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Abstract

One of the methods of study of black holes in astrophysics is based on broaden-

ing of the spectrum of radiation of ionized iron atoms. The line Kα associated with

iron emission at 6.4 keV is very narrow. If such an ion is revolving around a black

hole, this line is effectively broadened as a result of the Doppler and gravitational

redshift effects. The profile of the broadened spectrum contains information about

the gravitational field of the black hole. In the presence of a regular magnetic field

in the vicinity of a black hole, the characteristics of the motion of charged ions are

modified. In particular, their innermost stable circular orbits become closer to the

horizon. The purpose of this work is to study how this effect modifies the spectrum

broadening of lines emitted by such an ion. Our final goal is to analyze whether

the change of the spectrum profiles can give us information about the magnetic

field in the black hole vicinity.
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Preface

There is more and more evidence that astrophysical black holes exist [1, 2, 3,

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. An example of such evidence is the discovery

of black hole mergers from LIGO due to the gravitational waves that are produced

during the process of two black holes becoming one. There were two events that

were observed, the first one was the gravitational waves produced by the merging of

a 36M� and a 29M� mass black holes [16]. The second observation was published

recently and it is the gravitational waves produced by the merging of a 14.2M�

and a 7.5M� mass black hole [17]. Another example of a program that should

provide further evidence that astrophysical black hole exists is the Event Horizon

Telescope program which is planned to probe in the next decade the apparent

shape (“shadow”) of the black hole (Sagittarius A∗)1 in the centre of our galaxy

via Very Long Baseline Interferometry [18]. Black hole candidates (both stellar

mass and supermassive) are identified by observing that a large mass compact

object is located in a region of sufficiently small size, which practically excludes

objects other than a black hole. Accretion of matter onto a black hole produces

intense radiation. By means of this radiation black holes manifest themselves. In

particular, such radiation may contain information about properties of spacetime

in the vicinity of a black hole and may confirm that a compact object is really

a black hole. (For a comprehensive review of the present status of black holes in

astrophysics see, e.g., [19].)

There is both theoretical and observational evidence that magnetic fields play

1 Sagittarius A∗ is a bright and very compact astronomical radio source at the centre of the
Milky Way, near the border of the constellations Sagittarius and Scorpius. This compact object
is thought to be the location of a supermassive black hole with a mass of around 4× 106M� and
around radius 12× 1011cm.
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an important role in black hole physics. An example is the explanation of angular

momentum transfer in accretion disks where the magnetic field seems to be an

essential part of the process [20, 21]. Recent observations of the Faraday rotation

of the radiation of a pulsar in the vicinity of a black hole in the centre of the Milky

Way (SgrA*) indicates that at a distance of a few Schwarzschild radii there exist

a magnetic fields of several hundred Gauss [22]. These observations also support

emission models of SgrA* that require similar magnetic fields for the explaination

of the synchrotron radiation from a near-horizon region (see, e.g., [23, 24, 25]).

Guided by observations with the Ginga, ASCA, RXTE and BeppoSAX satel-

lites, astrophysicists agree that X-ray irradiation of the surface layers of the accre-

tion disk in a class of active galactic nuclei gives rise to fluorescent Kα emission

line of cold iron. Such line is extremely narrow in frequency, the observed emis-

sion spectra of the radiation of the accreting matter are broadened due to special

and general relativistic effects. In this thesis, we would like to discuss another

interesting aspect of spectral line broadening, namely the use of iron Kα lines (de-

fined in subsection 1.2.2) as probes of the magnetic field in the black hole vicinity.

The magnetic field that we take into account, as we explain later in more detail,

is not strong enough to modify the background geometry. In our work, we con-

sider a simplified model. Namely, we assume a static, spherical spacetime, i.e., a

Schwarzschild black hole, placed in a uniform magnetic field of strength B. We

call this a magnetized Schwarzschild black hole in the sequel.

The thesis is organized as follows:

Chapter 1: In the first section of the introduction we discuss the magnetic field

around a black hole. In section 1.1, we discuss the theoretical and observational

evidence for the existence of magnetic fields around black holes. In subsection 1.1.1,
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we describe the spacetime of magnetized black hole. In section 1.2, we discuss the

emission spectra, the natural broadening and the definition of the iron Kα lines.

In section 1.3, we discuss the main features of line broadening of the narrow Fe Kα

spectral line which arises when an iron atom or ion is moving in a gravitational

field.

Chapter 2: We present the main features of the motion of particles and rays

around a magnetized Schwarzschild black hole. We present the main features

of the effective potential. We discuss in subsections 2.1.4 and 2.1.5 the main

features of stable circular orbits and innermost stable circular orbits, respectively.

In section 2.2, we collect the main formulas concerning null ray propagation in

the Schwarzschild geometry that will be used later in the thesis. This is done

in order to fix notation. In particular, we explain the dimensionless form of the

main expressions compatible with the adopted for the particle motion which we

discussed earlier.

Chapter 3: In this chapter, we discuss imaging the orbits of a charged particle

around a weakly magnetized black hole by constructing the map between the

equatorial and impact plane. We close section 3.1 by identifying direct and indirect

rays. In section 3.2, we study the effect of the magnetic field on spectral broadening.

We describe a useful formula for the solid angle for the emitted photons and for

the study of the spectral broadening of a single emitter. We do not discuss effects

connected with a finite ring of emitters in this thesis, because that would require

the choice of a specific model for the size of the disk around the black hole. We

close the chapter with a discussion of general properties of the spectral function.

Chapter 4: In this chapter, we present our results of the spectral broadening.

In particular, we present plots of the spectral function of the emitted radiation
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from a charged particle revolving a magnetized Schwarzschild black hole. We close

the chapter with a discussion of main features of the spectral function plots.

Chapter 5: In this chapter, we sum up the main results and discuss possible

applications and generalizations of our work.

This thesis is based on the following published papers: V. P. Frolov, A. A.

Shoom and C. Tzounis, “Radiation from an emitter revolving around a magnetized

nonrotating black hole,” Phys. Rev. D 90, no. 2, 024027 (2014), and V. P. Frolov,

A. A. Shoom and C. Tzounis, “Spectral line broadening in magnetized black holes,”

JCAP 1407, 059 (2014) [27, 28]. I was responsible for calculations, confirmation

of results, writing and editing the text of the paper. In addition I was responsible

for the programming in order to produce the results of the fourth chapter.

During my Ph.D. program I worked on seven papers [27, 28, 29, 30, 31, 32, 33].

In [29], we presented cross-sections for the black hole and string ball production

in proton-proton collisions in a TeV-scale gravity model with split fermions in two

dimensions. In [30], we introduced the notion of a local shadow for a black hole

and determined its shape for the particular case of a distorted Schwarzschild black

hole. Considering the lowest-order even and odd multiple moments, we computed

the relation between the deformations of the shadow of a Schwarzschild black hole

and the distortion multiple moments. In [31], in the simulations of the multi-black

holes and merging black holes a larger primary image and a secondary smaller

image which looks like an eyebrow and the deformation of the shadows have been

observed. However, this kind of eyebrow-like structure was considered as a unique

feature of multi black hole systems. In this work, we illustrated the new result

that in the case of octupole distortions of a Schwarzschild black hole, the local

observer sees two shadows or two images for this single black hole, i.e., also an
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eyebrow-like structure. The presence of two images in our case is remarkable, as

we studied only one black hole, however, the observer could see two dark images

of this single black hole. In [32], we investigated the properties of the ergoregion

and the location of the curvature singularities for the Kerr black hole distorted

by the gravitational field of external sources. The particular cases of quadrupole

and octupole distortions were studied in detail. Also, we investigated the scalar

curvature invariants of the horizon and compare their behaviour with the case of

the isolated Kerr black hole. In [33], we presented an approximate time-dependent

metric in ingoing Eddington-Finkelstein coordinates for an evaporating black hole

as a first-order perturbation of the Schwarzschild metric, using the linearized back

reaction from a realistic approximation to the stress-energy tensor for the Hawking

radiation in the Unruh quantum state.

The subjects I have worked on are rather different, so that I chose only one of

them, based on the first two papers, for my thesis.
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The most beautiful thing we can experience is the mysterious. It is

the source of all true art and science. He to whom the emotion is a

stranger, who can no longer pause to wonder and stand wrapped in

awe, is as good as dead - his eyes are closed.

Albert Einstein (1879-1955)
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Notations and conventions

Here is a list of the notation and conventions that we use throughout the text.

M stands for the mass of the black hole.

B stands for the strength of the magnetic field.

q stands for the charge of a particle.

Q stands for the charge of the black hole.

ξ stands for Killing vectors.

Mass of the sun: M� = 1.989× 1033 g

Mass of an electron: me = 9.109× 10−28 g

Mass of a proton: mp = 1.673× 10−24 g

Charge of a proton: e = 4.8× 10−10(g cm3/s2)1/2

Gravitational constant: G = 6.674× 10−8 cm3/(g s2)

Speed of light: c = 2.998× 1010 cm/s

Planck’s constant: h = 6.626× 10−27 cm2 g/s

Reduced Planck’s constant: � = 1.055× 10−27 cm2 g/s

Gravitational radius: rg = 2M G/c2

Maxwell tensor:

Fμν = Aν;μ − Aμ;ν (1)

where Aμ is the vector potential.

Partial derivative:

Aν,μ ≡ ∂μAν ≡ ∂Aν

∂xμ
(2)
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Covariant derivative:

Aν;μ ≡ ∂μAν − ΓλμνAλ (3)

Aν
;μ ≡ ∂μA

ν + ΓνλμA
λ (4)

Christoffel symbols:

Γαβγ =
gαμ

2
[gμβ,γ + gμγ,β − gβγ,μ] (5)

Riemann curvature tensor:

Rρ
σμν = Γρνσ,μ − Γρμσ,ν + ΓρμλΓ

λ
νσ − ΓρνλΓ

λ
μσ (6)

or

Rρσμν =
1

2
(gρν,σμ + gσμ,ρν − gρμ,σν − gσν,ρμ) + gαβ

(
ΓασμΓ

β
ρν − ΓασνΓ

β
ρμ

)
(7)

Ricci curvature tensor:

Rαβ = Rρ
αρβ = Γρβα,ρ − Γρρα,β + ΓρρλΓ

λ
βα − ΓρβλΓ

λ
ρα

= 2Γρα[β,ρ] + 2Γρλ[ρΓ
λ
β]α (8)

For any two vectors pμ and qμ,

(p, q) ≡ pμq
μ . (9)



xiv

Table of Contents

1 Introduction 1
1.1 Magnetized black holes . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Weakly magnetized black holes . . . . . . . . . . . . . . . . 9
1.2 Emission spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Natural broadening . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.2 Fe Kα spectral lines . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Features of the line broadening . . . . . . . . . . . . . . . . . . . . 20
1.3.1 Newtonian case . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.2 Emission from a ring of finite width . . . . . . . . . . . . . . 24
1.3.3 Relativistic case . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Motion of charged particles and null rays 35
2.1 Charged particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.1 Effective potential . . . . . . . . . . . . . . . . . . . . . . . 40
2.1.2 Stable circular orbits (SCO’s) . . . . . . . . . . . . . . . . . 49
2.1.3 Innermost stable circular orbits (ISCO’s) . . . . . . . . . . . 52
2.1.4 Circular motion in the rest frame basis . . . . . . . . . . . . 58

2.2 Null rays in the Schwarzschild geometry . . . . . . . . . . . . . . . 59
2.2.1 Conserved quantities and equations of motion . . . . . . . . 59
2.2.2 Motion in the equatorial plane . . . . . . . . . . . . . . . . . 60
2.2.3 Integrals of motion and impact parameters . . . . . . . . . . 62
2.2.4 Asymptotic data for null rays . . . . . . . . . . . . . . . . . 65

3 Imaging the radiation 67
3.1 Orbit images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.1 Angular relations . . . . . . . . . . . . . . . . . . . . . . . . 68
3.1.2 Map between equatorial and impact planes . . . . . . . . . . 71
3.1.3 Direct and indirect rays . . . . . . . . . . . . . . . . . . . . 75

3.2 Spectral broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2.1 Photon momentum and conserved quantities . . . . . . . . . 82
3.2.2 Photon beam from the emitter . . . . . . . . . . . . . . . . . 83



TABLE OF CONTENTS xv

3.2.3 Solid angle at the emitter . . . . . . . . . . . . . . . . . . . 84
3.2.4 Spectral broadening . . . . . . . . . . . . . . . . . . . . . . . 86
3.2.5 General properties of spectral functions . . . . . . . . . . . . 90

4 Spectral function plots and common features 94

5 Conclusion 105

A �−parametrization of the orbit 124

B Radiation from a point-like source 127

C Small oscillations 130

D Time of a charged particle on a circular orbit 134

E Charge accretion 138



xvi

List of Figures

1.1 The black curve (1) shows the spectral line which is not affected
by natural broadening. The red curve (2) represents a spectral line
with large lifetime, due to natural broadening in comparison to the
lifetime of the black curve. . . . . . . . . . . . . . . . . . . . . . . 18

1.2 The profile of the Fe Kα line from Seyfert 1 galaxy MCG-6-30-15
observed by ASCA SIS detector. The figure is taken from [74]. . . 20

1.3 The modified spectrum as a function of the ratio of the frequencies
due to the non-relativistic Doppler effect. Here, vmax = 0.1c, and
the dimensionless radius of the emitter is ρ = 2000. . . . . . . . . . 24

1.4 The modified spectrum of a disk as a function of the ratio of the
frequencies due to the non-relativistic Doppler effect. . . . . . . . . 27

1.5 The modified spectrum of a disk as a function of the ratio of the
frequencies due to the non-relativistic Doppler effect. The black
curve is the spectrum of a disk with ρin = 2000 and ρout = 7000.
The blue curve is the spectrum of a disk with ρin = 2000 and ρout =
5000. The red curve is the spectrum of a disk with ρin = 2000 and
ρout = 3000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.6 The modified spectrum of a disk as a function of the ratio of the
frequencies due to the non-relativistic Doppler effect. The black
curve is the spectrum of a disk with ρin = 2000 and ρout = 7000.
The blue curve is the spectrum of a disk with ρin = 3000 and ρout =
7000. The red curve is the spectrum of a disk with ρin = 4000 and
ρout = 7000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.7 Geometry of the rays in the flat spacetime. At the points 1 and 2
the angle Φ is 90o. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.8 Spectrum in the relativistic case. . . . . . . . . . . . . . . . . . . . 33

2.1 The effective potential for b = 0.5 and l = 1.18. . . . . . . . . . . . 40
2.2 The effective potential for b = 0.5 and l = 2.07. . . . . . . . . . . . 41
2.3 The effective potential for b = 0.5 and l = 3.22. . . . . . . . . . . . 42



LIST OF FIGURES xvii

2.4 Type of a bounded trajectory with curls. Arrows illustrate the di-
rection of motion of a charged particle. . . . . . . . . . . . . . . . . 44

2.5 Limiting case of bounded trajectory with curls. Arrows illustrate
the direction of motion of a charged particle. . . . . . . . . . . . . . 45

2.6 Type of a bounded trajectory without curls. Arrows illustrate the
direction of motion of a charged particle. . . . . . . . . . . . . . . . 46

2.7 Angular velocity, Ω, as a function of the radius, ρ, for different values
of magnetic field, b for anti-Lamor particles. The dark red curve has
b = 0, the blue curve has b = 0.25, the black curve has b = 1, the
red curve has b = 3, and the green curve has b = 5. . . . . . . . . . 50

2.8 Angular velocity Ω as a function of the radius, ρ, for different values
of magnetic field, b for Lamor particles. The dark red curve has
b = 0, the blue curve has b = 0.05, the black curve has b = 0.1, the
red curve has b = 0.25, and the green curve has b = 1. . . . . . . . . 51

2.9 Magnetic field b of a magnetized black hole as a function of the ISCO
radius ρ. Labels + and − stand for the anti-Larmor and Larmor
orbit branches, respectively. . . . . . . . . . . . . . . . . . . . . . . 53

2.10 Specific energy E of a charged particle at ISCO in a magnetized
black hole as a function of the ISCO radius ρ. Labels + and −
stand for the anti-Larmor and Larmor orbit branches, respectively. . 54

2.11 Angular velocity |Ω| as a function of the ISCO radius in a magne-
tized black hole. Labels + and − stand for the anti-Larmor and
Larmor orbit branches, respectively. . . . . . . . . . . . . . . . . . . 55

2.12 Velocity v of a charged particle at the ISCO in a magnetized black
hole as a function of the ISCO radius ρ. Labels + and − stand for
the anti-Larmor and Larmor orbit branches, respectively. . . . . . . 56

2.13 Motion of a photon in the equatorial plane. The photon emitted at
Pe propagates to a distant observer along a trajectory without radial
turning points (a direct ray). The ray emitted at P ′

e is indirect.
It at first moves toward the black hole, and only after it passes
through a radial turning point does it propagate outward to the
distant observer. The image is from [27] . . . . . . . . . . . . . . . 63

3.1 Angular definitions. The image is from [27] . . . . . . . . . . . . . . 69
3.2 Schematic diagram of the impact plane. The horizontal axis corre-

sponds to the φ coordinate and the vertical axis corresponds to the
θ coordinate. The image does not distinguish between the domain
III and IV . The image is from [27] . . . . . . . . . . . . . . . . . . 73

3.3 The boundary Γ between the regions I and II for different values of
the observer’s angle θo: Curve 1: θo = 5o; Curve 2: θo = 45o; Curve
3: θo = 85o. A great circle is a curve |ξ| = �∗ = 3

√
3/2. . . . . . . . 74



LIST OF FIGURES xviii

3.4 Function C(z). It monotonically grows with z from π/2 at z = 0
and becomes infinite at z = 2/3. . . . . . . . . . . . . . . . . . . . . 77

3.5 The critical inverse radius ζ∗ as a function of the inclination angle θo. 78
3.6 Images of some orbits corresponding to θo = 85o. The innermost

curve is the image of the ζe = 5/6 orbit. The next curve is the
image of the ζe = 2/3 orbit. And the outermost curve is the image
of the ζe = 1/3 orbit. The circle represents the rim of the black hole
shadow. Note that the angle θo is increasing from the axis of the
black hole to the equatorial plane. . . . . . . . . . . . . . . . . . . . 79

3.7 Image corresponds to θo = 5o. The inner circle represents the rim of
the black hole shadow. The outer circle is the image of the ζe = 1/3
orbit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.8 Image corresponds to θo = 5o. The outer circle represents the rim of
the black hole shadow. The inner circle is the image of the ζe = 5/6
orbit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.9 Image corresponds to θo = 45o. The circle represents the rim of the
black hole shadow. The deformed curve is the image of the ζe = 1/3
orbit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.10 Image corresponds to θo = 45o. The circle represents the rim of the
black hole shadow. The deformed curve is the image of the ζe = 5/6
orbit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.11 Diagram illustrating orbit of the emitter. The arrows show the di-
rection of the emitter’s motion (Ω > 0). For the emitter located in
the right semicircle, ϕ ∈ [0, π], photons have Doppler redshift, and
for the emitter located in the left semicircle, ϕ ∈ (−π, 0], photons
have Doppler blueshift. The spectral function diverges at ϕ = ϕm
and ϕ = −ϕm, where |ϕm| > π/2. The portion of the orbit corre-
sponding to indirect null rays is defined by the angle |ϕ| > ϕ∗. There
is a nonzero Doppler shift at ϕ = 0 and ϕ = ±π; it is with respect
to this Doppler shift that we define which photons are redshifted
and blueshifted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1 Spectral function for the anti-Larmor ISCO, b = 0, at ζe = 1/3. The
inclination angle is θo = 30◦. The angular velocity of the emitter is
Ω = 0.136, and its specific energy is E = 0.943. The spectrum has
peaks at w− = 0.571 (ϕm = 97o85′) and at w+ = 0.928 (at −ϕm).
The minimal values (0.290 and 0.370) of nw for the two spectral
branches are at w0 = 0.707. The width parameter is Δ = 0.476, and
the asymmetry parameter is δ = 0.236. One also has No = 0.285. . 96



LIST OF FIGURES xix

4.2 Spectral function for the anti-Larmor ISCO, b = 0, at ζe = 1/3. The
inclination angle is θo = 60◦. The angular velocity of the emitter
is Ω = 0.136, and its specific energy is E = 0.943. The spectrum
has peaks at w− = 0.497 (ϕm = 107o9′) and at w+ = 1.224 (at
−ϕm). The minimal values (0.127 and 0.222) of nw for two spectral
branches are at w0 = 0.707. The width parameter is Δ = 0.845, and
the asymmetry parameter is δ = 0.423. One also has No = 0.356. . 97

