
The most beautiful thing we can experience is the mysterious. It is the
source of all true art and science. He to whom this emotion is stranger,
who can no longer pause to wonder and stand rapt in awe, is as good
as dead: his eyes are closed.

Albert Einstein (1879-1955)
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Abstract

This thesis summarizes a study of higher-dimensional distorted objects such as

a distorted 5-dimensional Schwarzschild-Tangherlini black hole. It considers a par-

ticular type of distortion corresponding to an external, static distribution of matter

and fields around this object. The corresponding spacetime can be presented in

the generalized Weyl form which has an R×U(1)×U(1) group of isometries. This

is a natural generalization of the 4-dimensional Weyl form which was presented in

the paper by Emparan and Reall [1]. In the frame of this generalized Weyl form

one can derive an exact analytic solution to the Einstein equations which describes

the non-linear interaction of the black hole with external matter and gravitational

fields. This research focuses on the effects of such interaction on the event horizon

and the interior of the black hole. A similar study was presented in the papers

[2] for 4-dimensional neutral black holes, where special duality relations between a

neutral black hole horizon and singularity were derived. In relation to this work it

is interesting to study which properties of distorted black holes remain present in

the 5-dimensional case. This thesis also gives an investigation of the d-dimensional

Fisher solution which represents a static, spherically symmetric, asymptotically

flat spacetime with a massless scalar field. This solution has a naked singular-

ity. It is shown that the d-dimensional Schwarzschild-Tangherlini solution and the

Fisher solution are dual to each other.

[1] R. Emparan and H. S. Reall, Phys. Rev. D, 65, 084025 (2002).

[2] V. P. Frolov and A. A. Shoom, Phys. Rev. D, 76, 064037 (2007).
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David Kubizňák, Rodrigo Rocha Cuzinatto, Neda Naseri, Elaheh Poureslami Ar-
dakani, Abdorreza Samarbakhsh, Andrey Shoom, Xing Wu, Shima Yaghoobpour
Tari, and Hirotaka Yoshino.

I thank the members of the Theoretical Physics Institute, and other colleagues
and friends: Faqir Khanna, Eric Poisson, Frans Pretorius, Suneeta Vardarajan,
and Andrei Zel’nikov.

I would like to thank Elizabeth Berends, Gordana Brouilette, Patty Chu, Lee
Grimard, Sandra Hamilton, Linda Jacklin, Nandi Khanna, Mary Jean Smallman,
Carolyn Steinborn, Ruby Swanson, Roseann Whale, Maya Wheelock and Dr. Isaac
Isaac for their numerous help and support. My especial thanks goes to Sarah Derr
for answering all my questions during my Ph.D. program.

I also would like to thank some of my first teachers: Amir Aghamohammadi,
Amir H. Fatollahi, Kamran Kaviani, Mohammad Khorrami, Farinaz Roshani, and
Ahmad Shariati.



Table of Contents

1 Introduction 5

2 Background Material 10

2.1 Mathematical preliminaries . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1 Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Tangent vector . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5 One-form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.6 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Parallel displacement . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Covariant differentiation and Christoffel symbols . . . . . . . 16
2.2.3 Curvature tensor . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Properties of the Riemann tensor . . . . . . . . . . . . . . . 20
2.2.5 Properties of the Weyl tensor . . . . . . . . . . . . . . . . . 22
2.2.6 Energy conditions . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.7 3-sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 A review of the generalized Weyl solutions . . . . . . . . . . . . . . 26
2.4 A distorted 4-dimensional Schwarzschild black hole . . . . . . . . . 32

3 Distorted 5-dimensional vacuum black hole 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 5-dimensional Weyl solution . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Distorted 5-dimensional vacuum black hole . . . . . . . . . . . . . . 46

3.3.1 5-Dimensional Schwarzschild-Tangherlini black hole . . . . . 46
3.3.2 Metric of a 5-dimensional distorted black hole . . . . . . . . 48

3.4 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Symmetries and boundary values of the distortion fields . . . . . . . 55
3.6 Space-time near the horizon . . . . . . . . . . . . . . . . . . . . . . 59

3.6.1 Intrinsic curvature of the horizon surface . . . . . . . . . . . 59



TABLE OF CONTENTS

3.6.2 Shape of the horizon surface . . . . . . . . . . . . . . . . . . 61
3.6.3 Metric near the horizon . . . . . . . . . . . . . . . . . . . . 63

3.7 Space-time invariants . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.8 Space-time near the singularity . . . . . . . . . . . . . . . . . . . . 69

3.8.1 Metric near the singularity . . . . . . . . . . . . . . . . . . . 69
3.8.2 Stretched singularity . . . . . . . . . . . . . . . . . . . . . . 70
3.8.3 Geometry of the stretched singularity surface: duality trans-

formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.9 Proper time of free fall from the horizon to the singularity . . . . . 74
3.10 Summary of results and discussion . . . . . . . . . . . . . . . . . . 75

4 Distorted 5-Dimensional Charged Black hole 81

4.0.1 The 5-dimensional Reissner-Nordström solution . . . . . . . 81
4.0.2 Charging vacuum solutions . . . . . . . . . . . . . . . . . . . 84
4.0.3 Distorted 5-dimensional charged black hole . . . . . . . . . . 86
4.0.4 Dimensionless form of the metric . . . . . . . . . . . . . . . 89
4.0.5 Duality relations between the inner and outer horizons . . . 90

4.1 Space-time invariants . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Analysis of the Fisher Solution 97

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 The Fisher solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.1 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.3 The Fisher universe . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Curvature singularities . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.1 Spacetime invariants . . . . . . . . . . . . . . . . . . . . . . 108
5.3.2 Strength of the singularities . . . . . . . . . . . . . . . . . . 109

5.4 Causal Properties of the Fisher solution . . . . . . . . . . . . . . . . 115
5.4.1 Closed trapped surfaces . . . . . . . . . . . . . . . . . . . . 115
5.4.2 Misner-Sharp energy . . . . . . . . . . . . . . . . . . . . . . 119
5.4.3 Causal structure . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5 Isometric embedding . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.6 The Fisher spacetime and the Fisher universe . . . . . . . . . . . . 131
5.7 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Conclusion 140

A Gaussian curvatures 142
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List of Symbols and

Abbreviations

Here, we present some symbols and notations, and give definitions which are used
in the thesis. Other notations and definitions are explained in the text.

Symbols and sign conventions

The following special symbols are used:

≃ approximately equal to

∼ order of magnitude estimate

≈ asymptotically approximate to

≡ defined to be equal to

i =
√
−1 imaginary unit (if not a subscripts or superscript)

∧ wedge product

v ·w scalar product of vectors v and w

T αβ = diag(T 00, ...) represents a geometrical object T αβ,

whose off-diagonal components are zeros

Γ(x) the Gamma function

δ(x) the Dirac delta function

(1)
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Units

The fundamental constants are [1]:

the speed of light in vacuum: c = 2.99792458× 108 m s−1

the 4-dimensional gravitational constant: G(4) = 6.67428(67)× 10−11 kg−1 m3 s−2

the Planck constant: h = 6.62606896(33)× 10−34 kg m2 s−1

the reduced Planck constant: ~ =
h

2π
= 1.054571628(53)× 10−34 kg m2 s−1

the electron charge magnitude: e = 1.602176487(40)× 10−19 C

= 4.80320427(12)× 10−10 esu

The Planck mass is

Mpl =

√
~c

G
= 2.17644(11)× 10−8 kg.

The Planck energy is

Epl = Mplc
2 =

√
~c5

G
≃ 1.956086×109 J ≃ 1.22089×1028 eV = 1.22089×1016 TeV.

The Planck length (distance) is

lP l =
√

~G/c3 = 1.616253× 10−35 m.

The Planck time is

τP l =
√

~G/c5 = 5.391241× 10−44 s.

In natural units: ~ = c = 1 :

Epl = Mpl = G− 1

2 ≃ 1.22089× 1016 TeV

lpl = G
1

2 = 1.616253× 10−35 m ≃ 8.190× 10−17 (TeV)−1

(1 TeV)−1 ≃ 1.973× 10−19 m = 1.973× 10−17 cm

Basic definitions

For details on the mathematical preliminaries refer to Chapter 2.

The main conventions for geometrical objects are in terminology of [20]. The
signature of the spacetime metric gαβ is: (− + + · · ·+), i.e., it is +(d − 2). The
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time coordinate index is 0: t ≡ x0. Balance of indices and the Einstein summation
convention are assumed.

Components of geometrical objects are defined with respect to a coordinate
basis, e.g., T β1β2···

α1α2···
. In a local orthonormal frame these components are

T β̂1β̂2···
α̂1α̂2···

. The partial derivative with respect to coordinate xα is defined by
comma in front of subscript α as follows:

f,α ≡
∂f

∂xα
, f,αβ ≡

∂2f

∂xα∂xβ
, etc. (2)

The covariant derivative of a tensor T β1···βm
α1···αn

is defined by the symbol nabla,

∇γT
β1···βm

α1···αn
= T β1···βm

α1···αn ,γ + Γβ1

δγT
δ···βm

α1···αn
+ · · ·+ Γβm

δγT
β1···δ

α1···αn

− Γδα1γT
β1···βm

δ···αn
− · · · − ΓδαnγT

β1···βm

α1···δ
. (3)

The Riemann tensor is given by

Rα
βγδ = Γαβδ,γ − Γαβγ,δ + ΓασγΓ

σ
βδ − ΓασδΓ

σ
βγ .

where Γαβγ are the Christoffel symbols given by

Γαβγ =
1

2
gαδ(gδβ,γ + gγδ,β − gβγ,δ) .

The Ricci tensor is defined by Rαβ = Rγ
αγβ.

The Ricci scalar is R = gαβRαβ = Rα
α .

The Einstein equations are (G(d) = 1)

Gαβ = Rαβ −
1

2
gαβR = 8π Tαβ ,

where Tαβ is the the energy-momentum tensor defined by

Tαβ = − 2√−g

(
δ(
√−gΛm)

δgαβ
−
[
δ(
√−gΛm)

δ(gαβ,γ)

]

,γ

)
.

Here, g = det(gαβ), and Λm is the Lagrangian density of matter.
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The Weyl tensor is given by

Cαβγδ = Rαβγδ −
2

d− 2

(
gα[γRδ]β − gβ[γRδ]α

)
+

2

(d− 1)(d− 2)
Rgα[γgδ]β ,

where square brackets [] denote anti-symmetrization, and d is the number of di-
mensions. The Kretschmann scalar is

K = RαβγδR
αβγδ = CαβγδC

αβγδ +
4

d− 2
RαβR

αβ − 2

(d− 1)(d− 2)
R2 .

[1] C. Amsler et al. (Particle Data Group), Phys. Lett. B, 667, 1 (2008).
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Chapter 1

Introduction

A star dies when the nuclear fuel to provide enough pressure to hold it against
its own gravitational force is used up. Such a star undergoes gravitational collapse
and possibly a supernova explosion which leaves behind a compact object: a white
dwarf, a neutron star, or a black hole. In 1931 Subrahmanyan Chandrasekhar
(1910-1995) has found that no white dwarfs can be heavier than ∼ 1.4M⊙ [1].
This limit is the maximum non-rotating mass which can be sustained by the elec-
tron degeneracy pressure against the gravitational collapse. Tolman, Oppenhimer,
and Volkoff then calculated the maximum mass limit for a neutron star to be
∼ 0.7M⊙ [2], [3]. Later the limit was recalculated to be ∼ (1.5− 3.0)M⊙ [4] (the
uncertainty in the value comes from the fact that the equation of state for the
neutron stars is not well understood).

For the stars above this mass limit, gravity overcomes all the other forces, and
the gravitational collapse continues with nothing to stop it. Once the star passes
through its Schwarzschild radius, it continues to collapse inevitably to zero cir-
cumference, creating there a singularity. The resulting object is a black hole. The
black hole itself is the region inside the Schwarzschild radius, i.e., the region be-
tween the black hole event horizon and the singularity.

Black holes can be well explained by the Einstein theory of general relativity
(at least up to the vicinity of the singularity). For example, the static, vacuum,
spherically symmetric, asymptotically flat 4-dimensional Schwarzschild black hole
is the simplest nontrivial solution of the vacuum Einstein equations.

We say that a space-time has a singularity if it is timelike and null geodesi-
cally incomplete [5]. The Hawking-Penrose singularity theorem [5] states that in a
space-time where the strong energy condition is satisfied and there are no closed
timelike curves, a singularity forms inevitably if a closed trapped surface occurs.
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Namely, the laws of physics assure that there exist a singularity inside any black
hole resulting from the gravitational collapse of a star. In 1960’s Penrose has tried
to prove mathematically that all the singularities formed by a reasonable matter
and fields are hidden behind a horizon. Failing to prove it in general, he has pro-
posed the cosmic censorship conjecture, stating that whenever a singularity forms,
it must be hidden behind a horizon [6], [7]. Namely, no naked singularities can
form. The black hole horizon hides the singularity from an external observer. No
observer can ever come back or transmit his observations to the external observer.

To test the cosmic censorship conjecture, many models of gravitational collapse
were studied both analytically and numerically. It was found that in certain con-
ditions naked singularities may form [8], [9].

Back in the 1950s and early 1960s, John Wheeler had a hope that singular-
ities can provide a laboratory to see the laws of quantum gravity at work with
real physical observations and experiments. Cosmic censorship has destroyed this
hope. However, even if naked singularities do not exist in nature, they are still
mathematical laboratories both for the classical general relativity and the future
theory of quantum gravity. Namely, studying a space-time singularity, whether it
is hidden behind a black hole horizon or naked, provides us with useful information
about how a space-time behaves in its extreme.

In this thesis we consider two different higher dimensional gravitational objects,
i.e., black holes and their “siblings”, naked singularities. In particular, in the third
Chapter we consider a 5-dimensional static, U(1)×U(1) symmetric solution of the
vacuum Einstein equations representing a 5-dimensional Schwarzschild-Tangherlini
black hole distorted by external matter. In Chapter 4 we present a 5-dimensional
static, U(1) × U(1) symmetric solution of the Einstein-Maxwell equations repre-
senting a 5-dimensional Reissner-Nordström black hole distorted by external dis-
tribution of matter. In Chapter 5 we consider the d-dimensional Fisher solution
which represents a static, spherically symmetric, asymptotically flat space-time
with a massless scalar field. This solution has a naked singularity which divides
the manifold into two disconnected parts. The part which is asymptotically flat we
call the Fisher space-time, and the other part we call the Fisher universe. We show
that the d-dimensional Schwarzschild-Tangherlini black hole and the d-dimensional
naked singularity of the Fisher space-time are dual to each other.

Black holes interact nonlinearly with the external matter and fields. Except in
some special cases, where the construction of an exact analytic solution to Einstein
equations is possible, the description of the black hole interaction with external
matter and fields usually demands numerical computations. In 4-dimensions the
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Weyl form [10] solution of the vacuum Einstein equations representing a black
hole distorted by external static axisymmetric distribution of matter has been
constructed in [11]. In Chapter 3 we use the higher-dimensional analogue of the
Weyl solution [12] to construct a U(1) × U(1) symmetric solution of the vacuum
Einstein equations representing a black hole distorted by external matter. We
compare the properties of such a black hole to the 4-dimensional distorted black
hole. In Chapter 4 we use the analogue of Harrison-Ernst (see [13] and [14]) trans-
formations [15] to produce the distorted 5-dimensional electrically charged black
hole. In Chapter 5 we consider a space-time geometry and massless scalar field that
have R× SO(d− 1) symmetry. The results and the derived relation between the
geometric quantities of the Fisher space-time, Fisher universe, and Schwarzschild-
Tangherlini black hole may suggest that the massless scalar field “transforms” the
black hole event horizon into the naked radially weak disjoint singularities of the
Fisher space-time and Fisher universe which are “dual to the horizon”.

Chapter 2 include background material which helps for going through this the-
sis. Readers familiar with the materials presented in this Chapter may go directly
to Chapter 3. Details of our calculations are presented in the appendices.

The results presented in this thesis were obtained during the course of the
author’s Ph.D. program at the university of Alberta between the years 2006 to
2010. Chapter 4 represents the 5-dimensional generalization of the 4-dimensional
static, axisymmetric distorted charged black hole presented in [16], [17], and [18].
The interior structure of this black hole was analyzed by the author, A. A. Shoom,
and V. P. Frolov during the course of the author’s PhD. program and was published
in a peer reviewed journal [19]. Chapter 5 is based on a published paper in a peer
reviewed journal [20].
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Chapter 2

Background Material

In this Chapter we present the background material which is needed for a better
understanding of this thesis. This Chapter consist of three sections. In the first
Section we present some of the mathematical preliminaries, in the second Section
we give a brief review of generalized Weyl solutions, and in Section 3 we discuss
the distorted 4-dimensional Schwarzschild black hole. Readers familiar with these
materials may skip this Chapter and go directly to Chapter three.

2.1 Mathematical preliminaries

For more details on the subject see ([1]-[5]).

2.1.1 Manifold

A d-dimensional C∞, real manifoldMd is a set of points together with a collection
of subsets {Oα} satisfying the following properties:
1) Each point p ∈Md lies in at least one Oα, that is ∪αOα, covers Md.
2) For each α there is a one-to-one, onto, map ψα : Oα → Uα, where Uα is an open
subset of R

d.
3) If any two sets Oα and Oβ overlap, Oα∩Oβ 6= Φ, then ψα ◦ψ−1

β : ψβ(Oα∩Oβ)→
ψα(Oα ∩ Oβ) is a C∞ map of an open subset of R

n to an open subset of R
d.

2.1.2 Curve

A Ck curve λ(s) in Md is a Ck map of an interval (a, b) of a real line R
1 into

Mn, i.e., λ(s) : (a, b) → Md. On a chart (O,ψ) the curve λ has a coordinate
representation:

x = ψ ◦ λ : R
1 → R

d, x ∈ R
d. (2.1)
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2.1.3 Function

A function f on Md is a smooth map from Md to R
1. The coordinate represen-

tation of f is given by
f ◦ ψ−1 : R

d → R
1. (2.2)

2.1.4 Tangent vector

Let f be a function of Ck functions fromMd into R
1. We define a tangent vector

(contravariant vector) as a map V : f → R which is linear and obeys Leibnitz law.

V[af + bg] = aV[f ] + bV[g], (2.3)

V(fg) = f(p)V[g] + g(p)V[f ], (2.4)

where V and g are vectors; f and g are functions; a and b ∈ R
1. The vector

(∂/∂s)λ|s0 tangent to the C1 curve λ(s) at the point p ≡ λ(s0) is an operator
which maps a C1 function f , defined at λ(s0) into a real number (∂f/∂s)λ|s0. If
(x1, ..., xd) are local coordinates in a neighborhood of p,

(
∂f

∂s

)

λ

|s0 =

d∑

j=1

dxj(λ(s))

ds
|s=s0

∂f

∂xj
|λ(s0) =

dxj(λ(s))

ds

∂f

∂xj
|λ(s0). (2.5)

Here and in what follows, we adopt a summation convention whereby a repeated
index implies summation over all the values of that index. Thus, every tangent
vector at a point p can be expressed as a linear combination of the coordinate
derivatives defined at p

X|p := X i ∂

∂xi
|p. (2.6)

In other words df/ds is obtained by applying the differential operator X to f , i.e.,

df

dx
= X[f ] = X i ∂

∂xi
. (2.7)

The space of all tangent toMd vectors at p denoted by Tp(Md), or simply Tp is a
d-dimensional vector space.

If {Ei} (i = 1...d) are any set of d vectors at p which are linearly independent,
then any other contravariant vector can be written as X = X iEi. Here, the
numbers {X i} are components of the vector X with respect to the basis {Ei}.
Here and in what follows whenever we use the word vector we mean a contravariant
vector. One can choose {Ei} as the coordinate basis { ∂

∂xi}.
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2.1.5 One-form

A dual space to the tangent space Tp(Md) is called the cotangent space at p which
is denoted by T ∗

p (Md) or simply T ∗
p . An element Ω : Tp → R

1 of T ∗
p is called a

cotangent vector (covariant vector) or a one-form.

If X is a vector at p, the number into which Ω maps X will be written as
< Ω,X >; linearity implies

< Ω, aX + bY >= a < Ω,X > +b < Ω,Y >, (2.8)

< Ω + Λ,X >=< Ω,X > + < Λ,X > , (2.9)

< aΩ, X >= a < Ω, X > , (2.10)

where X, Y ∈ Tp; Ω, Λ ∈ T ∗
p , and a, b ∈ R

1. Given a vector basis {Ei} at p, one
can define a unique set of n one-forms {Ei} by the condition: Ei maps any vector
X to the number X i. In particular < Ei,Ej >= δij. One can regard {Ei} as the
basis of one forms. Any one form Ω at p can be expressed as Ω = ΩiE

i where the
number Ωi are the components of a covariant vector defined by Ωi :=< Ω,Ei >.

2.1.6 Tensors

From the space Tp of vectors at p and the space T ∗
p of one-forms at p, we can form

the Cartesian product. A tensor of type (q, r) is a multilinear map

Πr
q = T ∗

p1
× ...T ∗

pq
× Tp1 × ...Tpr

→ R
1, (2.11)

i.e. a map from the ordered set of one-forms and vectors (Ω1, ..., Ωq, X1...Xr),
where Ωs and Xs are arbitrary one-forms and vectors to the real numbers. A
tensor of type (q, r) at p is a function on Πr

q which is linear in each argument.
That is a tensor of type (q, r) at p maps q elements of T ∗

p and r elements of Tp’s
to a real number. The space of all such tensors is called the tensor product

T qr (p) = Tp1 ⊗ ...⊗ Tpq
⊗ T ∗

p1
⊗ ...⊗ T ∗

pr
. (2.12)

If {Ei} and {Ei} are dual basis of Tp and T ∗
p respectively, Then

{Ei1 ⊗ ...⊗Eiq ⊗Ej1 ⊗ ...Ejr}, (ia, jb = 1, .., d) (2.13)

will be a basis for T qr (p). An arbitrary tensor T ∈ T qr (p) can be expressed in terms
of this basis as

T = T
i1...iq

j1...jr
Ei1 ⊗ ...Eiq ⊗ Ej1...⊗Ejr , (2.14)
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where {T i1...iqj1...jr} are the components of T with respect to the dual bases {Ei},
{Ei} and are given by

T
i1...iq

j1...jr
= T(Ei1, ...Eiq , Ei1 ...Eir). (2.15)

2.2 Curvature

Newton’s gravitational law states that gravity is a force which acts between all
massive objects in the universe. The gravitational attraction between two massive
objects is proportional to the product of the object masses and inversely pro-
portional to the squared distance between their gravitational centers. Newton’s
gravitational law combined with the dynamical laws of motion has successfully
explained motion of falling rocks, the Moon, and the planets until the 1900s. In
the early 1900s, there were known two puzzling discrepancies between theoretical
predictions of Newton’s gravitational law and astronomical observations; namely,
the peculiarities in Mercury and Moon orbits. The peculiarity in the Moon orbit
later turned out to be the misinterpretation of astronomical measurements. On
the other hand, the peculiarity in Mercury’s orbit (perihelion precession of its or-
bit) was later successfully explained by Einstein theory of general relativity, which
replaced the Newtonian gravitational theory. Here, we give a brief history of Ein-
stein’s discovery of the general relativity. This would provide us with the concept
of a curved space-time manifold.

Einstein’s concept of the special theory of relativity can’t be used in non-inertial
frames such as those necessary to describe gravity. In 1907 Einstein began search-
ing for new generalized principle of relativity, or in other words he was searching
for a new law of gravity. Einstein was convinced that Newton’s gravitational law
would violate the yet unformulated generalized principle of relativity. One day,
in November 1907, while thinking of incorporating gravity into relativity Einstein
came to a new idea:“At the moment there came to me the happiest thought of my

life... for an observer falling freely from the roof of a house no gravitational field

exists during his fall...” [6].

Imagine yourself in an elevator. If the spring attached to the elevator gets loose
then in this perhaps last experiment of your life before you hit the ground, you
shall observe the truth of the Einstein thought. All the objects in the elevator fall
with you, that is, all the objects in the elevator remain at rest with respect to you
(assuming they have been at rest before the spring gets loose and no other force
is exerted on them). For another experiment, while standing in a room, throw a
ball into the air at arbitrary angle defined between the horizontal and the vertical.
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The path of the ball will be curved. It is the familiar projectile motion. Einstein
states that the floor of the room forces us away from our natural motion of free fall.
If the room were falling from a cliff, the motion of the ball would look straight.
Therefore, in a freely falling frame, gravity is completely eliminated, at least lo-
cally. Therefore, we can define such a frame as a locally inertial frame. The world
“local” is really essential here. There is almost no evidence of gravity in a small
freely falling room. That is, we get rid of gravity while we are in the state of free fall.

Did we really get rid of gravity? Well, this is correct up to a precision of our
measurement. Increase the precision of the measurement until you begin to notice
the relative motion of test particles located in the room. Our free float frame can
not be too large, or fall too long without some relative motion of the particles
being detected. A freely falling frame is defined locally. Consider, for example, a
spaceship orbiting the Earth. Look at two nearby test particles in this spaceship.
Increase the precision of your measurement, and you will notice the relative motion
of the test particles. In Newton’s way of thinking, the gravitational pull is differ-
ent on the above two test particles, therefore, causing their relative motion. These
relative forces are called tidal forces. As Kip Thorne writes: “The tidal forces

felt in large frames seemed to Einstein, in 1911, to be a key to the ultimate na-

ture of gravity... It was clear how Newton’s gravitational law explains tidal forces.

They are produced by a difference in the strength and direction of gravity’s pull,

from one place to another...Einstein’s challenge was to formulate a completely new

gravitational law that is simultaneously compatible with the principle of relativity

and explains tidal gravity in some new, simple, compelling way. From mid-1911 to

mid-1912, Einstein tried tidal gravity by assuming that time is warped, but space

is flat. [7].

By the summer of 1912 Einstein was convinced that tidal gravity is a manifes-
tation of space-time curvature. Therefore, he decided to “incorporate” curvature

into Minkowski’s space-time. In this section we present the basic idea and mathe-
matical formulation of a space-time curvature.

2.2.1 Parallel displacement

In what follows we use Minkowski coordinates in a flat space-time.

ds2 = −dt2 + dx2
1 + dx2

2 + dx2
3. (2.16)

We use curvilinear coordinates in a curved space-time. We know how to parallel
transport a vector in a flat manifold. We need to define parallel transport of a
vector in a curved manifold. We can define parallel transport using embedding
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of a curved manifold into a higher dimensional Euclidean/Minkowski hyperspace.
For example, starting from any vector which belongs to the tangent bundle of the
curved manifold, we can parallel transport it in a standard way in the flat hyper-
space. Once this is done, the vector does not belong to the tangent bundle of the
curved manifold anymore. Then, we need to project the vector onto the manifold,
i.e. to consider only the components which belong to the manifold. Consider two
infinitesimally close points p(xj) and q(xj + δxj) on a manifold. Consider the vec-
tor Ai(xi) at point p. Follow the above procedure to parallel transport this vector
into the point q. The error in the actual value of the vector Ai at point q due
to neglecting of the orthogonal component, and considering only the component
which lies on the manifold is of the second order for infinitesimally separated points
p and q. In this section only this projected part is what we mean when we discuss
parallel transport of a vector.

