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Abstract 
 

This thesis discusses methodologies for the prediction of stable delamination 

development in fiber-reinforced composites in pure fracture modes using analytical and 

numerical methods.   

A new test method, named internal-notched-flexure (INF) test, has recently been 

proposed to quantify mode II interlaminar fracture toughness of fibre composites. 

Previous investigation has shown that unlike any of the existing test methods, the INF 

test generates unconditionally stable delamination growth. This thesis discusses a follow-

up study that revises the analytical expressions for compliance (C) of INF specimen and 

its energy release rate for delamination (G). The main improvement in the current 

approach is to take into account load in the overhanging section of the specimen; while in 

the previous approach, the overhanging section was assumed to be load-free. Validation 

of the revised expressions is through comparison of the initial specimen stiffness with 

that from a finite element (FE) model of the INF specimen. The virtual INF specimen has 

cohesive elements in the interlaminar region to simulate the delamination growth, from 

which extent of damage in front of the crack tip can be quantified. Results from FE 

model suggest that an extensive damage exists at the crack tip before delamination 

growth commences. Therefore, the use of a physical crack length in the analytical 

expression for G may severely overestimate the interlaminar fracture toughness. Instead, 

an effective crack length should be used. Expression for G based on the effective crack 

length yields a value that is very close to the input critical energy release rate (Gc) for the 

cohesive elements. The study concludes that load in the overhanging section should be 

considered for deriving the analytical expressions for C and G of the INF specimen, and 



 

 

an effective crack length should be used to calculate the Gc value from the analytical 

expression.   

In addition to the above work, the study also touches on a finite element approach 

based on continuum solid elements with an elastic-plastic damage material property. The 

approach was proposed to simulate crack growth in the interlamianr region of FRP, but 

should also be applicable to other crack growth phenomena. In this approach, solid 

elements are used to simulate crack growth, based on criteria that are a combination of all 

stresses, in order to take into account the effect of in-plane normal stress on the damage 

initiation. The criterion for delamination propagation is defined based on critical strain 

energy.  The approach was implemented in a finite element code and was applied to pre-

cracked composites to illustrate its feasibility to simulate the crack development. 
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Chapter 1 Introduction  

1.1 Background  

 

Composite materials consist of two or more different constituents which are 

combined together to create a superior and distinct material. These constituents are 

divided into matrix and reinforcement. The reinforcements which are usually small in size 

provide strength and rigidity to the new material. The matrix is a lightweight, lower-

strength material which serves as a support to hold the reinforcement together and protect 

them from scratches that might generate to damage at a low stress level. It also acts as a 

media to transfer load among individual reinforcement.  For example, the combination of 

fiber glass with polymer creates a unique material called fiber-reinforced polymer (FRP) 

and has properties unachievable by each component.        

Advanced FRPs have been widely used in aerospace, automotive, construction 

and other industries because of their superior mechanical properties such as light weight, 

high specific stiffness and strength.  However, unexpected excessive loading, 

manufacturing defects, shocks and low velocity impact can cause crack initiation and 

growth between layers, commonly known as in the interlaminar region. Damage or 

separation in the interlaminar region is called delamination which is one of the major 

failure modes in FRP to degradation of stiffness, which can lead to loss of effective 



2 

 

service lifetime or catastrophic failure of structures [1]. As a result, much of research has 

been done in the last two decades, in order to develop accurate analytical and numerical 

models that are able to predict delamination development in FRP. 

The delamination process commonly involves two stages: initiation and growth.  

Delamination initiation is related to the interfacial strength of the material and in many 

applications stress-based criteria are used to predict its occurrence [2].  Delamination 

growth has been widely investigated based on fracture mechanics. Both analytical and 

numerical methods are used to calculate fracture-related parameters such as energy release 

rate (G), stress intensity factor (K) or J-integral (J) that serves as a driving force for the 

crack growth. Methods such as compliance derivative technique (CDT) [3-4], virtual crack 

closure technique (VCCT) [5] or J-integral [6-7] can be used to calculate the energy 

release rate (G), and to predict delamination growth by comparing G values to the critical 

value (GC) for fracture. However, all of these techniques cannot be directly applied to 

prediction of delamination without an initial crack.  

Further complication of the finite element implementation arises when progressive 

delamination is involved. An alternative solution to avoid the above difficulties is to use 

cohesive elements [8-9]. A cohesive damage zone is developed near the crack front and 

the crack growth is described by adopting a softening relationship between traction and 

relative displacement, with the area under the curve being the critical fracture energy. 

Computational issue of cohesive crack model has been extensively investigated by Alfano 

et al. [10]. 
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1.2 Purpose and scope  of research 

 

Purpose of this research is to study stable delamination growth in fiber composites 

using analytical and numerical approaches. The analytical approach will be used to 

characterize detailed delamination growth in FRP under pure fracture mode II. This 

approach will provide essential information on parameters that govern the delamination 

growth, such as the extent of damage in front of the crack tip, and the influence of 

physical and effective crack lengths in calculating energy release rate, and the speed and 

extent of delamination growth. The information, is of great interest to structural engineers, 

and can facilitate design of reliable and safe fiber composite structures.   

Another essential property of delamination is the fracture toughness which can be 

characterized by partitioning the fracture process into three modes:  mode I (opening), 

mode II (shear) , and mode III (tear).  The critical energy release rates under those modes 

of fractures can be measured experimentally through appropriate testing methods. In this 

study, a critical energy release rate (GIIC) obtained from a previous experimental 

investigation on internal-notched flexure (INF) test, is used in the finite-element (FE) 

based prediction of delamination onset and growth. It should be noted that the FEM work 

described in this study is based on continuum solid element with physically meaningful 

criteria for delamination simulation. The use of solid elements will enable us to take into 

account all stress components in determining the initiation of delamination.  
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1.3 Structure of thesis  

 

The thesis is divided in two main parts. The first part concentrates on the analytical 

approach to predict stable delamination growth in pure mode II fracture, Chapter 2. The 

development of an accurate analytical model is a vital tool for predicting delamination 

growth in FRP. The analytical expressions for compliance (C) of the INF specimen and its 

energy release rate for delamination (G) are derived. The second part is concerned about 

finite element simulation of delamination, chapter 3. This chapter provides a basis for 

understanding various methods that are conventionally used to simulate delamination in 

FRP. Discussion also includes some details of the new proposed damage material model 

for delamination simulation.  

The last chapter gives a summary of the whole work and identifies problems that 

can be considered for the future work.  
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Chapter 2 Analytical Prediction of Stable Delamination                   

Growth in Internal-Notched Flexure (INF) Test 

2.1 Introduction 

 

The delamination process in fiber composites can be characterized by partitioning 

the fracture process into three pure modes: the opening (mode I), the in-plane shear (mode 

II) and the out-of-plane shear (mode III).  The interfacial fracture toughness (GC) of 

composites in each mode is different due to the difference in fracture mechanisms and 

extensive efforts have been made to devise methods for measuring the critical energy 

release rate under mode I and mode II loading with very carefully designed experiments.  

This is because firstly GIC and GIIC are the most important parameters to evaluate the 

performance of fiber composites’ resistance to fracture and secondly they are essential 

input quantities for simulating delamination growth using FEM. The study on 

delamination in mode III, on the other hand, has received little attention. Delamination 

growth is assumed to take place when the energy release rate reaches a critical value. 

Since the change of energy release rate with crack growth can also be used to determine 

whether the delamination growth is stable analytical expression for the energy release rate 

is very important in the study of delamination propagation.  

While the development of mode I delamination test is successful and standardized 

[11] using the double cantilever beam (DCB) test, as shown in Figure 2.1(a), there is a 

long and winding road to standardize mode II delamination [12]. The four most commonly 



6 

 

used test methods to characterize mode II delamination fracture toughness are: end-loaded 

split (ELS), end-notch flexure (ENF), including the stabilized version, and four-point bend 

ENF (4ENF) tests, as shown in Figures 2.1(b) to 2.1(d). At the time when this thesis is 

prepared, none of the above methods has been accepted as the standard due to uncertainty 

of crack growth stability during the test. In addition significant data scatter and sometimes 

complicated test set-up are also drawbacks for some of those tests. Note that all of those 

tests adopt beam-shaped specimen geometries with a pre-crack, of which a brief history is 

summarized in ref. [13].   
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Figure 2.1. Schematic diagram of (a) DCB, (b) ELS, (c) ENF, and (d) 4EN 

 

A new test method, named internal-notched-flexure (INF) test, has been reported 

in a previous paper [14] to quantify delamination resistance of fibre-reinforced polymers 

(FRP) when subjected to transverse loading. Figure 2.2(a) shows the INF test setup that 

applies three-point bending to a specimen that contains an embedded insert film at mid-

thickness. Although INF test is very similar to central-notched-flexure (CNF) test [15] as 

shown in Figure. 2.2(b), in both specimen design and loading mode, the INF test has the 

transverse load applied un-symmetrically with respect to the insert film; while the CNF 

test has the transverse load applied symmetrically with respect to the insert film. In 

addition, the CNF test requires the insert film to be placed within the two supports; while 

the INF test requires one end of the insert film (i.e. point D in Figure. 2.2(a)) to be 

outside the span, and the other end (i.e. point B in Figure 2.2(a)) very close to the central 

(d) 
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2h 
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transverse load. The previous work [14] shows that with a proper choice of a2 value, 

delamination growth starts from point D without any crack development from point B. 

 

 

 

 

 

 

 

 

 

Figure 2.2 Schematic diagram of (a) INF test methods under three point bending, and (b) 

CNF test.  

 

Major advantage of INF test over the other tests is its unconditionally stable 

delamination growth. This is due to the continuous force increase during the test, even 

after delamination growth has started, as depicted in Figure 2.3. For the other tests, the 

load either decreases, such as in end-notched-flexure (ENF) and end-loaded-split (ELS) 

tests, or at best, maintains at the same level, such as in (4ENF) test [13]. Figure 2.3 

presents a comparison among those test results, which suggests that stability in 

delamination growth is in the order of INF > 4ENF > ELS > ENF.  
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Figure. 2.3. Schematic diagram of load-displacement plots from five mode II 

delamination tests [14] 

 

Previous approach [16] to derive the analytical expressions for compliance and energy 

release rate of the INF test, as given by Eqns. (2.1-2.3) below, is based on the approach 

proposed by Maikuma et al. [15].  
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where C is the compliance, δ displacement at the central point at which transverse load P 

is applied, $��  and $��  the energy release rate for delamination growth from right and left 

crack tips, i.e. points D and B in Figure 2.2, respectively, / flexural modulus of the 
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Trend of stability 
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specimen, 0 shear modulus on the plane shown in Figure 2.2, 1 out-of-plane specimen 

width,  half specimen thickness, . half of the span length, and 2 the correction factor for 

shear deformation [17]. Note that in ref. [16], +� and +  in the above equations are 

defined as physical crack lengths in the specimen. 

The approach used in ref. [16] to derive Eqns. (2.1-2.3) has ignored normal force 

in the longitudinal direction and bending moment on cross sections at points A and D in 

Fig. 2.2. As a result, the overhanging sections, i.e. sections KA and DE, were assumed to 

be load-free. This is incorrect for INF specimen, as evident from Figure 2.4 of a finite 

element simulation result that shows change in radius of curvature around the right 

support, suggesting the existence of load on the cross section around the right crack tip 

that is located on the right of right support.    

 

 

 

 

Figure 2.4. Deformation of finite element model of INF specimen  

 

Therefore, this chapter details a revised derivation for specimen compliance and 

energy release rate, by considering load in the overhanging sections. The close-form 

expression of the compliance is derived based on Timoshenko beam theory and the 

energy release rate by the compliance method based on linear elastic fracture mechanics. 

Both the compliance method and the Timoshenko beam theory will be briefly reviewed 

in this chapter. 
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2.2 Compliance method   

 

The energy release rate (G) for any structural configuration can be determined for 

a given load (P) using the compliance method, which links the change in compliance 

(dC) due to the change in crack length (da) to the energy release rate, based on linear 

elastic fracture mechanics, i.e, (
da

dC

w

P
G

2

2

= ), where w is the planar crack width.  

