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ABSTRACT 

Inclement weather poses a threat to road safety and mobility for motorists in cold regions during 

winter. To facilitate more efficient winter maintenance decision support and reduce weather-

related collisions, many transportation agencies have adopted one of the most critical highway 

infrastructures; namely, road weather information systems (RWIS). While RWIS are effective in 

collecting real-time road surface conditions (RSC) information, they are costly to install and 

operate. Equally important, RWIS provide point measurements that are often unrepresentative of 

distant surrounding areas. Acknowledging the limitations in present knowledge and methods 

pertaining to improving its spatial coverage, this research proposes a new systematic framework 

that uses one of the most advanced geostatistical interpolation techniques, namely, regression 

kriging (RK), to estimate continuous RSC between different pairs of existing RWIS stations. 

This research contains two phases: Phase I first evaluates the feasibility of applying RK to road 

surface temperature (RST) and road surface index (RSI) estimations. A comparison study using 

different spatial interpolation methods, including inverse distance weighting, global polynomial 

interpolation, local polynomial interpolation, and thin plate spline, is conducted to further verify 

the robustness of the RK method proposed herein. Phase II of the thesis extends the application of 

the previously developed model in Phase I to estimate RSC using stationary RWIS data only. A 

sensitivity analysis is also carried out to investigate the influence of RWIS stations density on 

model performance. Lastly, a recommendation to optimize the RWIS network is introduced by 

incorporating a renowned combinatorial particle swarm optimization method with the objective of 

minimizing the total kriging estimation errors. 
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The case study areas are Highways 2 and 16, which are major traffic corridors between Edmonton 

and Calgary (approximately 300 km) and between Edmonton and Edson (approximately 150 km), 

respectively. The datasets used in this study are from twelve surveys on four winter nights on 

Highway 16 and six surveys on two winter nights on Highway 2. Weather events are classified 

based on the wind speed and snow on ground information to investigate the generalization 

potential of the models developed herein. 

The main findings of this thesis are summarized as follows. 

The findings of Phase I indicate that the kriging models developed in this thesis have a strong 

predictive ability in estimating road weather and surface conditions, as indicated by low average 

root mean square errors (RMSE) of 0.254oC and 0.046oC for RST and RSI estimations, 

respectively. The results also suggest that the RSC estimations can be greatly enhanced with the 

help of additional covariates included in the models. Furthermore, there exists a strong dependency 

between the variability in data sets and weather event categories, which can be further used to 

generalize the findings of this study. The comparison analysis further confirms the robustness of 

the RK models, whereby improving the accuracy of estimation by up to 50% when compared to 

other methods.  

The findings in Phase II of the thesis suggests that the use of stationary RWIS data alone can 

generate reliable results (i.e., RMSE less than 1oC) when a known semivariogram model is 

available. The sensitivity analysis also reveals that the increase in the number of RWIS stations 

will improve the accuracy of estimation until it reaches a certain level, when the magnitude of 

benefits decreases and stabilizes. Lastly, a proposed RWIS location allocation optimizer is 
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recommended to minimize the total kriging estimation error, for transportation authorities to 

delineate new site locations for improved monitoring capabilities. 

The proposed approaches provide a unique opportunity for continuous monitoring and 

visualization of road weather and surface conditions, to promote more efficient mobilization of 

winter maintenance resources. It is also anticipated that the findings of this research will, 

undoubtedly, contribute to improving the overall quality of winter road maintenance services and 

create a safer and more mobile environment for all travellers.   
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CHAPTER 1. INTRODUCTION 

1.1 Background 

In winter months, people from cold regions, in countries like Canada, often suffer from the unique 

challenges related to heavy snowfall and freezing temperatures. Among all these challenges, the 

detrimental influence on road safety and mobility for motorists is inevitable and cannot be 

neglected. According to past studies conducted by the U.S. Department of Transportation, nearly 

22% of all crashes are a result of adverse weather conditions due to poor visibility and degradation 

of pavement friction (Federal Highway Administration [FHWA], 2005-2014). The Ontario Road 

Safety Annual Reports (1993-2009) illustrated that the total number of vehicle collisions increased 

by approximately 17%  over 16 years because of wet or snowy and icy road surface conditions. In 

terms of mobility issues, Agarwal et al. (2005) found that the capacity and average operating speed 

could be decreased by 4.29%-22.43% and 4.17-13.46% because of the various snow events. Kwon 

et al. (2013) conducted an empirical investigation on how inclement weather conditions would 

impact highway capacity and free flow speed (FFS) based on observations made during two 

seasons from 2010-2012. Their findings indicated that snow-covered road surface conditions could 

reduce capacity and FFS by 44.24% and 17.01%, respectively.  

Therefore, to reduce the number of weather-related accidents, it is paramount for roadway 

administrations and transportation agencies to acquire real-time or near-future road surface 

condition (RSC) information to make more informed decisions on their various winter road 

maintenance (WRM) activities (e.g., salting and plowing) and prevent road users from getting 

involved in accidents during inclement weather events. WRM operations, however, demand 

substantial financial cost and resources - it is estimated that more than US $2.3 billion is spent 
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annually by North American transportation authorities on winter road maintenance and CA $1 

billion by the Canadian government alone (Transportation Association of Canada, 2003; FHWA, 

2018). For this reason, time and effort are put forth to seek cost-effective ways to minimize the 

costs of WRM and maintain a high level of service at the same time. 

To reduce both WRM expense and damage to pavement surface caused by deicing chemical 

treatments, transportation agencies invest large amounts of money to improve winter maintenance 

decision support and traveler information provisions. Considering the kind of varied RSCs that 

could develop during adverse weather events, an in-depth understanding of spatial variation of 

RSC is a prerequisite for optimizing the degree and location of WRM. For this reason, road weather 

information systems (RWIS) have gained attention for their ability to provide real-time road 

condition information and have become widely used over the last decade amongst highway 

authorities. 

RWIS use innovative sensors and cameras to provide detailed, tailored information about road 

weather and surface conditions. The data collected by RWIS provide the input required for 

stimulating more efficient and cost-effective WRM, thus creating faster and safer road conditions 

for travelers. Although RWIS are superior in providing valuable information, stations are 

expensive to install and manage, and therefore, can only be installed at a limited number of 

locations. Furthermore, RWIS provides point measurements that are often unrepresentative of 

distant surrounding areas. Considering the vast road network that needs to be monitored and the 

possible inclement winter weather, it is necessary to accurately interpolate the road weather and 

surface conditions of locations between existing RWIS stations to help maintain safe driving 

conditions and reduce the costs of WRM activities. To resolve this deficiency, focus must move 

away from just ‘measuring’ and toward ‘modelling’. 
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1.2 Problem Statement and Motivation 

Estimating the road surface conditions (RSC) over any given segment has long been recognized 

as challenging work as it is affected by a variety of different factors. Those factors include, but are 

not limited to: 

• atmospheric parameters (e.g., cloud cover, wind speed, and precipitation type and rate), 

• climate patterns at both micro and macro levels, 

• geographical features (e.g., vegetation cover and presence of buildings or obstructions), 

• topographical settings (e.g., mountainous, flat, or rolling), and 

• traffic. 

These factors collated can cause considerable variation in RSC from one location to another, 

making RSC difficult to estimate, thus triggering a higher frequency of road weather related 

collisions. 

Since information capturing the spatial variation of RSC is key to identifying hot spots in need of 

frequent monitoring (e.g., adverse weather-related accident-prone areas) and performing proper 

treatment, it is worthwhile to study the two most important RSC variables: road surface 

temperature (RST) and road surface index (RSI). 

RST plays a key role in winter road maintenance as it provides information that is indispensable 

for implementing ice and snow removal operations and predicting black-ice potential. Shao et al., 

(1996) found that RST can vary by more than 10℃ across a road network at night during the winter. 

These variations in RST imply that some segments of road may fall below the freezing point while 
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others may still be above freezing. Therefore, nocturnal RST is considered one of the main factors 

contributing to the formation of black-ice, which can subsequently pose a threat to travellers as it 

is transparent and, thus hard to see on black asphalt pavement. 

Acknowledging the need for an accurate estimation of roadway RST, several numerical models 

have previously been proposed in an attempt to understand the spatial variation of nocturnal 

temperature. Sass (1992) developed a prediction model based on the heat condition and the surface 

energy-balance models. Chapman (2001) proposed a multiple regression model to demonstrate 

that up to 75% of the residual RST variation can be affected by surrounding geographical features 

(Chapman et al., 2001a). Sokol et al. (2017) applied an ensemble technique for RST forecasting 

using an energy balance and heat conduction model whereas the results tend to be underestimates. 

Though these prior studies helped provide some insights about how temperature varies over space, 

they suffer from one major limitation: the models were developed to provide only site-specific 

condition information rather than an entire segment of road. Having continuous RST information 

over a road network is critical, not only to road users for improved safety but also to winter 

maintenance personnel responsible for maintaining a good level of service. 

RSI is the other important parameter used to indicate WRM performance because it measures the 

experience road users have with various winter maintenance operations (i.e., level of service). RSI 

is a numerical value ranging between 0 and 1, and can be viewed as a surrogate measure for the 

friction level of a pavement surface, depending on the degree of snow and ice coverage. There are 

limited studies currently available since the factors related to road surface, such as contaminants 

and tires, which are hard to observe and measure, affect the friction measurement and cause more 

uncertainty (Feng and Fu, 2010). Perchanok (2002) used a discriminant analysis with three friction 

measures, namely peak resistance, slip speed at which the peak resistance occurs, and locked wheel 
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resistance, to classify RSC into visually different road surface classes (e.g., bare wet, bare dry, 

loose snow, packed snow, slush, etc.). However, the validation results showed that accuracy of the 

classification would be improved when incorporating external variables such as geographical 

parameters (Perchanok, 2002). Fu et al. (2008) applied probability density parameters of 

continuous friction measurements (CFM), specifically skewness and variance, with mean friction 

level to calibrate a series of logistic regression models to classify RSC. The findings indicated that 

adding probability density parameters can enhance the discrimination power of the logit classifiers 

(Fu et al., 2008). In general, there are few studies that have attempted to investigate the continuous 

RSI estimation. 

1.3 Research Objectives 

Despite the unique advantages associated with RWIS, there still exists shortcomings that cannot 

be ignored in the RSC monitoring techniques, such as high operation and maintenance costs. 

Moreover, there is no reliable method to capture the spatial variation of surface conditions in 

between RWIS stations. To tackle such challenges, this thesis proposes to develop a new 

methodological framework that estimates key road weather and surface condition variables - road 

surface index (RSI) and road surface temperature (RST) between different pairs of existing RWIS 

stations to create safer driving conditions for the traveling public. In particular, this thesis has five 

specific objectives as follows:  

1) Synthesize knowledge on factors including weather, geographical, and topographical 

features that may affect road weather and surface condition variations;  

2) Explore different types of information that can be extracted using state-of-the-art geomatics 

techniques (i.e., GIS and satellite remote sensing). This will include the use of innovative 

data sets including digital elevation model (DEM) and LANDSAT satellite images;  
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3) Develop a series of event-specific models that can estimate spatial variation of nocturnal 

RSCs; 

4) Propose a systematic framework for estimating RSCs between stationary RWIS stations 

based on the spatial structure constructed using mobile RWIS; and 

5) Make recommendation for new potential RWIS station locations considering the needs of 

WRM and the road users. 

1.4 Thesis Organization 

This thesis consists of five chapters. The remaining content is organized as follows: 

Chapter 2 is a literature review covering current RSC monitoring methods and technologies, 

various factors that would affect the variations of the two variables under investigation - RSI and 

RST. 

Chapter 3 describes the proposed methodology that incorporates an advanced geostatistical 

interpolation technique known as regression kriging (RK) and provides a brief introduction of 

other widely used interpolation methods. 

Chapter 4 first presents real world case studies to describe the study area, data gathered and 

processed using GIS, application and development of RK models and discussions of results. A 

comparison analysis between RK and other interpolation methods is also included to demonstrate 

the superiority of the proposed method. The second part of this chapter connotes the application 

of RK to estimate conditions between stationary RWIS stations using a priori knowledge. Lastly, 

a recommendation of new potential RWIS station locations is made after evaluating the existing 

RWIS network.  
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Chapter 5 highlights the main findings and contributions of this research, and potential extensions 

for future research. 
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CHAPTER 2.  LITERATURE REVIEW 

This chapter provides a review of the current RSC monitoring techniques and factors possibly 

affecting RST and RSI respectively. The summary of this chapter is presented at the end with a 

discussion of limitations of previous research. 

2.1 Current Practices on Road Surface Conditions Monitoring  

Since timely and accurate information about road surface and weather conditions are a basic 

requirement for making efficient maintenance strategies and operation plans, many techniques are 

being developed and applied to collect such information. Some popular RSC monitoring 

instruments and systems are introduced below. 