4.3 Spectral function for the anti-Larmor ISCO, b = 0, at ζe = 1/3. The
inclination angle is θo = 85◦. The angular velocity of the emitter
is Ω = 0.136, and its specific energy is E = 0.943. The spectrum
has peaks at w− = 0.472 (ϕm = 118o4′) and at w+ = 1.407 (at
−ϕm). The minimal values (0.079 and 0.196) of nw for two spectral
branches are at w0 = 0.707. The width parameter is Δ = 0.995,
and the asymmetry parameter is δ = 0.498. One also has No = 0.397. 98

4.4 Spectral function for the anti-Larmor ISCO, b = 2.251, at ζe = 5/6.
The inclination angle is θo = 30◦. The angular velocity of the emitter
is Ω = 0.162, and its specific energy is E = 0.465. The spectrum
has peaks at w− = 0.315 (ϕm = 104o7′) and at w+ = 0.415 (at
−ϕm). The minimal values (0.128 and 0.186) of nw for two spectral
branches are at w0 = 0.358. The width parameter is Δ = 0.274, and
the asymmetry parameter is δ = 0.137. One also has No = 0.050. . 99

4.5 Spectral function for the anti-Larmor ISCO, b = 2.251, at ζe = 5/6.
The inclination angle is θo = 60◦. The angular velocity of the emitter
is Ω = 0.162, and its specific energy is E = 0.465. The spectrum
has peaks at w− = 0.284 (ϕm = 124o6′) and at w+ = 0.486 (at
−ϕm). The minimal values (0.055 and 0.117) of nw for two spectral
branches are at w0 = 0.358. The width parameter is Δ = 0.525,
and the asymmetry parameter is δ = 0.262. One also has No = 0.058.100

4.6 Spectral function for the anti-Larmor ISCO, b = 2.251, at ζe = 5/6.
The inclination angle is θo = 85◦. The angular velocity of the emitter
is Ω = 0.162, and its specific energy is E = 0.465. The spectrum
has peaks at w− = 0.264 (ϕm = 158o6′) and at w+ = 0.558 (at
−ϕm). The minimal values (0.036 and 0.105) of nw for two spectral
branches are at w0 = 0.358. The width parameter is Δ = 0.714,
and the asymmetry parameter is δ = 0.357. One also has No = 0.085.101



LIST OF FIGURES xx

4.7 Spectral function for an anti-Larmor SCO, b = 2.251, at ζe = 1/3.
The inclination angle is θo = 30◦. The angular velocity of the emitter
is Ω = 0.005, and its specific energy is E = 0.817. The spectrum
has peaks at w− = 0.809 (ϕm = 97o85′) and at w+ = 0.823 (at
−ϕm). The minimal values (10.46 and 13.35) of nw for two spectral
branches are at w0 = 0.816. The width parameter is Δ = 0.018,
and the asymmetry parameter is δ = 0.009. One also has No = 0.390.102

4.8 Spectral function for an anti-Larmor SCO, b = 2.251, at ζe = 1/3.
The inclination angle is θo = 60◦. The angular velocity of the emitter
is Ω = 0.005, and its specific energy is E = 0.817. The spectrum
has peaks at w− = 0.804 (ϕm = 107o9′) and at w+ = 0.829 (at
−ϕm). The minimal values (4.578 and 8.018) of nw for two spectral
branches are at w0 = 0.816. The width parameter is Δ = 0.031,
and the asymmetry parameter is δ = 0.016. One also has No = 0.382.103
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Chapter 1

Introduction

1.1 Magnetized black holes

Magnetic fields play an important role in black hole physics. In the presence of

a magnetic field, the motion of plasma and charged particles is modified. In this

thesis we study the action of a magnetic field in the vicinity of a black hole on

charged particle bound orbits. The main effect is that the position of the innermost

stable circular orbit (ISCO) can be closer than for an uncharged particle. This

observation opens an interesting opportunity for the study of a regular magnetic

field near a black hole by observing the radiation emitted by charged particle

motion around the black hole.

In this chapter, first we discuss magnetic fields around a black hole. In Section

1, we start with theoretical and observational evidence concerning the existence of

magnetic fields around astrophysical black holes and describe several models of a

weakly magnetized black hole which were studied earlier. In Section 2, we discuss

the effect of spectral line broadening of the emitted radiation from the matter
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accreting onto the black hole. This method, namely usage of iron Kα lines, is

often used for the study of the motion of matter near compact objects. We briefly

describe the natural broadening of the spectral lines and explain why one of the Fe

Kα spectral lines plays such an important role in astrophysics. In the last section

of the introduction, we discuss the main features of the line broadening.

A black hole can be magnetized by large-scale magnetic fields. However, these

fields are negligibly small. The strength of such magnetic fields ranges from 0.1

to 102 μG. Evidence for the observed large-scale magnetic field in the galactic and

intergalactic media is presented in [34]. The large-scale magnetic fields have mainly

cosmological implications. There are several more efficient mechanisms which may

“magnetize” a black hole. For example, a black hole can be magnetized by a

companion magnetar1. Black hole-neutron star binaries are studied in [35]. Black

holes can also be magnetized by plasma motion in their own accretion disks [36, 37].

Actually, such magnetic fields are the most significant magnetic fields in the study

of black hole physics.

Magnetic fields are important in black hole astrophysics for explaining the

synchrotron radiation from the region of spacetime near the horizon region, the

interaction of the black hole with the disk, the power of the winds in the disk,

the black hole jets energetics and the formation of relativistic jets. Furthermore,

observations show that winds in the disk of stellar mass black hole are powered by

1 A magnetar is a class of neutron star with powerful magnetic field 108 to 1011 tesla.
Such a magnetic field powers the emission of X-rays and gamma rays. Magnetars are the most
powerful magnetic objects detected throughout the universe. Their magnetic fields result from a
magnetohydrodynamic dynamo process in the turbulent, very dense conducting fluid that exists
before the neutron star settles into its equilibrium state. Then, such fields continue to exist
because of persistent currents in a proton-superconductor phase of matter that exists between
the core and the surface of the neutron star. A similar process produces extremely intense
transient fields during the coalescence of neutron stars binaries [38, 39, 40].
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the pressure due to magnetic viscosity [41].

In the Blandford-Znajek model [42] a regular magnetic field in the vicinity of

a black hole is often used to explain black hole jets energetics [43, 42, 47]. For

example, in order to produce power of the magnitude ∼ 1045 erg/sec seen in the

jets of supermassive (with mass 109M�) rotating black holes, regular magnetic

fields of the order of 104 G are required [47]. In [43], it was shown that it is

possible for a magnetic field to hold plasma stationary and stable at some radius,

r0 = rg(1 + ε) , (1.1)

where 0 < ε << 1 and rg = 2M G/c2 is the gravitational radius. According to

[43], this can be achieved with a regular and large magnetic field. However such

a magnetic field is not large enough to modify the black hole geometry. Another

mechanism proposed for explaining the energy extraction from a rotating black

hole and the formation of relativistic jet is based on the analogue of the Penrose

mechanism for a magnetic field. It was proposed in [44, 45, 46]. The authors per-

formed numerical simulations and demonstrated that the power in the jet emission

as a result of such a magnetohydrodynamic (MHD) Penrose process is of the same

order as the one estimated based on the Blandford-Znajek mechanism. In par-

ticular, for a strong magnetic field ∼ 1015 G around a stellar-mass (M ∼ 10M�)

extreme rotating black hole, the power of emission is estimated as ∼ 4 × 1052

erg/sec, which is similar to the power seen in gamma-ray bursts. Estimates based

on the observed optical polarization for a number of active galactic nuclei give

values ∼ 103 − 105 G for the magnetic field at the horizon of the corresponding

black holes [48, 49, 50].
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Faraday rotation1 is a method of observing and estimating the magnetic field

around a black hole. The recent measurements of multi-frequency radio emission

of a pulsar in ∼ 3′′ angular proximity to the centre of our galaxy[51, 52, 53, 54]

reported in [22] show an unusually large Faraday rotation. According to [22, 54,

55, 56] the value of the rotation measure is

RM = (−6.696± 0.005)× 104 rad m−2 . (1.2)

According to [57] the actual value of RM is closer to −5 × 105 rad m−2. This

rotation measure2 (RM) is the largest measured for any object in our galaxy other

than the supermassive black hole in the centre of it [58, 59]. Moreover, this value

is more than ten times larger than all the other rotation measures observed within

several parsec of Sgr A*[60].

This large value of the rotation measure limits the location of the magnetized

gas causing the Faraday rotation to be within some ten parsecs from the centre

of Milky Way. A robust estimation gives the magnetic field to be B ≥ 50 μG

[54]. However, based on the estimation of [22] for r = 0.12 parsec or 3 × 105

1The rotation of the plane of polarization during propagation through plasma in an external
magnetic field. The angle of the rotation of the plane is given by

Δφ = RM λ2 ,

where RM is the rotation measure and λ is the wavelength of the light.
2 Interstellar Faraday rotation depends on the wavelength of light and the RM, the rotation

measure. The overall strength of the effect is characterized by RM, the rotation measure. This
depends on the projection of the interstellar magnetic field on the line of sight, and the number
density of electrons n(s), both of which may vary along the propagation path,

RM =
e3

2πm2
ec

4

∫
n(�x) �B(�x) · d�x =

e3

2πm2
ec

4

∫
B(s)n(s)ds , (1.3)

where e is the charge of the electron, me is the mass of the electron, c is the speed of light, and
B(s) is the projection of the magnetic field along the light of sight.
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Schwarzschild radii, the magnetic field is B ∼ 2.6 mG. Taking into account that

B ∝ r−1, one should expect that at a few Schwarzschild radii from the event horizon

the magnetic field would be several hundred gauss. This supports emission models

of SgrA* that require similar magnetic fields for the explanation of the synchrotron

radiation from a near horizon region (see, e.g., [23, 24, 25]).

Magnetized black holes have been studied theoretically in various papers. For

a black hole drifting in an arbitrary direction with respect to a uniform magnetic

field in any orientation, see [62]. A Kerr black hole in a tilted uniform “test”

magnetic field was found in [63] with the help of the Newman-Penrose formalism.

A mechanism of creating a weak magnetic field around a black hole was studied

in [95]. The magnetic field is produced by an axisymmetric current loop around

a Schwarzschild black hole. Moreover, the dipole part was studied as well in [95].

A more general case which includes eccentric symmetric current loops was studied

in [64]. The geometry in [64] is Kerr. Another generalization for the extreme

Reissner-Nordstrom black hole was conducted in [65].

In our work, we consider how a regular magnetic field in the vicinity of a black

hole changes the parameters of the charged particle orbits. We use a simplified

model. Namely, we assume that the black hole is not rotating and the magnetic

field is static, axisymmetric and homogeneous at infinity. Our aim is to obtain

the images of such orbits as they are seen by a distant observer. We also study

the effect of the broadened spectrum of the emission lines of iron ions moving

near magnetized black holes. Let us mention that the influence of a magnetic field

on the distortion of the iron Kα line profile was earlier discussed in [66]. The

authors focused on the splitting of lines of emission due to the Zeeman effect.

They demonstrated that this effect might be important if the magnetic field is of
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the order of 1010 − 1011 G. We consider the modification of the orbits of charged

particles, which might exist at much weaker magnetic fields. Namely, we assume

that an iron ion, emitting radiation, revolves around a magnetized black hole. The

Lorentz force, acting on a moving charged emitter in the magnetic field, modifies

its motion.

A question that naturally arises here and is also relevant to the next two subsec-

tions is the following: Is the magnetic field that modifies the orbits of the charged

particles enough to cause any back-reaction to the spacetime? The space-time lo-

cal curvature created by the magnetic field B is of the order of magnitude GB2/c4.

This value of magnetic field is comparable to the spacetime curvature near a black

hole of mass M only if

GB2

c4
∼ 1

rg2
∼ c4

G2M2
. (1.4)

This yields,

B ∼ BM =
c4

G2/3M�

(
M�
M

)
∼ 1019

(
M�
M

)
G (1.5)

In our study the magnetic field B is much smaller than the field in (1.5), so the

field B will be considered as a “test” field in the given gravitational background.

Such a magnetic field does not effect the motion of neutral particles if we ignore

the effect of an inhomogeneous magnetic field on a neutral particle with a magnetic

moment. On the other hand, the acceleration induced in the motion of charged

particles by the Lorentz force can be large [68]. Here we are going to show that

for astrophysical black holes this can happen.

One of the effects of the magnetic field can be seen by the analysis of the

equations of motion of charged particles. The position of the ISCO for charged
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particles is closer to the black hole horizon than the ISCO radius for a neutral

particle (6M) [67, 68]. This modification of the orbit is more profound in the case

when the Lorentz force is repulsive. The modification of the orbits is characterized

by the dimensionless parameter (in the CGS system of units)

b =
qBMG

mc4
. (1.6)

Here q and m are charge and mass of the charged particle, B is the strength of

the magnetic field, and M is the mass of the black hole. (Here we use the CGS

system of units.) The parameter b is proportional to the ratio of the cyclotron

frequency of a charged particle in the magnetic field B in the absence of gravity,

to the Keplerian frequency of a neutral particle of the same mass m at the ISCO

in the gravitational field of the black hole. To estimate the value of this parameter

one can consider the motion of a proton (mass mp = 1.67× 10−24g and charge e =

4.8 × 10−10(g cm3/sec2)1/2). Then for a stellar mass black hole, M = 10M�, this

parameter takes the value b = 1 for the magnetic field B ∼ 2 G. For a supermassive

black hole M ∼ 109M�, if b = 1 the corresponding field is B ∼ 2× 10−8 G. If the

charge of the ion is q = Ze and its mass is m = Amp the corresponding expression

for the magnetic field parameter b contains an additional factor Z/A. One can

expect that for astrophysical black holes where the magnetic field can be hundreds

of Gauss, the parameter b is large. Therefore, the acceleration induced in the

motion of charged particles by the Lorentz force can be large in comparison with

the gravitational force.

As we will see later in detail, the magnetic field essentially modifies the orbits

already when the parameter b is of the order of 1. For the repulsive Lorentz force
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case, the radius of ISCO in the strong magnetic field (b 	 1) can be located

arbitrary close to the horizon. Thus, two new effects are present in the motion of

charged particles in magnetized black holes:

1. The position of the ISCO depends on the magnetic field.

2. Even for a circular motion of the same radius, the angular velocity of a

charged particle differs from the Keplerian angular velocity.

In particular, we can say that with the increase of the magnetic field, the orbital

frequency tends to zero and the ISCO is approaching the horizon of the black hole,

in the case that the rotation direction induces a repulsive magnetic force.

The consequences of the new effects in the motion of charged particles, due

to the magnetic field as we mentioned above, can be observed in the emission

spectrum. The results show that the spectrum has the following features,

1. The existence of two sharp peaks at the extrema of the frequencies due to

the Doppler effect.

2. The existence of two branches of the spectrum.

3. The increase of the average redshift of the spectral frequencies for the ISCO

with the increase of the magnetic field.

4. The narrowing of the frequency bands with the increase of the magnetic field.

5. The asymmetry of the spectrum with respect to the spectral average fre-

quency. (This is a generic feature as we will see in the relativistic case.)
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1.1.1 Weakly magnetized black holes

As we mentioned before, in our study we do not consider back-reaction from the

magnetic field on the metric. In other words, we are considering a weak field

approximation. A special simple solution for a test magnetic field was found by

Robert Wald in 1974. In his work, a rotating black hole is immersed in a weak

“test” field. The magnetic field is uniform and aligned along the axis of symmetry

of the black hole. As we will see, by using linear combinations of the Killing

vectors (i.e., use them as the 4-vector potential for the electromagnetic field) of

the spacetime of interest (which is Ricci flat, Rμν = 0), we get solutions to the

Maxwell equations [72]1.

Here we will follow the calculations of [72]. A Killing vector, ξμ(ν), in a vacuum

spacetime generates a solution of Maxwell’s equations in that spacetime [73]. Here

we will use G = c = 1. If we have

Fμν = ξν;μ − ξμ;ν , (1.7)

then the source free Maxwell’s equations are satisfied,

F μν
;ν = −2 ξμ;ν ;ν = 0 . (1.8)

This can be proven in two steps. In the first step, we use the definition of the

1The spacetime in [72] is a Kerr spacetime; therefore the rotation of the black hole induces
electric fields near the horizon. The black hole will accrete charges until its charge reaches
Q = 2BJ (here we consider G = c = 1) because of the electric potential difference between
horizon and the infinity. Here, Q is the charge that black hole accretes, B is the strength of the
magnetic field, and J is the angular momentum of the Kerr spacetime.
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Riemann tensor,

ξμ;ν;κ − ξμ;κ;ν = −ξλRλμνκ , (1.9)

the Killing equation

ξμ;ν + ξν;μ = 0 , (1.10)

and the properties of the cyclical permutations of the indices μ, ν, κ. In particular

we have,

ξμ;ν;κ − ξμ;κ;ν + ξν;κ;μ − ξν;μ;κ + ξκ;μ;ν − ξκ;ν;μ

= −1

6
ξλ (Rλμνκ +Rλνκμ +Rλκμν)

= 0 . (1.11)

Here we use the Killing equation in order to get

ξμ;ν;κ + (ξκ;μ;ν − ξκ;ν;μ) = 0 (1.12)

Then one finds that the Killing vectors satisfy

ξμ;ν;κ = ξλRλκμν . (1.13)

In the second step, we contract the indices ν and κ so that

ξμ;ν ;ν = ξλRμ
λ . (1.14)

In the spacetime of interest, which is vacuum, the Ricci tensor is zero, so one

obtains equation (1.8). For more details, see [72].



CHAPTER 1. INTRODUCTION 11

In flat spacetime there are ten independent Killing vector fields.

1. Three boost Killing vectors. These vectors generate uniform electric fields.

2. Three rotational Killing vectors. These vectors generate uniform magnetic

fields.

3. Four translation Killing vectors. The electromagnetic field generated by such

Killing vectors vanishes.

If the spacetime is static and axisymmetric, that is, it has time translation and

axial Killing vectors, then the vector potential can be written as

Aμ = αξμ(t) + βξμ(φ) . (1.15)

The constants α and β are determined by the properties of the Maxwell tensor

and Gauss law (see [72]). In order to obtain the solution for the electromagnetic

test field which occurs when a stationary, axisymmetric black hole is placed in an

uniform magnetic field of strength B aligned along the symmetry axis of the black

hole, Fμν must satisfy the following properties:

1. Fμν is stationary and axisymmetric.

2. Fμν is nonsingular in the exterior region and on the horizon of the black hole.

3. Fμν , at large distances, must asymptotically approach the Faraday tensor of

a uniform magnetic field of strength B.

4. Fμν has no charge or magnetic monopole moment.
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For a Schwarzschild spacetime that is magnetized and has charge Q = 0, the

first two properties of the Maxwell tensor imply that α and β must be constants.

Calculating the invariant quantity (1/2)F μνFμν at infinity, we get B2 − ε̃2 where ε̃

denotes the strength of the electric field. However, if ε̃ = 0 we have,

1

2
F μνFμν = B2 . (1.16)

In our case we have,

1

2
F μνFμν = 4β2 r − 2M sin2 θ

r
. (1.17)

Therefore, the third property of the Maxwell tensor implies that β = B/2. Using

the Gauss law, ∫
Σ

F μνd2Σμν = 4πQ , (1.18)

we can calculate what should be the value of the constant α. Here Q is the charge

of the black hole, and Σ is a 2-dimensional surface element surrounding the black

hole,

d2Σμν =

√−g

2
εμνλσdx

λ ∧ dxσ , (1.19)

where g is the determinant of the Schwarzschild metric and εμνλσ is the Levi-Civita

symbol with εtrθφ = 1. Equation (1.18) gives

8παM = 4πQ . (1.20)

For Q = 0, the constant α must be zero, so for the vector potential we have

Aμ =
B

2
ξμ(φ) . (1.21)
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In the next chapter, we study charged-particle motion around a weakly magnetized

Schwarzschild black hole.

1.2 Emission spectra

In this section, we discuss the natural broadening of the Fe Kα spectral lines.

