
How are issue reports discussed in Gitter chat rooms?

Hareem Sahar1, Abram Hindle1, Cor-Paul Bezemer2

University of Alberta

Edmonton, Canada

Abstract

Informal communication channels like mailing lists, IRC and instant messaging

play a vital role in open source software development by facilitating communica-

tion within geographically diverse project teams e.g., to discuss issue reports to

facilitate the bug-fixing process. More recently, chat systems like Slack and Git-

ter have gained a lot of popularity and developers are rapidly adopting them.

Gitter is a chat system that is specifically designed to address the needs of

GitHub users. Gitter hosts project-based asynchronous chats which foster fre-

quent project discussions among participants. Developer discussions contain a

wealth of information such as the rationale behind decisions made during the

evolution of a project. In this study, we explore 24 open source project chat

rooms that are hosted on Gitter, containing a total of 3,133,106 messages and

14,096 issue references. We manually analyze the contents of chat room discus-

sions around 457 issue reports. The results of our study show the prevalence of

issue discussions on Gitter, and that the discussed issue reports have a longer

resolution time than the issue reports that are never brought on Gitter.

Keywords:

developer discussions, Gitter, issue reports

Email address: hareeme@ualberta.ca (Hareem Sahar)
1Department of Computing Science, University of Alberta, Canada
2Analytics of Software, Games and Repository Data (ASGAARD) lab, University of Al-

berta, Canada

Preprint submitted to Journal of Systems and Software October 29, 2020

1. Introduction

Open source software (OSS) development uses the expertise of developers

from all over the world, who communicate with each other via email, mailing

lists [1], IRC channels [2], and modern communication platforms like Gitter

and Slack [3]. Moreover, people interested in improving their programming5

skills connect through the aforementioned informal communication channels [4]

and seek help from project developers. The vast amount of knowledge that

is available on these platforms has been exploited by researchers to improve

API learning [5][6], source code documentation [7], and automatic generation

of source code comments [8]. In addition, the developer discussions on Stack10

Overflow have been leveraged for more sophisticated tasks, such as support-

ing recommendations in the IDEs [9][10][11], bug triaging [12], and in building

the thesauri and knowledge graphs of software-specific terms [13]. These suc-

cesses suggest that developer communications in unexplored platforms may also

contain potentially useful knowledge.15

There has been a recent shift from the traditional communication platforms,

such as emails and mailing lists, to modern team-and-project oriented instant

messaging systems like Gitter, Slack, and IRC [14]. These systems not only

keep teams connected to each other by enabling real-time text communication

among groups, but also provide a tight integration with various external services.20

Additionally, software development teams prefer these chat systems because of

their more contained environment which makes it easier for the members to

closely interact with each other [3]. However, despite, their wide adoption,

little is known about how project teams use these platforms during project

development and management.25

Prior work studied Slack [15] [3] and IRC [2] [16] but, in this paper, we

explore an increasingly popular [17] project-oriented chat system, Gitter, using

a combination of qualitative and quantitative analysis methods. The success

of Gitter could be attributed to the fact that it was created to address the

needs of GitHub users, and that it is an open-source chat system as opposed30

2

to the proprietary platforms like Slack. In addition, Gitter chat archives are

publicly available and can be easily mined using a REST API,3 opening up new

avenues of research for the Mining Software Repositories community. Apart

from content archiving, Gitter provides several ready-to-go integrations with

GitHub repositories and bots. Pull requests, issue report linking, and GitHub35

flavored mark-down are also supported, making it easier for the developers to

directly talk about project artifacts or releases in the Gitter chat rooms.

Our study is the first to empirically investigate the role of Gitter in support-

ing software engineering teams. Our goal is to assess the impact of Gitter on

project and team dynamics. In this paper, we focus on issue report discussions40

in Gitter chat rooms. Issue reports are used to keep track of bugs, request en-

hancements, and to document software code. The reason of limiting our analysis

to issue report discussions is that issues are an integral part of the bug-fixing

process of a software project, and play a crucial role in a project’s success. We

anticipate that developers discuss issue reports throughout a project’s evolution45

to better understand the problems in their project and to design strategies to

resolve these problems. Therefore, focusing on issue report discussions allows

us to analyze the impact of Gitter on various project-related activities during

the evolution of a software project. We address the following research questions

(RQs) in our study.50

RQ1: Who refers to and discusses issue reports in Gitter chat

rooms?

More than 50% issue reports were referenced by the end-users in 14 out of

24 chat rooms.

RQ2: What is discussed about issue reports on Gitter?55

Our manual analysis shows that the main purpose of issue report references

is to ask for technical support or to discuss issue-related activity happening

within the GitHub issue trackers. On the other hand, issue reports from other

projects are also mentioned in the chat rooms, as some projects share common

3https://developer.gitter.im/docs/rest-api

3

dependencies and are affected by language features and library dependencies in60

a similar way.

RQ3: How does the issue resolution time of issues that are dis-

cussed and not discussed on Gitter differ?

We speculated that discussing an issue report on Gitter would cause the

issue to resolve faster. To our surprise, we found that issue reports that are65

discussed on Gitter have a significantly higher resolution time as compared to

issue reports that are not discussed on Gitter.

RQ4: Does the discussion on Gitter impact the issue’s activity and

resolution time of the issue?

We found an increase in the number of issue comments in the GitHub issue70

tracker after an issue report was referenced on Gitter. Our preliminary result

suggests that long-standing issues may get resolved when brought to Gitter.

The remainder of this paper is structured as follows: Section 2 gives a brief

introduction of Gitter. Section 3 presents prior work related to our paper. Sec-

tion 4 explains our data extraction and processing methodology. In Section 5,75

we present the findings of the research questions followed by a discussion in Sec-

tion 6. Section 7 explains the threats to the validity of our study and Section 8

concludes the paper.

2. Gitter

Gitter is an open source GitHub-based chat system with around 90K com-80

munities, 300K chat rooms and 800K people who are mostly developers and

GitHub users. Each Gitter community contains multiple chat rooms, which

could be general-purpose, organizational or repository chat rooms. The repos-

itory chat rooms are linked to the GitHub project repositories. Initially, only

repository chat rooms existed but Gitter changed its structure in August 201685

after which chat rooms and communities that are not directly related to objects

in GitHub could be created. Gitter chat rooms are mostly public as opposed to

the closed nature of Slack chat rooms. Being public means, anyone interested

4

in the project can join in and have a conversation with project maintainers.

There is also no room size limit which is why it perfectly suits the needs of large90

teams.4

Similar to Slack, Gitter supports a plethora of external integrations5 and

services, such as Gitlab, GitHub, Travis, Jenkins, Heroku, and, Trello. How-

ever, Gitter’s integrations with external services are ready-to-go while Slack

integrations have to be installed. Furthermore, a fully searchable history is of-95

fered, as developers can browse activity archives dating back to when the chat

room was created, something that is limited by Slack.6 Finally, one can connect

to Gitter using an IRC client. Due to these factors, Gitter has rapidly gained

the interest of software development teams, and many projects on GitHub now

have a Gitter badge, confirming its wide adoption and making it the top devel-100

oper communication channel after the issue trackers and mailing lists [17]. Our

study is the first to assess the role and impact of Gitter in open source software

development.

3. Related Work

In this section, we present studies that analyze developer communications105

and their impact on a software project.

Software developers use online chat services such as Slack [3] [15], IRC [2],

Hipchat, Gitter [14] and Microsoft Teams to communicate about project tasks,

to learn new programming languages and technologies or to ask project spe-

cific questions. Most studies on developer chats focused on learning about how110

development teams use chat communities or to analyze developers’ behaviours

and interactions [2] [18].

Shihab et al. [2] explored IRC channels of the GTK and the GNOME project.

4https://www.freecodecamp.org/news/so-yeah-we-tried-slack-and-we-deeply-regretted-it-

391bcc714c81/
5https://gitlab.com/gitlab-org/gitter/webapp/blob/master/docs/integrations.md
6https://slack.com/intl/en-ca/pricing

5

Their focus was on the IRC meeting participants, the contents of their discus-

sions, and the style in which the meetings are run. Panichella et al. [1] compared115

how developer collaboration links differ across 3 different kinds of communica-

tion channels, including mailing lists, issue trackers, and IRC chat logs. A sim-

ilar study was conducted by Yu et al. [19] to find out how developers of a small

open source project use real-time IRC and asynchronous email communications

in Global Software Development.120

Other work has focused on mining and extracting specific types of informa-

tion from developer communications. For instance, Bird et al. [20] mined email

social networks of the Apache HTTP server project and discovered that the de-

veloper mailing list and source code activity are correlated. Alkadhi et al. [18]

pointed out the presence of rationale in developer chats and examined the fre-125

quency and completeness of available rationale in HipChat and IRC messages.

They also studied the potential of automatic machine learning techniques for

rationale extraction from chat messages whereas others employed machine learn-

ing techniques to filter off-topic discussions from IRC chats [16]. Lately, Slack

and Gitter have gained a lot of popularity and therefore researchers have also130

started to explore the potential of information available in these platforms [21]

for improving software engineering processes and tools. Lin et al. [3] assessed

the impact of the use of Slack on the software development teams and processes

by directly interviewing the developers. They found that Slack enables new

ways to collaborate and supports developers by serving a wide range of pur-135

poses. Chatterjee et al. [15] demonstrated the potential usefulness of Slack data

by comparing and contrasting the characteristics and the contents of Slack chat

data with the famous Stack Overflow data [22].

Gitter is a modern project-oriented chat system [14], that became popular

as an open-source alternative to Slack. To the best of our knowledge, no prior140

work explored Gitter to see what kind of project evolution-relevant information

is available in Gitter chat rooms. This is the first study to analyze developer

discussions on Gitter and their link to the project issue reports.