The key step to use the compliance method is to obtain the expression of C as a 

function of a. In the following sections, the compliance expression for the INF specimen 

and energy release rate for delamination will be derived based on Timoshenko beam 

theory and compliance method, respectively.  A brief review of Timoshenko beam theory 

is discussed in the following sub-section. 

2.2.1 The Timoshenko Beam Theory 

The Euler-Bernoulli beam theory neglects shear deformations by assuming that 

plane section remains plane and perpendicular to the neutral axis during bending. 

However, in reality internal shear stresses develop when a beam is subjected to a 

transverse load. These stresses cause sections that are perpendicular to the neutral axis of 

the beam to generate transverse shear deformation on the cross-section. Instead of 

assuming that the cross-section remains perpendicular to the neutral axis, Timoshenko 

beam theory assumes that shear strain is uniform on the cross-section and hence, 

increasing the rotation angle of the cross section, as shown by the combination of ψ and γ 

in  Figure 2.4. The following assumptions are common for both beam theories: 
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Beam deformation is relatively small 

1) The beam is long and slender, i.e. the length is much greater than the 

width and thickness; 

The cross-section of the beam remains plane 

2) The beam is made of isotropic, linear elastic material 

In the subsequent sections, kinematic and constitutive relationships for the 

Timoshenko beam theory are used to derive energy release rate and compliance of the 

INF specimen.  

 

Figure 2.4 Deformation of Timoshenko beam. 

2.2.2 The Energy Release Rate for INF Test.  

Derivation of the energy release rate has the same approach as that described in 

ref. [16]. However, instead of ignoring load in the overhanging sections, as adopted for 

the work on CNF test [15], the derivation takes into account the load in the overhanging 

sections. The assumptions and derivation of the compliance for the INF specimen is 

un-deformed  
 
 
 
 
 
deformed  

cross-section 

ψ 

γ 

 

 

dx

xdw )(
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presented here. The INF specimen is divided into two halves, with the assumption that 

each half carrying the same amount bending moment, which is equivalent to half of the 

transverse load for a slender beam, as shown in Figures 2.5(a) and (c).  As a result, each 

diagram in Figures 2.5(a) and (c) contains half of the total transverse load at a given cross 

section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5  Schematic diagrams of load distribution in INF specimen: (a) top half, (b) 

free body diagrams of left hanging section, right crack tip and right 

overhanging section, and (c) bottom half. 
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Expressions for displacement u in the longitudinal direction and deflection δ in 

the transverse direction for the top and bottom halves of the specimen are given below: 

56"76, 86# � 569 � 86:6"76#            (2.4) 

;6 � ;6"76#              (2.5) 

where subscript i is 1 or 2, standing for top or bottom half of the specimen, respectively; 

coordinates xi-zi have the origin located at mid-thickness in each half of the specimen, at a 

cross section where the right crack tip < is located, as shown in Figure 2.5; 56"76, 86#, 569, 

:6"76#, and ;6"76# are displacement in the xi-direction at point (76, 86), displacement in 

the xi-direction at zi = 0 (mid-plane of the half specimen), the angular displacement of the 

cross section at xi, and the vertical deflection at xi, respectively. 

Loading for each half of the specimen is depicted in Figures 2.5(a) and 2.5(c) for 

the top and bottom half of the specimen, respectively, and Figure 2.5(b) gives free-body 

diagrams of left and right overhanging sections and the section at right crack tip. Note 

that in Figure 2.5, =6>?  at point B and =6@?  at point D represent a concentrated shear force at 

the crack tip, =6AB and =6@� the interlaminar shear force in the overhanging sections KA 

and DE, respectively, and τiAB the distributed interlaminar shear stress in section AB.  

Each half of the specimen in Figures 2.5(a) and 2.5(c) is divided into four sections 

by cross-sections at points A, B, and D. Section BD is further divided into three 

subsections by cross sections at points C and G. 

Load balance in each section is governed by the following equations [15]: 

CDE
CF , G6 � H6"I/2# � 0            (2.6) 

CLE
CF � 0              (2.7) 
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CME
CF � H6 � 0              (2.8) 

where Mi, Qi, Ni and τι  are bending moment, transverse force, normal force, and 

distributed shear stress, respectively, in each half specimen i with unit width (i.e. w = 1), 

With strain considered to be a first-order function of displacement, the following 

expressions represent constitutive equations between load and displacement for each half 

of the specimen. 

N6 � / I COEPCF               (2.9) 

Q6 � / ��
� :6R"7#           (2.10) 

G6 � 2 0 I SC�E
CF �  :6T          (2.11) 

 

where h is half of specimen thickness. 

In view of the displacement continuity, the following condition should be satisfied 

between the two halves of the specimen.  

5�"7�, ,I/2# � 5 "7 , h/2#          (2.12) 

Rigid body motion of the specimen can be removed by setting 

5 ,VW � 0, and ; ,VW � ; ,V& � 0         (2.13) 

where Sl and Sr are points of support on the left and right, as shown in Figure 2.6. 

 

 

 

 

Figure 2.6  Boundary conditions and beam deflection profile 

 

Analytical expression for specimen compliance can be derived using the above 

equations and boundary conditions, similar to that given in ref. [16]. The main difference 

 

 

   δ 
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between the two derivations is the consideration of load in the overhanging sections, i.e. 

load in sections KA and DE in Figure 2.2. In the previous derivation [16], because 

loading in those sections was ignored cross section at point A was assumed to be load-

free and cross section at point D free from normal force. In the current derivation, 

however, shear forces in the interlaminar region of the overhanging sections are 

considered. Therefore, normal force and bending moment are considered to exist on cross 

sections at points A and D. 
The key step in the current derivation is to solve for deflection δ from Eqns. (2.6-

2.11) for each half of the specimen, with loading specified in Figures 2.5(a) and 2.5(c) 

and displacement continuity for :"76#, ;"76#, and 59"76# across adjacent sections among 

KA, AB, BD, and DE. Solutions from each half specimen are then correlated with each 

other through displacement continuity between the two halves of the specimen, Eqn. 

(2.12), with boundary conditions for bottom half of the specimen given by Eqn. (2.13). 

Since boundary conditions in Eqn. (2.13) are for the lower half of the specimen, 

linear displacements, ; and 59, and angular displacement of the cross section, :, for the 

bottom half of the specimen are solved first. Below are their expressions in terms of x2.  

1) Section AB : )()( 2121 aaxLa +−≤≤+−  

 

: B>"7 # � , �

����� �7  � 2". � +�#7 
 � 	M�Y

��� 7 , �

������ "+ � , 3+ . � +� . �

2+�. , .�# , �M�[\
 ���� "+ � .# � �M�Y

 ���� �"+ � .# � 4+�.
                               (2.14a) 

; B>"7 # � 

����� "7 � � 3". � +�#7  , 2"+� � .#�# , �M�Y

��� "7  , "+� � .# # ,
^, �


������ "+ � , 3+ . � +� . � 2+�. , .�# , �M�_
 ���� "+ � .# � �M�Y

 ���� ""+ �

.# � 4+�.#` "7 � +� � .# , 

����� "7 � +� � .#                                           (2.14b) 
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5 B>9 "7 # �  �
�� S �


�	�� �7  � 2". � +�#7 � 2"+� � .# 
 , N B�7 � 4"+� � .#
 �
S���

 T a, �

������ "a � , 3a L � +� . � 2a�L , L�# , �M�_

 ���� "a � .# � �M�Y
 ���� ""a �

.# � 4a�L#dT                                                                                                       (2.14c) 

 

2) Section BC:  1221 )( axaa −≤≤+−   

 

: >e"7 # � , �

����� �47  � 8". � +�#7 � 3"+� � + #"+� , + � 2.#! �

	M�_
��� "7 � +� � + # , 	M�Y

��� "+� � + # , �

������ "+ � , 3+ . � +� . � 2+�. , .�# ,

�M�_
 ���� "+ � .# � �M�Y

 ���� ""+ � .# � 4+�.#                                                       (2.15a) 

; >e"7 # � 

����� "47 � � 12". � +�#7  � 9"+� � + #"+� , + � 2.#7 �

3"+� � + # "3. � +� , 2+ # , 2"+� � .#�# , �M�[\
��� "7  � 2"+� � + #7 �

"+� � + # # � �M�Y
��� "2"+� � + #7 � "+� � + # � "+� � .# # , ^, �


������ "+ � ,

3+ . � +� . � 2+�. , .�# ,  �M�[\
 ���� "+ � .# � �M�Y

 ���� ""+ � .# � 4+�.#` "7 �
. � +�# , 


����� "7 � . � +�#                                                                             (2.15b) 

 

5 >e9 � �
�� ^N @\"7 � +� � + # � �


�	�� ","+� � + #"+� , + � 2.# � 2"+� � .# # �
N B",3+� � + , 4.# , �


�	��� �"+ � , 3+ . � +� . � 2+�. , .�#! , �M�[\
�� "+ �

.# � �M�Y
�� ""+ � .# � 4+�.#`                                                                          (2.15c) 

3) Section CG:  )( 121 Laxa +−≤≤−  
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: ei"7 # � �

����� "47  � 8",. � +�#7 � 5+� � 3+  , 6+�. , 6+ .# � 	M�[\

��� "7 �
+� � + # , 	M�Y

��� "+� � + # , �

������ "+ � , 3+ . � +� . � 2+�. , .�# ,

�M�[\
 ���� ""+ � .# # � �M�Y

 ���� ""+ � .# � 4+�.#                                                    (2.16a) 

; ei"7 # � 

����� ",47 � , 12",. � +�#7  , 3"5+� � 3+  , 6+�. , 6+ .#7 ,

7+�� , 9+�+  � 18+�+ . , 6+ � � 9+  . � 3+� . , 6+�. , 2.�# , �M�[\
��� "7  �

2"+� � + #7 � "+� � + # # � �M�Y
��� "2"+� � + #7 � "+� � + # � "+� � .# # ,

^, �

������ �"+ � , 3+ . � +� . � 2+�. , .�#! , �M�[\

 ���� ""+ � .# # � �M�Y
 ���� ""+ �

.# � 4+�.#` "7 � . � +�# , 

����� ". , 7 , +�#                                           (2.16b) 

5 ei9 � �
�� ^N @\"7 � +� � + # � �


�	�� ","+� � + #"+� , + � 2.# � 2"+� � .# # �
N B",3+� � + , 4.# , �


�	��� �"+ � , 3+ . � +� . � 2+�. , .�#! , �M�[\
�� "+ �

.# � �M�Y
�� ""+ � .# � 4+�.#`                                                                          (2.16c) 

4) Section GD:  0)( 21 ≤≤+− xLa   

: i@"7 # � �M�[\
 ���� "4.7 , "+ , .# � 4.+�# � �


������ "3+  . , 3+ . , 3.� , + �# �
�M�Y

 ���� ""+ , .# #                                                                                                  (2.17a) 
; i@"7 # � �M�[\

 ���� �,2.7  � "+ , .# 7 , 4.+�7 � 2.",+� � .# , "+ ,
.# ",+� � .# � 4.+�",+� � .#! , �


������ �"3+  . , 3+ . , 3.� , + �#7 ,
"3+  . , 3+ . , 3.� , + �#",+� � .#! , �M�Y

 ���� �"+ , .# 7 , "+ , .# ",+� �
.#!                                                                                                                         (2.17b) 
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5 i@9 �  �
�� SN @\"7 � +� � + # � �


�	�� �,"+� � + #"+� , + � 2.# � 2"+� � .# 
 �
N B",3+� � + , 4.# , �


�	��� �"+ � , 3+ . � +� . � 2+�. , .�#! , �M�[\
�� "+ �

.# � �M�Y
�� �"+ � .# � 4+�.
T                                                                         (2.17c) 

5) Section DE: rlx ≤≤ 20  ,  where rl  is length of un-delaminated region in the right 

overhanging section of the specimen  

: @�"7 # �  , 	M�[m
��� SF�

 n& , 7 T � �M�[\
 ���� ","+ , .# � 4.+�# � �


����� � "3+  . ,
3+ . , 3.� , + �# � �M�Y

 ���� "+ , .#                                                                  (2.18a) 