Nature has provided us with an extremely useful probe of the region very

close to an accreting black hole - X-ray radiation of the matter in the vicinity of

the black hole can imprint characteristic features into the X-ray spectra of black

hole systems. The most prominent spectral feature is often the fluorescent Kα

emission line of iron. Detailed X-ray spectroscopy of this feature can be used

to study Doppler and gravitational redshifts, thus providing key information on

the location and kinematics of the cold material. This is a powerful tool that

allows one to probe within a few gravitational radii, or less, of the event horizon

[74, 75, 76, 77]. (see, e.g., [81, 82, 83, 84] and references therein). This tool enables

one to extract information for the accretion disk, the black hole and the interaction

between them. The information that can be extracted for the accretion disk are

the following features [74, 75, 77]: the size of the disk, the shape of the disk and

the inclination angle of the disk with respect to the observer. About the black

hole the following features may be determined: the physics that governs accreting

matter, the mass of the black hole, the geometry of spacetime in the vicinity of

the black hole and the value of the spin of the black hole. For example, the black

hole’s spin especially affects the red wing of the Fe Kα line, so the red wing is more

extended towards lower energies for higher values of the spin [74].

Moreover, astrophysicists are able to identify what class of object we have.



CHAPTER 1. INTRODUCTION 14

For example, in quasars the strength of the iron line decreases with increasing

luminosity. The X-ray radiation can provide information about the interaction

between the black hole and the accretion disk. For example, the data suggest that

the central regions of the accretion disk may be extracting the black hole spin

energy.

Last but not least, one may use X-ray spectroscopy as a testing tool against

other models especially regarding the disk. For example, it can show models for

modified disk geometry instead of a simplified thin disk in the equatorial plane,

models for more complex X-ray source geometry and models for a perturbed ac-

cretion flow (i.e., non-Keplerian flows) [77].

Before we continue to some simple examples of how the broadening impacts

the emission spectrum, let us give a brief introduction about spectral lines, what

kind of broadening one may observe in general and how the Kα emission line of

iron is created.

A spectral line is a dark or bright line in a spectrum, resulting from a deficiency

or excess of photons in a narrow frequency range, compared with the nearby fre-

quencies. Spectral lines are a sort of “atomic fingerprint” as atoms emit light at

very specific frequencies (because of the discrete energy levels) when exposed to

electromagnetic waves. We have the production of two kinds of lines: emission and

absorption lines. In the case of an emission line the detector sees photons emitted

directly from atoms. In the case of an absorption line, the detector sees a decrease

in the intensity of light (dark line) in the frequency that the photons are absorbed

and then reemitted in random directions, which are mostly in directions different

from the original one.

A spectral line extends over a range of frequencies, not a single frequency.
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Moreover, the centre may be shifted from its nominal central wavelength. The

reasons for such effects are divided in two categories. The first one is due to lo-

cal conditions such as natural broadening, thermal Doppler broadening, pressure

broadening and inhomogeneous broadening. Firstly, we have natural broadening.

The uncertainty principle relates the lifetime of an excited state with the uncer-

tainty of its energy. A short lifetime will have a large energy uncertainty and a

broad emission spectrum. Later, we will talk about this kind of broadening in

more detail. Secondly, we have thermal Doppler broadening, where the higher the

temperature of the gas, the wider the distribution of velocities of the atoms in

the gas. Therefore, because of the Doppler effect one ends up with a broadened

spectrum. Thirdly, we have pressure broadening. There are many reasons for the

this kind of broadening. Two of them are associated with the presence of nearby

particles that modify the radiation emitted by an individual particle. The rest

of the reasons for the pressure broadening are associated with the nature of the

perturbing force acting on an individual particle. Finally, we have inhomogeneous

broadening, which is a general term for broadening because some emitting parti-

cles are in different local environments from others, and therefore emit at different

frequencies.

The second category of causes for a shifted centre of a spectral line is due to

nonlocal conditions such as opacity broadening, macroscopic Doppler broadening

and gravitational redshift. Firstly, we have opacity broadening. Electromagnetic

radiation emitted at a particular point in space can be absorbed as it travels

through space. This absorption depends on the wavelength of the radiation. The

line is broadened because photons at the line wings have a smaller reabsorption

probability than the photons at the line centre. This process is also sometimes
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called self-absorption. Secondly, we have the macroscopic Doppler broadening.

Radiation emitted by a moving source is subject to Doppler shift due to a finite line-

of-sight velocity projection. If different parts of the emitting body have different

velocities (along the line of sight), the resulting line will be broadened, with the

line width proportional to the width of the velocity distribution. Later we will see

examples for this kind of broadening and we will generalize it in the relativistic case.

Finally, we have the gravitational redshift. Electromagnetic radiation originating

from an emitter that is in a gravitational field is redshifted when it is observed in

a region of a weaker gravitational potential. This is a direct result of gravitational

time dilation. As one moves away from a source of gravitational field, the rate at

which time passes is increased relative to the case when one is near the source.

We will discuss this kind of broadening in more detail. Moreover, gravitational

redshift and the relativistic Doppler effect will be the main reasons for broadening

in the examples that we are going to study in the rest of the thesis.

1.2.1 Natural broadening

In this subsection we discuss natural broadening. The uncertainty principle relates

the lifetime of an excited state with the uncertainty of its energy. A short lifetime

will have a large energy uncertainty and a broad emission.

The width of the spectral line of lifetime τ will be

Γ ∼ �

τ
. (1.22)

The wave function of an unstable state can be written as follows:
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ψ(T ) ∝ exp

[−i(2E0 − iΓ)T

2�

]
. (1.23)

We make a Fourier transformation in order to get the wave-function in the energy

representation [78],

φ(ω) ∝
∫ ∞

0

exp [iωT ]ψ(T )dT ∝
Γ
2�

Γ2

4�2
+ (ω − ω0)

2 + i
ω − ω0

Γ2

4�2
+ (ω − ω0)

2 . (1.24)

Taking the square of this result we get,

|φ(ω)|2 ∝ 1
Γ2

4�2
+ (ω − ω0)

2 , (1.25)

By normalizing this result such that the integral over all the frequencies and as-

suming that ω0 	 Γ [79], we get the Breit-Wigner distribution3

〈|φ(ω)|2〉 = 1

π

Γ
2�

Γ2

4�2
+ (ω − ω0)

2 . (1.26)

In the following graph 1.1, we can see a spectral line with large lifetime (the red

curve, (2)) in comparison to the lifetime of a spectral line which is not affected by

natural broadening (the black curve, (2).)

3 The Breit-Wigner distribution, also known as the Lorentz distribution is a generalization
of the Cauchy distribution, ((1/π)/(1 + x2)), originally introduced to describe the cross section
of the resonant nuclear scattering in the form

σ(E) =
Γ

2π
[
(E − E0)2 +

Γ2

4

]
which had been derived from the transition probability of a resonant state with known lifetime.
This form can be read as the definition of the probability density as a function of the energy E,
the integral over all energies is being 1. The distribution is fully defined by E0, the position of
the maximum, and by Γ, the full width at half maximum. For more details see [80].
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Figure 1.1: The black curve (1) shows the spectral line which is not affected by
natural broadening. The red curve (2) represents a spectral line with large lifetime,
due to natural broadening in comparison to the lifetime of the black curve.

As we see from Fig. 1.1, the number of particles or the intensity of the line or

any other parameter that we want to study is a function of the frequency. However,

when the emitter is moving, the frequency depends on time. Thus, the quantity

that we want to study depends on time. Therefore, in order to see how the number

of particles or the intensity or any other parameter that we want to study, depends

on the frequency, one needs to average over time,

F̃ (ω̃) =
1

T

∫ T

0

n(T )F (ω , ω0(T ))dT , (1.27)

where F (ω , ω0(T )) is the natural spectrum near the emission frequency ω0, n(T )

is the number of photons registered at time T , and F̃ (ω̃) is the result of time

averaging. If one is not interested in the time of arrival of the photons, F̃ (ω̃) gives

the effective broadening.
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To sum up, natural broadening is one of the most important effects in physics.

The uncertainty principle relates the lifetime of an excited state with the uncer-

tainty of its energy. A short lifetime will have a large energy uncertainty and a

broad emission. In the next section, it will be the spectrum or the number of

particle per unit frequency (or, the ratio of frequencies) that we study. But, before

we study the features of the line broadening let us explain what is the fluorescent

Kα emission line of iron.

1.2.2 Fe Kα spectral lines

One of the methods of study of black holes in astrophysics is based on broadening of

the spectrum of radiation of ionized iron atoms. In our work, we analyze whether

the change of the emission spectrum profiles can give us information about the

magnetic field in the black hole vicinity. Here, we want to discuss what is the

fluorescent Kα emission line of iron.

The fluorescent iron line is produced when one of the two K-shell (i.e. n = 1)

electrons of an iron atom (or ion) is ejected following the photoelectric effect of

an X-ray. The threshold for the absorption by neutral iron is 7.1 keV. Following

the photoelectric event, the resulting excited state decays. An L-shell (n = 2)

electron can then drop into the K-shell releasing 6.4 keV of energy as an emission

line photon. In particular, the exact energy of the photon depends on the state of

the ionization of the atom and is in the range of 6.40−6.97 keV. The broadening of

the Fe Kα lines method is used in the study of accreting matter on stars, neutron

stars and black holes.

This effect and the modifications of the emission line due to relativistic effects

have been approached in several different ways: 1) Numerical computations for the
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line profiles emitted by the accretion disk around black hole, for example in [85], by

using direct integration of the photon trajectory in the Kerr metric. 2) Analytical

calculations for the weak field limit we can find in [86, 87] for the Schwarzschild

case in [88, 89, 90] and for the Kerr metric in [91]. 3) Numerical simulations based

on ray-tracing method in the Kerr metric [92, 82, 93, 94], taking into account only

photon trajectories reaching the observer’s eye.

An example of the profile of the Kα line of iron ions is given in Fig. 1.2. Here

we should note that our goal is to study the main features of the plot and not to

reproduce the broadening as we see it in Fig. 1.2.

Figure 1.2: The profile of the Fe Kα line from Seyfert 1 galaxy MCG-6-30-15
observed by ASCA SIS detector. The figure is taken from [74].

1.3 Features of the line broadening

In this section, we will discuss the main features of the line broadening. We will

start with the Newtonian case for a single emitter, and we will continue with the



CHAPTER 1. INTRODUCTION 21

finite ring case. We will close with the special relativistic case for a single emitter.

1.3.1 Newtonian case

Here, we will study a simple example demonstrating the modifications of the spec-

tral line due to non local effects and especially due to the Doppler effect. Consider

an emitter in a circular orbit around a Newtonian centre. Particle trajectories in

a spherically symmetric spacetime are planar. By a rigid rotation one always can

move this plane so that it coincides with the equatorial plane. In what follows we

use this choice. Thus, at first, we assume that the particle (emitter) is revolving

in the equatorial plane. Let us make the problem even simpler and consider that

the orbital velocity Ω and the radius of the orbit of the emitter re are independent

of each other. Let us make the problem even more simple and set the observer in

the equatorial plane as well but at a distance d >> re, where re is the radius of

the emitter’s orbit.

If we assume that the emitter at rest emits monochromatic and isotropic ra-

diation of angular frequency ωe, then at some distance d from the centre of the

emitter’s orbit, the number of photons (dN) per unit time (dT ) per unit area (dA)

is given by the following equation,

dN

dT dA
=

N
4πd2

, (1.28)

where NdT is the total number of photons emitted during time dT . Let us assume

that the observer has a telescope with aperture area A. At distance d from the

centre of the emitter’s orbit the number of photons per unit time that are captured

by the aperture area A is given by the following equation,
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dN

dT
=

NA

4πd2
. (1.29)

We define the spectrum of the radiation (dN/dw) as the number of photons per

frequency ratio w,

w ≡ ωo
ωe

,

where ωo is the observed frequency and ωe is the emitted frequency.

dN

dT
=

dN

dw

dw

dT
⇒

∣∣∣∣dNdw
∣∣∣∣ = NA

4πd2

∣∣∣∣dwdT
∣∣∣∣
−1

. (1.30)

In this example we want to study the non-relativistic Doppler effect. Thus,

the velocity of the emitter v with respect to the observer is much smaller than the

speed of light, v << c. In this case the ratio of frequencies is given by

w � 1

1 + β
� 1− β , β =

v

c
. (1.31)

In order to be precise v is the projection of the velocity of the emitter on the line

of sight of the observer at some moment of time T . Thus, we have

v = Ωre sinφ , φ = ΩT . (1.32)

Next, we calculate the derivative of the frequency with respect to the time,

dw

dT
� −Ω2 re

c
cosφ . (1.33)
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From Eqs. (1.31) and (1.32) we get

sinφ � (1− w)
c

Ω re
. (1.34)

We can write cosφ as function of w in order to get the spectrum as a function of

w only.

cosφ = ±
√
1− sin2 φ � ±

√
1− (1− w)2

c2

Ω2re2
. (1.35)

Eq. (1.34) must give | sinφ| ≤ 1 or

∣∣∣∣(1− w)
c

Ω re

∣∣∣∣ ≤ 1 . (1.36)

The condition (1.36) imposes restrictions on the radii that contribute at a certain

frequency. Later, we will see this in more detail.

From Eqs. (1.33) and (1.35) we get the final expression for the derivative of

the ratio of the frequencies as a function of the ratio of the frequencies,

∣∣∣∣dwdT
∣∣∣∣ � Ω2 re

c

√
1− (1− w)2

c2

Ω2re2
. (1.37)

As we said before, we assume that the velocity of the particle is much smaller than

the speed of light. In Fig. 1.3, we can see the spectrum as a function of the ratio

of the frequencies. Moreover, we see the double peak because of the motion of

the emitter around the Newtonian centre. The particle has maximum velocity for

angles φ = π/2 and φ = −π/2. Also, for vmax = 0.1c these are the points that,

we observe the minimum and maximum of the function w respectively, with the

values to be wmin = 0.9 and wmax = 1.1.
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Figure 1.3: The modified spectrum as a function of the ratio of the frequencies due
to the non-relativistic Doppler effect. Here, vmax = 0.1c, and the dimensionless
radius of the emitter is ρ = 2000.

1.3.2 Emission from a ring of finite width

Even though we will not consider this case in the rest of the thesis, it would be

interesting to see what are the changes if we consider a narrow ring instead of

just one orbit. In this case we will not have a single emitter anymore but many

emitters in many orbits in the ring. We will make the following assumptions for

simplicity. Firstly, we assume that, we have a uniform distribution for the emitters

in the ring. Thus, a number of emitters for a given area element 2π r dr is

dn = Σ2πrdr , (1.38)

where Σ is a constant (the number of emitters per area) that for simplicity we

will consider to be equal to 1, and where r, the radius, is not a constant in this
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case of study but is the second variable of the problem which can take different

values. We recall that the first argument in the spectrum function is the ratio

of the frequencies, w. Secondly, we assume that the ring and the observer are in

the equatorial plane but with the observer at a distance d >> re, where re is the

maximum radius that we can have an emitter or is the outer radius of the ring.

Thirdly, we assume that in the ring, we have Keplerian particles, which means that

their orbital velocity Ω is given as follows:

Ω =

√
GM

r3/2
, (1.39)

where G is the gravitational constant andM is the mass of the object in the centre.

The last assumption is the same that was made earlier. Namely, we assume that

the motion of the particles in the ring is non-relativistic. For example, choose

vmax = 0.1c. Then we have

vmax = 0.1c ⇒ c

Ω r
= 10 (1.40)

from Eqs. (1.40) and (1.39). In order to avoid relativistic effects in the particular

case that vmax = 0.1c, we have

r ≥ 100
GM

c2
⇒ ρmin ≥ 50 , (1.41)

where ρ is the dimensionless radius,

ρ =
rc2

2GM
.
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From Eqs. (1.37) and (1.39) we obtain

dw

dT
= − c3

4GM

1

ρ2

√
1− (1− w)2 2ρ . (1.42)

In order to get the spectrum as a function of the ratio of frequencies for the disk,

we need to integrate the dimensionless radius ρ over the disk at fixed w, but we

need to restrict the radii to those that for some angle φ gives the desired value

w. In Eq. (1.42) this is equivalent to integrating only over values of ρ that keep

the quantity under the square root nonnegative. If for ρ = ρin (the inner radius

of the disk) this quantity is negative for the chosen w, then no radii contribute

to the integral, so there is no contribution from the ring to the spectrum at that

value of w. If the quantity under the square root is positive for ρ = ρin but not

for ρ = ρout, then the integral runs from ρ = ρin to ρ = ρmax with in this case

ρmax = (1/2)/(1 − w)2, the value of ρ where the quantity goes to zero. Finally,

if the quantity under the square root is nonnegative for ρ = ρout as well as for

ρ = ρin, then one sets ρmax = ρout and again integrates ρ from ρin to ρmax.

∫
dN

dw
dn =

∫ max(ρin,min(ρout,ρmax))

ρin

dN

dw

dn

dρ
dρ . (1.43)

In Fig. 1.4, we can see the spectrum of a non-relativistic disk as a function of

the ratio of the frequencies. For this figure ρin = 2000 and ρout = 5000. We

could have any value of ρ >> 50 (for the particular example in which we assume

vmax = 0.1c) in order to avoid the relativistic effects, but the qualitative features of

the spectrum that we want to study do not change. Moreover, we see the double

peak because of the motion of the emitter around the Newtonian centre. These

peaks are smoothed as we were expecting because of the integration over the disk.
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The main contribution of the peaks comes from the outer part of the disk. In

Figure 1.4: The modified spectrum of a disk as a function of the ratio of the
frequencies due to the non-relativistic Doppler effect.

particular, if we plot the spectrum of a single orbit as we did in the previous

subsection, but for ρ = ρout = 5000, we can see that the frequencies where the

spectrum tends to infinity are the same frequencies that we observe the maximum

number of photons in the finite ring case. In general, if we increase the outer

radius of the ring, we would see the peaks of the spectrum come closer to each

other. We can observe this in Fig. 1.5. Next consider the single orbit case, in

which the number of photons between the peaks is always greater than zero. On

the other hand, on the left side of the left peak and the right side of the right peak

the number of photons is zero. Thus, when we sum over all the single orbits for

radii that increase, we get the peaks to be in the same position as the peaks in

the outermost orbit due to the fact that all the orbits giving those two frequencies
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have number of photons greater than zero. This can be better understood by the

Fig. 1.5 and 1.6.

Figure 1.5: The modified spectrum of a disk as a function of the ratio of the fre-
quencies due to the non-relativistic Doppler effect. The black curve is the spectrum
of a disk with ρin = 2000 and ρout = 7000. The blue curve is the spectrum of a
disk with ρin = 2000 and ρout = 5000. The red curve is the spectrum of a disk
with ρin = 2000 and ρout = 3000.

1.3.3 Relativistic case

The next step is to consider a particle which is revolving with a speed close to the

speed of light. The main effects that we expect are the relativistic beaming effect1

and the transverse Doppler effect2 . In order to have the result of the “relativistic”

1 Relativistic beaming is the process by which relativistic effects modify the luminosity of
emitting matter that is moving at speeds close to the speed of light.

2 The transverse Doppler effect is the nominal redshift or blueshift predicted by special
relativity that occurs when the emitter and receiver are at the point of closest approach. Light
emitted at closest approach in the source frame will be redshifted at the receiver. Light received
at closest approach in the receiver frame will be blueshifted relative to its source frequency.
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Figure 1.6: The modified spectrum of a disk as a function of the ratio of the fre-
quencies due to the non-relativistic Doppler effect. The black curve is the spectrum
of a disk with ρin = 2000 and ρout = 7000. The blue curve is the spectrum of a
disk with ρin = 3000 and ρout = 7000. The red curve is the spectrum of a disk
with ρin = 4000 and ρout = 7000.

broadening, we will need to calculate the solid angle of the emitted photons that

pass through the “telescope” aperture, since the relativistic effects change the

angles as well.

The spacetime is flat and in spherical coordinates is given as follows:

ds2 = −dT 2 + dr2 + r2dθ2 + r2 sin2 θdφ2 . (1.44)

We again assume that the emitter is in the equatorial plane. The four-velocity of

the particle in terms of a local rest frame {eT , er, eθ, eφ} is
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u = γ
(
e(T ) + βe(φ)

)
, (1.45)

where β = Ωr with angular velocity Ω. For simplicity we set c = 1. The factor γ

is given as follows:

γ =
1√

1− β2
.

Moreover, the specific angular momentum � of a photon in flat space time is

equal to the impact parameter1 q, so

� = q , (1.46)

where � = L/E with L the angular momentum and E the energy of the photon.

In Fig. 1.7, we see photon 2 with specific angular momentum � or q and

photon 1 with specific angular momentum q + δq. Φ is the angle between the

radial direction re and the photon trajectory. From Fig. 1.7 we can see that

� =
sin (Φ)

ζ
, (1.47)

where ζ is the inverse radius, ζ = 1/r.