Researchers have also investigated the role of communication between de-

6

velopers in coordinating development and maintenance activities in software145

projects, such as requirements understanding, making design decisions and bug

injection in source code. Bettenburg and Hassan [23] examined the effect of so-

cial interactions between developers on the software quality. Abreu and Prem-

raj [24] showed that the frequency of communication among the project’s entire

development community has a relation with the number of bug introducing150

changes. In another study, Wolf et al. [25] exploited social network analy-

sis measures obtained from communication among developers to predict build

failures. Similarly, Bacchelli et al. [26] used code popularity metrics obtained

from email communication among developers for bug prediction while Sajedi et

al. [12] leverage the developer communications in Q&A platforms as source of155

information for bug triaging.

Several studies have also examined the effect of human communication and

coordination factors on the issue resolution time in projects. Ortu et al. [27]

found out that politeness has an effect on the issue resolution time in OSS.

Yu et al. [28] suggested that discussions throughout the bug fixing process are160

important to clarify the reported problem and reach a solution. They also

found evidence of the association between discussions and bug reworking. To

this end, we explore issue discussions in Gitter chat rooms and investigate the

issue resolution time of issue reports discussed in chats.

4. Mining Gitter Data165

In this section, we explain our data extraction and parsing methodology

which is outlined in Figure 1. The dataset and scripts are also available on

GitHub.7

4.1. Selecting Chat Rooms

In this study, we focus on chat rooms:170

7https://github.com/Hareem-E-Sahar/gitter

7


````
Sample 1 chat

room from each
category per

selection criteria

24 chat rooms
connected to 
GitHub repos

 Selecting Chat Rooms

Gathering Chat Logs

 Chat rooms 
 on Gitter

homepage

Chat logs of 24
Gitter chat rooms in

JSON format
Extract chat logs

from 24 chat
rooms  

Parsing Chat Messages 

Parse JSON files 
to extract relevant
data fields from

each chat message

Usernames and
displaynames Issue number Repo name

Gitter's REST
API 

 Resolving Aliases

 Determine name
similarity using 

Levenshtein
Distance 

Manually inspect all
names with 70%

similarity  

Unique
identifiers 
for names

 Analyzing Issues Distribution

String matching
on repo names

after filtering pull
requests

6,847 issues
from 24 studied

projects 

3,411 foreign
issues

3,838 issues
from relevant

projects

Figure 1: Overview of Methodology

8



1. that are directly linked to a project’s GitHub repository;

2. if the linked GitHub repository contains issue reports;

3. if the chat rooms contain mostly English discussions.

Following these guidelines we randomly sampled 24 chat rooms from various pro-

gramming communities created around the most popular Gitter tags, and that175

are available on the Gitter explore page.8 The selected chat rooms have different

numbers of participants which allows us to analyze discussions about popular

as well as not very popular projects on Gitter. Table 1 shows the selected chat

rooms along with their details such as the number of participants and messages.

Each room has the same name as its linked project repository e.g., amber in the180

amberframework community is linked to the amberframework/amber repository

on GitHub.

4.2. Gathering Chat Logs

Gitter provides an API that can be leveraged to obtain chat logs from public

chat rooms joined by a user. For the purpose of this study, we joined the chat185

rooms and used the Gitter API to gather chat logs for the entire period of room

existence. The obtained data was saved in the JSON format. An example JSON

file containing a chat message from one of the studied chat rooms is shown in

Listing 1. It can be seen that in addition to the text message, a chat message

also contains participant’s id and name, the message timestamp, issue report190

links, and any other referenced URLs.

4.3. Parsing Chat Messages

Gitter allows linking to GitHub issue reports (by typing # followed by the

issue report number) in the linked Git repository, with hovercards enabling a

preview of the issue report. The “issues” tag in the JSON object holds the195

issues that are referenced in a chat message. The object may contain one or

multiple issue references along with the name of the repository where the issue

8https://gitter.im/home/explore/

9



Table 1: Studied Gitter chat rooms

Chat Room* # Participants # Messages

amberframework/amber 379 22,645

angular/angular 20,341 1,067,711

appium/appium 3,499 41,526

aws/aws-sdk-go 953 3,363

deeplearning/deeplearning4j 7,898 414,214

dotnet/corefx 2,001 22,683

fossasia/open-event-android 721 9,408

google/material-design-lite 4,936 7,590

gulpjs/gulp 3,041 8,808

kriasoft/react-starter-kit 1,583 3,477

magento/magento2 915 4,999

mailboxer/mailboxer 108 139

meteor/meteor 3,323 46,385

Microsoft/TypeScript 7,478 211,222

MonoGame/MonoGame 749 46,001

openzipkin/zipkin 1,882 100,556

patchthecode/JTAppleCalendar 381 34,609

PerfectlySoft/Perfect 1,737 6,555

scala-js/scala-js 3,337 85,798

shuup/shuup 310 3,507

TheOdinProject/theodinproject 10,904 416,408

twbs/bootstrap 9,391 17,554

vuejs/vue 18,345 387,274

webdriverio/webdriverio 4,949 170,674

Total Count 109,161 3,133,106

* Also represents the name of the linked GitHub project repository.

10



1 {

2 "editedAt": "2015 -06 -06 T16 :58:00.150Z",

3 "fromUser": {

4 "displayName": "Szymon Kazmierczak",

5 "id": "54 c65e95db8155e6700f18b3",

6 "url": "/Simon -Kaz",

7 "username": "Simon -Kaz",

8 },

9 "id": "5573267 c463d0c7c066e46cf",

10 "issues": [

11 {

12 "number": "5218",

13 "repo": "appium/appium"

14 }

15 ],

16 "mentions": [ ],

17 "readBy": 18,

18 "sent": "2015 -06 -06 T16 :57:32.150Z",

19 "text": "has anyone had this issue? https :// github.com/appium/

appium/issues /5218",

20 "unread": false ,

21 "urls": [],

22 "v": 2

23 }

Listing 1: An example Gitter chat log in JSON format

report was submitted. The Gitter chat logs also contain a username and a

displayName, as shown in Listing 1, for each message that is posted to the chat

room. For a chat message referencing an issue report, we obtained the issue200

number, repository name and both the username and the displayName of its

author by parsing the logs, and stored the collected data on a per-room basis.

4.4. Resolving Aliases

Prior work suggests the existence of aliases on social platforms including

developer collaboration forums, because participants on these platforms can205

11



assign themselves multiple nicknames. To reduce the bias in analysis due to

multiple identities of the same person, we resolved aliases using the Levenshtein

distance [29]. The Levenshtein edit distance is a string similarity metric and we

used it to determine the similarity between the names of participants in a chat

room, a repository and across them. Bird et al. [20] and Panichella et al. [7]210

also employed the same similarity metric in their studies for alias resolution.

Furthermore, we manually inspected all the names that exhibit 70% or higher

similarity to decide if two names belong to the same person. We chose a low

similarity threshold to detect all the possibly similar pairs of names which came

out to be 494. These names were further manually scrutinized by the authors215

to reach a final list of 67 aliases. During manual inspection:

• We looked for a similarity between full names. Following this rule Paolo

G. Giarrusso and Paolo Giarrusso, Steve Sly Williams and Steve Williams,

and, MortenGregersen and Morten Bjerg Gregersen are considered aliases.

• We consider names to be aliases if there is similarity between both the220

first and the last name. Following this rule Gurch Rai with Gurchet Rai

are aliases.

• We do not consider names to be aliases if only first name or only last

name, is similar e.g. Simon Sheridan and Simon Brewster are not aliases

because only first names are similar and the last names are not.225

• We consider names to be aliases if both their username and the display-

Name parts match e.g. pfrankov, Pavel Frankov aliases frankpf and Frank

because both the usernames and the displayNames are similar.

4.5. Analyzing Issues Distribution

We obtained a total of 20,118 references to issue reports and pull requests230

in the 24 chat rooms by parsing the JSON and used the repository names to

identify the project that the issue belongs to. Our investigation revealed that

about 3,966 entries listed in issues were actually not issues. These were either

12



falsely captured as issues due to the use of the # symbol in the text or markdown

code (see Section 4.3) or the repo field in the data remained empty due to an235

API bug. We discarded such references, which left a total of 16,152 actual issues.

The number of actual issue references found in the chat rooms ranges from 3

to 5,323. As shown in Figure 2, the largest number of issue report references

were found in angular/angular which is a popular chat room, followed by

openzipkin/zipkin which has 2,488 references to issues. However, an analysis240

of issue repositories indicates that the referenced issue reports come from a

diverse set of repositories. Only 6,847 issue reports, and 2056 pull requests

discussed in the chat rooms come from the GitHub repositories directly linked

to the chat rooms. In the rest of the paper we only consider the project issue

reports. These issue reports are subsequently referred to as Gitter-issues and245

do not contain any references to pull requests.

Issues are also referenced in the chat rooms across repositories (see Fig-

ure 3), and we refer to such issues as foreign issues. In many cases, a referenced

issue report belongs to a repository that has a relation with the chat room-

connected repository, e.g., both repositories host sub-projects of a main project250

or both repositories have the same parent repository. For example, the meteor

project has several repositories (e.g., meteor/meteor-feature-requests) that

contain artifacts for the main project (meteor/meteor). We do not consider

issue reports that are referenced across such repositories as foreign. To de-

tect foreign issue reports, we did a simple substring comparison to determine255

whether the chat room-connected repository and the repository of the refer-