Under a parallel translation, parallel displacement, of a vector its components
in Minkowski coordinates do not change. On the other hand, when we use curvi-
linear coordinates the components of a vector change under a translation. We
will show that a notion of the space-time curvature can be defined in terms of
failure of a vector to return to its original value when it gets parallel transported
around an infinitesimal closed curve. In general in a curved space-time the parallel
displacement of a vector from one point to another depends on the path taken.
We will show that space-time curvature is defined in terms of amount of the total
change of a vector after parallel displacement around any infinitesimal closed curve.

Consider an arbitrary vector, whose components at the point p(xj) are Ai(xj).
Let us parallel displace this vector to an infinitesimally close point q(xj + dxj).
Denote a change in components of the vector which results from this parallel
displacement by δAi. The change in the components depend on the value of
components Ai. The sum of two vectors must transform according to the same
law of each constituent. It follows that this dependence is linear. Therefore, δAi

has the form
δAi = −ΓiklA

kdxl. (2.17)

The quantities Γikl are called the Christoffel symbols of the second kind, and they
are certain functions of coordinates. Note that the Christoffel symbols do not
form a tensor. In a Minkowski coordinate system Γikl = 0. To find a change in
components of a covariant vector under a parallel displacement, consider the scalar
product AiB

i. Scalar quantities do not change under a parallel displacement, i.e.,
δ(AiB

i) = 0. Therefore,

δAi B
i = −Ai δBi = ΓiklAiB

kdxl , (2.18)
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for arbitrary non-zero Ai. Thus, the change in components of any covariant vector
Ai under a parallel displacement is given by

δAi = ΓkilAkdx
l. (2.19)

2.2.2 Covariant differentiation and Christoffel symbols

The next step is to write the Christoffel symbols and the Riemann tensor explicitly,
in terms of coordinates. This is achieved by introducing covariant differentiation.
In flat space-time, the differentials dAi of vector components Ai form one-forms,
and the derivatives ∂Ai/∂x

k of the components of a vector with respect to the
coordinates form a tensor. In curved space-time this is not true. This is due to the
fact that dAi is the difference between two vectors located at two infinitesimally
separated points of manifold. In order to obtain a one form DAi which behaves
like a differential, we need that two vectors to be subtracted from each other be
located at the same point in space. In other words, before subtracting the two
vectors from each other, we need to parallel transport one of the vectors to the
point where the second one is located. The difference DAi between the two vectors
now read

DAi = dAi − δAi, (2.20)

where dAi is the difference of the components of two infinitesimally separated
vectors located at points p(xi) and q(xi + dxi),

dAi =
∂Ai

∂xl
dxl, (2.21)

and δAi is the change in the component of the vector due to parallel displacement
of the vector. Substituting (2.17) and (2.21) in (2.20) we derive

DAi =

(
∂Ai

∂xl
+ ΓiklA

k

)
dxl. (2.22)

Similarly, for a covariant vector we have

DAi = dAi − δAi, (2.23)

where

dAi =
∂Ai
∂xl

dxl, (2.24)
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and δAi is given by (2.19). Therefore, for a covariant vector

DAi =

(
∂Ai
∂xl
− ΓkilAk

)
dxl. (2.25)

The expressions in the parentheses in (2.22) and (2.25) are tensor objects, called
the covariant derivatives of the vector Ai and covariant vector Ai. Respectively, we
denote them by Ai ;l and Ai;l.The covariant derivative is a tensor which in curved

space-time plays the same role as ∂Ai/∂x
k in flat space-time. Thus

DAi = Ai ;jdx
j , DAi = Ai;jdx

j,

DAi = gijDA
j . (2.26)

The covariant derivative of an arbitrary tensor T kl..
ij.. ;m is given by

T kl...
ij... ;m =

∂T kl..
ij..

∂xm
−ΓnimT

kl..
nj.. −ΓnjmT

kl..
in.. −...+ΓknmT

nl..
ij.. +Γl nmT

kn..
ij.. +... .

(2.27)
Note that according to the definition of a tensor,

DAi = D(gikA
k) = gikDA

k. (2.28)

Therefore, it follows that the covariant derivative of the metric tensor is zero,

Dgik = 0,⇔ ∂gik
∂xl
− gmkΓmil − glmΓmkl = 0. (2.29)

From the relation above one can define the Christoffel symbols of the second kind
in terms of the metric tensor gik. Performing the cyclic permutation of the indices
in (2.29) and subtracting the corresponding expressions we derive

Γikl =
1

2
gim

(
∂gmk
∂xl

+
∂gml
∂xk

− ∂gkl
∂xm

)
. (2.30)

Clearly, the Christoffel symbols of the second kind are symmetric with respect to
the covariant indices, i.e., Γikl = Γi lk. The Christoffel symbols of the first kind are
defined as follows:

Γikl := gijΓ
j
kl. (2.31)

Geodesics

Consider a curve defined by the parametric equation xi = xi(s). The vector
ui = dxi/ds is a unit vector tangent to the curve. A geodesic is a curve such that
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its tangent vector is parallel displaced along itself, i.e.

Dui = 0. (2.32)

This equation is a generalization of a motion of a free particle in the special theory
of relativity, dui/ds = 0, or dui = 0 where ui is the four-dimensional velocity.
The parameterization which yields (2.32) is called the affine parameterization.
Substitute from the expression (2.22), and divide (2.32) the expression by ds; the
result is the geodesic equation

d2xi

ds2
+ Γi jk

dxj

ds

dxk

ds
= 0. (2.33)

2.2.3 Curvature tensor

We will show that space-time curvature is defined in terms of the amount of the
total change of a vector after parallel displacement around any infinitesimal closed
contour.

The change ∆Ai in a covariant vector Ai after parallel transport around any
arbitrary infinitesimal closed contour C can be written in the form

∆Ak =

∮

C

ΓiklAidx
l. (2.34)

Let us apply the Stokes theorem to the integral above. Note that the values of
Ai for points inside the contour are not unique. Namely, they depend to the path
taken inside the contour. This non uniqueness is related to the terms of the second
order in dx. For the first order accuracy the values of the vector at the points inside
the infinitesimal contour are uniquely determined by their values on the contour,
that is by the following derivatives (see (2.19))

∂Ai
∂xl

= ΓmilAm. (2.35)

Thus, Stokes theorem gives

∆Ak =
1

2

[
∂(ΓiknAi)

∂xl
− ∂(Γi klAi)

∂xn

]
∆Sln, (2.36)

where ∆Sln is an infinitesimal area enclosed by the contour C. Using (2.35) we
derive

∆Ak =
1

2
Ri

klnAi∆S
ln, (2.37)
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where we defined

Ri
kln :=

∂Γikn
∂xl

− ∂Γi kl
∂xn

+ ΓimlΓ
m
kn − ΓimnΓ

m
kl, (2.38)

a fourth rank tensor called the Riemann tensor or the curvature tensor.
Therefore, the non-commutivity of the covariant derivatives implies that the space-
time is curved. Here, we have assumed that our manifold is torsion free, i.e.

Ri
klnAi := Ak;ln − Ak;nl, (2.39)

In flat space-time covariant derivatives commute with one another. One can show
that (2.39) agrees with (2.18), (2.36), and (2.37).

Geodesic deviation equation

We have started our discussion with the relative acceleration of particles in the
gravitational field. We have stated that curvature in general relativity plays a
similar role to that of the tidal forces in Newtonian gravity. Our final task is to
show that indeed, we can relate the tendency of geodesics to accelerate towards or
away from each other to the curvature of the manifold.

On a flat surface, such as a sheet of paper, two initially parallel straight lines
never cross each other. On a curved surface, such as the surface of a ball, two
initially parallel straight lines may cross.

Consider a smooth one parameter family of geodesics λt(s), parameterized by
the affine parameter s, that is for each t ∈ R, the curve λt is a geodesic. Let
Σ denote a two dimensional submanifold spanned by the geodesic curves λt(s).
Therefore, we may choose s and t as coordinates of Σ. That is, the coordinates of a
world point are expressed as functions of s and t, xi = xi(s, t). The vector field ui =
∂xi/∂s is tangent to the family of geodesics. A vector field vi = ∂xi/∂t represents
the displacement between two nearby geodesics, corresponding to parameter values
t and t+ dt. There is a “gauge freedom” in vi; namely, vi changes by addition of a
multiple of ui under a change of the affine parametrization of the geodesics λt(s).
Here, we choose vi to be always orthogonal to ui. Since vi and ui are coordinate
vector fields they commute, i.e,

ui;kv
k = vi;ku

i. (2.40)
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The relative acceleration of two infinitesimally close geodesics is given by

D2vi

ds2
= (vi;ku

k);lu
l = Ri

klmu
kulvm, (2.41)

where we have used ui ;iu
l = 0, and (2.40). Equation (2.41) is called the geodesic

deviation equation.

2.2.4 Properties of the Riemann tensor

From (2.38) and (2.30) the totally covariant components of the curvature tensor
are given in terms of metric components and Christoffel symbols by

Rijkl = ginR
n
jkl =

1

2

(
∂2gil
∂xj∂xk

+
∂2gjk
∂xi∂xl

− ∂2gik
∂xj∂xl

− ∂2gjl
∂xi∂xk

)

+ gnp(Γ
n
jkΓ

p
il − ΓnjlΓ

p
ik). (2.42)

Curvature components have the following symmetry properties

Rijkl = −Rjikl = −Rijlk, Rijkl = Rklij (2.43)

They also satisfy the cyclic permutation

Rijkl +Riklj +Riljk = 0, (2.44)

and the Bianchi identity

Rm
ijk;l +Rm

ikl;j +Rm
ilj;k = 0. (2.45)

The Riemann tensor can be used to define other important tensors. The Ricci

tensor is obtained from the curvature tensor by the contraction

Rij = Rk
ikj. (2.46)

Rij is symmetric in its indices. The total numbers of its independent components
is NR = d(d + 1)/2 in d dimensions. In four dimensions, it has 10 components.
The Ricci scalar is defined as the contraction of the Ricci tensor

R = gijRij = Rk
k. (2.47)

From the Ricci tensor and the Ricci scalar one defines the Einstein tensor

Gij = Rij −
1

2
gijR . (2.48)
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This tensor obeys the following property:

Gij
;j = 0. (2.49)

The metrics ĝ and g are said to be conformal if

ĝ = Ω2g, (2.50)

for some non-zero suitably differentiable function Ω. The metric components are
related by

ĝab = Ω2gab, ĝab = Ω−2gab, (2.51)

Then, for any vectors X,Y,V, W defined at a point p we have,

g(X,Y)

g(V,W)
=

ĝ(X,Y)

ĝ(V,W)
, (2.52)

that is angles between the vectors and ratios of their magnitudes are preserved
under conformal transformations. The Christoffel symbols corresponding to ĝ and
g are related by

Γ̂i jk = Γi jk + Ω−1

(
δij

∂Ω

∂xk
+ δik

∂Ω

∂xj
− gjkgil

∂Ω

∂xl

)
. (2.53)

The curvature tensor, the Ricci tensor and the Ricci scalar calculated for ĝ are
given by

R̂ij
kl = Ω−2Rij

kl + δ
[i

[kΩ
j]
l], (2.54)

R̂i
j = Ω−2Ri

j + (d− 2)Ω−1(Ω−1);jkg
ik − (d− 1)−1Ω−d(Ωd−2);jkg

jkδij,

(2.55)

R̂ = Ω−2R− 2(d− 1)Ω−3Ω;ijg
ij − (d− 1)(d− 4)Ω;kΩ;lg

kl, (2.56)

where
Ωi
j := 4Ω−1(Ω−1);jmg

jm − 2(Ω−1);k(Ω
−1);lg

klδij, (2.57)

and [ ] defines anti-symmetrization, e.g.,

T[ij] =
1

2
(Tij − Tji). (2.58)

Let us calculate the number of independent components of the curvature tensor
in d-dimensional space (d > 4). It is convenient to use the collective indices
A = [ij] and B = [kl]. Each of the collective indices has d(d − 1)/2 independent
components. Thus there are K = d(d − 1)/2 components of RAB with identical
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indices. Because of the symmetry property RAB = RBA, the total number of
components of this object is n1 = K(K + 1)/2. The cyclic symmetry property
(2.44) gives us n2 = d!/[(d − 4)!4!] relations. Therefore, the total number of
independent components of curvature tensor is

NR = n1 − n2 =
1

12
d2(d2 − 1). (2.59)

If d = 1, Rijkl = 0. If d = 2, there is only one independent component of Rabcd,
which is essentially a function of R,

R1212 =
R

2

(
g11g22 − (g12)

2
)
. (2.60)

If d = 3, the curvature tensor and the Ricci tensor both have 6 independent
components, and the Ricci tensor completely determines the curvature tensor

Rijkl = (gikRjl + gjlRik − gilRjk − gjkRil)−
1

2
(gikgjl − gilgjk)R . (2.61)

In d = 4, the Riemann tensor has 20 independent components. In d-dimensions
the remaining components of the curvature tensor can be represented by the Weyl

tensor given below

Cijkl = Rijkl −
1

(d− 2)
(gikRjl + gjlRik − gilRjk − gjkRil)

+
1

(d− 1)(d− 2)
(gikgjl − gilgjk)R . (2.62)

2.2.5 Properties of the Weyl tensor

The Weyl tensor has the same symmetries as the Riemann tensor plus the property

Ck
ikj = 0. (2.63)

That is, one can think of the Weyl tensor as that part of the curvature tensor
such that all contractions vanish. Therefore, the total number of the independent
components of the Weyl tensor are given by

Nc = NR −
d(d+ 1)

2
=

1

12
(d− 3)d(d+ 1)(d+ 2), d > 3 (2.64)

By the definition in d 6 3 we have Cijkl = 0. In four dimensions, the Weyl tensor
has 10 independent components. Another characterization of the Weyl tensor is
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that it is conformally invariant, i.e.

Ĉi
jkl = Ci

jkl . (2.65)

A space-time with zero Weyl tensor is said to be conformally flat; such a space-
time can be related by a conformal transformation to a flat metric.
The Weyl tensor is expressed in terms of the Riemann tensor, (2.62) which satisfies
the Binachi identity. Thus, the Bianchi identity (2.46) can be written as

Cijkm
;m = J ijk , (2.66)

where

J ijk =
2(d− 3)

(d− 2)
(Rk[i;j] − 1

2(d− 1)
gk[iR;j]) . (2.67)

This equation is similar to the Maxwell equation in electrodynamics

F ij
;j = J i , (2.68)

where F ij is the electromagnetic field tensor and J i is the source 4-current.

2.2.6 Energy conditions

The Einstein equations read

Gij = Rij −
1

2
gijR = 8π Tij ,

or

Rij = 8π

(
Tij −

1

d− 2
gijT

)
, T = gijTij .

where Tij is the energy-momentum tensor defined by

Tij = − 2√−g


δ(
√−gΛm)

δgij
−
[
δ(
√−gΛm)

δ(gij ,k)

]

,k


 .

Here, Λm is the Lagrangian density of matter. The distribution of mass, momentum
and stress due to matter and to any non-gravitational field is described by energy-
momentum tensor. For our discussion we assume that in a suitable orthonormal
frame, the components of the energy-momentum tensor are given by

T îĵ = diag(ε , pa) , a = 1, ..., d− 1 ,
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where ε is the energy density, and pa’s are the (d− 1) principal pressures.

In general relativity, there are at least seven types of energy conditions. They
are the null, weak, strong, and the dominant energy conditions, and the averaged
null, strong, and weak energy conditions. Here, we review the following energy
conditions.

The null energy condition is that for any null vector nα, Tijn
inj > 0, i.e., in

terms of principal pressures

ε+ pa > 0 , for any a .

The weak energy condition is that for any timelike vector kα, Tαβk
αkβ > 0, i.e.,

ε > 0 , and ε+ pa > 0 , for any a .

If it this is true for any timelike vector, by continuity it implies the null energy
condition. The weak energy condition implies that the local energy density as
measured by any timelike observer is positive.

The strong energy condition is that for any timelike vector ki, Tijk
ikj >

T
d−2

kiki,
i.e.,

ε+ pa > 0 , and ε+
1

d− 3

d−1∑

a=1

pa > 0 , for any a .

By Einstein equations this condition implies Rijk
ikj > 0. The strong energy con-

dition implies the null energy condition. It does not, in general, imply the weak
energy condition.

Finally, the dominant energy condition is that for any timelike vector ki, Tijk
ikj >

0, and Tijk
j is not spacelike, i.e., in terms of the principal pressures

ε > 0 , and pa ∈ [−ε, ε] , for any a .

By continuity the dominant energy condition implies the weak and the null energy
conditions. It does not, in general, imply the strong energy condition (for details
see, e.g., [8]).

2.2.7 3-sphere

A 3-sphere is a 3-dimensional analogue of a sphere. A 3-sphere with center at a
point O with the Cartesian coordinates (a, b, c, d) and radius r is the set of all
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Figure 2.1: The relation of the Cartesian coordinates (x1, x2, x3, x4) and the Hopf
coordinates. A is any point on a unit sphere. The semi-axis η = 0 corresponds to
the orbit of the Killing vector ∂

∂φ
, and the semi-axis η = π/2 corresponds to the

orbit of the Killing vector ∂
∂χ

.

points (x1, x2, x3, x4) in a real 4-dimensional space such that

(x1 − a)2 + (x2 − b)2 + (x3 − c)2 + (x4 − d)2 = r2 . (2.69)

Let us consider a unit sphere centered at the origin (0, 0, 0, 0). We can introduce
hyperspherical coordinates (ψ, ζ, θ) in the following way

x1 = cosψ , (2.70)

x2 = cos ζ sin θ sinψ , (2.71)

x3 = sin ζ sin θ sinψ , (2.72)

x4 = cos θ sinψ . (2.73)

where 0 6 ψ 6 π, 0 6 θ 6 π, and 0 6 ζ < 2π. Then, the round metric on a
3-sphere in these coordinates is given by

ds2 = dψ2 + sin2 ψ
(
dθ2 + sin2 θ dζ2

)
. (2.74)
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We can introduce Hopf coordinates (η, φ, χ) in the following way

x1 = sin η cosφ , (2.75)

x2 = sin η sinφ , (2.76)

x3 = cos η cosχ , (2.77)

x4 = cos η sinχ , (2.78)

where 0 6 η < π
2
, 0 6 φ < 2π, 0 6 χ < 2π. The metric on a 3-sphere in Hopf

coordinates read
ds2 = dη2 + sin2 η dφ2 + cos2 η dχ2 . (2.79)

Using the Hopf coordinates, the metric of the 5-dimensional Minkowski space-time
can be written as follows:

ds2 = −dt2 + dr2 + r2(dη2 + sin2 η dφ2 + cos2 η dχ2) . (2.80)

2.3 A review of the generalized Weyl solutions

The study of classical general relativity in more that 4-dimensions has attracted a
lot of attention in recent years. Here, we give a brief review of the the history of
higher dimensions. For more details, refer to [9], [10], [11].

The idea of extra dimensions goes back to the Finnish physicist Nordström
(1881- 1923). In 1914 he has made an attempt to describe gravity and electro-
magnetism simultaneously by introducing one extra spatial dimension [12]. His
theory did not turn out to be correct and was replaced by Einstein’s theory. Later,
Kaluza’s (1885-1954) work which was published in 1921 gave birth to the modern
Kaluza-Klein (KK) theories [13], [14]. Kaluza considered a 5-dimensional space-
time with one additional spatial dimension to unify the fundamental forces of
gravity and electromagnetism. Initially these theories were rather a mathematical
exercise. The formulation of string theory and M-theory in a space-time with a
number of dimensions greater than 4 has provided more support for the idea of
higher dimensions. The size of these extra dimensions was naturally considered to
be of the order of Planck length, lpl ∼ 10−33 cm. In KK theories, using extra com-
pact dimensions, a tower of 4-dimensional particles with masses proportional to
the inverse size of the compact dimension (L−1) are produced. However, the stan-
dard model has been successfully tested up to the ∼ 100 GeV. This implies that
these extra dimensions can not be macroscopic L < 10−17 cm. On the other hand,
the gravitational force has not been measured beneath the distance of ∼ 1 mm [15].

In 1983 Rubakov and Shaposhnikov [16] proposed a novel model in which
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fermions and bosons are confined to a 4-dimensional subspace of a higher dimen-
sional space-time. Following a similar direction, D-branes have been introduced in
string theory [17], where fermions, bosons and gauge fields associated with open
strings are confined to propagate only along the brane while gravity associated
with closed strings can propagate in the bulk. Finally, in 1998, another idea was
proposed by Nima Arkani-Hamed, Savas Dimopoulos and Gia Dvali [18], [19],
the so-called ADD model, where the observed weakness of gravity at distances
≥ 1mm can be explained. This is the hierarchy problem, where the electrweak
scale mEW ∼ 1 TeV is much smaller that the Planck scale Mpl = G−1/2 ∼ 1016

TeV. They have assumed that mEW is the only fundamental short distance of the
nature, i.e., our interpretation of Mpl as a fundamental energy scale is based on
the assumption that gravity is not unmodified over the range where it is actually
measured ∼ 1 mm down to Planck length. Suppose there are n extra compact
dimensions of radius L. The thickness of the brane is at most 10−17 cm. The
observed Planck scale Mpl is then related to the fundamental (4 + n) higher di-
mensional Planck scale Mpl(4+n) in the following way:

M2
pl ∼M2+n

pl(4+n)L
n. (2.81)

Then, according to their philosophy that electroweak scale is the only fundamental
short distance of the nature, they set M2+n

pl(4+n) = mEW . Then the size of extra
dimension should be

L ∼ 10
30

n
−17cm× (

1TeV

mEW
)1+ 2

n , (2.82)

to produce the observed value of Mpl. For n = 1, the size of extra dimension given
by this model (2.82) is 1013 cm. Therefor, this case is empirically excluded. There
are many other constraints from collider experiments or some from astrophysical
and cosmological experiments [10]. If we include these constraints the ADD model
is applicable for n ≥ 4. The existence of such large extra dimensions (llp ≪ L 6 1
mm), by lowering the value of Planck scale, provide the possibility of black hole
production in the Large Hadron Collider (LHC).

One may still assume that there are n extra compact dimension of size L ∼ 1
mm. However, we do not need to assume that M2+n

pl(4+n) = MEw. Namely, extra
compact spatial dimensions may exist without exactly solving the hierarchy prob-
lem. In this case, setting n = 1 corresponds to the Mpl(5) ∼ 105 TeV, which is not
in any way accessible in LHC.

There are other geometrical alternative models attempting to solve the hier-
archy problem, such as the Randall-Sundrum (RS) model [20]. All these models
have attracted lots of attention to the study of the general relativity in higher
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dimensional space-time.

Higher dimensional gravity has its own intrinsic features. For example, a variety
of black objects exist in higher dimensions which are absent in 4-dimensions. Black
objects such as black strings and black p-branes with extended horizons exist only
in d > 4. To construct the simplest (d + 1)-dimensional black string solution,
add one flat spatial dimension to a d-dimensional solution of the vacuum Einstein
equation. This is because the direct product of two Ricci-flat manifold is itself a
Ricci flat manifold. The Schwarzschild-Tangherlini metric [21] is a solution of the
vacuum d-dimensional Einstein equations given by the following metric:

ds2 = −(1− µ

rd−3
)dt2 + (1− µ

rd−3
)−1dr2 + r2dΩ2

d−2 , (2.83)

where dΩ2
d−2 is the metric on a unit (d − 2) sphere. The black hole horizon has

the topology S(d−2). A 5-dimensional black string solution of the horizon topology
S(d−2) × R constructed from (2.83) reads

ds2 = −(1− µ

rd−3
)dt2 + (1− µ

rd−3
)−1dr2 + r2dΩ2

d−2 + dz2 . (2.84)

If we identify z periodically, i.e. z = z + L, then the above solution represents a
black object with horizon topology of S(d−2) × T. In a similar way one can add p
extra flat spatial directions to construct a black p-brane of the horizon topology
of S(d−2) × R

p or S(d−2) × T
p. The black p-branes are not globally asymptotically

flat and exhibit dynamical instabilities [22]. There exist many other interesting
solutions in higher dimensions which we do not discuss here, including rotating
and charged black objects (for more details refer to [9]). For example, the 5-
dimensional static black ring is the first asymptotically flat solution discovered
with a non-spherical horizon topology [23]. Namely, the black ring has a horizon
topology of S1 × S2 (For construction and detailed analysis of the rotating black
ring solution refer to, e.g., [24–27]).

Construction of higher-dimensional solutions even in vacuum is not always as
easy as the construction of vacuum black strings. In the search for the exact solu-
tions of Einstein equations, some generating techniques have been invented. One
of the earliest of these generating techniques is due to Weyl [28]. In 4-dimensions,
any static axisymmetric solution of vacuum Einstein equations can be presented in
Weyl form. Remarkably, the Einstein equations can be written in the Weyl form
in terms of two metric functions, one of which is a harmonic function satisfying
Laplace’s equation in a flat three dimensional space, and the other one can be
derived from a simple integration involving the first one. Example of the solutions
belonging to the 4-dimensional Weyl form are: the Israel-Khan solution represent-
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ing a set of collinear Schwarzschild black holes [29], a black hole with toroidal
horizon [30], and a compactified black hole [31–33].

To extend axial symmetry to higher dimensions and construct the higher di-
mensional analogue of the Weyl solution, one may look for a solution that admit
an isometry group R×O(d−2). Here, R is the time translation. Such a solution is
invariant under (d− 2) spatial rotations around a given line axis, where the orbits
of O(d − 2) are (d − 3)-spheres. However, the construction of such axially sym-
metric solution has failed (see, e.g., [33–35]). One may instead consider rotation
around a line, rotations around spatial codimension-2 hypersurfaces. Assume d−3
commuting U(1) symmetries, i.e., a solution with U(1)d−3 symmetry in addition to
the timelike symmetry R. The vacuum Einstein equations which such symmetry
reduce to an integrable two-dimensional GL(d− 2, R) sigma-model with powerful
solution generating techniques. However, such solutions only in d = 4, 5 are glob-
ally asymptotically flat.