2.1.1 Thermal mapping 

Thermal mapping (TM) is one of the techniques that aim at quantifying the spatial distribution of 

RST over a highway. It is equipped with a vehicle-mounted infrared thermometer to collect data 

under different weather conditions, which can then be graphically depicted by drawing thermal 

maps or fingerprints (Shao 1990; Chapman and Thornes 2005; Marchetti et al. 2011). Typically, 

thermal surveys are carried out by a fleet of vehicles along a road network over multiple nights 

with varying weather conditions to avoid the influence of the sun, thus a reliable amplitude of RST 

variations can be obtained (Chapman and Thornes, 2008). Areas that are likely freezing or snow 

covered can be visually identified using thermal maps such that specialized maintenance activities 

can be implemented without delay. Using this technique may allow maintenance personnel to 

identify the hotspots, but it requires more frequent monitoring and additional treatment (Marchetti 

et al., 2014; Zwahlen et al., 2003). Nevertheless, thermal mapping is limited to only providing 

pavement temperature, which is an incomplete representation of surface conditions. Besides that, 
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the process of generating thermal maps drawn by thermal fingerprints is laborious, time 

consuming, and expensive. This becomes more problematic for cities where a large-scale 

implementation is a necessity. Compounding the limitations, thermal mapping only provides a 

static forecast of minimum RST and thermal maps are merely a snapshot, which do not capture 

the temporal thermal behavior of road surface conditions. 

2.1.2 Continuous friction measurement 

The lack of sufficient friction between vehicle tires and pavement has been recognized as a 

contributing factor in crashes during wet weather conditions. Therefore, it is necessary for highway 

authorities to monitor pavement friction frequently and systemically to reduce accidents. Arousing 

concerns as a practical alternative to support RSC monitoring (Najafi et al., 2013), Continuous 

friction measurement (CFM) measures the coefficient of friction or the friction number. The 

friction coefficient is measured by specially designed tires attached to an on-board device (Linton, 

2015) in a travelling vehicle, which means it is able to collect continuous friction measures over 

space. Furthermore, the measurement provided is a quantitative RSC measure other than a 

descriptive way, making it more intuitive for transportation engineers to investigate and identify 

hotspots. In practice, several Nordic countries and some states in the U.S., like Virginia, have used 

the continuous friction measuring equipment (CFME) to minimize friction-related vehicle crashes 

and improve WRM decision making (Najafi et al., 2013). However, this type of friction measuring 

is still quite a new concept for both transportation agencies and researchers, so a good 

understanding of the measuring systems and proper guidance are required to make the best use of 

it.  
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In spite of the benefits of CFM, the issues associated with this technique cannot be neglected. For 

instance, Najafi et al., (2013) found that CFM is sensitive to grade and vehicle testing speed. He 

suggests it is better to establish standard testing conditions to control measurement accuracy. 

Another common issue is its limited representation of the whole surface, since the contact area is 

very small and the data collected could be a misrepresentation of RSC on a multilane highway 

(Linton, 2015). 

2.1.3 Road weather information systems 

Recently, road weather information systems (RWIS) have gained more attention and become 

widely used in many places. Helping road maintenance agencies effectively plan anti-icing and 

snow removal, and reduce chemical material usage, RWIS consist of advanced sensors that collect, 

transmit and propagate current and near-future road weather and surface condition information. 

Furthermore, the disseminated information provides the inputs required for enabling WRM 

agencies to deliver more efficient and cost-effective maintenance services to the right place at the 

right time with the right treatment.  RWIS are also valuable to the traveling public for making the 

travel related decisions such as whether or not to travel, when, where, and in what mode to travel, 

and what highway to choose. For these reasons, more than 3,000 RWIS stations are currently 

installed and used in North America and the number will continue growing to improve their 

existing WRM services and maximize the return on their investments (Foley et al., 2009; Kwon 

and Gu, 2017). 

In general, there are two types of RWIS called stationary and mobile. The stationary RWIS, as 

depicted in Figure 1, is generally installed in situ within or along a roadway and provides detailed 

and tailored weather forecasts. The components of a typical RWIS station tower include cameras, 
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road surface sensors, remote processing units (RPU), and communication hardware. While a 

mobile RWIS (shown in Figure 2) is a patrol vehicle equipped with innovative sensors and collects 

data as it travels along the road. The data collected by mobile RWIS is sent through cellular 

communication to the maintenance center. Measurements collected from these two RWIS 

categories include, but are not limited to, air and road surface temperatures, dew point, wind speed 

and direction, surface status, etc. Additionally, mobile RWIS also provide direct measurements of 

chemical concentration and pavement friction, which help maintenance agencies adjust treatment 

to better match the actual conditions. However, due to different data collection mechanisms, the 

stationary RWIS provides high temporal but limited spatial coverage, while a mobile RWIS is able 

to provide spatially continuous but temporally discrete measurements.  

While effective in conveying information, it is estimated to cost more than $50,000 to install an 

RWIS station with basic function, not to mention the cost of maintenance and additional sensors 

(Buchanan and Gwartz, 2005). Considering the high cost, the sitting of RWIS location has always 

been challenged by highway planning authorities since it is not economically feasible to have a 

high spatial density RWIS network. In addition, point measurements collected by stations are not 

reliable for places faraway, which can only draw an incomplete map of surface conditions. One 

possible solution may be to fuse information obtained from mobile RWIS to fill in the gap between 

stationary RWIS to improve and extend its spatial representativeness.  



12 

 

 

Figure 1. A typical RWIS station 

 

Figure 2. A mobile RWIS data collection unit equipped with spectral road surface temperature 

sensor   

2.2 Factors Affecting Road Surface Conditions 

Estimations for RSC have been the topic of study for researchers, maintenance authorities, and 

policy makers for years. Obtaining accurate estimations are difficult due to the inherent variability 

of road weather and surface conditions, especially during the winter. In exploring possible 
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solutions, focus should be given to two essential components. One is road surface temperature 

(RST) and the other is road surface index (RSI), which represents the pavement’s slipperiness.  

2.2.1 Road surface temperature (RST) 

Road surface temperature is affected by numerous interacting parameters, which include 

meteorological (i.e., solar radiation, wind speed, cloud cover), geographical (i.e., altitude, 

topography, land-use), and road construction (i.e., traffic, diffusivity).  Thornes (1991b) tested the 

sensitivity of individual meteorological parameters with a control variable method to study their 

influence on RST. As expected, air temperature was found to be the most influential parameter 

controlling RST as air and surface temperature are closely related (Thornes and Shao, n.d.). 

Therefore, any variations in air temperature caused by geographical parameters across the 

mesoscale landscape will affect the road surface (Chapman et al., 2001b).  

Some key factors that influence RST are summarized below:  

Latitude 

Latitude has the effect of controlling the theoretical maximum incoming short-wave radiation, 

which imposes a constraint on the climate and RST. However, the influence on the minimum night-

time RST is small as the radiative cooling processes begins to dominate after sunset (Chapman et 

al., 2001a; Oke, 1987). For example, countries at higher latitudes always have more snow and ice 

problems than lower latitude countries. 

Altitude 

When altitude increases RST decreases, typically from 6.5 °C and up to a maximum of 9.8°C per 

1000 m (Tabony, n.d.). A study conducted by Shao (1997) in Nevada, U.S., outlines the impacts 

of altitude on RST, demonstrating that altitude has a non-linear relationship with RST (Shao et al., 
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1997). Furthermore, the effects of altitude would be more noticeable when the atmospheric 

stability, which describes the tendency of air to rise or not, is low. 

Topography 

Topography is a main factor resulting in RST differences during extreme nights (Bogren Jorgen 

and Gustavsson, 1991; Yang et al., 2015). Slight differences in topography can cause large 

variations in road surface temperature. Several studies show that katabatic wind flow can generate 

pools of freezing air in hollows and valley bottoms (Gustavsson, 1990). Overall, temperature 

variations that rise from topography result in the lowest air temperatures on road networks, and 

any variation in air temperature is linearly related to RST (Chapman et al., 2001b). To study this 

influence, variables including slope and other descriptive features of the terrain are selected to 

represent topography. Jessica et al. (2007) studied slopes of the Sierra Nevada, in the vicinity of 

Yosemite National Park, California, to explore surface temperature variability. The results show 

that surface temperatures tend to be higher on the east slope compared with the west slope, which 

further proves the impact of terrain on temperature (Lundquist and Cayan, 2007). These variables 

can also be extracted by a digital elevation model (DEM).  

Land-use 

Land-use has a significant impact on RST, and can be observed through a comparison  between 

urban and rural temperatures (Faghih Mirzaei et al., 2015). The phenomenon known as the “urban 

heat island effect” can account for increased temperatures in urban environments, where built up 

areas are commonly a little warmer than surrounding rural areas. In order to estimate the associated 

impacts, Normalized Difference Vegetation Index (NDVI), a variable used to describe the spatial 

heterogeneity of vegetation cover, can be adopted to represent the land-use (Garrigues et al., 2006). 

NDVI is calculated from the visible and near-infrared light reflected by vegetation, which 



15 

 

represents the density or the state of health of the vegetation since different kinds of vegetation 

absorb visible light and reflect near-infrared light to different extents (Kršmanc et al., 2013).  

Wind Speed and Cloud Cover 

The prevailing wind speed impacts the variation of air temperature. Strong winds prevent ground 

temperature inversions, but even a breeze can disturb developed cold air pools and drainage of 

cold air (Gustavsson, 1990). Previous researchers found that the eddy diffusivity is closely related 

to wind speed and increases rapidly with rising wind speed. The findings also show that the 

minimum temperature is normally higher on windy nights than on calm nights (Gustavsson, 1990). 

Shitara et al., (1973) proposed that the drop in temperature is most reduced during windy nights 

compared to that of calm ones. The variation of surface temperature is also affected by the 

atmospheric stability. Thornes (1991) used thermal mapping to quantify the spatial variation of 

nocturnal RST along a road network, finding that the amplitude of the thermal fingerprint is 

dependent on weather conditions during the survey and is greatest during times of high 

atmospheric stability. The variation of surface conditions usually decreases in line with 

atmospheric stability and is quantified by Pasquill-Gifford stability classes, which consider 

average wind speeds and cloud cover over the 12-hour period preceding the mapping survey. 

Therefore, estimating RST per stability class could generalize the findings. The classification 

method proposed by Thornes is shown in Table 1 (Thornes, 1991). 
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Table 1. Classification of weather events with respect to Pasquill Gifford Stability classes and 

Thornes (1991) classification 

Surface Wind 

Speed (m/s) 

Thinly overcast or ≥4/8 oktas 

of low cloud 
<4/8 oktas cloud 

Pasquill Gifford 

stability classes 

Thornes 

classification 

Pasquill Gifford 

stability classes 

Thornes 

classification 

<2 G extreme G extreme 

2-3 E light F light 

3-5 D damped E moderate 

5> D damped D damped 

 

Pavement material 

Pavement material is a key factor that contributes to the urban heat island phenomenon, as it can 

absorb and store great amounts of heat throughout the day. Hence, different surface materials 

influence the variation of RST. According to previous researches, new and darker surface materials 

absorb and store more solar and terrestrial infrared radiations, which will heat up during daytime 

and reradiate the heat over night (Ahmed Memon et al., 2008; Benrazavi et al., 2016). It is found 

that the surface temperature, heat storage and emission to the atmosphere of asphalt is greater than 

that of concrete or bare soil (Asaeda et al., 1996). Besides, a study conducted by Rosenfeld et al., 

(1995) indicated that pavement materials caused high urban surface temperatures in dry and hot 

area, as it will increase surface temperatures and turns air temperatures 2-3◦C higher than the 

surroundings. 

2.2.2 Road surface index (RSI) 
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To classify the surface state, transportation authorities around the world proposed and developed 

a wide variety of terminologies and classification schemes. Boselly (2000) synthesized different 

classification methods used by seven states in the US as described in Table 2 (Boselly, 2000). 

In Canada, different provinces have their own winter road condition classification schemes and 

reporting systems. For instance, the Ministry of Transportation Ontario applies a condition 

description system including seven major categories and 486 subcategories for reporting possible 

road conditions in the winter season (Usman et al., 2012). Ministry of Transportation Alberta and 

Ministry of Transportation Quebec classify road surface conditions into three categories — bare 

(dry or wet), partly covered (snow or ice), and covered (snow or ice) (Fu et al., 2016). According 

to the Transportation Association of Canada (TAC), RSI is defined based on five major road 

surface state classes using friction measurements, as summarized in Table 3 (Feng and Fu, 2010; 

Transportation Association of Canada, 2009). Varying from 0.1 (poorest, e.g., ice covered) to 1.0 

(best, e.g., bare and dry), RSI is often assumed to be similar to road surface friction values. Each 

category in the major classes is assigned a specific RSI value range. 

Table 2. RSC classification systems used by some of the U.S. DOTs 

North 

Dakota 
Missouri Iowa Virginia  Ohio 

Washington 

state 
Montana 

• Snow 

covered 
•Covered 

• Normal winter 

driving 
• Minor • Wet • Dry 

• Snow packed 

and icy 

• Scattered 

snow or drift 

• Partly 

covered 

• Partly-mostly 

snow or ice 

covered 

• Moderate • Snow/ice  • Wet 

• Intermittent 

snow pack with 

possible ice 

• Frost • Wet 
• Snow or ice 

covered 
• Severe 

•Severe/snow/ice

/drifting 
• Ice/snow • Icy or frost 

•Compacted 

snow 
• Dry     • Black ice 

• Ice       

• Wet or 

slush 
      

• Dry             
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Table 3. RSI for road surface condition classification 

Road surface condition major classes RSI range 

Bare and dry 0.9-1.0 

Bare and wet 0.8-0.89 

Partly snow covered 0.5-0.79 

Snow covered 0.25-0.49 

Snow packed 0.2-0.24 

Slushy 0.16-0.19 

Icy 0.1-0.15 

Likewise, the factors affecting RST would also influence RSI to a certain extent. For example, if 

the surface temperature is below the dew point temperature and then falls below freezing, the water 

will freeze, potentially forming black ice, which is quite dangerous for motorists. Some of the 

other factors are listed below. 