enced issue report share a common parent-level project or repository. For ex-

ample, the aforementioned example would not be considered a foreign issue

report since the repositories share the common meteor prefix, while the issue re-

port yeoman/generator-webapp/issues/342 referenced in the vuejs/vue chat260

room would be considered foreign to the vue project. We found a total of 3,411

foreign issues, which is 21% of the total number of referenced issues in the

studied chat rooms.

13



1

10

100

1000

am
be

r
an

gu
la

r
ap

pi
um

aw
s−

sd
k−

go
bo

ot
st

ra
p

co
re

fx

de
ep

le
ar

ni
ng

4j
 

gu
lp

JT
Ap

pl
eC

al
en

da
r

m
ag

en
to

2
m

ai
lb

ox
er

m
at

er
ia

l−
de

si
gn

−l
ite

m
et

eo
r

M
on

oG
am

e

op
en

−e
ve

nt
−a

nd
ro

id
Pe

rfe
ct

re
ac

t−
st

ar
te

r−
ki

t
sc

al
a−

js
sh

uu
p

th
eo

di
np

ro
je

ct
Ty

pe
Sc

rip
t

vu
e

w
eb

dr
iv

er
io

zi
pk

in

Gitter Chat Rooms

N
um

be
r 

of
 Is

su
es

 (
lo

g 
sc

al
e)

Figure 2: Total number of issue references found in the 24 studied Gitter chat rooms using

log scale.

14



0%

25%

50%

75%

100%

am
be

r
an

gu
la

r
ap

pi
um

aw
s−

sd
k−

go
bo

ot
st

ra
p

co
re

fx

de
ep

le
ar

ni
ng

4j
gu

lp

JT
Ap

pl
eC

al
en

da
r

m
ag

en
to

2
m

ai
lb

ox
er

m
at

er
ia

l−
de

si
gn

−l
ite

m
et

eo
r

M
on

oG
am

e

op
en

−e
ve

nt
−a

nd
ro

id
Pe

rfe
ct

re
ac

t−
st

ar
te

r−
ki

t
sc

al
a−

js
sh

uu
p

th
eo

di
np

ro
je

ct
Ty

pe
Sc

rip
t

vu
e

w
eb

dr
iv

er
io

zi
pk

in

Gitter Chat Rooms

P
er

ce
nt

ag
e 

of
 Is

su
es

Foreign−issues Parent−repo−issues Project−issues

Figure 3: Distribution of the percentage of issues in 24 studied Gitter chat rooms

15



5. Study Findings

5.1. RQ1: Who refers to and discusses issue reports in Gitter chat rooms?265

Motivation: Coordination and communication among project contributors

is crucial for the success of a software project. Prior work has established that

open-source developers employ different mechanisms for communication. To im-

prove our understanding of the extent to which Gitter is used for critical project

communications, we explore issue discussions and their participants. Identifying270

people who mainly contribute to Gitter issue discussions offers deeper insights

and allows us to reason about the usefulness of newly introduced Gitter in

open-source software development.

Approach: Each studied Gitter chat room hosts chats on one specific open-

source project, which uses GitHub as its version control system. GitHub defines275

a repository collaborator to be someone on the core development team of the

project who has commit access to the main repository of the project. A con-

tributor is someone from outside the core development team of the project who

contributes changes to the project. Following GitHub’s definition and the more

elaborate structure proposed by previous work [30], we refer to collaborators as280

the small group of core-developers who have direct access to the source code

repository and control the project. Then there is another group of external

developers who file issue reports or make minor fixes. These are called contrib-

utors and the changes made by them are reviewed by the core developers before

they are accepted to become a part of the project. Finally, there is a group285

of end-users, who do not actively participate in the development, but use the

software, file issue reports, and are part of the community. We also refer to

them as end-users in the paper.

We obtained the names of project collaborators and contributors from the

project’s GitHub repository by leveraging the GitHub API. While obtaining290

the list of collaborators we considered all those who have commit access to the

repository whereas for the contributors, we considered all the names listed under

the contributors page in the official GitHub repository of each project.

16



At the same time, for each issue referenced in a Gitter chat room, the user-

name and the displayName of the person referencing the issue was also saved.295

Note that we do not consider everyone involved in the discussion but only the

person who wrote the message containing reference to an issue report. We

then used a Python program to discover exact matches between the names of

participants who referenced issue reports in chat rooms and the project contrib-

utors. Finally, we calculated the percentage of referenced issues by the project300

collaborators, contributors and end-users in the 24 Gitter chat rooms.

Results: End users referenced the majority of the issue reports

in the studied chat rooms as shown in Figure 4. Overall, more than

50% issue reports were referenced by the end-users in 14 out of 24 chat rooms.

theodinproject chat room is the only one where all issues were referenced by305

the project collaborators and contributors. In zipkin and corefx, collabora-

tors and contributors referenced around 75% issues. The remaining issues were

referenced by participants who do not directly contribute to the project or it

could be the case that these participants were not identified due to aliases.

In particular, appium has 99% issues referenced by people who are not con-310

tributors or collaborators but instead end-users. Similarly, gulp and vue have a

very small number of issue reports referenced by the project collaborators and

contributors, i.e., between 5% to 12%. We anticipate that the percentage issues

referenced by contributors will increase if we consider all participants involved

in issue report discussions instead of just considering participants who directly315

reference issue reports in their messages. Regardless of that, the small number

of issue discussions by the developers of these 3 projects could be attributed

to the limited reliance of these projects on Gitter as a communication channel.

Our assumption was confirmed when we found that vue and appium have their

official channels on Discord9, and Discuss10 respectively and these projects do320

not officially use Gitter for collaboration. The presence of multiple chat com-

9https://discord.com/invite/HBherRA
10https://discuss.appium.io/

17



0

25

50

75

100

am
be

r
an

gu
la

r
ap

pi
um

aw
s−

sd
k−

go
bo

ot
st

ra
p

co
re

fx

de
ep

le
ar

ni
ng

4j
gu

lp

JT
Ap

pl
eC

al
en

da
r

m
ag

en
to

2
m

ai
lb

ox
er

m
at

er
ia

l−
de

si
gn

−l
ite

m
et

eo
r

M
on

oG
am

e

op
en

−e
ve

nt
−a

nd
ro

id
Pe

rfe
ct

re
ac

t−
st

ar
te

r−
ki

t
sc

al
a−

js
sh

uu
p

th
eo

di
np

ro
je

ct
Ty

pe
Sc

rip
t

vu
e

w
eb

dr
iv

er
io

zi
pk

in

Gitter Chat Rooms

P
er

ce
nt

ag
e 

of
 Is

su
e 

R
ep

or
ts

Collaborators Contributors End−users

Figure 4: Distribution of the percentage of issue reports referenced in the 24 Gitter chat rooms

by the actual project collaborators, contributors and end-users.

18



munities of these projects suggests that developers might also be talking about

important project decisions at other places, and hence we observed limited issue

report discussions or activity in the Gitter chat rooms of these projects. There-

fore, we conclude that Gitter is actively used by open source project developers325

to collaborate on project activities if it is adopted as the main collaboration tool

for the project whereas the presence of multiple channels across platforms can

limit the developer activity on Gitter. Future studies should investigate in detail

how having multiple chat channels affect the communication and collaboration

activities on Gitter.330

Lastly, we observed the presence of bots in 4 chat rooms while analyzing

the names of Gitter users. The bot referenced 108 issue reports in amber, 46 in

deeplearning4j, and 80 in JTAppleCalendar. The odin-bot did not reference

any issue reports in theodinproject chat room.

5.2. RQ2: What is discussed about issue reports on Gitter?335

Motivation: The topics of developer discussions on a platform are a quick

indicator of its usefulness in communication and collaboration activities. Due to

the importance of issues, discussions around them can reveal interesting insights

about a project e.g., information about how bugs are resolved in an OSS project

can be found in these discussions.340

Approach: To understand the purpose of issue references and discussions

we carried out a qualitative study of a statistically representative sample of

issue reports in the 24 Gitter chat rooms. From the entire data set of Gitter-

issues, we randomly selected a representative sample of 364 issues, with 95%

confidence level and a 5% confidence interval for manual analysis. The selection345

of a statistically significant sample size based on population size, confidence

interval, and confidence level was introduced by Krejcie and Morgan in 1970 [31]

and since then it has been employed by many studies in the past [32, 33, 34, 35].

Our sample contains an equal number of issues i.e., 16 from each room except

for the projects, such as mailboxer, which do not have enough issue references.350

In that case, we studied all the discussed issues. After selecting our sample of

19



Table 2: Categorization of the purpose of referencing issues in Gitter and the distribution of

the percentage of identified categories.

Category Description % Issue Reports

Technical support Reference to an issue that contains ad-

ditional information related to problem

37%

GitHub issue tracker activity References due to opening, closing, or

commenting on issue reports

23%

Inquiries about issue state Discussion about when issue will be

solved or integrated into the main

project

14%

Contributions, suggestions or

feedback

Asking for contribution or feedback on

the referenced issues

12%

Project updates and future

plans

Issue references to provide updates or

to discuss future plans e.g. release

schedules

7%

Not clear Purpose of referencing an issue report

could not be inferred

6%

Request supplementary bug

fixes

References to issues that are resolved

but still contain bugs

1%

20



issue references, we manually labelled them with the goal of understanding the

purpose of references in the chat room messages or discussions.

Starting from the chat message that directly references the issue report,

we read the entire discussion around the issue report. This involved reading355

neighbouring messages that were posted in the chat room before and after the

message containing an issue reference. Since discussions around referenced issues