In higher dimensions a vacuum space-time admitting d−2 commuting, orthog-
onal, non-null Killing vector fields ξα(i) = δαi can be written in the following form

[23]:

ds2 =

d−2∑

i=1

ǫie
2Ui(ρ,z)(dxi)2 + e2v(ρ,z)(dρ2 + dz2) , (2.85)

where ǫ = ±1, depending on whether ξ(i) is spacelike or timelike. Here, we have
assumed a special case where the two dimensional surfaces orthogonal to all ξ(i)
are spacelike. From the Einstein equations Rµν = 0, we have

Ui,ρρ +
1

ρ
Ui,ρ + Ui,zz = 0 , (2.86)

v,ρ = ρΣi<j(Ui,zUj,z − Ui,ρUj,ρ) , (2.87)

v,z = −ρΣi<j(Ui,ρUj,z + Ui,zUj,ρ) . (2.88)

From (3.10), Uj(ρ, z)’s are d− 2 axisymmetric functions solving the Laplace equa-
tion in the flat 3-dimensional space. Also from the Einstein equations follows the
following constraint:

d−2∑

i=1

Ui = ln ρ+ const. , (2.89)

where the constant term can be adjusted by rescaling the coordinates xi. The
constraint equation (3.11) implies that from the above d− 2 functions, only d− 3
functions are independent.
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Equation (3.10) is the Laplace equation for d − 2 harmonic functions in flat
3-dimensional space. Therefore, one can interpret the potentials Uj ’s as the New-
tonian potentials of some axisymmetric sources. ln ρ is the solution of Laplace’s
equation that corresponds to the Newtonian potential produced by an infinite rod
of zero thickness, with constant mass per unit length 1/2 lying along the z axis.
It turns out that both in d = 4 and d > 4, Weyl solutions of physical importance
all have sources of the same kind, that is thin rods along the axis of symmetry. It
also turns out that one can classify the properties of the solutions in terms of some
few characteristics of the rod construction. In this interpretation, the constraint
(3.11) implies that the potentials Uj’s should add up to give a uniform infinite rod
of zero thickness lying along z axis. To cover the whole axis either one of the Uj’s
has semi-infinite rod sources that extend to z = ∞ and z = −∞, or there exists
one Uj with a semi-infinte rod source which extends to z = ∞ and another Uj
has a semi-infinite rod source that extends to z = −∞. There would also exist
some finite rod sources for the remaining Uj ’s. When the sources associated

Figure 2.2: Distribution of Uj sources on the z-axis (a) for a uniform black string in
5-dimensions; U2 has semi-infinite rod sources which extend to z =∞ and z = −∞,
(b) for 5-dimensional Schwarzschild black hole; U2 corresponds to a semi-infinite
rod source which extends to z = ∞, and U3 corresponds to a semi-infinite rod
source which extends to z = −∞.

Figure 2.3: Distribution of Uj sources on the z-axis (a) for black ring in 5-
dimensions; U2 corresponds to a semi-infinite rod source which extends to z =∞,
and U3 corresponds to a semi-infinite rod source which extends to z = −∞, and
a finite rod source, (b) for black hole plus a KK bubble; U3 has semi-infinite rod
sources which extend to z =∞ and z = −∞.
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Figure 2.4: Distribution of Uj sources on the z-axis (a) for two black hole config-
uration, (b) for three black hole configuration.

Figure 2.5: Distribution of Uj sources on the z-axis for a finite number of multi
black holes (see, [36])

with Uj are bounded (i.e. it involves finite number of finite length rod sources),
then Uj approaches a constant far from the sources, i.e., xj is a flat direction in
the asymptotic metric. For example, if one chooses finite rod sources for the time
coordinate, then the corresponding solution will have event horizon in space-time.
In this case time direction becomes flat in the asymptotic region. Choosing a
semi-infinite rod source for time coordinate corresponds to horizon that extends to
asymptotic infinity, that is an acceleration horizon. If a spatial coordinate has a
finite rod source then it can be interpreted as a Kaluza-Klein (KK) coordinate in
the asymptotic region. If the source for the spatial coordinate extends to infinity
then the corresponding coordinate is an azimuthal angle.

One can classify the solutions of Einstein equations according to the distribu-
tion of the rods on the z axis [23]. A solution will be called of class n if it has n
finite rod sources. Then, class 0 has no finite rod source; the sources are either an
infinite rod or two semi-infinite rods. A flat space-time is the only class 0 solution.
In class I there is a single finite rod so other sources must be a combination of
semi infinite rod sources. There are only two ways of doing this (here, we do not
distinguish metrics that are related to each other by isometric transformations, also
we identify x1 with the timelike coordinate t). (a) U2 has a finite rod source and
U1 has two semi-infinite rod sources which extend to z = ∞ and z = −∞. Then
the other Ui’s (i = 2.., d − 2) are constant. This would represent a 4-dimensional
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Schwarzschild solution times some flat directions for d > 4 (see Fig. B.1(a) for the
5-dimensional black string). (b) U2 has a finite rod source and U1 and U3 each have
a semi-infinite rod source. The other Ui’s (i = 2..d − 2) are constant. This is the
five dimensional Schwarzschild solution times d− 5 flat directions (see Fig. B.1(b)
for the 5-dimesnional Schwarzschild-Tangherlini solution). In class II there are
two finite rods and two semi-infinite rods. There are four ways of distributing
these sources. These solutions correspond to: C metric, black ring in 5-dimensions
(Fig. B.2(a)), black hole plus KK bubble in 5-dimension (see Fig B.2(b)), and
black string and KK bubble depending on the distribution of the sources [23].

The Israel-Khan solution [29] describing an array of collinear 4-dimensional
black holes belongs to the 4-dimensional Weyl form. This solution possesses conical
singularities. However, an infinite array of black holes is free of conical singularities.
This solution represent a black hole localized on the KK circle of d = 4 KK theory
([33], [32]). Using the generalized Weyl solutions, one can also construct multi
black hole solutions of different configurations (for details see [23], [36]). First, one
can construct a non-asymptotically flat two-black-hole solution located at the north
and south poles of a KK bubble (see, i.e., Fig. B.4.(a)). No conical singularities is
needed to keep the black holes apart. Second, an asymptotically flat three-black-
hole solution. In this solution only the central black hole is collinear with the other
two black holes along different axes. This solution contains conical singularities
(Fig. B.4(b)). Third, one can construction infinite array of black holes which does
not represent a black hole localized on a KK circle (see Fig. B.5). Fourth, one
can construct an asymptotically flat, static vacuum solution which represents a
U(1) × U(1) compatible collinear multi-black hole solution in 5-dimensions [36].
This notion of collinearity is different from what one needs for a black hole localized
on a KK circle of d = 5 KK theory; namely, the solution does not possess a O(d−2)
symmetry. This solution has conical singularities. The background space-time of
this multi-black hole solution, i.e., when all the black holes disappear, is not free
of conical singularities, either.

2.4 A distorted 4-dimensional Schwarzschild black

hole

The Schwarzschild space-time is given by

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2(dθ2 + sin2 θdφ2) , (2.90)
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where t ∈ (−∞, ∞), ρ ∈ (0, ∞), θ ∈ [0, π), and φ ∈ [0, 2π) (see [4] for details).
It is a static, asymptotically flat, spherically symmetric solution of the vacuum
Einstein equations. The black hole horizon is located at r = 2M . The parameter
M > 0 is the gravitational mass of the matter.

In 4-dimensions, any static axisymmetric solution of vacuum Einstein equations
can be presented in Weyl form [28]

ds2 = e2U [−ρ2dt2 + e2V (dz2 + dρ2)] + e−2Udφ2 , (2.91)

where U = U(ρ, z), V = V (ρ, z), and the coordinate ranges are

t ∈ (−∞, ∞), ρ ∈ (0, ∞), z ∈ (−∞, ∞), φ ∈ [0, 2π) . (2.92)

Remarkably, the Einstein equations can be written in the Weyl form in terms
of two metric functions, one of which is a harmonic function satisfying Laplace’s
equation in a flat three dimensional space,

U,ρρ +
1

ρ
U,ρ + U,zz = 0 , (2.93)

and the other one can be derived from a simple integration involving the first one,
i.e.,

V,ρ = ρ(U2
,ρ − U2

,z) , V,z = 2ρU,ρU,z . (2.94)

Equation (2.93) is the integrability condition for the other two Einstein equations
(2.94). If the function U is known, V can be determined by simple quadratures.

The metric (B.1) can be written in the Weyl form. Matching the metric (B.1)
and (B.2), we derive

e−2US = r2 sin θ2, e2VS =
r2 sin2 θ

(r2 − 2mr +m2 sin2 θ)
. (2.95)

The relation between the Schwarzschild and Weyl coordinate is

ρ =
√
r(r − 2M) sin θ, z = (r −M) cos θ, r > 2M . (2.96)

Namely,

r = M +
1

2
(l+ + l−), l± =

√
ρ2 + (z ±M)2 . (2.97)
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Using the above transformations we derive

e−2US =
4ρ2[M + 1

2
(l+ + l−)]2

(l+ + l−)2 − 4M2
, (2.98)

e2VS =
16ρ2[M + 1

2
(l+ + l−)]2

[(l+ + l−)2 − 4M2]2 − 16M2ρ2
. (2.99)

The inner region of the Schwarzschild black hole r ∈ (0, 2M) corresponds to an
imaginary value of the ρ coordinate, and the black hole horizon has a coordinate
singularity. It is more convenient to use prolate spherical coordinates (η, θ) related
to the Weyl coordinates (ρ, z) in the following way:

ρ = M
√
η2 − 1 sin θ , z = Mη cos θ , (2.100)

where η ∈ (−1, ∞). The Schwarzschild metric in the prolate spheroidal coordi-
nates reads

ds2 = −η − 1

η + 1
dt2 +M2(η + 1)2

(
dη2

η2 − 1
+ dθ2 + sin2 θdφ2

)
, (2.101)

where the prolate spheroidal coordinate and the Schwarzschild coordinate are re-
lated by

r = M(η + 1), θ = θ, φ = φ . (2.102)

The black hole horizon is at η = 1, and the singularity is at η = −1. A
Schwarzschild black hole is modified by the presence of external matter. We assume
the case where the distribution of matter is static, axisymmetric, and localized
outside the black hole horizon, i.e., the space-time in the vicinity of the horizon
remains vacuum. The sources are ‘moved’ to infinity. Therefore, the corresponding
space-time is not asymptotically flat. Such a solution is called a local black hole.
Here, we present the metric of such a local black hole in Weyl form.

The Schwarzschild black hole distorted by external static, axisymmetric sources
is given by

U = Ua + Û , V = VS + V̂ , (2.103)

where Û and V̂ are the distortion fields (for details see [1], [29], [37–42]). The
corresponding metric representing the distorted 4-dimensional Schwarzschild black
hole reads

ds2 = −η − 1

η + 1
e2Ûdt2 +M2(η+1)2e−2Û

[
e2V̂

(
dη2

η2 − 1
+ dθ2

)
+sin2 θdφ2

]
, (2.104)
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where Û is the solution of the following Laplace equation

(η2 − 1)Û,ηη + 2η Û,η + Û,θθ + cot θ Û,θ = 0 , (2.105)

and V̂ is given by integration from

V̂,η = N
(
η[(η2 − 1)Û2

,η − Û2
,θ] + 2(η2 − 1) cot θÛ,ηÛ,θ + 2ηÛ,η + 2 cot θÛ,θ

)
,

(2.106)

V̂,θ = N(η2 − 1)
(
cot θ[Û2

,θ − (η2 − 1)Û2
,η − 2Û,η] + 2ηÛ,θ[Û,η + (η2 − 1)−1]

)
.

(2.107)

Here, N = sin2 θ(η2 − cos2 θ)−1 .

The black hole horizon is regular if the space-time invariants are regular on the
horizon, and, in addition, there are no conical singularity on the axes of symmetry
and thus, on the horizon. It was shown that the Kretschmann invariant calculated
on the horizon of a static, asymmetric black hole is regular on the horizon if the
its surface gravity is constant and the horizon surface is a regular totally geodesic
surface. It follows that the distortion fields Û and V̂ must be regular on the
horizon. To derive a solution representing a distorted black hole we start from the
Laplace equation (2.105). Here, we do not go through the details of the derivation
of the solution. The solution of (2.105) which corresponds to the distortion by
external distortion fields is given by

Û(η, θ) =
∑

n≥0

anR
nPn(η cos θ/R) , (2.108)

R = (η2 − sin2 θ)1/2 , (2.109)

We call the coefficients an’s multiple moments. The solution to Eqs. (2.106),

(2.107) for Û given by expression (2.108) is given by [43],

V̂ = V̂1 + V̂2 , (2.110)

V̂1 =
∑

n>1

cn

n−1∑

l=0

[
cos θ − η − (−1)n−l(η + cos θ)

]
RlPl (η cos θ/R) , (2.111)

V̂2 =
∑

n,k>1

nkcnck
n+k

Rn+k [Pn (η cos θ/R)Pk (η cos θ/R)

−Pn−1 (η cos θ/R)Pk−1 (η cos θ/R)] . (2.112)

Here V̂1 is linear and V̂2 is quadratic in the an’s.
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Chapter 3

Distorted 5-dimensional vacuum

black hole

3.1 Introduction

String theories, the AdS/CFT correspondence [1, 2], the ADD model [3, 4], and
brane-world RS models [5] suggest that higher-dimensional solutions of general rel-
ativity may have physical applications. Whether our world has extra dimensions
or not should be eventually verified by experiments. One of such experiments is
microscopic black hole production, which may be conducted at the LHC. Such a
black hole may be created at energies of the order of ∼ 10 TeV, if our world has
extra spatial dimensions of large size (< 1 mm) or large warping, which become
accessible on such energetic scales (see, e.g., [6–13]).

Possible physical applications of higher dimensions have increased interest in
higher-dimensional solutions of general relativity. However, the Einstein equations
of general relativity, especially higher-dimensional ones, are very complex. To solve
them we have to use numerical computations, except for some idealized, highly-
symmetrical cases, when construction of analytical solutions becomes possible. For
example, one such construction, corresponding to a 4-dimensional, static and ax-
isymmetric vacuum space-time, is due to Weyl [14]. The Weyl solution implies a
static and axisymmetric distribution of matter. One of the Einstein equations for
the space-time metric represented in the Weyl form reduces to a linear Laplace
equation. Therefore, the superposition principle can be applied for the construc-
tion of one of the metric functions. Another metric function can be derived by a
line integral in terms of the first one. As a result, one can relatively easily con-

A version of this Chapter has been submitted to the eprint arXiv. S. Abdolrahimi, A. A.
Shoom, and Don N. Page, 2010, arXiv:1009.5971 (1-20).
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struct many interesting solutions, e.g., the Israel-Khan solution representing a set
of collinear Schwarzschild black holes [15], a black hole with a toroidal horizon [16],
and a compactified black hole [17–19].

In higher-dimensional space-times we have a very rich variety of black objects
classified according to their horizon topology, for example black holes, black strings,
and black rings (for a review see, e.g., [20]). However, an exact analytical solution
representing a black hole in a space-time with one large, compact extra dimension
is not known. The solution representing a black hole in a 5-dimensional space-
time with one large, compact extra dimension is not algebraically special [21]. As
a result, finding such analytical solution can be a formidable problem. Analytical
approximations to the black hole are given in [1, 22, 24–26]. Finding a solution
representing a black hole localized on a brane is not a simple problem either. A
numerical analysis suggests that in a 5-dimensional, one-brane RS model, only a
black hole whose horizon radius is smaller than the bulk curvature can be localized
on the brane [27]. Results of a subsequent numerical analysis further suggest that
such a black hole may be unstable [28].

Both the sought black hole solutions are axisymmetric, in the sense that they
admit an SO(3) isometry group. Orbits of the group are 2-dimensional spheres
of nonzero curvature. As was noticed in [19], this nonzero curvature is an es-
sential problem for a construction of such higher-dimensional axisymmetric solu-
tions. However, one can construct algebraically special axisymmetric solutions in
d-dimensional space-times [29]. As it was concluded in [30], a d-dimensional, ax-
isymmetric space-time which admits the SO(d−2) isometry group cannot be con-
sidered as an appropriate higher-dimensional generalization of the 4-dimensional
Weyl form. Instead, it was proposed in [30] to consider a d-dimensional space-time
which admits the R

1 × U(1)d−3 isometry group. Such a generalized Weyl form
allows for the construction of many interesting black objects (see, e.g., [20, 30]).
However, as it was illustrated in [20], only 4- and 5-dimensional black hole solu-
tions can be presented in the Weyl form. Let us mention that a generalization of
the Weyl form to the Einstein-Gauss-Bonnet theory in a 5-dimensional space-time
was proposed in [31]. Numerical evidence that a Schwarzschild black hole, a static
black ring, and a uniform black string can also be considered within the general-
ization of the Weyl form was given in [32, 33].

Having the generalized Weyl form, one may try to construct higher-dimensional
analogues of 4-dimensional Weyl solutions. For example, a construction of multi-
black-hole configurations within the generalized 5-dimensional Weyl form was dis-
cussed in the paper [20]. The first configuration discussed there represents a two-
black-hole solution which is not asymptotically flat. The second configuration is a



CHAPTER 3. DISTORTED 5-DIMENSIONAL VACUUM BLACK HOLE 41

three-black-hole solution which is asymptotically flat but suffers from irremovable
conical singularities. In addition, the central black hole is collinear with the other
two along different symmetry axes. The third configuration represents an infinite
number of black holes. However, it does not correspond to a 5-dimensional com-

pactified black hole (“caged” in the compact dimension). In fact, such a black hole
corresponds to a space-time with an infinite number of collinear black holes which
admits an R

1 × SO(3) isometry group, instead of the R
1 × U(1)× U(1) isometry

of the 5-dimensional Weyl form. Asymptotically flat space-times which admit an
R

1×U(1)×U(1) isometry and correspond to 5-dimensional “collinear” black holes
were constructed in [34]. The corresponding background space-times have conical
singularities and are not flat by the construction. Such space-times have more
than one fixed point of the U(1)× U(1) isometry group, whereas a 5-dimensional
Minkowski space-time has only one such point.

Black holes interact with external matter and fields. For example, an accretion
disk around a black hole tidally distorts its horizon. An accretion scenario of a
black hole which may be produced at the LHC is given in [10, 35]. As it is for any
physical objects, properties of black holes are mostly revealed by their interactions.
To analyze a black hole interaction is a formidable problem which requires involved
numerical computations. However, a study of idealized, highly-symmetrical ana-
lytical solutions may provide us with an exact description of black-hole nonlinear
interactions with external matter and fields. Among such solutions a black hole
distorted by an external, static and axisymmetric distribution of matter deserves
particular attention. Such a black hole was analyzed in the papers [36–41, 51].

External matter affects the internal structure of black holes as well. For exam-
ple, external, asymmetric dynamical distortion of a black hole results in chaotic and
oscillatory space-time singularity of the BKL-type, which corresponds to shifts be-
tween different Kasner regimes (see, e.g., [43–45]). The interior of a 4-dimensional,
distorted, static and axisymmetric, vacuum black hole was studied in [51]. It was
shown that in the vicinity of the black hole singularity the space-time has the
same Kasner exponents as that of a Schwarzschild black hole. However, the static
and axisymmetric distortion does change the geometry of the black hole stretched

singularity (region near a black hole singularity where the space-time curvature is
of the Planckian order, ∼ 1066 cm−2) and horizon surfaces. The change is such
that a certain duality transformation between the geometry of the horizon and the
stretched singularity surfaces holds. According to that relation, the geometry of
the horizon surface uniquely defines the geometry of the stretched singularity sur-
face. In addition, it was shown that such a distortion noticeably affects the proper
time of free fall from the black hole horizon to its singularity. It is interesting to
study whether a higher-dimensional distorted black hole has similar properties.
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Another motivation to analyze the interior of a higher-dimensional distorted
black hole is related to analysis of a topological phase transition between a nonuni-
form black string, whose horizon wraps the space-time compact dimension, and a
compactified black hole (see, e.g., [46, 47]). In such a transition the black string
and black hole topological phases meet at the merger point [46, 48–51]. As a re-
sult, their near horizon geometry gets distorted. The interior of a nonuniform
6-dimensional black string was studied in [52], where numerical evidence of a
space-time singularity approaching the black string horizon at the merger point
was presented. What happens to the corresponding compactified black hole ap-
proaching the merger point and which way it gets distorted remains an interesting
open question.

The main goal of this Chapter is to study a 5-dimensional, distorted, static,
vacuum black hole as a distorted Schwarzschild-Tangherlini black hole, which can
be presented in the generalized Weyl form, and to compare its properties with
those of a 4-dimensional, distorted, static and axisymmetric, vacuum black hole.
A 5-dimensional Schwarzschild-Tangherlini black hole is a good approximation to
a 5-dimensional compactified black hole if the size of the compact dimension is
much larger than the size of the black hole. Thus, the distorted Schwarzschild-
Tangherlini black hole may be also considered as a good approximation for such
distorted compactified black hole.

This Chapter is organized as follows: In Section II, we construct the 5-dimensional
Weyl solution which includes gravitational distortion fields due to remote matter.
In Section III, we present the metric of a 5-dimensional, static, vacuum black hole
distorted by external gravitational fields and derive the corresponding Einstein
equations. A solution to the Einstein equations is derived in Section IV. In Sec-
tion V, we study the symmetry properties of the distortion fields and present their
boundary values on the black hole horizon, singularity, and on its symmetry axes.
The space-time near the black hole horizon and singularity is analyzed in Secs. VI
and VII, respectively. In Section VIII, we discuss how the black hole distortion
affects the maximal proper time of free fall of a test particle moving from the black
hole horizon to its singularity. We summarize and discuss our results in Section
IX. Details of our calculations are presented in the appendices.

In this Chapter we use the following convention of units: G(5) = c = 1, the
space-time signature is +3, and the sign conventions are that adopted in [20].
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3.2 5-dimensional Weyl solution

In this Section we present a 5-dimensional generalization of the Weyl solution in
the form suitable for analysis of a distorted 5-dimensional vacuum black hole. To
begin with, let us briefly discuss the main properties of the 4-dimensional Weyl
solution presented in the following Weyl form:

ds2 = −e2Udt2 + e2(V−U)(dz2 + dρ2) + ρ2e−2Udφ2 , (3.1)

where t, z ∈ (−∞,∞), ρ ∈ (0,∞), and φ ∈ [0, 2π). The metric functions U and
V depend on the cylindrical coordinates ρ and z. The Weyl solution represents
a general static and axisymmetric metric which solves the corresponding vacuum
Einstein equations. One of these equations reduces to the following linear equation
for the metric function U :

U,ρρ +
1

ρ
U,ρ + U,zz = 0 , (3.2)

which is defined on the plane (ρ, z). Here and in what follows, (...),a stands for
the partial derivative of the expression (...) with respect to the coordinate xa.
Equation (3.2) can be viewed as a 3-dimensional Laplace equation defined in an
auxiliary 3-dimensional Euclidean space. The remaining Einstein equations define
the metric function V as follows:

V,ρ = ρ
(
U2
,ρ − U2

,z

)
, (3.3)

V,z = 2ρU,ρU,z . (3.4)

Equation (3.2) is the integrability condition for Eqs. (3.3) and (3.4). If we solve
Eq. (3.2) for the metric function U , then the second metric function V can be
derived by the following line integral:

V (ρ, z) =

∫ (ρ,z)

(ρ0,z0)

[V,ρ′(ρ
′, z′)dρ′ + V,z′(ρ

′, z′)dz′] , (3.5)

where the integral is taken along any path connecting the points (ρ0, z0) and (ρ, z).
The constant of integration is defined by a point (ρ0, z0).

The 4-dimensional Weyl solution admits an R
1
t ×SO(2) ∼= R

1
t ×Uφ(1) isometry

group. In other words, the Weyl solution is characterized by the two orthogonal,
commuting Killing vectors ξα(t) = δαt and ξα(φ) = δαφ, which are generators of time
translations and 2-dimensional rotations about the symmetry axis z, respectively.
Note that the metric function U together with the constant of integration in (3.5)
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define uniquely the space-time geometry.

The d-dimensional generalization of the Weyl solution which admits d−2 com-
muting, non-null, orthogonal Killing vector fields was presented in the papers [30]
and [20]. Here we discuss the 5-dimensional generalized Weyl solution which is
characterized by three commuting, non-null, orthogonal Killing vector fields, one
of which (ξα(t) = δαt) is timelike, and other two (ξα(χ) = δαχ and ξα(φ) = δαφ) are space-

like. The Killing vectors are generators of the isometry group R
1
t ×Uχ(1)×Uφ(1).

Thus, the 5-dimensional Weyl solution can be presented as follows:

ds2 = −e2U1dt2 + e2ν(dz2 + dρ2) + e2U2dχ2 + e2U3dφ2 ,

(3.6)

where t, z ∈ (−∞,∞), ρ ∈ (0,∞), and χ, φ ∈ [0, 2π). The metric functions Ui,
i = 1, 2, 3, and ν depend on the coordinates ρ and z. Each of the functions Ui
solves the 3-dimensional Laplace equation (3.2) with the following constraint:

U1 + U2 + U3 = ln ρ . (3.7)

If the functions Ui are known, the function ν can be derived by the line integral
(3.5) using the following expressions:

ν,ρ = −ρ(U1,ρU2,ρ + U1,ρU3,ρ + U2,ρU3,ρ

− U1,zU2,z − U1,zU3,z − U2,zU3,z) , (3.8)

ν,z = −ρ(U1,ρU2,z + U1,ρU3,z + U2,ρU3,z

+ U1,zU2,ρ + U1,zU3,ρ + U2,zU3,ρ) . (3.9)

The structure of the 5-dimensional Weyl solution can be understood as follows:
Given three solutions Ui of the Laplace equation (3.2) which satisfy the constraint
(3.7), then norms of the Killing vectors are defined, and with the choice of the
integration constant in the line integral for the function ν the space-time geometry
is constructed. Because Eq. (3.2) for the metric functions Ui is linear, the super-
position principle can be applied for their construction.

Here we shall consider a 5-dimensional Weyl solution representing a background
Weyl solution defined by Ũi and ν̃, which is distorted by the external, static,
axisymmetric fields defined by Ûi and ν̂. The metric functions of the corresponding
space-time are

Ui = Ũi + Ûi , ν = ν̃ + ν̂ , (3.10)
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where according to the constraint (3.7), we have

Ũ1 + Ũ2 + Ũ3 = ln ρ , Û1 + Û2 + Û3 = 0 . (3.11)

In what follows, we shall consider static distortion due to the external gravitational
fields of remote masses whose configuration obeys the spatial symmetry of Uχ(1)×
Uφ(1). Accordingly, we define

Ũ1 := Ũ + W̃ + ln ρ , Ũ2 := −W̃ , Ũ3 := −Ũ , (3.12)

ν̃ := Ṽ + Ũ + W̃ , (3.13)

Û1 := Û + Ŵ , Û2 := −Ŵ , Û3 := −Û , (3.14)

ν̂ := V̂ + Û + Ŵ . (3.15)

Here the distortion fields Û and V̂ define the external gravitational fields, and V̂
defines the interaction between the fields themselves and the background space-
time. Then, the metric (3.6) takes the following generalized Weyl form1 :

ds2 = e2(
eU+fW+ bU+cW )[−ρ2dt2 + e2(

eV+bV )(dz2 + dρ2)]

+ e−2(fW+cW )dχ2 + e−2(eU+ bU)dφ2 . (3.16)

The background fields Ũ and W̃ satisfy the 3-dimensional Laplace equation (3.2),

and the function Ṽ can be derived by the line integral (3.5) using the expressions

Ṽ,ρ = ρ (Ũ2
,ρ + W̃ 2

,ρ + Ũ,ρW̃,ρ − Ũ2
,z − W̃ 2

,z − Ũ,zW̃,z) , (3.17)

Ṽ,z = ρ (2Ũ,ρŨ,z + 2W̃,ρW̃,z + Ũ,ρW̃,z + Ũ,zW̃,ρ) . (3.18)

The distortion fields Û and Ŵ satisfy the 3-dimensional Laplace equation (3.2),

1 The factor ρ2 in gtt is a result of the definition of the metric functions. It can be removed
by specifying their explicit form. For example, the 5-dimensional flat space-time

ds2 = −dt2 + dx2 + dy2 + x2dφ2 + y2dχ2

can be derived from the metric (3.16) by taking Û = Ŵ = V̂ = 0 and using the following metric
functions:

Ũ = − ln |x| , W̃ = − ln |y| , Ṽ = ln

∣∣∣∣
xy

x2 + y2

∣∣∣∣ ,

where x2 =
√

ρ2 + z2 − z and y2 =
√

ρ2 + z2 + z.
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and the function V̂ can be derived by the line integral (3.5) using the expressions

V̂,ρ = ρ (Û2
,ρ + Ŵ 2

,ρ + Û,ρŴ,ρ − Û2
,z − Ŵ 2

,z − Û,zŴ,z

+ Ũ,ρŴ,ρ + W̃,ρÛ,ρ − Ũ,zŴ,z − W̃,zÛ,z

+ 2[Ũ,ρÛ,ρ + W̃,ρŴ,ρ − Ũ,zÛ,z − W̃,zŴ,z]) , (3.19)

V̂,z = ρ (2Û,ρÛ,z + 2Ŵ,ρŴ,z + Û,ρŴ,z + Û,zŴ,ρ)

+ Ũ,ρŴ,z + Ũ,zŴ,ρ + W̃,ρÛ,z + W̃,zÛ,ρ

+ 2[Ũ,ρÛ,z + Ũ,zÛ,ρ + W̃,ρŴ,z + W̃,zŴ,ρ]) . (3.20)

In the following Sections we construct the metric representing a 5-dimensional
distorted Schwarzschild-Tangherlini black hole and study its properties.