The number of photons per unit proper time τe of the emitter emitted within

solid angle ΔΩe is the emitter’s frame is

dN

dτe
=

N
4π

ΔΩe . (1.48)

1 The impact parameter in flat spacetime is defined as the perpendicular distance between
the tangent to the path of a projectile when it is far away and the centre of a potential field
created by an object that the projectile is approaching.
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Figure 1.7: Geometry of the rays in the flat spacetime. At the points 1 and 2 the
angle Φ is 90o.

where Ndτe is the total number of photons emitted during an emitter proper time

dτe. Because of the relativistic beaming effect we have

ΔΩe = ΔΩow
2 , (1.49)

where ΔΩe is the solid angle in the frame of the emitter, ΔΩo is the solid angle in

the frame of the observer, and w is the ratio of frequencies. Moreover, we have

ΔΩo =
A

d2
. (1.50)

Therefore, the equation for the number of photons per unit time To in the observer’s

frame can be written as

dN

dTo
=

dτe
dTo

NA

4πd2
w2 . (1.51)

First, we change from dN
dTo

to the derivative with respect to the observed frequency,
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dN

dωo
=

NA

4πd2
dTo
dωo

dτe
dTo

w2 . (1.52)

Second, we change from dN
dωo

to

dN

dw
= ωe

dN

dωo
=

dτe
dw

NA

4πd2
w2 . (1.53)

Finally we get

dN

dw
=

NA

4πd2

∣∣∣∣ dαdτe
∣∣∣∣
−1

, (1.54)

where α = 1/w and w the ratio of the frequencies is given as follows:

w =
1

γ (1 + β�ζ)
. (1.55)

Let us now obtain an expression for the time derivative of α. First let us notice

that when we compare the two times along null rays from the emission to the

observation d/dτe = (1/w)(d/dTo), so that one has

dα

dτe
= γ2βζ�̇(1 + β�ζ) , (1.56)

where a dot denotes a derivative with respect to the coordinate time T at the orbit

of the emitter. Moreover, we have φ̇ = Ω and

�̇ =
cos (Φ)

ζ
Φ̇ , (1.57)

Φ̇ = φ̇ = Ω . (1.58)

To illustrate the role of the relativistic effects, we consider a particle revolving with
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β = 0.5, which means half of the speed of light. We could have any value of β as

long as it is close to the speed of light, but the qualitative features of the spectrum

that we want to study do not change.

Figure 1.8: Spectrum in the relativistic case.

From Fig. 1.8 we can see that the spectrum is much more broadened because of

the relativistic Doppler effect. Moreover, we see an asymmetry of the peaks. This

is due to the special relativistic beaming effect which enhances the blue peak of

the spectral line. In other words, when the emitter is moving toward the observer

sees much more photons than the case that the emitter is moving away from the

observer.

In the presence of a static gravitational field, one can expect an additional

redshift of the spectrum. For example, this happens when an emitter is at rest

with respect to a static black hole. In this case the number of the photons that

we will observe is different because some of the emitted photons will be absorbed

by the black hole. Another effect that we need to take into account is the bending
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of light or gravitational lensing. The light follows the curvature of the spacetime.

Therefore, when it passes near a black hole its trajectory is bent. The light from an

emitter on the other side of the compact object will be bent towards an observer’s

eye.

The effects that we mentioned in the last paragraph and the addition of the

magnetic field in the background of the Schwarzschild geometry will be the main

effects that we will study in the following chapters. In particular, we will study how

the emission spectrum is modified when the emitter is orbiting a weakly magnetized

black hole.
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Chapter 2

Motion of charged particles and

null rays

In this chapter, we will present the main features of the motion of charged particles

near a magnetized Schwarzschild black hole. We also recall properties of null rays

in the Schwarzschild geometry. In this thesis, we study particles in circular orbits

around a weakly magnetized black hole. However, first we need to show that radial

oscillations disappear very fast. This justifies why we are considering circular orbits

where the particles can live for long time in the same orbit. In Section 2.1, we derive

the dimensionless form of the equations for charged particles in the equatorial

plane, introduce the effective potential, present the main features of the effective

potential and discuss possible orbits. Then we discuss the radial oscillations in

the equatorial plane. We show that the radial oscillations disappear very quickly

due to synchrotron radiation. We continue the chapter with a discussion in two

separate subsections about the main features of the stable circular orbits and the

innermost stable circular orbits. Finally, we will discuss the circular motion in
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the rest frame basis (i.e., we use the rest frame which is a local basis along the

trajectory). Then, we move to the motion of null rays. We will present the motion

of null rays in the equatorial plane and introduce the impact parameters.

2.1 Charged particle

In this section, we will discuss motion in the equatorial plane, the effective potential

and the classification of the orbits of charged particles. We will present the classes

of stable circular orbits (SCO) and innermost stable circular orbits (ISCO). We

will close the section with a discussion about the circular orbit in the rest frame.

The metric of the Schwarzschild spacetime is given by

dS2 = −fdT 2 +
dr2

f
+ r2dΩ2 , f = 1− rg

r
, (2.1)

where rg = 2M is the black hole’s gravitational radius, and

dΩ2 = dθ2 + sin2 θdφ2 (2.2)

is the metric on a unit sphere S2. In our work, we assume the black hole is weakly

magnetized and the electric charge is zero (Q = 0). As we mentioned in the

previous chapter, this means that the magnetic field is not strong enough to cause

any back reaction to the metric. However, it is strong enough to modify the orbits

of the charged particles. The vector potential (1.21) is given as follows,

Aμ =
B

2
ξμ(φ) , (2.3)
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where B = const is the asymptotic strength of the homogeneous magnetic field at

infinity (see, e.g., [67, 72]). The magnetic field is static and axisymmetric and it

is directed orthogonal to the equatorial plane θ = π/2. The Killing vector ξμ(φ) is

associated with axial symmetry. In general, the Schwarzschild spacetime possesses

four Killing vectors,

ξ(T ) = ∂T , ξ(φ) = ∂φ , (2.4)

ξx = − cosφ∂θ + cot θ sinφ∂φ , (2.5)

ξy = sinφ∂θ + cot θ cosφ∂φ . (2.6)

The first one is the generator of time translations, while the other three are the

generators of rotations. For the motion in the magnetized Schwarzschild black

hole [67, 68, 95], there exist two conserved quantities associated with the Killing

vectors: the energy E > 0 and the azimuthal angular momentum L,

E = −ξμ(t)Pμ = (1− 2M

r
)m

dT

dσ
, (2.7)

L = ξμ(φ)Pμ = r2 sin2 θ

[
m
dφ

dσ
+ q

B

2

]
, (2.8)

where Pμ = muμ+qAμ, σ is the proper time, uμ is the 4-velocity and Aμ the vector

potential.

The spacetime (2.1) has only one dimensional parameter, rg, and one can write

the metric in the form

dS2 = r2gds
2 , ds2 = −fdt2 +

dρ2

f
+ ρ2dΩ2 , (2.9)
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where t = T/rg and ρ = r/rg are the dimensionless time and radius, and f =

1− 1/ρ. In what follows, we shall use this dimensionless form of the metric.

The electromagnetic field tensor can be written as follows,

Fμν = 2A[ν,μ]

= 2Br sin θ
(
sin θδr[μδ

φ
ν] + r cos θδθ[μδ

φ
ν]

)
. (2.10)

A charged particle motion obeys the equation

Duμ

dτ
=

q

m
F μ

νu
ν . (2.11)

Here uμ = dxμ/dτ is the particle 4-velocity, uμuμ = −1, τ is its dimensionless

proper time, q and m are its electric charge and mass, respectively.

By making the following transformations,

E =
E

m
, l =

L

mrg
,

r = rg ρ , T = rg t , σ = rg τ ,

b =
qB rg
2m

, (2.12)

we write (2.7 and 2.8) in the form,

E = (1− 1

ρ
)
dt

dτ
, (2.13)

l = ρ2
[
dφ

dτ
+ b

]
. (2.14)
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The radial equation of motion in dimensionless form is

(
dρ

dτ

)2

= E2 − U . (2.15)

where the effective potential U is

U =

(
1− 1

ρ

)[
1 +

(
l − bρ2

ρ

)2
]
. (2.16)

The equation of motion in the equatorial plane is invariant under the following

transformations:

b → −b , l → −l , φ → −φ . (2.17)

Thus, without loss of the generality, one can assume that the charge q (and hence

b) is positive. For a particle with a negative charge it is sufficient to make the

transformation Eq. (2.17). According to the adopted convention, we have b ≥ 0.

The parameter l can be either positive or negative. For l > 0 (sign +) and the

motion in the φ-direction is counter-clockwise, the Lorentz force acting on a charged

particle is repulsive, i.e., it is directed outward from the black hole. Following the

paper [67], we call such motion anti-Larmor motion. In the opposite case when

l < 0 (sign −) and the motion in the φ-direction is clockwise, the Lorentz force

is attractive, i.e., it is directed toward the black hole. We call it Larmor motion.

A circular orbit in which the angular momentum of the particle is positive, l > 0,

and dφ/dτ < 0, is not allowed. Such motion requires b > l/ρ2, but then in this

case U,ρ > 0, so the motion cannot be circular.
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2.1.1 Effective potential

In this subsection, we will study some properties of the effective potential (2.16).

Let us assume that the mass of the black hole M and the strength of the magnetic

field B are fixed. Therefore, for a specific charged particle the parameter b

Figure 2.1: The effective potential for b = 0.5 and l = 1.18.

is fixed as well. Then, the effective potential is a function of l and ρ. In the

Schwarzschild spacetime the horizon of the black hole is located at r = rg = 2M or

in dimensionless units, ρ = 1. The variable ρ is measured in units of gravitational

radius rg so ρ ∈ (1,+∞). The effective potential is positive in this region (see

equation (2.16)). For ρ = 1 the effective potential (2.16) is equal to zero, U = 0.

When ρ → +∞ the effective potential grows as b2ρ2. This implies that in the

weakly magnetized Schwarzschild geometry a particle never reaches spatial infinity.



CHAPTER 2. MOTION OF CHARGED PARTICLES AND NULL RAYS 41

Figure 2.2: The effective potential for b = 0.5 and l = 2.07.

Next, we would like to study possible orbits around the black hole. We start our

analysis with finding the roots of the first and second derivative of the effective

potential, since these roots determine where the effective potential has extrema

and what kind of extrema these are. We take the first and second derivative of the

effective potential with respect to the dimensionless radius ρ,

U,ρ =
1

ρ2

[
1 +

(l − bρ2)2

ρ2

]
+

(
1− 1

ρ

)[
−4 (l − bρ2) b

ρ
− 2 (l − bρ2)

2

ρ3

]
. (2.18)

This relation can be rewritten as

U,ρ =
1

ρ4
[
2b2ρ5 − b2ρ4 − 2lbρ2 + ρ2 − 2l2ρ+ 3l2

]
. (2.19)
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Figure 2.3: The effective potential for b = 0.5 and l = 3.22.

The second derivative is given as follows,

U,ρρ = −2
1 + (l−bρ2)2

ρ2

ρ3
− 2

ρ2

[
4b(l − bρ2)

ρ
+

2(l − bρ2)2

ρ3

]

+

(
1− 1

ρ

)[
8b2 +

12 (l − bρ2) b

ρ2
+

6 (l − bρ2)
2

ρ4

]
. (2.20)

This relation can be rewritten as

U,ρρ =
1

ρ5
[
b2ρ5 − ρ2 + 2lbρ2 + 3l2ρ− 6l2

]
. (2.21)

A 5th-order polynomial expression such as the one in (2.19) may have as many as

five real roots. However, it was shown in [68] in our case that U,ρ has not more
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than two real roots for ρ ∈ (1,+∞)1 .

These two roots are at the points ρ = ρmax, which is the point that the effective

potential has a local maximum, and ρ = ρmin, which is the point that the effective

potential has a local minimum. At the radius ρ = ρmax there is an unstable orbit,

while at the radius ρ = ρmin there is a stable circular orbit (SCO). If we impose

the condition that U,ρρ = 0, we will get the innermost stable circular orbit (ISCO).

The effective potential has different behaviour depending on the values of l and

b. We can classify the particle’s motion in the equatorial plane in the following

manner. For l > 0 and b > 0 we can have three cases for the motion of a particle

from the effective potential (2.16):

• there are no circular orbits,

• for fixed value of b there is a critical value of l where we have an innermost

circular orbit. If for example b = 0.5 then, we have an innermost circular

orbit with l � 2.07 and ρ � 1.59

• we have both stable and unstable circular orbits. For ρ = ρmax the orbit is

unstable, and for ρ = ρmin the orbit is stable. For more details see [68]. We

are going to focus in this case.

Figures (2.1)-(2.3) illustrate the behaviour of the effective potential for three

different cases. In Figure (2.1), the effective potential is plotted for b = 0.5 and

l = 1.18. As we see there are no circular orbits. Figure (2.2) corresponds to

b = 0.5 and l = 2.07. There is an innermost stable circular orbit with ρ = 1.59.

1 An easy way to determine an upper bound on the number of real roots is the following.
Let us start with the sign of the coefficient of the highest power. Next, count the number of sign
changes as you proceed from the highest to the lowest power. Then, the number of sign changes
is the maximum number of real roots [70, 71].
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Figure (2.3) corresponds to b = 0.5 and l = 3.22. There are unstable orbits where

the effective potential is maximum. On the other hand, the stable circular orbits

correspond to the minimum of the effective potential.

Figure 2.4: Type of a bounded trajectory with curls. Arrows illustrate the direction
of motion of a charged particle.

Next, we focus on bounded trajectories that are not circular but are close to

circular. Assume that, the radius of a charged particle oscillates between ρ = ρ1

and ρ = ρ2, with

ρmax ≤ ρ1 ≤ ρmin ≤ ρ2 .

Then the radial motion of the particle is periodic. From the equation (2.15) we

can calculate the period of the radial motion,

dρ

dτ
= ± [E2 − U

]1/2 ⇒ Δτ = ±2

∫ ρ2

ρ1

dρ

[E2 − U ]1/2
. (2.22)

From equation (2.14) we get

dφ

dτ
=

l

ρ2
− b . (2.23)
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Figure 2.5: Limiting case of bounded trajectory with curls. Arrows illustrate the
direction of motion of a charged particle.

In the case of l < 0 the motion in the φ- direction is clockwise, the Lorentz force is

attractive and the right hand side of this equation (2.23) is negative. This motion is

modulated by the motion in the radial direction. In the case of l > 0 the motion in

the φ- direction is counter-clockwise, and the Lorentz force is repulsive. If ρ2 < ρ∗,

(where ρ = ρ∗ ≡ (l/b)1/2), the right hand side of equation (2.23) is positive and

φ grows monotonically with time. This motion is modulated by the radial motion

as well. Such kind of motion does not have curls. See Figure (2.6). In the case

ρ2 > ρ∗, for the motion of the particle in the domain (ρ1 , ρ∗), we have φ increasing

with time. On the other hand, in the domain (ρ∗ , ρ2), φ is decreasing with time.

The increase of φ can not be compensated by the decrease, so there is a drift of

the particle in the positive φ- direction. Such motion has curls. See Figure (2.4).

In the critical case - see figure (2.5) - when ρ2 = ρ∗, the trajectory is similar to a
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cycloid. For more details of the three different kind of trajectories (i.e., with curls,

without curls and the critical case), see [68].

Figure 2.6: Type of a bounded trajectory without curls. Arrows illustrate the
direction of motion of a charged particle.

In Appendix C, we discuss small oscillations about circular orbits. According

to [101], because of the energy loss, the radial oscillations about a stable circular

fiducial orbit decay. Therefore, we have a transition from a bound orbit, which

has loops, to a circular bound orbit, due to synchrotron radiation. The transition

time Δτ , as measured with respect to a particle’s proper time τ , is ten orders of

magnitude shorter for electrons than that for protons and heavy ions. In particular,
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one can estimate Δτ as follows,

Δτ ∼ ρ

2κ(ρ− 1)
, (2.24)

where κ is defined as

κ =
8q2b2

3mrg
. (2.25)

According to [102], the magnetic field B is of the order of 108 G near a stellar

mass black hole, M ∼ 10M�, and is of the order of 104 G for a supermassive

black hole, M ∼ 109M�. Therefore, for an electron revolving around a stellar

mass or supermassive black hole, we have κ ∼ 103, and for a proton κ ∼ 10−7.

The dimensionless transition time for electrons is Δτelectron ∼ 10−3, whereas for

the protons we have Δτproton ∼ 107. Therefore, the radial oscillations of electrons

revolving around a black hole disappear faster than the radial oscillations of protons

revolving a black hole.

Particles in circular orbits also lose energy because of synchrotron radiation.

However, this process is extremely slow, so that they can live for a very long time in

such orbits. In Appendix D, we present an estimation of this time that is required

for a particle to move from one radius to another one due to energy loss because

of synchrotron radiation.

In order to compare the time that particles stay in circular orbit with the

time of decay of the radial oscillations we need first to calculate the dimensionless

transition time Δt from the estimation of the particle’s proper time given in [101].

Thus, we have

Δt = Δτγ , (2.26)
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where the factor γ comes from the normalization uμuμ = −1. If we restrict our-

selves to circular orbits, then uμ = γ (1, 0, 0,Ω), so we have

γ =
1√(

1− 1
ρ

)
− ρ2 Ω2

. (2.27)

Using equation (2.24) we get

Δt =
ρ γ

2(ρ− 1)

1

κ
. (2.28)

The factor (ρ γ)/(2(ρ−1)) for our estimation where b = 2.25 and ρ = 1.3 is almost

equal to 4. We should note that the dependance of Ω on l , b and ρ we will see in

detail in the next subsection. Taking into account only the order of magnitude we

have

Δt ∼ 1

κ
, (2.29)

so we have telectron ∼ 10−3 and tproton ∼ 107. This is the case for a magnetic field

B ∼ 108 (for a stellar mass black hole). However, in our case the magnetic field

that we consider is much smaller than that. In particular, in Appendix D our

estimation is done for b = 2.25. In such a case we would have telectron ∼ 105. If

we compare this result to the time that particles spend in circular orbit (t ∼ 1017)

we can say that the radial oscillations disappear very fast. Thus, for the rest of

our work, we will stick to the circular orbits where the particles can live for a very

long time in the same orbit.
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2.1.2 Stable circular orbits (SCO’s)

In general, the motion of charged particles around a weakly magnetized Schwarzschild

black hole is chaotic [67, 95, 96]. The equations of motion appear to be separa-

ble in the equatorial plane only. In [97], it was shown that the motion near a

Kerr black hole in the presence of a magnetic field generated by a current loop

has chaotic character depending on the initial conditions. However, as it was

shown in [98], that for an extremal Kerr black hole the chaotic behaviour weak-

ens in particles trajectories. In [99], the chaotic nature of the dynamics near a

Schwarzschild black hole in the presence of an axisymmetric magnetic field was

studied. In [100], an analysis was made of the off-equatorial motion of charged

particles in a Schwarzschild black hole with a dipole magnetic field and a Kerr

black hole immersed in a uniform axisymmetric magnetic field. It was shown that

the off-equatorial motion is regular until the particle energy is raised to the level

at which trans-equatorial motion occurs.

In order to make things simpler, we will restrict ourselves by considering motion

in the equatorial plane (θ = π/2). Let us focus on circular motion. In this case,

the four-velocity of the particle in coordinates (t, ρ, θ, φ) is

uμ = γ (1, 0, 0,Ω) . (2.30)

From Eqs. (2.13) and (2.14), one can find the angular velocity of a particle in

circular motion,

Ω =
dφ

dt
=

ρ− 1

ρ E
(

l

ρ2
− b

)
. (2.31)
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For Stable Circular Orbits (SCO), and for the anti-Lamor particles we have,

l =
−bρ2 +

√
4b2ρ4 + 4b2ρ6 − 8b2ρ5 + 2ρ3 − 3ρ2

2ρ− 3
. (2.32)

The energy of such particles is

E =

√
1− 1

ρ

√
1 +

(�− bρ2)2

ρ2
. (2.33)

Figure 2.7 shows the angular velocity of the particle at a SCO as a function of ρ

for different values of b. Similarly, for the Lamor particles we have

Figure 2.7: Angular velocity, Ω, as a function of the radius, ρ, for different values
of magnetic field, b for anti-Lamor particles. The dark red curve has b = 0, the
blue curve has b = 0.25, the black curve has b = 1, the red curve has b = 3, and
the green curve has b = 5.
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l =
−bρ2 −√

4b2ρ4 + 4b2ρ6 − 8b2ρ5 + 2ρ3 − 3ρ2

2ρ− 3
. (2.34)

Figure (2.8) shows the angular velocity of the Lamor particle as a function of ρ

for different values of b. Substituting expressions Eq. (2.32) or Eq. (2.34) and Eq.