were interleaved with other chat messages, it was sometimes difficult to identify

the context. In such cases, we leveraged the name of the participants and the

time stamp of the messages, and read the discussions until the participants360

involved in the issue report discussion no longer appear in the chat or the time

stamp indicated that the discussion was likely to have been initiated at that

point.

The process of labelling was iterative, so initially 2 authors independently

labelled 13 issues followed by another 50 issues. They started with an unknown365

category list and finalized the categories in 2 iterations, following an approach

similar to open coding [36]. While reading the discussions, the authors asked the

following question: “What is the purpose of referencing the given issue in this

chat message?”. They identified the purpose and the context of referencing an

issue report in the discussions, and categorized it accordingly. In cases where the370

identified category did not match an existing one, we added a new category to

the list and restarted the labelling process with the new category list. The final

list of categories was finalized by 2 authors of this paper who both independently

labelled issue report discussions with a Cohen’s Kappa [37] inter-rater agreement

of 0.8. A substantial agreement was achieved because the purpose of referencing375

an issue report is often explicitly mentioned in the chat by the participant who

references the issue report, or it could be identified from the discussion. The

small number of conflicts that appeared in the categorization were due to a new

category that was identified by one of the authors and not by the other. These

conflicts were resolved by the authors by including the additional category,380

and a final categorization scheme consisting of 8 categories was agreed upon

(see Table 2) before the remaining issue references were labelled by one of the

21



authors.

Further, to get insights about the reasons of referencing foreign issues in

chats, we also manually labelled a statistically representative sample of 93 for-385

eign issues with a 95% confidence level and 10% confidence interval.

Results: The final list of categories that emerged from our manual labelling is

shown in Table 2. The most common purpose of referencing issues in chat mes-

sages is to acquire technical support . In regards to issues, technical support is

frequently (37%) sought in chat rooms, often by product users, to resolve source390

code errors, or to develop better understanding of the syntax and semantics of

a programming language. For example, while resolving an error, a participant

wrote in chat: “I’m having some issue with adding a <tr> to the table using

js ... the checkbox wouldn’t show up ... but i couldn’t find any fix for it. please

refer to this link11, if you think you can help.”395

As shown in this example, issue reports are referenced in the questions to find

a workaround for the issue if it is yet to be fixed or when the solution proposed

in issue report comments does not work. Similarly, while answering questions,

issue reports are referenced to notify participants of the progress made so far

on an issue or to communicate that the issue report belongs to the WONT-400

FIX category. Sometimes, however, participants seeking help mention problems

relevant to the project which the developers have not come across previously.

Such questions lead to the creation of new issue reports in the issue tracker and

we assign them 2 labels: technical support and GitHub issue tracker activity as

such references have a dual purpose.405

GitHub issue tracker activity is the next popular category and discus-

sions around it constitute for around 23% of the issue references. Activity refers

to anything happening to an issue report in the GitHub issue tracker and the

largest number of references in this category were due to opening, closing and

commenting on issues whereas discussions related to issue trolling also appeared410

but rather less frequently. The following is an example of a chat message that

11https://github.com/angular/angular/issues/5917

22

https://github.com/angular/angular/issues/5917


is relevant to this category: “Yep, so that guy’s comment is valid: link.”12

Issues are often opened due to incorrect outputs, crashes, memory leaks,

unsuccessful builds, or to request a feature enhancement or a document update.

Sometimes people also mistakenly open issues which they consider to be bugs or415

in plea for help. We observed during our manual annotations that such issues are

quickly identified and closed by the developers, hence preventing huge backlogs

and improving the overall bug triaging process.

Almost 14% of the issue reports referenced in the chats are actually updates

about work in progress or inquiries about issue state such as the following420

“https://github.com/webdriverio/webdriverio/issues/996 seems to indicate there

isn’t a way to do this, but since it has been there for over an year, I was wonder-

ing if that is still the case”. These questions often directly address the project

contributors and are followed by explanations of what might be delaying the

resolution of an issue or when is it likely to get resolved and whether it is still425

relevant or not. A closely-related category involves referencing issue reports to

communicate project updates and future plans including inquiries related

to upcoming release schedules and changes from prior release. We group these

7% of issues separately as they are related to the future changes planned for

the project and have nothing to do with the current activity in a project or430

a specific issue report. Nonetheless, both of these categories together serve to

improve the awareness of project stakeholders about the current state of issues

and provides them a way to keep track of progress.

Requests for supplementary bug fixes account for 1% of the issue report

references. Prior work suggests that 22% to 33% of resolved bugs involved more435

than 1 fix attempt [38]. For example, this could be due to the missed porting

changes, incorrect handling of conditional statements, or incomplete refactoring.

Moreover, a bug fix could be incomplete and even introduce new bugs. Our

manual analysis confirms that developers close issues that still contain errors or

omissions or that lead to the introduction of more bugs. Consequently bug fixes440

12https://github.com/reponame/issues/1392#issuecomment-450722812

23

https://github.com/reponame/issues/1392#issuecomment-450722812


are required even after an issue has been marked as resolved or closed. Issue

reports referenced in discussions during the bug fixing process or requests for

re-verification of the closed issues were categorized as supplementary bug fixes.

Project developers also request contributions, suggestions and feed-

back for a particular issue in the chat rooms. Around 12% of the total issue445

reports were referenced in chats to ask for contributions and opinions. During

the manual annotations we observed that suggestions and feedback is usually

provided by the development team members which is not surprising. However,

due to the public nature of the Gitter chat rooms, participants other than the

development team members offer contributing to an issue. Moreover, we also450

noticed that the project collaborators encourage contribution from participants

external to the team (i.e. those with no contribution to the project), thus low-

ering the entry barrier for new contributors.

Sometimes a referenced issue is a link only without associated discussion or

the purpose of reference cannot be identified from the surrounding context. We455

categorize such references as not clear.

The foreign issues come from a multitude of repositories and are referenced

in the chats for all sorts of reasons. The top reasons for referencing foreign issues

are to:

1. Discuss a project’s external dependencies and updates affecting a project;460

2. Provide a minimal reproduction using a sample repository on GitHub;

3. Share information and experiences gained from other projects;

4. Propose a feature similar to another project or figure out how someone

else implemented a similar feature;

5. Discuss Gitter, GitHub or Travis-CI related issues affecting a project;465

6. Ask for help with installations and project configurations;

7. Informal discussions around an issue or random commenting.

24



5.3. RQ3: How does the issue resolution time of issues that are discussed and

not discussed on Gitter differ?

Motivation: In this research question, we examine if issue report discussions470

on Gitter are correlated with a faster issue resolution process. Through this

question we investigate how the adoption of Gitter affects part of the software

development life cycle associated with maintenance and bug fixing.

Approach: To find out if issue report discussions in Gitter reduce the time to

resolve an issue, we compared N Gitter-issues with N randomly selected issues475

referred subsequently as Random-issues. The random issues were extracted from

the GitHub repository linked to the chat room and excludes issues referenced

in Gitter chats. Our sampling methodology ensures that equal number of issues

are included from each repository in the Gitter-issues and Random-issues data

set. However, the number of issues included from each repository varies, and480

depends on the actual issue references to that repository in its chat room.

Next, we obtained the metadata of all the Gitter-issues and Random-issues

from their respective GitHub repositories using the GitHub API. The collected

data was parsed and the issue resolution time of all issue reports was calculated

using the created at and closed at dates. The resolution time of issue reports485

is the time period between the submission of an issue on GitHub to the time

when the issue was resolved and the fix was accepted. Our null hypotheses is:

H0 : There is no difference between the issue resolution time of Gitter-issues

and Random-issues.

Ha : Gitter-issues have a longer issue resolution time than Random-issues.490

To test our null hypotheses, we used the Mann-Whitney test which is a non-

parametric alternative to the t-test and is used for non-paired data. We chose

this test because the issue resolution time in our data set does not follow a Gaus-

sian distribution according to the results of the Kolmogorov-Smirnov test for

normality [39]. Furthermore, we employed multiple independent Mann-Whitney495