3.3 Distorted 5-dimensional vacuum black hole

3.3.1 5-Dimensional Schwarzschild-Tangherlini black hole

A 5-dimensional Schwarzschild-Tangherlini black hole [23] is given by the following
metric:

ds2 = −
(

1− r2
o

r2

)
dt2 +

(
1− r2

o

r2

)−1

dr2 + r2dω2
(3) , (3.21)

where t ∈ (−∞,+∞), r ∈ (0,∞), and dω3
(3) is the metric on a 3-dimensional round

sphere, which can be presented in the following form2 :

dω2
(3) = dζ2 + sin2 ζ dϑ2 + sin2 ζ sin2 ϑ dϕ2 , (3.22)

where ζ, ϑ ∈ [0, π] and ϕ ∈ [0, 2π) are the hyperspherical coordinates. The black
hole event horizon is located at r = ro, and the parameter ro is related to the black
hole mass M as follows:

r2
o =

8M

3π
. (3.23)

The space-time singularity is located at r = 0.

To bring the black hole metric (3.21) to the Weyl form (3.16), we use the Hopf
coordinates λ ∈ [0, π/2] and χ, φ ∈ [0, 2π) in which the metric dω2

(3) reads

dω2
(3) = dλ2 + cos2 λ dχ2 + sin2 λ dφ2 . (3.24)

2 Note that the metric functions are finite at |η| = | cos θ|
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Thus, χ and φ are Killing coordinates. The space-time (3.21), (3.24) admits the
following orthogonal, commuting Killing vectors:

ξα(t) = δαt , ξ
α
(χ) = δαχ , ξ

α
(φ) = δαφ , (3.25)

where ξα(t) is timelike outside the black hole horizon, and ξα(φ), ξ
α
(χ) are spacelike

vectors whose fixed points belong to the orthogonal “axes” λ = 0 and λ = π/2,
respectively. The Hopf coordinates are illustrated in Fig. 3.1.

Figure 3.1: The Hopf coordinates (λ, χ, φ). The fixed points of the Killing vectors
ξα(φ) and ξα(χ) belong to the “axes” defined by λ = 0 and λ = π/2, respectively. The

coordinate origin O is a fixed point of the isometry group Uχ(1) × Uφ(1). Planes
1, 2, and 3, embedded into 4-dimensional space, are orthogonal to each other.

It is convenient to introduce the following coordinate transformations:

r =
ro√
2
(η + 1)1/2 , η ∈ (−1,∞), (3.26)

λ = θ/2 , θ ∈ [0, π] . (3.27)

In the new coordinates (η, θ) the black hole horizon and singularity are located at
η = 1 and η = −1, and the black hole interior and exterior regions are defined
by η ∈ (−1, 1) and η ∈ (1,∞), respectively. The metric (3.21), (3.24) takes the
following form:

ds2 = −η − 1

η + 1
dt2 +

r2
o

8
(η + 1)

[
dη2

η2 − 1
+ dθ2

+ 2(1 + cos θ)dχ2 + 2(1− cos θ)dφ2
]
. (3.28)
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This metric can be written in the Weyl form (3.16) by using the following coordi-
nate transformations:

ρ =
r2
o

4

√
η2 − 1 sin θ , z =

r2
o

4
η cos θ . (3.29)

It is more convenient to use (η, θ) coordinates instead of the cylindrical coordi-
nates (ρ, z), which describe the space-time outside the black hole horizon and give
additional coordinate singularities in the black hole interior region if analytically
continued through the black hole horizon.

The functions Ũ , W̃ , and Ṽ in the coordinates (η, θ) take the following form:

e2
eU =

4

r2
o

(η + 1)−1(1− cos θ)−1 , (3.30)

e2
fW =

4

r2
o

(η + 1)−1(1 + cos θ)−1 , (3.31)

e2
eV =

r2
o(η + 1)3 sin2 θ

8(η2 − cos2 θ)
. (3.32)

One can check that subject to the transformations (3.29), the functions Ũ and W̃

satisfy the Laplace equation (3.2), and the function Ṽ satisfies equations (3.17)
and (3.18).

3.3.2 Metric of a 5-dimensional distorted black hole

In the previous subsection we demonstrated that the metric of a 5-dimensional
Schwarzschild-Tangherlini black hole can be written in the generalized Weyl form
(3.16). Here we present the metric of a 5-dimensional vacuum black hole distorted
by external gravitational fields. The fields sources are located at asymptotic infinity
and not included into the metric at finite distances, i.e. we consider the vacuum
space-time region at finite distances. As a result, the corresponding space-time is
not asymptotically flat 3. We consider the space-time near the black hole regular
horizon, far away from the sources. In this case, the solution represents a local

black hole in analogy with a 4-dimensional distorted vacuum black hole studied in
[36]. We focus on the study of the space-time near the black hole horizon and its

3Assuming that the external sources are localized at finite distances rather than at infinity,
the space-time can be analytically extended to achieve asymptotic flatness in the way described
in [36] for a 4-dimensional distorted black hole.



CHAPTER 3. DISTORTED 5-DIMENSIONAL VACUUM BLACK HOLE 49

interior region, η ∈ (−1, 1). The corresponding metric is

ds2 = −η − 1

η + 1
e2(

bU+cW )dt2 +
r2
o

8
(η + 1)

[
e2(

bV + bU+cW )

(
dη2

η2 − 1
+ dθ2

)

+ 2(1 + cos θ)e−2cWdχ2 + 2(1− cos θ)e−2bUdφ2
]
. (3.33)

Here Û , Ŵ , and V̂ are function of η and θ. In the absence of distortion fields Û , Ŵ ,
and V̂ , this metric reduces to that of the Schwarzschild-Tangherlini black hole
(3.28). The Laplace equation (3.2) and Eqs. (3.19) and (4.14) for the distortion

fields Û , Ŵ , and V̂ in the coordinates (η, θ) take the following form:

(η2 − 1)X̂,ηη + 2ηX̂,η + X̂,θθ + cot θX̂,θ = 0 , (3.34)

where X̂ := (Û , Ŵ ), and

V̂,η = N
(
η
[
(η2 − 1)(Û2

,η + Ŵ 2
,η + Û,ηŴ,η) − Û2

,θ − Ŵ 2
,θ − Û,θŴ,θ

]

+ (η2 − 1) cot θ
[
2Û,ηÛ,θ + 2Ŵ,ηŴ,θ + Û,ηŴ,θ + Û,θŴ,η

]

+
3

2
η
[
Û,η + Ŵ,η

]
− (η2 − 1)

cos θ

2 sin2 θ

[
Û,η − Ŵ,η

]

+
3

2
cot θ

[
Û,θ + Ŵ,θ

]
+

η

2 sin θ

[
Û,θ − Ŵ,θ

])
− 3

2

[
Û,η + Ŵ,η

]
, (3.35)

V̂,θ = −N
(
(η2 − 1) cot θ

[
(η2 − 1)(Û2

,η + Ŵ 2
,η + Û,ηŴ,η) −Û2

,θ − Ŵ 2
,θ − Û,θŴ,θ

]

− η(η2 − 1)
[
2Û,ηÛ,θ + 2Ŵ,ηŴ,θ + Û,ηŴ,θ + Û,θŴ,η

]
− 3

2
η
[
Û,θ + Ŵ,θ

]

+ (η2 − 1)
cos θ

2 sin2 θ

[
Û,θ − Ŵ,θ

]
+

3

2
(η2 − 1) cot θ

[
Û,η + Ŵ,η

]

+
η(η2 − 1)

2 sin θ

[
Û,η − Ŵ,η

])
− 3

2

[
Û,θ + Ŵ,θ

]
. (3.36)

Here N = sin2 θ(η2−cos2 θ)−1 is singular along the lines η = ± cos θ. However, the

function V̂ , which is given explicitly in the next Section, is regular along these lines.

If the distortion fields Û and Ŵ are known, the function V̂ can be derived by
the following line integral:

V̂ (η, θ) =

∫ (η,θ)

(η0,θ0)

[
V̂,η′(η

′, θ′)dη′ + V̂,θ′(η
′, θ′)dθ′

]
. (3.37)
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The integral can be taken along any path connecting the points (η0, θ0) and (η, θ).

Thus, the field V̂ is defined up to arbitrary constant of integration corresponding
to the choice of a point (η0, θ0). This constant can be chosen to eliminate conical
singularities, at least along one connected component of one “axis”.

Let us note that the distortion fields Û and Ŵ define norms of the Killing
vectors ξα(φ) and ξα(χ), respectively. Thus, exchange between the “axes” θ = 0 and
θ = π is given by the following transformation:

(θ, χ, φ) → (π − θ, φ, χ) ,

(3.38)[
Û(η, θ), Ŵ (η, θ)

]
→

[
Ŵ (η, θ), Û(η, θ)

]
.

According to Eqs. (3.35)-(3.37), the distortion field V̂ , and hence the metric (3.33),
do not change under this transformation, as it has to be.

The distorted black hole horizon is defined by η = 1. It is regular, if the
space-time invariants are finite on the horizon, and there are no conical singu-
larities along the axes of symmetry, and thus, on the horizon. According to the
results presented in Section 3.7, the Kretschmann scalar is regular on the black
hole horizon if the horizon surface is a regular, totally geodesic surface and its
surface gravity is constant. It follows that the distortion fields Û , Ŵ , and V̂ must
be smooth on a regular horizon. The distortion fields explicitly given in the next
Section satisfy this condition.

The metric (3.33) has no conical singularities along the “axes” θ = 0 and
θ = π, if the space there is locally flat. The no-conical-singularity condition can be
formulated as follows: Let us consider a spacelike Killing vector ξα(ϕ) = δαϕ, whose
orbits are compact near the corresponding symmetry axis defined by y = y0. Let
2π be the period of the Killing coordinate ϕ, and let

dl2 = A(y)dϕ2 +B(y)dy2 , (3.39)

be a metric of a 2-dimensional surface near the symmetry axis. Then, there is
no-conical-singularity corresponding to the symmetry axis if the ratio of the ξα(ϕ)

orbit circumference at the vicinity of the symmetry axis to the orbit radius, which
is defined on the 2-dimensional surface, is equal to 2π, i.e.,

lim
y→y0

∫ 2π

0
A1/2(y)dϕ∫ y

y0
B1/2(y′)dy′

= lim
y→y0

2π|A,y(y)|
2
√
A(y)B(y)

= 2π . (3.40)
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If the ratio is less than 2π we have angular deficit, and if it is greater than 2π we
have angular excess.

Assuming that the distortion fields Û and Ŵ are smooth on the “axes”, the
no-conical-singularity condition for the metric (3.33) and for the “axis” θ = 0,
where (x, y) = (φ, θ), reads

(V̂ + 2Û + Ŵ )|θ=0 = 0 ; (3.41)

for the “axis” θ = π, where (x, y) = (χ, θ), it is given by

(V̂ + Û + 2Ŵ )|θ=π = 0 . (3.42)

3.4 Solution

In this Section we derive a solution representing a distorted 5-dimensional vacuum
black hole. We start with the Laplace equation (3.34) for the distortion fields Û

and Ŵ . In the cylindrical coordinates (ρ, z) (see, (3.29)) the solution is well known
and has the following form:

X̂(ρ, z) =
∑

n≥0

[
An r

n +Bn r
−(n+1)

]
Pn(cosϑ) , (3.43)

where

r = (ρ2 + z2)1/2 , cosϑ = z/r , (3.44)

and Pn(cosϑ) are the Legendre polynomials of the first kind. The coefficients An
and Bn in the expansion (3.43) are called the interior and the exterior multipole
moments, respectively (see, e.g., [55] and [56]). Distortion fields defined by the ex-
terior multipole moments Bn’s alone correspond to asymptotically flat solutions.
However, according to the uniqueness theorem formulated in [57], a Schwarzschild-
Tangherlini black hole is the only d-dimensional asymptotically flat static vacuum
black hole which has non-degenerate regular event horizon. Note that a combina-
tion of the distortion fields corresponding to the exterior and the interior multipole
moments makes the black hole horizon (ρ = 0, z ∈ [−r2

o/4, r
2
o/4]) singular, because

the terms in (3.43) proportional to the An’s cannot cancel out the divergency at
ρ = z = 0 due to the terms proportional to the Bn’s. Thus, to have a regular
horizon we shall consider external sources, whose distortion fields are defined by
the interior multipole moments An’s alone.
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Applying the coordinate transformations (3.29) to expressions (3.43) and (3.44)
we derive

Û(η, θ) =
∑

n≥0

anR
nPn(η cos θ/R) , (3.45)

Ŵ (η, θ) =
∑

n≥0

bnR
nPn(η cos θ/R) , (3.46)

R = (η2 − sin2 θ)1/2 , (3.47)

where the coefficients an’s and bn’s define the distortion fields Û and Ŵ , respectively4,
despite the fact that R is zero for η2 = sin2 θ and imaginary for η2 < sin2 θ. We
shall call these coefficients multipole moments. In a 4-dimensional space-time, a re-
lation of the multipole moments to their relativistic analogues was discussed in [59].
A general formalism, which includes both the Thorne [60] and the Geroch-Hansen
(see, e.g., [61–64]) 4-dimensional relativistic multipole moments is presented in
[65]. For a relation between the Thorne [60] and the Geroch-Hansen relativistic
multipole moments, see [66, 67].

By analogy with the 4-dimensional case (see, e.g., [68, 69]) the distortion field V̂
can be presented as a sum of terms linear and quadratic in the multipole moments
as follows:

V̂ = V̂1 + V̂2 , (3.48)

V̂1(η, θ) = −
∑

n≥0

3(an/2 + bn/2)RnPn −
∑

n≥1

{
(an + bn/2)

n−1∑

l=0

(η − cos θ)RlPl

+ (an/2 + bn)
n−1∑

l=0

(−1)n−l(η + cos θ)RlPl

}
, (3.49)

V̂2(η, θ) =
∑

n,k≥1

nk

n + k
(anak + anbk + bnbk)R

n+k[PnPk − Pn−1Pk−1] , (3.50)

Pn ≡ Pn(η cos θ/R) . (3.51)

This form of the distortion field V̂ corresponds to a particular choice of the con-

4 Using the series expansion of the Legendre polynomials (see, e.g., [58], p. 419)

Pn(x) =
1

2n

⌊n/2⌋∑

k=0

(−1)k(2n− 2k)!

k!(n− k)!(n− 2k)!
xn−2k ,

where ⌊x⌋ is the floor function, one can show that each term RnPn(η cos θ/R) in the expansions
(3.45) and (3.46) is real valued and regular even when η2 ≤ sin2 θ.
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stant of integration defined by the initial point (η0, θ0) in the line integral (3.37).
Because we have two “axes”, for general an and bn we cannot find such a con-
stant that both the no-conical-singularity conditions (3.41) and (3.42) are satisfied
simultaneously. To satisfy these conditions we have to impose an additional con-
straint on the multipole moments an’s and bn’s. Using the solution (3.45)–(3.51),
the no-conical-singularity conditions (3.41) and (3.42), and the symmetry property
of the Legendre polynomials

Pn(−x) = (−1)nPn(x) , (3.52)

we derive the following constraint on the multipole moments an’s and bn’s:

∑

n≥0

(a2n − b2n) + 3
∑

n≥0

(a2n+1 + b2n+1) = 0 . (3.53)

In what follows, we shall refer to the constraint (3.53) as the no-conical-singularity

condition for the distorted black hole. One can see that the distortion fields Û , Ŵ ,
and V̂ given by expressions (3.45)–(3.51) are smooth on the black hole horizon.
Thus, according to the discussion given in the previous Section, the horizon is
regular, and this solution represents a local black hole distorted by the external
static fields. For this solution the transformation (3.38) takes the following form:

(θ, χ, φ) → (π − θ, φ, χ) ,

(3.54)

[an, bn] → [(−1)nbn, (−1)nan] .

An additional restriction on values of the multipole moments follows from the
strong energy condition (SEC) imposed on the external sources of the distortion
fields, which follows from the positive mass theorem in a 5-dimensional space-time
proven in [70]. If these sources are included, the Einstein equations are not vacuum.
In particular, for the metric (3.33) the {tt} component of the Einstein equations
reads

Rαβδ
α
tδ
β
t = 8π

(
Tαβ −

T γγ
3
gαβ

)
δαtδ

β
t =

η − 1

η + 1
e2(

bU+cW )
(
△Û +△Ŵ

)
,

(3.55)

where Tαβ is the energy-momentum tensor representing the sources. If the sources
satisfy SEC, the right hand side of Eq. (3.55) must be non-negative. The Laplace
operator △ is a negative operator, hence, SEC implies that

Û + Ŵ ≤ 0 , (3.56)
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assuming that Û + Ŵ = 0 at asymptotically flat infinity. In particular, the condi-
tion (3.56) implies that on the black hole horizon, on the “axes” θ = 0 and θ = π,
we have ∑

n≥0

(±1)n(an + bn) ≤ 0 . (3.57)

According to the structure of the 5-dimensional Weyl solution, one has an arbi-
trary choice to define the distortion fields Û and Ŵ by specifying the corresponding
source functions, which can take any real values (positive or negative), assuming
that the SEC (3.57) is satisfied.

To illustrate the effect of the distortion fields on the black hole, we restrict
ourselves to the lower order (up to the quadrupole) multipole moments. Values of
these moments are subject to the conditions (3.53) and (3.57),

a0 − b0 + a2 − b2 + 3(a1 + b1) = 0 , (3.58)

a0 + b0 ± (a1 + b1) + a2 + b2 ≤ 0 . (3.59)

The simplest type of distortion is due to a monopole whose values are such that
a0 = b0 ≤ 0. However, this distortion is trivial, for it does not break the spherical
symmetry of a 5-dimensional Schwarzschild-Tangherlini black hole. The next, less
trivial, distortion is due to a dipole. Taking Û as a dipole distortion and Ŵ as
a monopole distortion and using expression (3.45), we derive the dipole-monopole
distortion of the form

Û = a0 + a1 η cos θ , Ŵ = a0 + 3a1 ,

2a0 + (3± 1)a1 ≤ 0 . (3.60)

According to the transformation (3.54), taking Û as a monopole distortion and Ŵ
as a dipole one corresponds to exchange between the “axes” θ = 0 and θ = π, and
does not give anything new. Note that in next Section we shall bring the metric
(3.33) to a dimensionless form such that the monopole does not appear in the
solution. Finally, we consider the quadrupole-quadrupole distortion of the form

Û = Ŵ = a0 +
a2

2
(1− η2 + (3η2 − 1) cos2 θ) ,

a0 + a2 ≤ 0 . (3.61)

In what follows, to study the distorted black hole we shall consider the dipole-
monopole (3.60) and the quadrupole-quadrupole (3.61) distortion fields.
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3.5 Symmetries and boundary values of the dis-

tortion fields

The space-time (3.33) is symmetric under the continuous group of isometries R
1
t ×

Uχ(1)× Uφ(1). This means that the essential features of the space-time geometry
are confined to the (η, θ) plane of orbits, which is invariant under the group of
transformations. To study the black hole interior, i.e., the region between the
black hole horizon and singularity, it is convenient to introduce instead of η another
coordinate ψ as follows:

η = cosψ , ψ ∈ (0, π) . (3.62)

Thus, ψ = 0 and ψ = π define the black hole horizon and singularity, respectively.
The metric on the plane (ψ, θ) corresponding to the black hole interior is

dΣ2 =
r2
o

8
(1 + cosψ)e2(

bV + bU+cW )
(
−dψ2 + dθ2

)
. (3.63)

We see that the coordinate ψ is timelike. The corresponding conformal diagram
illustrating the geometry of the black hole interior is presented in Fig. 3.2. In the
diagram, the lines ψ±θ = const are null rays propagating within the 2-dimensional
plane (ψ, θ). Three of such rays are illustrated in Fig. 3.2 by arrows. One of the rays
starts at point A on the horizon, goes through the “axis” θ = π, and terminates
at the singularity, at point B.

Figure 3.2: Conformal diagram for the (ψ,θ) plane of orbits corresponding to the
black hole interior. Arrows illustrate propagation of future directed null rays.
Points A and B connected by one of such rays are symmetric with respect to the
central point C(π/2, π/2).
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Consider a transformation RC representing reflection of a point on the (ψ, θ)
plane with respect to the central point C

RC : (ψ, θ) → (π − ψ, π − θ) . (3.64)

This transformation defines a map between functions defined on the plane (ψ, θ),
which has the following form:

f ∗ = R∗
C(f) : f ∗(ψ, θ) = f(π − ψ, π − θ) . (3.65)

The coordinates of the points A and B are related by the reflection RC . Thus,
R∗
C is a map between functions defined on the black hole horizon and singularity.

Applying this map to the distortion fields Û , Ŵ , and V̂ , we derive

Û(π − ψ, π − θ) = Û(ψ, θ) , (3.66)

Ŵ (π − ψ, π − θ) = Ŵ (ψ, θ) , (3.67)

V̂1(π − ψ, π − θ) = −V̂1(ψ, θ)− 3[Û(ψ, θ) + Ŵ (ψ, θ)] , (3.68)

V̂2(π − ψ, π − θ) = V̂2(ψ, θ) . (3.69)

We shall use these relations to define values of the distortion fields on the black
hole horizon and singularity, as well as on the symmetry “axes”.

To begin with let us introduce the following notations:

u0 :=
∑

n≥0

a2n , u1 :=
∑

n≥0

a2n+1 , (3.70)

w0 :=
∑

n≥0

b2n , w1 := −
∑

n≥0

b2n+1 , (3.71)

Then the no-conical-singularity condition (3.53) can be written as

u0 + 3u1 = w0 + 3w1 . (3.72)

In addition, we define the following functions:

u±(σ) :=
∑

n≥0

(±1)nan cosn(σ)− u0 , (3.73)

w±(σ) :=
∑

n≥0

(±1)nbn cosn(σ)− w0 , (3.74)
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where σ := (ψ, θ). Thus, for the dipole-monopole distortion (3.60) we have

u±(σ) = ±a1 cosσ , u0 = a0 , u1 = a1 ,

w±(σ) = 0 , w0 = a0 + 3a1 , w1 = 0 , (3.75)

and for the quadrupole-quadrupole distortion (3.61) we have

u±(σ) = w±(σ) = −a2 sin2 σ ,

u0 = w0 = a0 + a2 , u1 = w1 = 0 . (3.76)

Using the definitions above it is convenient to introduce renormalized distortion
fields, which do not depend on the monopole moments a0 and b0, as follows:

U(ψ, θ) := Û(ψ, θ)− u0 − 3u1 , (3.77)

W(ψ, θ) := Ŵ (ψ, θ)− w0 − 3w1 , (3.78)

V(ψ, θ) := V̂ (ψ, θ) +
3

2
[u0 + w0 + 3(u1 + w1)] . (3.79)

With the aid of the expressions above we derive values of the renormalized distor-
tion fields on the black hole horizon

U(0, θ) := u+(θ)− 3u1 , (3.80)

W(0, θ) := w+(θ)− 3w1 , (3.81)

V(0, θ) := 4(u1 + w1) , (3.82)

and the singularity

U(π, θ) = u−(θ)− 3u1 , (3.83)

W(π, θ) = w−(θ)− 3w1 , (3.84)

V(π, θ) = −3(u−(θ) + w−(θ)) + 5(u1 + w1) , (3.85)

as well as on the “axis” θ = 0

U(ψ, 0) = u+(ψ)− 3u1 , (3.86)

W(ψ, 0) = w+(ψ)− 3w1 , (3.87)

V(ψ, 0) = −2u+(ψ)− w+(ψ) + 3(2u1 + w1) , (3.88)
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and on the “axis” θ = π

U(ψ, π) = u−(ψ)− 3u1 , (3.89)

W(ψ, π) = w−(ψ)− 3w1 , (3.90)

V(ψ, π) = −u−(ψ)− 2w−(ψ) + 3(u1 + 2w1) . (3.91)

In what follows, we consider for convenience the dimensionless form of the
metric dS2, which is related to the metric ds2 as follows:

ds2 = Ω2dS2, (3.92)

where

Ω2 =
1

κ2
e2(u0−u1+w0−w1) , (3.93)

is the conformal factor, and κ is the surface gravity of the distorted black hole
corresponding to ξα(t) = δαt,

κ =
e−

bV

r0

∣∣∣∣∣
η=1

=
1

r0
e(3u0+u1+3w0+w1)/2 . (3.94)

Note that the space-time (3.33) is not asymptotically flat, so the surface gravity
(3.94) is defined only up to an arbitrary red-shift factor. The dimensionless metric
is given by

dS2 = −η − 1

η + 1
e2(U+W)dT 2 +

1

8
(η + 1)

[
e2(V+U+W)

(
dη2

η2 − 1
+ dθ2

)

+ 2(1 + cos θ)e−2Wdχ2 + 2(1− cos θ)e−2Udφ2

]
, (3.95)

where the dimensionless time T is defined as follows:

T = κ e4(u1+w1)t . (3.96)

Using the transformation (3.62), one can present the metric (3.95) in (T, ψ, θ, χ, φ)
coordinates, which are more convenient for analysis of the black hole interior.
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3.6 Space-time near the horizon

3.6.1 Intrinsic curvature of the horizon surface

In this Section we study geometry of the 3-dimensional distorted horizon surface
of the space-time (3.95), defined by T = const, η = 1. The metric of the horizon
surface reads

dΣ2
+ =

1

4

(
e2(u+(θ)+w+(θ)+u1+w1)dθ2 + 2(1 + cos θ)e−2(w+(θ)−3w1)dχ2

+ 2(1− cos θ)e−2(u+(θ)−3u1)dφ2

)
. (3.97)

Here and in what follows, the ‘+′ subscript stands for a quantity defined on the
black hole horizon surface. Using this metric one can calculate the dimensionless
area of the black hole horizon surface,

A+ = 2π2e4(u1+w1) . (3.98)

The dimensional area is equal to

A+ = Ω3A+ = 2π2r3
oe

−(u1+w1+3u0+3w0)/2 . (3.99)

To study the geometry of a 2-dimensional surface, one can calculate its intrinsic
(Gaussian) curvature invariant and illustrate its shape by an isometric embedding
of the surface into a 3-dimensional flat space; one can calculate its extrinsic cur-
vature as well. To study the geometry of a 3-dimensional hypersurface is not that
simple, for there are generally more than one curvature invariant, and its isometric
local embedding generally requires 3(3+1)/2 = 6-dimensional flat space. However,
if the hypersurface admits a group of isometries, one can analyze its geometry by
studying the geometry of the sections of the isometry orbits. In our case the 3-
dimensional hypersurface defined by the metric (3.97) admits a Uχ(1)×Uφ(1) group
of isometries. As a result, we have (θ, χ) and (θ, φ) 2-dimensional sections. For
completeness, we consider (χ, φ) 2-dimensional sections as well. Following an anal-
ysis of the horizon surface of a 5-dimensional black hole and black ring presented
in [71], we define the Gaussian curvatures of the sections as the corresponding
Riemann tensor components of the metric (3.97) calculated in an orthonormal
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frame,

K+φ :=
8(1− cos θ)

sin2 θ
e−2(u+(θ)+u1+4w1)R+θχθχ , (3.100)

K+χ :=
8(1 + cos θ)

sin2 θ
e−2(w+(θ)+w1+4u1)R+θφθφ , (3.101)

K+θ :=
4

sin2 θ
e2(u+(θ)+w+(θ)−3u1−3w1)R+χφχφ . (3.102)

Explicit form of these expressions is presented in Appendix A. For a round 3-
dimensional sphere, which represents the horizon surface of a 5-dimensional Schwarzschild-
Tangherlini black hole, we have

K+φ = K+χ = K+θ = 1. (3.103)

(a) (b)

Figure 3.3: Intrinsic curvature invariants of the horizon surface. (a) Dimensionless
Ricci scalar. (b) the trace of the square of the Ricci tensor. Dipole-monopole
distortion: a1 = −1/5, b1 = 0 (line 1), a1 = 1/5, b1 = 0 (line 2). Quadrupole-
quadrupole distortion: a2 = b2 = −1/7 (line 3), a2 = b2 = 1/7 (line 4). The
horizontal dashed lines represent the dimensionless Ricci scalar and the trace of
the square of the Ricci tensor of a Schwarzschild-Tangherlini black hole.