Figure 2.8: Angular velocity Ω as a function of the radius, ρ, for different values
of magnetic field, b for Lamor particles. The dark red curve has b = 0, the blue
curve has b = 0.05, the black curve has b = 0.1, the red curve has b = 0.25, and
the green curve has b = 1.

(2.33) into Eq. (2.31) we find the angular frequency Ω as a function of ρ and b. In

this expression, for a fixed value of the parameter b ≥ 0, the specific energy E and

the parameter l are defined by the value of ρ, which corresponds to minimum of

the effective potential.

For ρ greater than the ISCO radius this is a local minimum. If the specific

energy is greater than the value of the potential at this minimum, the radial motion
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is an oscillation between the minimal and maximal values of the radius. As a result

the motion with negative l remains smooth, while for l > 0 and large enough

magnetic field b the particle trajectory becomes curly. One can describe such

a trajectory as a result of superposition of cyclotron rotation along small cycles

and a slow drift motion of the centre of the cycle around the black hole. As we

explained earlier, one can expect that as a result of the synchrotron radiation such

a trajectory would become more smooth and finally relax to a circular one. For

more details concerning the general type of motion around magnetized black holes,

see [68].

2.1.3 Innermost stable circular orbits (ISCO’s)

The Innermost Stable Circular Orbit (ISCO) is defined by the condition that the

first and second derivatives with respect to ρ of the effective potential are zero,

(U,ρ = 0 , U,ρρ = 0). Note that the lower sign below stands for Larmor particles

and the upper sign stands for anti-Larmor particles. Moreover, ρ+ stands for anti-

Larmor particles and ρ− for the Larmor particles. From these two condition we

can have the magnetic field as a function of radius,

b =
(3− ρ±)1/2√

2ρ±H±
, (2.35)

where H± is given as follows

H± =

√
4ρ2± − 9ρ± + 3±

√
(3ρ± − 1)(3− ρ±) . (2.36)

Then, the angular momentum l, the energy E and angular velocity Ω are
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Figure 2.9: Magnetic field b of a magnetized black hole as a function of the ISCO
radius ρ. Labels + and − stand for the anti-Larmor and Larmor orbit branches,
respectively.

l± = ±ρ±(3ρ± − 1)1/2√
2H±

, (2.37)

Ω± = ±
√
2

2

√
3ρ± − 1∓√

3− ρ±
J±

, (2.38)

E± =

√
ρ± − 1

ρ±

J±
H±

, (2.39)

where

J± =

√
H2± + ρ± + 1∓√

3ρ± − 1
√
3− ρ± . (2.40)

Note that (5+
√
13)/4 < ρ− ≤ 3 and 1 < ρ+ ≤ 3. For b ≥ 0 and l ≥ 0, the Lorentz

force is toward the black hole, so we call this kind of motion Larmor motion. For
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Figure 2.10: Specific energy E of a charged particle at ISCO in a magnetized black
hole as a function of the ISCO radius ρ. Labels + and − stand for the anti-Larmor
and Larmor orbit branches, respectively.

b ≥ 0 and l ≤ 0, the Lorentz force is away from from the black hole, so we call this

kind of motion anti-Larmor motion. Figure 2.9 shows a relation between the value

of the magnetic field and the radius ρ of the corresponding ISCO. Labels + and

− stand for anti-Larmor and Larmor orbits, respectively. As we can see from the

Figure 2.9 the anti-Larmor ISCO approaches the horizon of the black hole while

energy is released. On the other hand, if one adds energy to a Larmor particle,

then its radius is shifted to a smaller value. One might have expected that for the

Larmor ISCO the radius would be shifted to a larger value, because the Lorentz

force is attractive. However, from equation (2.31) we can see that in the case of

Larmor particles l < 0, and since b > 0 the expression inside the parenthesis is

negative. Therefore, while we increase the magnetic field the angular velocity Ω is
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Figure 2.11: Angular velocity |Ω| as a function of the ISCO radius in a magnetized
black hole. Labels + and − stand for the anti-Larmor and Larmor orbit branches,
respectively.
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Figure 2.12: Velocity v of a charged particle at the ISCO in a magnetized black
hole as a function of the ISCO radius ρ. Labels + and − stand for the anti-Larmor
and Larmor orbit branches, respectively.
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increasing. So, the Larmor particles come closer to the horizon of the black hole

than the ISCO of Schwarzschild with no magnetic field.

The specific energy at the ISCO orbits as a function of the ISCO radius for

both types (anti-Larmor and Larmor) of motion is presented in Figure 2.10. The

next plot (Figure 2.11) shows the angular velocity at the ISCO, |Ω|, as a function

of its radius ρ. For small b (ρ ≈ 3) both branches + and − approach the same

value ΩISCO,b=0
= 1/

√
54 ≈ 0.136, which is the Keplerian ISCO angular velocity

for a non-magnetized black hole.

The asymptotics of these functions for anti-Larmor ISCO and large b are

(ρ+ − 1)|b>>1 =
1√
3b

+ . . . , (2.41)

Ω+|b>>1 =
33/4

6
√
b
+ . . . , (2.42)

E+|b>>1 =
2

33/4
√
b
− 2

35/4b3/2
+ . . . . (2.43)

In the limit of a strong magnetic field (b 	 1), Ω+ → 0 (branch +) and −Ω− →
0.34 (branch −). Similar expressions can be easily obtained in the large b limit for

Larmor orbits. For example, one has

Ω−|b>>1 = Ω
(0)
− +

Ω
(2)
−
b2

+O(b−4) , (2.44)

Ω
(0)
− = −

√
6

18

√
3 +

√
13

(
19− 5

√
13

)
≈ −0.34 , (2.45)

Ω
(2)
− =

√
6

108

√
3 +

√
13

13

(
7
√
13− 25

)
≈ 0.41 . (2.46)
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2.1.4 Circular motion in the rest frame basis

Next, let us introduce a local rest frame {et, eρ, eθ, eφ}

et = |ξ2t |−1/2ξt = f−1/2∂t , eρ = f 1/2∂ρ , (2.47)

eθ = ρ−1∂θ , eφ = |ξ2φ|−1/2ξφ =
1

ρ sin θ
∂φ . (2.48)

The four-vector of velocity for the circular motion, (2.30), with (dimensionless)

angular velocity Ω can be written as follows

uμ = γ
(
ξμ(t) + Ωξμ(φ)

)
= γ̃(eμ(t) + veμ(φ)) , (2.49)

γ =
1√

f − Ω2ρ2
, v =

Ωρ√
f
, γ̃ =

√
f√

f − Ω2ρ2
. (2.50)

Here v (which can be either positive or negative) is the velocity of the particle

with respect to a rest frame, and γ̃ = (1 − v2)−1/2 is the corresponding Lorentz

gamma factor. Moreover, we should recall that f = 1 − 1/ρ. A simple analysis

shows that the velocity v at the anti-Larmor ISCO remains close to 1/2 in the

entire interval (1, 3) of ISCO radii and, hence, this motion is not very relativistic.

For the opposite direction of motion, the velocity for the ISCO changes from 1/2,

in the absence of the magnetic field, up to 1 for a very large magnetic field (see

Figure 2.12). For more details see [69].
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2.2 Null rays in the Schwarzschild geometry

2.2.1 Conserved quantities and equations of motion

A distant observer receives information from an emitter revolving around the black

hole by observing its radiation. Two different types of the observations are of

the most interest: (1) Study of the images of the emitter orbits and (2) Study

of the spectral properties of the observed radiation. The theoretical techniques

required for these two problems are slightly different. However, in both cases

one needs at first to perform similar calculations. Namely, one needs to integrate

equations for the light propagation in the Schwarzschild geometry. This is a well

studied problem. Many results concerning ray tracing as well as the study of the

narrow spectral line broadening in the Schwarzschild spacetime can be found in

the literature (see, e.g. [26] and references therein). Since the magnetic field does

not affect the photon propagation, one can use similar techniques for our problem.

However, there are two new features of the problem. Namely, (1) the radius of the

emitter can be less than 6M , the ISCO radius for a neutral particle, and (2) even

if the charged emitter is at the same orbit as a neutral one, its angular velocity

differs from the Keplerian velocity. For this reason one should perform the required

calculations and adapt them to a new set-up of the problem.

The geodesic equation for a null ray is

Dpμ

dλ
= 0 , gμνp

μpν = 0 , (2.51)

where pμ = dxμ/dλ ≡ ẋμ and λ is an affine parameter. For the symmetries Eq.
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(2.4-2.6) there exist three commuting integrals of motion

E = −pμξ
μ
(t) = −pt = f ṫ , (2.52)

Lz = pμξ
μ
(φ) = pφ = ρ2 sin2 θφ̇ , (2.53)

L2 = [pμξ
μ
(φ)]

2 + [pμξ
μ
x ]

2 + [pμξ
μ
y ]

2

= p2θ +
p2φ

sin2 θ
= ρ4(θ̇2 + sin2 θφ̇2) . (2.54)

Let us recall that we use the dimensionless quantities. We choose the normal-

ization of the affine parameter λ such that the “physical” energy is rg E. In what

follows, it is convenient to use the following quantities:

ζ = ρ−1 , �z =
Lz

E
, � =

L

E
, σ = Eλ . (2.55)

2.2.2 Motion in the equatorial plane

The motion of a ray (as well as the motion of any particle) in the Schwarzschild

geometry is planar. One can always choose this plane to coincide with the equa-

torial plane. For such a choice pθ = 0 and L = |Lz|. Thus, the photon trajectory

depends on only one conserved quantity, �z = �. The equation of motion in the

equatorial plane can be written in the following first order form:

ζ ′ = −εζ2P , P =
√

1− �2(1− ζ)ζ2 , (2.56)

t′ = 1/(1− ζ) , φ′ = �ζ2 , (. . .)′ = d(. . .)/dσ . (2.57)

For outgoing rays, when r increases along the trajectory, ε = +1, and ε = −1 for

incoming rays. For fixed value of the impact parameter �, the radial turning point
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ζm (if it exists) is determined by the condition

(1− ζm)ζ
2
m = �−2 . (2.58)

The evolution of the angle φ along the trajectory can be found from the following

equation:

dφ

dζ
= −ε

�

P . (2.59)

In what follows, we shall use the following function:

B(�; ζ) =

∫ ζ

0

dζ ′√
�−2 − (1− ζ ′)ζ ′2

. (2.60)

The integral Eq.(2.60) can be written in terms of the elliptic function of the first

kind1 F (x, α). One has

B (�, ζ) =
2
√
2�1/3

k+
F

(
X(ζ),

k−
k+

)∣∣∣∣
ζ

0

, (2.61)

where

X(ζ) =

√
6
√
�2/3 (3ζ − 1) +

√
3 (c+ + c−)

3k−
, (2.62)

k± =

√√
3(c+ + c−)± i(c+ − c−) , (2.63)

c± =

[√
3(27

2
− �2)

9
±

√
27− 4�2

2

]1/3

. (2.64)

1 Here we use the definition

F (x, α) =

∫ x

0

dζ√
1− ζ2

√
1− α2ζ2

.
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Consider a ray emitted at the radius re = rg/ζe that reaches infinity. Denote

by Φ the angle between the radial direction to the point of emission and the radial

direction to the point of observation. It is easy to show that a null ray can have

no more than one radial turning point since the effective potential1 for null rays

in Schwarzschild spacetime has only a local maximum and not a local minimum.

The emitted ray either propagates to infinity with monotonic increase of ρ, or it

at first moves to a smaller value of ρ and only after that goes to infinity. In the

former case the bending angle is

Φ = B(�, ζe) . (2.67)

In the latter case one has

Φ = 2B(�, ζm)− B(�, ζe) . (2.68)

Here ρm = ζ−1
m is the dimensionless radius of the radial turning point.

2.2.3 Integrals of motion and impact parameters

We are interested in the study of the propagation of photons emitted by an object

revolving around a magnetized black hole in the plane orthogonal to the magnetic

1 Let us rewrite the radial equation Eq. (2.69) of motion of null rays in Schwarzschild space-
time in terms of ρ: (

dρ

dλ

)2

= E2 − L2 ρ− 1

ρ3
= E2 − V 2(ρ) , (2.65)

so we define the effective potential for null rays in Schwarzschild spacetime as follows

V (ρ) =

√
L2

ρ− 1

ρ3
. (2.66)
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Figure 2.13: Motion of a photon in the equatorial plane. The photon emitted at Pe
propagates to a distant observer along a trajectory without radial turning points
(a direct ray). The ray emitted at P ′

e is indirect. It at first moves toward the black
hole, and only after it passes through a radial turning point does it propagate
outward to the distant observer. The image is from [27]

field. Using the freedom in the rigid rotations, it is convenient to choose the

spherical coordinates so that this plane coincides with the equatorial plane θ = π/2.

For such a choice, in the general case, the plane determined by the trajectory of

the emitted photon will be tilted with respect to the equatorial one. There still

remains freedom in rotation in the φ−direction, preserving the plane connected

with the charged particle motion, which we shall fix later.

To derive properties of such photons we write the corresponding equations

ζ ′ = −εζ2P , (2.69)

θ′ = εθζ
2

√
�2 − �2z

sin2 θ
, (2.70)

φ′ =
�zζ

2

sin2 θ
, t′ =

1

1− ζ
. (2.71)
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The turning points of the θ−motion, where θ′ = 0, are determined by the

condition sin θ = |�z|/�. Denote these angles by 0 < θ∗ ≤ π/2 and π − θ∗. Denote

by ι the angle between the normal to the tilted plane and the normal to the

equatorial plane. One has ι = π/2− θ∗, so that 0 ≤ ι < π/2 and

cos ι =
|�z|
�

. (2.72)

In what follows, we will consider rays emitted by a revolving body which prop-

agate to infinity, where an observer is located. In order to characterize the asymp-

totic properties of these rays which are directly connected with observations, one

can proceed as follows. Denote by θo and φo the asymptotic angles for the ray

trajectory. The angles of displacement of the photon in the θ and φ directions are

ρ dθ/dt and ρ sin θdφ/dt with respect to a photon in the radial direction and they

give the angle of the photon as it reaches the distant observer. Multiplying them

by ρ and taking the limit ρ → ∞, one obtains the dimensionless impact parameters

ξθ = lim
ρ→∞

[
ρ2

pθ

pt

]
= lim

ζ→0

[
ζ−2 θ

′

t′

]

= εθ

√
�2 − �2z

sin2 θo
, (2.73)

ξφ = − lim
ρ→∞

[
ρ2 sin θ

pφ

pt

]
= − lim

ζ→0

[
ζ−2 sin θ

φ′

t′

]

= − �z
sin θo

. (2.74)

Consider a unit sphere with the coordinates (θ, φ) and denote a plane tangent

to it at the point (θo, φo) by Π. We call it the impact plane. Denote by eθ and eφ

unit vectors in Π directed along the coordinate lines of θ and φ, correspondingly.
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We call the vector

ξ = ξθeθ + ξφeφ (2.75)

the impact vector. Its norm is

|ξ| =
√
(ξθ)2 + (ξφ)2 = � . (2.76)

One also has

tan η ≡ ξφ/ξθ =
εθ cos ι sign(�z)√
sin2 θo − cos2 ι

. (2.77)

2.2.4 Asymptotic data for null rays

For studying outgoing null rays it is convenient to rewrite the Schwarzschild metric

Eq. (2.2) in the retarded time coordinates

ds2 = ζ−2ds̃2 , (2.78)

ds̃2 = −ζ2fdu2 + 2dudζ + dΩ2 , (2.79)

where du = dt− dρ/f . The conformal metric, Eq. (2.79), is especially convenient

for describing the asymptotic properties of null rays ar r → ∞. This metric

is regular at infinity, ζ = 0, so that the 3D surface ζ = 0 with the coordinates

(u, θ, φ) is nothing but the future null infinity J + for our spacetime. Rays with the

same asymptotic parameters (uo, θo, φo) are asymptotically parallel in the ‘physical’

spacetime with the metric Eq. (2.78). To fix a ray in such a beam one needs

two additional parameters, namely the impact vector Eq.(2.75). Thus, a point

(uo, θo, φo) at J + together with the impact vector ξ uniquely specify a null ray

which reaches infinity. We call these five parameters the asymptotic data.
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Equations (2.69)-(2.71) are equivalent to the following set of equations:

dθ

dζ
= −εεθ

P

√
�2 − �2z

sin2 θ
, (2.80)

dφ

dζ
= − ε�z

P sin2 θ
, (2.81)

du

dζ
= − ε�2

P(1 + εP)
. (2.82)

We recall that for the outgoing ray ε = +1. For given position at J + and a given

impact vector ξ, one can determine the integrals of motion �z and �. For given

asymptotic data one can integrate equations (2.80)–(2.82) back in time, from the

starting point ζ = 0, and restore the complete null ray trajectory.
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Chapter 3

Imaging the radiation

In chapter two we discussed how the magnetic field changes the orbits of charged

particles. In this chapter we will present the implications of such modifications.

We start by imaging the modified orbits of the charged particle around a weakly

magnetized black hole. We will study the angular relations and the map between

the equatorial and the impact planes. We close the section 3.1 of this chapter with

a classification of rays as direct or indirect. In section 3.2, we study the effect

of the magnetic field on the spectral broadening starting with the momentum of

the photons and the conserved quantities, the redshift factor that we take into

account in our case. We will continue our study with the calculation of the solid

angle of the emitted photons that pass through the “telescope” aperture of the

observer and the study of the spectral broadening for a single emitter. We are not

discussing the finite ring case in this thesis because that would require the choice of

a specific model for charged particles distribution around the black hole. We close

the chapter with a discussion of the general properties of the spectral function.
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3.1 Orbit images

In this section, we study the imaging of the modified orbits of the charged particle

around a weakly magnetized black hole. We will start by studying the angular

relations and the map between the equatorial and the impact planes. We close

section 3.1 with the classification of rays into those with or without a radial turning

points (i.e., direct and indirect rays).

3.1.1 Angular relations

Denote by Pe = (te, ρe, θ = π/2, φ = ϕ(te)), ϕ ∈ (−π, π], an event of the radiation

of a quantum by the emitter revolving around the black hole. This quantum is

registered by a distant observer (at J +) with location Po = (uo, ζo = 0, θo, φo).

Here uo is the moment of the retarded time when the ray arrives at the observer,

and θo is the angle between his/her position and the direction orthogonal to the

plane θ = π/2. We use the freedom of rigid rotations around the Z-axis to put the

angle φo at the point of observations equal to zero.

For a discussion of the photons trajectories, it is convenient to use a unit round

sphere shown in Figure 3.1, which allows one to represent the motion of photons

and the emitter in the 2D (θ, φ)−sector. We embed this sphere in a flat 3D

Euclidean space, so that a point on the surface of the sphere is uniquely determined

by a unit vector with the origin at the centre of the sphere. We call this 2D space

the angular space. The motion of the emitter is represented by the equator of the

sphere, while orbits of photons, since they are planar, are represented by great

circles. We use the same letters Pe and Po as earlier to denote the positions of the

emission and of the observer location in the angular space.
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Figure 3.1: Angular definitions. The image is from [27]

A trajectory of the photon emitted at Pe and arriving to the observer Po is

represented by a great circle passing through these two points (see Figure 3.1).

We denote by Φ the angle between the vectors �n and �m from the centre of the

unit sphere to the points Po and Pe, respectively. We call Φ the bending angle. It

varies from π/2− θo when ϕ = 0 to π/2 + θo when ϕ = π. We call such rays with

Φ ∈ [π/2 − θo, π/2 + θo] primary to distinguish them from secondary rays, which

make one or more turns around the black hole before they reach the observer. The

characteristic property of these rays is that after the emission they move at first

below the equatorial plane. The brightness of the secondary images generated by

such rays is greatly suppressed. That is why we do not consider them here.

As one can see from Figure 3.1, the angle θ for the primary rays emitted in

the interval ϕ ∈ [−π/2, π/2] monotonically decreases from the point of emission
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to Po. For the rays emitted from the other part of the circle the angle θ at first

decreases. It increases after passing through its minimal value (an angular turning

point θ∗). Equation (2.73) implies that in the former case the coordinate of the

image on the impact plane is ξθ ≤ 0, while for the latter one ξθ > 0. This means

that the image of the part of the emitter trajectory lying in the half-plane with

positive X is located in the lower half of the impact plane ξθ < 0, while the part

with X < 0 has the image in the upper half of the impact plane ξθ > 0. Two

points with ξθ = 0 are images of the radiation sent by the emitter when its crosses

the Y -axis, where ϕ = ±π/2. We denote by ψ the angle between the direction of

the non-radial part of the initial photon direction and the 3-velocity of the emitter

in the static frame of the black hole. The angle ψ is connected with the angle ι

[see Eq.(2.72)] as follows: ι = π − ψ.