tests [40] followed by Bonferroni correction to test our hypothesis while control-

ling for the four important confounding factors. We chose an α = 0.05 which

becomes α = 0.003 (i.e., 0.05/16) after the Bonferroni correction. To measure

25



Table 3: Description of the four confounding factors included in study. Each confounding

factor has two possible levels as shown in the third column

Confounding

Factors

Type Levels Description

Comments Categorical > mean number

of Gitter/Random

issue comments

≤ mean number

of Gitter/Random

issue comments

Total number of

comments on an

issue in GitHub is-

sue tracker

Reporter Categorical None

Not None

The person who

reported the is-

sue is associated

with the project

(Collaborator,

Contributor,

Member, Owner)

or not (None)

Milestone Categorical Yes, No Issue’s milestone

existed or not

Assignee Categorical Yes, No Whether someone

was assigned the

responsibility to

move the issue

forward or not

the effect sizes of the differences between Gitter-issues and Random-issues we

used Cliff’s delta along with interpretations of Romano et al. [41] based on500

which the difference is considered to be Negligible if Cliff’s |d| ≤ 0.147, Small if

Cliff’s |d| ≤ 0.33, Medium when Cliff’s |d| ≤ 0.474, and Large otherwise.

26



● ●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●●
●●

●

●

1

10

100

1000

10000

am
be

r
an

gu
la

r
ap

pi
um

aw
s−

sd
k−

go
bo

ot
st

ra
p

co
re

fx
de

ep
le

ar
ni

ng
gu

lp

JT
Ap

pl
eC

al
en

da
r

m
ag

en
to

2
m

ai
lb

ox
er

m
at

er
ia

l−
de

si
gn

−l
ite

m
et

eo
r

M
on

oG
am

e

op
en

−e
ve

nt
−a

nd
ro

id
Pe

rfe
ct

re
ac

t−
st

ar
te

r−
ki

t
sc

al
a−

js
sh

uu
p

th
eo

di
np

ro
je

ct
Ty

pe
sc

rip
t

vu
e

w
eb

dr
iv

er
zi

pk
in

Gitter Chat Rooms

R
es

ol
ut

io
n 

T
im

e 
in

 H
ou

rs
 (

lo
g 

sc
al

e)

Gitter Random

Figure 5: Comparison of resolution time of issue reports referenced in Gitter chat rooms and

the issue reports randomly sampled from linked GitHub repositories. The X-axis shows the

name of Gitter chat rooms. The Y-axis represents resolution time in hours shown in log scale.

27



The four confounding factors that we controlled for in our study include

issue comments, issue reporter, issue milestone and issue assignee, as shown in

Table 3. We considered these four factors in our study based on the findings of505

previous studies where number of issue comments [42], [43], [44] and the issue

reporter’s reputation [42] were found to have the most impact on the time to

fix an issue. Similarly, issue assignee and milestone were also suggested as top

predictors of issue fix time by prior studies [44, 45].

Results: Figure 5 shows a comparison of the resolution time of Gitter-issues510

and Random-issues on a per room basis. Table 4 presents the summary statistics

of the issue report resolution time and the number of open issues in the analyzed

data set. Among the analyzed data, 16.1% issue reports in Gitter-issues and

12.9% in Random-issues are still open. To our surprise, the resolution time

of our random sample of issue reports is smaller, with a mean issue report515

resolution time of 1,526.3 hours, compared to the issue reports referenced in the

Gitter chat rooms, which have a mean of 2,909.9 hours. The medians also show

a similar relationship.

Table 5 presents the results of multiple Mann-Whitney tests that we carried

out to check the statistical significance of differences between the resolution time520

of Gitter-issues and Random-issues. The null hypothesis was rejected according

to the results of the Mann-Whitney tests (p − value < 0.003) for 11 out of 16

issue report groups confirming that the observed differences are statistically

significant at an α = 0.003. Furthermore, the Cliff’s delta results suggest that

the difference in the resolution time mostly has Small effect sizes within groups.525

To avoid bias in comparison, we calculated the difference of median reso-

lution time of all Gitter-issues and Random-issues by bootstrapping the latter

1,000 times with a 95% confidence interval and a 5% confidence level lies in

[174.5 251.5]. We used median instead of mean because of the high skewness

of our resolution time data. The reported difference suggests that Gitter-issues530

have a higher median resolution time and as the confidence interval does not

include 0, we conclude that the difference is significant. There are two possible

explanations to this, one is that difficult issues are more frequently discussed on

28



Table 4: Summary of resolution time of issue reports in Gitter-issues and Random-issues in

hours

Statistic Gitter-issues Random-issues

Minimum 0.0 0.0

1st Quartile 21.0 5.0

Median 363.5 72.0

Mean 2,909.9 1,526.3

3rd Quartile 3,580.2 863.5

Maximum 46,797.0 41,786.0

Open issues 16.1% 12.9%

Gitter, and therefore their resolution time is also longer. This also seems to be

a reason for the comparatively larger number of non-closed issues in our sample535

of Gitter-issues in relation to the Random-issues. Another reason contributing

to the delayed resolution of Gitter-issues could be the lack of attention received

by these issues, which motivates our RQ4.

5.4. RQ4: Does the discussion on Gitter impact the issue’s activity and resolu-

tion time of the issue?540

Motivation: We believe that one reason that contributes to the delayed

resolution of Gitter-issues could be the lack of attention received by these issues.

This motivated us to analyze the issue comment activity in the GitHub issue

tracker.

Approach: The GitHub issue tracker provides support for adding comments545

to the issues, and stakeholders use this feature to discuss issues. Issue com-

ments may contain useful information [46] and developers can make use of this

information such as when discussing design ideas and implementation details

to resolve issues in a timely manner. In this research question we analyzed the

distribution of comments in the GitHub issue tracker of issues that were never550

referenced on Gitter. We extracted the comments from each Gitter-issue using

29



Table 5: Summary of Mann-Whitney U-test for comparison of the resolution time of Gitter-

issues and Random-issues while controlling for four confounding factors: issue comments,

issue reporter, issue assignee and issue milestone. The bold values indicate statistically sig-

nificant differences at α=0.003.

Comments Milestone Reporter Assignee Mann-Whitney

≤ mean No None No 2.2E-16

≤ mean No None Yes 7.87E-01

≤ mean No Not None No 2.01E-03

≤ mean No Not None Yes 5.90E-02

> mean No None No 2.20E-16

> mean No None Yes 1.71E-06

> mean No Not None No 1.38E-03

> mean No Not None Yes 2.43E-06

≤ mean Yes None No 1.59E-05

≤ mean Yes None Yes 3.27E-01

≤ mean Yes Not None No 6.24E-04

≤ mean Yes Not None Yes 5.83E-07

> mean Yes None No 4.27E-06

> mean Yes None Yes 1.60E-03

> mean Yes Not None No 7.37E-06

> mean Yes Not None Yes 3.31E-03

30



the GitHub API. We then compared the date of issue reference on Gitter with

the comment creation date to obtain the value of time difference between an

issue reference in a Gitter chat room and an issue comment in the GitHub issue

tracker. We calculated the number of issue comments that were made within555

one week of an issue’s reference on Gitter. Finally, we calculated the Comments

Change Ratio as follows:

Comments Change Ratio =
# of comments after Gitter reference

# of comments before Gitter reference

The Comments Change Ratio shows how the number of comments on an

issue changes within one week after and before an issue’s reference on Gitter.

A ratio larger than 1 indicates that there were more comments on an issue in560

the week succeeding its Gitter mention as compared to the preceding week. A

ratio smaller than 1 indicates the opposite whereas a ratio equal to 1 means the

number of comments before and after were equal.

Results: GitHub issue tracker’s comment feature is used by all 24 studied

projects to discuss issue reports. The median number of comments on the Gitter-565

issues ranges from 1 to 16. Table 6 shows how the mean number of comments

changes in the one week time period before and after an issue is referenced on

Gitter. For a vast majority of Gitter-issues that had at least some activity on

GitHub, we found more comments in their issue tracker after the issue report

was referenced on Gitter. This led to a higher mean number of issue comments570

in the third column in Table 6 as compared to the second column, for some of

the projects.

Figure 6 further shows the distribution of the Comments Change Ratio of

Gitter-issues on a per room basis. The median Comments Change Ratio is

around or above 1 in most cases indicating that issues received more comments575

in the week following their reference on Gitter than the preceding week. As

shown in the last two columns of Table 6, there was a high percentage of Gitter-

issues that had no comment activity in the tracker before the issue was brought

to Gitter. It appears from the data that issue comment activity increased in

31



●

●

●●

●

●●

●●●

●●●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●

●●●●

●●●●●●●●●●●●●

●

●●●●●

●●●●●

●●●●●●●●●●●

●●

●

●●●●

●●

●●●

●●●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●

●●

●

●●

●●●●●●●●●●●●●●

●●●

●●●●●●●●

●

●

●●

●

●●●●

●●●

●●●●●●●

●

●

●●●●

●●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●●●●

●●

●

●●●

●●●●

●

●●●

●●●●●●●

●●

●●

●

●●●●

●

●●

●●●●●

●●●

●●●

●●

●●●

●●●●

●●●●

●●●●●

●

●●●

●●●

●●

●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

● ●

●

●

●●●

●●●●●

●●●●●

●●

●●

●●●●●

●

●●●

●●●

●●●●

●

●

●

●●●

●●●●●●

●●●●

●●●●

●●●●

●

●

●●●●●●●●

●●

●

●●●●●●●●●

0

10

20

30

am
be

r
an

gu
la

r
ap

pi
um

aw
s−

sd
k−

go
bo

ot
st

ra
p

co
re

fx
de

ep
le

ar
ni

ng
4j

gu
lp

JT
Ap

pl
eC

al
en

da
r

m
ag

en
to

2

m
at

er
ia

l−
de

si
gn

−l
ite

m
et

eo
r

M
on

oG
am

e

op
en

−e
ve

nt
−a

nd
ro

id
pe

rfe
ct

re
ac

t−
st

ar
te

r−
ki

t
sc

al
a−

js
sh

uu
p

th
e−

od
in

−p
ro

je
ct

ty
pe

sc
rip

t
vu

e
w

eb
dr

iv
er

io
zi

pk
in

Gitter Chat Rooms

C
om

m
en

ts
 C

ha
ng

e 
R

at
io

Figure 6: Comments Change Ratio showing ratio of number of issue comments in the GitHub

issue tracker one week after and before issue reference in a Gitter chat room. The X-axis

shows the name of Gitter chat rooms. The Y-axis represents comments change ratio using log

