a| ↑〉eiγB0t/2 + b| ↓〉e−iγB0t/2 =

(
aeiγB0t/2

be−iγB0t/2

)
, (2.6)

and subject to the normalization requirement |a|2 + |b|2 = 1, and initial condition χ(0) =(
a

b

)
. Now letting a = cos(α/2) and b = sin(α/2) , and solving for the expectation values

〈µz〉, 〈µy〉, and 〈µx〉, we obtain

〈µz〉 =
γh̄

2
cos(α), (2.7)

〈µy〉 = −γh̄
2

sin(α) sin(γB0t), (2.8)

〈µx〉 =
γh̄

2
sin(α) cos(γB0t). (2.9)

These equations basically model a magnetic moment vector µ precessing about the z-axis

at an azimuthal angle α and with a frequency

ω0 = γB0, (2.10)

known as the Larmor frequency, as shown in Fig. 2.1 [19].

2.2.3 Probability Distribution of Nuclear Spin States

The population equilibrium of the proton spins within a magnetic field is given by the

Boltzmann distribution
| ↓〉
| ↑〉

= exp

(
− ∆E

kBT

)
≈ 1− ∆E

kBT
, (2.11)

where kB is the Boltzmann constant, T is the thermodynamic temperature, and ∆E is the

energy difference between the two spin states. Given a room temperature of 293 K, and a

magnetic field strength B0 of 3 T, the ratio of the two spin states will be

| ↓〉
| ↑〉

= 1− (2.675× 108)(1.05× 10−34)(3)

(273)(2.38× 10−23)
= 1− 4.32× 10−6, (2.12)

indicating that there is a slight excess of spins that point along the direction of the field.

This spin excess is responsible for creating a net magnetization on the macroscopic scale,

along the direction of the magnetic field denoted by
∑
µexcess = M .
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z

y

x

μ
α

ω0

Figure 2.1: Precession of µ in a uniform magnetic field. Although only the
parallel configuration is shown here, the anti-parallel case is an equally valid
solution, where α > 90◦

2.2.4 Spin-Lattice Relaxation

Transitions of the spins from the +1/2 state to the -1/2 state and vice versa do occur due

to the coupling of the spins to another system called the lattice, but which may be better

thought as a reservoir, since it is equally applicable to liquids. One may think of a single

proton as existing inside the energy reservoir. The energy shared between the proton and

the reservoir must remain unchanged, such that if the proton spin undergoes an energy loss

(from 1 → 2), the reservoir must also undergo an energy gain (from b → a). However, the

reservoir and the proton cannot both undergo an energy gain or loss, since that would violate

conservation of energy. If we denote the probability per second of an upward transition as

W↑ and that of a downward transition as W↓, a simple derivation by Slichter [20] reveals

that the sum of both probabilities equals a constant

W↓ +W↑ =
1

T1
, (2.13)

known as the longitudinal, or spin-lattice relaxation constant T1. This relaxation only affects

the net magnetization that points along the z-direction. Thus if the net magnetization is

perturbed from equilibrium M0 by a certain means (to be seen in the following section), it

will tend to return to its original position, in the direction parallel to the static magnetic
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field, according to
dMz

dt
=
M0 −Mz

T1
. (2.14)

Typical values for this longitudinal relaxation ranges in vivo from ∼ 220 ms for bone to

∼ 5600 ms for celebrospinal fluid at 3 T, and also increases with the static field strength

B0. (Values at 1.5 T range from ∼ 150 ms for bone to ∼ 4500 ms for celebrospinal fluid).

2.2.5 Radio-frequency Pulse Excitation

From classical mechanics, a time-varying magnetic field applies a torque on the net magne-

tization vector M , according to
dM

dt
= γM ×B. (2.15)

If the magnetic field contains both a static component B0 that points along z, and a trans-

verse time-varying component B+
1 (t) along x and y, according to

B = B1(t) (cos(ωrf t)x̂− sin(ωrf t)ŷ) +B0ẑ, (2.16)

a change of coordinate system by taking the x-axis in the rotating frame along the B+
1 (t)

direction yields

dM

dt
= M × [(γB0 − ωrf )ẑ + γB1(t)x̂] . (2.17)

Equation (2.17) reveals that a time-varying magnetic field B+
1 (t) with carrier frequency

ωrf = γB0 can flip the magnetization onto the xy-plane. Defining ∆ω = γB0 − ωrf and

expanding Eq. (2.17) into three scalar equations, we obtain [1]

dMx

dt
= ∆ωMy, (2.18)

dMy

dt
= γB1(t)Mz −∆ωMx, (2.19)

dMz

dt
= −γB1(t)My. (2.20)

An important solution to Eqs. 2.20 involves the case of perfect on-resonance excitation

where ∆ω = 0, with initial conditions Mx(0) = 0, My(0) = 0, and Mz(0) = M0 for which

the solution is [1]

Mx(t) = 0, (2.21)

My(t) = M0 sin(α(t)), (2.22)

Mz(t) = M0 cos(α(t)), (2.23)
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where α(t) = γ
∫ t

0
B1(τ)dτ , and is known as the flip angle.

2.2.6 Spin-Spin Relaxation

After being flipped along the x-axis, the magnetization Mx decays exponentially due to

another mechanism of relaxation called spin-spin relaxation, denoted by the constant T2.

Slichter [20, p.34] explains that this second type of relaxation arises from the interaction of

spins among themselves, where each nucleus experiences a local magnetic field Bloc ∼ µ/r3

originating from its neighbors, located at an average distance r, and either aiding or opposing

the static field B0. If all the nuclei were precessing in phase at t = 0, there would be a time τ

at which the net magnetization Mx would have been greatly reduced, such that γBlocτ ≈ 1.

Thus the order of magnitude of the spin-spin relaxation constant is estimated by [20]

T2 ∼
1

γBloc
=

r3

γ2h̄
, (2.24)

and the transverse component Mxy of the magnetization relaxes according to

dMxy

dt
= −Mxy

T2
. (2.25)

The subscript “xy” indicates that the transverse relaxation may lie anywhere on the xy-

plane, and not necessarily along the x or y-axis alone.

In MRI, however, the static magnetic field B0 is never perfectly homogeneous, result-

ing in an additional dephasing of the spins in the xy-plane. Assuming that the local field

inhomogeneity also leads to an exponential decay, with a relaxation rate constant of T ′2, the

combined decay constant becomes [14, p.57]

1

T ∗2
=

1

T2
+

1

T ′2
. (2.26)

An important difference between the dephasing arising from T2 and T ′2 is that the spins

dephased by the T ′2 component may be rephased by means of a second RF pulse that flips

the magnetization by 180 degrees as shown in Fig. 2.2. This technique is known as a spin

echo.

2.2.7 The Bloch Equations

All the previous effects of RF excitation and relaxation of the net magnetization may be

incorporated into a set of three differential equations (one for each of the x, y, and z spatial
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Figure 2.2: A spin echo illustrated in the rotating frame of reference: (a) The
magnetization originally points along the static magnetic field direction. (b) A 90◦

RF pulse has flipped all the magnetization into the +x direction. (c) After a short
time, individual spins have dephased because of the static field inhomogeneities,
decreasing the net magnetization vector in the xy-plane. (d) A 180◦ RF pulse
has flipped the spins into the -x direction, causing the spins to start refocussing.
(e) An echo is formed as the spins have fully refocussed. (f) Following the echo,
the spins will dephase again. The effect of spin-spin relaxation is not shown here,
but would result in the net magnetization vector in (e) to be shorter than in (b).
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component) which were originally derived by Felix Bloch, hence called the Bloch Equations [1]

dM

dt
= γM ×B − Mxx̂+Myŷ

T2
− (M0 −Mz) ẑ

T1
. (2.27)

Equation (2.27) can be extended to account for other effects such as molecular self-diffusion.

2.2.8 Signal Detection

Once the net magnetization of a sample has been flipped into the xy-plane by a RF pulse,

it will induce an electromagnetic force (voltage) ε within a conducting loop positioned in its

vicinity, according to

ε =

∮
d

dt

(
M ·B−1

)
d3r, (2.28)

whereM = Mxx̂+Myŷ is the rotating magnetization in the xy-plane, andB−1 is the receive

sensitivity of the probe [14]. Thus an NMR experiment consists of flipping a portion of the

magnetization into the xy-plane by means of an RF pulse, sent by a transmitter probe, and

then receiving the signal from the net rotating magnetization in the xy-plane with a receiver

probe before it has fully decayed due to spin-spin relaxation. Certain probes are designed

to serve as both transmitters and receivers, while other probes are only used for receiving

the signal. High-density multi-channel surface coil arrays (see e.g., [10–12]) are an example

of probes used only for signal reception.

2.3 The Physics of Magnetic Resonance Imaging

2.3.1 Linear Magnetic Field Gradients for Spatial Encoding

MRI basically consists of using the same method of RF excitation followed by a signal

reception as in NMR, except that the signal received is also spatially-encoded (that is,

assigned a position in space), rather than merely consisting of a volume average. In order

to spatially-encode the signal transmitted and received, linear magnetic field gradients are

utilized, one for each spatial coordinate (x, y, and z), such that the resulting gradient field

is

G(t) = Gx(t)x̂+Gy(t)ŷ +Gz(t)ẑ, (2.29)

where

Gx =
∂Bz
∂x

, Gy =
∂Bz
∂y

, Gz =
∂Bz
∂z

. (2.30)

Hence, the frequency of the rotating magnetization at a given point in time and space, will

no longer be equal to the Larmor frequency ω0, except at the system’s origin. The frequency
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of the rotating magnetization at a point (x, y, z) is now given by

ω(x, y, z, t) = γ |B(x, y, z, t)| ' γ (B0 +G(t) · r) , (2.31)

and the phase accumulation becomes

φ(x, y, z, t) = γB0t+

[
γ

∫ t

0

G(τ)dτ

]
· r. (2.32)

The quantity
(
γ
∫ t

0
G(τ)dτ

)
is commonly interpreted as the position in spatial frequency

space [21] and is denoted in this thesis by κ(t).

2.3.2 The Imaging Equation

The MR signal S(t) received by the coil within the imaging region of the MRI scanner is

given by the imaging equation:

S(t) = e−iω0t

∫
V

m(r)e−iκ(t)·rd3r. (2.33)

Sometimes, the e−iω0t term is included as part of the signal such that S(t) = S′(t)eiω0t,

where S′(t) is the time-domain signal received by the RF coil, and ω0 is the demodulation

frequency, which is usually set equal to the Larmor frequency. The volume V over which the

integration takes place is the excited slice, where at least a portion of the net magnetization

has been flipped into the xy-plane, and m(r) is the complex intensity distribution, which is

proportional to the proton spin density, if the effects of relaxation are ignored.

2.3.3 The Fourier Transform

Image reconstruction in MRI consists of inverting the imaging equation to recover the quan-

tity m(r), which is proportional to the image intensity of a voxel at point r. This inversion

is performed by means of the Fourier transform (FT ) or its inverse (FT−1), defined analyt-

ically as

FT{f(r)} = F (κ) =
1

2π

∫ ∞
−∞

f(r)e−iκ·rdr, (2.34)

FT−1{F (κ)} = f(r) =

∫ ∞
−∞

F (κ)e+iκ·rdκ, (2.35)
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where κ is the spatial frequency vector of the signal (with units [rad/m]) and r is the

position vector (with units [m]). In Cartesian MRI, where the signal S(t) is sampled on a

uniform grid in κ-space (at regular intervals of ∆κ along both the κx and κy directions),

we may readily convert S(t) into S(κ). Taking the inverse Fourier transform of S(κ), we

obtain:

m(r) =

∫ ∞
−∞

S(κ)eiκ·rdκ. (2.36)

Image processing, however, relies on digitized signal, which in turn requires a discrete

version of Eq. (2.36). Given a vector of N uniformly-spaced complex data points [d] =

[d0, d1, d2, ..., dN−1] (such as a row of voxels in Fourier space), the jth element of the dis-

crete transform is given by [1]

DFT{[d]}j = Dj =
1

N

N−1∑
k=0

dke
−i 2πjkN , j = 0, 1, 2, ..., N − 1. (2.37)

Similarly, the kth element of the inverse discrete Fourier transform is given by

DFT−1{[D]}k = Dk =

N−1∑
j=0

dke
+i 2πjkN , k = 0, 1, 2, ..., N − 1. (2.38)

For a list the analytical and the discrete Fourier transform properties, refer to Bernstein

[1, pp.12-14]. In modern computer software (e.g., Matlab), the discrete Fourier transform

is typically computed by means of a fast algorithm known as the fast Fourier transform

(FFT). Thus image reconstruction of Cartesian data can proceed very quickly.