In the case of the distortion fields Û = 0, Ŵ 6= 0 we have K+χ = K+θ, and in

the case of the distortion fields Û 6= 0, Ŵ = 0 we have K+φ = K+θ.
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Components of the Ricci tensor corresponding to a 3-dimensional hypersurface
are related to the Gaussian curvatures of the sections as follows:

Rφ
+φ = K+θ +K+χ , Rχ

+χ = K+θ +K+φ ,

R θ
+θ = K+χ +K+φ . (3.104)

The corresponding Ricci scalar and the trace of the square of the Ricci tensor are

R+ = Rφ
+φ +Rχ

+χ +R θ
+θ , (3.105)

(RABRAB)+ = (Rφ
+φ)

2 + (Rχ
+χ)

2 + (R θ
+θ)

2 . (3.106)

The Ricci scalar R+ and the trace of the square of the Ricci tensor (RABRAB)+ of
the horizon surface are natural invariant measures of its intrinsic curvature. The
dimensional Ricci scalar and the trace of the square of the Ricci tensor are equal
to Ω−2R+ and Ω−4(RABRAB)+, respectively.

Here we calculate the Gaussian curvatures of the sections for the dipole-monopole
distortion (4.63),

K+φ = K+θ = e−2a1(1+cos θ) [1 + 2a1(1− cos θ)] , (3.107)

K+χ = e−2a1(1+cos θ)
[
1− 2a1(3 + 5 cos θ)− 8a2

1 sin2 θ
]
, (3.108)

and for the quadrupole-quadrupole distortion (3.76),

K+φ = k+ , K+χ = k− ,

k± = e4a2 sin2 θ
[
1 + 8a2(1± 2 cos θ − 4 cos2 θ)− 48a2

2 cos2 θ sin2 θ
]
, (3.109)

K+θ = e4a2 sin2 θ
[
1− 8a2 cos2 θ − 16a2

2 cos2 θ sin2 θ
]
. (3.110)

Using these expressions together with Eqs. (3.104)–(3.106) we can calculate the
corresponding dimensionless Ricci scalar and the trace of the square of the Ricci
tensor of the horizon surface. For an undistorted black hole the dimensionless
Ricci scalar is RST+

= 6, and the trace of the square of the Ricci tensor is
(RABRAB)ST+

= 12. The Ricci scalar and the trace of the square of the Ricci
tensor are shown in Figs. 3.3(a) and (b), respectively. These figures illustrate that
the intrinsic curvature of a distorted horizon surface strongly varies over it.

3.6.2 Shape of the horizon surface

Distortion fields change the shape of the horizon surface. To visualize the effect of
the distortion fields on the horizon surface, we consider an isometric embedding of
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(a) (b)

Figure 3.4: Rotational curves of the horizon surface. (a): section (θ, χ). (b):
section (θ, φ). Dipole-monopole distortion: a1 = −1/5, b1 = 0 (line 1), a1 = 1/5,
b1 = 0 (line 2). Quadrupole-quadrupole distortion: a2 = b2 = −1/7 (line 3),
a2 = b2 = 1/7 (line 4). Regions of the sections embedded into pseudo-Euclidean
space are illustrated by dashed lines. Dotted arcs of unit radius represent the
horizon surface of an undistorted black hole.

its 2-dimensional sections into a flat 3-dimensional space with the following metric:

dl2 = ǫdZ2 + d℘2 + ℘2dϕ2, (3.111)

where ǫ = +1 corresponds to Euclidean space, ǫ = −1 corresponds to pseudo-
Euclidean space, and (Z, ℘, ϕ) are the cylindrical coordinates.

The section (χ, φ) defined by θ = const represents a 2-dimensional torus whose
radii are defined by the distortion fields. We shall consider the embedding of the
(θ, χ) and (θ, φ) 2-dimensional sections, which according to the metric (3.97) are
parametrized in the cylindrical coordinates as follows:

Z = Z(θ) , ℘ = ℘(θ) . (3.112)

The geometry induced on the section (3.112) is given by

dl2 = (ǫZ2
,θ + ℘2

,θ)dθ
2 + ℘2dϕ2 . (3.113)
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The metric of the section (θ, χ) defined from the metric (3.97) by φ = const
reads

dΣ2
+φ =

1

4

(
e2(u+(θ)+w+(θ)+u1+w1)dθ2 + 2(1 + cos θ)e−2(w+(θ)−3w1)dχ2

)
. (3.114)

Matching the metrics (3.113) and (3.114), we derive the embedding map

ϕ = χ , ℘(θ) =
1√
2
(1 + cos θ)1/2e−w+(θ)+3w1 ,

Z(θ) =

∫ θ

0

Z,θ′dθ′ ,

Z,θ =

[
ǫ

(
1

4
e2(u+(θ)+w+(θ)+u1+w1) − ℘2

,θ

)]1/2

. (3.115)

The metric of the section (θ, φ) defined from the metric (3.97) by χ = const
reads

dΣ2
+χ =

1

4

(
e2(u+(θ)+w+(θ)+u1+w1)dθ2 + 2(1− cos θ)e−2(u+(θ)−3u1)dφ2

)
. (3.116)

Matching the metrics (3.113) and (3.116), we derive the embedding map

ϕ = φ , ℘(θ) =
1√
2
(1− cos θ)1/2e−u+(θ)+3u1 ,

Z(θ) =

∫ θ

π

Z,θ′dθ′ ,

Z,θ = −
[
ǫ

(
1

4
e2(u+(θ)+w+(θ)+u1+w1) − ℘2

,θ

)]1/2

. (3.117)

Rotational curves illustrating embeddings of the sections (θ, χ) and (θ, φ) for
the dipole-monopole (4.63) and the quadrupole-quadrupole (3.76) distortions are
shown in Figs. 3.4(a) and 3.4(b), respectively. These curves belong to plane 1 in
Fig. 3.1. To reconstruct the shape of the 3-dimensional horizon surface, we have
to rotate these curves in planes 2 and 3 (see Fig. 3.1) around the “axes” λ = π/2
and λ = 0.

3.6.3 Metric near the horizon

The functions u+(θ) and w+(θ), which specify the geometry of the horizon surface,
uniquely determine the space-time geometry in the vicinity of the black hole hori-
zon. Using the expansion of the distortion fields Û , Ŵ , and V̂ in the vicinity of
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the horizon (see Eqs. (B.8) and (B.11) in Appendix B) and the definition of the
renormalized distortion fields (3.77)–(3.79), we derive an approximation for the
metric (3.95) near the black hole horizon:

dS2
+ = A+dT

2 +B+(−dψ2 + dθ2) + C+dχ
2 +D+dφ

2 , (3.118)

A+ =
1

4
e2(u+(θ)+w+(θ)−3u1−3w1)

[
ψ2 +

1

2

(
u+,θθ + w+,θθ

+ cot θ(u+,θ + w+,θ) +
1

3

)
ψ4 +O(ψ6)

]
,

B+ =
1

4
e2(u+(θ)+w+(θ)+u1+w1)

[
1 +

1

2

(
u+,θθ + w+,θθ

+ 2(u2
+,θ + u+,θw+,θ + w2

+,θ)− 2 cot θ(u+,θ + w+,θ)

− u+,θ − w+,θ

sin θ
− 1

2

)
ψ2 +O(ψ4)

]
,

C+ =
1

2
(1 + cos θ)e−2(w+(θ)−3w1)

×
[
1− 1

2

(
w+,θθ + cot θ w+,θ +

1

2

)
ψ2 +O(ψ4)

]
,

D+ =
1

2
(1− cos θ)e−2(u+(θ)−3u1)

×
[
1− 1

2

(
u+,θθ + cot θ u+,θ +

1

2

)
ψ2 +O(ψ4)

]
.

(3.119)

This approximation allows us to calculate the Kretschmann scalar K :=(5)Rαβγδ
(5)Rαβγδ, which is a space-time curvature invariant, at the horizon surface. In
next Section we demonstrate that there is a simple relation between the space-
time Kretschmann scalar 5 calculated on the horizon of a 5-dimensional, static,
distorted black hole and the trace of the square of the Ricci tensor of its horizon
surface, which is

K+ = 6(RABRAB)+ . (3.120)

This relation is valid not only for a distorted black hole given by a 5-dimensional
Weyl solution, but also for an arbitrary distorted, asymmetric, static, vacuum
black hole.

It is interesting to note that the same relation holds for 4D static space-times.

5 Note that the Chern-Pontryagin scalar is zero in our case.
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Namely, if we consider RAB as the Ricci tensor of the 2D horizon surface of a 4D
static asymmetric black hole, then the relation becomes (see, e.g., [51] and [72])

K+ = 3R2 . (3.121)

Consequently, according to figures 3.3 and 3.4, the space-time curvature at the
horizon is greater at the points where the horizon surface is more curved.

3.7 Space-time invariants

In this Section we derive a relation between the Kretschmann scalar K calculated
on the horizon of a 5-dimensional static, asymmetric, distorted vacuum black hole
and the trace of the square of the Ricci tensor, RABRAB, of the horizon surface.
The corresponding space-time admits the Killing vector ξα = δα0, (x0 := t), which
is timelike in the domain of interest, ξαξα = g00 := −k2 < 0, and hypersurface
orthogonal. The space-time metric gαβ, (α, β, ... = 0, . . . , 4) can be presented in
the form

ds2 = gαβdx
αdxβ = −k2dt2 + γab(x

c)dxadxb , (3.122)

where γab, a, b, c, ... = 1, . . . , 4, is the metric on a 4-dimensional hypersurface t =
const. The black hole horizon defined by k = 0 is a non-degenerate Killing horizon.
One can show that the vacuum Einstein equations (5)Rαβ = 0 for the metric (3.122)
reduce to 6

Rab − k−1∇a∇bk = 0 , (3.123)

∇a∇ak = 0 , (3.124)

where Rab and ∇a are the Ricci tensor and the covariant derivative defined with
respect to the 4-dimensional metric γab. Equation (3.124) implies that k is a
harmonic function. Thus, k can be considered in each 4-dimensional hypersurface
t = const. As a result, the metric (3.122) can be written in the following form:

ds2 = −k2dt2 + κ−2(k, xC)dk2 + hAB(k, xC)dxAdxB ,

(3.125)

6 One can derive the Einstein equations (3.123) and (3.124) starting from the 5-dimensional
vacuum Einstein equations and using Eqs. (3.127) and (3.129) adopted to the metric (3.122) (for
details see, e.g., [73]).
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where hAB, A,B,C, ... = 1, 2, 3, is the metric on an orientable 3-dimensional hy-
persurface Σk. One can show that

κ2(k, xC) = −1

2
(∇αξβ)(∇αξβ) , (3.126)

where ∇α is the covariant derivative defined with respect to the metric (3.122).
Thus, κ(k = 0, xC) coincides with the surface gravity of a 5-dimensional vacuum
black hole.

To present geometric quantities of the 5-dimensional space-time (3.125) in terms
of these corresponding to Σk, we use the following relations:

RABCD = RABCD + SADSBC − SACSBD , (3.127)

RkABC = κ−1(SAB;C − SAC;B) , (3.128)

RAkkB = κ−1(hACS C
B ,k + (κ−1);AB + κ−1SACS C

B ) , (3.129)

where the first two equations are due to Gauss and Codazzi (see, e.g., [73] and
[74]). Here RABCD is the intrinsic curvature, and

SAB =
κ

2
hAB,k (3.130)

is the extrinsic curvature of a hypersurface Σk. The semicolon ; stands for the
covariant derivative defined with respect to the metric hAB.

Using expressions (3.125) and (3.130), we derive

∇k∇kk = κ−1κ,k , ∇A∇kk = ∇k∇Ak = κ−1κ,A ,

∇A∇Bk = κSAB , ∇a∇ak = κ(κ,k + S) , S ≡ S A
A . (3.131)

Applying expressions (3.127)-(3.131) to the Einstein equations (3.123) and (3.124),
we derive the following set of equations:

κ,k + S = 0 , (3.132)

R B
A = κS B

A ,k + κ(κ−1) ;B
;A + SS B

A + k−1κS B
A , (3.133)

κ,A + k(S,A − S B
A ;B) = 0 , (3.134)

R := hABRAB = S2 − SABSAB + 2k−1κS , (3.135)

S,k + (κ−1) ;A
;A + κ−1SABSAB + k−1κ,k = 0 . (3.136)

Equations (3.130), (3.132), and (3.133) define a complete system for determining
κ, hAB, and SAB as functions of k. The constraint equations (3.134) and (3.135)
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together with Eq. (3.136) are satisfied for any value of k.

For the static space-time (3.122), the Riemann tensor components are given
by7

(5)Rattb = −k∇a∇bk ,
(5)Rtabc = 0 , (5)Rabcd = Rabcd .

(3.137)

Thus, we arrive to the following expression for the Kretschmann scalar of the
space-time (3.125):

K ≡ (5)Rαβγδ
(5)Rαβγδ = 4k−2(∇a∇bk)(∇a∇bk)

+ 4RAkkBR
AkkB + 4RkABCR

kABC +RABCDR
ABCD . (3.138)

Let us present this expression in terms of 3-dimensional geometric quantities de-
fined on Σk. Using Eq. (3.127) we derive

RABCDR
ABCD = RABCDRABCD + 2RABCD(SADSBC − SACSBD)

+ 2(SABSAB)2 − 2SACSBCSADSBD . (3.139)

The 3-dimensional Riemann tensor components RABCD corresponding to hAB can
be presented as follows (see, e.g., [20], p. 550):

RABCD = hACRBD + hBDRAC − hADRBC

− hBCRAD −
1

2
R(hAChBD − hADhBC) , (3.140)

where the Ricci scalar R and the trace of the square of the Ricci tensor RABRAB

are defined on Σk. This is always true in d = 3, where the Weyl tensor vanishes.
Expression (3.140) implies

RABCDRABCD = 4RABRAB −R2 . (3.141)

Using expressions (3.128), (3.129), (3.131), (3.138), (3.139), (3.140), and (3.141)

7 Expressions (3.137) can be derived by changing notations in expressions (3.127)-(3.129) as
follows: k→ t, κ→ ik−1, and taking into account that the extrinsic curvature of a 4-dimensional
hypersurface t = const vanishes (see Eq. (3.130)).
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we derive

K = 4k−2κ2
(
κ2
,k + 2κ−2κ,Aκ

,A + 2SABSAB
)
− 8k−1κSAB(RAB − SSAB

+ SACS C
B ) + 8RABRAB −R2 + 2S2(R+ 2SABSAB)

− 2SABSAB(R− SCDSCD)− 8SSAB(2RAB + SACS C
B )

+ 2SACSBC(8RAB + SADS D
B ) + 8SAB;C(SAB;C − SAC;B) . (3.142)

Thus, one can see that the black hole horizon k = 0 is regular if κ,A = 0 and
SAB = 0 on the horizon, i.e., the surface gravity is constant on the horizon, and
the horizon surface, defined by k = 0 and t = const, is a totally geodesic surface
which is regular, i.e., RABRAB and R are finite on the surface.

To derive a relation between the space-time Kretschmann scalar calculated on
the horizon and the 3-dimensional geometric quantities defined on the horizon
surface we use the following series expansions:

A =
∑

n>0

A(2n)k2n , B =
∑

n>0

B(2n+1)k2n+1 , (3.143)

where A := {hAB, κ,RAB,R} and B := {SAB,S}. Here the first term A(0) corre-
sponds to the value of A calculated on the horizon. To calculate K on the horizon
it is enough to consider the first order expansion only, i.e., n = 0, 1. Substituting
expansions (3.143) into equations (3.130), (3.132)-(3.136), we derive

(κ(0)),A = 0 , κ(2) = −R
(0)

4κ(0)
, S(1)

AB =
R(0)
AB

2κ(0)
,

S(1) = hAB(0)S(1)
AB =

R(0)

2κ(0)
, h

(2)
AB =

R(0)
AB

2(κ(0))2
. (3.144)

Substituting the corresponding expansions (3.143) for n = 0, 1 with the coefficients
(3.144) into Eq. (3.142), we derive the following relation between the space-time
Kretschmann scalar K calculated on the horizon of a 5-dimensional static, asym-
metric, distorted vacuum black hole and the trace of the square of the Ricci tensor
RABRAB of the horizon surface:

K+ = 6(RABRAB)+ . (3.145)

It is interesting to note that the same relation holds for 4-dimensional static space-
times. Namely, if we consider RAB as the Ricci tensor of the 2-dimensional horizon
surface of a 4-dimensional static asymmetric black hole, then the relation becomes
(see, e.g., [51] and [72]) K+ = 3R2

+ .
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3.8 Space-time near the singularity

3.8.1 Metric near the singularity

Using the expansion of the distortion fields Û , Ŵ , and V̂ at the vicinity of the
black hole singularity (see Eqs. (B.8) and (B.11) in Appendix B) and the definition
of the renormalized distortion fields (3.77)–(3.79), we derive an approximation of
the metric (3.95) near the black hole singularity ψ− = π − ψ → 0 :

dS2
− = A−dT

2 +B−(−dψ2
− + dθ2) + C−dχ

2 +D−dφ
2 , (3.146)

A− = 4e2(u−(θ)+w−(θ)−3u1−3w1)

[
1

ψ2
−

+
1

2

(
u−,θθ + w−,θθ

+ cot θ(u−,θ + w−,θ)−
1

3

)
+O(ψ2

−)

]
,

B− =
1

16
e−4(u−(θ)+w−(θ)−u1−w1)

[
ψ2
− −

(
u−,θθ + w−,θθ

− u2
−,θ − u−,θw−,θ − w2

−,θ −
1

2
cot θ(u−,θ + w−,θ)

+
u−,θ − w−,θ

2 sin θ
+

1

12

)
ψ4
− +O(ψ6

−)

]
,

C− =
1

8
(1 + cos θ)e−2(w−(θ)−3w1)

[
ψ2
−

− 1

2

(
w−,θθ + cot θ w−,θ +

1

6

)
ψ4
− +O(ψ6

−)

]
,

D− =
1

8
(1− cos θ)e−2(u−(θ)−3u1)

[
ψ2
−

− 1

2

(
u−,θθ + cot θ u−,θ +

1

6

)
ψ4
− +O(ψ6

−)

]
. (3.147)

This approximation allows us to calculate the Kretschmann scalar near the singu-
larity, up to corrections that are second order in ψ−:

K− ≈
28 · 72

ψ8
−

e8(u−(θ)+w−(θ)−u1−w1)
[
1 +K(2)

− ψ2
−

]
, (3.148)

K(2)
− =

2

3

(
u−,θθ + w−,θθ − 4u2

−,θ − 6u−,θw−,θ − 4w2
−,θ

− 2 cot θ(u−,θ + w−,θ) +
u−,θ − w−,θ

sin θ
+

1

2

)
. (3.149)
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Higher order terms can be obtained by using the relations given in Appendix B.
In the absence of distortion the space-time Kretschmann scalar is equal to the
Kretschmann scalar of the 5-dimensional Schwarzschild-Tangherlini space-time

KST−
=

28 · 72

ψ8
−

. (3.150)

3.8.2 Stretched singularity

In the absence of distortion the approximation (3.147) gives the Schwarzschild-
Tangherlini geometry near the singularity

dS2
− ≈ −

ψ2
−

16
dψ2

− +
4

ψ2
−

dT 2 +
ψ2
−

4
dω2

(3) . (3.151)

Using the transformation
ψ− = 2

√
2τ 1/2 (3.152)

the metric (3.151) can be written in the form

dS2
− ≈ −dτ 2 +

1

2τ
dT 2 + 2τ dω2

(3) . (3.153)

Here τ is the maximal proper time of free fall to the singularity from a point near
it along the geodesic defined by (T, θ, χ, φ) = const. The proper time τ is positive
and equals to 0 at the singularity 8. The metric (3.153) has the Kasner exponents
(−1/2, 1/2, 1/2, 1/2). It represents a metric of a collapsing, anisotropic universe
which contracts in the (θ,χ,φ)-directions and expands in the T -direction.

The Kretschmann scalar (3.150), expressed through the proper time, has the
following form:

KST−
=

9

2τ 4
. (3.154)

This expression shows that a surface of constant KST−
is at the same time a surface

of constant τ .

A space-time in the region where its curvature is of order of the Planckian
curvature requires quantum gravity for its description. For the Schwarzschild-
Tangherlini geometry such a region is defined by the surface where KST−

∼ ℓ−4
Pl

,
where ℓPl ∼ 10−33cm is the Planckian length, which corresponds to the proper time

8 The proper time τ defined this way runs backward. One can define another proper time
τ ′ := τo − τ , where τo ≥ τ , which runs forward and is equal to τo at the singularity. However,
we shall use the former definition, which is more convenient for our calculations.
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τ of order of the Planckian time τPl ∼ 10−44s. Since one cannot rely on the classical
description in this region, it is natural to consider its boundary as the stretched sin-

gularity. The stretched singularity of the 5-dimensional Schwarzschild-Tangherlini
space-time has the topology R

1 × S3. Its metric is a direct sum of the metric of a
line and the metric of a round 3-dimensional sphere.

What happens to the stretched singularity when a Schwarzschild-Tangherlini
black hole is distorted? To answer this question we use the asymptotic form of the
metric near the singularity of the distorted black hole (see Eq. (3.146)). Let us
consider a timelike geodesic defined by (T, χ, φ) = const. For such a geodesic the
maximal proper time of free fall to the singularity from a point near it corresponds
to E = Lχ = Lφ = L0 = 0 (see Appendix C). We shall call the corresponding
geodesic “radial”. According to the calculations given in Appendix C, the “radial”
geodesic is uniquely determined by the limiting value θ0 of its angular parameter
θ at which it “hits” the black hole singularity. Let us denote by τ the proper time
measured along the “radial” geodesic backward in time from its end point at the
singularity. We can use (τ, θ0) as new coordinates in the vicinity of the singularity.
Using the leading order terms in expressions (B.13) and (B.14), we can relate the
coordinates (ψ−, θ) to the new coordinates as follows:

ψ− = 2
√

2eu−(θ)+w−(θ)−u1−w1 τ 1/2 , θ = θ0 . (3.155)

In the coordinates (τ, θ0 = θ) the metric (3.146) takes the following form:

dS2
− ≈ −dτ 2 +

1

2τ
e−4(u1+w1) dT 2 + 2τe4(u1+w1) dΣ2

− , (3.156)

where

dΣ2
− =

1

4

(
e−2(u−(θ)+w−(θ)+u1+w1)dθ2 + 2(1 + cos θ)e2(u−(θ)−3u1)dχ2

+ 2(1− cos θ)e2(w−(θ)−3w1)dφ2

)
. (3.157)

The metric (3.156) has the same Kasner exponents as those of (3.153).
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The Kretschmann scalar (3.148) in the (τ, θ0 = θ) coordinates reads

K− ≈
9

2τ 4

[
1 + K̃(2)

− τ
]
, (3.158)

K̃(2)
− =

16

3
e2(u−(θ)+w−(θ)−u1−w1)

[
u−,θθ + w−,θθ − 4u2

−,θ − 6u−,θw−,θ

−4w2
−,θ − 2 cot θ(u−,θ + w−,θ) +

u−,θ − w−,θ

sin θ
+

1

2

]
. (3.159)

We see that the expansion (3.158) coincides in the leading order with the expansion
(3.154). Hence, in the presence of distortion, surfaces where the Kretschmann
scalar has a constant value K− = Kc are (in the leading order) surfaces of constant
τ . For τ ∼ τPl we can neglect the higher order terms in the expansion (3.158) and
present the metric on the stretched singularity defined by Kc ∼ ℓ−4

Pl
as follows:

dl2− ≈
[Kc

72

]1/4

e−4(u1+w1) dT 2 +

[
72

Kc

]1/4

e4(u1+w1) dΣ2
− , (3.160)

where dΣ2
− is given by expression (3.157). According to the form of this metric,

the stretched singularity of a distorted black hole has the same topology as the
stretched singularity of a Schwarzschild-Tangherlini black hole.