; @�"7 # � , S, 	M�[m
��� S F�

	n& , �
 7  T � ^�M�[\

 ���� ","+ , .# � 4.+�# � �

������ "3+  . ,

3+ . , 3.� , + �# � �M�Y
 ���� ""+ , .# #` 7 T � �M�[\

 ���� �2.",+� � .# , "+ ,
.# ",+� � .# � 4.+�",+� � .#! , �


������ �,"3+  . , 3+ . , 3.� , + �#",+� �
.#! , �M�Y

 ���� �,"+ , .# ",+� � .#!                                                                   (2.18b) 

5 @�9 "7 # � �
�� oN @m S F��

 n& , 7T � N @\"+� � + # � �

�	�� ","+� � + #"2. � +� , + # �

2"+� � .# # � N B",3+� , + , 2.# , �

�	��� "+ � , 3+ . � +� . � 2+�. , .�# ,

�M�[\
�� "+ � .# � �M�Y

�� ""+ � .# � 4+�.#p                                                      (2.18c) 

In a similar manner, expressions for deflection, ;"7�#, angular displacement of the cross-

section, :"7�#, and displacement along neutral axis, 59"7�#, of various sections in the 

upper half of the specimen are:  

1) Section AB: )()( 2111 aaxLa +−≤≤+−  
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:�B>"7�# � , �

����� "7� � 2". � +�#7�# � 	M�Y

��� 7� , �

������ "+ � , 3+ . � +� . �

2+�. , .�# , �M�[\
 ���� "+ � .# � �M�Y

 ���� ""+ � .# � 4+�.#                              (2.19a) 

;�B>"7�# � 

����� "7�� � 3". � +�#7� , 2"+� � .#�# , �M�Y

��� "7� , "+� � .# # ,
^, �


������ "+ � , 3+ . � +� . � 2+�. , .�# , �M�[\
 ���� "+ � .# � �M�Y

 ���� ""+ �

.# � 4+�.#` "7� � +� � .# , 

����� "7� � +� � .#        (2.19b) 

5�B>9 "7�# �  �
�� ^ �


�	�� "7 � 2". � +�#7 � 4"+� � .# # � N�B7 , 2N�B"+� � .# ,
6N B"+� � .# � , *


�	��� "+ � , 3+ . � +� . � 2+�. , .�# , *M�[\
�� "+ � .# �

*M�Y
�� ""+ � .# � 4+�.#`(19c) 

2) Section BC:  1121 )( axaa −≤≤+−  

:�>e"7�# � , �

����� �47� � 8". � +�#7� � 3"+� � + #"+� , + � 2.#! � 	M�_

��� "7� �
+� � + # , 	M�Y

��� "+� � + # , �

������ "+ � , 3+ . � +� . � 2+�. , .�# ,

�M�_
 ���� "+ � .# � �M�Y

 ���� ""+ � .# � 4+�.#                                                                                   (2.20a) 

;�>e"7�# � 

����� "47�� � 12". � +�#7� � 9"+� � + #"+� , + � 2.#7� � 3"+� �

+ # "3. � +� , 2+ # , 2"+� � .#�# , �M�[\
��� "7� � 2"+� � + #7� � "+� � + # # �

�M�Y
��� "2"+� � + #7� � "+� � + # � "+� � .# # , ^, �


������ "+ � , 3+ . � +� . �

2+�. , .�# , �M�[\
 ���� "+ � .# � �M�Y

 ���� ""+ � .# � 4+�.#` "7� � . � +�# ,



����� "7� � . � +�#                                                                                                                                             (2.20b) 
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5�>e9 "7�# � �
�� ^,N�@\"7� � +� � + # � �


�	�� ""+ , .# � 3"+� � .# # , N�B"4. �
3+� , + # , 6N�B"+� � .# , *


�	��� "+ � , 3+ . � +� . � 2+�. , .�# ,
*M�[\

�� "+ � .# � *M�Y
�� ""+ � .# � 4+�.#`                                                       (2.20c) 

3) Section CG: )( 111 Laxa +−≤≤−  

:�ei"7�# � �

����� "47� � 8",. � +�#7� � 5+� � 3+  , 6+�. , 6+ .# � 	M�[\

��� "7� �
+� � + # , 	M�Y

��� "+� � + # , �

������ "+ � , 3+ . � +� . �  2+�. , .�# ,

�M�[\
 ���� ""+ � .# # � �M�Y

 ���� ""+ � .# � 4+�.#                                                                             (2.21a) 

;�ei"7�# � 

����� ",47�� , 12",. � +�#7� , 3"5+� � 3+  , 6+�. , 6+ .#7� ,

7+�� , 9+�+  � 18+�+ . , 6+ � � 9+  . � 3+� . , 6+�. ,  2.�# , �M�[\
��� "7� �

2"+� � + #7� � "+� � + # # � �M�Y
��� "2"+� � + #7� � "+� � + # � "+� � .# # ,

^, �

������ �"+ � , 3+ . � +� . �  2+�. , .�#! , �M�[\

 ���� ""+ � .# # � �M�Y
 ���� ""+ �

.# � 4+�.#` "7� � . � +�# , 

����� ". , 7� , +�#                                                                  (2.21b) 

5�ei9 "7�# � �
�� ^,N�@\"7� � +� � + # � �


�	�� ""+ , .# � 3"+� � .# # , N�B"4. �
3+� , + # , 6N�B"+� � .# , *


�	��� "+ � , 3+ . � +� . � 2+�. , .�# ,
*M�[\

�� "+ � .# � *M�Y
�� ""+ � .# � 4+�.#`                                                       (2.21c) 

4) Section GD:  0)( 11 ≤≤+− xLa  ,   
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:�i@"7�# � 	M�[\
��� "7� � +� � + # � �


����� "+� � 3+  � 2+�. , 6+ . , 4. # ,
	M�Y
��� "+� � + # , �


������ "+ � , 3+ . � +� . � 2+�. , .�# , �M�[\
 ���� "+ � .# �

�M�Y
 ���� ""+ � .# � 4+�.#                                                                                      (2.22a) 

;�i@"7�# � �M�[\
 ���� �,2.7� � "+ , .# 7� , 4.+�7� � 2.",+� � .# , "+ ,

.# ",+� � .# � 4.+�",+� � .#! , �

������ �"3+  . , 3+ . , 3.� , + �#7� ,

"3+  . , 3+ . , 3.� , + �#",+� � .#! , �M�Y
 ���� �"+ , .# 7� , "+ , .# ",+� �

.#!                                                                                                                                                                                     (2.22b) 

5�i@9 "7�# � �
�� ^,N�@\"7� � +� � + # ,  �


�	�� �"+� � + #"2. � +� , + #! �
�


��� "+� � .# � N�B",3+� , + , 2.# , 6N B"+� � .# , *

�	��� "+ � , 3+ . �

+� . � 2+�. , .�# , *M�[\
�� "+ � .# � *M�Y

�� ""+ � .# � 4+�.#`                   (2.22c) 

5) Section DE: rlx ≤≤ 10  , where rl  length of undelaminated region in the right 

overhanging section of the specimen  

:�@m�"7�# �  , 	M�[m
��� S F��

 n& , 7�T � �M�[\
 ���� ","+ , .# � 4.+�# � �


������ "3+  . ,
3+ . , 3.� , + �# � �M�Y

 ���� ""+ , .# #                                                               (2.23a) 

;�@�"7�# � , S, 	M�[m
��� S F��

	n& , �
 7� T � ^�M�[m

 ���� ","+ , .# � 4.+�# � �

������ "3+  . ,

3+ . , 3.� , + �# � �M�Y
 ���� ""+ , .# #` 7�T � �M�[\

 ���� �2.",+� � .# , "+ ,
.# ",+� � .# � 4.+�",+� � .#! , �


������ �,"3+  . , 3+ . , 3.� , + �#",+� �
.#! , �M�Y

 ���� �,"+ , .# ",+� � .#!                                                                    (2.23b) 
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5�@�9 "7�# �  �
�� oN�@m S F��

 n& , 7�T , N�@"+� � + # � �

�	�� ""+ , .# � 3"+� � .# # ,

N�B"4. � 3+� , + # , 6N B"+� � .# � S����
 T ^ 


������ �,3"+ � , 3+ . � +� . �

2+�. , .�#! , �M�[\
 ���� "+ � .# � �M�Y

 ���� ""+ � .# � 4+�.#`p                        (2.23c) 

On cross sections at points q,< and E in Figure 2.2, expressions for 59and : for each 

half of the specimen are: 

(i) In the top half of the specimen: 

5�B>9 ",+� , + # � �
�� ^ �


�	�� ""+ , .# � 3"+� � .# # � N�B",3+� , + , 2.# ,
6N�B"+� � .# � , *


�	��� "+ � , 3+ . � +� . � 2+�. , .�# , *M�[\
�� "+ � .# �

*M�Y
�� ""+ � .# � 4+�.#`                                                                                     (2.24a) 

5�i@9 "0# � �
�� ^,N�@\"+� � + # ,  �


�	�� �"+� � + #"2. � +� , + #! � �

��� "+� � .# ,

N�B"3+� � + � 2.# , 6N B"+� � .# , *

�	��� "+ � , 3+ . � +� . � 2+�. , .�# ,

*M�[\
�� "+ � .# � *M�Y

�� ""+ � .# � 4+�.#`                                                                                 (2.24b) 

5�@�9 "r�# � �
�� oN�@m Sn&�

 n& , r�T , N�@\"+� � + # � �

�	�� ""+ , .# � 3"+� � .# # ,

N�B"4. � 3+� , + # , 6N�B"+� � .# � �

�	��� �,3"+ � , 3+ . � +� . � 2+�. ,

.�#! , *M�[\
�� ""+ � .# # � *M�Y

�� ""+ � .# � 4+�.#p                                       (2.24c) 

:�B>",+� , + # � �

����� �"+� � + #"2. � +� , + #! , 	M�Y

��� "+� � + # , �

������ "+ � ,

3+ . � +� . � 2+�. , .�# , �M�[\
 ���� "+ � .# � �M�Y

 ���� ""+ � .# � 4+�.#    (2.24d) 
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:�i@"0# � 	M�[\
��� "+� � + # � �


����� "+� � 3+  � 2+�. , 6+ . , 4. # , 	M�Y
��� "+� �

+ # , �

������ �"+ � , 3+ . � +� . � 2+�. , .�#! , �M�[\

 ���� ""+ � .# # �
�M�Y

 ���� ""+ � .# � 4+�.#                                                                                                                                (2.24e) 

:�@�"r�# � �n&M�[m
��� � �M�[\

 ���� ","+ , .# � 4.+�# � �

������ "3+  . , 3+ . , 3.� ,

+ �# � �M�Y
 ���� "+ , .#                                                                                             (2.24f) 

(ii) In the bottom half of the specimen 

5 B>9 ",+� , + # �  �
�� ^ �


�	�� ","+� � + #"+� , + � 2.# � 2"+� � .# #  �
N B�",3+� � + , 4.#! , �


�	��� "+ � , 3+ . � +� . � 2+�. , .�# , �M�[\
�� "+ �

.# � �M�Y
 � ""+ � .# � 4+�.#`                                                                                                                (2.25a) 

5 i@9 "0# � �
�� ^N @\"+� � + # � �


�	�� ","+� � + #"+� , + � 2.# � 2"+� � .# # �
N B",3+� � + , 4.# , �


�	��� "+ � , 3+ . � +� . � 2+�. , .�# , �M�[\
�� "+ �

.# � �M�Y
�� ""+ � .# � 4+�.#`                                                                          (2.25b) 

5 @�9 "r�# � �
�� ^, n& M�[m

 � N @\"+� � + # � �

�	�� ","+� � + #"2. � +� , + # �

2"+� � .# # � N B",3+� , + , 2.# , �

�	��� "+ � , 3+ . � +� . � 2+�. , .�# ,

�M�[\
�� "+ � .# � �M�Y

�� ""+ � .# � 4+�.#`                                                       (2.25c) 

: B>",+� , + # � �

����� "+� � + #"+� , + � 2.# , 	M�Y

��� "+� � + # , �

������� "+ � ,

3+ . � +� . � 2+�. , .�# , �M�[\
 ���� "+ � .# � �M�Y

 ���� ""+ � .# � 4+�.#      (2.25d) 
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: i@"0# � 	M�[\
��� "+� � + # � �


����� "+� � 3+  � 2+�. , 6+ . , 4. # , 	M�Y
��� "+� �

+ # , �

������ "+ � , 3+ . � +� . � 2+�. , .�# , �M�[\

 ���� "+ � .# � �M�Y
 ���� ""+ �

.# � 4+�.#                                                                                                                                                                 (2.25e) 

: @�"r�# �  �n& M�[m
��� � �M�[\

 ���� ","+ , .# � 4.+�# � �

������ "3+  . , 3+ . , 3.� ,

+ �# � �M�Y
 ���� "+ , .#                                                                                             (2.25f) 

 

Boundary conditions selected here are given as in the following expressions. The first 

two are to set displacement ui at the left and right crack tips to be the same between the 

top and bottom halves of the specimen, which is the relaxed version of the assumption 

made by Maikumar et al. [15]. The third boundary condition, in view that the crack only 

grows from the right crack tip, is to set displacement ui at point A, the interlaminar point 

above the left support, to be the same between the top and bottom halves of the specimen.  