2.3.4 Slice Selection

While the integral of a RF pulse envelope determines the flip angle α, the carrier frequency

and the bandwidth of the pulse are responsible in turn for the slice location and thickness,

respectively, when a gradient is applied along a direction orthogonal to the slice. For exam-

ple, if we want to excite a transverse slice at a position zc from the origin, a gradient along

z with magnitude Gz must be applied, and the RF pulse transmitted must have a carrier

frequency given by

ωrf = γ (B0 +Gzzc) . (2.39)

The slice thickness ∆z is proportional to the bandwidth BWrf of the pulse, which is given

by

BWrf =
1

∆trf
=

γ

2π
Gz∆z, (2.40)
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for a square pulse of duration ∆trf , or by

BWrf =
NL +NR

∆trf
=

γ

2π
Gz∆z, (2.41)

for a sinc pulse of duration ∆trf , where NL and NR are the number of left-side and right-side

zero-crossings with respect to the central lobe. Because a sinc pulse must be transmitted

in a finite time, some ringing will occur at the edges of the slice excitation profile, unless

an apodization window is applied to the sinc pulse. A very short pulse in the time domain,

will possess a large corresponding bandwidth in the frequency domain, and excite a thick

slab of magnetization, while a longer pulse in the time domain will excite a thin slice. Sinc

and square pulses (a.k.a. hard pulses) are two types of pulses commonly used in MRI.

Hard pulses may be applied with or without a slice-selection gradient, such as in 3D volume

acquisitions (i.e., 3D MRI), while sinc pulses are always accompanied by a slice-selection

gradient followed by a rephasing gradient lobe. The rephasing gradient lobe, which is the

shaded lobe in Fig. 2.3 is necessary to overcome the effect of phase dispersion of the spins

along the slice thickness due to the finite time required to play out the RF pulse. The area

under the rephasing lobe AR is related to the isodelay ∆tI , according to [1, p.75]

Gz∆tI +
Gzrz

2
= AR, (2.42)

where rz is the length of the gradient ramp, as shown in Fig. 2.3. The phase dispersion

across the slice thickness ∆φ may be written in terms of the isodelay ∆tI [1, p.272], such

that

∆φ = γGz∆z∆tI . (2.43)

The isodelay usually corresponds to the time elapsed from the peak to the end of the RF

pulse.

2.3.5 Cartesian κ-space Sampling

Theoretically, there exits an infinite number of ways of sampling the κ-space signal, including

random-walk sampling patterns, although in practice we are constrained by the gradient

performance. However, the simplest and most common sampling trajectory uses separate

frequency and phase encoding in the two Cartesian directions. The advantage of this method

is that the samples are uniformly distributed over a grid in κ-space, and the images can be

reconstructed by means of simple FFTs using Eqs. (2.37, 2.38). Frequency encoding occurs

when the Gx gradient is applied during the readout, causing the frequency of the spins to

vary along the field-of-view in the x direction (FOVx) according to ω = γGxFOVx, while

phase encoding takes place when the Gy gradient is applied prior to the acquisition, causing



CHAPTER 2. THEORY OF MRI 16

Gz

ΔtI

rz

AR

Time

Figure 2.3: Relation between the slice-selective gradient lobe of strength Gz

and the rephasing lobe (shown in gray) with respect to the sinc pulse location,
and its isodelay ∆tI and ramp rz. Adapted from [1, pp.75-76]

the phase of all the spins within the slice to be incremented by ∆φ = γFOVy
∫
Gy(t)dt.

Because phase is periodic, it follows that the phase difference between two adjacent phase-

encode lines must obey

∆φy = γ∆Gy
FOVy

2
τ ≤ π, (2.44)

and the phase difference between two adjacent frequency-encode samples must be

∆φx = γGx
FOVx

2
∆t ≤ π, (2.45)

where ∆Gyτ =
∫
Gy(t)dt, and τ is the length of the square gradient pulse, and ∆t is

the time difference between two samples. The maximum frequency is fmax = γ
2πGx

FOVx
2 ,

and the sampling frequency is fs = N/Tacq = 1/∆t, where N is the number of samples.

Consequently, the sampling frequency must obey the relation

fs ≥ 2fmax = BWs, (2.46)

which means that the sampling frequency must be greater or equal to the signal bandwidth

BWs. The frequency at which it is equal to the signal bandwidth is known as the Nyquist

rate. The concept of the Nyquist criterion may also be derived from the theory of the

discrete Fourier transform. If the sampling frequency is less than the Nyquist rate, aliasing

will occur, which means that the signal will fold-over from one end to the opposite end of

the FOV. In order to prevent aliasing along the phase-encode direction, not only must the

gradient pulse increments ∆Gyτ be carefully chosen according to Eq. (2.44), but the object

must also be fully contained within FOVy. To avoid aliasing along the frequency-encode
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direction, each interleaf is filtered by means of an anti-aliasing (low-pass) filter.

Figure 2.4 shows a typical Cartesian gradient-echo pulse sequence with the corre-

sponding κ-space trajectory. In the trajectory shown, an interleaf corresponds to acquiring

a horizontal line of samples in κ-space, starting at the bottom (κymin) and moving towards

the top (κymax). Each interleaf begins with an RF excitation pulse, and ends with a spoiler

gradient along the slice direction that dephases the remaining transverse magnetization in

the slice. Two important time parameters that are part of any pulse sequence are the echo-

time TE , which is the time from the middle of the RF pulse to the point at which the centre

of κ-space is traversed, and the repetition time TR, which is defined as the time between

the RF excitation pulses.

Another common type of Cartesian sampling trajectory known as echo-planar imag-

ing (EPI) is shown in Fig. 2.5. In this sequence, several lines of κ-space are read within

a single interleaf. A single-shot EPI sequence can also be devised, where desired κ-space

samples are read following a single RF pulse excitation. Among all the types of Cartesian

sequences, EPI is the most susceptible to image distortions, because of the low equivalent

bandwidth in the phase-encode direction, allowing for more dephasing than the gradient-

echo example in Fig. 2.4.

2.3.6 Factors that Affect the Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) in Cartesian MR images is given by [22]

SNR = Ψ
V
√
NxNyNEX

F
√

BWs

, (2.47)

where Ψ is the intrinsic SNR of the receiver coil, V is the voxel volume, Nx and Ny are the

number of frequency samples and phase-encoding steps, respectively, NEX is the number

of experiments (image repetitions), BWs is the signal bandwidth and F is the system noise

figure (F ≥ 1) [22]. The noise figure is the ratio of input SNR to output SNR into the

system’s electronics. The SNR at the coil, given as the ratio of signal voltage vs to the

root-means-square (RMS) noise voltage vn is

Ψ =
vs
vn

=
ω0µ

∣∣B−1 ·M ∣∣
√

4kBTR
∝ B1√

R
, (2.48)

where R is the real part of the input impedance (the resistance), T is the thermodynamic

temperature, kB is the Boltzmann constant, ω0 is the Larmor frequency and µ is the mag-

netic permeability of the sample. Since Tacq = Nx/BWs, and the total data acquisition

time is Ttda = NyTacqNEX, for a given coil and MRI scanner, Eq. (2.47) may be simplified
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Figure 2.4: (a) A typical 2D gradient-echo pulse sequence for a transverse slice
(in the xy-plane), including the rewinding and spoiling gradients, and showing
the relative areas (A and B) under the gradient pulses. (b) The corresponding
sampling trajectory for the gradient-echo sequence in (a). (Not drawn to scale).
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Figure 2.5: (a) A typical 2D EPI sequence for a transverse slice (in the xy-
plane), including the rewinding and spoiling gradients, and showing the relative
areas (A and B) under the gradient pulses. Each interleaf reads four horizontal
lines in κ-space. (b) The corresponding sampling trajectory for the EPI sequence
in (a). (Not drawn to scale).
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as

SNR ∝MxyV
√
Ttda. (2.49)

It is important to point out that the voxel size V is a function of the data acquisition

time Ttda, as smaller voxels require sampling a greater area of κ-space (FOVκ = 2π/∆x),

which leads to a longer Tacq. Moreover, the actual scan time Tscan may be much longer

than the data acquisition time, because it contains some dead-time (such as time wasted

during gradient-rewinding), and Eq. (2.49) does not take the effect of pulse-sequence design

and relaxation (especially T ∗2 ) on the magnetization Mxy.

2.3.7 Multiple Coil Image Combination

The use of multiple surface receiver coils for MRI signal detection is becoming increasingly

popular, as they offer both improved SNR and parallel imaging performance [23]. In this

scenario, the complex image from each coil must be individually reconstructed, and all the

coil images must be combined together in the image domain to form the final magnitude

image. The simplest method of multiple coil image combination consists of taking the root-

sum-of-squares (RSS) of the individual images Ij(x, y) on a pixel-by-pixel basis, yielding the

final magnitude image I(x, y), according to

I(x, y) =

√∑
j

I∗j (x, y)Ij(x, y), (2.50)

where I∗j (x, y) is the complex conjugate of the pixel value at location (x, y). A weakness of

this method is that it does not take into account the possibility of different noise variance

σ2
j among the coils, yielding a magnitude image with sub-optimal SNR. Thus, a better

alternative is to measure the noise variance σ2
j of each jth coil, and compute the weighted

RSS magnitude image defined by

I(x, y) =

√√√√∑
j

I∗j (x, y)Ij(x, y)

σ2
j

. (2.51)

The noise variance σ2
j may be obtained from the noise covariance matrix ψ, calculated using

the function cov in Matlab. Each entry of the covariance matrix is given by

ψj,k = E(x∗jxk)− E(x∗j )E(xk), (2.52)

where E is the expectation value and j, k are coil indices [1, p.501]. To compute the co-

variance matrix, a noise scan is performed (i.e., scanning the object without RF pulse
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excitation), and the noise variances are given by the diagonal elements of the covariance

matrix.

Roemer et al. [23] have shown that a combined image with better SNR than that of

Eq. (2.51) may be obtained if the receive fields B−1,j(x, y) are known. This “optimal SNR

image” is calculated as

I(x, y) =

∑
j,k B

−∗
1,j (x, y)ψ−1

jk Ik(x, y)[∑
j,k B

−∗
1,j (x, y)ψ−1

jk B
−
1,k(x, y)

]n , (2.53)

where j, k are coil indices, and n is an exponent. In matrix notation, Eq. (2.53) may be

re-written as

I(x, y) =
B−∗1 (x, y) ·ψ−1 · I(x, y)[

B−∗1 (x, y) ·ψ−1 ·B−1 (x, y)
]n , (2.54)

where B−1 (x, y) is a column vector with N entries (one for each coil at pixel location (x, y)),

ψ is the N ×N noise covariance matrix, and I(x, y) is a column vector consisting of the N

complex image pixel values at (x, y). When n = 1, Eq. (2.54) yields a “uniform sensitivity

image,” which implies that equal transverse magnetization will yield the same image inten-

sity at every pixel. Roemer et al. also demonstrate that an alternative image weighting may

be used to display the SNR variation within the combined image, by setting n = 1/2. Such

an image is referred to as a “uniform noise image.” If n = 0 both sensitivity and noise will

vary across the image. Finally, because the exact receive fields B−1 are difficult to measure

or derive, a typical approximation involves calculating

B−1,j ≈
Ij√∑
j

I∗j Ij

σ2
j

, (2.55)

where the denominator is a reference image that, alternatively, may be acquired from a

separate scan using the system’s body coil rather than with the array. If Eq. (2.55) is used,

and the non-diagonal elements in ψ are ignored, this approximation reduces to Eq. (2.51).

Figure 2.6 shows a grid phantom image obtained from a 6-channel head array, where the

coil images were combined using three of the methods described previously.
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Figure 2.6: (a) Uniform noise image combination of eight coils obtained from
Eq. (2.53) with n = 1/2. (b) Uniform sensitivity image combination obtained
from Eq. (2.53) with n = 1. (c) RSS image obtained from Eq. (2.50). (d) Slice
through the image in (a), (b) and (c), showing the signal intensity across the
phantom.



CHAPTER 3

Acquisition and Reconstruction of Spiral Images with

Artifact Corrections

3.1 Introduction

Spiral Magnetic Resonance Imaging (Spiral MRI) was first implemented in the late 1980s,

and applied to coronary artery imaging [24]. Despite providing certain advantages over

typical Cartesian sampling trajectories, including the ability to refocus flow and motion-

induced phase errors [25, 26], and an efficient means of sampling κ-space, the technique never

became a widely used method in the clinic due to its technical difficulties and sensitivity

to blurring artifacts. More recently, with improvements in MR system hardware leading

to more faithful κ-space trajectories, applications of spiral MRI have multiplied, notably in

functional brain imaging and coronary imaging [26–28] where a rapid signal acquisition is

required.

3.2 Spiral Trajectory

In a MRI pulse sequence, an interleaf refers to a segment of κ-space that is read (in an

arbitrary direction) following an RF pulse excitation. A typical spiral trajectory for the nth

interleaf in κ-space is given in complex notation by Boernert et al. [29]:

κn(t) = κn,x + iκn,y = κmaxψ(t/Tacq)e
i2πJψ(t/Tacq)+i2πn/NI (3.1)

where NI is the number of spiral interleaves used to cover the whole κ-space, J is the number

of revolutions of each interleaf (not necessarily an integer), Tacq is the acquisition time of one

23
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Figure 3.1: Comparison of ψ(t/Tacq) for the Philips 3T Achieva Scanner (solid
red curve) in Eq. (3.2) with that for a constant linear velocity spiral (dotted
green curve) and for a constant angular velocity spiral (dashed black curve).
Here, Tacq = 5.1 ms, and J = 2.133.

interleaf, and ψ(t/Tacq) is a monotonically increasing function ranging from zero at t = 0 to

unity at t = Tacq. Common choices include using ψ = t/Tacq, in which case, the spiral has

constant angular velocity of the rotating gradient vector, or ψ =
√
t/Tacq where the spiral

has constant linear velocity. A choice for ψ(t/Tacq) that is optimal for the given scanner

hardware typically lies in between those two extremes [29]. The spiral gradient waveforms

programmed on the Philips 3T Achieva MRI scanner, correspond to the trajectory of Eq.