Surface contaminant  

Surface contaminant mainly represents the water, snow, and ice cover on the pavement. The 

thickness of the snow, ice, and water layer is highly correlated with the pavement friction 

coefficient (Juga et al., 2013). In this case, some researchers use camera images obtained by probe 

vehicles to  determine the type of road surface contaminants along the survey route where friction 

and other condition variables were sampled and served as the basis for further supervised classifier 

calibration (Feng and Fu, 2010). 

Precipitation  

Precipitation can determine the thickness of the surface contaminant over a short term. Kangas 

(2015) found that precipitation intensity and phase impact the mobility of traffic in winter due to 

the decrease of surface friction (Kangas et al., 2015). 
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Pavement Texture 

Previous studies suggest that pavement friction can be affected by texture. Different materials 

provide different surface conditions. Surface friction is improved when both fine and coarse 

angular aggregates are used in the asphalt mixtures. 

There are also many factors affecting RST and RSI that are difficult to measure such as solar 

radiation and heat flux. Factors involving traffic, such as volume, speed, and even the types of tires 

used, can also affect road surface conditions. However, these features vary a lot and the effect 

caused by these factors is minimal when compared with the other factors mentioned above. Hence, 

researchers tend to focus on exploring the relationship that these geographical and topographical 

features have with RST and RSI. 

2.3 Summary 

In this chapter, the current major RSC monitoring technologies have been reviewed, the limitations 

and possible problems of these methods are discussed. In addition, factors affecting RST, RSI, and 

the relationship between these variables are discussed. 

Previous studies have highlighted of the importance of RSC monitoring and RWIS turns out to be 

the most widely accepted method for collecting real-time road surface and weather information. 

Nevertheless, the issue of stationary RWIS stations being unable to capture the full variation of 

RSC needs to be dealt with. To explore the situation between RWIS stations, the spatial structure 

of RSC variables should be extracted from mobile RWIS data sources to improve the RSC 

estimation. Parameters that impact the change of RSC also need to be focused to improve the 

reliability of the model. 
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In the next chapter, details of the proposed methodological framework are introduced to estimate 

RSC between RWIS stations based on a geographic information system (GIS) and other well-

known spatial interpolation methods. 
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CHAPTER 3. PROPOSED METHOD 

Recognizing the limitations in spatial coverage of RWIS stations measurements, transportation 

authorities are seeking a way to obtain reliable and accurate RSC information at a lower expense. 

To remedy this challenge, this chapter provides an overview of the proposed method for RSC 

estimation and the underlying theory of the algorithm implemented. Detailed descriptions of each 

processing procedure including data processing and model calibration are also included. 

Furthermore, other spatial interpolation methods selected for a comparative analysis are briefly 

described.    

3.1 Proposed Methodological Framework  

The research is mainly aimed at solving two problems: one is to evaluate the feasibility of one of 

the most advanced variants of kriging methods; namely, regression kriging (RK) on RSC 

estimation and compare it with other interpolation methods; and the other is to explore the 

applicability of RK and make recommendations for RWIS location selections.  

According to the literature review, acquiring proper RSC information has been a concern for many 

years, but most of the models developed suffer from one major limitation – they can only provide 

site-specific estimation rather than for an entire segment of road.  

To address this challenge, a new geostatistical method that has seldom been explored in the 

transportation field, is proposed to show the feasibility of better capturing the spatial variations of 

the variable of interest. Regression kriging (RK) is a hybrid geostatistical interpolation method 

that provides best linear unbiased estimates (BLUE) for variables that tend to vary over space (and 

time). Due to its unique feature that combines both deterministic and stochastic components of 

random variables under investigation, not only does it provide estimates but also estimation 
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uncertainty at unknown locations based on a set of known observations (details to be further 

discussed in Section 3.3.2).  In particular, advanced geomatics applications, such as remote sensing 

and GIS, are implemented in this study to further improve the predictability of the proposed model. 

Figure 3 shows the overview of the steps involved in data collection, integration and aggregation 

on a GIS platform, and the methodology used in this study. 

Geographic 

Data

DEM
NDVI

(LandSat)
RST

Data Processing, Merging, Integration on A 

GIS Platform 

Mobile 

RWIS

RSI
Location 

Attributes

Stationary 

RWIS

RST RSI

Kriging Interpolation Using a Prior 

Information Constructed from 

Mobile RWIS

Data Selection at Appropriate Timestamp 

Recommendations of RWIS Location

Geostatistical Modelling

Semivariogram Modelling

Regression Kriging

Comparison with Other 

Interpolation Methods

Phase I Phase II

Figure 3. An overview of proposed methodology framework 

As can be seen from the above figure, a RK model is developed to estimate RSC with geographical 

parameters extracted from remote sensing images in Phase I, in which the model calibration and 

validation are also conducted in this feasibility study.  Other interpolation methods including 

inverse distance weighting (IDW), global polynomial interpolation, etc., are compared with RK to 

verify the superiority of the proposed method. Phase II is built on the first one, using ordinary 

kriging (OK) to interpolate stationary RWIS data with the spatial structure quantified by mobile 
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RWIS data from Phase I. After RSC estimations, a recommendation of new RWIS locations will 

be investigated to help maintenance agencies make a more informed-decision on where additional 

RWIS stations should be deployed to maximize its network monitoring capability. The details of 

the data processing, and how the models are developed will be explained in the following Sections 

3.2 and 3.3. 

3.2 Data Collection and Processing 

The main data collection technique used in this study is via a mobile RWIS unit. It is a newer 

method for collecting road weather and surface information using patrol vehicles equipped with 

innovative technologies such as non-intrusive spectral sensors that provide accurate road surface 

temperature and grip levels that represent road surface slipperiness. Furthermore, the mobile RWIS 

can also provide observations of various parameters that could possibly further contribute to 

explaining the variations in the RST and RSI, including geographical parameters (e.g., latitude, 

longitude, altitude), meteorological parameters (e.g., air temperature, dew-point temperature) and 

road surface condition (e.g., snow cover situation). 

In order to apply the proposed method to estimate RSC variables, auxiliary information such as 

location attributes, geographical and topographical features are required for a thorough analysis. 

Therefore, variables like slope and aspect derived from Digital Elevation Model (DEM) and 

Normalized Difference Vegetation Index (NDVI) calculated by LANDSAT satellite images can 

be used to better explain the spatial variation. Considering the large data sets, a GIS is utilized to 

process and extract the required data in an efficient manner. GIS are computer software packages 

that integrate user-friendly interfaces for storing, retrieving, analyzing, and visualizing all types of 

geographically referable data (Gu et al., 2017). Not only is GIS capable of dealing with vector and 

raster data, but it can also effectively process substantial amounts of geospatial datasets. 
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For stationary RWIS, it collects road surface and weather conditions constantly (every 10-20 min) 

at a fixed location. In this study, the data selected should be near the time when mobile RWIS 

passes by for the sake of comparisons between estimation results and mobile RWIS data. 

Additional geographical and meteorological features are explored to determine the influence they 

have on RSC variations. Factors such as average wind speed and snow on the ground will be used 

to analyze the effects associated with different weather events.  

3.3 Geostatistical Model Development 

3.3.1 Steps for RK model development 

As mentioned earlier, the objective of this study is to develop a methodological framework to 

estimate RSC on a given stretch of roadways as well as between existing RWIS stations. To 

achieve this goal, an advanced geostatistical interpolation method, RK, is developed and 

implemented for a continuous estimation of RST or RSI with help of covariates (i.e., external 

factors). In general, RK can be decomposed into five steps as summarized below: 

i. Perform stepwise multiple linear regression (MLR): This step involves fitting a first-order 

polynomial to each set of target variables, using multiple covariates to better explain 

variations in RST or RSI data; 

ii. Model the covariance structure of the residuals: In this step, collected data is used to 

develop a semivariogram model for each set of RWIS data (see Section 3.3.3 for details); 

iii. Determine kriging estimation map using residuals obtained in Step 1: This step uses RK 

to interpolate the residuals at unknown locations by using semivariograms calibrated in the 

previous step; 
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iv. Perform crossvalidation to ensure the accuracy of the models developed: This step ensures 

that the models developed are accurate using various statistical measures such as RSME or 

MAE. 

v. Generate final RSC estimation maps: This step adds the resulting map obtained in Step 3 

to the regressed map generated in Step 1. The outcome of this step is the final RST and 

RSI estimation maps. 

For Phase II, the semivariogram models that have been previously constructed using mobile RWIS 

data are adopted as prior information to estimate conditions between RWIS stations. The main 

difference between the two phases is that the inputs of the kriging model in Phase II are the 

stationary RWIS data, indicating that the whole RSC map is generated by only a few data points.  

The following Sections 3.2.2 and 3.3.3 introduce the theoretical background of kriging and how 

semivariogram models can be calibrated to represent the underlying spatial structure, respectively. 

3.3.2 Theory of Kriging 

Kriging is a geostatistical interpolation method proposed by the mining engineer D.G. Krige for 

the estimation of mineral content (Goovaerts, 1997). It provides interpolated values at locations 

with no observations or measurements, based on a set of available observations by characterizing 

and quantifying spatial variability of the area of interest. 

Let x and xk be location vectors for the estimation point and a set of observations at known locations, 

respectively, with k = 1, . . . ,m, and Z be a random variable of interest (e.g. RST/RSI). The 

expression of a general kriging model is as follows (Goovaerts, 1997): 

�̂�(𝑥) = 𝑚(𝑥) + ∑ 𝜆𝑘[𝑍(𝑚
𝑘=1 𝑥𝑘) − 𝑚(𝑥𝑘)]    (1) 
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where �̂�(𝑥) is the estimated value of the target variable at a location of interest. The terms m(x)and 

m(xk) are expected values (means) of the random variables Z(x) and Z(xk), and 𝜆𝑘is a kriging weight 

assigned to datum Z(xk) for estimation location x.  

The results of kriging would vary by the model adopted for the random function Z(x) itself but all 

kriging methods share the same goal that the weights k are chosen when estimation error variance 

is minimized: 

𝜎𝐸
2(𝑥) = 𝑉𝑎𝑟{�̑�(𝑥) − 𝑍(𝑥)}                                                (2) 

under the following constraint,  

𝐸{�̑�(𝑥) − 𝑍(𝑥)} = 0                                                        (3)         

The random field, Z(x) can be divided into two components, namely, residual component R(x) and 

a trend component m(x), and presented as 𝑍(𝑥) = 𝑅(𝑥) + 𝑚(𝑥)  with R(x) is the constant 

stationary function with covariance CR(h): 

𝐸{𝑅(𝑥)} = 0,   𝐶𝑜𝑣{𝑅(𝑥), 𝑅(𝑥 + ℎ)} = 𝐸{𝑅(𝑥) ⋅ 𝑅(𝑥 + ℎ)} = 𝐶𝑅(ℎ)                (4) 

where h is a lag or separation distance between the observed points, and CR(h) is the residual 

covariance function, which is typically obtained from a semivariogram model, 𝛾(ℎ). Under a 

second order stationarity assumption (i.e., constant mean, and covariance is dependent solely on 

distance vector h between any pairs of points), the following expression is satisfied (Goovaerts, 

1997): 

𝐶𝑅(ℎ) = 𝐶𝑅(0) − 𝛾(ℎ) = 𝑆𝑖𝑙𝑙 − 𝛾(ℎ)                                  (5) 
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where Sill denotes the semivariance value for large lag distances wherever spatial autocorrelation 

between the data appears to be very small thus negligible. Therefore, the semivariogram that is 

used in the kriging system represents the residual component of the variable of interest. All 

different variants of kriging can be distinguished according to the model considered for the trend 

component, m(x). 

Ordinary Kriging (OK) is one of the most popular kriging methods. It assumes the mean, m(x), is 

unknown but constant over each local neighboring area as depicted in Figure 4. 

 
Figure 4. An example of ordinary kriging 

This implies that OK takes the local fluctuation in to consideration by limiting the domain of 

stationarity of the mean to the local neighbourhood (Olea, 2003), which is of great value for the 

study of environmental or meteorological variables that typically show numerical fluctuations over 

space (Goovaerts, 1997). 

In this case, the kriging  estimator can be written as (Olea, 2003): 

    �̂�(𝑥) = ∑ 𝜆𝑘(𝑥)𝑚
𝑘=1 𝑍(𝑥𝑘) + [1 − ∑ 𝜆𝑘(𝑥)𝑚

𝑘=1 ]𝑚(𝑥)                          (6) 
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The unknown local mean is filtered from the linear estimator by forcing the sum of the OK weights 

to 1. 