5�",+� , + , ,I/2# � 5 ",+� , + , I/2#                                                              (2.26a) 

5�"0, ,I/2# � 5 "0, I/2#                                                                                         (2.26b) 

5�",. , +�, ,I/2# � 5 ",. , +�, I/2#                                                                 (2.26c) 

where expressions for  5� and 5  are 

5�",+� , + , ,I/2# � 5�B>9 ",+� , + # , S�
 T :1sq",+� , + #                           (2.27a) 

5 ",+� , + , I/2# � 5 B>9 ",+� , + # � S�
 T :2sq",+� , + #                             (2.27b) 

5�"0, ,I/2# � 5�i@9 "0# , S�
 T :�i@"0#                                                                    (2.27c) 

5 "0, I/2# � 5 i@9 "0# � S�
 T : i@"0#                                                                      (2.27d) 

5�",. , +�, ,I/2# � 5�B>9 ",. , +�# , S�
 T :�B>",. , +�#                                 (2.27e) 
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5 ",. , + , I/2# � 5 B>9 ",. , + # � S�
 T : B>",. , + #                                    (2.27f) 

Based on expressions given in Eqns. (2.24-2.25), the above boundary conditions can 

be used to solve forN6B, N6@\and N6@m. Note that N�B � N B, N�@\ �  N @\ and N�@m �
 N @m due to symmetry of the loading conditions, as shown by free body diagrams in 

Figure 2.5(b). This yields 

N6B � , �

� �� ". , + #                                                                                               (2.28a) 

N6@\ � , �

�	��"�����# "+  , 2+ . , . #                                                                   (2.28b) 

N6@m � , �

� ��n& "3.+� � + . , 3+ +� , 2+  � 3. #                                             (2.28c) 

 

Once the above normal forces are determined, expressions for the concentrated 

forces, = >? and = @e can be expressed below, based on free body diagrams of the left and 

right crack tips. Note that the free body diagram for the right crack tip in Figure 2.5(b) 

can also represent the free body diagram for the left crack tip, by replacing “D” in the 

diagram by “B.” Expressions for the concentrated forces, = >?  and = @? , are 

= >? � �

�	��"�����# ^+  � 2+�+ , 2+�. � . , �

 "+� � + #". , + #`                    (2.29a) 

= @? � �

�	��"�����# o+  , 2+ . , . , "�����#

 n& "3.+� � + . , 3+ +� , 2+  � 3. #p     

                                                                                                                                    (2.29b) 

If shear force in the interlaminar region of the overhanging section is ignored, the 

expressions in Eqns. (2.29a) and (2.29b) are reduced to  

= >? � �

�	��"�����# "+  � 2+�+ , 2+�. � . #                                                          (2.30a) 

= @? � �

�	��"�����# "+  , 2+ . , . #                                                                         (2.30b) 



27 

 

By substituting Eqns. (2.28a) and (2.28b) into Eqn. (2.21b), the center deflection of the 

specimen,;�ei",+�#, is: 

;�ei",+�# � , 
��
����� , 
�

����� , �

����� "+ � , 3+  . � 3+ . � .�# � *


� ����"�����# "+  ,
2+ . , . # � *


	����� "+ , .#�                                                                               (2.31) 

Hence, compliance for the specimen � is: 

� � �
 ^��_v"\w�#�
  x ` � ��

����� � �
����� � �������������������	������� �������� �����������������!

� ����"�����# �
*

	����� ". , + #�
                                                                                                                                         (2.32) 

In Eqn. (2.32), the fourth term on the right-hand side is due to the consideration of 

interlaminar shear force in the overhanging section. If ignored, the expression for C is 

reduced to Eqn. (2.1).  

It should be noted that a unidirectional fiber composite beam is transversely isotropic, 

not isotropic as assumed for the beam theory used here. However, since the deformation 

is considered to be in the plane-strain condition with modulus in the axial direction 

affecting the deformation, the beam theory is still applicable as long as the material 

constants E and µ represent flexural modulus in the longitudinal direction and shear 

modulus on the longitudinal-thickness plane, respectively. For example, in the case that 

the local 1-direction of the material is along the longitudinal direction, the material 

constants E and µ in Eqn. (2.32) represent E11 and µ12, respectively. 

Based on the compliance method discussed in section 2.2.1 [18], the energy 

release rate G for delamination growth in directions +6 is 

$�E � 
�
 �

ye
y�E                                                                                                               (2.33) 

That is,  
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$�� � *
�
	������"�����#� �+  , 2+ . , . 
                                                                  (2.34a) 

$�� � *
�
	������"�����#� a"+  � 2+�+ , 2+�. � . # , �

 "+� � + # ". , + # d      (2.34b) 

Note that if the interlaminar shear load in the overhanging sections were ignored, the 

expressions for Gai  would then be reduced to Eqns. (2.2) and (2.3) that were reported in 

ref. [16].   

Now the total energy release rate G for crack growth from the two crack fronts 

can be expressed as a function of $��  and $�� , by incorporating fraction of the 

delamination growth length in the two directions, i.e., 

$ � z��
z���z�� $�� � z��

z���z�� $��                                                                                     (2.35) 

For delamination growth only in a1-direction, $��  has to be greater than $�� , 

which can be met by enforcing $��> $��  for the initial values of a1  and a2. In addition, a1 

should be longer than L. Therefore, the initial values for a1 and a2 should meet the 

following condition [16]: 

L
aL

aL
aL

2

2
1 −

+
≤≤                                                                                                          (2.36) 

When the above condition is met, 

$ � $�� � *
�
	������"�����#� �+  , 2+ . , . 
                                                            (2.37) 

Eqn. (2.36) also suggests that a limit exists for the growth of a1 before delamination 

growth starts in a2-direction. Therefore, dimensions of the INF specimen should be 

designed to ensure that the specimen provides sufficient growth in a1-direction before the 

growth in a2-direction starts, for ease of establishing the resistance curve for 

delamination.  
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2.3 Prediction of Load-Displacement Curve  for INF test  

 

In the condition that delamination grows in +� direction only, Eqn. (2.37) can be 

used to construct load-displacement curve for INF test provided that critical energy 

release rate GC is constant during the delamination growth. In this case, load P can be 

expressed as:  

{ � �"�����#|�����i_
����� �������!                                                                                            (2.38) 

The corresponding expression for the displacement ; is 

; � |i_��*}���	~�}�� 9~�}�������}���	~�~�}���	~�~��}�� ~�~�������!
� √����}�� ~�}����! � *|i_"~��~�#"��~�#�

 �√����}�� ~�}����!    

                                                                                                                              (2.39) 

If the interlaminar shear forces in the overhanging sections are ignored, the displacement 

δ becomes: 

; � |i_��*}���	~�}�� 9~�}�������}���	~�~�}���	~�~��}�� ~�~�������!
� √����}�� ~�}����!                       (2.40) 

Note that Eqn. (2.40) is still applicable to the case that the interlaminar shear forces 

in the overhanging sections are ignored. 

The prediction of the above analytical expressions for the load-displacement curve is 

schematically demonstrated in Figure. 2.7, showing the change with respect to the 

increase of +� and $e. 
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Figure 2.7 Schematic diagram of load-displacement curve of the INF test 

Note that for the curves in Figure. 2.7, the initial slope of the load-displacement 

curve is determined using Eqn. (2.32) and the second slope, during the delamination 

growth, using Eqn. (2.38) and (2.39).  

2.4 Prediction of Delamination Growth Rate  and Discussion  

 

Note that since the differentiation of Eqn. (2.37) with respect to +� always yields 

a negative value, the INF test generates stable delamination growth as long as the growth 

is along direction +� only. Furthermore, time derivative of Eqn. (2.40) suggests that 

delamination growth rate +1�  is a linear function ofδ& :  

a�� � � �}�� ~�}����!√���
|i_S 9}���	~�}���	~��}�� ~����

�"��~�#�T ;�         (2.41) 

Delamination onset 
from  

Increase of 
delamination length 

Displacement  

Increase of GC 

L
o

a
d
 

Increase of   
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That is, with a2 and GC being constant, the INF test can be conducted at different 

crosshead speeds, without concerns about the stability of delamination growth. This is an 

advantage of INF test, especially for the study of the influence of crack growth rate on 

the delamination development. Therefore, the test can be used to study influence of 

loading rate on the delamination resistance.  

 

 As evident in Figure 2.8, the predictions of delamination growth using the analytical 

solutions in ref. [16] and the current revised solutions are demonstrated using the load-

displacement curve with respect to a constant physical crack length +� and  
$e. It should also be noted that these curves are constructed based on the assumption of 

stress-free fracture surfaces that do not impose any barrier for the delamination growth. 

Schuecker and Davidson [19] utilized the 4ENF test specimen to analyze the effect of  

friction on G for pure mode II using finite element analysis and found that it only 

increases the $��evalue by no more than 2%. Therefore, in this study, the effect of friction 

on $e is neglected for simplicity and with this assumption, according to Eqn. (2.38) and 

(2.39), the slope of the {-; curve during the delamination growth should be independent 

of the $evalue.  

It should be pointed out that the analytical expression in ref. [16] and current version 

have the same expressions for energy release rate $��but different for $�� .The critical 

energy release rate Gc = 3190 J/m
2 

in Figure 2.8, is computed using eq. (2.37) with the 

specimen data in Table 2.1.  

Comparison of the difference in percentage for the compliance and displacement for 

specimen dimensions given in Table 2.1 are 11.7% and 7.2% respectively. This 
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difference is due to neglecting shear deformation in the overhanging sections of the INF 

specimen in the analytical solution given in ref. [16]. 

 

 

 

 

 

 

 

 

 

Figure 2.8 Comparison of load-displacement curve generated by analytical solutions in 

ref. [16] and current revised solution with Gc = 3190 J/m
2
. The curve 

labeled as “A” is generated from ref. [16] based on physical crack length, 

and that labeled as “B” is generated from current revised solution based on 

physical crack length 

 

Table 2.1 Material property and dimensions of the analytical model of INF specimen 

(Refer to Figure 1 for the notation) 

 

*The material constant values were adopted from ref. (14). 

 

 

 

E 

(GPa) 

v 

 

a1 

(mm) 

a2 

(mm) 

h 

  (mm) 

L 

(mm) 

w 

(mm) 

KA 

(mm) 

DE 

(mm) 

26.5 0.3 40 12 3.1 30 20 50 40 
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2.5 Concluding remarks 

 
In this chapter, a revised analytical model of the INF specimen to 

characterize mode II fracture toughness of fiber composites is developed.  The 
model is base on Timoshenko beam theory and considers the effect of interlaminar 
shear in the overhanging section on the compliance and global deformation of the 
specimen. Explicit expressions for compliance and displacement derived here 
indicated that the interlaminar shear stress variation has a significant contribution and 

hence must be incorporated in the analytical solution. The drawback of the analytical 

approach is that its application is generally restricted to problems that involve simple 

geometry, loads or boundary conditions with linear elastic systems. 
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Chapter 3 Finite Element Simulation of Stable 

Delamination Development 

3.1 Introduction  

 

The study of delamination process commonly involves two stages: initiation and 

growth.  Delamination initiation is related to the inter-laminar strength of the material and 

in many applications stress-based criteria have been used to predict it.  Delamination 

growth has been widely investigated using the theory of fracture mechanics through 

analytical and numerical approaches. The finite element method can be used to calculate 

fracture parameters such as energy release rate (G), stress intensity factor (K) or J-integral 

(J) that serves as a driving force for crack growth. Techniques such as the compliance 

derivative technique (CDT), virtual crack closure technique(VCCT) or J-integral can be 

used to calculate energy release rate (G), and predict delamination growth by comparing G 

values to the critical value (GC) which is the material’s resistance to fracture. However, all 

these techniques can’t be directly applied to predict delamination without an initial crack 

and further complication of the finite element implementation of those methods arises 

when progressive delamination is involved.  