(3.1) with

ψ(t/Tacq) =
t

Tacq

√√√√ 1
λTacq

+ 1

1
λTacq

+ t
Tacq

. (3.2)

Note here that λ = min{3, J}/Tacq, a parameter facilitating the transition from a constant

angular velocity to a variable angular velocity spiral. The function ψ(t/Tacq) has been

plotted in Fig. 3.1 for a typical spiral trajectory consisting of 60 interleaves, a field-of-

view (FOV) of 25 cm, and pixel resolution of 0.98 mm. Observe that it is quite close to

being a constant angular velocity spiral. The gradient waveforms are readily obtained by

differentiating Eq. (3.1), yielding
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Figure 3.2: (a) Gradient waveforms of the first interleaf for NI = 60,
FOVd = 25 cm, and Tacq = 5.1 ms: Gx (green) and Gy (black). (b) Plot of
the κ-space trajectory obtained by numerical integration of the waveforms, in-
cluding the back-swing which allows the acquisition to begin with a finite velocity
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Gx(t) = 2πJNI
2FOVdγ

ψ̇ [cos(2πJψ)− (2πJψ) sin(2πJψ)]

Gy(t) = 2πJNI
2FOVdγ

ψ̇ [sin(2πJψ) + (2πJψ) cos(2πJψ)] ,

(3.3)

where ψ̇ is the time-derivative of ψ, FOVd is the diameter of the circular FOV in image

space, and γ = 267.4 × 106rad T−1s−1 is the gyromagnetic ratio for protons. The κ-space

trajectory was obtained by numerical integration of Eq. (3.3) after inserting ψ and ψ̇ from

Eq. (3.2):

κ(t) = γ

∫ t

0

G(τ)dτ. (3.4)

All other interleaves κn are obtained readily by multiplying the first interleaf κ0 with the

2D rotation matrix(
κn,x

κn,y

)
=

(
cos(∆φn) sin(∆φn)

− sin(∆φn) cos(∆φn)

)(
κ0,x

κ0,y

)
, (3.5)

where ∆φ = 2π/NI is the angle between any two successive interleaves.

When performing a spiral scan on the Philips Achieva platform, the user must specify

FOVd, the size of the acquisition matrix (a square matrix of dimensions Lacq × Lacq), the

acquisition time, Tacq, and the number of interleaves, NI . Note that J = Lacq/(2NI). The

scanner software then uses these parameters to compute the required gradient waveforms.

These parameters are constrained by the maximum slew rate and gradient strength of the

system hardware, and thus certain combinations may be forbidden. In order to obtain

the best image quality, one must select the desired FOV and acquisition matrix size, and

minimize the acquisition time for a desired number of interleaves. In general,

min{Tacq} ∝
L2
acq

NIFOVdGmax
, (3.6)

where Gmax is the maximum strength of the spiral gradient waveform [30]. Thus, using

more interleaves shortens the minimum possible acquisition time, reducing off-resonance

artifacts, but also requiring a longer total scan time. For the Philips 3T Achieva scanner

equipped with a maximum gradient strength of 21 mT/m and slew rate of 100 T/(m s) the

proportionality constant of Eq. (3.6) is ≈ 2.4× 10−8 T s.

3.3 Spiral Pulse Sequence

The spiral pulse sequences studied in this thesis are shown in Fig. 3.3. For a given interleaf in

the 2D case, it consists of a basic slice-selection RF sinc pulse that excites a slice, followed
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by the spiral acquisition. Immediately following the acquisition, the read gradients are

rewound and a spoiler gradient is applied along the direction of the slice in order to suppress

stimulated echoes. In the 3D case, a thick slab is excited, followed by a phase-encoding step

along the direction orthogonal to the slab. Spiral gradient waveforms are used to read the

signal along the other two dimensions, similar to the 2D case. A rewinding gradient and a

spoiler gradient are applied at the end.

Although the signal acquisition includes about 14 sample locations before the crossing

of the κ-space origin, the first 15 samples are not included as part of the reconstruction

because they are too densely spaced, (especially when a large number of interleaves is used)

for the sampling density compensation (covered in §3.4.3) to be applied correctly. This may

be understood from the fact that the signal samples at the centre of κ-space have a high

amplitude and contribute to the bulk of the image intensity, while the density compensation

weights are close to zero; hence any inaccuracy in the density compensation tends to be

amplified.

3.4 Gridding Reconstruction

3.4.1 1D Non-Uniform Fast Fourier Transform of Type-1

Unlike Cartesian MRI sampling trajectories where the samples are spaced at regular inter-

vals along the two κ-space directions, a spiral sampling trajectory is not uniform in κ-space.

Consequently, image reconstruction cannot be performed by simply taking the discrete 2D

Fourier transform of the κ-space signal. Instead, each acquired signal sample must be as-

signed to its corresponding position in κ-space and a non-uniform discrete Fourier transform

must be employed. The following discussion is based on Greengard et al. [31] and outlines

the theory behind one-dimensional non-uniform fast Fourier transform (NUFFT). The 2D

version of the NUFFT used in 2D image reconstruction readily follows from the 1D case,

by using a coordinate system where the kernel of the Fourier transform is separable.

The 1D NUFFT involves the computation of

f(x) =
1

N

N−1∑
j=0

Fje
−iκjx, x = −M/2, . . . ,M/2− 1 (3.7)

where in the context of MRI reconstruction f(x) is the complex image (in arbitrary units)

and is uniformly sampled on a Cartesian grid of M points, while Fj is the complex signal,

of N non-uniformly spaced samples κj in spatial-frequency space. Fj must also include a

density compensation, which is discussed in §3.4.3. We may rewrite Eq. (3.7) in the form of
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Figure 3.3: (a) 2D spiral pulse sequence for NI = 60, FOVd = 25 cm,
TE = 1.5 ms and Tacq = 5.1 ms. (b) Equivalent 3D spiral pulse sequence showing
the phase-encoding step along the z direction. Note that the gradient pulses are
not drawn to scale.
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a convolution

f(x) =

∫ 2π

0

1

N

N−1∑
j=0

Fjδ(κ− κj)e−iκxdκ, (3.8)

which is the Fourier transform of

F (κ) =

N−1∑
j=0

Fjδ(κ− κj), (3.9)

viewed as a periodic function on [0, 2π]. Note that δ is the Dirac-delta generalized function.

The process of gridding consists of selecting a convolution kernel Γ(κ), convolving it with

the function F (κ), resampling the signal onto an oversampled uniform grid of K points,

taking the discrete Fourier transform, and finally deconvolving the result in order to recover

the image f(x) in Cartesian space. To accomplish this task, it is common to use a periodic

Gaussian kernel

Γτ (κ) =

∞∑
l=−∞

e−(κ−2πl)2/4τ , (3.10)

where τ determines the spacing on a well-resolved uniform grid in κ. Now let

Fτ (κ) = F (κ) ∗ Γτ (κ) =

N−1∑
j=0

FjΓτ (2πm/K − κj), (3.11)

where κ = 2πm/K, the new sampled mesh with K samples. Taking the Fourier transform

we have

fτ (x) =
1

K

K−1∑
m=0

Fτ (2πm/K)e−ix2πm/K . (3.12)

The final step consists of deconvolving fτ (x) to obtain f(x) by dividing by the Fourier

transform of the Gaussian kernel

f(x) =

√
π

τ
ex

2τfτ (x). (3.13)

Dutt et al. [32] have shown that K = 2M and τ = 6/M2, (Gaussian spreading of each source

to the nearest 12 grid points) achieves an accuracy of 1 in 106. In MR image reconstruction,

3 digits of accuracy is more than sufficient given typical image SNR values around 100 or

less.

3.4.2 Selection of the Convolution Kernel

As shown by O’Sullivan [33], the ideal convolution kernel would be an infinite sinc func-

tion, whose Fourier transform corresponds to a uniform rectangular box. If parameters are
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selected such that the extent of the rectangular box corresponds with the FOV, then no de-

convolution step would be required. However, such a scheme (an exact non-uniform discrete

Fourier transform) is computationally impractical due to the size of the convolution kernel,

and one is forced to use a band-limited kernel. The first, and still the most popular kernel

used in gridding reconstruction is the Kaiser-Bessel window [34], which is given by

Ψ(κ) =
1

L
I0

(
β
√

1− (2κ/L)2
)
, (3.14)

where I0 is the zeroth-order modified Bessel function, L is the length of the window, and

β is an optimization parameter. Jackson et al. [34] have shown that values of L = 4

and β = 12 yield the least amount of root-mean-squared error. The Gaussian kernel was

introduced later by mathematicians to provide a rigorous analysis because of its simplicity

and computational advantages. Sarty et al. [35] showed that an optimal Gaussian kernel

provides the same accuracy as the standard Kaiser-Bessel kernel for large images (2562

pixels) and marginally better accuracy for small images (642 pixels). The algorithm used in

this thesis is based on Ref. [31], where the NUFFT is accelerated by a factor of 5 − 10 by

exploiting the fact that the Gaussian kernel may be expressed as a tensor product

Γ(κ) = e−(κj−2πm/K)2/4τ = e−κ
2
j/4τ

(
eκjπ/Kτ

)m
e−(πm/K)2/τ . (3.15)

Thus, the two exponentials e−κ
2
j/4τ and eκjπ/Kτ may be computed and stored for each jth

source point, while the third exponential e−(πm/K)2/τ is independent of κj . In Matlab, op-

erating on an Intel Core2 Duo CPU E8400 (3 GHz, 3.5 MB available RAM) reconstructing a

256×256 image with the desired three digits of accuracy only takes ∼ 0.25 s, making the al-

gorithm extremely fast compared to other competing methods (e.g., iterative reconstruction

algorithm using the conjugate gradient method).

3.4.3 Density Compensation Function

In Eq. (3.7), the discrete κ-space samples Fj were assumed to be already pre-corrected by

the density compensation function Wj which is proportional to the area surrounding each

sample location in κ-space:

f(r) =

∫
F (t)e−iκ(t)·rW (t)dt. (3.16)

This amplitude correction term, accounts for the fact that samples must be weighted ac-

cording to the local sampling density. Various methods of calculating W (t) have been

demonstrated in the literature, including analytical [24], iterative [36], and other numerical
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techniques [37, 38]. Calculation of the density compensation function can often take longer

than the actual gridding reconstruction itself, but fortunately, it depends entirely on the

κ-space acquisition sampling trajectory and can be precomputed only once prior to the scan

and stored in a matrix. In this thesis, I have used the method of Ref. [38] with Voronoi

diagrams to compute the sampling density compensation function. A formal definition of

the Voronoi diagram is provided by Aurenhammer [39], but for our purpose, it suffices to de-

scribe the Voronoi diagram as a 2D web (shown in Fig. 3.4(a)), where each point is assigned

a cell of finite area centered at its location.

The Voronoi diagram is computed by the native Matlab function via a Delaunay

triangulation, and the area of the Voronoi polygon for the jth κ-space sample is used as a

measure of the corresponding density compensation weight Wj . We note that although the

whole κ-space sample plane of an image is needed to compute the density compensation

function (see Fig. 3.4(a)), the function is virtually identical for every interleaf, because the

spiral interleaves are rotationally symmetric. The Voronoi diagram of a quadrant of κ-space

is shown in Fig. 3.4, along with the corresponding sampling density compensation W (t)

for one interleaf. (Here, W (t) is simply Wj expressed in terms of the sampling time scale

instead of the sample index.) Thus the term Fj in Eq. (3.7) may be expressed in terms of

Wj as

Fj = WjSj , (3.17)

where Sj is the raw signal sample.

3.4.4 1D Non-Uniform Fast Fourier Transform of Type-2

The concept of gridding is referred to by Greengard et al. [31] as the “type-1” NUFFT or

by Sarty et al. [35] as the Generalized fast Fourier transform (GFFT). Other non-uniform

fast Fourier transforms (e.g., type-2 and type-3) have also been studied and used in other

situations. A type-2 NUFFT algorithm performs the opposite; it evaluates the inverse

Fourier transform of uniform data at non-uniform sample locations. Finally, the type-3

algorithm is a combination of the first two in that it takes non-uniform data, and evaluates

the Fourier transform on another non-uniform grid [40]. In chapter 3, the type-2 NUFFT

is used to simulate the acquired MRI spiral signal of a digital phantom.