3.8.3 Geometry of the stretched singularity surface: dual-

ity transformation

As we found in the previous subsection, the distortion fields do not change the
topology of the stretched singularity of a Schwarzschild-Tangherlini black hole;
however, they do change its geometry. To study the geometry of the stretched
singularity, we consider the geometry of its 3-dimensional hypersurface defined
by T = const. This surface is the Killing vector ξα(T ) orbit surface, i.e., it is

invariant under R
1
T transformations. The metric on this surface is defined (up to the

conformal factor) by dΣ2
− (see (3.157)). We can calculate the intrinsic curvature of

the stretched singularity surface and illustrate its shape by an isometric embedding
of its 2-dimensional sections, as we did in Sec. VI for horizon surface of a distorted
black hole. However, one can notice that the metric dΣ2

− can be obtained from the
horizon surface metric dΣ2

+ (see (3.97)) by the following duality transformation:

u+ → −w− , u1 → −w1 , w+ → −u− , w1 → −u1 . (3.161)
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(a) (b) (c)

Figure 3.5: The maximal proper time τ in units of Ro. (a): The maximal proper
time τ |θ=0 for the dipole-monopole distortion. (b): The maximal proper time τ |θ=π
for the dipole-monopole distortion. (c): The maximal proper time τ |θ=0 = τ |θ=π
for the quadrupole-quadrupole distortion.

The duality transformation corresponds to the exchange between the multipole
moments (see Eqs. (3.70), (3.71), (3.73), and (3.74))

a2n+1 ←→ b2n+1 , a2n ←→ −b2n . (3.162)

The no-conical-singularity condition (3.72) remains satisfied under the transfor-
mation (3.162). The transformation (3.162) corresponds to the exchange between
the “axes” θ = 0 and θ = π and the reversal of the signs of the multipole moments
(cf. (3.54)):

(θ, χ, φ) → (π − θ, φ, χ) ,

(3.163)

[an, bn] → [(−1)n+1bn, (−1)n+1an] .

Because the exchange between the “axes” does not change the space-time of the
distorted black hole, the transformation (3.163) reduces to change of signs of the
multipole moments. Thus, the stretched singularity intrinsic curvature invariants
can be derived from those of the horizon surface illustrated in Fig. 3.3 by exchang-
ing Lines 1, 2, 3, and 4, with Lines 2, 1, 4, and 3, and changing θ to π − θ in
each of Figs. 3.3 (a) and (b). An isometric embedding of the stretched singularity
sections can be derived from those of the horizon surface illustrated in Fig. 3.4 by
exchanging Lines 1, 2, 3, and 4 in Fig. 3.4 (a) with Lines 2, 1, 4, and 3 in Fig. 3.4
(b).
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According to the duality transformation, given a 5-dimensional distorted black
hole, one can find another one whose horizon surface geometry is the same as the
geometry of the stretched singularity of the former one.

3.9 Proper time of free fall from the horizon to

the singularity

So far we have studied the effect of distortion on the black hole horizon and sin-
gularity. However, the distortion fields affect the entire interior region of the black
hole. To illustrate this, we consider how the distortion fields change the proper
time of free fall of a test particle moving from the horizon to the singularity.

Namely, we study how the proper time depends on the multipole moments of
the distortion fields. In our study we consider adiabatic distortion, so that the area
A+ of the distorted black hole horizon surface remains constant, which is equal to
the horizon surface area of an undistorted Schwarzschild-Tangherlini black hole.
We define the proper time in units of the radius Ro corresponding to the area A+

(see (3.99)),

Ro =

(
A+

2π2

)1/3

= roe
−(u1+w1+3u0+3w0)/6 . (3.164)

To make our analysis simpler, we consider a test particle moving along a timelike
geodesic defined by (t, χ, φ) = const and with L0 = 0 (see Appendix C). Such a
“radial” motion corresponds to zero angular momenta and energy of the particle .
One can show that the proper time is maximal for such a motion. In addition, we
consider free fall from the horizon to the singularity along each of the symmetry
“axes” θ = 0 and θ = π. Using the metric (3.63) we derive

τ |θ=0 =
ro

2
√

2Ro

∫ π

0

(1 + cosψ)1/2e−u+(ψ)−u0dψ , (3.165)

τ |θ=π =
ro

2
√

2Ro

∫ π

0

(1 + cosψ)1/2e−w−(ψ)−w0dψ . (3.166)

For a Schwarzschild-Tangherlini black hole the maximal proper time of free fall
along a radial timelike geodesic is equal to 1 in units of Ro = ro.

Let us now calculate the maximal proper time for the dipole-monopole distor-



CHAPTER 3. DISTORTED 5-DIMENSIONAL VACUUM BLACK HOLE 75

tion (4.63). In this case the integrals (3.165) and (3.166) can be evaluated exactly,

τ |θ=0 =

√
π

2
√−2a1

e2a1/3erf(
√
−2a1) , (3.167)

τ |θ=π = e−4a1/3 . (3.168)

Here erf(x) is the error function (see, e.g., [39], p. 297). The maximal proper time
for the quadrupole-quadrupole distortion (3.76) is the same for free fall along both
the “axes”,

τ |θ=0 = τ |θ=π =

∫ 1

0

e−4a2(x2−x4)dx . (3.169)

The maximal proper time calculated for the black hole distorted by the dipole-
monopole and quadrupole-quadrupole distortions is shown in Figs. 3.5(a), (b),
and (c). According to these figures, for some values of the multipole moments
the maximal proper time is less, equal, or greater than that of a Schwarzschild-
Tangherlini black hole of the same horizon area. One can see that due to the
external distortion, the singularity of a Schwarzschild-Tangherlini black hole can
come close to its horizon.

3.10 Summary of results and discussion

In this Chapter we studied a distorted, 5-dimensional vacuum black hole as a
5-dimensional Schwarzschild-Tangherlini black hole distorted by a static, neutral
external distribution of matter. We constructed the corresponding metric which
represents such a local black hole. In other words, the distortion sources are not
included into the metric but are put at infinity. The metric is presented in the
5-dimensional Weyl form which admits the R

1×U(1)×U(1) isometry group. This
metric is a 5-dimensional generalization of the 4-dimensional Weyl form repre-
senting the corresponding distorted vacuum black hole studied before (see, e.g.,
[36–41, 51]).

As a result of our study, we found that distortion fields affect the black hole
horizon and singularity. The 5-dimensional distorted black hole has the following
properties, which are common with the 4-dimensional one: There is a certain dual-
ity transformation between the black hole horizon and the stretched singularity sur-
faces. This transformation implies that distortion of the horizon surface uniquely
defines distortion of the stretched singularity surface. Given a 5-dimensional black
hole, one can “observe” its distorted stretched singularity surface by observing the
horizon surface of the dual distorted black hole. The topology of the stretched sin-
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gularity is the same as that of a Schwarzschild-Tangherlini black hole. Moreover,
the Kasner exponents of the space-time region near the singularities of the black
holes are the same as well. One may assume that these properties are the inher-
ent properties of the 4- and 5-dimensional Weyl forms, representing such distorted
black holes. Whether all or some of these properties will remain if one changes the
U(1) × U(1) symmetry (for example to SO(3)) remains an open question. Thus,
we cannot say if a 5-dimensional compactified black hole has similar properties.
However, a 4-dimensional compactified black hole indeed has properties similar to
those of a 4-dimensional distorted black hole [18, 51].

The analysis of the maximal proper time of free fall from the distorted black
hole horizon to its singularity along the symmetry “axes” shows that the proper
time can be less, equal to, or greater than that of a Schwarzschild-Tangherlini
black hole of the same horizon area. As a result of external distortion, the black
hole stretched singularity can approaches the horizon. In particular, the black
hole stretched singularity can approach its horizon. This scenario may suggest
that the singularity of a 5-dimensional compactified black hole can approach its
horizon during an infinitely slow merger transition between the black hole and the
corresponding black string 9 . If so, one cannot rely on a classical description of
the transition.

In this Chapter we derived a relation between the Kretschmann scalar calcu-
lated on the horizon of a 5-dimensional static, asymmetric, distorted vacuum black
hole and the trace of the square of the Ricci tensor of the horizon surface. This
relation is a generalization of a similar relation between the Kretschmann scalar
calculated on the horizon of a 4-dimensional static, asymmetric, distorted vacuum
black hole and the square of the Gaussian curvature of its horizon surface (see [51]
and [72]).

Our construction and analysis of a 5-dimensional distorted black hole is based
on the 5-dimensional Weyl form (see Sec. II), which is adopted for the construction
of 5-dimensional black objects distorted by external gravitational fields. Using this
Weyl form one can study other 5-dimensional black objects, e.g., distorted black
strings and black rings. One can consider distorted higher(>5)-dimensional black
objects as well, by using the corresponding Weyl form.

9 When the “north” and the “south” poles of a 4-dimensional compactified black hole come
close to each other during an infinitely slow merger transition, its stretched singularity becomes
naked at the vicinity of the poles [51].
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Chapter 4

Distorted 5-Dimensional Charged

Black hole

In this Chapter first we present the 5-dimensional Reissner-Nordström black hole
solution, and explain the parameters present in the metric. Setting the value
of the electric charge equal to zero in this solution one has the 5-dimensional
Schwarzschild-Tangherlini space-time. We then give a general recipe for trans-
forming any Weyl solution of the vacuum 5-dimensional Einstein equations into the
solution of the 5-dimensional Einstein-Maxwell equations. These transformations
are the special case and special presentation of a more general transformations pre-
sented in [1]. According to [1] one can transform any static d-dimensional solution
of the vacuum Einstein equations into a solution of the Einstein-Maxwell-dilaton
theory (see also [2]). Setting the dilaton parameter to zero one has the standard
solutions of the Einstein-Maxwell theory. Also these transformations can produce
both asymptotically flat or non-asymptotically flat solutions. These transforma-
tions leave an asymptotically flat solution still asymptotically flat. We use these
transformations to produce the distorted 5-dimensional electrically charged black
hole. This solution is static and is the U(1)×U(1) symmetric. This solution is the
5-dimensional generalization of the 4-dimensional static, axisymmetric distorted
black hole presented in [3], [4], and [5]. The interior structure of this black hole
was analyzed in [6]. In this Chapter we use the following convention of units:
G(5) = c = ~ = 1. Space-time signature is +(d− 2).

4.0.1 The 5-dimensional Reissner-Nordström solution

The Einstein-Maxwell theory in d-dimensions is described by the action

S =
1

16π

∫
d5x
√−g(R− 1

4
F µνFµν) . (4.1)
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The Einstein-Maxwell field equations derived from the above action read

Rαβ −
1

2
gµνR =

1

2
Tαβ , (4.2)

Tαβ = F γ
α Fβγ −

1

4
gαβFγνF

γν , (4.3)

∇νF
µν = 0, ∇[λFµν] = 0 , (4.4)

Here and in what follows ∇µ denotes the covariant derivative defined with respect
to the 5d metric. The 5-dimensional Reissner-Nordström solution is the static,
spherically symmetric, asymptotically flat solution of the Einstein-Maxwell equa-
tions where Fαβ = ∇αAβ−∇βAα, and Aα = −Φδtα is electrostatic vector potential.

ds2 = −f̄dt2 + f̄−1dr2 +
r2

4
dΩ2

3 , (4.5)

f̄ = 1− 2m

r2
+
Q2

r4
, Φ =

√
3Q

r2
. (4.6)

where the metric dΩ2
3 can be presented in the following form with Hopf coordinates

dΩ2
3 =

1

4

(
dθ2 + 2(1 + cos θ)dχ2 + 2(1− cos θ)dφ2

)
, (4.7)

where θ ∈ [0, π], χ ∈ [0, 2π), and φ ∈ [0, 2π). The black hole horizons are
at r2 = m ±

√
m2 −Q2, where the upper sign stands for the event horizon and

the lower sign stands for the Cauchy horizon. This space-time has a time-like
singularity at r = 0. Here Q is the electric charge of the black hole defined by

Q = − 1

8
√

3π2

∮

H

d3ΣαβF
αβ , (4.8)

where we have chosen this definition of Q in order to get Q2/r4 in the metric.
Komar mass of the black hole is defined by the following expression

M =
3

32πG(5)

∮

V∞
3

d4Σαβ∇αζβ , (4.9)

where ζα = δαt is a time-like Killing vector normalized to unity at asymptotic
infinity, ζαζ

α = −1, and

d3Σαβ = dxγ ∧ dxδ ∧ dxλ ǫγδλαβ
3!
√−g , (4.10)
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where ǫ01234 = 1, ǫ01234 = g. Here the order for the coordinates is (x0, x1, x2, x3, x4) =
(t, r, θ, φ, χ). Therefore, parameter m is related to the Komar mass of the black
hole by the following expression

m =
4M

3π
. (4.11)

We consider non-extremal black holes with |Q| < m.

For our future purposes it is convenient to introduce the following coordinate
transformation

r =
√
m(1 + pη) , p =

√
m2 −Q2

m
, η ∈ (−1/p,∞) , (4.12)

and rewrite (4.5) in the following form

ds2 = −p
2(η2 − 1)

(pη + 1)2
dt2 +

m

4
(pη + 1)

[(
dη2

η2 − 1
+ dθ2

)

+ 2(1 + cos θ)dχ2 + 2(1− cos θ)dφ2

]
, (4.13)

Φ = q(pη + 1)−1, Ftη = −Fηt = pq(pη + 1)−2 , (4.14)

q =
√

3(1− p2) , (4.15)

where other components of Fµν are zero. In these coordinates η = 1 corresponds
to the outer horizon H+ and η = −1 corresponds to the inner horizon H− of the
metric (4.13). Here and later, quantities with a subscript ‘+‘ are calculated for
the outer horizons and quantities with a subscript ‘-‘ are calculated for the inner
horizon. η = −1/p corresponds to the black hole singularity. The horizon areas
are

A± = 2π2
√
m3(1± p)3 , (4.16)

and their surface gravity are

κ2
± = −1

2
∇αζβ∇αζβ =

4p2

m(1± p)3
. (4.17)

In the case of Q = 0 (p = 1), the electrostatic potential Φ vanishes, and the metrics



CHAPTER 4. DISTORTED 5-DIMENSIONAL CHARGED BLACK HOLE 84

(4.5) and (4.13) represent the vacuum 5-dimensional Schwarzschild space-time.

ds2 = −η − 1

η + 1
dt2 +

m

4
(η + 1)

[(
dη2

η2 − 1
+ dθ2

)

+ 2(1 + cos θ)dχ2 + 2(1− cos θ)dφ2

]
, (4.18)

4.0.2 Charging vacuum solutions

Here, we present a special case of transformation which when applied to a 5-
dimensional Weyl solution produces a 5-dimensional charged Weyl solution sat-
isfying the Einstein-Maxwell equations (4.88) and (4.89). Let us first review the
more general case (see [1]). The metric of a 5-dimensional static space-time can
be written in the following form

ds2 = −e2Udt2 + e−Ugijdx
idxj , (4.19)

where i, j = (1, 2, 3, 4). We assume the electrostatic vector potential of the form
Aα = −Φδtα. Using (4.19) the Einstein-Maxwell equations read

∇i∇jU =
4

3
e−2Ugij∇iΦ∇jΦ, (4.20)

Rij =
3

2
∇iU∇jU − 2e−2U∇iΦ∇jΦ , (4.21)

∇i(e
−2Ugij∇jΦ) = 0 , (4.22)

where ∇i is the covariant derivative and Rij is Ricci tensor with respect to the
4-dimensional metric gij. Equations (4.20)- can be derived from the following
action

S =

∫
d4x
√
det(gij)

[
R− 3

4
gijTr(∇iP∇iP

−1)

]
, (4.23)

where R is the Ricci scalar with respect to the 4-dimensional metric gij and

P = e−U
(
e2U − 4

3
Φ2 −4

3
Φ2

−4
3
Φ2 −1

)
. (4.24)

The action (4.23) is invariant under the following symmetry transformation

P → GPGT , (4.25)

where G ∈ GL(2,R). To have asymptotically flat solutions with

U(∞) = 0, Φ(∞) = 0 , (4.26)
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we should have G ∈ SO(1, 1). Consider a static asymptotically flat solution of the
5-dimensional vacuum Einstein equations encoded the metric gij and matrix P0

P = e−U
(
e2U 0
0 −1

)
. (4.27)

The SO(1, 1) matrix

G =

(
cosh γ sinh γ
sinh γ cosh γ

)
, (4.28)

then generates a solution of the 5-dimensional Einstein-Maxwell equations given
by

ds2 = −e2Ūdt2 + e−Ūgijdx
idxj , (4.29)

eŪ =
eU

[cosh2 γ − e2U sinh2 γ]
, (4.30)

Φ̄ =

√
3

2

tanh γ(1− e2U )

[1− e2U tanh2 γ]
. (4.31)

Here, we present these transformations in a more suitable form. A 5-dimensional
Weyl solution is characterized by three commuting, orthogonal Killing vector fields
one of which ξα(t) = δαt is timelike, and other two ξα(χ) = δαχ, and ξα(φ) = δαφ
are spacelike in the domain of interest. The 5-dimensional Weyl solution can be
presented as follows:

ds2 = −e2U1dt2 + e2ν(η2 − cos2 θ)

(
dη2

η2 − 1
+ dθ2

)

+ e2U2dχ2 + e2U3dφ2 ,

(4.32)

where t ∈ (−∞,∞), θ ∈ (0, π), χ, φ ∈ [0, 2π), and η ∈ (−∞,∞) are Killing
coordinates (sometimes η is singular at some point). The metric functions Ui,
i = 1, 2, 3, and ν depend on the coordinates η and θ. Each of the functions Ui,
i = 1, 2, 3 solves the following 3-dimensional Laplace equation:

(η2 − 1)Ui,ηη + 2ηUi,η + U,θθ + cot θUi,θ = 0 , (4.33)

and the following constraint holds:

e2[U1+U2+U3] = (η2 − 1) sin2 θ . (4.34)
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Here and in what follows (...),a stands for the partial derivative of the expression
(...) with respect to the coordinate xa.

If we know a solution of vacuum Einstein equations (4.32) in the Weyl form,
using (4.29)-(4.31) we derive the solution of the Einstein-Maxwell equations (4.88)-
(4.4)

ds2 = −4p2e2U1
[
1 + p− (1− p)e2U1

]−2
dt2 +

1

2

[
1 + p− (1− p)e2U1

]

×
[
e2ν(η2 − cos2 θ)

(
dη2

η2 − 1
+ dθ2

)
+ e2U2dχ2 + e2U3dφ2

]
, (4.35)

(4.36)

where

cosh γ =

√
1 + p

2p
, sinh γ =

√
1− p
2p

, (4.37)

and the electrostatic potential Φ̄ is given by the following expression

Φ = q(1− e2U1)Y −1, (4.38)

From now on we drop bar from Φ. The function ν remains the same under the
transformation. These transformations charge the neutral Newtonian sources U1.
γ is the charge angle, i.e., for γ = 0 or p = 1 we have the solution of the vac-
uum Einstein equations. For example, applying these transformations we can
construct the 5-dimensional Reissner-Nordström space-time (4.13) starting from
the 5-dimensional vacuum Schwazschild space-time (4.18). where

e2U1 =
η − 1

η + 1
, (4.39)

e2U2 =
m

2
(η + 1)(1 + cos θ) , (4.40)

e2U3 =
m

2
(η + 1)(1− cos θ) , (4.41)

e2ν =
m(η + 1)

4(η2 − cos2 θ)
. (4.42)

4.0.3 Distorted 5-dimensional charged black hole

We can now apply the transformations introduced in the previous subsection to
derive the distorted charged black hole solution. To do this we start from the dis-
torted 5-dimensional Schwarzschild solution and apply the Harrison transforma-
tions. The distorted 5-dimensional Schwarzschild space-time presented in Section
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(1.3.2) reads

ds2 = −η − 1

η + 1
e2(

bU+cW )dt2 +
m

4
(η + 1)[e2(

bV + bU+cW )

(
dη2

η2 − 1
+ dθ2

)

+ 2(1 + cos θ)e−2cWdχ2 + 2(1− cos θ)e−2bUdφ2
]
, (4.43)

where Û , Ŵ , and V̂ are given by the following expressions

Û(η, θ) =
∑

n≥0

anR
nPn(η cos θ/R) , (4.44)

Ŵ (η, θ) =
∑

n≥0

bnR
nPn(η cos θ/R) , R = (η2 − sin2 θ)1/2 , (4.45)

V̂ = V̂1 + V̂2 , (4.46)

V̂1(η, θ) = −
∑

n≥0

{3(an/2 + bn/2)RnPn + (an + bn/2)

n−1∑

l=0

(η − cos θ)RlPl

+ (an/2 + bn)
n−1∑

l=0

(−1)n−l(η + cos θ)RlPl } , (4.47)

V̂2(η, θ) =
∑

n,k≥1

nk

n+ k
(anak + anbk + bnbk)R

n+k[PnPk − Pn−1Pk−1], (4.48)

Pn ≡ Pn(η cos θ/R) . (4.49)

where the coefficients an’s and bn’s define the distortion fields Û and Ŵ , respec-
tively. Comparing (4.43) and we read off

e2U1 =
η − 1

η + 1
e2(

bU+cW ), (4.50)

e2U2 =
m

2
(η + 1)(1 + cos θ)e−2cW (4.51)

e2U3 =
m

2
(η + 1)(1− cos θ)e−2bU (4.52)

e2ν =
m(η + 1)

4(η2 − cos2 θ)
e2(

bV + bU+cW ). (4.53)
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Applying (4.38)-(4.0.3) on (4.43) we derive the distorted charged black hole solu-
tion

ds2 = −4p2(η2 − 1)

f 2
e2(

bU+cW )dt2 +
mf

8

[
e2(

bV + bU+cW )

(
dη2

η2 − 1
+ dθ2

)

+ 2(1 + cos θ)e−2cWdχ2 + 2(1− cos θ)e−2bUdφ2

]
, (4.54)

f = (1 + p)(η + 1)− (1− p)(η − 1)e2(
bU+cW ) , (4.55)

Φ = qf−1[η + 1− (η − 1)e2(
bU+cW )] . (4.56)

Setting the distortion fields to zero this solution represents the 5-dimensional
Reissner-Nordström solution. Setting p = 1 this solution represents the distorted
5-dimensional Schwarzschild solution. The only non-zero components of the elec-
tromagnetic tensor Fµν are

Ftη = 4pqf−2e2(
bU+cW )[1 + (η2 − 1)(Û,η + Ŵ,η)] (4.57)

Ftθ = 4pqf−2e2(
bU+cW )(η2 − 1)[Û,θ + Ŵ,θ] . (4.58)

The distorted black hole solution (4.54) posses two horizons, the outer (event)
horizon H+ at η = 1, and the inner (Cauchy) horizon H− at η = −1. In this
paper we mainly focus on the study of the horizons H±, and the domain located
between the horizons. The no conical singularity condition (3.40) implies that for
the “axis” θ = 0 we should have

V̂ + 2Û + Ŵ |θ=0 = 0 , (4.59)

and for the “axis” θ = π we should have

V̂ + Û + 2Ŵ |θ=π = 0 . (4.60)

Using (4.44)-(4.49) and the symmetry property of the Legendre polynomials

Pn(−x) = (−1)nPn(x) , (4.61)

from the (4.59) and (4.60) we derive the following black hole equilibrium condition

∑

n≥0

(a2n − b2n) + 3
∑

n≥0

(a2n+1 + b2n+1) = 0 . (4.62)



CHAPTER 4. DISTORTED 5-DIMENSIONAL CHARGED BLACK HOLE 89

Let us introduce the following notations which will be useful for our calculations:

u0 :=
∑

n≥0

a2n , u1 :=
∑

n≥0

a2n+1 , (4.63)

w0 :=
∑

n≥0

b2n , w1 := −
∑

n≥0

b2n+1 , (4.64)

y0 = 3(u0 + w0) + u1 + w1, (4.65)

y1 = 3(u1 + w1) + u0 + w0 (4.66)

Then the black hole equilibrium condition (4.62) can be written as

u0 + 3u1 = w0 + 3w1 . (4.67)

It is convenient to introduce ‘renormalized‘ distortion fields defined as follows:

U(ψ, θ) := Û(ψ, θ)− u0 − 3u1 , (4.68)

W(ψ, θ) := Ŵ (ψ, θ)− w0 − 3w1 , (4.69)

V(ψ, θ) := V̂ (ψ, θ) +
3

2
y1. (4.70)

4.0.4 Dimensionless form of the metric

It is convenient to write metric (4.54) in the following dimensionless form adopted
to the black hole horizons H±.

ds2 = Ω±dS
2
± (4.71)

dS2
± = −(η2 − 1)

∆±

e2(U+W)dT 2
± +

∆±

8

[
e2(V+U+W)

(
dη2

η2 − 1
+ dθ2

)

+ 2(1 + cos θ)e−2Wdχ2 + 2(1− cos θ)e−2Udφ2

]
, (4.72)

Ω± = m(1± p)e∓y1 = m′(1± p′), (4.73)

∆± =

(
δ±

δ

) 1

2
[
η + 1− δ(η − 1)e2(U+W)

]
, (4.74)

δ = δ0e
2y1 =

1− p
1 + p

e2y1 =
1− p′
1 + p′

. (4.75)

For dS2
±, T± = κ±e

±4(u1+w1)t, and κ± is the surface gravity

κ± =
2p e±

y0
2

√
m(1± p)3

. (4.76)
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Together with the original parameters m and p it is convenient to use the related
parameters

p′ =

√
m′2 −Q2

m′
, m′ =

m

2
[(1 + p)e−y1 + (1− p)ey1 ]. (4.77)

The curvature and the electromagnetic invariants diverge for f = 0, i.e. for

η = −1 + p+ (1− p)e2(bU+cW )

1 + p− (1− p)e2(bU+cW )
, (4.78)

indicating the space-time singularity. From (4.78) we see that if (Û+Ŵ ) 6 0, that
is for the distortion fields not satisfying the strong energy conditions, space-time
singularities are located always behind the Cauchy horizon.

4.0.5 Duality relations between the inner and outer hori-

zons

To study the region between the outer and inner horizon it is convenient to intro-
duce instead of η another coordinate as follows

η = cosψ , ψ ∈ (0, π). (4.79)

The surface of the outer horizon is defined by T+ = const and ψ = ψ+ = 0. The
surface of the inner horizon is defined by T− = const and ψ = ψ− = π. The
corresponding dimensionless metric derived from (4.72) for the outer horizon reads

dΣ2
+ =

1

4

[
e2(u+(θ)+w+(θ)+u1+w1)dθ2 + 2(1 + cos θ)e−2(w+(θ)−3w1)dχ2

+ 2(1− cos θ)e−2(u+(θ)−3u1)dφ2

]
. (4.80)

where

u±(σ) :=
∑

n≥0

(±1)nan cosn(σ)− u0 , (4.81)

w±(σ) :=
∑

n≥0

(±1)nbn cosn(σ)− w0 . (4.82)

In our case σ := (ψ, θ). The metric (4.80) coincides with the metric on the distorted
Schwarzschild black hole horizon surface. The corresponding dimensionless metric
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derived from (4.72) for the outer horizon reads

dΣ2
− =

1

4

[
e−2(u−(θ)+w−(θ)+u1+w1)dθ2 + 2(1 + cos θ)e2(u−(θ)−3u1)dχ2

+ 2(1− cos θ)e2(w−(θ)−3w1)dφ2

]
. (4.83)

The metrics dΣ2
+ and dΣ2

− are related to each other by the following transforma-
tions

w+ → −u− , u+ → −w− , u1 → −w1 , w1 → −u1 . (4.84)

This transformation implies the following transformations between the multipole
moments:

a2n ←→ −b2n , a2n+1 ←→ b2n+1 . (4.85)

These transformations correspond to exchange between the semi-axes θ = 0 and
θ = π and change of signs of the multipole moments an ←→ −an, bn ←→ −bn.