While in recent years, to strengthen the explanation of the target variable, hybrid interpolation 

techniques, which combine two conceptually different methods to model and map spatial 

variability, have received attention among geostatisticians. These techniques generate 

interpolations not only based on point observations of the target variable, but also use regression 

analysis on auxiliary variables (e.g., parameters derived from digital elevation models, satellite 

imagery, etc.). One of the most renowned hybrid interpolation methods is RK, which involves 

various combinations of regressions on auxiliary environmental information and kriging (Hengl et 

al., 2007; Ligas and Kulczycki, 2010). The estimations are made separately for the drift (by 

multiple linear regression) and residuals (by OK) and then added back together as shown in 

Equation (7):  

      �̂�(𝑥) = �̂�(𝑥) + �̂�(𝑥) = ∑ �̂�𝑘 ∙ 𝑞𝑘(𝑥) + ∑ 𝜆𝑘 ∙ 𝑒(𝑥𝑘)
𝑚
𝑘=1

𝑝
𝑖=0                                  (7) 

where �̂�(𝑥) is the fitted drift, �̂�(𝑥) is the interpolated residual, �̂�𝑘 are coefficients of the estimated 

drift model and �̂�0 is the estimated intercept, p is the number of auxiliary variables, 𝜆𝑘 are kriging 

weights and 𝑒(𝑥𝑘) is the regression residual. Figure 5 provides a visual representation of the 

general concepts of RK that combines both deterministic and stochastic components of spatial 

variations of the variable under investigation (i.e., RSC).  In this figure, a linear regression model 

is used first to remove the trend of the target variable, followed by kriging interpolation on the 

residuals by characterizing and quantifying the underlying spatial structure of the observed 

measurements (to be further discussed in Section 3.3.3). The estimated residuals are then added 

back to the regression results and generate the final estimations. 
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Figure 5. The general idea of regression kriging 

Specifically, the coefficients �̂�𝑘 of the regression model are estimated using ordinary least squares 

(OLS) or, optimally, generalized least squares (GLS). The advantage of GLS is that it accounts for 

the spatial correlation of the residuals obtained from the regression model. The equation of GLS 

is described as follows: 

   �̂�𝐺𝐿𝑆 = (𝑞𝑇 ∙ 𝐶𝑇 ∙ 𝑞)−1 ∙ 𝑞𝑇 ∙ 𝐶−1 ∙ 𝑧                                               (8) 

Where �̂�𝐺𝐿𝑆  is the vector of estimated coefficients, C is the covariance matrix of residuals 

described below, and q is a matrix of estimates at measured locations. 

     C = [
𝐶(𝑥1, 𝑥1) ⋯ 𝐶(𝑥1, 𝑥𝑛)

⋮ ⋱ ⋮
𝐶(𝑥𝑛, 𝑥𝑛) … 𝐶(𝑥𝑛, 𝑥𝑛)

]                                               (9) 

After the trend has been estimated, the residual can be interpolated using kriging and added back 

to the estimated trend. The regression kriging can be conveniently expressed in matrix notation: 

  �̂�(𝑥) = 𝑞0
𝑇 ∙ �̂�𝐺𝐿𝑆 + 𝜆0

𝑇 ∙ (𝑍 − 𝑞 ∙ �̂�𝐺𝐿𝑆)                                            (10) 
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where 𝑞0 is the vector of p+1 estimates and 𝜆0 is the vector of n kriging weights used to interpolate 

the residuals at unknown locations. 

Previous research indicated that these hybrid techniques tend to outperform the plain geostatistical 

methods such as simple kriging or OK. They can yield more detailed and accurate estimations by 

incorporating various covariates in modeling the trend component (Hengl et al., 2004). Since RST 

is known to be influenced by many external factors, including geographical characteristics and 

meteorological elements, RK is a better option to be considered and thus used in this study. The 

grip information provided by the mobile RWIS are a combination of measurements that take into 

account the road contaminant influence, therefore OK is capable of estimating RSI. 

3.3.3 Semivariogram for building a spatial structure 

Quantifying the spatial autocorrelation structure of the variable of interest is a prerequisite when 

developing any kriging model. The spatial variability can be measured by modeling a 

semivariogram that depicts how the data is correlated with its spatial distance based on the 

observations and location information (Journel and Heuvelink, 1978). Due to scarce data points in 

reality, the points are typically grouped per distance vector h and the resulting semivariogram is 

expressed as follows: 

𝛾(ℎ) =
1

2𝑚(ℎ)
∑ [𝑍(𝑥𝑘) − 𝑍(𝑥𝑘 + ℎ)]2

𝑚(ℎ)
𝑘=1                                         (11) 

where 𝛾(ℎ) is the sample semivariogram, 𝑍(𝑥𝑘) is a measurement taken at location 𝑥𝑘, and 𝑚(ℎ) 

is the number of pairs of observations separated by the lag |h| in the direction of the vector. The 

number of pairs to be estimated in this model should at least be equal to 30. Also, the lag distance 

for an experimental semivariogram should be constrained to half of the diameter in the sampling 
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domain for all direction analysis (Journel and Heuvelink, 1978). Note that there should be no trend 

of systematic variation, thus the estimated result is independent from the individual site 𝑥𝑘 .. 

Generally, three key parameters are used to describe a semivariogram model, including nugget 

effect, sill, and range, as graphically illustrated in Figure 6.  

The nugget effect represents micro scale variations and measurement errors, or any spatial 

variability that exists at a distance smaller than the shortest distance of two measurements. The 

value of h means the lag distance, and the range indicates lag separation distance at which a plateau 

is reached (i.e., values separated by distances greater than this are considered uncorrelated). Sill 

represents the variance of the random field and magnitude of the plateau beyond the range. 

Typically, an experimental semivariogram is smoothed by a mathematical model due to the fact 

that the estimated model is commonly irregular and the real spatial structure of the region is 

unlikely known (Oliver and Webster, 1990). There are many negative definite functions that can 

be fitted to describe the semivariances of the sample data such that, negative values of variances 

can be avoided. The most commonly adopted models are exponential, Gaussian and spherical 

models, and the detailed descriptions of these models can be found in (Olea, 2006). The most 

commonly adopted models are described in Table 4. 

Since it is critical to ensure that the model selected best captures the shape of the spatial variability 

of the observations, assessing the goodness of fit for each model is imperative. Cross-validation is 

one possible approach that can be adopted to quantitatively analyze the performance of a predictive 

model using various statistical measures. It is a verification process in which every single 

observation would be “removed with replacement” to generate an estimate at the same site of the 

removal (Olea, 2006). The difference between the “observed value” and the “estimated value” is 
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regarded as error. The root mean square error (RMSE) value indicates the performance of the 

model. 

Table 4. Most commonly used semivariogram models (adopted from Olea, 2006) 

Exponential          
3
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 Gaussian               
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Figure 6. An example of generic semivariogram with key parameters 

3.4 Other Spatial Interpolation Methods 

Spatial interpolation approaches have been used to estimate unknown surface and analyze the 

spatial distribution of variables of interest in different disciplines (Li and Heap, 2008; Zarco-

Perello and Simões, 2017). The core of a spatial interpolation method is the understanding of the 

geographical features of the sampling data (i.e., observations) to generate the estimation map. 
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According to different mathematical principles, spatial interpolation methods can be generally 

classified into two categories: deterministic and indeterminate (geostatistical) (Yang et al., 2016). 

In terms of deterministic method, the distance or closeness of sample points to neighbours is taken 

into consideration in mathematical functions (e.g., inverse distance weighting, thin plate spline). 

For indeterminate method, it deals with both stochastics and deterministic elements as statistics is 

further used to estimate unknown points (e.g., kriging) (Ziary and Safari, 2007).  In this study, four 

widely used interpolation methods are introduced as a benchmark to verify the performance of RK.  

Inverse Distance Weighting (IDW) 

Inverse distance weighting (IDW) is an exact method that assumes the estimated value of an 

unknown point, and it is influenced more by nearby known points than those far away (Chang, 

2012). The weights assigned to the interpolated locations are the inverse of the distance between 

the samples and the estimated points. The general equation of IDW method is (Robinson and 

Metternicht, 2006; Sankar et al., 2018):  

�̑�(𝑥) =

∑
𝑥𝑖

ℎ𝑖𝑗
𝛽

𝑛
𝑖=1

∑
1

ℎ𝑖𝑗
𝛽

𝑛
𝑖=1

                                                                          (12) 

Where �̑�(𝑥) is the estimated value, n represents the total number of sampling, 𝑥𝑖 is the ith data, 

ℎ𝑖𝑗is the distance between interpolated value and point i,   is the weighting power. 

Global Polynomial Interpolation (GPI) 

Global polynomial interpolation (GPI) method fits a smooth surface that is defined by a 

mathematical function (a polynomial) to the observed points. The GPI changes gradually and 

captures coarse-scale pattern in the sampling data (Apaydin et al., 2004). A slightly varying surface 

is created by low-order polynomials that might capture physical features. Nevertheless, it is more 
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difficult to describe the physical meaning when the polynomial model becomes more complex. 

Not to mention that a single polynomial method may not fit well if the surface has various terrain.  

Local Polynomial Interpolation (LPI) 

Local Polynomial Interpolation (LPI) fits the local polynomial using points only within specified 

overlapping neighborhoods, while GPI fits the entire surface. The estimated value is estimated at 

the center of the neighborhood. LPI is capable of surfaces that captures more local variation 

(Apaydin et al., 2004; Sankar et al., 2018). 

Thin Plate Splines (TPS) 

Thin Plate Splines (TPS) generate the estimated surface that passes through the sample points and 

has the least possible change in slope at all points. In other words, TPS fits the known points with 

a minimum curvature surface. The approximation of TPS is described below: 

�̑�(𝑥, 𝑦) = ∑𝐴𝑖𝑑𝑖
2 𝑙𝑜𝑔 𝑑𝑖 + 𝑎 + 𝑏𝑥 + 𝑐𝑦                                                   (13) 

Where x and y are the coordinates of the interpolated point, 𝑑𝑖 = (𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2, and xi, yi 

are the coordinates of point i, TPS includes two components, one is the local trend function 

represented by 𝑎 + 𝑏𝑥 + 𝑐𝑦, and another is the basis function represented by 𝑑𝑖
2 𝑙𝑜𝑔 𝑑𝑖, which is 

aimed to obtain minimum curvature surfaces (Franke, 1982; Kang tsung Chang, 2012). 

3.5 Summary 

This chapter provides an overview of the proposed methodological framework, detailed 

explanation of data collection, processing, model development and other well-known spatial 

interpolation methods. 

This study first explores the predictability of RSC variations using the geostatistical approach by 

investigating how covariates (i.e., location attributes, topographical parameters) would affect the 
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variation in RSC, followed by the comparative analysis with other spatial interpolation methods. 

According to the semivariogram models developed in Phase I that quantify the spatial structure of 

mobile RWIS data, Phase II of this study uses the calibrated model variables (i.e., sill, nugget, and 

range) in conjunction with stationary RWIS data to infer the conditions between the different pairs 

of existing RWIS stations. Given the complexity of problems being tackled in this thesis, the 

proposed kriging method, which is indeterminate in nature, is anticipated to be a promising method 

that can provide a complete image by capturing the local variation of RSC along any given stretch 

of roads – truly a unique feature that will make up for the limitations of previous research.  

 

  



36 

 

CHAPTER 4. CASE STUDY 

The proposed methodology is applied via case study covering selected stretches of 

Highways 2 and 16 (approx. 300 km and 180 km in length) in the province of Alberta, as shown 

in Figure 7. The figure also shows the location of existing RWIS stations currently in operation. 

There is a total of eleven stationary RWIS stations (red triangle) sited along the survey route: four 

on Highway 16 and seven on Highway 2. These two highways are chosen due to their available 

data for nocturnal weather events, varied topographical terrain, and environmental conditions, such 

as residential areas, prairie expanses, and woodland habitats. For the feasibility study of RK, these 

two routes were segmented into three sections (i.e., A, B, and C) to minimize the potential effects 

associated with temporal variations of the RSC variables under investigation, with each of the 

routes being approximately 60km (for Highway 16) and 100km (for Highway 2) long. 

 

Figure 7. Study area of this research 
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4.1 Data Description and Processing 

The mobile RWIS data points collected in this study are constantly logged every 3 seconds as the 

vehicle travels along the road, and it can provide spatially continuous measurements, providing 

the unique opportunity to calibrate robust statistical models. Although mobile RWIS cannot 

measure the surface friction directly, it can provide a grip value varying from 0 to 1, which 

represents road slipperiness. Thus, the grip value is assumed to be identical to RSI to represent 

road surface condition. Additionally, the location attributes (e.g., latitude, longitude, altitude) 

collected via mobile RWIS are also used to analyze the RSC variation. 

Data sets collected by mobile RWIS are from twelve surveys carried out over four winter nights 

on Highway 16, and six surveys carried out on two winter nights on Highway 2. The descriptive 

statistics of the RST and RSI data for Highways 16 and 2 are summarized in Tables 5 and 6, 

respectively. 

Road surface temperature, road surface status, wind speed, etc. are recorded every 20 minutes by 

stationary RWISs located in the study area. The temporally continuous RST information is used 

as a model input to estimate RST conditions between RWIS stations. Besides wind speed, snow 

on ground condition obtained from Environment Canada’s (EC) weather stations near the road of 

interest, are used to classify weather conditions to further generalize the findings. 

In this study, Esri’s ArcGIS 10.3 is used for data processing. The RST and RSI datasets with the 

same spatial reference from mobile RWIS were converted into shapefiles and imported with other 

geographical parameters. The data points were joined to generate vector road data; in this case, 

each point would have road attribute data appended to it. Furthermore, to reduce the mathematical 

complexity of the proposed method and obtain representative geographical data, a uniform buffer 
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zone of 500m was created as a minimum spatial grid to aggregate the observations. Measurements 

of variables that fell within each equal-length cell were averaged and assigned to the centroid by 

a geoprocessing tool available in ArcGIS. 