In one dimension, for κj ∈ [0, 2π], the type-2 NUFFT is defined by the calculation of

F (κj) =

M/2−1∑
x=−M/2

f(x)eiκjx. (3.18)
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Figure 3.4: Voronoi diagram of the spiral sampling trajectory (a), and the cor-
responding density compensation function W (t) for one interleaf (b). Note that
the center of κ-space is highly oversampled. Parameters for the spiral sequence
are: Tacq = 5.1ms, NI = 60, Lacq = 256, and FOVd = 25 cm.
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First, we deconvolve the Fourier coefficients, defining f−τ (x) by

f−τ (x) =

√
π

τ
ex

2τf(x), (3.19)

and evaluate the corresponding function F−τ (κ) on a uniform mesh with K points on [0, 2π]

using the FFT

F−τ (κ) =

K−1∑
x=0

f−τ (x)eiκx. (3.20)

In the preceding, we then set f−τ (x) = 0 for M
2 ≤ x < K − M

2 and view f−τ (x) as a

K-periodic function f−τ (x) = f−τ (x − K). Finally, we compute the desired values F (κj)

from

F (κj) = F−τ ∗Gτ (κj) =
1

K

K−1∑
m=0

F−τ (2πm/K)Gτ (κj − 2πm/K). (3.21)

Note that unlike the type-1 NUFFT, the type-2 does not require a sampling density com-

pensation.

3.4.5 Image Reconstruction of a Spiral MRI Scan

A spiral image of a grid within the American College of Radiology Magnetic Resonance

Accreditation phantom (ACR MRAP) was acquired on the Philips Achieva 3T scanner

based on the sampling trajectory described in §3.2. The slice was shimmed with both first

and second-order shims to minimize the effect of static magnetic field inhomogeneity. The

raw data was processed off-line via a Matlab routine that utilizes the type-1 NUFFT and

Voronoi-based sampling density compensation. A small time delay of 6 µs was applied to

the spiral waveforms in order to compensate for eddy-currents and/or gradient delays. The

magnitude image reconstructed from the raw data is displayed in Fig. 3.5(a), along with the

image that the built-in Philips reconstructor produces on-line (b). The two images are not

exactly identical due to differences in filtering and reconstruction algorithms, but a careful

inspection reveals that the two images are of equivalent quality.

3.5 Gradient Delay and Eddy-Currents Correction

According to Faraday’s Law of induction, a changing magnetic field induces an electric field.

If this electric field occurs within a conductor, an electrical current will be induced. These

“eddy” currents tend to flow in conductors on the outside of the gradient coils, inducing

a magnetic field that opposes the original magnetic field (i.e., Lenz’s law). Eddy currents

are problematic in MRI hardware because they distort the temporal waveforms and spatial
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a

b

Figure 3.5: Spiral image of a grid phantom reconstructed using an off-line
Matlab subroutine (a), compared to the Philips on-line built-in reconstruction
(b). Differences in the angle of the gibbs ringing of the two images are readily
noticeable. Imaging parameters include: Lacq = 256, NI = 60, Tacq = 5.1 ms,
FOVd = 25 cm, TR = 500 ms, TE = 1.76 ms, 50◦ flip angle, and 3 mm slice
thickness.
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distribution of the gradient fields that we are trying to create in the presence of the object

within the system’s imaging region.

One method of preventing eddy currents utilizes active shielding of the gradient

coils. For a cylindrical-bore magnet, active shielding consists of connecting an outer coil in

series with the main coil. The diameters, conductor wire design, and the currents of these

concentric coils are selected so that their fields cancel outside the larger cylinder, leaving

only a small net field. Hence they are reduced by minimizing the gradient fringe field [1].

Any residual eddy currents are compensated for by applying a pre-emphasis to the

gradient waveforms [1] i.e., the effect of eddy currents on the output gradient waveforms

is predicted and the waveforms programmed into the system are pre-distorted so as to

achieve the desired net physical gradient waveforms within the imaging volume. As shown

by Bernstein [1], the net output gradient waveform may be modeled as

Gnet(t) = Gapplied(t) + g(t) (3.22)

where g(t) is the amplitude change due to eddy currents, given by

g(t) = −dG(t)

dt
∗ e(t) (3.23)

and e(t) is the eddy current impulse response function. For the Philips 3T Achieva scanner,

the impulse response is characterized by a gradient settling amplitude αs = 0.3, and a

settling constant τs = 60 µs. Figure 3.6 shows the pre-emphasized Gx gradient waveform,

along with the net waveform of Fig. 3.2. Although the difference between to two waveforms

might appear negligible, serious artifacts will result in the image if the pre-emphasized

waveform is used to grid the data instead of the net waveform. A final, small time delay

must also be applied to the waveforms in order to remove the combined gradient delays.

This time delay is equivalent to slightly adjusting the temporal location of the acquisition

window within the imaging sequence. Although in general the correct delay depends on the

gradient channels (x, y, and z), an average value of 6 µs was found to yield quality images

on the Philips 3T Achieva scanner.

3.6 Off-Resonance Correction

The imaging equation Eq. (2.33) assumes that the Larmor frequency is constant over the

whole imaging region. To include the effect of off-resonance conditions (e.g., B0 shim,
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Figure 3.6: Gradient waveform Gx(t) with pre-emphasis (black) compared with
the ideal (net) output waveform (green). Note the small gradient delay that
arises from the impulse response, and the positive ramp at the beginning of the
waveform which reaches a higher peak in amplitude. The net waveform also
reaches a maximum amplitude that is slightly lower than the pre-emphasized
waveform.
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chemical shift, etc.) it is modified to

S(t) =

∫
V

m(r)e−i(k(t)·r+∆ω(r) t)d3r, (3.24)

where m(r) is the magnetization at location r, and ∆ω is the resonance offset from the

demodulation frequency ω0 arising from a combination of the main static magnet inhomo-

geneity ∆B0, the magnetic susceptibility differences ∆Bχ, and the chemical shift ∆BCS

at location r [41]. The static magnet inhomogeneity ∆B0, which is generally the most

significant contributor to the resonance offset, can be removed by higher-order shimming.

If the FOV is not too large, and we are only interested in shimming a single slice, first

and second-order shimming can almost fully remove ∆B0, leaving only the off-resonance

due to susceptibility differences and chemical shift. When ∆BCS arises from water and

fat chemical shift difference (as is commonly the case), and we are not interested in signal

arising from fat, it may be removed by using fat-suppression RF pulses at the start of the

imaging sequence. Standard gridding reconstruction assumes ∆ω to be zero, with resulting

visible blurring artifacts that depend on the range of ∆ω over the image, and the acqui-

sition time Tacq. One way to minimize blurring while maintaining pixel resolution is to

use a large number of interleaves, with a shorter acquisition time Tacq, or by using higher

slew rates and gradient strengths, which also permit a shorter Tacq. However, using too

many interleaves NI defeats the purpose of spiral imaging, since the κ-space becomes less

efficiently sampled as NI increases, and the total scan time lengthens significantly for an

equal TR. An alternative approach consists of incorporating the off-resonance term ∆ω in

the reconstruction.

Blurring artifact can be corrected in spiral MRI, just as distortion corrections can

be performed on Cartesian MRI images [41]. Methods of spiral image deblurring may be

grouped into various categories, such as those that require a phase map [42, 43], versus those

that use an objective function to quantify and minimize the blur [44]. Certain methods may

be considered as exact [40, 45, 46], and work equally well on images with a steeply-varying

resonance offset, while other methods are approximate [42, 47, 48], and are only effective

when the resonance offset is slowly-varying.

Two recently-developed exact deblurring algorithms include that of Eggers et al.

[45], who use a gridding-based conjugate gradient reconstruction, and that of Makhijani

et al. [46], who employ a post-gridding convolution-based conjugate gradient algorithm to

reconstruct spiral images with sharply-varying resonance offsets. Both methods achieve full

deblurring where approximate methods fail, however, they are conceptually more complex

and computationally intensive.

For the past two decades, the most common method of deblurring spiral images has
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been the conjugate-phase reconstruction technique (CPR) [26], which consists of demodu-

lating the signal (multiplying it by ei∆ωn t) under a range of N frequency offsets ∆ωn, and

reconstructing a separate image for each offset. The final pixel value is assigned based on

its frequency offset obtained from a field map. An exact implementation of this method is

time-consuming because no interpolation scheme is employed. Conceptually, this method is

equivalent to calculating the conjugate-phase image

Icp(r) =

∫ Tacq

0

S(t)ei(k(t)·r+∆ω(r) t)W (t)dt, (3.25)

based on the approximation

ei∆ω(r) tS(t) = ei∆ω(r) t

∫
V

m(r)e−i(k(t)·r+∆ω(r) t)dr ≈
∫
V

m(r)e−i(k(t)·r)d3r, (3.26)

which in practice gives acceptable results when ∆ω(r) is smoothly-varying, as is usually the

case for ∆B0. The assumption of Eq. (3.26) is violated when Tacq is too long, resulting in

excessive dephasing, which CPR can no longer recover. On the Philips 3T Achieva Scanner,

with only the first-order shimming routine turned on, this limit begins to be reached when

images are acquired with Tacq ≥ 20 ms, (15 interleaves or less, for a 256×256 image), where

some residual blurring may be observed in the deblurred image. Given a frequency range

of ≈ 200 Hz over the phantom region of 20 cm (see, Fig. 3.8(c)), and Tacq = 20 ms, this

translates to ≈ 0.125 rad of dephasing between two adjacent pixels.

3.6.1 Frequency-Segmented Off-Resonance Correction

Because an exact CPR method is computationally inefficient, much research has been done

in speeding up the basic calculation of Eq. (3.25). Here, I present the method of Frequency-

Segmented Off-Resonance Correction (FSORC) which was proposed by Noll et al. [49],

and from which slightly faster methods have been derived more recently, such as Block

Regional Off-Resonance Correction BRORC [47], and Multi-Frequency Interpolation (MFI)

[42]. These, however, do not provide further improvements in accuracy, since they all rely

on the same basic assumption of Eq. (3.26).

In FSORC, the range of frequency offsets ∆ω(r) over the field inhomogeneity map

is divided into N different bins. The signal is gridded once, after applying the sampling

density compensation, after which it is demodulated at N different frequency offsets and

Fourier transformed to obtain N different images. Finally, the field inhomogeneity map is

used to find the two nearest frequency bins that correspond to each pixel. Each pixel is thus

interpolated linearly between two images, each one obtained from a nearby frequency bin.

This process is illustrated in Fig. 3.7. The minimum number of frequency bins N required
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Figure 3.7: Method of Frequency-Segmented Off-Resonance Correction
(FSORC). Adapted from [1, p.948].

to achieve full deblurring is given by the criterion derived by Noll et al. [43]

N ≥ 4(∆ωmax −∆ωmin)Tacq
π

, (3.27)

where ∆ωmax is the largest positive frequency offset, and ∆ωmin is the minimum frequency

offset of the field inhomogeneity map.

In terms of matrix algebra, the κ-space signal was first gridded onto a Cartesian

grid resulting in matrix S. The time points t(κ) were also gridded onto a Cartesian time

map T , which is the acquisition time at each κ-space location. These operations enable

the fast reconstruction of multiple images I∆ωn using standard FFT from which the linear

interpolation can be performed for each pixel

I∆ωn = FFT{S exp(−i∆ωnT )}. (3.28)



CHAPTER 3. SPIRAL IMAGING WITH ARTIFACT CORRECTIONS 40

0

-20

-40

-60

-80

-100

-120

-140

-160

-180

Δ
f 

 (
H

z)

a b

c

Figure 3.8: (a) Spiral image of the grid phantom acquired with second-order
shims turned off. (Lacq = 256, NI = 60, Tacq = 5.1 ms, FOVd = 25 cm,
TR = 500 ms, TE = 1.76 ms, 50◦ flip angle, and 3 mm slice thickness). Four
segments were required, based on Eq. (3.27). (b) Deblurred image using FSORC.
(c) The frequency-offset map using the scan parameters in (a) and ∆TE = 4 ms.
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3.6.2 Obtaining the Frequency-Offset map

The most accurate methods of spiral image deblurring use a field inhomogeneity map (a.k.a.

frequency-offset map), which can also typically be obtained by means of a gradient-echo

spiral sampling scheme. Schneider et al. [50] show that a frequency-offset map is easily

obtained by measuring the phase difference between the complex signal of two MR images,

each acquired at a different echo time TE . Mathematically, the frequency offset is calculated

as

∆ω =
6 (m?