scale. The horizontal red line shows ratio = 1 meaning equal number of comments before and

after Gitter reference.

32



Table 6: Distribution of mean issue comments and percentage issues that have zero comments

before and after an issue reference on Gitter

Mean Issue Comments % Issues with no comments

Chat Room Before After Before After

amber 1.4 1.4 67.4 57.6

angular 1.5 1.5 64.4 62.3

appium 1.9 1.7 77.6 68.3

aws-sdk-go 0.2 1.2 84.2 52.6

bootstrap 0.1 0.1 88.9 88.9

corefx 0.6 1.4 81.4 66.3

deeplearning4j 1.0 2.1 79.3 57.5

gulp 0.6 0.4 88.9 88.9

JTAppleCalendar 1.1 1.4 57.4 59.2

magento2 0.7 1.6 75.0 55.0

material-design-lite 0.5 0.1 83.3 91.7

meteor 0.6 2.2 84.7 61.0

MonoGame 0.0 1.4 96.8 65.1

open-event-android 0.2 0.2 94.3 91.4

perfect 0.5 3.0 66.7 33.3

react-starter-kit 0.3 0.8 77.6 65.5

scala-js 0.3 0.8 92.3 71.0

shuup 0.4 1.0 72.7 90.9

the-odin-project 0.2 0.8 75.0 25.0

TypeScript 0.6 0.6 81.1 78.5

vue 4.6 5.3 35.9 45.1

webdriverio 0.9 0.9 72.0 69.6

zipkin 1.1 2.0 79.8 53.3

the following week and the percentage of issues with no comments declined.580

The increase in issue activity could be an indirect consequence of the issue ref-

33



erence on Gitter showing that Gitter references could possibly trigger

activity in the issue trackers. Additionally, an issue report is referenced on

Gitter after a median of 120 hours after its creation but there are some issue

reports that are mentioned after a median of 15,024 hours as shown in Table 7.585

Perhaps these issue reports had been unreasonably prolonged, and were rather

referenced in the chats to prevent further impediment and facilitate resolution.

The cumulative frequency distribution curves in Figure 7a show that a larger

number of Random-issues are resolved at any given point in time as compared

to the Gitter-issues until around 10,000 hours. However, as the time in hours590

increases beyond that point, the Gitter-issues take the lead. The upward trend

in the number of issue comments after its reference on Gitter, and the short

duration (4,631) between the issue reference and resolution suggest that Gitter

reference could be indirectly affecting the long-standing issue resolution, leading

to a higher number of resolved Gitter-issues. The partial cumulative frequency595

distribution curve in Figure 7b was drawn to highlight this difference. Based

on these observations it appears that Gitter might be used to revive and

facilitate resolution of issues that have not been addressed in a long

time. Since Gitter references serve as a way of bringing the issue reports to

the attention of developers, we believe that for long-standing issue reports, the600

chances of resolution are higher when the issue report is brought to Gitter,

which ultimately leads to their resolution. Future studies should further inves-

tigate how referencing an issue report on Gitter impacts their activity in the

GitHub issue tracker, and whether an earlier reference in Gitter can lead to

faster resolution.605

6. Discussion and Implications

In this section we discuss our findings and their implications for researchers.

6.1. Prevalence of issue report discussions on Gitter

Our analysis revealed that only 0.49% of the messages in the 24 studied

chat rooms contain an issue report reference but discussions around these issues610

34



Resolution Time in Hours

E
m

pi
ric

al
 C

D
F

0.0

0.2

0.4

0.6

0.8

1.0

0 10000 20000 30000 40000

Gitter−issues Random−issues

(a)

Resolution Time in Hours

E
m

pi
ric

al
 C

D
F

0.92

0.94

0.96

0.98

0 10000 20000 30000 40000

Gitter−issues Random−issues

(b)

Figure 7: Cumulative frequency distribution curve showing the age of Gitter-issues and

Random-issues. The X-axis shows the resolution-time of issues in hours and the Y-axis shows

the percentage of resolved issues after n hours of creation. Figure (b) shows a zoomed in

version of the part (a) after 10000 hours. 35



Table 7: Summary statistics of the duration in hours between issue creation and reference(ref)

and issue reference and closing for the long-standing Gitter-issues. Here long-standing issues

refer to issues that were not resolved even after 10000 hours of their creation

Long-standing issues Remaining Gitter-issues

Statistic creation-ref ref-closing creation-ref ref-closing

Minimum 10,080 0 0 0

1st Quartile 12,192 1,320 0 96

Median 15,024 4,872 120 696

Mean 16,250 6,077 955 2,462

3rd Quartile 18,360 8,448 1,008 3,264

Maximum 41,136 29,640 9,960 31,272

could be significant for the success of a project. The discussions often involve

a project’s contributors, and contain valuable knowledge about an open source

software project. The informal and unstructured nature of Gitter chats allow

developers to reveal their opinions about various aspects of a software system

at different times and in different contexts leading to recurrent referencing of615

issue reports in chats.

When developers and end-users discuss current problems in a software sys-

tem, this occasionally leads to the opening of a new issue. Similarly they discuss

existing issue reports to analyze if these issues significantly impact the project

and can be prioritized. Discussions around the issue resolution strategies and620

issue assignments to different contributors also surface in the Gitter chats. One

can also find justifications of WONTFIX issues [47][48] and the work around for

those.

To obtain statistical evidence of the influence of different distribution of col-

laborators and contributors in the chat room on the issue resolution time, we625

used the Spearman correlation test [49]. It is a non-parametric measure of asso-

ciation between two variables. For the purpose of measuring the correlation, we

arbitrarily considered 5 messages before and 5 after an issue reference to be part

36



of issue discussion. The number of messages contributed by the developers in

the issue discussions were then correlated with the issue’s resolution time. Ta-630

ble 8 shows that the Spearman correlation test reveals a statistically significant

correlation in only 5 out of 24 chat rooms. Therefore, despite their prevalence

in Gitter chat rooms, the issue discussions do not impact issue resolution time

in a statistically significant way for most projects.

6.2. Gitter as a complementary communication channel635

The top referenced repository in issue report discussions is the GitHub repos-

itory linked to the chat room, however, a substantial number of issue reports

from various other repositories are also referenced in the Gitter chat rooms.

Issues are informally discussed in Gitter whereas any information that has to

be preserved is discussed in the issue tracker comments thread. We found out640

that in some projects up to 75% of the issues filed in the project’s GitHub issue

tracker are referenced in the Gitter chat rooms. However, for some projects

such as magento2 this percentage is very small, i.e., less than 1%. This suggests

that some OSS developers rely on Gitter for collaboration and communication

activities related to their project. The limited reliance on the other hand, in645

some cases, could be due to the presence of multiple chat rooms for a single

project, e.g., across different platforms such as IRC or Discord.

6.3. Gitter allows real-time communication

The obvious advantage of Gitter is its real-time communication feature which

makes communication in Gitter quicker. Moreover, due to the informal style of650

chat communication [14], developers and end-users find it easy to comment on

issues due to which feedback becomes faster. End-users are also encouraged by

the quicker answers to support questions and choose to discuss issues in the chat

rooms. Further, teams can discuss implementation details and reach common

ground about design decisions, all without overloading the issue tracker threads.655

Maintainers make announcements regarding issues and provide updates that

quickly reach everyone through a single channel.

37



Table 8: Spearman correlation between the number of collaborators and contributors involved

in issue discussions in Gitter chat rooms and the issue resolution time. The bold values indicate

statistically significant correlations.

Chat Room rho p-value

amber 0.010 9.18E-01

angular 0.077 2.56E-04

appium 0.012 8.96E-01

aws-sdk-go -0.213 4.85E-01

bootstrap -0.270 4.51E-01

corefx 0.072 4.41E-01

deeplearning4j 0.052 1.34E-01

gulp -0.167 3.60E-01

JTAppleCalendar 0.520 1.08E-06

magento2 -0.136 5.67E-01

mailboxer 0.010 9.18E-01

material-design-lite 0.077 2.56E-04

meteor 0.012 8.96E-01

MonoGame -0.213 4.85E-01

open-event-android -0.270 4.51E-01

Perfect 0.072 4.41E-01

react-starter-kit 0.052 1.34E-01

scala-js -0.167 3.60E-01

shuup 0.520 1.08E-06

theodinproject -0.136 5.67E-01

typeScript 0.010 9.18E-01

vue 0.077 2.56E-04

webdriverio 0.012 8.96E-01

zipkin -0.213 4.85E-01

38



Our understanding is that despite the availability of a dedicated GitHub

issue tracker, developers and project collaborators find it comfortable to freely

express their thoughts and opinions in chat messages, propose various alterna-660

tives to tackle a problem, argue about the possible implementations and collab-

oratively reach a final decision [18, 2]. An interesting direction for future work

is to analyze the difference among the content, topics and style of issue report

discussions in chat rooms and issue trackers.

6.4. Gitter helps to keep the issue tracker free of false issue reports665

We observed during manual annotation of issues that every time a problem

is brought to Gitter, developers validate it first. In case it is a minor developer

error, help is provided locally. This explains why a large number of issue report

references on Gitter were attributed to Technical support and GitHub issue

tracker activity. We also observed that sometimes issues raised as bugs are not670

bugs so Gitter allows core developers to check if the bug is valid before it reaches

the issue tracker. Since new issue reports are only created against confirmed

bugs, it helps keep the GitHub issue tracker free of false bug reports as well

as useless discussions. Consequently, project maintainers are not unnecessarily

pressurized due to an issue list that is overloaded with things that are not bugs.675

6.5. Gitter helps to improve the triaging process

Triaging is the process of deciding what to do with a newly submitted issue

report, and it consumes an increasing amount of resources in large open-source