4.1 Space-time invariants

In Chapter 3 we derived the following relation between the space-time Kretschmann
scalar K and the trace of the square of the Ricci tensor RABRAB calculated on
the horizon surface of a 5-dimensional static asymmetric vacuum black hole:

K|H = 6RABRAB|H . (4.86)

In this Section we generalize this relation to the case of a 5-dimensional, static,
asymmetric, electrically charged black hole.

Let us rewrite the Einstein-Maxwell theory in 5-dimensions described by the
action with arbitrary coupling constant

S =
1

16π

∫
d5x
√−g(R− 1

2
sF µνFµν). (4.87)

The Einstein-Maxwell field equations derived from the above action read

Rαβ −
1

2
gµνR = sTαβ , (4.88)

Tαβ = F γ
α Fβγ −

1

4
gαβFγνF

γν , (4.89)

∇νF
µν = 0, ∇[λFµν] = 0 . (4.90)
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Here and in what follows ∇µ denotes the covariant derivative defined with respect
to the 5d metric. Consider a static, 5-dimensional asymmetric electrically charged
black hole. The corresponding space-time admits the Killing vector ξα = δα0,
(x0 := t), which is timelike in the domain of interest, ξαξα = g00 := −k2 < 0, and
hypersurface orthogonal. The space-time metric gαβ, (α, β, ... = 0, . . . , 4) can be
presented in the form

ds2 = gαβdx
αdxβ = −k2dt2 + γab(x

c)dxadxb , (4.91)

where γab(x
c), (a, b, c, ... = 1, . . . , 4), is the metric on a 4-dimensional hypersurface

t = const. The black hole horizon defined by k = 0 is a non-degenerate Killing
horizon. The metric (4.91) can be decomposed further. Assume that ∇αk∇αk
vanishes nowhere in the domain of the interest. We can consider equi-potential
surfaces of constant t and k. Metric (4.91) can be written in the following form:

ds2 = −k2dt2 + κ−2(k, xC)dk2 + hAB(k, xC)dxAdxB ,

(4.92)

where hAB, (A,B,C, ... = 1, 2, 3) is the metric on an orientable 3-dimensional
hypersurface Σk. One can show that

κ2(k, xC) = −1

2
(∇αξβ)(∇αξβ) , (4.93)

where ∇α is a covariant derivative defined with respect to the metric (4.91). Thus,
κ(k = 0, xC) coincides with is the surface gravity of the 5-dimensional charged
black hole. For the static space-time (4.91) the Riemann tensor components are
given by

(5)Rattb = −k∇a∇bk ,
(5)Rtabc = 0 , (5)Rabcd = Rabcd . (4.94)

Thus, we arrive to the following expression for the Kretschmann scalar of the
space-time (4.92):

K ≡ (5)Rαβγδ
(5)Rαβγδ = 4k−2(∇a∇bk)(∇a∇bk) + 4RAkkBR

AkkB

+ 4RkABCR
kABC +RABCDR

ABCD . (4.95)

To present geometric quantities of the 5-dimensional space-time (4.92) in terms of
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these corresponding to Σk we apply the following relations:

RABCD = RABCD + SADSBC − SACSBD , (4.96)

RkABC = κ−1(SAB;C − SAC;B) , (4.97)

RAkkB = κ−1(hACS C
B ,k + (κ−1);AB + κ−1SACS C

B ) , (4.98)

where the first two equations are due to Gauss and Codazzi (see, e.g., [7] and [8]).
Here RABCD is the intrinsic and

SAB =
κ

2
hAB,k (4.99)

is the extrinsic curvature of a hypersurface Σk. The semicolon ; stands for a
covariant derivative defined with respect to the metric hAB. Using expressions
(4.92) and (4.99) we derive

∇k∇kk = κ−1κ,k , ∇A∇kk = ∇k∇Ak = κ−1κ,A ,

∇A∇Bk = κSAB , ∇a∇ak = κ(κ,k + S) , S ≡ S A
A . (4.100)

Equations (4.99), (4.107), and (4.108) define a complete system for determining
κ, hAB, and SAB as functions of k. The constraint equations (4.109) and (4.110)
together with Eq. (3.136) are satisfied for any value of k. The 3-dimensional
Riemann tensor components RABCD corresponding to hAB can be presented as
follows (see, [9], p. 550):

RABCD = hACRBD + hBDRAC − hADRBC

− hBCRAD −
1

2
R(hAChBD − hADhBC) , (4.101)

where the Ricci scalar R and the trace of the square of the Ricci tensor (RABRAB)
are defined on Σk. Expression (4.101) implies

RABCDRABCD = 4RABRAB −R2 . (4.102)

Using expressions (4.97), (4.98), (4.100), (4.95), (4.101), and (4.102) we derive

K = 4k−2κ2
(
κ2
,k + 2κ−2κ,Aκ

,A + 2SABSAB
)

+ 8RABRAB −R2

− 8k−1κSAB(RAB − SSAB + SACS C
B ) + 2S2(R+ 2SABSAB)

− 2SABSAB(R− SCDSCD)− 8SSAB(2RAB + SACS C
B )

+ 2SACSBC(8RAB + SADS D
B ) + 8SAB;C(SAB;C − SAC;B) . (4.103)

Thus, one can see that the black hole horizon k = 0 is regular if κ,A = 0 and
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SAB = 0 on the horizon, i.e., the surface gravity is constant on the horizon, and
the horizon surface

H := (k = 0 , t = const) (4.104)

is a totally geodesic surface which is regular, i.e., RABRAB and R are finite on H.
One can show that the Einstein equations

(5)Gαβ = sTαβ , (4.105)

for the metric (4.91) reduce to

(5)Gtt =
1

2
k2 (4)R , (5)Gta = 0 , (5)Gab =(4)Gab − k−1∇a∇bk + k−1gab∇c∇ck.

(4.106)

Here s is the coupling constant. where (4)R and ∇a are the Ricci scalar and the
covariant derivative defined with respect to the 4-dimensional metric γab. Applying
expressions (4.96)-(4.100) to the Einstein equations (4.106) we derive the following
set of equations:

kκ(κ,k + S) =
2

3
s(Ψ2 + Φ,AΦ,A) , (4.107)

R B
A = −sk−2Φ,AΦ,B +

1

3
shBAk

−2(Ψ2 + Φ,AΦ,A), (4.108)

κ,A + k(S,A − S B
A ;B) = sk−1ΨΦ,A , (4.109)

R := hABRAB = S2 − SABSAB − 2k−1κκ,k +
1

3
sk−2(7Ψ2 + Φ,AΦ,A) , (4.110)

S,k + (κ−1) ;A
;A + κ−1SABSAB + k−1κ,k =

1

3
sk−2κ−1(2Ψ2 − Φ,AΦ,A) . (4.111)

where Ψ = κΦ,k. To derive a relation between the Kretschmann scalar and 3-
dimensional geometric quantities defined on H we use the following series expan-
sions:

A =
∑

n>0

A[2n]k2n , B =
∑

n>0

B[2n+1]k2n+1 , (4.112)

where A = {hAB, κ,RAB,R,Φ} and B = {SAB,S,Ψ}. Here the first term A[0]

corresponds to the value of A calculated on the horizon. To calculate K on the
horizon it is enough to consider the first order expansion only, i.e., n = 0, 1.
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Substituting expansions (3.143) into equations (4.99), (4.107)-(4.111) we derive

(κ[0]),A = 0 , κ[2] = −R
[0]

4κ[0]
− 7

24
s
F 2[0]

κ[0]
,

S [1]
AB =

R[0]
AB

2κ[0]
+

1

12
s
h

[0]
AB

κ[0]
F 2[0] , S [1] =

R[0]

2κ[0]
+

1

4
s
F 2[0]

κ[0]
,

h
[2]
AB =

R[0]
AB

2(κ[0])2
+

1

12
s
h

[0]
AB

(κ[0])2
F 2[0] ,

Φ
[0]
,A = 0 , Φ[2] =

√
−F 2[0]

2
√

2κ[0]
. (4.113)

Using the coefficients (4.113) and substituting the corresponding expansions (4.112)
for n = 0, 1 into Eq. (4.103) we derive the following relation:

K|H = 6RABRAB +
7

3
sRF 2 +

55

36
s2(F 2)2|H . (4.114)

This relation represents the Kretschmann invariant K calculated on the horizon
of a 5-dimensional, asymmetric, electrically charged black hole in terms of the
electromagnetic field invariant F 2 calculated on the black hole horizon and the
geometric invariants of the horizon surface, i.e., the 3-dimensional Ricci scalar
R, and the trace of the square of the Ricci tensor RABRAB. This relation is
a generalization of a similar relation between the Kretschmann scalar calculated
on the horizon of a 4-dimensional static asymmetric charged black hole and the
electromagnetic field invariant calculated on the horizon and the square of Gussian
curvature of the horizon surface obtained in [6].
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Chapter 5

Analysis of the Fisher Solution

5.1 Introduction

In this Chapter we study a solution which was discovered by Fisher [1]. Later
the solution was rediscovered by many authors (see, for example, [2–4]) and usu-
ally referred to as the Janis-Newman-Winicour solution [5]. Here we study the
d-dimensional (d > 4) generalization of this solution which was given in [6] . The
solution represents a static, spherically symmetric, asymptotically flat spacetime
with a massless scalar field. A massless scalar field is related to a massless parti-
cle of zero spin. Such particles are not known, and all known zero spin particles
are massive. Thus, such a field may be not realistic (unless a zero spin massless
particle is discovered). However, in some cases one may consider such a field as
an approximation for a massive scalar field, or regard a massless scalar field as a
toy model, which is often useful for its simplicity. There is a more serious reason
to consider the Fisher solution as unphysical, for it represents a naked curvature
singularity.

The classical description of spacetime breaks down at a curvature singularity.
However, spacetime singularities arise in a very large class of solutions of the gen-
eral theory of relativity, and in fact in very reasonable physical conditions which
respect causality and energy conditions [7]. The trouble with naked singularities
(except agreeably with the Big Bang one which is in our past) is that they are
naked, i.e., one could potentially “see a breakdown of physics” if a naked singular-
ity is present. To avoid formation of a naked singularity in real physical processes,
such as gravitational collapse, which are described by classical laws of the general
theory of relativity, the cosmic censorship conjecture was formulated, first in weak

A version of this Chapter has been published. S. Abdolrahimi and A. A. Shoom, 2010, Phys.
Rev. D. 81, 024035 (1-19).



CHAPTER 5. ANALYSIS OF THE FISHER SOLUTION 98

[8] and later in strong form [9]. However, the present issue of its validity is very
much open [10].

In attempts to test cosmic censorship, many models of gravitational collapse
were studied analytically and numerically (for a popular survey of the subject see
[11]). It was found that in certain conditions naked singularities may form. For
example, they may form as a result of collapse of collisionless gas spheres [12], or
self-similar collapse of a massless, minimally coupled scalar field where the second
type phase transition from black hole to naked singularity takes place [13]. How-
ever, such examples should be considered with caution, for a rigorous analysis may
suggest that the detected naked singularity formation may be ambiguous [14]. A
review [15] has many other examples as well as discussion of gravitational radiation
and quantum particle creation by naked singularities. There is a recent proposal to
search for a naked singularity using Kerr lensing [16]. These examples may imply
that we have to study naked singularities rather than disregard them.

Here we study the naked singularity of the Fisher solution which is due to a
massless scalar field. The reasons for such a study is to understand deeper how
such a field affects spacetime and what type of singularity it “produces.” For ex-
ample, it was shown that a massless scalar field “converts” the Cauchy horizon of
a Kerr-Newman black hole into a strong curvature singularity [17]. Another ex-
ample is a weak instantaneous curvature singularity which appears at the moment
of a wormhole formation when a ghost massless scalar field is present [18]. On
the other side, it was shown that quantum effects may prevent the formation of a
naked singularity due to gravitational collapse of a homogeneous scalar field [19].
This may suggest that a curvature singularity due to massless scalar field may be
“smoothed out” by quantum effects.

The main idea of our study is to analyze the naked curvature singularity of
the Fisher solution and to show that indeed, a spacetime curvature singularity (at
least in our example).

This Chapter is organized as follows. In Sec. 2 we present the d-dimensional
Fisher solution and discuss its general properties. In Sec. 3 we study curvature
singularities of the Fisher solution. Causal properties of the Fisher solution are
discussed in Sec. 4. In Sec. 5 we present an isometric embedding of the Fisher
solution. Using results of the previous sections, we return to a discussion of the
Fisher solution in Sec. 6. Section 7 contains a summary and discussion of our re-
sults. Additional details illustrating our calculations are given in the appendixes.
In this Chapter we set G(d) = c = 1, where G(d) is the d-dimensional (d > 4)
gravitational constant. The spacetime signature is +(d−2). We use the notations
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and conventions adopted in [20].

5.2 The Fisher solution

5.2.1 Metric

Let us present a d-dimensional generalization of the Fisher solution, which is static,
spherically symmetric, asymptotically flat spacetime with a massless, minimally
coupled scalar field. The corresponding action has the following form:

S[gab, ϕ] =
1

16π

∫
ddx
√−g

(
R− d−2

d−3
gabϕ,aϕ,b

)
, (5.1)

where R is the d-dimensional Ricci scalar and ϕ is the massless, minimally coupled
scalar field, rescaled to allow the factor (d − 2)/(d − 3) that simplifies the equa-
tions below. Here and in what follows (...),a stands for the partial derivative of the
expression (...) with respect to the coordinate xa.

The energy-momentum tensor of the scalar field is

Tab =
1

8π

d− 2

d− 3

(
ϕ,aϕ,b −

1

2
gabϕ,cϕ

,c

)
. (5.2)

Thus, the corresponding Einstein equations are

Rab = d−2
d−3

ϕ,aϕ,b . (5.3)

The scalar field solves the massless Klein-Gordon equation

∇a∇aϕ =
1√−g
(√−ggabϕ,a

)
,b

= 0 . (5.4)

Here∇a stands for the covariant derivative defined with respect to the d-dimensional
metric gab. An explicit form of Eqs. (5.3) and (5.4) for a static, spherically sym-
metric spacetime is given in Appendix D . A static, asymptotically flat, spherically
symmetric solution to Eqs. (5.3) and (5.4) was derived in [6] in isotropic coordi-
nates, which bring the Einstein equations into a form more suitable for integration.
Here we present the solution in different (Schwarzschild-like1) coordinates. . The

1 The radial isotropic coordinate ri of [6] is related to our coordinate r through the following
transformation:

rd−3

i =
rd−3

4

(
1 +
√

F
)2

, F = 1−
(ro

r

)d−3

.
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duality transformation presented in the next subsection allows one to derive this
solution without integration of the Einstein equations. The Fisher metric reads

ds2 = −F Sdt2 + F
1−S
d−3

−1
dr2 + r2F

1−S
d−3 dΩ2

(d−2) , (5.5)

where dΩ2
(d−2) is the metric on a unit (d− 2)-dimensional round sphere. Here

F = 1−
(ro
r

)d−3

, (5.6)

rd−3
o =

8Γ(d−1
2

)

(d− 2)π
d−3

2

(M2 + Σ2)
1
2 , (5.7)

and

S =
M

(M2 + Σ2)
1
2

, (5.8)

where M > 0 is the d-dimensional Komar mass [21] measured at asymptotic infin-
ity (r →∞) and the parameter Σ is defined below.

The scalar field, defined up to an additive constant which is irrelevant to our
considerations, reads

ϕ =
Σ

2(M2 + Σ2)
1
2

ln |F | . (5.9)

In the asymptotic region we have

ϕ ∼ − 4Γ(d−1
2

)

(d− 2)π
d−3

2

Σ

rd−3
. (5.10)

Thus, we define Σ ∈ (−∞,∞) as the d-dimensional “scalar charge.” Hence, ex-
pression (5.8) implies that S ∈ [0, 1] if we take M > 0.

Calculating the energy-momentum tensor components in a local orthonormal
frame, we derive the following energy density ǫ and the principal pressures pr̂, pα̂:

ǫ = pr̂ = −pα̂ =
(d− 3)Γ2(d−1

2
)Σ2

(d− 2)πd−2r2(d−2)F
1−S
d−3

+1

, (5.11)

where the index α̂ = 3, ..., d stands for orthonormal components in the compact
dimensions of the (d − 2)-dimensional round sphere. The scalar field obeys the
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strong and the dominant energy conditions. Thus, by continuity it obeys the weak
and the null energy conditions (see, e.g., [2, 22]).

The Fisher solution has the following limiting cases:

The pure scalar charge case: M = 0. According to expressions (5.7) and (5.8),
this case implies

rd−3
o |M=0 = rd−3

Σ =
8Γ(d−1

2
)|Σ|

(d− 2)π
d−3

2

, S = 0. (5.12)

Thus, ϕ = 1/2 ln |F |, and the corresponding metric is

ds2 = −dt2 + F
−
d−4
d−3

Σ dr2 + r2F
1
d−3

Σ dΩ2
(d−2) , (5.13)

where

FΣ = 1−
(rΣ
r

)d−3

. (5.14)

We shall call this solution the massless Fisher solution.

The pure mass case: Σ = 0. According to expressions (5.7) and (5.8), this case
implies

rd−3
o |Σ=0 = rd−3

M =
8Γ(d−1

2
)M

(d− 2)π
d−3

2

, S = 1. (5.15)

Thus, ϕ = 0, and the corresponding metric is known as the d-dimensional Schwarzschild-
Tangherlini black hole [23]

ds2 = −FMdt2 + F−1
M dr2 + r2dΩ2

(d−2) , (5.16)

where

FM = 1−
(rM
r

)d−3

. (5.17)

The uniqueness of the Schwarzschild-Tangherlini solution was proven in [24, 25].

5.2.2 Duality

The Fisher solution presented above possesses a certain duality symmetry. Here
we show that the static, spherically symmetric spacetimes (5.5) corresponding to
different values of M and Σ are dual to each other. In particular, we show that the
Fisher solution is dual to the Schwarzschild-Tangherlini black hole of a particular
mass.
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Let us present the metric (5.5) in the following form:

ds2 = −k2dt2 + k
−

2
d−3 ḡµνdx

µdxν . (5.18)

Here, −k2 is the squared norm of the timelike Killing vector δat and k−2/(d−3)ḡµν is
the (d−1)-dimensional spatial metric on a hypersurface orthogonal to δat. We can
reduce the d-dimensional action (5.1) for the metric (5.18) to a (d−1)-dimensional
action for the metric ḡµν . Let us first decompose the Ricci scalar R with respect
to a basis defined by the unit timelike vector k−1δat and (d − 1) basis vectors
tangential to the hypersurface (see, e.g., [26]),

R = R̃− 2∇̃µ∇̃µ ln |k| − 2k
2
d−3 ḡµν(ln |k|),µ (ln |k|),ν . (5.19)

Here the (d − 1)-dimensional Ricci scalar R̃ and the covariant derivative ∇̃µ are
associated with the metric k−2/(d−3)ḡµν . Applying the conformal transformation

defined by the conformal factor k−2/(d−3) to the Ricci scalar R̃ we derive (see, e.g.,
[2])

R̃ = k
2
d−3
[
R̄ + 2

d−3
∇̄µ∇̄µ ln |k| − d−2

d−3
ḡµν(ln |k|),µ (ln |k|),ν

]
. (5.20)

Here the (d − 1)-dimensional Ricci scalar R̄ and the covariant derivative ∇̄µ are
associated with the metric ḡµν . Substituting (5.20) into (5.1), eliminating a sur-
face term, and neglecting an integral over the Killing coordinate t we derive the
following (d− 1)-dimensional action for the metric ḡµν :

S[ḡµν , k, ϕ] =
1

16π

∫
dd−1x

√
ḡ
(
R̄− d−2

d−3
ḡµν

[
ϕ,µϕ,ν + (ln |k|),µ (ln |k|),ν

])
.

(5.21)

According to the principle of least action, variation of the action (5.21) with respect
to the fields ḡµν , k, and ϕ gives the following equations2 :

R̄µν = d−2
d−3

[
ϕ,µϕ,ν + (ln |k|),µ (ln |k|),ν

]
, (5.22)

∇̄µ∇̄µ(ln |k|) = 0 , (5.23)

∇̄µ∇̄µϕ = k
−

2
d−3∇a∇aϕ = 0 . (5.24)

The first equality in Eq. (5.24) holds because the scalar field is static.

2 Wick rotated solutions of this system correspond to steady Ricci solitons [27].
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We see that the action (5.21) and the field equations (5.22)-(5.24) are invariant
under the following transformation:

ln |k′| = ln |k| cosψ + ϕ sinψ

ϕ′ = − ln |k| sinψ + ϕ cosψ

}
, (5.25)

which we shall call a duality transformation. Here the primes denote the dual solu-
tion and ψ is the duality transformation parameter whose range is defined below.
The duality transformation is analogous to the Buscher T-duality transformation
[28] (see also [29]). The metric dual to the metric (5.18) is

ds2 = −k′2dt2 + k
′−

2
d−3 ḡµνdx

µdxν . (5.26)

Thus, we can construct the dual solution (5.26) to the field equations (5.22)-(5.24)
if some solution (5.18) is already known. In particular, we can apply the duality
transformations (5.25) to generate the Fisher solution (5.5) without integration of
the Einstein equations, starting from the Schwarzschild-Tangherlini metric (5.16)
with rM = ro and taking cosψ = S. This procedure suggests that we can present
the duality transformation (5.25) in different form, in terms of the mass M and
the scalar charge Σ. Indeed, starting from the metric (5.5) we have k2 = F S.
Using expressions (5.6)-(5.9) and (5.25) we find that r′o = ro. Thus, ro [see, (5.7)]
is invariant of the duality transformation (there are other invariants of the duality
transformation which we present in Sec. VI). Hence, we can present the duality
transformation (5.25) in the following form:

M ′ = M cosψ + Σ sinψ

Σ′ = −M sinψ + Σ cosψ

}
. (5.27)

Thus, we have the duality transformation between the mass and the scalar charge
acting in the parameter space (M,Σ). To define the range for ψ we consider dual
Fisher solutions which have nonnegative mass M > 0. Thus, for a Fisher solution
defined by the parameters (Mo > 0,Σo) such that

ψo = arctan(Σo/Mo) ∈ [−π/2, π/2] , (5.28)

the corresponding duality transformation parameter is defined by

ψ ∈ [−π/2 + ψo, π/2 + ψo] . (5.29)

In particular, for ψ = ∓π/2 + ψo we have M ′
o = 0 and Σ′

o = ±(M2
o + Σ2

o)
1/2,

which is a massless Fisher solution (5.13) with rΣ = ro. For ψ = ψo we have
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M ′
o = (M2

o + Σ2
o)

1/2 and Σ′
o = 0, which is a Schwarzschild-Tangherlini black hole

(5.16) with rM = ro. Here and in what follows, unless stated explicitly, we shall
refer to the massless Fisher solution (5.13) and to the Schwarzschild-Tangherlini
black hole (5.16) having in mind their dual to the Fisher solution form, i.e., for
rΣ = ro and for rM = ro, respectively. This convention can be expressed in the
following way:

rΣ = ro ⇐⇒ Σ′ = (M2 + Σ2)
1
2 , M ′ = 0 , (5.30)

rM = ro ⇐⇒M ′ = (M2 + Σ2)
1
2 , Σ′ = 0 . (5.31)

The duality transformation (5.27) is illustrated in Fig. 5.1. From the duality
diagram we see that increase (decrease) in the mass M ′ corresponds to decrease
(increase) in the scalar charge Σ′. Thus, the duality transformation can be consid-
ered as a change of the mass M and the scalar charge Σ in the original solution to
their dual values M ′ and Σ′. From this point of view, the duality transformation is
a mapping between different members of the Fisher family of solutions (M,Σ). In
particular, for ψo = 0, and ψ = π/2 the Schwarzschild-Tangherlini black hole and
the massless Fisher solution are dual to each other (see, [28], p. 216). In general,
any Fisher solution is dual to the Schwarzschild-Tangherlini black hole.

Figure 5.1: Duality diagram. Point O represents the Fisher solution defined by the
mass Mo and the scalar charge Σo. Sector I represents its dual nonnegative mass
solutions (M ′

o > 0). One such dual Fisher solution is defined by the mass M ′
o and

the scalar charge Σ′
o. Sector II represents dual negative mass solutions (M ′

o < 0)
which we do not consider here.

The duality transformation (5.27) is a transformation between different solu-
tions which follow from the same action (5.1). Each of these solutions represents a
spacetime of certain properties. That is, all these spacetimes are spherically sym-
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metric, static, and asymptotically flat. However, there is an essential difference
between the Schwarzschild-Tangherlini spacetime and the Fisher solution. The
Schwarzschild-Tangherlini spacetime represents a black hole of the mass M ′ whose
event horizon is defined by r = ro. The horizon is regular and the spacetime singu-
larity is located behind the horizon at r = 0. However, as we shall see in the next
section, the Fisher spacetime does not have an event horizon but instead has a
naked singularity located at r = ro. In what follows, we shall study the properties
of the Fisher solution. We shall see that the spacetime geometry near the naked
singularity has interesting properties which may be seen as a manifestation of the
duality.

5.2.3 The Fisher universe

As we already mentioned, r = ro is a naked curvature singularity of the Fisher
solution. Thus, we have to cut r = ro out of the Fisher manifold defined by the
coordinates (t, r, xα), where the index α = 3, ..., d stands for compact coordinates
which define the position of a point on a unit (d − 2)-dimensional round sphere.
As we shall see, r = 0 is another curvature singularity of the Fisher solution.
Thus, the cut divides the Fisher manifold into two disconnected parts defined by
r ∈ (ro,∞) and r ∈ (0, ro). In what follows, we shall call the region r ∈ (ro,∞)
the Fisher spacetime, and the region r ∈ (0, ro) the Fisher universe.

In a traditional approach, one considers that part of a manifold which represents
the external field due to some source and which is asymptotically flat, if such ex-
ists. Such an approach was taken before in the case of the Fisher solution (see, e.g.,
[2–4]). Here we shall consider both the parts of the manifold. The reason for such
a consideration is motivated by the duality between the Schwarzschild-Tangherlini
black hole and the Fisher solution which we discussed above. In particular, the in-
terior of the Schwarzschild-Tangherlini black hole corresponds to r ∈ (0, ro). Thus,
to consider a dual to the interior part we have to consider the region r ∈ (0, ro) of
the Fisher solution. However, for r ∈ (0, ro) and nonzero scalar charge the metric
(5.5) is in general complex valued due to noninteger exponents3 . One can make
the metric real valued by introducing absolute values |F | into the metric func-
tions in an appropriate way. Such a modified metric solves the Einstein equations
(C.2)-(C.4) but has the signature −(d−2). As a result, for r ∈ (0, ro) the periodic
angular coordinate becomes timelike which leads to causality violation, which we
would not like to have here. There is another way to make the metric real valued
in the region, which is to replace rd−3

o with rd−3
o sign(r−ro) in the metric functions.