1m2)

(TE2 − TE1)
(3.29)

at each pixel, where m is the complex pixel value, and image 1 has the shorter echo time

TE1. As may be observed from Fig. 3.8(c), the phase map is blurry, partly because it is

derived from two blurred spiral images, but mostly because it is also filtered by applying a

2D moving-average pillbox (1 − 2 pixels in radius) to decrease noise levels. If the blurring

due to the off-resonance is not too excessive, it will not significantly alter the phase because

it is assumed to be slowly-varying. Hence, a “rough” phase map may be obtained by means

of two fast and/or low-resolution spiral scans [51], otherwise, an identical spiral scan (except

for a longer TE) may be used to correct the image with the shorter echo time as was done in

Figs. 3.8(c), 3.9(b). Figure 3.9(a) shows the same grid phantom image as in Fig. 3.8(b), but

this time, the FSORC was based on an off-resonance map obtained from only 4 interleaves,

and Tacq = 77 ms, shown in Fig. 3.9 (d). We note that the absolute difference error in (c)

between the two deblurred images is generally less than 10%, with a maximum pixel error

of 20%, which is surprisingly low, considering a total scan-time reduction by 43% (2× 30 s

versus 30 s + 2×2 s). Excessive blurring also causes the field inhomogeneity map to spread

outside the phantom as shown by the white region in Fig. 3.9(d), but this leads to errors of

less than ±40 Hz within the phantom region.

Phase unwrapping of the phase map 6 (m?
1m2) is necessary if the echo time is suf-

ficiently long for the phase to wrap beyond the range of [−π, π]. Phase wrapping can be

avoided by using a smaller echo time difference, but this results in a map with lower SNR.

The implementation of a fast phase-unwrapping algorithm is often more time-consuming

than the implementation of the FSORC technique itself, depending on the resolution of the

spiral images. For example, Baldwin et al. [41] state that phase unwrapping in 3 dimensions

took approximately one hour, given the dataset of 256× 160× 24 voxels. The 2D Goldstein

branch-cut phase unwrapping algorithm [52, 53] used in this thesis effectively unwraps a

256× 256 image in 6 seconds, or a 128× 128 image in 1.8 seconds. Considerable processing

time may be saved by first down-sampling the phase map before unwrapping it, or acquir-

ing a lower-resolution map, which does not result in an observable loss of accuracy given a

slowly-varying phase (i.e., one where the maximum phase difference between two adjacent
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Figure 3.9: (a) Same image as in Fig. 3.8(b), but deblurred using the field
inhomogeneity map in (b), obtained from a faster spiral scan with parameters:
NI = 4, Tacq = 77 ms, Lacq = 256, and FOVd = 25 cm, TR = 500 ms, and
∆TE = 4ms. (c) Percent error magnitude between the deblurred image in (a)
and Fig. 3.8(b). (d) Absolute difference between the field inhomogeneity map in
(b) and in Fig. 3.8(c).
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pixels is less than ∼ 0.125 rad). For a 256 × 256 image, FSORC took about 2.9 seconds

for 4 segments, or 3 seconds for 29 segments (∼ 2.5 s for gridding the time map T in Eq.

(3.28), and ∼ 0.4 s for the interpolation). Because the time map is the same for any slice,

(provided that the trajectory is unchanged), an entire multi-slice dataset may be deblurred

at a speed of ∼ 2.5 s per slice.

3.7 The Effect of Concomitant Gradient Fields

According to Maxwell’s equations, the net magnetic field B within an MRI bore must

satisfy:
1

µ0
∇×B = ε0

∂E

∂t
+ J (3.30)

∇ ·B = 0. (3.31)

Since the displacement ∂E
∂t and conduction current J are negligible for gradient fields in

biological samples, Eq. (3.30) reduces to ∇ ×B = 0. These two vector equations may be

expanded into the following four scalar equations [1]:

∂Bx
∂x

+
∂By
∂y

+
∂Bz
∂z

= 0, (3.32)

∂Bx
∂y

=
∂By
∂x

, (3.33)

∂By
∂z

=
∂Bz
∂y

, (3.34)

∂Bz
∂x

=
∂Bx
∂z

, (3.35)

which contain five independent partial derivatives, three of which are defined by the physical

gradients: ∂Bz
∂x ≡ Gx, ∂Bz

∂y ≡ Gy, and ∂Bz
∂z ≡ Gz. If we define a dimensionless parameter

α ≡ − 1
Gz

(
∂Bx
∂x

)
, we then have 1−α = − 1

Gz

(
∂By
∂y

)
. A transverse term may also be defined

as G⊥ ≡ ∂Bx
∂y =

∂By
∂x . For an MRI scanner equipped with cylindrical gradient coils, where

x, y, z are the physical gradient coordinates, α ≈ 0.5 and G⊥ ≈ 0 [1]. If we perform a

second-order Taylor series expansion of the overall field

B(x, y, z) =
√
B2
x +B2

y +B2
z , (3.36)
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we obtain the following approximation [1]

B = B0 +Gxx+Gyy +Gzz

+
1

2B0

[
G2
z

4

(
x2 + y2

)
+
(
G2
x +G2

y

)
z2 −GxGzxz −GyGzyz

]
, (3.37)

= B0 +G · r +Bc,

where Bc is known as the concomitant field term. The concomitant term is always a positive

quantity in MRI, and may result in various image artifacts, depending on the pulse sequence,

and the slice position and/or orientation used. In spiral MRI, the concomitant term results

in an additional phase accumulation of the signal, given by [1]

φc = γ

∫ Tacq

0

Bc(Gx, Gy, Gz, x, y, z)dt. (3.38)

Because the concomitant field strength Bc is inversely proportional to the static field

strength B0, and proportional to the square of the gradient strengths Gx, Gy and Gz, the

effects on the Philips 3T scanner (with gradient strengths limited by the software to 21

mT/m) are barely noticeable, compared to those at 1.5 T. In fact, concomitant field correc-

tions are typically noticed at fields of 1.5 T or less [29, 30, 48], or with much larger gradient

strengths. Spiral scans with acquisition times in the order of 12 ms were taken in the axial,

coronal and sagittal plane and reconstructed with FSORC to check for observable blurring

due to concomitant fields. Only an axial image with a large slice offset of zc = −11.7 cm

showed some blurring due to concomitant fields (see Fig. 3.10(a)).

Fortunately, blurring in the axial plane is readily corrected. Since Gz is inactive

during the readout, the concomitant phase is

φc(t, z) =
γz2

2B0

∫ t

0

[
G2
x(t′) +G2

y(t′)
]
dt′, (3.39)

and the signal acquired in Eq. (2.33) becomes

S(t) =

∫
V

m(r)e−i(k(t)·r+φc(t,z))d3r. (3.40)

For 2D imaging, the phase dispersion across the slice will result in a signal loss that is not

explicitly shown in Eq. (3.40). However, according to King et al. [30] it is not observable

for slice thicknesses of less than 1 cm, slice offsets of less than 10 cm and gradient strengths

of less than 22 mT/m. Thus, the time dependence may be factored out of the integral, and

Eq. (3.40) reduces to

S(t) = e−iφc(t,zc)
∫
V

m(r)e−i(k(t)·r)d3r. (3.41)
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Figure 3.10(a) shows blurring arising from concomitant fields in the axial plane, after FSORC

was applied in order to remove all the blurring due to B0 field inhomogeneity. Blurring is

fully removed in (b), after applying both FSORC and demodulation of the signal with the

conjugate concomitant phase φc(t, zc).

3.8 3D Imaging

Three-dimensional MR acquisitions may be advantageous over 2D MRI, in that high-SNR

T1-weighted images with sub-millimeter isotropic resolution may be achieved in one exper-

iment. Recently, 3D MRI scan protocols have been used for radiation therapy treatment

planning [54]. Efficient 3D MRI may be performed by sampling κ-space using a stack of

2D spirals in the xy-plane, with phase-encoding along the z direction. Image deblurring

by means of FSORC proceeds the same way as in the 2D case, after the 3D dataset has

been reconstructed into a stack of axial slices, along with their unwrapped 2D field inho-

mogeneity maps. A true 3D spiral acquisition was not considered in this thesis, because

although the overall acquisition time would be reduced, the image reconstruction and post-

processing time would increase significantly, as both gridding and deblurring would have to

be performed in 3D.

3.8.1 Phantom Study

In order to assess the image quality of 2D spiral with 1D phase-encoding MRI and compare

it to an equivalent 3D Cartesian MRI, four 3D image datasets were taken on the ACR

phantom using the same FOV of 240 × 240 × 125 mm3, and an 8-channel head array coil

operated in quadrature mode. The first dataset consisted of a high-resolution (0.98×0.98×1

mm3) spiral scan (NI = 64, Tacq= 4.7 ms, TR = 16 ms, TE = 1.4 ms, α = 13◦, NEX =

3, scan time = 8:09). The second and third datasets were low-resolution (2 × 2 × 1 mm3)

spiral scans acquired at two different echo times for the purpose of creating a stack of

2D field inhomogeneity maps (NI = 8, Tacq = 10 ms, TR = 16 ms, TE1 = 1.4 ms, TE2

= 4.4 ms, α = 13◦, NEX = 2, Tscan = 1:30). The fourth dataset was a high-resolution

(0.94×0.94×1 mm3) magnetization-prepared gradient echo (TFE in Philips nomenclature)

Cartesian scan, with a minimum acquisition bandwidth (TFE factor = 64, TR = 16 ms,

TE = 4 ms, α = 13◦, NEX = 1, scan time = 8:59). The 3D datasets were reconstructed

on-line into 125 contiguous axial slices of 1 mm thickness, and the high-resolution spiral

dataset was deblurred off-line using the same FSORC algorithm programmed in Matlab,

following phase unwrapping of the 125 low-resolution field-inhomogeneity maps of 128×128

pixels. The total post-processing time was 5:20 minutes. The deblurred spiral images (a,
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Figure 3.10: (a) Axial image (slice offset of zc = −11.7 cm) with FSORC
applied, showing the remaining blurring due to concomitant gradient fields. (b)
Same image reconstructed with both FSORC and concomitant phase correction.
(c) Absolute percent error between the image in (a) and (b).
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c, e), along with the Cartesian images (b, d, f) are displayed in Fig. 3.11 for slice #10, 61

and 110. The SNR was measured at the center of slice #78, at which point the combined

coil-sensitivity profile and B+
1 field is approximately uniform. Measurement of the mean

signal and noise standard deviation within a square (region-of-interest) ROI of ∼ 1000 pixels

at the centre of the image, yielded SNRs of ∼ 100 and ∼ 90 for the spiral and Cartesian

image, respectively.

A close examination of images (a-f) reveal that the spiral images contain less Gibbs

ringing, and no distortion compared the their Cartesian counterparts. The circles within the

spiral image of slice #110 have less T ∗2 contrast, compared to those of the Cartesian image

because of the shorter TE used in the spiral sequence. This problem may be overcome by

using a longer TE of 4 ms for the spiral acquisition. One may also notice a slightly poorer

definition because the field inhomogeneity map is filtered and too low in resolution to resolve

the slight field inhomogeneity differences arising from the water-plastic interfaces. A higher-

resolution off-resonance map could be performed as a remedy, but at the cost of a longer

post-processing time. The spiral image of slice #110 also contains an half-moon shaped

artifact close to the center of the image, which is probably caused by higher-order stimulated

echoes due to imperfect signal spoiling. The difference between the magnitude spiral image

and Cartesian image of slice #61 is shown in Fig. 3.12(a) (spiral minus Cartesian image).

The maximum geometrical distortion of the Cartesian image is in the order of ∼ 1mm (one

pixel). Figure 3.12(b) shows the mirrored Cartesian image quarter section next to the spiral

image quarter section in (c) in order to facilitate the visualization/comparison. Because the

distortions occur along both the phase-encode and frequency direction, the image appears

translated along the diagonal by about 1 mm. Since the distortions of the 3D Cartesian

image dataset are not readily observed, an example is also provided in Fig. 3.16 for a

single-slice 2D acquisition, where the deblurred spiral image contains no visible distortions

compared to the equivalent Cartesian echo-planar image (EPI) acquired with similar scan

parameters. The EPI image could also be corrected using a field-inhomogeneity map, but

the map would have to be derived from a different pulse sequence, which can potentially

result in two geometrically inconsistent datasets.

3.8.2 Invivo Exam

In order to demonstrate the ability of spiral MRI to provide geometrically-accurate high-

resolution brain images, I performed a 3D in vivo brain exam on a healthy volunteer with

a spiral protocol very similar to the previous phantom study (exceptions: TE = 4 ms,

α = 15◦, NEX = 4, Tscan = 10:47). Phase unwrapping and image deblurring by FSORC

was performed slice by slice on the first 105 slices of the spiral dataset. The last 20 slices

were not included because they fell outside the brain region. Figure 3.14 displays the field
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a b

c d

e f

Figure 3.11: Deblurred spiral images (a, c, e), compared to the corresponding
Cartesian images (b, d, f) for slice # 10, 61 and 110 (3D acquisition).
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Figure 3.12: (a) Pixel intensity difference: normalized spiral minus normalized
Cartesian image of slice #61. (b) Mirrored Cartesian quarter section. (c) Spiral
quarter section.
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Figure 3.13: (a) EPI image acquired with 20 interleaves, (α = 25◦, TR = 24 ms,
TE = 11 ms, FOV = 25 × 25 cm2, 256 × 256 pixels). (b) Deblurred spiral image
acquired with 20 interleaves, (α = 25◦, TR = 25 ms, TE = 1.54 ms, Tacq = 15 ms,
Lacq = 256, FOVd = 25 cm, ∆TE = 6 ms. (c) Normalized spiral image minus
the normalized EPI image, showing the pixel intensity difference. The severe
distortions are clearly visible in the EPI image, and virtually absent in the spiral
image.
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Figure 3.14: Field inhomogeneity map (in Hz), shown in both the axial (a) and
sagittal (b) orientation. The red lines indicate the approximate relative locations
of the two slices.

inhomogeneity map in both the axial (a) and sagittal (b) plane. The smoothly-varying

field inhomogeneity in the sagittal plane demonstrates that the phase unwrapping of a 3D

dataset may be effectively performed in 2D, with a significant reduction in post-processing

time, provided that the SNR of the two low-resolution spiral datasets is sufficiently high

to produce an accurate phase map. One may observe how the strong field-inhomogeneity

difference of over 150 Hz close to the nasal cavity in the frontal lobe (Fig. 3.14), results in a

blurred artery (Fig. 3.15(a)). Figure 3.15 compares the raw spiral image with the deblurred

image for the same axial slice #30 shown in Fig. 3.14(a).