An alternative solution to avoid the above difficulties is to model delamination 

development using cohesive zone model. As shown in Figure 3.1, in this approach, a 

cohesive damage zone is developed near the crack front. Material behavior in the cohesive 

zone follows a cohesive constitutive law which adopts a softening relationship between 
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cohesive traction (σ) and relative displacement (δ) between the upper and lower substrate 

layers, with the area under the curve being the critical fracture energy (GC). When an 

external load is applied to the pre-cracked body, the adjacent substrate layers which are 

held by cohesive traction (tensile and/or shear), separate gradually. A complete failure that 

leads to crack growth would occur behind the crack front when the separation of these 

layers reaches a critical value at which the cohesive traction vanishes across the substrate 

layers.  

 

 

 

 

 

 

 

 

 

Figure 3.1 Schematic diagram of the cohesive zone model. 

 The cohesive zone model was implemented in finite element framework using a 

special set of interface elements [10, 20-22]. Introducing interface elements in FE 

analysis of delamination requires a finite stiffness prior to onset of delamination as well 

as delamination initiation and growth criteria. Therefore, the interface elements, equipped 

with the cohesive constitutive relation, has been utilized for simulating delamination 

process in FRP and numerous FEM works using interface elements have been published 

   2   
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in the literature [23-25] . However, like the other numerical techniques mentioned earlier, 

application of this method is limited to prediction of delamination with an initial crack.  

Disadvantage of the interface elements and other methods such as the use of spring 

elements to implement the cohesive zone model in FEM are well documented [26].  

To overcome the limitation of interface elements, Fan et al. [27] introduced a new 

approach to implement the cohesive zone model in FEM using solid elements with 

cohesive damage material property. Unlike the interface elements where the delamination 

initiation criterion is described by a combination of only tensile and shear traction 

components, solid elements have all stress components so that multi-axial-stress-based 

damage initiation criteria can be adopted. Furthermore, the constitutive law of the 

cohesive damage material model assumes a linear-elastic response prior to the onset of 

delamination and the linear softening law for damage evolution, based on the concept of 

linear fracture mechanics.   

However, in many practical applications, there could be a substantial plastic 

deformation in the resin rich region where delamination growth should not be based on 

linear elastic damage material model.  In this regard, there are many damage material 

models in the literature to simulate the delamination development using cohesive 

elements. For example, in ref. [33] elastic-plastic cohesive zone model is used to study 

facture behavior of metal-matrix composites under elastoplastic deformation. In ref. [34] 

inter-laminar delamination process was modeled using 3D elastic-plastic finite element 

model in ABAQUS. However, these damage models were implemented using cohesive 

elements with a traction-separation constitutive relation, which has some intrinsic 

limitations. Therefore this study investigates delamination growth undergoing plastic 
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deformation in the inter-laminar region using solid elements with damage material 

property.  The formulation of plastic deformation of the material in the inter-laminar 

region is based on von Mises criteria. The simulation of delamination growth involves 

gradual degradation of material stiffness along the inter-laminar region ahead of the crack 

tip.  The constitutive equation of the material in the inter-laminar region is described by 

elastic-plastic damage material model. Compared to the cohesive elements, this damage 

material model has the advantage of being able to adopt a multi-axial-stresses-based 

delamination initiation criterion. Besides, the proposed elasto-plasitc damage material 

model uses strain energy to define the damage status.   

This chapter is organized as follows. Section 3.2 provides the FE analysis of 

delamination growth using cohesive elements, tailored for application to INF test. The FE 

solution will be used to verify the revised analytical expressions for compliance of the 

INF specimen and its energy release rate for delamination derived in chapter 2. Based on 

the FE model, damage evolvement in front of the crack tip is investigated, and the use of 

an effective crack length to replace physical crack length for calculation of G is 

discussed. Section 3.3 summarizes the new proposed elastic-plastic damage material 

model. Section 3.4 describes the finite element  simulation of delamination growth using 

solid elements with the elastic-plastic damage material model properties tailored for an 

application to double-edge-notched tensile (DENT) specimen, double-cantilever-beam 

(DCB) specimen and internal-notched-flexure (INF) test and. Finally, section 3.5, 

presents some concluding remarks.   
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3.2 Cohesive Elements 

3.2.1 Finite Element Model of INF Specimen using Cohesive Elements 

Delamination growth in the INF model shown in Figure 2.2 is studied using 

cohesive elements to validate the analytical expressions for compliance and energy release 

rate derived in chapter 2. A two- dimensional FE model of INF specimen was created 

using a commercial code ABAQUS/Standard v6.9 [28]. Overall length of the model is 160 

mm, of which dimensions for each section are listed in Table 2.1. The model has three 

layers. The top and bottom layers represent substrates of the composite material, 

consisting of 4-node, plane-strain elements (CPE4I) with incompatible mode of 

orthotropic elastic properties. The middle layer represents the interlaminar region which 

includes initial crack lengths of 40 mm for a1 and 12 mm for a2. A frictionless, small 

sliding contact is defined between the crack surfaces to avoid penetration. The un-cracked 

region in the middle layer consists of cohesive elements (COH2D4) that are connected 

with the top and bottom layers using mesh-tie constraint.  Dimensions of the cohesive 

elements are 0.02 × 0.02 mm; while those in the top layers are 0.25 × 0.25 mm and in the 

bottom layer 0.5 × 0.5 mm. Totally, 4596 elements were used to model the top and bottom 

layers, and 2160 elements for the middle layer. Figure 3.2(a) shows the overall mesh 

pattern of the model, and Figure 3.2(b) the detailed mesh pattern around the interlaminar 

region. An example of the deflection behavior during the delamination growth is given in 

Figure 3.2(c).  
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Figure 3.2 Finite-element model of the INF specimen: (a) the overall mesh 

pattern, (b) mesh pattern around the inter-laminar region, and (c) 

an example of the deflection behavior. 

 

 

 

(c) 

(b) 

Interlaminar region Delamination crack 

(a) 
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Values used in ref. (14) were adopted as input material properties for the top and 

bottom layers and are given in Table 3.1. Material constants for the middle layer are 

given in Table 3.2 and these constants are used to define constitutive equation of the 

cohesive elements based on a bilinear traction-separation law for fracture. Interface 

stiffness values in Table 3.2 are defined as ��� � ��
�  and ��� � ��� � ��

�  where t is 

thickness of the interlaminar region, /   and 0  are the elastic moduli of the interlaminar 

matrix for tension and shear, respectively, ¡  Poisson’s ratio, and 0  � ��
 "��¢�#. The 

quadratic traction-interaction failure criterion [28] is selected for damage initiation, and 

critical energy release rate (GC) for crack propagation in a mixed mode of tension (mode 

I) and shear (mode II) is defined in terms of GIC and GIIC based on the B-K criterion [31].  

In this study, the model is subjected to displacement up to 4.5 mm at the loading pin.  

Table 3.1. Dimensions of the FE model of INF specimen (Refer to Figure 2.2 for the 

notation) 

 

 

 

Table 3.2.  Mechanical properties for top and bottom layers of the INF FE model  

 
E11 

(GPa) 

E22 = E33 

(GPa) 

µ12 = µ13 

 (GPa) 
v23= v12 = v13 

  26.5 6.0 6.0 0.3 

 

 

 

 

a1 

(mm) 

a2 

(mm) 

h 

  (mm) 

L 

(mm) 

w 

(mm) 

KA 

(mm) 

DE 

(mm) 

40 12 3.1 30 20 50 40 



 

Table 3.3.  Properties of cohesive elements at the interlaminar interface of the FE 

model 

E 

(MPa) 

   Knn
 

   (MPa) 

  Kns
 

 (MPa)

3000 150000 57692

*for pure shear mode  

 

 

Figure 3.3   Load

 

Figure 3.3 shows a load

the FEM solution, where the point 

of cohesive elements at the interlaminar interface of the FE 

 

Pa) 

Kss
 

(MPa) 

   GIC 

    (J/m
2
) 

   GIIC 

    (J/m
2
) 

η 

(MPa)

57692 57692 500 2500 0.0* 

oad-displacement curve of the INF specimen from FE model

Figure 3.3 shows a load-displacement response of the INF specimen generated by 

the FEM solution, where the point  indicates the initiation of delamination growth. 

Crack growth 

Mixed  

Mode 
Mode            

II 

Pcr            

41 

of cohesive elements at the interlaminar interface of the FE 

Y 

(MPa) 

S 

(MPa) 

  v 

72 40 0.3  

 

from FE model. 

of the INF specimen generated by 

indicates the initiation of delamination growth. 
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When a cohesive element in front of the crack tip is completely damaged, it is assumed 

that delamination starts to grow and this is taken as a reference to the crack tip position. 

In view of this assumption, the FE result shows that delamination commences when the 

applied load reaches a critical value of {?� � 2988N. After initiation, the delamination 

grows along the interface and the load, P increases linearly with displacement, ensuring 

the stability of the delamination growth and  it is found that the crack length a1 has grown 

from 40 to 61mm (equivalent to the total crack length of (a1+a2) increasing from 52 to 73 

mm). However, after initiation, the delamination crack grows a short distance (about 

7mm) in pure mode II and then the crack continued to grow in a mixed mode behavior as 

shown in Figure 3.3. The finite element result together with a similar experimental 

observation (being conducted by another researcher, K. Brethome, at the time of writing 

this thesis) leads to the conclusion that the INF specimen generates pure mode II 

delamination for small deformation, i.e. in the beginning of delamination growth. For 

large deformation, it generates a mixed mode delamination growth and this problem 

needs further investigation. 

Figure 3.4 shows the load-displacement response with respect to the variation of +� 

based on the condition in Eqn. (2.36) and the result ensures that the delamination growth 

is always in the +� direction only.  
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Figure 3.4 Load-displacement curve of the INF specimen from different crack lengths. 

 

Figure 3.5 compares load-displacement curves generated by the FE model and 

that from Eqns. (2.1) and (2.32) based on values given in Tables 3.1-3.2. Note that 

flexure modulus E and shear modulus µ  in Eqns. (2.1) and (2.32) are equal to E11 and 

µ12,  respectively, in Table 3.2 and κ = 0.867 for a rectangular cross section [17]. The 

figure suggests that before delamination growth, the initial slope of the load-displacement 

curve from the FE model coincides with that predicted from Eqn. (32) but lower, though 

only slightly, than that from Eqn. (2.1). Based on values given in Tables 3.1 and 3.2, 

contribution to value for C from four terms on the right-hand side of Eqn. (2.32) is 

47.5%, 2.6%, 44.2% and 5.7%, respectively, indicating that difference of the compliance 

caused by the consideration of interlaminar shear force in the overhanging section is only 

about 6%. The corresponding $��  values show no difference between Eqns. (2.2) and 

(2.34a). 

 



 

Figure 3.5 Comparison of load

generated by the FE model, Eqn. (1) and Eqn. (32).

Delamination damage process Zone

Results from the F

tip before delamination growth commences. 

in the analytical expressions for G

overestimate the interlaminar fracture toughness ( 

Hence, an effective crack length

correction made to the physical crack length
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displacement curves before delamination initiation, 

E model suggest that an extensive damage exists at the crack 

Therefore, the use of a physical crack length 

7) in chapter 2, severely 

) used in the FE model.  

This effective crack length is a 

by taking into account the size of the 

The damage process zone is defined 

ive layer softens and 

at the moment of delamination growth is evaluated by 

studying the extent of damaged elements in front of the crack tip along the interface layer 

using finite element simulation. The state of damage in a cohesive element is described 



 

by a scalar damage variable D in the constitutive equation of the c

its value range is from 0 (without damage) to 1

element is completely damaged

position. All cohesive elements from the crack tip which 

, are added to the list of process zone. Hence, the total length of the damage process 

zone is determined by multip

elements with the element size along the interface layer.