Table 5. Descriptive analysis of RST and RSI data on Highway 16 

Highway 

16 

Segment    

Date 

RST(oC) RSI   

Min Max Mean STD Min Max Mean STD 
No. of 

Records 

A 

20150203 -16.1 -9.4 -13.67 0.73 0.11 0.82 0.70 0.22 679 

20150209 -11.1 -8.2 -9.22 0.44 0.13 0.82 0.78 0.11 658 

20141218 -11.5 -2.4 -8.82 0.90 0.6 0.82 0.82 0.02 669 

20161201 -21.8 -17.5 -19.62 0.77 0.12 0.82 0.73 0.14 654 

B 

20150203 -15.8 -11.7 -13.68 0.82 0.1 0.82 0.71 0.22 674 

20150209 -11.4 -7.9 -9.07 0.55 0.17 0.82 0.79 0.08 651 

20141218 -12.5 -7.4 -9.94 1.17 0.36 0.82 0.81 0.03 647 

20161201 -3.1 -0.4 -1.54 0.63 0.55 0.82 0.81 0.02 671 

C 

20150203 -14.6 -10.6 -12.47 0.58 0 0.82 0.79 0.11 657 

20150209 -11.5 -7.8 -9.07 0.45 0.35 0.82 0.80 0.07 649 

20141218 -10.7 -5.1 -7.42 1.12 0.59 0.82 0.82 0.02 639 

20161201 -2.5 0.1 -0.73 0.06 0.55 0.82 0.81 0.01 663 

Table 6. Descriptive analysis of RST and RST data on Highway 2 

Highway 

2  

Segment    

Date 

RST RSI   

Min Max Mean STD Min Max Mean STD 
No. of 

Records 

A 
20150209 -11.3 -6.3 -9.12 0.96 0.12 0.82 0.81 0.04 1306 

20150113 -4.2 -0.8 -2.63 0.61 0.26 0.82 0.80 0.07 883 

B 
20150209 -12.9 -9.6 -11.02 0.72 0.21 0.82 0.71 0.15 1269 

20150113 -7.4 -0.3 -2.52 0.88 0.24 0.82 0.85 0.06 984 

C 
20150209 -12.5 -8.3 -10.57 0.83 0.42 0.82 0.77 0.08 775 

20150113 -3.2 1 -0.76 1.03 0.78 0.82 0.81 0.01 811 
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The variable slope was derived from DEM using standard surface analysis functions embedded in 

ArcGIS. For studying the influence of spatial vegetation cover, Landsat satellite images were used 

to calculate NDVI as shown in Figure 8.  

 
Figure 8. Landsat satellite images used for DEM calculations 

The collected images contain reflected light bands in the spectrum of blue, green, red, near-

infrared, etc. Since the data comes in a raster format, it can be conveniently integrated and 

calculated from RED and NIR reflectance on a GIS platform with the following equation: 

NIR RED
NDVI

NIR RED

−
=

+   
(14) 

The result of NDVI varies from -1 to +1; a value close to zero refers to barren areas of rock, or 

sand, and a value closer to +1 indicates a high density of green vegetation. Consequently, five 

geographical factors, namely, latitude, longitude, altitude, slope, and NDVI are considered for RST 

estimation in this study. For RSI, OK is employed since the regression analysis can hardly explain 

the variation of RSI. 
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4.2 Classification of Weather Events 

4.2.1 Classification For RST 

According to Thornes’ (1991) study, RSC variations usually decrease in line with atmospheric 

stability (Chapman et al., 2001a; Thornes, 1991). The general temperature trends remain constant 

under similar weather conditions. To better generalize the findings of the developed models and 

further improve their transferability, the weather conditions can be categorized into four categories 

based on the Thornes Classification method. Since wind speed takes the key role in this method, 

and considering the lack of cloud cover data, only the wind speed index will be used to classify 

the weather events. The four categories and the criteria are shown in Table 7, and the classification 

results (i.e., category) are illustrated in Table 8. 

4.2.2 Classification For RSI 

RSI is more complex when compared to RST. When the road surface condition is completely dry 

or snow covered, the grip collected by mobile RWIS is consistent and the semivariogram model 

might not be able to quantify the data structure, since the data feature is not significant. Equally 

important, estimating homogeneous road surface conditions whose surface index would likely be 

uniform, thus easily predictable, has less practical value in. Therefore, the weather event 

classification method will only be applied when the road surface friction undergoes a considerable 

amount of fluctuation. According to literature review, road contaminants (e.g., water, snow, ice) 

were found to be one of the key factors affecting RSI and is negatively correlated with RSI. With 

the snow on ground data from Environment Canada, the weather events were classified into three 

categories, shown in Table 9 and the resulting categories for all study segments are shown in Table 

10. 
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Table 7. Classification of weather events for RST estimation 

Surface Wind Speed (m/s) Category 

<2 extreme 

2-3 light 

3-5 moderate 

<5 damped 

 

Table 8. Weather events of different segments for RST estimation 

Highway Segment Date Avg. wind speed (km/h) Category 

Highway 16 

A 20150209 2.70 extreme 

A 20141218 3.06 extreme 

A 20150203 8.64 light 

A 20161201 6.60 extreme 

B 20150209 3.24 extreme 

B 20141218 5.28 extreme 

B 20150203 10.2 light 

B 20161201 15.25 moderate 

C 20150209 8.52 light 

C 20141218 4.68 extreme 

C 20150203 14.40 moderate 

C 20161201 10.20 light 

Highway 2 

A 20150209 11.34 moderate 

A 20150113 21.60 damped 

B 20150209 8.46 light 

B 20150113 12.20 moderate 

C 20150209 8.64 light 

C 20150113 12.69 moderate 
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Table 9. Classification of weather events for RSI estimation 

Snow on Ground (cm) Category 

<15 low 

15-30 light 

20-45 moderate 

46> heavy 

 

Table 10. Weather events of different segments for RSI estimation 

Highway Segment Date Snow on Ground (cm) Category 

Highway 16 

A 20150209 42 moderate 

A 20141218 19 light 

A 20150203 47 heavy 

A 20161201 14 low 

B 20150209 32 moderate 

B 20141218 22 light 

B 20150203 44 moderate 

B 20161201 10 low 

C 20150209 22 light 

C 20141218 25 light 

C 20150203 17 light 

C 20161201 5.0 low 

Highway 2 

A 20150209 25 light 

A 20150113 21 light 

B 20150209 25 light 

B 20150113 22 light 

C 20150209 25 light 

C 20150113 20 light 
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4.3 Phase I –Feasibility Evaluation of RK for Estimating RSC 

4.3.1 Model development for RST 

As previously described, the RK model can be developed using a few key steps. Firstly, a multiple 

linear regression (MLR) analysis is performed to see how much the variance in RST could be 

explained by select geographical parameters, including latitude, longitude, altitude, slope and 

NDVI. Secondly, a semivariogram model is applied to quantify the data structure and then the 

kriging interpolation approach is used to modify the estimated RST obtained from MLR. The last 

part of the process is the validation of the calibrated models.  

The stepwise MLR analysis was performed using the SPSS software by fitting a first-order 

polynomial to each set of the target variables and ensuring the variable is free of trend. Note that 

a 95% confidence interval was adopted to test the significance of each parameter and the p-value 

was used to confirm if the independent variable was statistically significant at a significance level 

of 5%. Tables 11 and 12 show the MLR results for Highways 16 and 2, respectively. 

By inspecting the sign of coefficients, all regression coefficients of geographical parameters make 

intuitive sense. For instance, the surface temperature increases when the NDVI value increases 

due to higher density of green vegetation. Furthermore, the studied Highway 16 is placed in west-

east directions, which implies a greater variation along longitude axis. In this case, the RST 

decreases with the increase of longitude. For Highway 2, longitude also has a negative effect on 

RST. The trends continue for latitude and altitude as the RST drops as it moves north and to a 

higher elevation. Slope, the measure of the steepness or the degree of inclination of the horizontal 

plane, also has a negative relationship with RST, as expected. 
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Table 11. Summary of MLR results for RST estimation on Highway 16 

Segment    Date Category 
Significant 

Variables 

Sign of 

Coefficients 
R2 

A1 20141218 Extreme longitude / slope        (-)  / (-) 42% 

A2 20150203 Light longitude / NDVI (-) / (+) 28% 

A3 20150209 Extreme longitude / slope (-)  / (-) 68% 

A4 20161201 Extreme altitude / NDVI (-) / (+) 72% 

B1 20141218 Extreme latitude / NDVI (-) /  (+) 65% 

B2 20150203 Light latitude / NDVI (-) / (+) 51% 

B3 20150209 Extreme longitude / altitude (-) / (-) 36% 

B4 20161201 Moderate longitude (-) 83% 

C1 20141218 Extreme longitude / NDVI (-) / (+) 49% 

C2 20150203 Moderate slope (-) 1% 

C3 20150209 Light slope (-) 9% 

C4 20161201 Light latitude (-) 40% 

 

Table 12. Summary of MLR results for RST estimation on Highway 2 

Segment    Date Category 
Significant 

Variables 
Sign of 

Coefficients 
R2 

A1 20150209 Moderate longitude / latitude        (-) / (-)                84% 

A2 20150113 Damped latitude (-)                    26% 

B1 20150209 Light latitude / slope (-) / (-)                73% 

B2 20150113 Moderate latitude (-)                               10% 

C1 20150209 Light altitude (-)                                 49% 

C2 20150113 Moderate 
altitude / longitude   

NDVI 
(-) / (-)           

(+) 
87% 
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The predictive ability of the regression models varies a lot for both highways. One possible cause 

of these results could be different weather conditions. In general, the predictive ability of the model 

is lower in damped conditions than in extreme conditions. The major reason for this is that when 

the atmospheric stability is low, the model cannot accurately incorporate the impacts of topography 

due to the more complex surface conditions, which could potentially impede the accuracy of the 

model. Overall, the shortfalls in RST estimations suggest that using MLR alone may not achieve 

desirable results and that the proposed kriging method be incorporated to further refine the model 

and improve the accuracy. 

Following the previous analysis, the next two steps are to quantify and model the spatial 

autocorrelation structure of the residuals of the target variable and generate an estimation map 

accordingly. In this case, 70% of observed data for each event were chosen randomly as the 

training datasets, and the remaining 30% were used as the testing datasets. To fulfill these tasks, 

extensive amount of effort has been put forth to develop a robust semivariogram for all the analysis 

days under investigation. The mathematical semivariogram used to smooth the experimental 

model here is stable model, which is more flexible than exponential and Gaussian models. The 

equation of stable semivariogram is shown below: 

γ(ℎ) = 𝜎(0) [1 − exp (−
3ℎ𝜔

𝑟𝜔 )]                                                 (15) 

where 𝜎(0) is sill, r is the effective range parameter; distance at which 95% of sill reached. As 

described previously, nugget, sill, range and the power value ω are summarized in Table 13. 

Using the semivariogram models developed for each event date, RK technique is employed to 

interpolate the values at unobserved locations and generate residual estimation maps. The residual 

maps are then added back to the generated maps using MLR in the previous step. The following 
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figures show two examples of the estimation results for Highways 16 and 2. To ensure the models 

selected provide the best fit, crossvalidation is used to quantitatively assess the “goodness of fit” 

using various statistical measures such as root-mean-square-error (RMSE). It is a verification 

process in which each observation is “removed with replacement” to estimate a new value at the 

same site of the removal. After that, 30% testing datasets are used to validate the kriging estimation. 

Validation is a necessary step to further test the goodness of fit of the calibrated model using RMSE 

or other measures. The crossvalidation results of model performance are depicted in Figure 9 (b, 

d) and the detailed statistics are summarized in Table 14. 

Table 13. Semivariogram models for RST 

Highway Segment Date 

RST 

Nugget Sill 
Range 

(km) 

Power 

value 

Highway 

16 

A 

20141218 0 0.3233 17.92 0.57 

20150203 0 0.3269 5.24 0.88 

20150209 0.0317 0.3906 13.95 0.87 

20161201 0.0177 0.1188 2.55 2.00 

B 

20141218 0.0386 0.3991 5.14 1.22 

20150203 0.0742 0.2657 2.51 1.77 

20150209 0.0284 0.2014 14.13 1.07 

20161201 0 0.0793 19.04 0.78 

C 

20141218 0.1306 0.6967 24.51 1.03 

20150203 0.0663 0.203 19.71 1.21 

20150209 0.0267 0.1993 26.04 1.84 

20161201 0.0105 0.3626 10.29 1.83 

Highway 

2 

A 
20150209 0.0153 0.0546 5.133 1.54 

20150113 0.0001 0.1158 0.935 2.00 

B 
20150209 0 0.119 32.344 0.61 

20150113 0.021 0.47 5.774 1.53 

C 
20150209 0.017 0.2052 12.787 1.16 

20150113 0.019 0.1026 6.479 1.46 
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Figure 10 and 11 vividly show the comparison between the estimation results and the observations 

for Segment A. A visual inspection confirms that the estimated RST models well capture the 

general variation pattern seen in the observed dataset. The largest difference between the estimated 

and observed values is less than 0.5oC, attesting the strong predictability of the RK models 

developed in this study. 