A 3D Cartesian scan protocol with similar scan parameters was also performed on

the same volunteer with the same FOV and pixel resolution for comparison (TE = 4 ms,

TR = 10 ms, α = 12◦, NEX = 1, Tscan = 11:13). The α, TR, and NEX were selected to

yield a SNR, contrast and Tscan comparable to the in vivo spiral protocol described above.

Figure 3.16 displays a maximum intensity projection (MIP) of the deblurred spiral dataset

in (a) for comparison with the Cartesian dataset in (b). The MIP derived from the spiral

dataset generally resolves the arteries better than its Cartesian counterpart.
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a b

Figure 3.15: Uncorrected in vivo spiral image (a) and deblurred spiral image
(b) of slice # 30. The resolution in this region is successfully recovered in the
deblurred image (red circle).

a b

Figure 3.16: MIP of the spiral dataset in (a) compared with the Cartesian
dataset in (b), derived from the same volunteer/dataset as in Fig. 3.15.
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3.9 Conclusion

This chapter has concisely outlined the theory of spiral MR image acquisition, reconstruction

and post-processing, and serves as general background for chapter 4. I demonstrated that

spiral MRI can provide accurate phantom and in vivo images, provided that certain technical

considerations are met. We first saw that the κ-space sampling trajectory must be accurately

modeled. A time delay must also be tuned and taken into account as part of the image

reconstruction in order to correct for gradient delays and eddy-current effects. An accurate

and fast image reconstruction algorithm must be employed, such as the NUFFT. Finally,

scan parameters including Tacq, NI , Lacq and FOVd must be chosen, along with an accurate

high-order shim in order to avoid image blurring. Alternatively, the blurring may be removed

through post-processing using a field-inhomogeneity map.



CHAPTER 4

Efficient Multichannel Coil Data Compression: A

Prospective Study for Distributed Detection in Wireless

High-density Arrays1

4.1 Introduction

The use of high-density receive array coils (i.e., those where the number of elements con-

tained within the field-of-view (FOV) is large) is becoming more common in magnetic reso-

nance imaging (MRI) to take advantage of improved signal-to-noise ratio (SNR) over a large

imaging volume [23], as well as to perform accelerated imaging through parallel techniques

[56–58]. Large coil arrays of up to 128 channels have been demonstrated [10–12] and can

lead to situations whereby MR data storage limits are reached along with the increased

computational burden and image reconstruction time posed by a large number of channels

[see, e.g., Refs. 12, 59]. Some reduction in data is achievable by appropriate combinations

of individual channels [60, 61]. Nevertheless, as the number of channels increases, elec-

tromagnetic coupling between coils and the coaxial cables that carry MR signals becomes

increasingly challenging to manage [59, 62], with consequent safety issues and cross-talk

among channels.

Various approaches have been considered to replace coaxial cables with wireless links

[59, 63] or optical fibers [64, 65]. Both transmission methods can support analog or digital

information. Analog transmission of MR signals with performance similar to that of coaxial

cables requires meeting very stringent dynamic range and noise figure performance specifica-

1A version of this chapter has been published in Concepts in Magnetic Resonance Part B 39B (2):64-77.
(2011) [55]

54
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tions [59, 66, 67] that test the limits of current technology. Conversely, digital transmission

methods are sufficiently advanced that MR data could readily be transmitted if digitization

were performed at the coil. Fiber connections are fastest but may be impractical due to the

high cost of reliable high-density optical connectors, as well as the fact that being tethered

limits optical fibers use in highly ergonomic wearable designs such as those of Ref. [68]. For

the truly wireless solution [59] numerous digital transmission standards exist but all have

data rates that can be exceeded (e.g., 54 Mbps based on IEEE 802.11a) if a large number of

channels is used, especially if fast dynamic scanning is required which limits the possibility

of buffering the data. Hence, if wireless high-density arrays are to become practical, the

data to be transmitted to the reconstruction unit should be compressed.

In recent years, advances in the performance of analog-to-digital converters (ADCs)

have allowed direct sampling of radio frequency (RF) signals [67, 69, 70], thus eliminating the

traditional analog detection front-end and its sensitive circuitry. This simplified architecture

naturally leads to considering a digital acquisition system (spectrometer) design whereby

digitization occurs in separate modules at each of the coils, rather than in a cabinet in

the equipment room. This “distributed” spectrometer would require not only an ADC at

each coil but also digital signal processing devices to perform filtering, demodulation, and

decimation (i.e., signal detection) that result in the familiar rotating-frame MR signal. These

signal processing devices could also support additional operations aimed at compressing the

MR data prior to transmission over the wireless link therefore allowing the full benefits of

high-density arrays to be exploited while avoiding limitations in wireless data transmission

rates.

In this work, we show through both simulations and phantom experiments how the

bulk of the data can be reduced to one-third or less of the original amount while preserving

equivalent image quality. We achieve this in spiral MRI by spectral compression using

coil-wise dynamic demodulation [71], and by bit-depth reduction following dynamic range

compression. These reductions are independent and fully compatible with those achieved by

parallel imaging techniques [56–58, 72]. They are also compatible with channel combination

[60, 61], with the advantage that in a distributed spectrometer architecture, our methods

reduce the data at each individual coil module while channel combination cannot, since it

must be performed in a location where all coil signals are present. Finally, even without

restrictions on data transmission rates, the data compression methods may also be used to

reduce the total archival memory storage requirements in scans that use a large number of

channels.
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4.2 Theory

4.2.1 Imaging with Limited Coil FOV

High-density coil arrays offer the opportunity to reduce the amount of signal data for each

acquisition interleaf based on the fact that each coil sees an effective FOV that may be

substantially smaller than that of the full acquisition. Gradients present during acquisition

will correspondingly spread the MR signal over a band of frequencies that is proportional to

the coil’s FOV and thus smaller than that required for the full FOV. Therefore, a reduction

of signal data that depends on the size of the sensitivity profile of the coil relative to that of

the object is possible. If coil sensitivity does not fall to zero beyond the chosen bandwidth

limits, redundancy due to overlap of coil sensitivities in the array ensures that image quality

is preserved even if some low-level signal is lost or distorted.

In a standard system, the signal picked up by each individual coil is demodulated at

a frequency corresponding to that at the centre of the common FOV (Fig. 4.1(a)). Conse-

quently, for coils at the edge of the FOV, the signal spectrum will be shifted from this center

frequency and will require a large acquisition bandwidth despite the fact that a small, local-

ized sensitivity profile leads to a smaller signal bandwidth. Similarly, coils near the centre

of the FOV will be assigned unnecessarily large bandwidths due to their inability to see the

entire imaging FOV. Signal acquisition can therefore be made more efficient, with a reduc-

tion in the amount of data required for image reconstruction, by demodulating the signal

using the frequency at the centre of each coils individual sensitivity profile and low-pass

filtering, thus assigning a separate FOV to each coil.

4.2.2 Dynamic Demodulation

In an arbitrary κ-space sampling trajectory, the centre frequency of each coil varies at each

sampling instant in proportion to the applied gradients. In the standard direct-sampling

receiver architecture (Fig. 4.1(a)), the RF signal is sampled typically below the Nyquist rate

of the Larmor frequency and digitally processed to extract the desired complex MR signal

from one of the resulting aliases [67, 69, 70]. All channels are demodulated at the same

fixed frequency ω0 corresponding to the same image center and filtered with a bandwidth

corresponding to the full FOV. In the more flexible receiver chain of Fig. 4.2, the signal

from each coil can be demodulated and filtered based on the individual FOV corresponding

to the position and sensitivity pattern of each coil. The dynamic demodulation technique

was introduced by Lee et al. [71] and applied to avoid aliasing artifacts in the spiral version

of the parallel imaging with localized sensitivities (PILS) technique [72]. In this work, we
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Figure 4.1: In a modern MRI receiver chain (a), the signal from each coil is
amplified through a low-noise amplifier (LNA), transmitted via a coaxial cable,
and band-pass filtered prior to being digitized (at several tens of megasamples/s,
MSPS) in an analog-to-digital converter (ADC) and demodulated by direct digi-
tal conversion. The signal from each coil is demodulated using the same common
demodulation frequency ω0 corresponding to that at the centre of the image
FOV. Final antialias low-pass filtering and decimation by a factor L are applied
to produce the desired MR signal. Devices AD9244 and AD6620 are examples
of integrated circuits by Analog Devices (Norwood, MA) that perform the corre-
sponding functions. In our implementation the raw signal stored in the system
memory is processed off-line (including storing data as integers) using Matlab
(The MathWorks, Natick, MA) as shown schematically in (b) to emulate the
distributed spectrometer architecture of Fig. 4.2.



CHAPTER 4. EFFICIENT MULTICHANNEL COIL DATA COMPRESSION 58

ADC

coil n

NUFFT

k (t)

coil n image

−i (ω0t+γ∫G (τ)·rndτ)W (t) ·e

iγ∫G (τ)·rndτe

b1
b2

bk

bm

…
…

m k
L·M

M

optional

Figure 4.2: In the proposed MRI receiver chain, the signal from each coil is
demodulated by a separate demodulation frequency waveform, corresponding to
an FOV centered on each coil’s sensitivity profile. To reduce the amount of data,
the sampling density compensation W (t) is applied to the digital signal prior to
transmission, thus compressing the dynamic range such that the m-k least sig-
nificant bits can be ignored following the low-pass filter. Similar to the standard
receiver, decimation by a factor L is required to bring the sampling frequency
down to the kHz range, with additional downsampling by the compression fac-
tor M. The resulting data are transmitted over a wireless or fiber-optic digital
transmission link. After reception (below), the signal can be upsampled by the
factor M to preserve κ-space sampling density and finally remodulated prior to
gridding and reconstruction.

use dynamic demodulation to compress the spectrum and reduce the amount of data in

each interleaf for the purpose of more efficient transmission via a wireless link by low-pass

filtering and downsampling the signal by a factor M relative to the full acquisition (Fig.

4.2). Any parallel imaging acceleration would be in addition to what we describe here. In

the most general case, the coil-wise demodulation frequency ωn(t) is given by

ωn(t) = −γG(t) · rn − ω0 (4.1)

where γ is the gyromagnetic ratio for protons, G(t) is the gradient strength vector, rn is

the position of the centre of the nth channel’s FOV after dynamic demodulation, and ω0 is

the demodulation frequency at the origin.

The demodulated signal sdn(t) for coil n is then given by

sdn(t) = sn(t)ei
∫
ωn(t)dt. (4.2)
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Alternatively, the demodulated signal may be expressed in terms of the κ-space po-

sition vector κ(t) by integrating the gradient waveforms

κ(t) = γ

∫ t

0

G(τ)dτ, (4.3)

resulting in

sdn(t) = sn(t)ei(κ(t)·rn−ω0t). (4.4)

This expression may be interpreted as the Fourier shift theorem generalized to an

arbitrary κ-space trajectory, and the subsequent low-pass filtering has the effect of reducing

the diameter of the unaliased FOV by a factor M [71]. The centre offsets rn must therefore

be chosen so that the superposition of all the individual FOVs after spectral compression

will cover the imaging object sufficiently (refer to Fig. 4.4(b)). The offsets can be chosen by

methods that are based on coil geometry alone (in our examples, at equal angular intervals

around a suitable radius), or based additionally on the imaging object’s shape and its effect

on coil sensitivity. In the following, the offsets are chosen equal to the centroid (center

of mass) of the corresponding coil’s sensitivity pattern in the presence of the phantom.

Finally, we note that spectral compression works with any slice orientation as long as there

are enough coils with sufficient sensitivity in that slice so that reduced FOVs and offsets

can be found to cover the imaging object.

Figure 4.3(a) displays the effect of demodulating the signal on its spectrum, which is

to “squeeze” the signal information from all 16 coils to the centre of the bandwidth (green),

compared to the much wider bandwidth occupied by the original signal (black).