Figure 3.6 and the FE analysis result shows that

, the process zone reaches about

length are partially damaged. 

the damage zone (ac) that will need to be considered to correct the physical crack length.

Figure 3.6 Plot of the damage zone length as a function of delamination growth 

distance from the right crack tip.

 

 

 

by a scalar damage variable D in the constitutive equation of the cohesive element where 

its value range is from 0 (without damage) to 1, (completely damage). When the cohesive 

element is completely damaged , this will be taken as a reference to the crack tip 

position. All cohesive elements from the crack tip which are partially damaged

, are added to the list of process zone. Hence, the total length of the damage process 

zone is determined by multiplying the total number of partially damaged cohesive 

elements with the element size along the interface layer. This process is demonstrated in 

the FE analysis result shows that when the delamination started to grow 

, the process zone reaches about 8 mm which means that all the ele

damaged. This result gives useful information from which the size of 

that will need to be considered to correct the physical crack length.

Plot of the damage zone length as a function of delamination growth 

distance from the right crack tip. 
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Figure 3.7 Depiction of damage development in front of the right crack tip at the 

critical load for delamination initiation. Note that D = 1 for full damage 

development and D = 0 for no damage. 
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The effective crack length is defined as:  

   ce aaa += 1               (3.1) 

 
where ae is the effective crack length, a1 is the physical crack length, and ac the crack 

length contributed from the damage zone of which the value is determined by a fitting 

process. 
After delamination is initiated, the analytical load-displacement response of the 

INF specimen is predicted based on the effective crack length, i.e., the physical crack 

length (a1) in the analytical expressions for G, load (P) and displacement (δ), as given in 

section 2.3 of chapter 2, is replaced with the effective crack length (ae). Now, an estimate 

of the new crack length (ac) can be obtained by comparing the analytical load-

displacement curve with the FE solution through a fitting process. Thus, it is observed 

that with ac = 5.875 mm, expression for G based on the effective crack length yields a 

value very close to the input Gc value for the cohesive elements, as shown in  Figure 3.8. 
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Figure 3.8 Comparison of load-displacement curve generated by the FE model and 

those by Eqn. [32] with Gc = 2500 J/m
2
. The curve marked as “○” is 

generated from Eqn. [32] based on physical crack length, and that marked 

as “×” is generated from the same equation based on effective crack 

length. 

3.3  Elastic-plastic damage material   

 

When substantial plastic deformation is involved in the resin rich region of FRP, 

modeling the inter-laminar region based on linear elastic damage material model will be 

obviously invalid.  Therefore, this part of the study is to investigate delamination growth 

after undergoing plastic deformation in the interlaminar region. The plasticity formulation 

in the inter-laminar region is based on von Mises criteria with isotropic hardening. The 

simulation of delamination growth involves gradual degradation of stiffness of material 
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along the interface region ahead of the crack tip. The proposed material model will be 

implemented into the commercial FE software ABAQUS via a user-defined material 

subroutine (UMAT). The UMAT will govern the behavior of the material during the 

different loading states, i.e., elastic, inelastic, damage initiation and propagation. In this 

chapter, all stresses are expressed according to the local coordinates shown in Figure 3.1.   

3.3.1 Constitutive relationship 

The constitutive response of the material in the inter-laminar region is described by 

continuum solid elements with elastic-plastic damage material model.  An isotropic 

damage model is assumed. 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Schematic diagram of elastic-plastic damage material model response. 
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In Figure 3.9, a schematic diagram of elastic-plastic damage material model is 

shown.  The response of the undamaged material which is shown by the initial part of the 

curve (OA) is assumed to be linearly elastic. Point A is a yield point where the onset of 

permanent strain is initiated. In multi-axial stress state, this yield point is often denoted a 

yield/loading surface.  The part of the curve (AC) denotes an elasto-plastic response 

which is also said to introduce a “hardening” mechanism, with a damage initiation point 

at the maximum equivalent stress, point C. This point is denoted by delamination onset 

surface in multi-axial stress state. The plastic stiffness during hardening will be 

calculated using the hardening law.  The portion of CH or CF reflects a “softening” 

mechanism and the stiffness of softening will be determined using the damage evolution 

criteria.  Unloading is assumed to take place as a purely elastic process with the initial 

stiffness. Reloading after unloading gives elastic response up to a new yield point B.  

The key factors required to describe the basic principle in the elastic-plastic 

damage material model are summarized as follows: 

1. A decomposition of total strain into elastic and plastic contributions: 

p

ij

e

ijij ddd εεε +=
           (3.2) 

where ijdε  is increment of total strain, 
e

ijdε   is increment of elastic strain, and 
p

ijdε  

is increment of plastic strain 

A governing principle for  the elastic contribution: 

           klijkl

e

ij dEd σε 1−=              (3.3) 

where Eijkl is the initial elastic stiffness 

2. Factors that control plastic deformation are: 

(a). Yield criterion 



51 

 

(b). Plastic flow rule 

(c).    Hardening law 

3. Damage initiation criterion 

4. Damage evolution criterion 

Elastic Behavior 

The basic principle of the elastic-plastic damage material model is applied to a 

plain-strain condition formulation and the elastic part is related to Cauchy stress through 

linear elastic constitutive model as:  

e

ijklij kl
dEd εσ =   (i, j, k, l = 1, 2, 3)          (3.4) 

where  ijklE  is Young’s modulus and  for plane strain condition is given as: 

               (3.5) 

Yield Criterion  

The onset of plastic deformation is predicted by adopting a von Misses yield 

criteria which is defined in terms of equivalent stress ( eqσ ) and isotropic hardening 

equivalent stress ( ( )p

Y ε ). 

( )( ) ( ) 0, ≥−=
p

eq

p

eq YYf εσεσ            (3.6) 

 

Where  eqσ  and ( )p

Y ε   are defined as:  

( ) ( ) ( ) ( )2

23

2

13

2

12

2

3322

2

3311

2

2211
2

1
τττψσσσσσσσ +++−+−+−=eq       (3.7) 

( ) p

y

p

RY εσε +=              (3.8) 
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Where yσ  is yield stress, 
p

ε is an accumulated plastic strain and R represents the slope 

of the isotropic strain hardening (see Figure 3.10). The corresponding equivalent total 

strain is:    

( ) ( ) ( ) ( )2

23

2

13

2

12

2

3322

2

3311

2

2211
3

2
εεεψεεεεεεε +++−+−+−=eq                   (3.9) 

The parameter ψ  in Eqns. (3.7) and (3.9) is defined in terms of the tensile (T) and shear 

strength (S) of the material in the inter-laminar region. The expression for ψ  is derived 

based on the assumption that ( )3322 σσ =  in Eqn. (3.7) for uniaxial tensile test under ideal 

case and making use of the tensile (T) and shear strength (S) of the material as an 

allowable stress limit for yielding. For von Mises criterion, 6=ψ . 

2

2 






=
S

T
ψ             (3.10) 

 

 

 

 

 

 

 

Figure 3.10 Schematic diagram of linear isotropic strain-hardening curve 
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Flow rule 

Plastic strains is developed by loading beyond the yield i.e. whenever

( )( ) 0, =
p

eq Yf εσ , which is always assured by the consistency condition during loading 

(i.e. stress must be on yield surface at all times). Thus, magnitude of the increment of 

plastic strain can be evaluated from the hardening behavior of the material and must be 

related to stress increment through the definition of associated plastic flow rule, derived 

from yield surface, as:  

ij

p

ij

f
d

σ
λε

∂
∂

=             (3.11) 

where 
p

dελ = , a positive scalar plastic multiplier, determined from the consistency 

condition. This shows that for small stress increment 

 

0=df            (3.12a)  

0=
∂

∂
∂
∂

+
∂
∂

=
∂

∂
+

∂
∂ p

pij

ij

p

pij

ij

d
d

Y

Y

f
d

f
d

d

f
d

f
ε

ε
σ

σ
ε

ε
σ

σ
    (3.12b) 

Using Eqns. (3.6) and (3.8), we obtain, R
d

Y

Y

f
p

=
∂

∂
−=

∂
∂

ε
,1  and substituting in Eqn. 

(3.12b), we get. 

p

ij

ij

dRd
f

ελλσ
σ

==
∂
∂

,        (3.12c) 

Making use of Eqns. (3.2), (3.4), the stress increment, ijdσ , in Eqn. (3.12c) can be 

expressed as:  

( ) 










∂
∂

−=−=
ij

ijijkl

p

ijijijklij

f
dEddEd

σ
λεεεσ         (3.13)  
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Thus, from Eqns. (3.12c) and (3.13), the plastic multiplier λ is obtained as: 

kl

ijkl

ij

klijkl

ij

f
E

f
R

dE
f

σσ

ε
σ

λ

∂
∂

∂
∂

+

∂
∂

=            (3.14)  

Under plastic straining, the flow rules are incremental and hence stress increments are 

related to strain increments using incremental constitutive relation. While the stress 

increment in elastic deformation is given by Eqn. (3.13), the stress increment in plastic 

deformation is given by 

ij

ep

ijklij dEd εσ =             (3.15)  

where 
ep

ijklE   is elasto-plastic tangent modulus.  

By substituting Eqn. (3.14) into Eqn. (3.13) and equating with Eqn. (3.15), the 

elasto-plastic tangent modulus, 
ep

ijklE , is: 

rs

mnrs

mn

cdkl

cdab

ijab

ijkl

ep

ijkl f
E

f
R

E
ff

E

EE

σσ

σσ

∂
∂

∂
∂

+

∂
∂

∂
∂

−=                     (3.16) 

The elastic-plastic damage material adopts the isotropic damage elastic constitutive 

relationship once the damage initiation criterion is satisfied. Denoting on d as a scalar 

damage variable at a local material point, the physical stress could be related to the strain 

by   

klijklij E εσ =    (i, j = 1, 2, 3)          (3.17) 

where ijklE  is the elastic stiffness in the damaged state which is a function of the damage 

variable, d. For linear material softening shown by curve BN in Figure 3.11, the stiffness 
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in the damaged state can be determined from the geometry of the same figure and is 

given by 

( ) 








+−
−=

dUdU

dU
EE

c

c

ijklijkl

21

2
1

0

          (3.18) 

where UC is critical strain energy at a complete failure of the loaded element and is 

considered as a material property. U0 is the strain energy when damage initiation occurs 

in the material for the first time and can be calculated as:   

10 |)( ≥∫= eijij dU εσ  (i, j = 1, 2, 3)         (3.19) 

where e  is a non-dimensional parameter that is used to show the condition for damage 

initiation in a material. The value ( 1≥e ) indicates a critical condition for damage 

initiation is reached and the details will be discussed later in section 3.3.2. 

The range of d value is from 0 (without damage) to 1 (completely damaged). When 

the damage is fully developed, i.e. d = 1, the stiffness given by Eqn. (3.18) drops to zero 

and the material cannot withstand any types of load. Since this result possibly leads to the 

penetration between the neighboring substrates in FRP, stiffness degradation in the out-of-

plane direction (2-direction in Figure 3.1) is prohibited when the compressive strain 

occurs in that direction. 
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Figure 3.11 Schematic diagram of elastic-plastic damage material model with linear 

softening 

In Figure 3.11, DU  is the energy absorbed by any deformation mode at the current 

loading state after delamination is initiated and can be determined by integrating the 

energy dissipated in a given fracture mode. For example, for a linear material softening 

condition, at the current loading state shown in Figure 3.11, DU  is given by the area 

(ADBC) as:  

)(2

)(

0

0

UU

U
U

C

CC

D −

−
=

εεσ
               (3.20) 
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where Cσ  and 0ε  are the maximum equivalent stress and corresponding equivalent 

strain, respectively, when a damage initiation criterion is satisfied at the first time, and ε  

is the equivalent strain at the current stress state. 

The value range for DU  is from 0 (when 0εε =  ) to CU ,  i.e., when the damage is 

fully developed (d = 1 at which fεε =  ). When d = 1, the dissipated energy reaches its 

critical value, CU . 