  

(a) RST map for highway 16 (b) RST map for highway 2 

 

 

(c) Crossvalidation for highway 16 (d) Crossvalidation for highway 2 

Figure 9. Final RST estimation results for two highways on same date: February 9th, 2015 

Sample: 99 

RMSE: 0.162 
Sample: 85 

RMSE: 0.152 
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Figure 10. Estimated RST vs observed RST for Highway 2 segment A 

 

Figure 11. Estimated RST vs observed RST for Highway 16 segment A 

As for the crossvalidation of training data sets, the RMSE values of all study segments were found 

to be relatively small, indicating a good estimation capability of the developed models. 
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Additionally, the average RMSE value from validation of the testing datasets is 0.275oC, 

representing a good performance of the estimation models and further supporting the significant 

forecasting ability of the developed models. To see how close the data are to the fitted kriging 

models, the mean standardize error was calculated and the value is -0.001, which is almost equal 

to zero. This shows that it greatly enhances the predictive power of the MLR models. All the results 

of this study indicate that RK has the potential to be adopted to improve the accuracy of model 

outputs by taking into account the geographical parameters and quantifying the autocorrelation 

structure of the variable under investigation.  

Table 14. Summary of model results for RST estimation 

Highway Segment Date Category 
RMSE of 

Calibration 

RMSE of 

Validation 

Highway 

16 

A 

20141218 light 0.382 0.455 

20150203 heavy 0.364 0.318 

20150209 moderate 0.152 0.162 

20161201 low 0.221 0.469 

B 

20141218 light 0.365 0.369 

20150203 moderate 0.39 0.407 

20150209 moderate 0.23 0.239 

20161201 low 0.11 0.285 

C 

20141218 light 0.373 0.442 

20150203 light 0.271 0.33 

20150209 light 0.154 0.231 

20161201 low 0.122 0.136 

Highway 

2 

A 
20150209 light 0.175 0.159 

20150113 light 0.275 0.376 

B 
20150209 light 0.157 0.153 

20150113 light 0.258 0.214 

C 
20150209 light 0.179 0.21 

20150113 light 0.001 0.001 
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4.3.2 Model development for RSI 

As mentioned above, the mobile RWIS provides grip information to represent road surface 

slipperiness. The grip value varies from 0 to 1, indicating a perfectly icy condition to a perfectly 

dry condition, respectively. Since the characteristic of grip is quite close to RSI, the grip value is 

used to represent RSI in this study. 

The grip value is not a direct measurement as road surface friction is; however it is calculated by 

a certain algorithm that takes into consideration the road surface contaminants, such as snow and 

ice. Since road surface slipperiness may well be associated with physical randomness, and the 

factors attributing to such are difficult to define, OK approach is implemented to model RSI values. 

Since the previous analysis has proven the good performance of the kriging model and 

crossvalidation is a strong statistical method to evaluate the model goodness of fit, all the RSI 

datasets are used in model calibration this time.  

The procedure required to develop OK models is the same as the three steps described previously. 

It is worthwhile reiterating that the semivariogram and kriging models no longer need to deal with 

residuals obtained from the MLR analysis and that the end results of OK are the interpolated RSI 

maps (refer to Section 3.3.2 for details). Table 15 shows the developed semivariogram models and 

Figure 12 shows two examples of RSI estimation maps for different highways.  
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Table 15. Semivariogram models for RSI estimation 

Highway Segment Date 

RSI 

Nugget Sill 
Range 

(km) 

Power 

value 

Highway 

16 

A 

20141218 1.48E-03 4.71E-03 2.35 1.99 

20150203 0.00E+00 5.12E-02 5.18 1.13 

20150209 3.15E-03 9.10E-04 1.79 2.00 

20161201 0.00E+00 1.15E-03 19.92 0.32 

B 

20141218 1.17E-04 1.63E-05 3.84 2.00 

20150203 0.00E+00 4.78E-02 22.11 0.36 

20150209 1.02E-03 3.73E-03 6.81 1.32 

20161201 6.99E-06 8.70E-05 4.98 1.12 

C 

20141218 2.31E-04 1.41E-04 7.57 0.89 

20150203 4.19E-03 3.40E-03 4.44 1.73 

20150209 9.97E-04 2.21E-03 4.38 1.93 

20161201 0.00E+00 6.10E-05 33.93 0.36 

Highway 

2 

A 
20150209 2.46E-04 1.19E-04 34.733 1.97 

20150113 2.38E-04 5.30E-05 1.427 1.35 

B 
20150209 0.00E+00 7.25E-03 2.169 0.85 

20150113 0.00E+00 9.49E-04 11.804 0.41 

C 
20150209 0.00E+00 2.45E-03 2.627 0.92 

20150113 7.00E-06 2.06E-05 6.016 0.89 
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(a) RSI map for highway 16 (b) RSI map for highway 2 

  

(c) Crossvalidation for highway 16 (d) Crossvalidation for highway 2 

Figure 12. Final RSI estimation results for two highways on two dates 

After kriging interpolation, crossvalidation is used to measure model performance. The results are 

shown in Table 16. The RMSE values are quite close to zero with its average value for all events 

being 0.046ºC and it is even smaller than the RST estimation results. This may be caused by the 

small magnitude of RSI data sets. These results also represent the strong predictive power of 

kriging models. Figure 13 and 14 indicate that the estimation error is less than 0.1, which also 

supports the satisfactory performance of this model. Additionally, if other auxiliary information 

Sample: 141 

RMSE: 0.004 

Sample: 121 

RMSE: 0.005 
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like traffic information and meteorological parameters are available, RK can also be applied to 

improve the model performance. 

 

Figure 13. Estimated RSI vs observed RSI for Highway 2 Segment A 

 

Figure 14. Estimated RSI vs observed RSI for Highway16 segment A 

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

5
1
.3

0
4

5
1
.3

2
2

5
1
.3

4
2

5
1
.3

6
1

5
1
.3

8
0

5
1
.4

0
0

5
1
.4

1
8

5
1
.4

3
7

5
1
.4

5
2

5
1
.4

6
8

5
1
.4

8
7

5
1
.5

0
7

5
1
.5

2
6

5
1
.5

4
5

5
1
.5

6
4

5
1
.5

8
4

5
1
.6

0
3

5
1
.6

2
2

5
1
.6

4
1

5
1
.6

6
0

5
1
.6

8
0

5
1
.6

9
9

5
1
.7

1
8

5
1
.7

3
7

5
1
.7

5
6

5
1
.7

7
6

5
1
.7

9
5

5
1
.8

1
4

5
1
.8

3
3

5
1
.8

5
2

5
1
.8

7
2

5
1
.8

9
1

R
S

I

Latitude

Estimated RSI vs Observed RSI - Highway 2 Segment A

20150113_ObsRSI 20150113_PreRSI 20150209_ObsRSI 20150209_PreRSI

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-1
1

6
.3

9
9

-1
1

6
.3

7
7

-1
1

6
.3

5
5

-1
1

6
.3

3
3

-1
1

6
.3

1
2

-1
1

6
.2

8
9

-1
1

6
.2

6
7

-1
1

6
.2

4
4

-1
1

6
.2

2
3

-1
1

6
.2

0
0

-1
1

6
.1

7
8

-1
1

6
.1

5
6

-1
1

6
.1

3
3

-1
1

6
.1

1
2

-1
1

6
.0

8
8

-1
1

6
.0

6
7

-1
1

6
.0

4
4

-1
1

6
.0

2
4

-1
1

6
.0

0
2

-1
1

5
.9

8
0

-1
1

5
.9

5
8

-1
1

5
.9

3
6

-1
1

5
.9

1
4

-1
1

5
.8

9
1

-1
1

5
.8

6
9

-1
1

5
.8

4
7

-1
1

5
.8

2
5

-1
1

5
.8

0
2

-1
1

5
.7

8
0

-1
1

5
.7

5
8

-1
1

5
.7

3
5

-1
1

5
.7

1
3

-1
1

5
.6

9
2

-1
1

5
.6

6
9

-1
1

5
.6

4
7

-1
1

5
.6

2
4

-1
1

5
.6

0
2

-1
1

5
.5

8
0

-1
1

5
.5

5
8

-1
1

5
.5

3
5

R
S

I

Latitude

Estimated RSI vs Observed RSI - Highway 16 Segment A

20141218_ObsRSI 20141218_PreRSI 20150209_ObsRSI 20150209_PreRSI

20150203_ObsRSI 20150203_PreRSI 20161201_ObsRSI 20161201_PreRSI



54 

 

Table 16. Summary of model results for RSI estimation 

Highway Segment Date Category 
RMSE of 

Crossvalidation 

Highway 

16 

A 

20141218 light 0.047 

20150203 heavy 0.085 

20150209 moderate 0.169 

20161201 low 0.036 

B 

20141218 light 0.011 

20150203 moderate 0.157 

20150209 moderate 0.041 

20161201 low 0.005 

C 

20141218 light 0.018 

20150203 light 0.075 

20150209 light 0.036 

20161201 low 0.006 

Highway 

2 

A 
20150209 light 0.018 

20150113 light 0.020 

B 
20150209 light 0.068 

20150113 light 0.029 

C 
20150209 light 0.040 

20150113 light 0.004 

 

4.3.3 Weather Events Influence on RSC Variations 

By examining one of the critical semivariogram model parameters, the sill, which represents the 

variance in data based on the spatial structure, varies a lot. For example, the values vary from 0.05 

to 0.7 of RST data, and from 1.6E-5 to 0.05 of RSI data. Similarly, the range of each data set also 

varies to a greater extent. One possible cause for different semivariogram values could be 
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attributed to the differences in weather conditions. To verify this possibility, the exponential 

semivariogram model, rather than the optimally fitted model, was used to re-calculate the range of 

detrended RST and non-detrended RSI data. The relationship between the sill values and the event 

category can be seen in Figure 15 and 16. 

In terms of RST semivariogram, the sill values are found to be negatively correlated with weather 

events, which means when the wind speed increases, surface temperature tends to be more 

consistent and the variability is low. For RSI, it shows a different pattern, in that the sill values 

increase with heavier snow amounts. If the surface is perfectly dry or snow covered, the RSI value 

will be fairly consistent along the whole road segment, which is easy to distinguish. This finding 

can be particularly useful when making an inference about estimating road surface temperatures, 

via different weather groups, since the parameters for both the semivariogram and kriging models 

should be similar for each. 

 

Figure 15. The relationship between semivariogram sill and RST weather category 
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Figure 16. The relationship between semivariogram sill and RSI weather category 

4.3.4 Comparison with Other Spatial Interpolation Methods 

For a long time, spatial interpolation methods have been investigated to estimate the spatial 

distribution of the variable of interest. The accuracy of the interpolation results is influenced by 

many aspects, like data density, measurement error, and topography or other climate factors (Jain 

and Flannigan, 2017). However, these methods have been seldom applied to estimate the road 

surface conditions. In order to explore whether, the proposed method RK performs better than 

other methods, four widely applied interpolation methods including inverse distance weighting 

(IDW), global polynomial interpolation (GPI), local polynomial interpolation (IPL), thin plate 

spline (TPS) are compared with RK to estimate RST using mobile RWIS data. 

The details about how these interpolation methods work are introduced in section 3.4. For 

evaluating and comparing the model performance, the crossvalidation technique is adopted. The 

sample data was arbitrarily divided into two datasets, with one used to train a model and the other 
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measurement is used to assess the accuracy of interpolation results. Table 17 shows the 

crossvalidation results of different methods. In terms of segment analysis, RK outperforms the 

other methods for all segments except Highway 16, segment B. For that case, the difference 

between RMSE values of RK and LPI is quite small; almost negligible. It is more obvious that RK 

has the smallest average RMSE with regards to overall model evaluation. To quantify the relative 

performance, the percentage improvement of RK over other interpolation methods is also 

calculated. It is clearly indicated that RK is able to increase the performance over each model by 

at least 9%. The accuracy of interpolation results will increase by approximately 50% when RK is 

chosen to replace GPI. 

One possible reason to explain this result is that RK not only deals with the deterministic element, 

it also deals with stochastic part compared with other methods. It incorporates data spatial 

autocorrelation and statistically optimizes the weights to estimated unknown locations. This 

comparison analysis shows the importance of the proposed method for RSC estimation 

improvement. 

Table 17. Crossvalidation results of all the interpolation methods 

Highway Segment RK IDW GPI LPI TPS 

16 

A 0.281 0.302 0.472 0.323 0.348 

B 0.266 0.278 0.502 0.266 0.284 

C 0.230 0.237 0.489 0.246 0.265 

2 

A 0.225 0.231 0.346 0.253 0.242 

B 0.208 0.239 0.499 0.218 0.218 

C 0.090 0.177 0.420 0.177 0.140 

Average RMSE  0.231 0.253 0.466 0.257 0.266 

Performance 

increased by 

 

N/A 8.92% 50.44% 10.05% 13.13% 
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4.4 Phase II – Applicability of RK for Inferring RSC via Stationary RWIS 

Since what is commonly available to highway maintenance personnel is stationary RWIS data, 

further investigation would be required to infer the RSC using stationary RWIS data, based on the 

findings generated from mobile RWIS data. As the semivariogram models developed in Phase I 

are used to quantify the spatial structure of our mobile RWIS data, it is worthwhile to scrutinize 

how the model variables (i.e., sill, nugget, and range) could be used in conjunction with stationary 

RWIS data to conjecture the conditions between the RWIS stations. Therefore, the following study 

aims at applying the RK method to integrate the stationary and mobile RWIS data to draw a 

compete map of RSC. 