As shown schematically in Fig. 4.2, this dynamic demodulation can be performed

digitally at each separate coil element by using an appropriate fast processing device such

as a field-programmable gate array or application-specific integrated circuit. The waveform

of Eq. (4.2) would then be uploaded to the corresponding module before the scan along

with the corresponding centroid and frequency of Eqs. (4.1) and (4.4). The centroids of the

coil profiles are readily calculated from the sensitivities measured during a prescan similar

to that used for SENSE reconstruction [57]. Alternatively, dynamic demodulation can be

implemented as an additional processing step (Fig. 4.1(b)) on the more traditional filtered

and downsampled data at the output of Fig. 4.1(a), which we perform in this work for the

purpose of emulating the effect of the proposed receiver architecture presented in Fig. 4.2.

4.2.3 Dynamic Range Compression

Efficient digital transmission of analog signals necessarily imposes limits on the dynamic

range that is supported due to the need to represent each sample using a limited number of
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Figure 4.3: Data from a simulated spiral acquisition using 16 coils and 60 in-
terleaves: (a) overlaid spectra of the original raw signals (black) and dynamically
demodulated signals (green) of one interleaf from all coils. The density compen-
sation is not included. Dynamic demodulation has the effect of squeezing the
signal to the centre of the sampling bandwidth thus preserving information that
would otherwise be lost or result in aliasing if the raw signal were directly low-
pass filtered and downsampled. (b) Signal (from a single channel) with sampling
density compensation (red) has a dynamic range of 27.5 dB or approximately five
bits lower than that of the raw signal (black).
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bits. In MR, the dynamic range of the signal (in dB) is given by [66]

DRsignal = 20 log

(
2S0

σ

)
, (4.5)

where S0 is the peak of the signal amplitude (which typically occurs at the centre of κ-space)

and σ is the noise standard deviation of the signal. The factor of two accounts for the fact

that the signal may be either positive or negative. Dynamic range supported by the ADC

(also in dB) may be expressed in terms of the number of bits, m [66]:

DRADC = 20 log (2m) ∼= 6.02m. (4.6)

MR signals during a given scan are well-known to cover dynamic ranges of 90 dB or

more for 3D scans. However, in a system where amplification is fixed before transmission

out of the magnet bore (e.g., that of Fig. 4.1), the dynamic range calculation must refer

to the extremes of maximum signal resulting from uniform excitation of all spins in the

coil’s FOV, relative to that of the smallest noise magnitudes Eq. (4.5) expected during a

low-bandwidth spectroscopic acquisition. With this unrealistic definition the dynamic range

requirements on the transmission system readily exceed astronomical values of 150 dB or

more [66], which can be supported only by passive cabling (i.e., coax) rather than active

transmission devices. Clearly, then, the solution is to place the system’s scan-specific gain

adjustment before the signal transmission stage as done in Fig. 4.2 and bring dynamic range

down to values that are compatible with the 16 bits of current RF ADCs.

The reduction in dynamic range of MRI data has prompted numerous, but uncom-

mon, approaches over the years, including sequence modifications [73], using two separate

ADCs per channel [74] and hardware compression [75]. For Cartesian MRI, it is common

in some systems to use profile-dependent amplification [66], whereby read-out lines near the

centre of κ-space are acquired with lower gain settings. This method typically allows an

increase of roughly three bits in the effective dynamic range supported by the system [66].

The idea can be extended by adding more steps to the gain setting, thus achieving a gain

adjustment that is optimized for each interleaf [76]. However, profile-dependent amplifica-

tion is not used in non-Cartesian sampling trajectories or echo-planar imaging due to the

limited speed with which variable attenuators can switch reliably.

In this work, we reduce the dynamic range of the data from non-Cartesian sampling

trajectories by applying the κ-space sampling density compensation [38] to the signal prior

to its transmission to the reconstruction unit. The sampling density compensation func-

tion, denoted by W(t) in Figs. 4.1(b) and 4.2, depends entirely on the κ-space trajectory,

which can be calculated prior to the start of the sequence and uploaded to the individual
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coil modules together with the demodulation waveform of Eq. (4.3) and rn. Multiplica-

tion of the signal by W(t) can be performed in the same digital processing device as the

dynamic demodulation and followed by bit-depth reduction (and consequent data compres-

sion) through removal of the m− k least significant bits of each data sample (Fig. 4.2). The

total amount of data reduction including spectral compression and bit-depth reduction may

be summarized as 1−k/m ·M , where k/m ·M is the ratio of final to initial amount of data.

Figure 4.3(b) illustrates the signal from one coil plotted for one interleaf on a logarithmic

scale with and without the sampling density compensation, showing a 27.5 dB decrease in

dynamic range (see §4.4). Data can therefore be represented with approximately five fewer

bits Eq. (4.6) than would be needed for the uncompressed signal.

For Cartesian, as well as non-Cartesian trajectories, W(t) could also be a nonlinear

compression characteristic implemented in software rather than in hardware as done in Ref.

[75] or a generalization of profile-dependent amplification [66]. A method to optimize gain

for each phase-encode line is described in Ref. [76], which can be implemented in software

and generalized to each κ-space sample if a heuristically determined weighting function is

used to predict signal amplitude variations across κ-space. In these cases the compression

would need to be reversed by applying the inverse weighting before reconstruction (not

shown).

4.2.4 Image Reconstruction

At the other end of the wireless link (lower part of Fig. 4.2), the signal can be optionally

upsampled by the same factor M to recover the original sampling rate. While resampling

comes at the cost of a longer gridding reconstruction time, our experience is that it yields

images less prone to gridding artifacts than by directly gridding the downsampled signal

onto the original size of the data matrix. As a final step, the signal from each coil may

be either remodulated to shift the image to its original location and then reconstructed, or

reconstructed without remodulation and shifted in the image domain. The latter option

is possible only if the image shift due to modulation coincides with an integral number of

pixels in the final combined image and may lead to image truncation errors. Combination

of the images from individual coils can be performed by root-sum-of-squares (RSS) or other

methods [72].

Spectral compression is equally applicable to all types of non-Cartesian sampling

patterns, such as radial [77] or spiral. Spiral images in the following examples were acquired

using the trajectory described by Boernert et al. [29], which accounts for hardware limi-

tations in slew rate and gradient strength by varying the spiral’s κ-space velocity. Image

reconstruction was implemented using the Non-Uniform Fast Fourier Transform (NUFFT)
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of type 1 described in Refs. [78] and [31]. The sampling density compensation was applied to

the signal prior to gridding by multiplying it by Voronoi weights (Matlab function voronoi)

as done in Ref. [38].

Images from individual coils reconstructed following spectral compression can present

some aliasing artifacts in regions of low signal intensity as described in Ref. [71] (Fig. 4.4),

but are greatly reduced in the final combined image which is visually indistinguishable from

that obtained using the full signal dataset. Some ghosting can also be present in images

where the bit depth has been reduced excessively. Therefore, image quality comparisons

between original and compressed images were carried out by calculating the artifact power

(AP) according to the definition of Park et al. [79]

AP =

∑
j

∣∣∣∣∣∣Irefj

∣∣∣− ∣∣Itestj

∣∣∣∣∣ 2

∑
j

∣∣∣Irefj

∣∣∣2 , (4.7)

where j is the pixel index, Iref is the reference image (the original uncompressed image),

and Itest is the compressed image.

The amount of memory (in bytes) occupied by the compressed dataset used to re-

construct each image was calculated in the same manner as Wei et al. [59],

Memory = (#bits/samples)×(#samples/interleaf)×(#interleaves)×(#coils)×2/8(bits/byte),

(4.8)

where the factor two takes both the real and imaginary components into account.

4.3 Simulation

To evaluate the effect of demodulation and downsampling under various conditions, a nu-

merical grid phantom similar to that used in the experiments was designed in Matlab.

Coil sensitivity profiles were generated using the empirical expression

C(x, y) = Keα
√

(x−x0)2+(y−y0)2 , (4.9)

where (x0, y0) is the location of each coil (arranged circularly around the phantom), K is a

normalization constant, and the parameter α was chosen to yield a profile with a reduction

in image intensity at the other end of the FOV similar to that of the six-channel head

array coil used in the experiment (Fig. 4.5). The centre of each coil’s sensitive region was

found by calculating the weighted centroid of each profile. Figure 4.5(a) shows a profile
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b)

a)

Figure 4.4: (a) Phantom image from a single coil reconstructed after dynamic
demodulation (center off-set indicated by small circle), antialias filtering and
downsampling with M = 0.55. Aliasing artifacts (arrows) are visible only in
the region outside the reduced FOV (circled) where the coils sensitivity is small.
When all coil images are combined using RSS (b), overlap in individual reduced
FOVs ensures that no deterioration in image quality can be observed.
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Figure 4.5: (a) Simulated image profile along the coil axis from Eq. (4.9) (α =
12) superposed on an actual phantom image profile from one coil. (b) Image
profiles and corresponding values for α used to simulate arrays of 8, 12, and 16
coils, respectively.
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through an actual single-coil image of a test phantom, superposed with the corresponding

simulated image used in the simulations, for an eight-coil array and α = 12. Spiral sampling

parameters were the same as those used in the actual scans (see §4.4). Nonuniform sampling

of the numerical phantom in the frequency domain was performed using the NUFFT type-2

algorithm which converts a discrete Cartesian object to its κ-space representation along an

arbitrary trajectory [31, 78]. White Gaussian noise with an intensity equal to 2% of the mean

signal amplitude was added, yielding a central image SNR ≈ 50 following reconstruction

which is comparable to the experimental images described below.

The effect of the number of coils and their sensitivity profiles on compressed image

quality was assessed using two additional sensitivity profiles with α = 15 and α = 18 (Fig.

4.5(b)) for arrays of 12 and 16 coils, respectively. We note that these simulated profiles

tend to overestimate the image intensity at the end of the FOV opposite the coil compared

to experimental data from high-density arrays [e.g., see Fig. 6(b) of Ref. 12]. Hence the

achievable amount of spectral compression in large coil arrays may be greater than that

predicted by this simulation. While our simulation is performed with only 12 and 16 coils

arranged around the object, these numbers are comparable to the number of coils (∼ 20) of

a high-density head array (as in Ref. [12]) that would have significant sensitivity in a given

slice.

To assess the performance of spectral compression, images were processed in three

different ways and combined from the individual channels using RSS. The reference images

were reconstructed using the complete dataset without filtering or demodulation. Images

with spectral compression were produced according to Fig. 4.1(b) by demodulating the

signals from all coils and interleaves according to Eq. (4.4), filtering and downsampling by

a ratio M, upsampling, and finally remodulating and reconstructing using NUFFT. The

third set of images was obtained with filtering and resampling but without demodulating

the signal.

The maximum achievable amount of spectral compression was investigated by calcu-

lating AP as a function of 1−M for all three simulated coil profiles (α = 12, 15, and 18).

Different realizations of noise were used for the reference and compressed images to illustrate

the threshold below which compression artifacts cannot be distinguished from the random

noise that dominates the AP in this region. This threshold depends on noise level, geometry

and contrast in the phantom, number of coils, and the sensitivity profiles. The lowest AP at

which artifacts become visible is necessarily above this threshold and also depends on the

type of artifact present (whether aliasing, ghosting, etc.). In the case of aliasing artifacts

due to spectral compression, in our data an AP of 3.5× 10−4 (dashed line in Fig. 4.6)

The resulting RSS images obtained for the simulated 16-coil array with α = 18 are

displayed in Fig. 4.7. Image (b) (M = 0.45, i.e., compressed to 45% of the original sampling
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Figure 4.6: Plot of artifact power (AP) versus percent downsampling for the
three image profiles of Fig. 4.5(b) with corresponding number of coils evenly dis-
tributed in a circular arrangement around the FOV (RSS reconstruction). The
effect of noise is included and results in a plateau at low downsampling rates,
which forms a lower bound below which compression artifacts cannot be distin-
guished from the random noise that dominates the AP resulting in no visible
artifacts. The largest downsampling factors that did not result in visible aliasing
artifacts were M = 0.55 for α = 12, M = 0.5 for α = 15, and M = 0.45 for
α = 18, confirming that the more confined sensitivity profiles of higher-density
arrays allow for a larger spectral compression while maintaining equivalent image
quality.
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rate) contains negligible aliasing (AP = 2.2 × 10−4) even though the memory occupied by

the data is reduced from 4,404 to 1,982 kB while image (c) is compressed without dynamic

demodulation and reveals significant aliasing artifacts (AP = 6.3× 10−3) even though it is

compressed by the same amount.

These results confirm the effectiveness of dynamic demodulation as a spectral com-

pression technique that does not impact image quality, even though some information is

lost. This strength lies in the ability to tolerate some distortion beyond each coils reduced

FOV where the corresponding sensitivity is negligible. On RSS combination, this distorted

signal will be insignificant in comparison to the undistorted signal from other coils that have

higher sensitivity in that region. A numerical example from the simulated eight-coil array

shows that the sensitivity of some coils is still as high as 20% of the maximum sensitivity at

pixels near the edge of the phantom. However, once the images are spectrally compressed

and combined by RSS, the images with aliasing at these locations contribute only about 5%

of the combined signal and the distortion in the combined image is therefore masked by the

stronger contributions of coils that do not have aliasing at these locations.