3.3.2 Damage initiation criterion  

Depending on the normal stress component ( 22σ ) being positive or negative, the 

following damage initiation criterion is proposed.   

2 2 2
2 2 211 22 11 22 11 33 22 33 33
12 13 222

2

2 2 2
2 2 2 2 11 22 11 22 11 33 22 33 33
12 13 222

( )
( ) ( ) /      (for 0) 

( )
( ) / ( )  (for 0)

S
T

e

S
T

σ σ σ σ σ σ σ σ σ
τ τ σ

σ σ σ σ σ σ σ σ σ
τ τ α σ

 + − + + +
+ + >

= 
+ − + + + + − ≤

      

  (3.21) 

where 12τ and 13τ are shear stresses, α a non-dimensional parameter that is used to 

quantify the effect of the compressive stress on the suppression of delamination and is 

determined using the critical load for damage initiation, T and S  are transverse tensile and 

shear strength of the material in the interface, respectively. The value of e determines 

whether the critical condition for damage initiation is reached. That is, the damage is 

initiated when e is equal to or larger than 1.  

The damage initiation criterion reflects the phenomenon that compressive stress 

may slow down or suppress the damage initiation [29]. 
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3.3.3 Damage evolution law  

As shown in Eqn. (3.18), the material softening is fully governed by the evolution 

of a damage variable d. The damage parameter d can be defined by any monotonically 

increasing function, valued from 0 to 1, of any state variables such as stresses, strains or 

strain energy. In this study, the evolution of d is expressed in terms of the critical strain 

energy ( CU ) and the present state of energy absorbed by the deformation ( DU ).  

m

CDC

m

D

UUU

U
d

+−
=              (3.22a) 

where m is a non-dimensional parameter selected to allow change of damage evolution 

law. For a linear system, m= 1, the value of d is: 

DC

D

UU

U
d

−
=

2
             (3.22b) 

 

 

 

 

 

 

 

 

Figure 3.12 Schematic diagram of evolution of damage parameter as a function of 

dissipated energy 

 Ud 

d 
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Figure 3.12 shows the evolution of the damage parameters d for different value of 

m. The value of d starts from 0, following different paths to 1 for complete damage, 

depending on the value of m. In the case of strain increase monotonically, the value of d 

also increases monotonically to indicate the damage development. In the case of strain 

reverse, d will remain at its historically high value. This is to reflect the fact that damage 

is irreversible in the material.  It should be noted that with the change of m value, the 

expression of d generates different shape of stress-strain curves during the damage 

evolvement. 

3.4 Application to pre-cracked composites    

The elastic-plastic damage material model proposed here was implemented in a 

finite element code ABAQUS/Standard using a user subroutine UMAT. The damage 

material model is applied to DENT, DCB and INF finite element models under plain strain 

condition. The DCB and INF tests cover the scenario for stable delamination under pure 

mode I and II loading, respectively. In both tests, the delamination is assumed to grow in 

the interlaminar region within the mid-plane. The DENT test is for a model of 

homogenous property, covering the loading scenarios for Mode I. The stress-strain 

response under different loading conditions will be obtained by applying appropriate loads 

and boundary conditions to the FE models. Details of the configurations of these test 

specimens are given in the subsequent sections.   
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3.4.1 Double-edge-notched tensile (DENT) test 

The computational model shown in Figure 3.13 is for prediction of crack growth in 

an un-predefined crack path, which consists of homogenous elastic-plastic material. This 

case study is to demonstrate the use of the proposed elastic-plastic damage material model 

to simulate damage propagation in an un-predefined crack path. Due to symmetry of 

geometry and loading condition, only a quarter of the specimen was modeled for the FEM 

analysis. The quarter-symmetry finite element model is shown in Figure 3.13(b). 

Geometric detail of the DENT model is given in Table 3.4 and the material property in 

Table 3.5. 

Table 3.4  Geometrical properties used in the DENT model. 

U2 d a L(mm) H(mm) 

1.5
 

10 35 45 184 

 

Table 3.5   Material properties of solid elements for DENT FE model 

 

Elastic Property Plastic property Interlaminar material 

strength 

E 

 (MPa) 

v σy 

(MPa) 

εp 

 

UC 

  (kJ/m
3
) 

T  

(MPa) 

S  

(MPa) 

 

3400 

 

0.3 

 

40 

200 

253.33 

0 

0.9 

1.2 

15000.0 

 

72.0 

 

40.0 
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Figure 3.13  DENT test: (a) specimen configuration, and (b) FE model. 

 

The model consists of 7426 plane-strain elements (CPE4) with the elastic-plastic 

damage material properties. Symmetric boundary conditions were applied along the two 

axes of symmetry, and a displacement of 1.5mm was applied along the top edge of the 

model.  
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Figure 3.14   Stress-Strain curve and development of damage process in DENT test 
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Figure 3.14(a) shows the stress-strain relationship of the DENT model subjected 

to vertical displacement along the top edge. Vertical and horizontal axes of the curve in 

Figure 3.14(a) represent the equivalent stress ( eqσ ) and total strain ( eqε ), respectively.   

Point B in Figure 3.14(a) refers to the moment when the damage initiation 

criterion is met, i.e. the equivalent stress reaching a critical value of 74MPa and the 

corresponding equivalent strain 30%. The area DBF equals the strain energy, U0. Beyond 

point B the equivalent stress drops gradually with the increase of the equivalent strain.  

At any point during damage evolvement, such as point C in Figure 3.14(a), the 

total input of energy density is the area of OABCL, which can be divided into areas 

OABD, DBC and DCL, representing the dissipated energy due to plastic deformation, the 

unrecoverable energy loss due to material damage (Ud) and the recoverable elastic strain 

energy, respectively. If the applied load on the DENT specimen continues to increase from 

this point, the load carrying capacity of the element will continue to drop due to decrease 

of the equivalent stress following the line segment CN, till point N at which unrecoverable 

energy loss, area DBN, equals UC. At this point the equivalent stress is zero. Figure 3.15 

displays an equivalent stress contour plot to identify the damaged region with zero 

equivalent stress. 

If unloading is applied at point C, the equivalent stress will return to zero linearly 

following the line segment CD in Figure 3.14(a), at a slope E  which is determined by 

Eqn. (3.18). 

Figures 3.14(b) and 3.14(c) illustrate the evolution of the damage parameters d and 

the dissipated energy loss (Ud) during the damage process. Both curves in Figures 3.14(b) 

and (c) start at point B and increase monotonically to point N at which a complete damage 
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occurred with a critical value of 1 for d and 15kJ for Ud. If unloading occurs during the 

damage development, d will remain at its historically high value. This is to reflect the fact 

that damage is irreversible in the material. 

As mentioned in section 3.3.3 and shown in Figure 3.12, changing the expression 

for d (Eqn. (3.20(a))) could yield different shapes of stress-strain responses.  The stress-

strain behavior of which shown in Figure 3.14(a) is obtained by using the expression for 

d given by Eqn. (3.20(b)). Figure 3.14(d) shows the evolution of the damage parameter as 

a function of the dissipated energy Ud during the damage process. Figures 3.16 (a) and 

(b) display a contour plot of damaged elements and crack growth direction in the DENT 

FE model with fine and course mesh density.  It also shows that the prediction of the 

crack growth is insensitive to the mesh size. However, the finite element model with finer 

mesh results in more accurate solution as expected. 

 

 

 

 

 

 

 

 

 

 

Figure 3.15   Contour plot of equivalent stress in DENT model 

 
 

 

                                                      



65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

                    

Figure 3.16 Contour plot of damaged elements and crack growth in DENT model (a) fine 

mesh (b) course mesh  

 
 

 

                                                     

 
 

 



 

Figure 3.

Figure 3.17 demonstrates the load

simulation. The initial linear curve indicates that the load increased linearly with 

displacement until it reaches 12000N and represents the elastic region. Afte

transition from the elastic region with nonlinear response, which indicates the occurrence 

of local plasticity, the load continues to increase in the yielding section before 

loading level was reached

was reached, the load drops gradually with the damage growth.

 

3.4.2 Delamination Growth in 

The DCB model shown in Figure 3.1

damage material model for

loading condition.  The FE model of the DCB

dimensions of the model are listed in Table 3.

.17 Load-displacement curve for the DENT test

Figure 3.17 demonstrates the load-displacement curve of DENT specimen from FE 

simulation. The initial linear curve indicates that the load increased linearly with 

displacement until it reaches 12000N and represents the elastic region. Afte

transition from the elastic region with nonlinear response, which indicates the occurrence 

of local plasticity, the load continues to increase in the yielding section before 

loading level was reached to cause the damage initiation. After a critical load of 15871N 

was reached, the load drops gradually with the damage growth. 

Delamination Growth in Double Cantilever Beam (DCB) test 

The DCB model shown in Figure 3.18 is studied to demonstrate the 

for simulating stable delamination propagation under mode I 

The FE model of the DCB specimen has three layers and the overall 

dimensions of the model are listed in Table 3.6. Top and bottom layers
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or the DENT test 

displacement curve of DENT specimen from FE 

simulation. The initial linear curve indicates that the load increased linearly with 

displacement until it reaches 12000N and represents the elastic region. After a smooth 

transition from the elastic region with nonlinear response, which indicates the occurrence 

of local plasticity, the load continues to increase in the yielding section before a critical 

ter a critical load of 15871N 

is studied to demonstrate the elastic-plastic 

simulating stable delamination propagation under mode I 

has three layers and the overall 

p and bottom layers represent 



67 

 

substrates of the composite material, consisting of 4-node plane-strain elements (CPE4R) 

of orthotropic elastic properties. The middle layer represents the interlaminar region which 

includes initial crack lengths of 50 mm. The un-cracked region in the middle layer consists 

of 4-node, plane-strain continuum solid elements (CPE4R) with the elastic-plastic damage 

material property. The model contains a total of 6256 elements. Element length in the 

interlaminar region was chosen to be 0.02 mm. According to Turon et al. [30], element 

length in the cohesive damage zone should be small enough to capture the continuum 

stress field in this region. Therefore, the mesh size should be sufficiently small to provide 

good resolution for the stress distribution.  

Figure 3.18 shows the mesh pattern and prescribed boundary conditions of the 

finite element model.  Input material properties for the top and bottom layers are given in 

Table 3.7, and those for the middle layer in Table 3.8 which are to define constitutive 

equation of the continuum solid elements based on an elastic-plastic damage material 

model. 

 

 

 

 

 

 

Figure 3.18 Schematic diagram of finite element model for DCB specimen with mesh 

details at crack tip 
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Table 3.6.  Dimensions of the FE model of DCB specimen  

 

 

 

Table 3.7.  Mechanical properties for top and bottom layers of the DCB FE model used 

in this study 

E11 

(GPa) 

E22 = E33 

(GPa) 

G12 = G13 

(GPa) 
v23 v12 = v13 

150 11.0 6.0 0.3 0.3 

 

Table 3.8   Properties of solid elements in the interlaminar region of the DCB FE 

model 

 

Elastic Property Plastic property Interlaminar material 

strength 

E 

 (MPa) 

v σy 

(MPa) 

εp 

 

UC 

 (kJ/m
3
) 

T  

(MPa) 

S  

(MPa) 

 

3400 

 

0.3 

 

40 

200 

253.33 

0 

0.9 

1.2 

5000.0 

 

20.0 

 

20.0 

 

 

 

 

Contour plots of equivalent stress and damage level around the crack tip are shown 

in Figure 3.19 by applying the elastic-plastic damage material model to the inter-laminar 

region. Due to loading symmetry and boundary conditions in the DCB specimen, the 

delamination is expected to start from the mid plane, which is indeed indicated by Figure 

3.19(b) and 3.19(c).  This supports that the proposed damage material model can 

accurately predict the delamination growth path in the DCB specimen. Figure 3.20 

presents the FE results when the elastic-plastic damage material property in Table 3.8, is 

a 

(mm) 

h 

  (mm) 

L 

(mm) 

w 

(mm) 

50 1.5 150 20 
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applied to the entire DCB model. However, because of a sever distortion of the damaged 

elements around the crack front, simulation cannot proceed further for the crack growth. 