A simple way to find relations between angles which will be used later is to

consider a spherical triangle on a unit sphere. Denote by A, B and C its angles,

and by a, b and c the length of the sides of the triangle, opposite to A, B and C,

respectively. Then, one has

sinA

sin a
=

sinB

sin b
=

sinC

sin c
, (3.1)

cos a = cos b cos c+ sin b sin c cosA . (3.2)

For example, consider the spherical triangle PXPePo (see Figure 3.1). It has the

angles π/2 (at PX), π − ψ (at Pe) and η (at Po). The length of the sides opposite

to the apexes PX , P0, and Pe of this triangle are Φ, π/2− θo, and ϕ, respectively.
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Using Eq.(3.1) and Eq.(3.2), one obtains

cosΦ = cosϕ sin θo , sinψ =
cos θo
sinΦ

, sin η =
sinϕ

sinΦ
. (3.3)

These equations together with the expressions Eq.(2.73)–Eq.(2.75) allow one

to determine the impact vector �ξ in terms of the total angular momentum �, the

inclination angle θo and the position angle ϕ of the emitter:

ξφ =
� sinϕ

sinΦ
, (3.4)

ξθ =
� cosϕ cos θo

sinΦ
. (3.5)

One also has

�z = −� sin θo sinϕ

sinΦ
, (3.6)

sinΦ =

√
sin2 ϕ+ cos2 θo cos2 ϕ . (3.7)

These relations, besides the inclination angle θo of the orbit and the angular posi-

tion of the emitter, ϕ, contain only one unspecified parameter �.

3.1.2 Map between equatorial and impact planes

Consider a ray connecting a point Pe on the equatorial plane and a distant observer

Po. If such a ray does not have a radial turning point between the point of emission

and the point of observation we call it direct. In the opposite case we call it an

indirect ray (see Figure 2.13). Now we can make a classification of four classes or

domains of null rays (photon trajectories) that reach J + (future null infinity).
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The first class of rays (domain I in Figure 3.2) have sufficiently small angular

momentum parameters � and �z (depending on θo) that, when traced backward

in time from the observer whose location Po is idealized to be J +, do not cross

the equatorial plane at all before they approach very close to the horizon of the

black hole. Since the emitters are assumed to be on the equatorial plane, none of

the rays to Po from an emitter can be in domain I. (They are thus neither direct

rays nor indirect rays, since those are defined to be rays from the emitter on the

equatorial plane to the distant observer.)

The second class of rays (domain II in Figure 3.2) have somewhat greater

angular momentum parameters � and �z, so that when traced backward in time

from Po, they do intersect the equatorial plane, but they have � < �∗ = 3
√
3/2, so

that they approach very near to the black hole horizon without any radial turning

points. Since these rays have ρ increasing monotonically (in the forward direction

of time), they are one of two classes of direct rays.

The third class of rays (domain III) have � > �∗ = 3
√
3/2 but no turning

points between the emitter and the observer, so they are the second class of the

direct rays. However, the fact that � > �∗ means that if one traces these rays

backward in time from the emitter, they do have a turning point and eventually

go to J − (past null infinity). (These rays might also cross the equatorial plane

another time, but here we shall assume that when tracing a ray backward in time

from the observer, the emitter is on the first crossing of the equatorial plane.)

The fourth class of rays (domain IV ) also have � > �∗ = 3
√
3/2 but do have

turning points between the emitter and the observer, so that they are indirect rays.

That is, when one of these rays is traced backward in time from the observer, at

first ρ decreases, but then at the turning point ρ begins increasing before the ray
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Figure 3.2: Schematic diagram of the impact plane. The horizontal axis corre-
sponds to the φ coordinate and the vertical axis corresponds to the θ coordinate.
The image does not distinguish between the domain III and IV . The image is
from [27]

reaches the emitter. In the forward direction of time, when a photon is emitted

by the emitter, it initially has ρ decreasing, so ε = −1 there in the radial equation

(2.69). (In contrast, at emission ε = +1 for photons in domain III.)

The combined region with � > �∗ = 3
√
3/2, domain III and IV , is what is

depicted without distinction by the outer region of Figure 3.2.

Using Eq. (2.67) one can find the boundary between the regions I and II from

the following relation:

B(�, 1) = Φ(ϕ, θo) = arccos(cosϕ sin θo) . (3.8)
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Figure 3.3: The boundary Γ between the regions I and II for different values of
the observer’s angle θo: Curve 1: θo = 5o; Curve 2: θo = 45o; Curve 3: θo = 85o.
A great circle is a curve |ξ| = �∗ = 3

√
3/2.
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(Let us recall that the rays in this domain do not have a radial turning point.)

Figure 3.3 presents solutions of this equation for different values of the inclination

angle θo.

Let us summarize this part. For a fixed position of the observer at infinity

(θo, φo = 0) and a fixed moment of arrival of the rays uo there exist a one-to-one

correspondence between the region II
⋃

III
⋃

IV of the impact plane and the

region of the equatorial plane, located outside the black hole. We call this map Ψ

Ψ : ξ → (ζ < 1, θ = π/2, φ) . (3.9)

3.1.3 Direct and indirect rays

If the radius of an emitter is ρ ≤ 3/2, all the rays from it to the distant observer

are direct, with ρ increasing monotonically. For an emitter with any ρ > 3/2, there

are indirect rays from it which initially have ρ decreasing but then have a turning

point at a smaller ρ (but still greater than 3/2) before traveling to arbitrarily large

ρ. However, for a range of ρ outside of 3/2, all of the indirect rays from a particular

emitter on the equatorial plane to a particular distant observer cross the equatorial

plane at another location after leaving the emitter. If there is an optically thick

accretion disk on the equatorial plane, these indirect rays will be absorbed and

not reach the observer. And even if the disk is optically thin, the fact that these

indirect rays bend around the black hole by a greater angle before reaching the

observer than the direct rays do means that they have a greater divergence and

hence contribute less to the flux received by the observer. Therefore, we shall

henceforth exclude the indirect rays that after leaving the equatorial plane reach

it again and cross it before traveling to the distant observer.
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If the radius of the emitter orbit is small enough all the rays from it to the

distant observer are direct. For a dimensionless radius ρ larger than the critical

radius ρ∗ = 1/ζ∗ there exists a value |ϕ∗| ≥ π/2 of the angle ϕ such that for

−ϕ∗ < ϕ < ϕ∗ one has only direct rays, while for π > ϕ > ϕ∗ and −π < ϕ < −ϕ∗

the rays are indirect. We denote the critical inverse radius which separates these

two cases by ζ∗. For ζe = ζ∗ a radial turning point is located at ϕ∗ = π on the

equatorial plane. For this case one has

Φ = Φ∗(θo) = π/2 + θo . (3.10)

The critical value ζ∗ is a function of the inclination angle θo. To find it let us

first replace in Eq. (2.60) �−2 by (1− z)z2. Then we denote by C(z) the following

integral

C(z) =

∫ z

0

dζ√
(1− z)z2 − (1− ζ)ζ2

. (3.11)

By change of the variable ζ = z(1− y2) this integral can be rewritten in the form

C(z) = 2

∫ 1

0

dy√
Z

, Z = 2− y2 − 3z + 3zy2 − zy4 . (3.12)

Figure 3.4 shows a plot of this function.

The function ζ∗(θo) is determined by the relation

C(ζ∗) = Φ∗ = π/2 + θo . (3.13)

From the Eqs. (2.60), (2.67) and (3.13) we can find the relation between � and

θo. The plot of ζ∗(θo) is shown in Figure 3.5. ζ∗ monotonically increases from 0
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Figure 3.4: Function C(z). It monotonically grows with z from π/2 at z = 0 and
becomes infinite at z = 2/3.

(at θo = 0) to its maximal value at θo = π/2 equal to

ζ∗,max ≈ 0.5680820870 . (3.14)

Consider now a circular orbit with ζe < ζ∗. The following equation determines

an angle ϕ∗ on such an orbit which separates its two parts (with direct and indirect

rays):

ϕ∗ = arccos

(
cos(C(ζe))

sin θo

)
. (3.15)

It is convenient to combine the relations Eq. (2.67) and Eq. (2.68). We introduce

the functions B±(�, ζe) which are defined as follows:

B+(�, ζe) = B(�, ζe) , B−(�, ζe) = 2C(ζm(�))− B(�, ζe) , (3.16)

where ζm is defined by Eq. (2.58), (1−ζm)ζ
2
m = �−2, and the function C is defined by

Eq. (3.12). Note that for numerical computations of B−(�, ζe) it is more convenient
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Figure 3.5: The critical inverse radius ζ∗ as a function of the inclination angle θo.

to consider ζm as a parameter.

The following equation,

B±(�, ζe) = Φ ≡ arccos(cosϕ sin θ0) , (3.17)

establishes a relation between the position (angle ϕ) of the emitter on the orbit

with the inverse radius ζe and the angular momentum � of the photon that reaches

a distant observer with the inclination angle θo. In this relation one needs to choose

the sign + for a direct trajectory and − for an indirect one.

The corresponding image on the impact plane can be found by using Eq. (3.4)

and Eq. (3.5). By integrating Eq. (2.82), one obtains a relation between the time

of emission, te, and the retarded time of observation, uo, at J +.

In the conclusion of this section let us give examples of the images of orbits on
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Figure 3.6: Images of some orbits corresponding to θo = 85o. The innermost curve
is the image of the ζe = 5/6 orbit. The next curve is the image of the ζe = 2/3
orbit. And the outermost curve is the image of the ζe = 1/3 orbit. The circle
represents the rim of the black hole shadow. Note that the angle θo is increasing
from the axis of the black hole to the equatorial plane.

the impact plane. These images for the inclination angles θo = 5o, θo = 45o and

θo = 85o and the inverse radius of the orbit equal to ζe = 5/6, 1/3 are shown in

Figures 3.6, 3.7, 3.8, 3.9 and 3.10. In the figures 3.6 we have an extra case where

the inverse radius of the orbit equal to ζe = 2/3.

By comparing Figures 3.7-3.10 with Figure 3.6 one can see that while the

inclination angle is getting smaller the images of the orbit become more circular.

In Figures 3.6-3.10 the circle of radius 2.598 represents the rim of the black hole

shadow. Counter-intuitively we see images of the orbit from inside the circle of

radius 2.598. The rim of the black hole shadow is the light rays that barely escape

the black hole. On the other hand, the light rays that come from the emitter

(revolving near the black hole) due to the bending of light appear that they are
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Figure 3.7: Image corresponds to θo = 5o. The inner circle represents the rim of
the black hole shadow. The outer circle is the image of the ζe = 1/3 orbit.

Figure 3.8: Image corresponds to θo = 5o. The outer circle represents the rim of
the black hole shadow. The inner circle is the image of the ζe = 5/6 orbit.
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Figure 3.9: Image corresponds to θo = 45o. The circle represents the rim of the
black hole shadow. The deformed curve is the image of the ζe = 1/3 orbit.

Figure 3.10: Image corresponds to θo = 45o. The circle represents the rim of the
black hole shadow. The deformed curve is the image of the ζe = 5/6 orbit.
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coming from the black hole and they create a circle (or in general shapes) with

radius smaller than the black hole shadow.

3.2 Spectral broadening

In this section, we study the effect of the magnetic field on the spectral broadening

of the radiation from a charged emitter revolving around the black hole. We close

the chapter with a discussion of the general properties of the spectral function.

3.2.1 Photon momentum and conserved quantities

In what follows, we use the following orthonormal tetrad at rest at the point of

emission Pe:

{et, eρ, eΦ, ê} . (3.18)

The first of the vectors, et, is in the direction of the Killing vector ξ(t). The second

vector eρ is along the radial direction, while the last two vectors are tangent to

the surface t =const and ρ =const. We choose eΦ to lie in the photon orbit plane

and directed from the point of emission Pe to the point of observation Po. The last

vector ê is uniquely defined by the condition that the tetrad Eq.(3.18) is right-hand

oriented. The unit vector eφ in the equatorial plane and tangent to the orbit of

the emitter can be written in the form

eφ = − 1

sinΦ
(sin θo sinϕ eΦ + cos θo ê) , (3.19)

where

ê =
1

sinΦ
(sinϕ cos θo,− cosϕ cos θo,− sinϕ sin θo) . (3.20)
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Consider a photon with the impact parameter �. Denote by Γ the plane of

its orbit, and by ξ(Φ) the Killing vector generating rotations preserving Γ. Then

the momentum of the photon at the moment when it passes the radius ρ can be

written in the form

p = ν(ξ(t) + aeρ + bξ(Φ)) . (3.21)

One has

ωo = −(p, ξ(t)) = νf , (3.22)

L = (p, ξ(Φ)) = νbζ−2 . (3.23)

Thus, one has

� =
L

ωo
=

b

ζ2f
. (3.24)

The quantity ωo is the frequency of the photon at infinity, measured in r−1
g units.

Using these relations and the property p2 = 0 one finds

p = ωo(
1√
f
et +

1√
f
Peρ + �ζeΦ) , (3.25)

where, as earlier, P =
√

1− �2ζ2f .

3.2.2 Photon beam from the emitter

Using Eq. (3.25), one finds the emitted frequency is

ωe = −pμu
μ = γeωo

[
1√
f
− v�ζ(eφ, eΦ)

]
, (3.26)
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where ωo = −pμξ
μ
(t) is the observer frequency and where γe is γ defined by Eq.

(2.50) with f = fe = 1− 1/ρe. Using Eq. (3.19), one can write

(eφ, eΦ) = −sinϕ sin θo
sinΦ

. (3.27)

Combining these results we obtain the following relation between the emitted fre-

quency ωe and the frequency ωo registered by a distant observer:

ωo = ωe
sinΦ

√
fe − Ω2ρ2e

(sinΦ + �Ω sin θo sinϕ)
. (3.28)

We denote the ratio ωe/ωo by

α = γe

(
1 +

�Ω sinϕ sin θo
sinΦ

)
. (3.29)

3.2.3 Solid angle at the emitter

We recall that the photon orbit is planar. We call the corresponding plane the

photon plane. We choose a reference photon emitted to the distant observer. In

order to find the solid angle of the emitted photons that pass through the ‘telescope’

aperture we fix the position of the emitter and consider a bundle of emitted photons

with momenta that slightly differ from the momentum p of the reference photon.

To determine the bundle we consider two types of variations, which do not involve

the trivial conformal variation of ωo. The first one is the variation δ� of the angular

momentum � which does not change the photon plane,

δ�p = ωoδ�Z , Z = −�ζ2
√
f

P eρ + ζeΦ . (3.30)
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The second variation δψ changes the position of the photon plane and slightly

rotates it around the direction to the emitter by an angle δψ. As a result of this

rotation, the vectors eΦ and ê are transformed as follows:

δψeΦ = êδψ , δψê = −eΦδψ . (3.31)

Hence

δψp = ωo�ζeêδψ . (3.32)

To find the solid angle ΔΩe for such a beam we shall use the relation (B.7) and

write it in the form

A = ±ΔΩeE , (3.33)

where E is the Levi-Civita tensor, the unit rank-4 totally skew-symmetric tensor,

and

A = ω−3
e u ∧ p ∧ δ�p ∧ δψp . (3.34)

Using equations (3.30), (3.31) and (3.34) one obtains

A = γ�ζe

(
ωo
ωe

)3

δ� δψ (B + vC) , (3.35)

B = ω−1
o et ∧ p ∧Z ∧ ê , (3.36)

C = ω−1
o eϕ ∧ p ∧Z ∧ ê . (3.37)

Calculations give

B =
ζe√
feP

E , C =
�ζ2e sin θo sinϕ

P sinΦ
E , (3.38)
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where

E = et ∧ eρ ∧ eΦ ∧ ê . (3.39)

Thus one has

ΔΩe =
�ζ2e
α2P δ� δψ . (3.40)

3.2.4 Spectral broadening

If there are no caustics, all the photons of the bundle emitted in the solid angle

ΔΩe propagate until they meet the observer’s device, which we call a ‘telescope’.

We assume that it is located at the radius ρo, its aperture is A and it is oriented

orthogonal to the bundle of photons. The variation δ� changes the angle Φ at the

point of observation by the value

δ�Φ = Φ′δ� , Φ′ ≡ dB±(�; ζe)
d�

. (3.41)

The other variation is the rotation of the photon’s plane around the direction to

the emitter by the angle δψ. Under this transformation a point with a fixed value

Φ on the photon’s plane is shifted by the angle

δχ = sinΦ δψ (3.42)

in the direction orthogonal to it. Thus, the area of the bundle of the photons

emitted in the solid angle Eq. (3.40) on the “screen” orthogonal to the bundle and

located at the radius ρo is

A = ρ2oδ�Φ δχ = ρ2oΦ
′ sinΦ δ� δψ . (3.43)
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If instead of the ‘screen’ one uses a “telescope”, one can identify A with its aperture.

We denote by NΔτe the total number of the photons emitted during the proper

time Δτe. A fraction of these photons Δe/(4π), which is emitted in the solid angle

Δe, reaches the aperture of the ‘telescope’ during the corresponding time interval

Δto at the point of the observation. Thus, one has

dNo

dto
=

dτe
dto

N Δe

4π
= C dτe

dto

�ζ2e
α2PΦ′ sinΦ

, (3.44)

C =
NA

4πρ2o
. (3.45)

dNo/dto is the number of registered photons per a unit time at the point of obser-

vation. The quantity C, which enters Eq. (3.44) has a simple meaning. Consider a

flat spacetime and an emitter at rest. Then C is the number of particles registered

per unit time by the observer located at the distance ρo from the emitter, provided

the aperture of his/her ‘telescope’ is A. This quantity for a fixed distance ρo is

just a common factor in Eq. (3.44) and similar expressions and does not depend

on details of the emitter’s motion. For this reason it is convenient to define new

quantities, such as

nto = C−1dNo

dto
, nte = C−1dNe

dte
, (3.46)

where d/dte is the derivative with respect to the Schwarzschild time coordinate of

the emitter. In such a case we say that we are using the Newtonian normalization.

The above equations allow one to find how the number of the observed quanta

depends on the time to. Instead of this one may ask how observed quanta are

distributed over the observed frequency ωo. In the latter case it is convenient to

introduce the spectral distribution of the observed quanta1,.

1 One can arrive to the same spectral function by assuming that instead of a single ion, there
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nωo =
Ω

2π

nto
|dωo/dto| . (3.47)

Here we introduce an additional factor Ω/2π which requires an explanation. The

observed frequency ωo is a periodic function of to with the period To = 2π/Ω. This

is a time of the complete revolution of the emitter as measured at infinity. As

we shall see later, the frequency ωo changes in some interval [ωmin, ωmax], and in

this interval there exist two branches of the function ωo(to): in the first branch

dωo/dto > 0, while in the second one dωo/dto < 0. Denote by No the following

quantity:

No =

∮
ωo

nωo |dωo| , (3.48)

where the integral is taken over both the branches. This gives the total number

of photons received by the observer during one period of revolution of the emitter

divided by the period To. In order to provide this useful normalization we included

the factor Ω/2π in Eq. (3.47).

Using Eq. (3.44), one obtains

nw ≡ ωenωo =
Ω

2π

∣∣∣∣ dαdτe
∣∣∣∣
−1

�ζ2e
Φ′P sinΦ

. (3.49)

Let us now obtain an expression for the time derivative of α which enters Eq.

(3.49). First let us notice that d/dτe = γ(d/dte), so that one has

dα

dτe
= γ2Ω sin θoQ̇ , (3.50)

exist many of such ions at the circular orbit of the same radius ρe. In such a case, an averaging
over the angle ϕe is effectively equivalent to the integrating (averaging) over the arrival time uo.
One again arrives at the same spectral function nωo

.
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where a dot denotes a derivative with respect to time te, and

Q =
� sinϕ

sinΦ
, (3.51)

Simple calculations give ϕ̇ = Ω and

Q̇ =
�̇ sinϕ

sinΦ
+

� cosϕ

sinΦ
ϕ̇− � sinϕ cosΦ

sin2 Φ
Φ̇ , (3.52)

�̇ =
sinϕ sin θo
Φ′ sinΦ

ϕ̇ , (3.53)

Φ̇ =
sinϕ sin θo

sinΦ
ϕ̇ . (3.54)

Thus one obtains

Q̇ = Ω

(
� cosϕ cos2 θo

sin3 Φ
+
sin2 ϕ sin θo
Φ′ sin2 Φ

)
. (3.55)

and

dα

dτe
=

Ω2 sin θoζ
2
e

([1− ζe]ζ2e − Ω2)

(
� cosϕ cos2 θo

sin3 Φ
+

sin2 ϕ sin θo
Φ′ sin2 Φ

)
. (3.56)

Let us recall that we use the dimensionless quantities obtained by the rescaling

which involves the gravitational radius rg of the black hole. However, the quantity

Cω−1
e is scale invariant. We denote by w = ωo/ωe = α−1. Then nw given by Eq.