projects [12]. Traditionally, an issue is considered by developers for resolution

only after the triage [50]. As mentioned earlier, Gitter facilitates the triaging680

process whereby an issue report is only initiated in the tracker if Gitter partici-

pants consider it worthy of resolution. Sometimes the issue is promptly assigned

to a project contributor who is a chat room participant and is willing to fix the

issue. In this way, Gitter “preserves time of developers” for other issues, and

also presumably eliminates delays in the triage process. An additional benefit of685

39



bringing an issue on Gitter is that it prevents issue creation against the wrong

project or in the incorrect GitHub repository.

In summary, due to its unique features Gitter complements other sources

of communication among project teams just like IRC and mailing lists were

complementary to each other [19]. Open-source project stakeholders undergo690

extensive discussions in Gitter chat rooms after which the information that

has to be preserved is brought to the issue trackers. Tools can be devised to

identify, extract and transfer the necessary information to the issues trackers.

Future work should also leverage this fragmented information across different

channels to establish traceability links between various artifacts [51].695

6.6. Study Implications

Our study is the first to investigate how and why issue reports are referenced

on Gitter. We extracted the following implications and future research directions

for researchers of issue reports and practitioners.

Gitter developers should consider structuring the Gitter data and700

adding more features. Currently, Gitter only allows referring an issue in

chat but developers should consider introducing more features to support issue

management, e.g., features or options that allow adding contextual information,

reproducibility details, answering an issue comment, or, proposing a potential

solution. Practitioners should also develop tools to extract useful in-705

formation from the Gitter data. Such tools can perform automated analysis

and summarization of discussions in the chat rooms and enable software devel-

opers to gain knowledge and discover information which might not be available

on other channels. As an example, any discussions related to issues can be

identified and later exported to the issue trackers.710

Researchers of the process of resolving issue reports should include

Gitter data in future studies. Due to the large number of issue report

references and discussions around them on Gitter, researchers studying issue

reports should include Gitter data in their studies since additional information

regarding the issue resolution process can be found in there. Moreover, due715

40



to the repeated references to issue reports for Technical help, researchers could

potentially leverage these references to design tools that can identify hard to

resolve issues or issues that may not be resolved in the future fairly early in

the issue management cycle. We hypothesize that identifying issues that may

not be addressed in the future, could help developers to focus on critical issues,720

thereby improving the issue management process.

Practitioners should develop tools for automatic bug triaging by

leveraging crowdsourced Gitter data to facilitate issue management

process. Similarly bug triagers can be trained based on bug assignment or fix

information available in Gitter chat rooms in the form of natural language text.725

Such tools when incorporated into current issue trackers will make the issue

handling and resolution process more efficient.

Researchers should study how bots can be integrated on Gitter

to support developers. Although in some chat rooms developers use bot

integrations to support their work, the use of bots in the Gitter chat rooms730

is not as prevalent as we anticipated, given the fact that Gitter was designed

to support bot integration. We observed that project developers carry out

repetitive tasks on a daily basis, e.g., directing participants to the right resources

such as PRs, WONTFIX issues or documentation. Our study indicates the

need of bots integrated with the GitHub repositories and Gitter chat rooms735

to automate the ordinary tasks. In the context of this study, bots can be

used to remind developers about long-standing issues, notify the appropriate

team members when errors occur, auto-merge pull requests, link experts with

novices, and answer user questions. Large development teams can be supported

through dashboards showing different views of project activity to managers and740

developers, such as the opening and resolution of issues, execution of tests and

merging of pull requests.

Researchers should study how the timing of referencing issue re-

ports can contribute to the resolution process. Referencing issue reports

on Gitter is a common practice which confirms the usefulness of Gitter. How-745

ever, many issues are referenced on Gitter long after their creation, while the

41



resolution likelihood of such issues increases after their reference on Gitter. Prior

work shows that it is beneficial to attract attention to an issue report early on,

e.g., by proposing a bounty [52]. These observations suggest that it can be

beneficial to attract attention to an issue make report early on as well on Git-750

ter. Future studies should investigate how the timing of referencing an issue is

related to its resolution likelihood.

7. Threats to Validity

For RQ1, we relied on automatic similarity detection algorithms, but due

to the lack of ground truth data we could not verify the reliability of the alias755

resolution process. However, one of the authors did a manual inspection of the

aliases to decide a final set of identifiers which were also validated by another

author.

Further, we manually identified the purpose of referencing issue reports and

their discussions. To reduce bias due to human judgment, 2 authors finalized760

the categories by independently labelling the same set of issue discussions. The

inter-rater agreement value was good enough for a single author to proceed with

the rest of the labelling. However, chances of error due to human judgement

exist which affects the internal validity of our study.

In RQ3, the conclusion validity was affected by multiple Mann-whitney com-765

parisons. To alleviate the threat, we used Bonferroni corrected p-values. We

also bootstrapped the issue resolution time 1,000 times and compared the dis-

tributions. Moreover, while comparing the Gitter issues with Random issues

we controlled only four confounding factors which were found to be the top

predictors of issue resolution time by the previous studies. Despite that our770

conclusions may be affected by other factors that we are not aware of.

As for the generalizability of this study, even though there are several types

of rooms in Gitter such as organisational and user rooms, we only considered

chat rooms that represent a GitHub repository. These repositories host open

source projects and therefore, the results of our study will only be applicable775

42



in similar contexts. Future studies shall investigate how our results extend to

other types of projects such as proprietary ones.

8. Conclusion

This paper conducts an empirical study of 14,096 issue report references in

24 developer chat rooms on Gitter, an open-source platform for hosting chat780

rooms that are directly coupled with GitHub projects. The most important

findings of our study are:

• Comments and discussions over GitHub issue tracker activity contribute

the highest percentage of issue report references after technical support.

• Issues that are referenced in the chat rooms have a longer resolution time785

compared to issues that are never referenced in Gitter.

• The number of comments on an issue in its GitHub issue tracker are

slightly higher after an issue is referenced on Gitter than before it.

• The resolution likelihood of long-standing issues that are referenced on

Gitter is higher than of those that are never referenced.790

Our study shows that Gitter chat rooms are a rich data source for informa-

tion about the issue resolution process in open source system. Therefore, we

recommend that researchers of issue reports include this data source in their

future studies.

References795

[1] S. Panichella, G. Bavota, M. Di Penta, G. Canfora, G. Antoniol, How de-

velopers’ collaborations identified from different sources tell us about code

changes, in: 2014 IEEE International Conference on Software Maintenance

and Evolution, IEEE, 2014, pp. 251–260.

43



[2] E. Shihab, Z. M. Jiang, A. E. Hassan, Studying the use of developer IRC800

meetings in open source projects, in: 2009 IEEE International Conference

on Software Maintenance, IEEE, 2009, pp. 147–156.

[3] B. Lin, A. Zagalsky, M.-A. Storey, A. Serebrenik, Why developers are slack-

ing off: Understanding how software teams use Slack, in: Proceedings of

the 19th ACM Conference on Computer Supported Cooperative Work and805

Social Computing Companion, ACM, 2016, pp. 333–336.

[4] L. Dabbish, C. Stuart, J. Tsay, J. Herbsleb, Social coding in GitHub: trans-

parency and collaboration in an open software repository, in: Proceedings

of the ACM 2012 conference on computer supported cooperative work,

ACM, 2012, pp. 1277–1286.810

[5] H. Jiang, J. Zhang, Z. Ren, T. Zhang, An unsupervised approach for dis-

covering relevant tutorial fragments for APIs, in: Proceedings of the 39th

International Conference on Software Engineering, IEEE Press, 2017, pp.

38–48.

[6] G. Petrosyan, M. P. Robillard, R. De Mori, Discovering information ex-815

plaining API types using text classification, in: Proceedings of the 37th

International Conference on Software Engineering-Volume 1, IEEE Press,

2015, pp. 869–879.

[7] S. Panichella, J. Aponte, M. Di Penta, A. Marcus, G. Canfora, Mining

source code descriptions from developer communications, in: 2012 20th820

IEEE International Conference on Program Comprehension (ICPC), IEEE,

2012, pp. 63–72.

[8] E. Wong, J. Yang, L. Tan, Autocomment: Mining question and answer sites

for automatic comment generation, in: 2013 28th IEEE/ACM International

Conference on Automated Software Engineering (ASE), IEEE, 2013, pp.825

562–567.

44



[9] L. B. de Souza, E. C. Campos, M. d. A. Maia, Ranking crowd knowledge

to assist software development, in: Proceedings of the 22nd International

Conference on Program Comprehension, ACM, 2014, pp. 72–82.