As no related RSI or grip information is provided by stationary RWIS, RST data sets are chosen 

to show the idea of the proposed method. In addition, the preliminary comparison of stationary 

and mobile RWIS data reveals that there is about 2oC difference between the two data collection 

methods. This difference may be due to different senor types as well as testing locations. For 

example, stationary RWIS sensors are more likely to be affected by the accumulation of surface 

contaminants (i.e., snow, ice). Since the primary goal of Phase II is to propose a methodological 

framework that estimates conditions between each pair of existing RWIS stations using known 

semivariogram models, RST collected by a stationary RWIS is assumed to be the same as that 

collected by a mobile RWIS unit, at a similar time and location. 

The study area of Phase II is extended to include more RWIS stations and includes total length of 

approximlately150 km of Highway 16, starting from Edson, and a main section of Highway 2, 

between Edmonton and Calgary (approx. 180 km and 300 km in length). This analysis will focus 

on the whole stretch of highways instead of segment analysis. There are four RWIS stations on 

Highway 16 and seven stations on Highway 2, while one station on Highway 2 does not work 
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(marked in grey), as shown in Figure 17. Thus, data from six stations are considered in this analysis. 

In addition, the stationary RWIS measurement used for interpolation is at or close to the time when 

a mobile RWIS unit passes by such that the estimated RSC can be compared with mobile RWIS 

measurements to validate the model performance. Table 18 summarizes the locations of and 

surrounding information for these stations.  

 
Figure 17. Current RWIS stations on Highway 16 and Highway 2 

Table 18. Geographical information of RWIS stations 

Highways 16 & 2 RWIS Station Information 

ID Lat Long Altitude Slope 

MX0500 53.578 -116.046 884.900 1.772 

MX0501 53.609 -115.207 800.000 0.569 

MX0502 53.582 -114.546 794.000 0.841 

MX0503 53.571 -113.875 670.000 0.472 

MX0473 -114.025 51.534 1037.890 1.989 

MX0474 -114.026 51.898 992.100 1.260 

MX0475 -113.664 52.608 839.670 2.037 

MX0476 -113.856 52.331 892.185 0.593 

MX0477 -113.643 52.890 796.790 2.050 

MX0478 -113.568 53.236 736.290 1.062 
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4.4.1 Application of RK for RSC Estimations using Stationary RWIS Data 

Understanding the spatial structure that indicates how data varies over the space of RSC is essential 

before interpolating stationary RWIS data. Hence, the semivariogram models developed from the 

residuals of MLR using mobile RWIS in Phase I of this thesis become the foundation of Phase II. 

The MLR model generated previously using mobile RWIS data is applied to stationary data to 

remove the possible influence from the geographical features. After this, OK is implemented to 

interpolate the stationary RST residuals with the semivariogram model variables (i.e., sill, nugget, 

and range) constructed in Phase I. Lastly, the interpolated results are added back to the MLR 

estimations to generate final OK estimates, which are then validated using mobile RWIS 

observations. All the analyses have been conducted in R statistical computing environments with 

a “gstat” package (Pebesma, 2004). 

As mentioned previously, the stepwise MLR analysis was first applied to mobile RWIS data to 

remove the possible influence of external features (i.e., geography and topography) on RST 

variations. Note that the significance of each parameter was tested on the bases of the 95% 

confidence interval and a 5% level of significance. Table 19 shows the MLR results for whole 

stretch of Highways 16 and 2, respectively. 

From Table 19, it can be clearly seen that all regression coefficients pertaining to geographic 

characteristics make intuitive sense. However, none of the variables are significant for Highway 

16, on 29th February, 2015, indicating the geographical factors have little influence on the 

variation on RST. Since the purpose of the regression analysis is to detrend the data, if there is no 

trend caused by related covariates, the residuals will be calculated by subtracting the local mean 
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of the data sets. The same MLR model is also applied on stationary RWIS measurement to 

calculate the residuals for further analysis. 

Table 19. MLR results for Highway 16 and Highway 2 analysis 

Highway  Date 
Significant 

Variables 

Sign of 

Coefficients 
R2 

Highway 16 

20141218 latitude (-) 61% 

20150203 latitude (-) 37% 

20150209 - - - 

20161201 altitude (-) 83% 

Highway 2 

20150113 altitude (-) 37% 

20150209 longitude / slope (-) / (-) 15% 

Next step is to use semivariogram to quantify the spatial autocorrelation structure of the mobile 

RWIS residuals, which is a prerequisite for the interpolation of stationary data. The three key 

parameters of semivariogram model are summarized in Table 20. The semivariogram model 

developed herein will replace the one that should be generated by stationary RWIS data during 

kriging interpolation, as it is able to provide a clearer insight of RST variation than that developed 

only by several stationary observations. To compare with observed mobile RWIS data, the 

estimation results will be added back to the MRL results of both stationary and mobile RWIS data.  

Table 20. Semivariogram models for residuals of RST from mobile RWIS 

Highway Date Nugget Sill 
 Range 

(km) 

Highway 16 

20141218 0 1.4 25.84 

20150203 1.2 1.8 20.53 

20150209 0.01 0.29 34.32 

20161201 0 0.33 14.41 

Highway 2 
20150113 0 1 17.28 

20150209 0.04 0.62 46.13 



62 

 

The following Figures 18 and 19 show two examples of the estimation results for Highways 16 

and 2, respectively. The grey bars indicate the location of the RWIS stations. As can be seen from 

these figures, the general trend of how RST variance is well captured by the estimation results, 

especially on days that the fluctuation of RST is not dramatic. 

 
Figure 18. Estimated RST vs observed RST on 20161201 for Highway 16 

 
Figure 19. Estimated RST vs observed RST on 20150209 for Highway 2 
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To better evaluate the model performance, statistical measurements, including mean absolute error 

(MAE), root mean square error (RMSE), and standardize root mean square error, are adopted to 

quantitatively assess the goodness of fit. MAE measures the average magnitude of the errors in 

estimation and RMSE indicates how closely the model estimates the measured values. For 

standardized RMSE, the value should be close to one if the estimation standard errors are valid. 

The evaluation of model performance is depicted in Table 21. 

According to Table 21, it is noticeable that all the MAE and RMSE values are smaller than 1oC, 

indicating a good estimation capability. In terms of Standardized RMSE, all the values are close 

to one that demonstrates the estimated results have similar variability with the observed data. The 

model validation results show the feasibility to apply RK to integrate stationary and mobile RWIS 

data together to improve the accuracy of RST estimation. 

Table 21. Summary of model performance 

Highway Date MAE RMSE 
Standardized 

RMSE 

Highway 16 

20141218 0.87 0.88 1.09 

20150203 0.52 0.66 1.04 

20150209 0.31 0.41 1.01 

20161201 0.34 0.43 1.04 

Highway 2 
20150113 0.63 0.79 1.07 

20150209 0.44 0.52 1.02 

 

4.4.2 Sensitivity Analysis 

Sensitivity analysis is a common technique to perform quantitative assessments that evaluate how 

different model inputs will impact the uncertainty of the outputs under a given set of assumptions. 
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In this case, the sensitivity analysis is conducted to verify whether the changes in data density (i.e., 

number of RWIS stations) will affect the model performance. As there are only a few stations on 

the area of interest, the mobile RWIS measurements have been randomly selected and assumed to 

represent additional “new stationary RWIS” to scrutinize the performance of the developed models.  

Table 22 describes the evaluation of the sensitivity analysis. 

Table 22. Sensitivity analysis results 

Highway Date 
# of stns + 

added stns 
MAE RMSE 

Standardized 

RMSE 

Highway 

16 

20141218 

4 0.87 0.88 1.09 

4+5 0.73 0.897 1.00 

4+10 0.67 0.84 1.00 

4+15 0.64 0.81 1.00 

20150203 

4 0.52 0.66 1.04 

4+5 0.49 0.63 1.00 

4+10 0.47 0.615 1.00 

4+15 0.45 0.607 1.00 

20150209 

4 0.31 0.41 1.01 

4+5 0.3 0.39 1.00 

4+10 0.27 0.36 1.00 

4+15 0.25 0.35 1.00 

20161201 

4 0.34 0.43 1.04 

4+5 0.32 0.41 1.02 

4+10 0.27 0.35 1.00 

4+15 0.26 0.34 1.01 

Highway 2 

20150113 

6 0.63 0.79 1.07 

6+5 0.63 0.83 1.06 

6+10 0.47 0.62 1.01 

6+15 0.42 0.57 1.01 

20150209 

6 0.44 0.52 1.02 

6+5 0.34 0.43 1.00 

6+10 0.31 0.4 1.00 

6+15 0.3 0.39 1.00 
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It can be seen from the table that the density of RWIS stations is changed by five more, ten more, 

and fifteen more. Overall, the performance increases with the increase of RWIS stations. It is 

interesting to find that the increase between fifteen more stations and ten more stations is smaller 

compared with the other two situations. The findings attest that the marginal benefits gained by 

adding additional RWIS stations decrease as the number of stations increases. There are two days 

that show a different story, which is 20141218 for Highway 16 and 20150113 for Highway 2. 

When there are five more stations, the RMSE value increases instead of decreases. One possible 

cause for this phenomenon could be the selection of the new stations’ location. If the selected value 

happens to be the peak value or the valley value, it will enlarge the difference between the 

estimated value and the observed value. The circled part in Figure 20 vividly illustrates this 

problem. 

From the sensitivity analysis, even though the model performance improves when there are more 

RWIS stations, it is slight and does not make a huge difference to the results, which further 

supports the applicability of the proposed method.   
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Figure 20. The difference of inputs density influence 

4.4.3 Recommendation for New RWIS Locations 

As can be seen from the sensitivity analysis, the selected of RWIS location is also a factor that 

influences the estimation accuracy. Besides, the installation of RWIS stations is expensive and the 

spatial coverage is limited. Therefore, it is important to choose an appropriate site to locate RWIS 

stations to help transportation agencies make more informed decisions on a strategic RWIS 

extension planning process. To address such challenging issues, an RWIS station location 

allocation optimization is proposed with an objective of minimizing the total kriging estimation 

errors (i.e., OK variance). The objective function formulated, and its related computation process 

are shown below. 

                            𝐺 =

[
 
 
 
 
𝛾(𝑥1, 𝑥2) 𝛾(𝑥2, 𝑥1)…  𝛾(𝑥𝑘 , 𝑥1) 1

𝛾(𝑥1, 𝑥2) 𝛾(𝑥2, 𝑥2)…  𝛾(𝑥𝑘 , 𝑥2) 1
…

𝛾(𝑥1, 𝑥𝑘) 𝛾(𝑥2, 𝑥𝑘)…  𝛾(𝑥𝑘 , 𝑥𝑘) 1
1                1              …          1       0]

 
 
 
 

                                                       (16) 

Where, 𝑥𝑖 (i=1, 2, …, k) is the sampling site of a sample subset of size k, and in this case, k is 

equal to the number of RWIS stations. 𝛾(𝑥𝑖 , 𝑥𝑗)is the semivariance between sampling site i and j.  
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g = [𝛾(𝑥0, 𝑥1) 𝛾(𝑥0, 𝑥2)…  𝛾(𝑥0, 𝑥𝑘) 1]′                                                 (17)                                                                                                               

Where, 𝑥0 is the estimation location and 𝑥𝑖 (i=1, 2, …, k) is the sampling site of a sample subset 

of size k. Then the minimum mean square error for OK for the estimation location 𝑥0 is: 

𝜎𝑂𝐾
2 (𝑥0) = 𝑔′𝐺−1𝑔                                                                  (18) 

Based on above three equations, the objective function of this work can be formulated as below: 

Subject to:    𝑓(𝑤) =
∑ 𝜎𝑂𝐾

2 (𝑥0)𝑛−𝑘
𝑖=1

𝑛
                                                               (19)                                                                                                                                                  

𝑛 = Total number of candidate RWIS station locations in the road                                             

To find the optimal solution to this large-size optimization problem, a heuristic algorithm is usually 

used. Particle Swarm Optimization (PSO) is a random search algorithm that simulates a natural 

evolutionary process and performs good characteristics for solving these optimization problems 

(Xu et al., 2010). First proposed by Kennedy and Eberhart (Kennedy and Eberhart, 1995), PSO 

has the characteristics of being of easily implemented and computationally inexpensive, since its 

memory and CPU speed requirements are low. All of these make PSO widely used in scientific 

computation. 

PSO is a population-based optimization method, and it is initialized with a population of random 

particles and the algorithm searches for optima by updating generations. Each particle is treated as 

a point in an n-dimensional space. The ith particle is represented as xi=(xi1,xi2,…,xin). The best 

previous position pbest of the ith particle is recorded and represented as pi=(pi1, pi2,…,pin). The index 

of the best particle among all the particles in the population (global model) is represented by the 

subscript g. The rate of the position change (velocity) for particle i is represented by 

vi=(vi1,vi2,…,vin). The particles are manipulated according to the following equations: 

𝑣𝑖𝑑 = 𝜔𝑣𝑖𝑑 + 𝑐1𝜁(𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2𝜂(𝑝𝑔𝑑 − 𝑥𝑖𝑑)                                            (20) 

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑                                                                              (21) 
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where d is the dimension (1≤d≤n), c1 and c2 are positive constants, ζand ηare two random 

functions in the range [0,1] and ω is the inertia weight. The performance of each particle is 

measured according to a predefined fitness function, which is related to the problem to be solved. 

The workflow of PSO to look for locations for additional two RWIS stations is shown in Figure 

21.  