Since there will not be interfacial penetration between the adjacent delaminated surfaces 

under mode I loading, those highly distorted damaged elements that do not take any load 

(stress) could be deleted from the FE model to advance the simulation. Because of the use 

of UMAT subroutine in ABQUS/Standard which doesn’t support element deletion in real 

time during the simulation, this problem couldn’t be solved and require further study in 

the future.   

 

 

 

 

 

Figure 3.19 FE result of DCB test with the proposed damage material applied to the 

interlaminar region: (a) Contour plot of equivalent stress on FE model (b) 

contour plot of damage level around the crack tip in the early stage, (c) 

contour plot of the damage level around crack tip during the delamination 

growth  
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Figure 3.20 FE results of DCB specimen with the proposed damage material property 

applied to the entire FE model: (a) Contour plot of equivalent stress, (b) 

contour plot of damage parameter around crack tip at the early stage, and (c) 

contour plot of the damage parameter around the crack tip during the 

delamination growth. 

3.4.3 Delamination Growth in INF Specimen Under three-point bending  

Delamination growth in the INF model, as shown in Figure 3.21, is studied using 

continuum solid elements with elastic-plastic damage material property. Similar to the 

previous DCB model, the FE model of the INF specimen has three layers and the overall 

dimensions of the model are listed in Table 3.1. Top and bottom layers represent 

substrates of the composite material, consisting of 4-node plane-strain elements (CPE4I) 

with incompatible mode of orthotropic elastic properties. The middle layer represents the 

interlaminar region which includes initial crack lengths of 40 mm for a1 and 12 mm for a2. 

The un-cracked region in the middle layer consists of 4-node, plane-strain continuum solid 

elements (CPE4R) with the elastic-plastic damage material property. Totally, 10421 

elements were used for the top and bottom layers, and 6540 elements for the middle layer. 

A frictionless, small sliding contact is defined between the crack surfaces to avoid 

penetration. The specimen is subjected to a displacement of 4mm at the central loading 

pin. A frictionless and small sliding contact condition is defined in the pre-cracked 

       

(a) (b) (c) 



71 

 

surfaces. The nodal points at the two supporting pins were restricted from any vertical 

motion during the delamination growth. Besides, the nodal point at the left support was 

constrained from any horizontal movement to avoid rigid body motion. Input material 

properties for the top and bottom layers are given in Table 3.2, and those for the middle 

layer in Table 3.9 which are for defining constitutive equation of the continuum solid 

elements based on an elastic-plastic damage material model. 

 

Table 3.9   Properties of solid elements at the interlaminar interface of the INF FE 

model 

 

Elastic Property Plastic property Interlaminar material 

strength 

E 

 (MPa) 

v σy 

(MPa) 

εp 

 

UC 

 (kJ/m
3
) 

T  

(MPa) 

S  

(MPa) 

 

3400 

 

0.3 

 

40 

200 

253.33 

0 

0.9 

1.2 

5000.0 

 

72.0 

 

40.0 

 

 

 

 

Material properties chosen for the interlaminar region, such as tensile (T) and 

shear (S) strengths, are based on properties of the resin used in the simulation. The 

critical strain energy (UC), yield stresses and equivalent plastic strains are virtual data for 

the purpose of testing the proposed damage model.  

 

 

 

 

Figure 3.21 Finite element model of INF test 

Interlaminar region Delamination crack 

P 
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The results from the 2D model are given in Figures 3.22-3.24. Distribution of the 

equivalent stress in Figure 3.22 shows the highest stress concentration at the interface 

between the outer substrate and the interlaminar region. Such a stress concentration is 

probably caused by the mismatch of material property at the interface and can cause 

damage initiation from corners of the crack tip. To minimize such stress concentration 

effect, the crack tip is modeled with circular profile within the interlaminar region. 

Figures 3.23 demonstrates the deformed shape in front of the crack tip, resulting in 

compression on the top half and tension on the bottom half of the interlaminar region. 

Figures 3.24 show the location of damage initiation along the contour of the crack tip and 

its growth path in the interlamianr region. It is interesting to note that the crack initiation 

and its growth path from the crack tip are influenced by the values of the tensile and 

shear strengths of the material in the interlaminar region.  In figure 3.24(a), the crack 

initiation occurs a little below the top corner of the crack tip and subsequently the crack 

grows in the interlaminar region. In this case the crack initiation is probably caused by 

shear failure of the material, not the tensile failure. When the tensile strength of the 

material is lower than its shear strength as shown figure 3.24(b) and 3.24(c), the crack 

initiation occurs around the bottom corner of the crack tip. This may be caused by tensile 

failure of the material, not the shear failure. Such initiation of local crack due to tensile 

failure in a mode II loading test was also reported in ref. [32].  Further study is required 

to examine the effect of material tensile and shear strengths on the damage initiation for 

delamination. In figure 3.24(c), the crack grows towards the substrate/matrix interface.  

Similar to the FE results for the DCB specimen, distortion of damaged elements 

due to high plastic strain in the INF specimen model causes instabilities and inhibits 
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further crack growth progress. However, unlike the DCB specimen, care has to be taken 

when removing those highly distorted elements from the INF test as this may cause 

penetration between adjacent delaminated surfaces. Since the fully damaged elements in 

the INF specimen can still take compressive forces to avoid penetration, due to, removing 

those elements may increase cause penetration. Another problem from deleting elements 

in the INF test is the contact condition. When new fracture surfaces are created after 

deleting the elements, the contact algorithm in ABAQUS has to calculate new contact 

surfaces, and the associated contact forces, which may cause numerical instabilities. This 

suggests that the contact calculation is much easier if elements were not required to be 

deleted. All of those problems need further investigation.  

 

 

 

 

 

 

 

 

 

 

Figure 3.22 Contour plot of equivalent stress distribution in INF test 

 

 

 

 

 

 

 

 

 

Figure 3.23 Contour plot of equivalent stress around crack tip in the INF test with 

T=70MPa and S=40MPa 

 

                         

(a) (b) (c) (d) (e) 



 

 

 

 

 

 

 

 

Figure 3.24 Contour plot of damage parameter 

and S=40MPa (b) 

 

 

 

Figure 3.25 

Figure 3.25 shows the stress

applying three-point bending

curve profile is similar to the 

earlier sections.  

 

          

(a) 

Contour plot of damage parameter in the INF specimen with (a) 

=40MPa (b) T=30MPa and S=40MPa (c) T=25MPa and 

 Stress-strain curve of INF model from FE simulation

shows the stress-strain response of the INF model obtained by 

point bending with properties given in Tables (3.1), (3.2

lar to the stress-strain curve of the DENT specimen presented in the 

     

(b) 
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NF specimen with (a) T=70MPa 

=25MPa and S=40MPa 

 

simulation 

model obtained by 

h properties given in Tables (3.1), (3.2) and (3.9). The 

the DENT specimen presented in the 

 

(c) 



 

 

Figure 3.26 Load

 

Figure 3.26 shows

indicates that the load increases linearly

commences and continues to increase linearly with the displacement during th

delamination growth at a smaller slope. This suggests a stable delamination growth.

3.5 Conclusions 

This chapter presents a finite element approach based on a continuum solid 

element with an elastic-plastic damage material property 

in the interlamianr region of FRP. Taking the advantage of solid element in terms of 

simplicity and true representation for the stress state over other elements such as interface 

or spring elements, a FE model using continuum solid elements can adopt

considers all possible combinations of stresses for crack initiation. I

combination of stresses that takes into account the effect of in

proposed for the damage initiation. The fracture criterion is 

oad-displacement curve of INF model from FE solution

Figure 3.26 shows load-displacement curves from the FEM simulation, which 

hat the load increases linearly with displacement before delamination 

commences and continues to increase linearly with the displacement during th

delamination growth at a smaller slope. This suggests a stable delamination growth.

This chapter presents a finite element approach based on a continuum solid 

plastic damage material property to simulate delamination g

in the interlamianr region of FRP. Taking the advantage of solid element in terms of 

simplicity and true representation for the stress state over other elements such as interface 

or spring elements, a FE model using continuum solid elements can adopt

considers all possible combinations of stresses for crack initiation. I

that takes into account the effect of in-plane normal stress was 

osed for the damage initiation. The fracture criterion is defined based on critical 
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from FE solution 

from the FEM simulation, which 

before delamination 

commences and continues to increase linearly with the displacement during the 

delamination growth at a smaller slope. This suggests a stable delamination growth. 

This chapter presents a finite element approach based on a continuum solid 

simulate delamination growth 

in the interlamianr region of FRP. Taking the advantage of solid element in terms of 

simplicity and true representation for the stress state over other elements such as interface 

or spring elements, a FE model using continuum solid elements can adopt a criterion that 

considers all possible combinations of stresses for crack initiation. In this study, a 

plane normal stress was 

defined based on critical 



76 

 

strain energy.  The proposed damage material model was implemented in finite element 

code ABAQUS and was applied to pre-cracked composites to verify the damage criteria. 

It is shown that with a simple linear softening function for the damage evolution, the 

proposed damage material model can predict the delamination development in a pure 

mode of fracture in fiber composites. The elastic-plastic damage material model was 

applied to pre-cracked composite structures such as the DCB, INF and DENT tests. 
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Chapter 4 Conclusions and Future Work 

4.1 Summary and  Conclusions 

 

Methodologies are discussed for the prediction of stable delamination development 

in fiber-reinforced composites in pure mode II fracture using analytical and numerical 

methods. Analytical and numerical approaches are described to quantify critical energy 

release rate, which is the parameter to measure delamination resistance of the composites. 

This thesis presented a revised analytical approach for calculating the compliance 

of the INF test by taking into account loads in the overhanging section of the specimen. 

The work shows improvement of the revised analytical solution in its accuracy in 

predicting the delamination growth, by taking into account the loads in the overhanging 

section. Therefore, the work concludes that the overhanging section cannot be ignored.  

The revised analytical solution was also used to explore the influence of load in the 

overhanging section on prediction of delamination growth rate generated in the INF 

specimen. The results suggest that the delamination growth rate in the INF test is 

proportional to the loading rate, thus making it possible to investigate the effect of the 

crack growth speed on the critical energy release rate.   

The finite element model of a virtual INF specimen was used to validate the 

revised expressions for compliance and energy release rate through comparison of the 

initial specimen stiffness of both solutions. The INF specimen had cohesive elements in 

the interlaminar region to simulate the delamination growth, from which extent of damage 
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in front of the crack tip was quantified. Results from FE model suggested that an extensive 

damage exists at the crack tip before delamination growth commences. The FE model, 

suggests that the damage zone has a length of 8mm which should effectively extend the 

initial crack length. Therefore, the use of a physical crack length to calculate the energy 

release rate may severely overestimate the interlaminar fracture toughness. Hence, an 

effective crack length, which considers the additional crack length due to the presence of a 

damage zone at the crack tip, was used to predict the delamination growth. Expression for 

the energy release rate based on the effective crack length yields a value that is very close 

to the input critical energy release rate (Gc) input into the cohesive elements.  

A finite element approach based on a continuum solid element with an elastic-

plastic damage material property was proposed to simulate delamination growth in the 

interlamianr region of FRP. Using solid elements, a combination of stresses that takes 

into account the effect of in-plane normal stress was used to establish the criterion for 

damage initiation. The criterion for delamination propagation is defined based on critical 

strain energy.  The proposed damage material model was implemented in finite element 

code and was applied to pre-cracked composites to illustrate its feasibility to simulate the 

crack development.  

In general, the work has successfully used analytical and numerical approaches to 

simulate delamination growth in FRP under pure mode II loading.  

 

 

4.2 Future work  
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Verification of the present damage material approach is still in a preliminary stage 

and currently, only applied to pre-cracked composite structures.  This approach will be 

applied to composites with no pre-cracks to further verify its feasibility and the proposed 

damage initiation criteria. Parametric studies will also be carried out using appropriate 

test methods to investigate the influence of material strengths and other parameters on the 

simulation results.  

Additionally, mixed-mode delamination is not addressed in this study, which is a 

natural next step for the investigation. Besides, a strategy should be devised to measure 

delamination resistance experimentally. In the proposed elastic-plastic damage material 

model, the damage initiation criteria and the fracture criterion for delamination evolution 

are all based on 3D stress and energy state. Thus, this approach could be extended to 3D 

simulations, but a strategy is needed to separate the fracture modes involved in the crack 

growth.
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