[10] V. Amintabar, A. Heydarnoori, M. Ghafari, ExceptionTracer: a solution830

recommender for exceptions in an integrated development environment, in:

Proceedings of the 2015 IEEE 23rd International Conference on Program

Comprehension, IEEE Press, 2015, pp. 299–302.

[11] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, M. Lanza, Mining Stack-

Overflow to turn the IDE into a self-confident programming prompter, in:835

Proceedings of the 11th Working Conference on Mining Software Reposi-

tories, ACM, 2014, pp. 102–111.

[12] A. S. Badashian, A. Hindle, E. Stroulia, Crowdsourced bug triaging, in:

2015 IEEE International Conference on Software Maintenance and Evolu-

tion (ICSME), IEEE, 2015, pp. 506–510.840

[13] C. Chen, Z. Xing, X. Wang, Unsupervised software-specific morphologi-

cal forms inference from informal discussions, in: Proceedings of the 39th

International Conference on Software Engineering, IEEE Press, 2017, pp.

450–461.

[14] M.-A. Storey, L. Singer, B. Cleary, F. Figueira Filho, A. Zagalsky, The (r)845

evolution of social media in software engineering, in: Proceedings of the on

Future of Software Engineering, ACM, 2014, pp. 100–116.

[15] P. Chatterjee, K. Damevski, L. Pollock, V. Augustine, N. A. Kraft, Ex-

ploratory study of Slack Q&A chats as a mining source for software en-

gineering tools, in: Proceedings of the 16th International Conference on850

Mining Software Repositories, IEEE Press, 2019, pp. 490–501.

[16] S. A. Chowdhury, A. Hindle, Mining StackOverflow to filter out off-topic

IRC discussion, in: Proceedings of the 12th Working Conference on Mining

Software Repositories, IEEE Press, 2015, pp. 422–425.

45



[17] V. Käfer, D. Graziotin, I. Bogicevic, S. Wagner, J. Ramadani, Communi-855

cation in open-source projects-end of the e-mail era?, in: Proceedings of

the 40th International Conference on Software Engineering: Companion

Proceeedings, 2018, pp. 242–243.

[18] R. Alkadhi, T. Lata, E. Guzmany, B. Bruegge, Rationale in development

chat messages: an exploratory study, in: 2017 IEEE/ACM 14th Interna-860

tional Conference on Mining Software Repositories (MSR), IEEE, 2017, pp.

436–446.

[19] L. Yu, S. Ramaswamy, A. Mishra, D. Mishra, Communications in global

software development: an empirical study using GTK+ OSS repository, in:

OTM Confederated International Conferences” On the Move to Meaningful865

Internet Systems”, Springer, 2011, pp. 218–227.

[20] C. Bird, A. Gourley, P. Devanbu, M. Gertz, A. Swaminathan, Mining email

social networks, in: Proceedings of the 2006 international workshop on

Mining software repositories, ACM, 2006, pp. 137–143.

[21] R. Alkadhi, J. O. Johanssen, E. Guzman, B. Bruegge, React: an approach870

for capturing rationale in chat messages, in: 2017 ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement (ESEM),

IEEE, 2017, pp. 175–180.

[22] S. Baltes, C. Treude, S. Diehl, Sotorrent: Studying the origin, evolution,

and usage of stack overflow code snippets, in: 2019 IEEE/ACM 16th Inter-875

national Conference on Mining Software Repositories (MSR), IEEE, 2019,

pp. 191–194.

[23] N. Bettenburg, A. E. Hassan, Studying the impact of social structures on

software quality, in: 2010 IEEE 18th International Conference on Program

Comprehension, IEEE, 2010, pp. 124–133.880

[24] R. Abreu, R. Premraj, How developer communication frequency relates

to bug introducing changes, in: Proceedings of the joint international and

46



annual ERCIM workshops on Principles of software evolution (IWPSE) and

software evolution (Evol) workshops, ACM, 2009, pp. 153–158.

[25] T. Wolf, A. Schroter, D. Damian, T. Nguyen, Predicting build failures using885

social network analysis on developer communication, in: Proceedings of the

31st International Conference on Software Engineering, IEEE Computer

Society, 2009, pp. 1–11.

[26] A. Bacchelli, M. D’Ambros, M. Lanza, Are popular classes more defect

prone?, in: International Conference on Fundamental Approaches to Soft-890

ware Engineering, Springer, 2010, pp. 59–73.

[27] M. Ortu, G. Destefanis, M. Kassab, S. Counsell, M. Marchesi, R. Tonelli,

Would you mind fixing this issue?, in: International Conference on Agile

Software Development, Springer, 2015, pp. 129–140.

[28] Y. Zhao, F. Zhang, E. Shihab, Y. Zou, A. E. Hassan, How are discus-895

sions associated with bug reworking?: An empirical study on open source

projects, in: Proceedings of the 10th ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement, ACM, 2016, p. 21.

[29] G. Navarro, A guided tour to approximate string matching, ACM comput-

ing surveys (CSUR) 33 (1) (2001) 31–88.900

[30] A. Mockus, R. T. Fielding, J. Herbsleb, A case study of open source soft-

ware development: the Apache server, in: Proceedings of the 22nd inter-

national conference on Software engineering, 2000, pp. 263–272.

[31] R. V. Krejcie, D. W. Morgan, Determining sample size for research activi-

ties, Educational and psychological measurement 30 (3) (1970) 607–610.905

[32] H. Hata, C. Treude, R. G. Kula, T. Ishio, 9.6 million links in source code

comments: purpose, evolution, and decay, in: Proceedings of the 41st In-

ternational Conference on Software Engineering, IEEE Press, 2019, pp.

1211–1221.

47



[33] H. Hu, S. Wang, C.-P. Bezemer, A. E. Hassan, Studying the consistency910

of star ratings and reviews of popular free hybrid Android and iOS apps,

Empirical Software Engineering 24 (1) (2019) 7–32.

[34] S. Hassan, C.-P. Bezemer, A. E. Hassan, Studying bad updates of top free-

to-download apps in the Google Play Store, IEEE Transactions on Software

Engineering.915

[35] G. A. A. Prana, C. Treude, F. Thung, T. Atapattu, D. Lo, Categorizing

the content of github readme files, Empirical Software Engineering 24 (3)

(2019) 1296–1327.

[36] J. Corbin, A. Strauss, Basics of qualitative research: Techniques and pro-

cedures for developing grounded theory, Sage publications, 2014.920

[37] A. J. Viera, J. M. Garrett, et al., Understanding interobserver agreement:

the Kappa statistic, Fam med 37 (5) (2005) 360–363.

[38] J. Park, M. Kim, B. Ray, D.-H. Bae, An empirical study of supplementary

bug fixes, in: Proceedings of the 9th IEEE Working Conference on Mining

Software Repositories, IEEE Press, 2012, pp. 40–49.925

[39] F. J. Massey Jr, The Kolmogorov-Smirnov test for goodness of fit, Journal

of the American statistical Association 46 (253) (1951) 68–78.

[40] M. Neuhäuser, Wilcoxon–Mann–Whitney test, in: M. Lovric (Ed.),

International Encyclopedia of Statistical Science, Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2011, pp. 1656–1658. doi:10.1007/930

978-3-642-04898-2_615.

URL https://doi.org/10.1007/978-3-642-04898-2_615

[41] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, L. Devine, Ex-

ploring methods for evaluating group differences on the NSSE and other

surveys: Are the t-test and Cohen’s-d indices the most appropriate choices,935

in: annual meeting of the Southern Association for Institutional Research,

Citeseer, 2006, pp. 1–51.

48

https://doi.org/10.1007/978-3-642-04898-2_615
http://dx.doi.org/10.1007/978-3-642-04898-2_615
http://dx.doi.org/10.1007/978-3-642-04898-2_615
http://dx.doi.org/10.1007/978-3-642-04898-2_615
https://doi.org/10.1007/978-3-642-04898-2_615


[42] P. J. Guo, T. Zimmermann, N. Nagappan, B. Murphy, Characterizing and

predicting which bugs get fixed: an empirical study of Microsoft Windows,

in: Proceedings of the 32Nd ACM/IEEE International Conference on Soft-940

ware Engineering-Volume 1, 2010, pp. 495–504.

[43] R. Kikas, M. Dumas, D. Pfahl, Using dynamic and contextual features

to predict issue lifetime in GitHub projects, in: 2016 IEEE/ACM 13th

Working Conference on Mining Software Repositories (MSR), IEEE, 2016,

pp. 291–302.945

[44] H. Zhang, L. Gong, S. Versteeg, Predicting bug-fixing time: an empirical

study of commercial software projects, in: 2013 35th International Confer-

ence on Software Engineering (ICSE), IEEE, 2013, pp. 1042–1051.

[45] E. Giger, M. Pinzger, H. Gall, Predicting the fix time of bugs, in: Proceed-

ings of the 2nd International Workshop on Recommendation Systems for950

Software Engineering, 2010, pp. 52–56.

[46] D. Arya, W. Wang, J. L. Guo, J. Cheng, Analysis and detection of informa-

tion types of open source software issue discussions, in: 2019 IEEE/ACM

41st International Conference on Software Engineering (ICSE), IEEE, 2019,

pp. 454–464.955

[47] C. Weiss, R. Premraj, T. Zimmermann, A. Zeller, How long will it take

to fix this bug?, in: Fourth International Workshop on Mining Software

Repositories (MSR’07: ICSE Workshops 2007), IEEE, 2007, pp. 1–1.

[48] A. Di Sorbo, J. Spillner, G. Canfora, S. Panichella, “won’t we fix this issue?”

qualitative characterization and automated identification of Wontfix issues960

on GitHub, arXiv preprint arXiv:1904.02414.

[49] J. H. Zar, Significance testing of the Spearman rank correlation coefficient,

Journal of the American Statistical Association 67 (339) (1972) 578–580.

49



[50] H. Hu, H. Zhang, J. Xuan, W. Sun, Effective bug triage based on histor-

ical bug-fix information, in: 2014 IEEE 25th International Symposium on965

Software Reliability Engineering, IEEE, 2014, pp. 122–132.

[51] A. Hindle, C. Bird, T. Zimmermann, N. Nagappan, Relating requirements

to implementation via topic analysis: Do topics extracted from require-

ments make sense to managers and developers?, in: 2012 28th IEEE In-

ternational Conference on Software Maintenance (ICSM), IEEE, 2012, pp.970

243–252.

[52] J. Zhou, S. Wang, C.-P. Bezemer, Y. Zou, A. E. Hassan, Bounties in open

source development on GitHub: A case study of BountySource bounties,

IEEE Transactions on Software Engineering.

50


	Introduction
	Gitter
	Related Work
	Mining Gitter Data
	Selecting Chat Rooms
	Gathering Chat Logs
	Parsing Chat Messages
	Resolving Aliases
	Analyzing Issues Distribution

	Study Findings
	RQ1: Who refers to and discusses issue reports in Gitter chat rooms?
	RQ2: What is discussed about issue reports on Gitter?
	RQ3: How does the issue resolution time of issues that are discussed and not discussed on Gitter differ?
	RQ4: Does the discussion on Gitter impact the issue's activity and resolution time of the issue?

	Discussion and Implications
	Prevalence of issue report discussions on Gitter
	Gitter as a complementary communication channel
	Gitter allows real-time communication 
	Gitter helps to keep the issue tracker free of false issue reports
	Gitter helps to improve the triaging process
	Study Implications

	Threats to Validity
	Conclusion