(3.49) is a scale invariant quantity. We call it a spectral function. The total number

of quanta No (in the Newtonian normalization) defined by Eq. (3.48) is

No =

∮
w

nw|dw| . (3.57)
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3.2.5 General properties of spectral functions

Before presenting the results of numerical calculations, let us discuss some general

expected properties of the spectral function nw given by Eqs. (3.49) and (3.56).

We rewrite the expression Eq.(3.29) in the form

α = γ[1 + ΩZ(ϕ)] , Z(ϕ) = �(ϕ)Ẑ , (3.58)

Ẑ = ±
√
sin2 θo − cos2 Φ

sinΦ
. (3.59)

Ẑ(ϕ) is a periodic function of the angle ϕ with period 2π. At the points ϕ = 0

and ±π one has | cosΦ| = sin θo, so that Z vanishes at these points. Moreover, the

function Ẑ is antisymmetric with respect to the reflection at ϕ = 0. Since � is a

symmetric function of ϕ with respect to the reflection ϕ → −ϕ, the function Z(ϕ)

has the maximum Zm at ϕm ∈ (0, π), and the minimum −Zm at ϕm. Near these

points, assuming that the function �(ϕ) is smooth, one has (β > 0)

Z ∼ ±(Zm − 1

2
β(ϕ∓ ϕm)

2) . (3.60)

Since ϕ = Ωte one also has

dZ

dte
∼ ∓βΩ(ϕ∓ ϕm) . (3.61)

Consider now w = α−1. This quantity is a periodic function of ϕ. Denote

w± = γ−1 1

1∓ ΩZm

. (3.62)

w+ is the maximal observed frequency of photons. Such photons come from the
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Figure 3.11: Diagram illustrating orbit of the emitter. The arrows show the di-
rection of the emitter’s motion (Ω > 0). For the emitter located in the right
semicircle, ϕ ∈ [0, π], photons have Doppler redshift, and for the emitter located
in the left semicircle, ϕ ∈ (−π, 0], photons have Doppler blueshift. The spectral
function diverges at ϕ = ϕm and ϕ = −ϕm, where |ϕm| > π/2. The portion of the
orbit corresponding to indirect null rays is defined by the angle |ϕ| > ϕ∗. There is
a nonzero Doppler shift at ϕ = 0 and ϕ = ±π; it is with respect to this Doppler
shift that we define which photons are redshifted and blueshifted.

emitter when it is at −ϕm. Similarly, w− is the minimal observed frequency and the

corresponding photons are emitted at ϕm (see Figure 3.11). At these frequencies

the spectral function has peaks. The position of the emitter ϕ = Ωte is a regular

(linear) function of time everywhere, including the points where the frequency w

reaches its extrema, and hence dw/dte = 0 at these points. When one transforms

the rate of emission to the spectrum, one multiplies the former by the factor

(dα/dτe)
−1. This is the origin of the spectrum peaks. Using Eq. (3.61) it is easy

to see that |dα/dτe| ∼ |w−w±|1/2 near these points. So the spectral divergence at
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the peaks is evidently integrable. It should be so since the total number of photons

emitted during one period of the revolution is finite.

It is convenient to introduce a parameter

Δ =
2(w+ − w−)
(w+ + w−)

= 2ΩZm (3.63)

which determines the dimensionless width of the spectrum. Figure 2.11 shows

that Ω at the ISCO for the anti-Larmor motion decreases when the magnetic field

grows, and Ω → 0 when b → ∞. Thus one can expect that in the presence of

the magnetic field the width parameter decreases. One can also conclude from Eq.

(3.62) that the parameter γ−1 controls the general redshift of the spectra. Let us

make one more remark concerning the properties of the spectral functions. The

radiation from the emitter at −ϕm has the maximal Doppler blueshift, while at ϕm

it has maximal redshift. One can expect that because of the relativistic beaming

effect the number of particles with the frequency w+ should be larger than with

the frequency w−. This implies that the spectral function should be asymmetric

with respect to its minimum, and the peak at w+ must be more profound than the

peak at w−. To characterize the asymmetry of the spectral function with respect

to its minima we introduce the asymmetry parameter:

δ =
w+ + w− − 2w0

(w+ − w−)
, (3.64)

where w0 corresponds to the minima of a spectral function.

Let us recall also that the obtained spectrum was calculated for a single orbit

with a fixed radius. If a radiating domain is a ring of a finite width, one should

integrate the spectrum over the radius ρe with a weight proportional to the density
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of the matter of iron ions in such a ring. After this the infinite peaks disappear

and the spectrum would be regularized.
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Chapter 4

Spectral function plots and

common features

After the general remarks of the properties of the spectral functions that we stud-

ied in Chapter 3, let us present concrete examples of the spectral function plots

obtained by numerical calculation. To illustrate important features of the spectral

functions, we present results here for three different types of the circular motion of

the emitter: (1) ρe = 3, b = 0; (2) ρe = 3, b = 2.251; and (3) ρe = 1.2, b = 2.251.

In the first case the orbit is the ISCO in the absence of the magnetic field. In the

second one it is a SCO with the same radius ρe = 3 as in (1) but in the presence of

the magnetic field b. The last case is the anti-Larmor ISCO for the same value as

in (2) of the magnetic field. These choices of the emitter’s orbit parameters allow

one to demonstrate the dependence of the spectral functions on the magnetic field.

For each of these cases we constructed three different plots corresponding to three

different values, 30◦, 60◦ and 85◦, of the inclination angle θo. These plots allow one

to discuss the dependence of the spectral functions on the angular position of the
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distant observer with respect to the emitter’s orbit. Figures 4.1–4.3 present spec-

tral functions for the case (1) and three chosen inclination angles. Figures 4.4–4.6

present similar spectral functions for the case (2) and three chosen inclination an-

gles. The spectral functions for the case (3) and three inclination angles are shown

in Figures 4.7–4.9. By comparing the figures for the same inclination angle one can

see that if one increases the magnetic field keeping the other parameters (ρe and θo)

fixed, then the spectral profiles get more narrow. One can see this from the values

of the parameter Δ [see Eq.(3.63)]. Namely, for the ISCO at ρe = 3, b = 0, and the

inclination angle values 30◦, 60◦ and 85◦, we have Δ = 0.476, 0.845, 0.995, respec-

tively, while for the SCO at ρe = 3, b = 2.251, we have Δ = 0.018, 0.031, 0.037.

This narrowing is accompanied by a general redshift of the spectral function.

To summarize, the common features of the spectrum plots are: (1) the existence

of the two sharp peaks at the frequencies w±; (2) the existence of two branches of

the spectrum; (3) the increase of the average redshift of the spectral frequencies for

the anti-Larmor ISCO with the increase of the magnetic field; (4) the narrowing

of the frequency bands with the increase of the magnetic field; (5) the asymmetry

of the spectrum.

The discussion in the end of chapter 3 gives simple qualitative explanations

of the properties (1)-(3). Let us briefly discuss the properties (4) and (5). The

larger value of the magnetic field, the closer to the horizon is the corresponding

anti-Larmor ISCO and the greater is the redshift. Numerical calculations confirm

also that the width Eq. (3.63) decreases with the increase of b (property (4)).

The asymmetry (5) of the spectrum is a generic property of the broadening of the

sharp spectral lines for the emitters moving near black holes. It is a result of the

relativistic (Doppler) beaming effect. The calculations show that the asymmetry
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Figure 4.1: Spectral function for the anti-Larmor ISCO, b = 0, at ζe = 1/3. The
inclination angle is θo = 30◦. The angular velocity of the emitter is Ω = 0.136,
and its specific energy is E = 0.943. The spectrum has peaks at w− = 0.571
(ϕm = 97o85′) and at w+ = 0.928 (at −ϕm). The minimal values (0.290 and 0.370)
of nw for the two spectral branches are at w0 = 0.707. The width parameter is
Δ = 0.476, and the asymmetry parameter is δ = 0.236. One also has No = 0.285.

effect becomes more profound when the inclination angle becomes larger. The

asymmetry parameter, as well as the width parameter for the spectral functions

presented in the Figures 4.1–4.9, can be found in the corresponding captures.

Let us emphasize that all these spectral functions were calculated for an emitter

at a given radius in circular orbit. Infinite sharp peaks in the plots are the result

of this assumptions. As we discussed in the Introduction, these peaks are smeared

when emitters are distributed over the disk of finite width. In the model that

we described earlier one can expect that corresponding charged disk is located at

smaller radius than the ISCO for neutral particles. However, the distribution of
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Figure 4.2: Spectral function for the anti-Larmor ISCO, b = 0, at ζe = 1/3. The
inclination angle is θo = 60◦. The angular velocity of the emitter is Ω = 0.136,
and its specific energy is E = 0.943. The spectrum has peaks at w− = 0.497
(ϕm = 107o9′) and at w+ = 1.224 (at −ϕm). The minimal values (0.127 and
0.222) of nw for two spectral branches are at w0 = 0.707. The width parameter is
Δ = 0.845, and the asymmetry parameter is δ = 0.423. One also has No = 0.356.

charged emitters in the inner “charged” ring is not known. For this reason we did

not make the corresponding averaging of the obtained spectral functions, which

might be sensitive to the additional assumptions.
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Figure 4.3: Spectral function for the anti-Larmor ISCO, b = 0, at ζe = 1/3. The
inclination angle is θo = 85◦. The angular velocity of the emitter is Ω = 0.136,
and its specific energy is E = 0.943. The spectrum has peaks at w− = 0.472
(ϕm = 118o4′) and at w+ = 1.407 (at −ϕm). The minimal values (0.079 and
0.196) of nw for two spectral branches are at w0 = 0.707. The width parameter is
Δ = 0.995, and the asymmetry parameter is δ = 0.498. One also has No = 0.397.
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Figure 4.4: Spectral function for the anti-Larmor ISCO, b = 2.251, at ζe = 5/6.
The inclination angle is θo = 30◦. The angular velocity of the emitter is Ω = 0.162,
and its specific energy is E = 0.465. The spectrum has peaks at w− = 0.315
(ϕm = 104o7′) and at w+ = 0.415 (at −ϕm). The minimal values (0.128 and
0.186) of nw for two spectral branches are at w0 = 0.358. The width parameter is
Δ = 0.274, and the asymmetry parameter is δ = 0.137. One also has No = 0.050.
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Figure 4.5: Spectral function for the anti-Larmor ISCO, b = 2.251, at ζe = 5/6.
The inclination angle is θo = 60◦. The angular velocity of the emitter is Ω = 0.162,
and its specific energy is E = 0.465. The spectrum has peaks at w− = 0.284
(ϕm = 124o6′) and at w+ = 0.486 (at −ϕm). The minimal values (0.055 and
0.117) of nw for two spectral branches are at w0 = 0.358. The width parameter is
Δ = 0.525, and the asymmetry parameter is δ = 0.262. One also has No = 0.058.
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Figure 4.6: Spectral function for the anti-Larmor ISCO, b = 2.251, at ζe = 5/6.
The inclination angle is θo = 85◦. The angular velocity of the emitter is Ω = 0.162,
and its specific energy is E = 0.465. The spectrum has peaks at w− = 0.264
(ϕm = 158o6′) and at w+ = 0.558 (at −ϕm). The minimal values (0.036 and
0.105) of nw for two spectral branches are at w0 = 0.358. The width parameter is
Δ = 0.714, and the asymmetry parameter is δ = 0.357. One also has No = 0.085.
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Figure 4.7: Spectral function for an anti-Larmor SCO, b = 2.251, at ζe = 1/3. The
inclination angle is θo = 30◦. The angular velocity of the emitter is Ω = 0.005,
and its specific energy is E = 0.817. The spectrum has peaks at w− = 0.809
(ϕm = 97o85′) and at w+ = 0.823 (at −ϕm). The minimal values (10.46 and
13.35) of nw for two spectral branches are at w0 = 0.816. The width parameter is
Δ = 0.018, and the asymmetry parameter is δ = 0.009. One also has No = 0.390.
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Figure 4.8: Spectral function for an anti-Larmor SCO, b = 2.251, at ζe = 1/3. The
inclination angle is θo = 60◦. The angular velocity of the emitter is Ω = 0.005,
and its specific energy is E = 0.817. The spectrum has peaks at w− = 0.804
(ϕm = 107o9′) and at w+ = 0.829 (at −ϕm). The minimal values (4.578 and
8.018) of nw for two spectral branches are at w0 = 0.816. The width parameter is
Δ = 0.031, and the asymmetry parameter is δ = 0.016. One also has No = 0.382.
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Figure 4.9: Spectral function for an anti-Larmor SCO, b = 2.251, at ζe = 1/3. The
inclination angle is θo = 85◦. The angular velocity of the emitter is Ω = 0.005,
and its specific energy is E = 0.817. The spectrum has peaks at w− = 0.802
(ϕm = 118o4′) and at w+ = 0.832 (at −ϕm). The minimal values (2.836 and
7.051) of nw for two spectral branches are at w0 = 0.816. The width parameter is
Δ = 0.037, and the asymmetry parameter is δ = 0.019. One also has No = 0.388.
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Chapter 5

Conclusion

With most physicists and astrophysicists in agreement that black holes do exist, the

focus of black hole research is shifted to exploring the detailed properties of these

systems. Nature has provided us with an extremely useful probe of the region very

close to an accreting black hole, i.e., X-ray radiation of the matter in the vicinity

of the black hole can imprint characteristic features into the X-ray spectra of black

hole systems. The most prominent spectral feature is often the fluorescent Kα

emission line of iron. Detailed X-ray spectroscopy of these features can be used to

study Doppler and gravitational redshifts, thus providing key information on the

location and kinematics of the cold material. This is a powerful tool that allows

one to probe within a few gravitational radii, or less, of the event horizon. This

tool enables one to extract information about the accretion disk, the black hole,

and their interaction, such as the shape and size of the disk or the mass and spin

of the black hole.

As we mentioned in Chapter 1 (see section 1.1), magnetic fields play an impor-

tant role in black hole physics. In the presence of a magnetic field the motion of
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plasma and charged particles is modified. We exploit the simplest model in which

a non-rotating black hole is surrounded by a magnetic field which is homogeneous

at infinity. In this thesis we studied the action of such a magnetic field in the

vicinity of a black hole on the bound circular orbits of charged particles. As we

saw in Chapter 2, the main new effect is that the position of the innermost stable

circular orbit (ISCO) can be closer than for an uncharged particle. This effect is

quite similar to the action of the angular momentum of rotating black holes on

the ISCO positions. This observation raises an interesting opportunity to study of

a regular magnetic field near a black hole by observing the radiation emitted by

charged particles motion around the black hole.

As we discussed in Section 1.2, the iron Kα line is intrinsically a rather narrow

line. However, when the iron ions are revolving around a Newtonian centre or

a black hole the situation is quite different. In that case the iron Kα line is

broadened. One can use broadening of the line to study the main features of the

accretion disk, of the geometry of space-time, and of the interaction between the

accretion disk and the black hole. In this thesis we studied the main features of the

broadened emission spectrum of the Kα line of ionized iron for magnetized black

holes. The main reasons of the broadening are the relativistic Doppler effect and

the gravitational redshift.

In Section 1.3, we discussed the non-relativistic case of an emitter revolving a

Newtonian centre. We can see a symmetric double peak corresponding to emission

from material on both the approaching (blueshifted) and receding (redshifted)

side. When we consider a non-relativistic disk, each radius of the disk produces a

symmetric double-horned line profile. Taking into account all these line profiles we

see the peaks to be smoothed. When the emitter is revolving with velocities close
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to the speed of light or at least comparable to it, the special relativistic beaming

enhances the blue peak (i.e., the peak which appears in the side of high frequencies

of the spectrum), which is why we see the asymmetry in the Figure 1.8. Finally,

when we have a non-moving particle near a black hole the gravitational redshift

shifts the spectrum to lower energy. By taking all these effects and parameters

into account one ends up to a result similar to the plot in the Figure 1.2.

In this thesis, we discussed the radiation from emitters revolving around a

magnetized non-rotating black hole. As we discussed in Chapter 2 of this thesis,

charged particle orbits near such black holes are strongly affected by the magnetic

field when the dimensionless field parameter b becomes of the order of one or

greater. The effect of the magnetic field depends on the direction of motion of the

particle. For anti-Larmor orbits the Lorentz force is directed outwards from the

black hole. The ISCO radius for the anti-Larmor particles can be close to the event

horizon. Such particles on circular orbits, after passing the ISCO limit for neutral

particles at 6M, continue their motion at a sequence of SCOs until they reach the

critical (ISCO) radius corresponding to the given value of b. During this process

their specific energy E decreases, so that in such process they lose slowly their

energy and angular momentum (for example, as a result of synchrotron radiation).

The maximal energy release in this process reaches 100% in the limit b → ∞.

The behaviour of the Larmor particles is quite different. For b > 0 their circular

orbits can also have radius less than 6M . However, in order to move on such orbits

they need to receive some additional energy. This means that one can expect that

either such particles are accumulated during some period of time near 6M orbits,

or they simply fall directly into the black hole, similarly to neutral particles. This

might have a quite interesting consequence: the spatial separation of charge. We
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do not discuss this effect here. In Chapter 3, we focused on the radiation emitted

by anti-Larmor particles moving close to the black hole in the presence of the

magnetic field. Namely, we analyzed two problems: (1) images of such orbits,

and (2) spectral broadening of the emission received from a moving emitted by a

distant observer. The results of the second problem can be found in Chapter 4.

Both of these problems require ray-tracing of photons in the Schwarzschild metric,

a problem which is well known and discussed in detail in the literature. However,

we apply this ray-tracing to orbits which are closer than 6M to the black hole

horizon. These orbits are interesting for magnetized black holes. Similar remarks

can be made for the spectral broadening problem. In magnetized black holes both

the position of the circular orbits and the angular velocity of the evolution are

different from the Keplerian case.

Images of the anti-Larmor orbits close to the horizon of the magnetized black

holes are presented in Figures 3.6-3.10. The main conclusion is that in the limit

of large magnetic field b the ISCO image structure is simplified. In this limit for

θo near π/2 the image basically consists of two parts: (1) a semicircle inside the

shadow domain region, and (2) a practically straight line in the equatorial plane.

The first part of the image is generated by rays from the part of the orbit “behind”

the black hole, while the latter part is formed by direct rays emitted “in front” of

the black hole.

We discussed and compared the spectral functions for sharp line broadening.

The δ-function-like radiation spectrum for the monochromatic radiation of the

charged anti-Larmor emitter is registered by a distant observer as a broadened

spectral line. This is the result of two effects: the Doppler effect and the gravita-

tional redshift. The width of the spectral function is determined by the periodic
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Doppler blueshift and redshift. It is proportional to the angular velocity Ω of the

emitter, and it vanishes in the limit b → ∞. The closer the orbit of the emitter

is to the horizon, the larger is the influence of the gravitational field on the spec-

trum. This effect results in the total redshift of the spectral frequencies. One can

summarize the generic properties of spectral broadening for magnetized black hole

as follows: when the magnetic field b increases, both the width of the spectrum

and its average frequency decrease.

In the present work we made two simplifying assumptions. We used a special

ansatz for the form of the magnetic field. The magnetic field is uniform and

aligned along the axis of symmetry of the black hole. In realistic black holes,

one cannot expect that the magnetic field is homogeneous and extends to infinity.

However, for the motion of a charged particle in the equatorial plane and in the

black hole vicinity this approximation might be reasonable. It is easy to extend the

results to other types of a regular magnetic field, e.g., for a dipolar magnetic field

around a static black hole (see, e.g., [103]). Moreover, a model of the homogeneous

magnetic field is a good approximation for more realistic magnetic fields generated

by currents in a conducting accretion disk, provided the size of the black hole is

much smaller than the size of the disk (see, e.g., the discussion in [95]).