 

Figure 21. Workflow of PSO in this optimization problem 
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As can be seen from Figure 21, this optimization is an iterative process with an objective function 

to minimize the mean OK variance (or maximize coverage of RWIS) based on existing RWIS 

stations and additional RWIS stations to be deployed. For an illustration purpose, two RWIS 

stations are added to the two highway networks under investigation – Highways 2 and 16. It is 

worthwhile noting that the framework proposed in this thesis can be used for any number of RWIS 

stations to be installed on any given highway network.  

Here, observations made on 18th December, 2014, along Highway 16, and 13rd January, 2015, 

along Highway 2, are selected as examples to show the applicability of the optimization method 

developed herein. Each highway is divided into over 200 candidate points with the interval of 1 

km between each, using ArcGIS 10.3.0 for the placement of new RWIS stations. The 

semivariogram models developed from section 4.4.1 are applied to provide the autocorrelation 

range of RST observations. Number of iterations was set to 200, after which the search process for 

the two locations was set to stop. The example of the optimization results for finding the best 

locations of additional two RWIS stations on Highway 2 and Highway 16 are shown in Figure 22. 

 

Figure 22. Optimal locations for additional two RWIS stations after optimization 
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4.5 Summary 

In this chapter, two phase studies, including the evaluation on the feasibility of using RK to 

estimate RSC and the application of RK with stationary RWIS data, are illustrated via case studies 

on two highways in Alberta. 

The first phase proposes a methodological framework, in which RK is developed and implemented 

to estimate RST and RSI using mobile RWIS data. Geographical parameters, including locational 

attributes (lat/long), altitude, slope and NDVI, which could potentially impact the variation of 

nocturnal RSTs, are analyzed by removing the trend in the target variable. All the model calibration 

and validation results show the proposed method herein is able to provide a good estimation when 

compared with actual RSC measurements. The comparison analysis with other spatial 

interpolation methods also indicate the superiority of RK in terms of estimation accuracy. 

For Phase II, the semivariogram model variables developed from mobile RWIS data in Phase I is 

used in conjunction with stationary RWIS measurements to estimate the RSC between RWIS 

stations. The low MAE and RMSE values obtained indicates the robust performance and 

applicability of the proposed method. In addition, to maximize the benefits of the RWIS network, 

the spatial autocorrelation range of RWIS measurements is applied to optimize the selection of 

new RWIS locations. This recommendation could in turn benefit road users in general (i.e., 

improved safety and mobility) and RWIS planning authorities in particular (i.e., maximizing the 

return on RWIS investments). 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

This chapter provides a summary of the thesis, and highlights the major findings and the 

contributions of the work presented herein. The limitations of this thesis are also discussed in this 

chapter along with the recommendation for future study.  

5.1 Research Overview 

Inclement weather poses a threat to the safety and mobility of travelers during winter seasons, thus 

it is essential for transportation authorities to understand the spatial variation of RSC, such that hot 

spots (e.g., black-ice) can be identified more effectively to improve the efficiency of WRM. For 

this reason, the RWIS has gained attention and become widely used among highway agencies for 

its ability to provide real-time road weather and surface information. However, RWIS stations are 

not only expensive to install and operate but also only able to provide point measurement that is 

unrepresentative of distant area and. Considering the vast road network that require frequent 

monitoring in cold countries or regions, the varied road conditions, road weather and surface 

conditions between RWIS stations must be accurately estimated to instruct and guide successful 

WRM operations. 

This thesis has been motivated by this challenging topic, and has attempted to tackle the problem 

of RSC estimation. This research contains two phases: Phase I is to evaluate the feasibility study 

of RK to estimate RSC; Phase II focuses on the application of RK using stationary RWIS data. 

Specifically, in Phase I, one of the renowned geostatistical methods called RK was proposed to 

show its feasibility for developing a systematic framework for estimating road surface condition. 

The variables of interest, RST and RSI were used separately, and spatial structures of these two 

data sets were quantified and modeled using semivariograms. Geographical parameters are 

prepared for removing their influence on RSC variation. Moreover, a comparison between 
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different spatial interpolation methods is conducted to see the applicability of RK. For Phase II, 

the RK method is applied with stationary RWIS data based on the prior information that quantifies 

the autocorrelation range of RSC. Lastly, a recommendation of new RWIS locations is provided 

based on the PSO method. Highway segments in Alberta, Canada, were used as a case study to 

implement the methods proposed in this research. The following section summarizes the main 

findings. 

5.2 Research Findings 

5.2.1 Phase I – Feasibility of a Geostatistical Method for RSC estimation 

• The hybrid technique named RK has been developed for RSC estimation. As the 

geographical parameters, including locational attributes (lat/long), altitude, and slope, 

could potentially contribute to the variation of nocturnal RSTs, those parameters were 

prepared and analysed on a GIS platform for efficient data handling. Furthermore, 

LANDSAT satellite images were used to calculate the NDVI to examine the effect of 

landuse on RST. Using these external parameters as input, MLR models were first 

calibrated, followed by ordinary kriging to generate highly accurate RST estimation maps 

• In terms of RST estimation, according to the MLR analysis using various geographical 

parameters, the key factors affecting the variation of RST were found to be longitude, 

altitude, slope, and NDVI. The sign of their coefficients makes intuitive sense – a negative 

sign for longitude (continentality), altitude (elevation), and slope (varied topography); and 

a positive sign for NDVI. The low R2 values of the MLR models posed a strong need for 

furthering improving the model quality using the proposed kriging method. Then ordinary 
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kriging was used to interpolate the residuals of the MLR outputs and generate the final 

estimation maps with high R2 values (higher than 80%). 

• For RSI estimation, ordinary kriging was employed to generate a series of highly accurate 

RSI estimation maps directly since the detrend operation is not very significant. Both RSI 

and RST maps can potentially be used by the respective highway authorities to make more 

informed decisions on their various winter maintenance activities, and prevent road users 

from getting involved in, for instance, black-ice related collisions during winter seasons.  

• To examine the applicability of the model developed herein, additional analyses were 

conducted to further explore if there was any relationship between the sill of the 

semivariogam models and weather events. The findings indicated that there was a strong 

dependency between these two variables. For RST, the sill values decrease as the wind 

speeds increase. For RSI, it is a positive correlation. Although the relationship relies on 

small samples, it evidently demonstrates the potential to be used for estimating the 

condition as per different weather groups. 

• A comparison between RK, IDW, GPI, IPL, TPS was conducted to show that RK has a 

better predictability than other spatial interpolation methods in terms of RSC estimation. 

The RK method is able to increase the estimation accuracy by up to 50% over other 

methods. 

5.2.2 Phase II – RSC Estimations using stationary RWIS data 

• To show the feasibility and applicability of RK applications on stationary RWIS data, the 

prior semivariogram model variables (i.e., sill, nugget, and range) that capture the spatial 

variation of RSC was used in conjunction with stationary RWIS measurements to infer the 

RSC between stations. The MAE and RMSE values are found all smaller than 1oC, which 
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indicates that RK is capable of integrating stationary and mobile RWIS data together to 

improve the accuracy of RST estimation. 

• The sensitivity analysis was performed to see how different densities of RWIS stations 

would influence the model performance. It is found that the performance improves when 

the number of stations increases, but reaches a stable level when there are enough RWIS 

stations. Besides, the location of RWIS stations was also found to impact the model 

accuracy. 

5.3 Research Contributions 

• This research provided a detail literature review including current practices on RSC 

monitoring and factors affecting RSC, which helps transportation authorities better 

understand the spatial variation of RSC and offer new insights in RSC estimation. 

• A renowned geostatistical method known as RK, which has seldom been explored in the 

transportation field, is proposed in this research to show the feasibility of better capturing 

the spatial variations of the variable of interest and improve the reliability of estimation 

results. 

• The proposed RK methodology framework that integrates stationary and mobile RWIS 

data makes it possible for highway maintenance agencies to estimate RSC between RWIS 

stations and conduct effective and timely WRM operations.  

• It is recommended that the PSO method is used for locating new RWIS stations with the 

geostatistical semivariogram analysis of RWIS data in an effort to determine the RWIS 

monitoring coverage of RSC. The proposed optimization framework could make 

contributions to RWIS network planning. 



75 

 

• Using the models proposed and developed herein, it is anticipated that the winter road 

maintenance contractors continuous monitoring and visualization of road weather and 

surface conditions could be possible, improving the overall quality of their maintenance 

services while reducing the cost of road patrolling. Long term, it is also expected to 

generate a significant body of new knowledge in the application of geostatistics to advance 

the transportation research in general and road weather and surface conditions estimations 

in particular.  

5.4 Limitations and Recommendations for Future Work 

Limitations and further research are summarized in the following specific directions: 

• For RST estimation, other external parameters that may affect the RST variation, such as 

the distance from mountains and roadside features, should be considered to improve the 

accuracy of the models developed. Additionally, Lidar data can be used to represent the 

vegetation cover since the NDVI cannot distinguish the heights of vegetation which could 

affect the RST. 

• For RSI estimation, variables, such as precipitation and snow cover on the ground, 

currently used to evaluate the surface condition might be applied to classify the weather 

events, like Thrones classification scheme, and in turn generalize the findings. 

• More RSC variables including pavement materials, snow cover condition should be 

investigated to further improve the identification of RSC and accelerate the implementation 

of WRM. 

• The methodology should be extended to account both spatial and temporal attributes of 

road weather and surface condition variables as they can be markedly affected by those 

two domains.   
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• More case studies should be carried out to examine the generality and sensitivity of the 

model results using other factors, such as different weather events and types, as well as 

data collected during the daytime. 

• How to overcome the difference between measurements from mobile and stationary RWIS 

needs to be further investigated to better integra and fusion these two data sources for 

application in real-time RSC estimation and connected vehicle communication. 
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APPENDIX 

Table 23. Final estimation RST maps for Highway 16 

 (1) 2014/12/18 (2) 2015/02/09 

A 

  

 RMSE: 0.382, Range: 17.92 km RMSE: 0.152, Range: 13.95 km 

B 

  

 RMSE: 0.381, Range: 5.14 km RMSE: 0.230, Range: 14.13 km 

C 

  

 RMSE: 0.407, Range: 24.51 km RMSE:  0.163, Range: 26.04 km 
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 (3) 2015/02/03 (4) 2016/12/01 

A 

  

 RMSE: 0.347, Range: 5.24 km RMSE: 0.292, Range: 2.55 km 

B 

  

 RMSE: 0.372, Range: 2.51 km RMSE: 0.111, Range: 19.04 km 

C 

  

 RMSE: 0.292, Range: 19.71 km RMSE: 0.120, Range: 10.29 km 
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Table 24. Crossvalidation for Highway 16 RST estimation 

 (1) 2014/12/18 (2) 2015/02/09 

A 

  

B 

  

C 
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 (3) 2015/02/03 (4) 2016/12/01 

A 

  

B 

  

C 
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Table 25. Final estimation RSI maps for Highway 16 

 (1) 2014/12/18 (2) 2015/02/09 

A 

  

 RMSE: 0.047, Range: 2.35 km RMSE: 0.169, Range: 1.79 km 

B 

  

 RMSE: 0.011, Range: 3.84 km RMSE: 0.041, Range: 6.81 km 

C 

  

 RMSE: 0.018, Range: 7.57 km RMSE: 0.036, Range: 4.38 km 
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 (3) 2015/02/03 (4) 2016/12/01 

A 

  

 RMSE: 0.085, Range: 5.18 km RMSE: 0.036, Range: 19.92 km 

B 

  

 RMSE: 0.157, Range: 22.11 km RMSE: 0.005, Range: 4.98 km 

C 

  

 RMSE: 0.075, Range: 4.44 km RMSE: 0.006, Range: 33.93 km 
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Table 26. Crossvalidation for Highway 16 RSI estimation 

 (1) 2014/12/18 (2) 2015/02/09 

A 

  

B 

  

C 
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 (3) 2015/02/03 (4) 2016/12/01 

A 

  

B 

  

C 
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Table 27. Final estimation RST maps for Highway 2 

 (1) 2015/02/09 (2) 2015/01/13 

A 

 

 

 RMSE: 0.162, Range: 5.13 km RMSE: 0.290, Range: 0.94 km 

B 

 
 

 RMSE: 0.146, Range: 32.34 km RMSE: 0.225, Range: 5.77 km 

C 

 

 

 RMSE: 0.187, Range: 12.79 km RMSE: 0.174 , Range: 6.48 km 
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Table 28. Crossvalidation for Highway 2 RST estimation 

 (1) 2015/02/09 (2) 2015/01/13 

A 

 
 

B 

  

C 
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Table 29. Final estimation RSI maps for Highway 2 

 (1) 2015/02/09 (2) 2015/01/13 

A 

  

 RMSE: 0.018, Range: 34.73 km RMSE: 0.020, Range: 1.43 km 

B 

  

 RMSE: 0.068, Range: 2.17 km RMSE: 0.029, Range: 11.80 km 

C 

  

 RMSE: 0.040, Range: 2.63 km RMSE: 0.004, Range: 6.02 km 
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Table 30. Crossvalidation for Highway 2 RSI estimation 

 (1) 2015/02/09 (2) 2015/01/13 

A 

  

B 

  

C 
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Figure 23. Estimated RST vs Observed RST on 20141218 for Highway 16 

 

Figure 24. Estimated RST vs Observed RST on 20150203 for Highway 16 
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Figure 25. Estimated RST vs Observed RST on 20150209 for Highway 16 

 

Figure 26. Estimated RST vs Observed RST on 20150113 Highway 2  
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