The noise distribution of the RSS images obtained from spectrally compressed data

contains nonuniformities compared to that obtained from the full dataset, with correlation

among neighboring pixels (especially at the edges of the FOV) that results from low-pass

filtering. In those locations, we also observe an unintuitive increase in SNR as shown in Fig.

4.8 for eight coils and a uniform simulated phantom without a grid. Standard deviation

maps were calculated by a Monte-Carlo approach whereby separate realizations of white

Gaussian noise are added to the spiral signal in 400 simulations to obtain 400 noisy RSS

images. The noise standard deviation of each pixel was then calculated across all 400 images

to obtain a map of standard deviations for both the compressed and uncompressed images.

A circular averaging filter (pillbox) with a radius of eight pixels was applied to smoothen

the random fluctuations in the noise standard standard deviation due to the finite number

of simulations used. Figure 4.8(a) shows the inhomogeneous distribution in SNR gains

obtained with M = 0.55. Figure 4.8(b) shows a cross-section through the center of the

phantom of the percent SNR gain for three downsampling factors, where it is evident that

greater spectral compression results in greater SNR gains at the periphery of the FOV. This

SNR gain comes with a smoothing of the point-spread function, and, hence, a slight loss of

image resolution that is measured by the AP above.

4.4 Experiment

A grid phantom was imaged in the transverse plane using a spiral readout on a Philips

Achieva 3T scanner (Best, The Netherlands), using a maximum gradient strength of 21
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4404 kB

b)

1982 kB
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1982 kB

Figure 4.7: Simulated phantom imaged with 16 coils (RSS reconstruction) with-
out spectral compression (a); compressed with a downsampling factor ofM = 0.45
applied after dynamic demodulation resulting in a negligible AP = 2.2 × 10−4

(b); and without dynamically demodulating the signal prior to downsampling re-
sults in readily observed artifacts (AP = 6.3 × 10−3) (c). Amounts of data that
must be transmitted are indicated for each image and demonstrate that dynamic
demodulation allows substantial levels of artifact-free spectral compression.
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Figure 4.8: Relative SNR gains due to spectral compression in a simulated
uniform phantom showing improvements at the periphery of the FOV. (a) Dis-
tribution map with downsampling factor M = 0.55. (b) Cross-sections of the
map along 128th column (vertical line in a) show that SNR gains increase as the
amount of undersampling (1 −M) increases. Note that the SNR is essentially
unchanged at the centre of the image.
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mT/m, slew rate of 100 T/(m s) and a six-channel eight-coil head array (two lateral pairs

of elements are combined internally to reduce the number of channels). This low number

of channels is expected to yield conservative estimates of spectral compression that will

readily be exceeded in truly high-density arrays. The acquisition FOV was 210× 210 mm2,

TR = 500 ms, TE = 1.39 ms, with an acquisition matrix of 60 interleaves, each consisting

of 1,146 samples (sampling frequency fs = 186.17 kHz). The readout time was kept short

(6.156 ms) to minimize blurring due to off-resonance effects; hence no image deblurring was

necessary, although image compression does not prevent its application if needed. The raw

κ-space data (which already include the demodulation by ω0 of Fig. 4.1(a)) were processed

off-line (Fig. 4.1(b)) using Matlab to simulate the operations required for data compression.

Results of the compressed images with and without dynamic demodulation, along

with the reference image are displayed in Fig. 4.9. Strong aliasing is visible in image (c)

where compression was performed without dynamic demodulation. With dynamic demod-

ulation (b), the image is indistinguishable from the reference image (a) even though it was

reconstructed using only 55% of the original amount of data. A plot of AP as a function

of 1−M for compressed images with and without dynamic demodulation is shown in Fig.

4.10. A threshold level of AP = 3.5× 10−4 (dashed line) was chosen, allowing a maximum

downsampling factor M = 0.55, with corresponding AP = 3.15 × 10−4. We note that

slightly lower AP values may be obtained by reconstructing the images using an optimal

SNR combination [23] (not shown) instead of the more practical RSS combination.

Dynamic range measurements were performed on both the spiral image signal of Fig.

4.9(a), and on Cartesian gradient-echo image data corresponding to the same slice (not

shown) with the scanners standard profile-dependent amplification disabled. The dynamic

range of the uncompressed spiral dataset varied from 81.9 to 83.7 dB among the six channels,

while that of the Cartesian image varied from 74.4 to 77.6 dB. The latter agrees with that

of Ref. [66], where Cartesian 2D imaging using various types of coils and imaging protocols

resulted in a dynamic range below 82 dB for a similar 3 T scanner. Following sampling

density compensation by multiplication with W(t), the dynamic range of the spiral dataset

was reduced to values between 54.4 and 56.3 dB (Fig. 4.3(b)).

Bit-depth reduction was applied to both the dynamic-range compressed and the

uncompressed spiral datasets by converting the signal samples from Matlab’s standard

double-precision data type to signed 16-bit integers and zeroing the m − k least signifi-

cant bits. The effect of this bit-depth reduction on the phantom images is shown in Figs.

4.11(a,b), where the six least significant bits (one more than that predicted by the reduc-

tion in dynamic range) of each signal sample were zeroed prior to image reconstruction.

The dynamic range compression in image (a) preserves the image quality following a six-bit

reduction, while image (b) suffers from serious ghosting artifacts and blurring. The AP
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1682 kB

a)

b)

925 kB

925 kB

c)

Figure 4.9: Grid phantom imaged with a six-channel array (RSS reconstruc-
tion) without spectral compression (a); with a downsampling factor of M = 0.55
applied after dynamic demodulation (negligible AP = 3.15 × 10−4) (b); and
one without demodulating the signal prior to downsampling (observable AP =
1.8 × 10−3) (c).
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Figure 4.10: Plot of AP versus percent downsampling for spectral compression
using dynamic demodulation (circles) and without (squares). The two curves
separate where the reduced sampling rate no longer satisfies the Nyquist criterion.
Dynamic demodulation is able to support greater compression without loss of
image quality.
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1051 kB

1051 kB

Figure 4.11: Effect of bit-depth reduction (zeroing the six least significant bits
of the signal) on an RSS image including dynamic range compression (AP =
1.69× 10−4) (a) and without dynamic range compression (AP = 8.0× 10−3) (b),
showing considerable ghosting and blurring.
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resulting from bit-depth reduction was calculated between a reference image reconstructed

from the full dataset (Fig. 4.9(a)), and both compressed and uncompressed images recon-

structed following various degrees of bit-depth reduction. The results in Fig. 4.12 indicate

that with a threshold AP = 2 × 10−4, a six-bit reduction can be achieved without appre-

ciable loss of image quality, corresponding to a further 6/16 = 37.5% reduction in data in

addition to that achieved by spectral compression.

The effect of bit-depth reduction on SNR is shown in Fig. 4.12(b), where we note a

small but uniform improvement in SNR (∼ 4−7.5%) if the number of zeroed bits is limited to

six or less in this case. While a detailed analysis of this counter-intuitive behavior is beyond

the scope of this work, it can be qualitatively explained by noting that zeroing the least

significant bits is equivalent to rounding downward, which has a greater relative effect on

the amplitude of the noise than on that of the signal. In fact, signal has a shorter temporal

duration but larger amplitude than the noise whose standard deviation is constant but small

and requires all the least significant bits to be sampled accurately. If the number of zeroed

bits increases beyond six, the additional quantization noise is no longer negligible relative

to the data’s thermal noise and a rapid degradation in SNR occurs. This coincides with the

increase in AP since concurrent noise and artifacts cannot be mathematically separated in

difference images.

The final image reconstructed following both types of data compression is displayed

in Fig. 4.13. The combined AP (3.51×10−4) does not increase significantly above the larger

individual AP value when both types of compression are applied to the image while memory

requirements decrease by a total of 66% (from 1,682 to 578 kB) to generate an image of

equivalent quality.

4.5 Conclusion

Wireless MRI coils will bring benefits including improved patient comfort by allowing more

ergonomic “wearable” designs as well as improved safety and cross-talk with the elimination

of coaxial cables. Wireless transmission will, however, require efficient data encoding to

overcome limitations in data rates, especially in high-density array designs.

In this work, we have analyzed two independent methods of MR data compression

that rely on dynamic demodulation to perform spectral compression and sampling density

compensation for dynamic range compression. Both are compatible with techniques such

as parallel imaging and channel combinations and can also be used to reduce archival data

storage requirements in standard MRI systems. Spectral compression takes advantage of

the much smaller single-coil FOV compared to the full image FOV and is based on dynamic
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Figure 4.12: In (a), a plot of artifact power versus bit-depth reduction (number
of zeroed bits) for the image of Fig. 4.10 with (circles) and without dynamic range
compression (squares). In (b), a plot of relative SNR difference between a full
bit-depth image and a reduced bit-depth image for various degrees of bit-depth
reduction. Slight improvements in SNR are possible due to the rounding effects
of setting least-significant bits to zero (see text).
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578 kB

Figure 4.13: RSS image reconstructed using both types of data compression:
spectral compression with downsampling M = 0.55 and a reduction in bit depth
from 16 to 10 bits per scalar sample component. Only 578 kB of data was used in
reconstructing the image, compared to the original 1,682 kB of Fig. 4.9(a), hence
a 66% decrease in the amount of data is obtained. Artifact power is a negligible
3.51 × 10−4.



CHAPTER 4. EFFICIENT MULTICHANNEL COIL DATA COMPRESSION 78

demodulation of the MR signal using a variable carrier frequency that depends on the

sampling trajectory in κ-space. Dynamic range compression is implemented by removing

the least significant bits of the data following sampling density compensation in the case of

non-Cartesian trajectories.

While our calculations were performed by post-processing data acquired from a stan-

dard MRI spectrometer, they could equally be performed by dedicated processing devices

following direct digitization within dedicated receiver units at each coil (i.e., a “distributed”

spectrometer). After transmission through the wireless link, simple recovery operations can

retrieve most of the image information without visible degradation in quality.

Our results show that with as few as six channels, a 45% spectral compression can

be achieved while maintaining AP to negligible levels and with some improvement in SNR

at the periphery of the FOV. With more coils and more localized coil sensitivity profiles,

higher compression factors are achievable. Dynamic range compression followed by bit-

depth reduction yielded a further 37.5% reduction in data with a slight increase in SNR

over the full FOV. When combined the two approaches result in a data set of only one-third

the original size with a negligible impact on image quality.

While the methods in this work were applied to spiral κ-space trajectories, they are

equally applicable to Cartesian trajectories, in which case the density compensation func-

tion can be replaced by a heuristic function (including profile-dependent amplification) or

nonlinear compression. Spiral or other radially symmetric trajectories, however, offer better

compression properties than Cartesian trajectories in common cases where coil elements are

arranged in an approximately circular pattern around the FOV.

Implementation of these algorithms in a distributed wireless spectrometer is still years

away. Remaining engineering challenges include in silico implementation of the compression

methods and miniaturization; power delivery and cooling of the digital acquisition modules

required for each coil; synchronization to the timings of the main imaging sequence; and

choice of a robust, high-capacity wireless transmission technology that is reliable in the

hostile electromagnetic environment of an MRI scanner bore.
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Conclusion

The purpose of this project was to demonstrate the efficient data acquisition, transmission

and post-processing of spiral MRI for obtaining high-quality images (i.e., high SNR, resolu-

tion, and geometrical accuracy). The first step towards quality spiral MR images involves

carefully selecting appropriate scan parameters given the desired resolution and image size.

If the static magnetic field is not sufficiently shimmed, it may be necessary to acquire an ad-

ditional spiral scan at two different echo-times for the purpose of obtaining an off-resonance

map. The map can be unwrapped efficiently in 2D and used with a FSORC algorithm for

deblurring the spiral images. A number of tips were provided for reducing both the total

scan time and the image post-processing time when dealing with a large spiral MRI dataset,

such as would be typical of a RTP MRI-based exam.

The second result of this thesis is a simulated study of the compressibility of spiral

MRI data transmitted from a high-density array. This research was motivated by the present

technological push towards high-density detector arrays, which can achieve higher SNR or

reduced scan time, but also come with more stringent data storage and transmission speed

requirements. Traditional analog transmission by coaxial cables becomes less suitable with

an increasing number of channels, due to bulkiness and possible cable-to-cable interference,

making digital transmission by optical fiber or wireless links a better alternative. Two types

of data compression methods were investigated. The first, known as spectral compression,

exploits the finite sensitivity region of the coil to reduce the bandwidth by assigning a

separate FOV to each coil, which is equivalent to sampling κ-space using coarser spacing

∆κ. The total required amount of data is reduced by almost half without affecting the

image quality. The second method exploits the non-uniform sampling density pattern of the

spiral acquisition, using the sampling density compensation as a inherent non-linear gain for

compressing the dynamic range of the signal. The dynamic range of the transmitted signal

79
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may thus be compressed from 16 to 10 bits without resulting in any image degradation.

Combining both types of compression could reduce the data by 66% for a 6-channel array

coil, and by up to 75% for a 16-channel array coil, which would be greatly beneficial in

wireless data transmission, which supports much lower bit-rates than optical fiber cables.
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