Another assumption was that the radiating particles are localized in an in-

finitely thin ring of a fixed radius. In reality, one can expect that there exists some

distribution of anti-Larmor emitters extended from 6M to their ISCO radius. In

order to obtain the emission spectrum from such a ring of finite size, one needs

to perform an additional integration of the obtained spectra with some weight

function which describes the distribution of emitters within this ring. Such an

averaging would smear infinite peaks and make them finite.
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Because of the assumptions made, the main conclusions of the present work

seem to be quite robust. Namely, for anti-Larmor emitters in magnetized black

holes with sufficiently strong magnetic fields, ISCO’s are close to the horizon, and

the dominant effects for this inner domain of radiation result in a greater redshift

and narrowing of the spectrum. This allows one to hope that observations of the

broadening in the iron Kα lines in magnetized black holes can provide us with

direct information about the magnetic field in the black hole vicinity.

An interesting open problem for study in the future is the comparison of the

spectral broadening in magnetized black holes with similar effects in rotating black

holes. The dragging effect of the black hole on neutral particles is similar to the

effect of a magnetic field on charged particles. In both cases, ISCO’s for (1) co-

rotating particles in the Kerr metric and (2) anti-Larmor particles in the magnetic

field around a Schwarzschild black hole can be located arbitrarily close to the hori-

zon (at least in the r-coordinate in Kerr, though not in proper distance). However,

there is a big difference between these two cases. A particle close to the Kerr black

hole is co-rotating with the black hole. Its angular velocity which is nonzero tends

to the black hole angular velocity. In the magnetized black holes for anti-Larmor

orbits close to the horizon of a Schwarzschild black hole, the angular velocity also

tends to the black hole angular velocity, but in this case the angular velocity is

zero. Hence, one can expect that the width of the spectra for the radiation emit-

ted by anti-Larmor particles moving close to the horizon of magnetized black holes

must be smaller than the corresponding width for neutral particles in rotating

black holes. It would be interesting to perform the calculation of spectral function

broadening for a general case of a magnetized rotating black hole.

For both cases of rotating and non rotating black holes the out-of-equatorial-
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plane motion of the emitter is chaotic. Therefore, it is impossible to perform

analytic calculations of the spectral function broadening. The only way would be

by numerical calculations with unknown results, since it is hard to predict how

chaos is going to effect the spectral function broadening. However, one may try to

calculate analytically or maybe semi-analytically the spectral function broadening

for the case that we have small oscillation about a circular orbit. Moreover, this

could be the first step for the study of the spectral function broadening in the case

of out-of-equatorial-plane motion of the emitter.
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Appendix A

�−parametrization of the orbit

For light from the emitter on a circular orbit that reaches a distant observer, there

exists a relation between its angular momentum � and the angle ϕ where it was

emitted. This relation follows from Eq. (3.17). In the numerical calculations it is

convenient to consider ϕ as a function of �. Let us discuss the properties of this

function.

From Eq. (3.17) one finds

dΦ

dϕ

dϕ

d�
=

dB±(�, ζe)
d�

. (A.1)

Using the definition of Φ in Eq. (3.17), one obtains

dΦ

dϕ
=

sinϕ sin θo√
sin2 ϕ+ cos2 θo cos2 ϕ

. (A.2)

Hence, dΦ/dϕ is positive for ϕ ∈ (0, π) and negative for ϕ ∈ (−π, 0). Using the
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definition Eq. (2.60) of the function B(�, ζe), one gets

dB(�, ζe)

d�
=

∫ ζe

0

dζ

(1− �2(1− ζ)ζ2)3/2
. (A.3)

From the above relations one concludes that for direct rays the sign of dϕ/d�

coincides with the sign of ϕ, that is it is positive for ϕ ∈ (0, π) and negative for

the other segment of the trajectory.

Let us discuss now the case of indirect rays. Let us recall that a null ray has a

radial turning point only when � > �∗ = 3
√
3/2. The inverse radius of this turning

point ζm is a solution of the equation

(1− ζm)ζ
2
m = �−2 , (A.4)

and it belongs to the interval (0, 2/3). Differentiating this relation with respect to

� one gets

dζm
d�

= − 2

�3ζm(2− 3ζm)
< 0 . (A.5)

Using the definition Eq. (3.12) of the function C(z), one finds

dC(z)

dz
=

∫ 1

0

(y4 − 3y2 + 3)dy

Z3/2
. (A.6)

Let us notice that both the derivatives, dB/d� and dC/dz, are positive definite.

(For dC/dz this is because y4 − 3y2 + 3 > 0).

Using Eq. (3.17) we obtain

dΦ

dϕ

dϕ

d�
=

dB−(�, ζ)
d�

= 2
dC(zm)

dζm

dζm
d�

− dB(�, ζe)

d�
. (A.7)
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Both of the terms in the right-hand side of Eq. (A.7) are negative. Eq. (A.2)

implies that the sign of dΦ/dϕ coincides with the sign of ϕ. To summarize, dϕ/d�

is negative in the interval φ ∈ (0, π) and positive in the other half of the circle.
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Appendix B

Radiation from a point-like source

In this appendix we discuss the following problem. Suppose one has a point-like

source emitting photons. Denote its 4-velocity by u. Denote by τ the proper time

along the emitter world line. Choose a moment of time τe and consider a local

frame ea (a = 0, . . . , 3) at this point. We choose e0 = u. We consider one of the

emitted at τe photons and call it a reference photon. Its initial 4-momentum p can

be written as follows:

p = ωe(u+N ) , ωe = −(p,u) . (B.1)

Here ωe is the frequency of the photon in the rest frame of the emitter and N is

a unit vector orthogonal to u. It determines the spatial direction of the reference

photon. We choose the vector e1 to coincide with N . The other two unit vectors

e2 and e3 of the frame are chosen to be orthogonal to both the vectors e0 and e1.

They are fixed up to a rotation and uniquely (up to the orientation) determine

a 2-plane Π orthogonal to e0 and e1. We denote the corresponding bi-vector by
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e2 ∧ e3.

Consider a bundle of photons emitted in the direction close to N within a solid

angle ΔΩe which is determined by two vectors Δ1N and Δ2N , orthogonal to N .

The vectors of this bundle can be parameterized as follows

N + α1Δ1N + α2Δ2N , α1,2 ∈ (−1/2, 1/2) . (B.2)

The solid angle ΔΩe coincides with the area of the parallelogram in Π determined

by these two vectors, which is

ΔΩe = ‖Δ1N ∧Δ2N‖ ≡ |Δ1N
2Δ2N

3 −Δ1N
3Δ2N

2| , (B.3)

where Δ1N
i and Δ2N

i are components of Δ1N and Δ2N in the 2D basis {e2, e3}.
We assume now that the radiation of the emitter is isotropic and denote by

NΔτe the total number of photons emitted during the time interval Δτe of the

proper time in the frame co-moving with the emitter. Then the corresponding

number of photons emitted in the solid angle ΔΩe is

neΔτe =
N
4π

ΔΩeΔτe . (B.4)

The solid angle ΔΩe can also be determined by the relation

u ∧N ∧Δ1N ∧Δ2N = ±ΔΩeE , (B.5)
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where E is the unit 4-form

E = e0 ∧ e1 ∧ e2 ∧ e3 . (B.6)

Adding to N the vector u does not change the value of the wedge product in the

left-hand side of Eq. (B.5). Similarly, adding the vectors proportional to u and N

to the vectors Δ1N and Δ2N does not change this wedge product. As a result

one can rewrite Eq. (B.5) in the form

1

ω3
e

u ∧ p ∧Δ1p ∧Δ2p = ±ΔΩeE , (B.7)

or, which is equivalent, in the form

ΔΩe = ± 1

ω3
e

eμ1μ2μ3μ4u
μ1pμ2Δ1p

μ3Δ2p
μ4 . (B.8)

Here eμ1μ2μ3μ4 =
√−gεμ1μ2μ3μ4 is the totally skew symmetric tensor and eμ1μ2μ3μ4

is the Levi-Civita symbol.
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Appendix C

Small oscillations

In this Appendix we consider small oscillations about a circular orbit. The equa-

tions of motion for charged particles in the weakly magnetized Schwarzschild space-

time are

d2 xμ

dσ2
+ Γμνλ

d xν

dσ

d xλ

dσ
=

q

m
F μ

κ
d xκ

dσ
. (C.1)

The only nonzero Christoffel symbols, Γμνλ, for the Schwarzschild spacetime are

Γθrθ =
1

r
, Γφrφ =

1

r
, Γrrr = − 1

1− 2M
r

M

r2
,

ΓT rT =
1

1− 2M
r

M

r2
, Γrθθ = −r + 2M , Γφθφ = cot θ ,

Γrφφ = −
(
1− 2M

r

)
sin2 θ r , Γθφφ = −sin 2θ

2
,

ΓrTT =

(
1− 2M

r

)
M

r2
. (C.2)

We write the coordinates of the perturbed circular trajectory xμ(τ) as xμ(τ) +

δμ(τ). By linearizing the equations (C.1) and changing the proper time (τ) to the
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coordinate time (T ), one obtains

d2 δμ

dT 2 + cμν
d δν

dT
+ δκ V μ

,κ = Oμ(δ) , (C.3)

where

cμν =

[
2

γ
Γμνλ

d xλ

dσ
− q

mγ
F μ

ν

]∣∣∣∣
θ=π/2

, (C.4)

V μ
,κ ≡ ∂

∂xκ
V μ =

[
1

2

∂

∂xκ

(
1

γ
cμν

d xν

dσ
− q

mγ2
F μ

ν
d xν

dσ

)]∣∣∣∣
θ=π/2

. (C.5)

Here we keep only the terms linear in δμ. Thus Oμ(δ) stands for terms of higher

order in δμ. Due to the fact that the spacetime is axially symmetric the only

nonzero components of V μ and cμν are

crφ = (−r + 2M) sin2 θ

[
q B

mγ
+ 2Ω

]
, cφr =

q B

mγ r
+ 2

Ω

r
,

crT = −2
(−r + 2M)M

r3
, cT r = − 2M

(−r + 2M) r
,

cθr = sin (2 θ)

[
q B

2mγ
+ Ω

]
, cφθ = cot θ

[
q B

mγ
+ 2Ω

]
,

V r = (−r + 2M)
[
sin2 θ (ΩB + Ω) Ω− Ω2

K

]
,

V θ =
sin(2 θ)

2
Ω [ΩB + Ω] . (C.6)

Here

ΩK =

√
M

r3
, ΩB =

q B

mγ
. (C.7)

Setting in Eqs. (C.3) the index μ = 0 where zero corresponds to the time compo-

nent, we get
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d2δT

dT 2
+ cT r

dδr

dT
= 0 , (C.8)

For the index μ = 3 (the φ-component) we get

d2δφ

dT 2
+ cφr

dδr

dT
= 0 . (C.9)

Integrating equations (C.8) and (C.9), we get the following equations respectively

(the integration constants are ignored):

dδT

dT
+ cT rδ

r = 0 , (C.10)

dδφ

dT
+ cφrδ

r = 0 . (C.11)

Next by setting in equation (C.3) the index μ = 1 , 2 (or μ = r , θ respectively)

and taking into account equations (C.8) and (C.9), we get

d2δr

dT 2
+ ωr

2δr = 0 ,

d2δθ

dT 2
+ ωθ

2δθ = 0 . (C.12)

From these equation we can see that the motion in the r- or θ - directions is an

oscillation. In equation (C.12) we have

ωr =

[√
V r

,r − crtctr − crφcφr

]
θ=π

2

, (C.13)



APPENDIX C. SMALL OSCILLATIONS 133

ωθ =

[√
V θ

,θ

]
θ=π

2

= ΩK . (C.14)

These equation are the frequencies of the oscillations in the r- or θ - directions. In

analogy with the harmonic oscillator, we can calculate the ωr from Eq. (C.13) in

the following way:

ωr
2 =

U,r r

2
=

E2 M

r2 (r − 2M)2
(r − 6M) +

4 b̃2

r
(r − 2M) , (C.15)

where U is the effective potential given as follows,

U =

(
1− 2M

r

)⎡
⎣1 +

(
L − b̃r2

r

)2
⎤
⎦ . (C.16)

If we rescale regarding rg, then the dimensionless frequencies for the small oscilla-

tions in the r- and θ- direction become

Ωθ = rg ωθ = rg ΩK , (C.17)

Ωρ
2 = r2gωr

2 =
E2

2ρ2
ρ− 3

(ρ− 1)2
+

4 b2

ρ
(ρ− 1) . (C.18)
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Appendix D

Time of a charged particle on a

circular orbit

In this Appendix we give an estimation of the time that a charged particle remains

in a circular motion of a given radius. We assume that the only source of energy

loss is the synchrotron radiation. When a charged particle moves in a uniform and

constant magnetic field in flat spacetime it emits radiation; such radiation is called

synchrotron radiation. The production of such radiation means that the particles

are losing energy and angular momentum and gradually move to smaller radius.

The energy loss in flat spacetime is given by the following formula (see e.g [104]),

dE

dT
=

2e2v4γ4

3r2c3
. (D.1)

For Eq. (D.1) we consider that the particle density is not very high otherwise we

have damping of radiation.

In the paper [105] the power of the synchrotron radiation for ultra relativistic
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particles on a circular orbit in Kerr spacetime was estimated,

dE

dT Kerr
=

e2

6r4

(
E

m

)4
[Ω2(3r2 + a2)− 1]

2

√
ΔΩ3

. (D.2)

If we set a = 0 and take the limit r >> M , then we get

dE

dT
=

e2

6r4

(
E

m

)4 [
4r2 − 8Mr − 12M2 − 16

M3

r
− 16

M4

r2
+O(

M6

Ω4
)

]
(D.3)

As we can see in the zero-order approximation, we get the non-general relativistic

formula (D.1). For the ultra relativistic case and for c = 1,

dE

dT
=

2e2

3r2

(
E

m

)4

. (D.4)

Let us make the following transformation in equation (D.1),

c = G = 1 , E = Em , T = trg , r = ρrg . (D.5)

Thus we get the dimensionless energy loss,

dE
dt

= λ
2v4γ4

3ρ2
, (D.6)

where λ = e2

rgm
. This formula implies

dρ

dt
= λ

2v4γ4

3ρ2

[
dE
dρ

]−1

. (D.7)
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From equation (D.7) we have

t =
1

λ

∫ ρ2

ρ1

3ρ2

2v4γ4

[
dE
dρ

]
dρ , (D.8)

where

l =
−bρ2 +

√
4b2ρ4 + 4b2ρ6 − 8b2ρ5 + 2ρ3 − 3ρ2

2ρ− 3
, (D.9)

E =

√
1− 1

ρ

√
1 +

(l − bρ2)2

ρ2
, (D.10)

Ω =
ρ− 1

ρE

(
l

ρ2
− b

)
, (D.11)

v =
Ωρ√
1− 1/ρ

, (D.12)

γ =
1√

1− v2
. (D.13)

(D.14)

For our model, b = 2.25, and for ρ1 = 1.20 and ρ2 = 1.21 we will get

t =
1

λ
0.027 . (D.15)

Let us now estimate the parameter λ. For an electron we have

e2

m
= 2.818× 10−13 cm .

For a stellar mass black hole with ten times the mass of the sun, the gravitational

radius is going to be rg = 3 × 106 cm. For a black hole of an arbitrary mass we



APPENDIX D. TIME OF A CHARGED PARTICLE ONA CIRCULARORBIT137

would have rg = 3× 105M/M� cm. Therefore,

λ =
e2

mrg
= 9.393× 10−19M�

M
.

The time will be

t = 2.874× 1016
M

M�
. (D.16)

If we multiply this by the characteristic time for stellar mass black hole (tg =

rg/c = 10−5M/M� sec) in order to have the time in seconds, we get

T12 =
tg
λ

∫ ρ2

ρ1

3ρ2

2v4γ4

[
dE
dρ

]
dρ , (D.17)

and for the particular example of ρ1 = 1.20 and ρ2 = 1.21 the value of T12 is

T12 = 2.874× 1011
(

M

M�

)2

sec . (D.18)

The age of the universe in seconds is 4.351 × 1017. Thus, for the particle that is

orbiting a black hole mass M ∼ 103M� to move from ρ = 1.21 to ρ = 1.20 by

losing only synchrotron radiation it will take more than than half of the age of the

universe (or 0.658 times the age of the universe).
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Appendix E

Charge accretion

As we mentioned, a magnetic field modifies the motion of charged particles around

a black hole. This effect may be reduced1 due to the selective charge accretion. In

the case of a uniform magnetic field which is aligned along the symmetry axis of

the black hole, if there is a preferential rotation direction of the charged particles

then, while the negatively charged particles are repelled due to Lorentz force the

positively charged particles are pulled into the black hole. Thus, a black hole

in a magnetic field surrounded by an ionized interstellar medium will selectively

accrete charged particles. So, the black hole is getting electrified. Note that an

accretion disk can give a preferential rotation direction and hence a preferential

sign of the charge to be pulled into the black hole. Similar effects are discovered

in flat spacetime for a conducting sphere [106]. Let us see under which conditions

the selective charge accretion cancels out the modification of the orbits of charged

particles due to magnetic field.

To discuss selective charge accretion, we consider a weakly magnetized and

1 If the selective charge accretion is very high then the position of ISCO for charged particles
can be even further from the black hole than the position of ISCO for neutral particles.
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electrified black hole. From the solution of Maxwell’s equation we have

Aμ = −Q

rg
ξμ(t) +

B

2
ξμ(φ) , (E.1)

where the factors Q/rg and B/2 come from the properties of the Maxwell ten-

sor and Gauss law (see [72]) where Q is the charge of the black hole. For a

Schwarzschild black hole with Q �= 0 and B = const, we have the following con-

stants of motion,

E = −ξμ(t)Pμ = (1− rg
r
)

[
m
dT

dσ
− q

Q

rg

]
,

L = ξμ(φ)Pμ = r2 sin2 θ

[
m
dφ

dσ
+ q

B

2

]
. (E.2)

These are analogous to (2.7, 2.8) for a charged and magnetized black hole. For the

equatorial plane and by making the following transformations,

E =
E

m
l =

L

mrg
,

r = rg ρ T = rg t σ = rg τ ,

Q̃ =
qQ

mrg
b =

qB rg
2m

, (E.3)

we get

E = (1− 1

ρ
)

[
dt

dτ
− Q̃

]
,

l = ρ2
[
dφ

dτ
+ b

]
. (E.4)
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From the third integral of motion, gμν u
μ uν = −1 we have

(
dρ

dτ

)2

= E2 −
(
1− 1

ρ

)[
1− 2EQ̃− Q̃2

(
1− 1

ρ

)
+

(l − bρ2)
2

ρ2

]
. (E.5)

Let us define

V (ρ) = E2 −
(
1− 1

ρ

)[
1− 2EQ̃− Q̃2

(
1− 1

ρ

)
+

(�− bρ2)
2

ρ2

]
. (E.6)

If we set Q̃ = 0, we get the effective potential of a weakly magnetized black hole.

For particles in the innermost stable circular orbits (ISCO), we need the following

conditions to be satisfied,

V (ρ) = 0 ,

dV (ρ)

dρ
= 0 ,

d2V (ρ)

dρ2
= 0 . (E.7)

It is very difficult to solve these equations analytically. However, it can be done

numerically. In the case Q̃ = 0, the position of ISCO is coming closer to the

horizon while the magnetic field is increasing. Numerical analysis of (E.7) shows

that when Q̃ �= 0 and while this parameter is increasing the location of ISCO is

moving away from the horizon.

Let us estimate the dimensionless parameter Q̃ of a black hole when a proton

falls into it. Assume that while an electron is revolving around the black hole

because of the repulsive Lorentz force on it, a proton falls into the black hole due

to the attractive Lorentz force on it. We have qe = −4.8 × 10−10 (g cm3/s2)1/2,
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qp = 4.8× 10−10 (g cm3/s2)1/2 and me = 9× 10−28 g. Moreover, in the formula for

Q̃ we need to restore the speed of light. Therefore,

Q̃ =
qQ

mc2 rg
= −9× 10−20 . (E.8)

The numerical analysis shows that if the parameter Q̃ ∼ 1 then the effect can be

observable. If for every proton falling into a black hole the parameter Q̃ changes

only as such as in equation (E.8) ,we need large number of protons in order to have

an observable effect in the orbits of the charged particles in a weakly magnetized

spacetime. Moreover, in order to take such effect into account we need to consider

a specific model for the disk. Something like this is beyond the purpose of this

thesis. In this thesis we shall simply ignore the modification of ISCO due to charge

accretion.

Note that we are not considering values of Q̃ that cause back-reaction.