3 One can show that for an appropriate discrete set of the parameters M and Σ the metric
(5.5) can be real valued for r ∈ (0, ro). Here we shall not consider such a restrictive choice of the
parameters.
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However, such a choice implies that the dual Schwarzschild-Tangherlini black hole
has negative mass M ′ < 0, which is out of our consideration. However, there is
yet another way to get a real valued metric for r ∈ (0, ro). Namely, one can apply
complex transformations preserving the signature of the metric and keeping mass
nonnegative. The following complex transformations bring the metric in the region
r ∈ (0, ro) to a real valued form:

t = (−1)
1−S

2 τ

r = (−1)
S−1

2(d−3)ρ




,
M = (−1)

S−1
2 µ

Σ = (−1)
S−1

2 σ



 . (5.32)

Note that ro transforms like r and according to expression (5.8), S is an invariant,

S =
M

(M2 + Σ2)
1
2

=
µ

(µ2 + σ2)
1
2

. (5.33)

In the limit S → 1 these transformations become merely a relabeling of the coordi-
nates and parameters and preserve the positive direction of the time and space co-
ordinates. In addition, in the limit S → 1 the two disconnected parts of the Fisher
manifold represent the exterior and interior of the Schwarzschild-Tangherlini black
hole, and can be analytically extended to a larger manifold which represents the
maximal d-dimensional extension of the Schwarzschild-Tangherlini solution. Such
an extension was given in the Kruskal coordinates in [30] and in another coordinate
system in [31, 32].

Applying the transformations (5.32) to the metric (5.5) we derive

ds2 = ΦSdτ 2 − Φ
1−S
d−3

−1
dρ2 + ρ2Φ

1−S
d−3 dΩ2

(d−2), (5.34)

where

Φ =

(
ρo
ρ

)d−3

− 1 , ρd−3
o =

8Γ(d−1
2

)

(d− 2)π
d−3

2

(µ2 + σ2)
1
2 . (5.35)

Here the compact coordinate ρ ∈ (0, ρo) is timelike. The spacetime (5.34) repre-
sents an anisotropic universe which we call the Fisher universe. We shall study
properties of the Fisher universe in the following sections.

Applying the transformations (5.32) to the scalar field (5.9) we derive

ϕ =
σ

2(µ2 + σ2)
1
2

ln Φ . (5.36)
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Calculating the energy-momentum tensor components of the scalar field in a lo-
cal orthonormal frame we derive the following energy density ǫ and the principal
pressures pτ̂ , pα̂ [cf. Eq.(5.11)]:

pτ̂ = ǫ = pα̂ =
(d− 3)Γ2(d−1

2
)σ2

(d− 2)πd−2ρ2(d−2)Φ
1−S
d−3

+1

. (5.37)

Thus, the scalar field represents a stiff fluid. It obeys the strong and the dominant
energy conditions. Therefore, by continuity it obeys the weak and the null energy
conditions.

In the case of the massless Fisher solution (5.13), the transformation of the t
coordinate in (5.32) is the Wick rotation. This case implies

ρd−3
o |µ=0 = ρd−3

σ =
8Γ(d−1

2
)σ

(d− 2)π
d−3

2

, S = 0. (5.38)

Thus, ϕ = 1/2 lnΦ, and the corresponding metric is

ds2 = dτ 2 − Φ
−
d−4
d−3

σ dρ2 + ρ2Φ
1
d−3
σ dΩ2

(d−2) , (5.39)

where

Φσ =

(
ρσ
ρ

)d−3

− 1 . (5.40)

We shall call this solution the massless Fisher universe. Analogous to (5.30) the
dual to the Fisher universe massless solution corresponds to

ρσ = ρo ⇐⇒ σ′ = (µ2 + σ2)
1
2 , µ′ = 0 . (5.41)

Here and in what follows, unless stated explicitly, we shall refer to the massless
Fisher universe (5.39) having in mind the dual to the Fisher universe form (5.41).

In general, the mass transformation in (5.32) for arbitrary S ∈ [0, 1] has the
following form:

µ = M cos
(π

2
[1− S]

)
+ iM sin

(π
2
[1− S]

)
, (5.42)

where the first term is the bradyon mass MB and the second term is the tachyon
mass MT . In these notations, S defines the ratio of the tachyon mass to the
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bradyon mass as follows:

MT

MB
= i tan

(π
2
[1− S]

)
. (5.43)

The scalar charge transformation in (5.32) is analogical to (5.42),

σ = Σ cos
(π

2
[1− S]

)
+ iΣ sin

(π
2
[1− S]

)
, (5.44)

where the first term is a real scalar field charge and the second term is a ghost scalar
field charge. However, expressions (5.42) and (5.44) are merely transformations.
It is not clear if they have any physical meaning. In the Fisher spacetime and the
Fisher universe the mass and the scalar charge are real.

5.3 Curvature singularities

5.3.1 Spacetime invariants

Spacetime curvature singularities, like those located inside of black holes, are as-
sociated with infinitely growing spacetime curvature invariants. To determine sin-
gularities of the Fisher solution we calculate the Ricci scalar and the Kretschmann
invariant. The Ricci scalar is

R =
1− S2

4

r
2(d−3)
o

rS+d−2

(d− 2)(d− 3)

(rd−3 − rd−3
o )

1−S
d−3

+1

. (5.45)

We see that the Ricci scalar diverges at r = ro, if S 6= 1, and at r = 0. According
to the transformations (5.32), r = ro and r = 0 correspond to ρ = ρo and ρ = 0,
respectively. The Schwarzschild-Tangherlini black hole solution (S = 1) is Ricci
flat.

For S 6= 1 the Kretschmann invariant presented in Appendix E is proportional
to R2, therefore, it diverges at the same points. For the Schwarzschild-Tangherlini
black hole the Kretschmann scalar is

K =
r
2(d−3)
o

r2(d−1)
(d− 1)(d− 2)2(d− 3) . (5.46)

It diverges at r = 0. The analysis of the spacetime invariants shows that the Fisher
solution is singular at r = ro (ρ = ρo) for S ∈ [0, 1) and at r = ρ = 0 for S = [0, 1].
Both the singularities are central, i.e., the corresponding areal radii vanish at the
singularities [see, expressions (5.100) and (5.103)]. We shall study the properties
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of these singularities.

5.3.2 Strength of the singularities

Spacetime curvature singularities can be characterized according to their strength.
A definition of singularity strength based on purely geometric properties of space-
time was proposed in [33]. According to that definition, there are two types of
curvature singularities, gravitationally weak and strong. Namely, if a volume (an
area) element defined by linearly independent spacelike vorticity-free Jacobi fields
propagating along any timelike (null) geodesic and orthogonal to its tangent vector
vanishes at spacetime singularity, the singularity is called strong, otherwise, if the
volume (the area) element does not vanish and remains finite, the singularity is
called weak. Necessary and sufficient conditions for strong curvature singularities
were formulated in [34, 35]. The definition above was subsequently modified in
[36], where behavior of each Jacobi field was taken into account. According to the
renewed definition, a spacetime singularity is called strong if at least one Jacobi
field vanishes or diverges at the singularity. For example, a singularity is called
strong if some of the Jacobi fields diverge and others vanish such that the volume
element remains finite at the singularity. A deformationally strong singularity was
defined in [37]. According to that definition, a spacetime singularity is called de-
formationally strong if the volume element diverges, or at least one Jacobi field
diverges, but the volume element remains finite, for other Jacobi fields vanish at
the singularity.

Here we shall study the strength of the Fisher spacetime and the Fisher universe
singularities. Let us begin with the Fisher spacetime (5.5), r ∈ (ro,∞). We shall
study behavior of Jacobi fields defined for radial timelike and null geodesics near
the spacetime singularity located at r = ro. Equations for the geodesic motion can
be derived from the corresponding Lagrangian L associated with the metric (5.5),

2L = −F S ṫ2 + F
1−S
d−3

−1
ṙ2 = ε , (5.47)

where ε is equal to −1 for timelike and 0 for null geodesics. The overdot denotes
the differentiation with respect to λ which is the proper time for timelike and the
affine parameter for null geodesics. We define λ such that the geodesics approach
the singularity located at r = ro as λ → −0. The radial geodesics are defined by
the unit tangent vector ka = ẋa whose nonzero components in a local orthonormal
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frame are given by

kt̂ = F
S
2 ṫ = Eε F

−
S
2 , (5.48)

kr̂ = F
1−S

2(d−3)
−

1
2 ṙ = ±

[
(kt̂)2 + ε

]1
2
, (5.49)

where “+” stands for outgoing and “−” stands for ingoing geodesics, and Eε =
const which we define as follows:

E−1 > 1 , E0 = 1 . (5.50)

We consider ingoing geodesics. One can check that the radial geodesics approach
the singularity for finite values of λ. For S ∈ (0, 1] the geodesics approach r = ro
in infinite coordinate time t which measures proper time of an observer which is
at rest with respect to the gravitational center (the naked singularity) and located
at asymptotic infinity (r →∞). For S = 0 the coordinate time t is finite.

Jacobi fields Z â(λ) are orthogonal to kâ and represent the spatial separation of
two points of equal values of λ located on neighboring geodesics. They satisfy the
Jacobi geodesic deviation equation (see, e.g., [2])

Z̈ â +R â
ĉb̂d̂

Z b̂kĉkd̂ = 0 , (5.51)

where R â
ĉb̂d̂

are the Riemann tensor components defined in the local orthonormal
frame (see, Appendix E).

For radial timelike geodesics we define two types of the Jacobi fields. The radial

Jacobi field
Zη∂η = Z t̂∂t̂ + Z r̂∂r̂ , gηη = 1 , (5.52)

and the (d− 2) orthogonal angular Jacobi fields

Z α̂∂α̂ , gα̂α̂ = 1 , α̂ = 3, ..., d . (5.53)

The spacelike vectors ∂η, ∂α̂, α̂ = 3, ..., d form a (d − 1)-dimensional orthonormal
basis which is parallel propagated along the radial timelike geodesics. As far as
we are interested in spatial separations of neighboring geodesics, for radial null
geodesics we consider only the angular Jacobi fields (5.53).

The radial Jacobi field satisfies the Jacobi equation

Z̈η +R r̂
t̂r̂t̂ Zη = 0 . (5.54)
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Approximating expressions (5.48), (5.49), and (D.1) near the singularity we derive

Z̈η − C|λ|−2+
2S(d−3)

d−2+S(d−4)Zη ≈ 0 , (5.55)

where

C =
S(1− S)(d− 2)(d− 3)(2ro)

−
2S(d−3)

d−2+S(d−4)

(E−1[d− 2 + S(d− 4)])
2−

2S(d−3)
d−2+S(d−4)

. (5.56)

This equation is a particular case of the Emden-Fowler equation (see, Eq. (2.1.2.7),
p.132 in [38]). Its solutions are expressed in terms of the modified Bessel functions
of the first and second kind. Using asymptotics of the modified Bessel functions
for small values of their arguments (see, e.g., Eqs. (9.6.7) and (9.6.9) in [39]) we
derive the asymptotic behavior of the radial Jacobi field near the singularity

Zη(λ) ∼ c1 + c2|λ| ∼ c1 . (5.57)

Here and in what follows c1,2 = const 6= 0. Thus, for S ∈ [0, 1) the radial Jacobi
field remains finite at the singularity. Although it is obvious that the Jacobi field
is finite in the case of the Schwarzschild-Tangherlini black hole (S = 1), for there
is no spacetime singularity at r = ro, it is remarkable that the radial Jacobi field
is finite at the singularity of the Fisher spacetime. Thus, the singularity at r = ro
is of a special type, which we call radially weak.

Now we consider the angular Jacobi fields (5.53). Each of the (d − 2) angular
Jacobi fields Z α̂ satisfies the following equation (no summation over α̂):

Z̈ α̂ +
[
R α̂
t̂α̂t̂ (kt̂)2 +R α̂

r̂α̂r̂ (kr̂)2
]
Z α̂ = 0 . (5.58)

This equation is valid for both the radial timelike and null geodesics. Approximat-
ing expressions (5.48), (5.49), (D.2), and (D.3) near the singularity and applying
the method of Frobenius we derive the asymptotic behavior of the angular Jacobi
fields

Z α̂(λ) ∼ c1|λ|
1−S

d−2+S(d−4) + c2|λ|
(1+S)(d−3)
d−2+S(d−4) ∼ c1|λ|

1−S
d−2+S(d−4) . (5.59)

This expression is valid for the radial timelike and null geodesics for S ∈ [0, 1].
There is no singularity for S = 1, and the corresponding angular Jacobi fields are
finite. For other values of S the angular Jacobi fields vanish.

Let us now study the singularities of the Fisher universe (5.34). We shall
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study behavior of the Jacobi fields defined for radial timelike and null geodesics
approaching the spacetime singularities located at ρ = ρo and at ρ = 0. Applying
the transformations (5.32) to expressions (5.48) and (5.49) we derive the nonzero
components of the unit tangent vector

kτ̂ = Φ
S
2 τ̇ = Eε Φ−

S
2 , (5.60)

kρ̂ = Φ
1−S

2(d−3)
−

1
2 ρ̇ = ∓

[
(kτ̂ )2 − ε

]1
2 , (5.61)

where “−” stands for outgoing and “+” stands for ingoing geodesics and Eε = const
which we define as follows:

E−1 > 0 , E0 = 1 . (5.62)

One can check that the radial geodesics approach the singularities for finite values
of λ. For S ∈ (0, 1] and geodesics approaching ρ = ρo, the finite change of λ cor-
responds to an infinite change of the spacelike coordinate τ for E−1 > 0, whereas
for geodesics approaching ρ = 0 the change of the spacelike coordinate τ vanishes.
For S = 0 the change of the coordinate τ is always finite.

The geodesics deviation equations for the radial and angular Jacobi fields (5.52)
and (5.53) orthogonal to the tangent vector (5.60) and (5.61) can be constructed
by applying the transformations (5.32) to the Riemann tensor components in Eqs.
(5.54) and (5.58). Solving the derived equations near the singularity ρ = ρo of the
Fisher universe, one can see that the behavior of the Jacobi fields is exactly the
same as the behavior of the corresponding Jacobi fields (5.57) and (5.59) near the
singularity r = ro of the Fisher spacetime.

Let us examine the singularity at ρ = 0. Approximating the Jacobi equation
(5.54) near the singularity and applying the method of Frobenius, we derive the
asymptotic behavior of the radial Jacobi field,

Zη(λ) ∼ c1|λ|−
S(d−3)
d−2+S + c2|λ|

(1+S)(d−2)
d−2+S ∼ c1|λ|−

S(d−3)
d−2+S , (5.63)

where S ∈ (0, 1]. Thus, as in the case of the Schwarzschild-Tangherlini black hole,
the radial Jacobi field diverges. However, in the case of the massless Fisher solution
(S = 0) the radial Jacobi field is finite at the singularity and given by expression
(5.57). Thus, this singularity is radially weak as well.

Let us consider the asymptotic behavior of the angular Jacobi fields (5.53)
corresponding to the radial timelike and null geodesics approaching the singularity.
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For timelike geodesics and for d = 4 we have

Z α̂(λ) ∼ c1|λ|
1

2+S + c2|λ|
1+S
2+S ∼ c1|λ|

1
2+S , (5.64)

whereas for d > 4 we have

Z α̂(λ) ∼ c1|λ|
1+S
d−2+S + c2|λ|

d−3
d−2+S ∼ c1|λ|

1+S
d−2+S . (5.65)

For null geodesics we have

Z α̂(λ) ∼ c1|λ|
1+S

d−2−S(d−4) + c2|λ|
(1−S)(d−3)
d−2−S(d−4)

∼ c1|λ|
1+S

d−2−S(d−4) , S ∈
(
0, d−4

d−2

]
, (5.66)

and

Z α̂(λ) ∼ c2|λ|
(1−S)(d−3)
d−2−S(d−4) , S ∈

(
d−4
d−2

, 1
]
. (5.67)

Thus, for S ∈ (0, 1] and the radial timelike and null geodesics approaching the
singularity at ρ = 0, the angular Jacobi fields vanish.

To define the strength of the singularities we calculate first the norm of the
(d − 1)-dimensional volume element of a synchronous frame which is defined by
1-forms corresponding to the radial and angular Jacobi fields calculated for the
radial timelike geodesics as follows:

‖V(d−1)‖ = |Zη|
d∏

α̂=3

|Z α̂| . (5.68)

Near the singularities the norm of the volume element can be approximated accord-
ing to the behavior of the Jacobi fields [see Eqs. (5.57),(5.59), and (5.63)-(5.65)]
as follows:

‖V(d−1)‖∼ |λ|v , (5.69)

where the exponent v = const defines how fast the norm of the volume element
vanishes or diverges when we approach the singularities (λ → −0). Thus, to
compare the strength of the singularities of the Fisher spacetime and the Fisher
universe we compare the corresponding values of the exponent v. The results are
given in Table I.

For null geodesics approaching the singularities we calculate the norm of the
(d− 2)-dimensional area element which is defined by 1-forms corresponding to the
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Table 5.1: The values of the exponent v for the radial timelike geodesics approach-
ing the singularities.
d r = ro (ρ = ρo) ρ = 0

=4 1− S > 0 2−S
2+S

>
1
3

> 4 (1−S)(d−2)
d−2+S(d−4)

> 0 1

Table 5.2: The values of the exponent a for the radial null geodesics approaching
the singularities.
d r = ro (ρ = ρo) ρ = 0 ρ = 0b

=4 1− S > 0 1 1− S > 0

> 4 (1−S)(d−2)
d−2+S(d−4)

> 0 (1+S)(d−2)
d−2−S(d−4)

> 1 (1−S)(d−2)(d−3)
d−2−S(d−4)

> 0

angular Jacobi fields calculated for the radial null geodesics as follows:

‖A(d−2)‖ =

d∏

α̂=3

|Z α̂|. (5.70)

Analogous to the norm of the volume element, the norm of the area element can
be approximated near the singularities according to the behavior of the angular
Jacobi fields [see Eqs. (5.59),(5.66), and (5.67)] as follows:

‖A(d−1)‖ ∼ |λ|a , (5.71)

where the exponent a = const defines how fast the norm of the area element van-
ishes or diverges when we approach the singularities (λ→ −0). The values of the
exponent a calculated for the radial null geodesics approaching the singularities of
the Fisher spacetime and the Fisher universe are given in Table II.

Now we can summarize our results. According to the values of the exponents
v and a presented in Tables I and II the volume and the area elements vanish at
the singularities, except for the case of S = 1 and r = ro, where v = a = 0, so
the volume element is finite. This case corresponds to the event horizon of the
Schwarzschild-Tangherlini black hole. At the black hole singularity (r = ρ = 0)
the area element is finite as well (a = 0). Thus, according to the classifications
of spacetime singularities, the singularities of the Fisher spacetime and the Fisher
universe are strong. In addition, the strength of the singularity at ρ = 0 is greater
if the value of S is smaller. However, for the radial timelike geodesics and d > 4
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the strength does not depend on S. Thus, in general, the scalar field decreases
the values of the volume and the area elements. From the tables we see that for
S ∈ (0, 1) the singularity at ρ = 0 is stronger than the singularity at r = ro,
whereas for S = 0 these singularities have equal strength.

Let us analyze the behavior of the Jacobi fields. An analysis of the angular Ja-
cobi fields (5.59),(5.64),(5.66), and (5.67) shows that the scalar field contracts the
spacetime in the angular directions. However, for the radial timelike geodesics and
d > 4 [see, (5.65)] it decreases the spacetime contraction in the angular directions
caused by the gravitational field. From expressions (5.64) and (5.65) we see that
in the case of the Schwarzschild-Tangherlini black hole (S = 1) the angular Jacobi
fields contract faster for d = 5, 6 than for d = 4, and for d = 4 and d = 7 the
contraction rates are the same, whereas for d > 7 the contraction is less than for
d = 4. In the presence of the scalar field (S 6= 1) for d > 4 the contraction is less
[see, (5.65)]. An analysis of the radial Jacobi field (5.63) shows that the scalar field
decreases its divergence, i.e., the scalar field contracts the Fisher spacetime in the
radial direction as well. However, the radial Jacobi fields (5.57) at the singularities
at r = ro and at ρ = ρo for S ∈ [0, 1), as well as at the singularity at ρ = 0 for
S = 0 remain finite. According to our calculations, this is a generic property of
the singularities which is valid for any set of initial data. In other words, no fine-
tuning is required for such a behavior of the radial Jacobi fields. It implies that
a 1-dimensional object, for example, an infinitesimally thin rod, which is moving
along a radial timelike geodesic will arrive intact to the singularities without being
contracted to zero or stretched to infinity. We call these singularities radially weak.

Finite, nonzero values of the radial Jacobi fields terminating at the radially
weak singularities may suggest a C0 local extension [33] of the 2-dimensional (t, r)
and (τ, ρ) spacetime surfaces through the singularities. In Sec. VII we shall discuss
such an extension for the singularities of the Fisher solution.

5.4 Causal Properties of the Fisher solution

5.4.1 Closed trapped surfaces

The concept of a closed trapped surface introduced by Penrose [40] was crucial
for the formulation of the singularity theorems [2]. In a d-dimensional spacetime
a closed trapped surface T is a (d − 2)-dimensional spacelike compact surface
without boundary which is defined according to the following property: future
directed outgoing and ingoing null geodesics orthogonal to T are converging at
T . Mathematically, this property is expressed in the following way. Let ~n± be
future directed null vectors orthogonal to T and normalized in the following way:
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g(~n+, ~n−) = −1, where “+” stands for outgoing and “−” stands for ingoing null
geodesics. Then, the scale-invariant trapping scalar defined on T is as follows:

ΘT = θ+θ− (5.72)

must be positive (see, e.g., [2, 41]). Here θ± are the null expansions of the null
geodesics defined on T and expressed in terms of the null second fundamental
forms

χ±
αβ = e a

(α)e
b

(β)∇bn
±
a , (5.73)

in the following way:
θ± = γαβχ±

αβ

∣∣
T
. (5.74)

Here e a
(α), α = 3, ..., d are the base-vectors tangential to T and

γαβ = gab|T e a
(α)e

b
(β) (5.75)

is the positive-defined metric induced on T .

Let us examine if closed trapped surfaces are present in the Fisher spacetime
and/or the Fisher universe. The Fisher spacetime (5.5), r ∈ (ro,∞) is static and
spherically symmetric. Thus, we define T by t = const and r = const. In this
case, the trapping scalar (5.72) is

ΘT = − grr

8

(
∂ ln γ

∂r

)2
∣∣∣∣∣
r=const

, (5.76)

where γ = det(γαβ) and the indices α, β = 3, ..., d stand for angular coordinates.
For the Fisher spacetime (3.25), r ∈ (ro,∞) expression (5.76) reads

ΘT = − (d− 2)2

8rS+d−2

(
2rd−3 − (1 + S)rd−3

o

)2

(rd−3 − rd−3
o )

1−S
d−3

+1

∣∣∣∣∣∣
r=const.

. (5.77)

This expression is negative for r ∈ (ro,∞). Thus, there are no closed trapped
surfaces in the Fisher spacetime. For the Fisher universe (3.44) T is defined by
τ = const and ρ = const and the trapping scalar is

ΘT =
(d− 2)2

8ρS+d−2

(
(1 + S)ρd−3

o − 2ρd−3
)2

(ρd−3
o − ρd−3)

1−S
d−3

+1

∣∣∣∣∣∣
ρ=const.

. (5.78)
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Clearly, it is nonnegative for ρ ∈ (0, ρo). The trapping scalar vanishes for

ρ = ρ∗ = ρo

(
1 + S

2

) 1
d−3

. (5.79)

The corresponding spacelike (d − 2)-dimensional surface is called a marginally

trapped surface. Note that R ρ̂
τ̂ ρ̂τ̂ is zero on this surface [see, (D.1) and (5.32)]. For

the Schwarzschild-Tangherlini black hole the marginally trapped surface coincides
with the surface of its event horizon: ρ∗ = ρo = ro. In the case of the massless
Fisher solution we have ρd−3

∗ = ρd−3
o /2.

Let us calculate the maximal proper time λ1 corresponding to the interval
ρ ∈ (0, ρ∗] for the radial timelike geodesics. Using (5.60) and (5.61) and taking
E−1 = 0 we derive

λ1 =

∫ ρ∗

+0

dρ

[(
ρo
ρ

)d−3

− 1

] 1−S
2(d−3)

−
1
2

=
ρo

d− 3
B1+S

2

(
1 + S

2(d− 3)
+

1

2
,

1− S
2(d− 3)

+
1

2

)
, (5.80)

where Bx(a, b) is the incomplete beta function (see, e.g., [39], p. 263). The maximal
proper time λ2 corresponding to the interval ρ ∈ [ρ∗, ρo) is

λ2 =

∫ ρo−0

ρ∗

dρ

[(
ρo
ρ

)d−3

− 1

] 1−S
2(d−3)

−
1
2

=
ρo

d− 3
B
(

1 + S

2(d− 3)
+

1

2
,

1− S
2(d− 3)

+
1

2

)
− λ1 , (5.81)

where B(a, b) is the beta function (see, e.g., [39], p. 258). According to the
symmetry property of the incomplete beta function,

Bx(a, b) = B(a, b)− B1−x(b, a) , (5.82)

for the massless Fisher solution (S = 0) we have

λ1 = λ2 =
ρo

2(d− 3)
B
(

d− 2

2(d− 3)
,
d− 2

2(d− 3)

)
. (5.83)
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For the Schwarzschild-Tangherlini black hole (S = 1) we have

λ1 =
ro

d− 3
B
(

1

d− 3
+

1

2
,
1

2

)
, λ2 = 0 . (5.84)

In the 4-dimensional case this expression reduces to the well-known result: λ1 =
πM (see [20], p. 836). Let us see how λ1 and λ2 depend on the scalar charge Σ.
Figure 5.2(a) illustrates the maximal proper time λ1 and λ2 as a function of S for
the fixed value of the mass µ = 1. Thus, S = 0 corresponds to infinite value of the
scalar charge σ [see expression (5.33)] and, as a result, λ1 = λ2 → ∞. Note, that
for any d > 4 the maximal proper time λ1 has a local minimum for a certain value
of S ∈ (0, 1).

(a) (b)

Figure 5.2: (a): Maximal proper time λ1,2 as a function of S for the fixed value
of the mass µ = 1 and d = 4, 5, 6. The indices 1 and 2 correspond to λ1 and λ2,
respectively. (b): Area A∗ as a function of S for µ = 1 and d = 4, 5, 6. In any
dimension, the minimal value of A∗ corresponds to S ≈ 0.834 and for S ≈ 0.611
the value of A∗ equals to the horizon surface area of the Schwarzschild-Tangherlini
black hole of µ = M = 1 and Σ = 0, (S = 1).

Let us calculate the area of the marginally trapped surface defined by (5.79).
The areal radius corresponding to ρ∗ is

R∗ ≡ R(ρ∗) = 2
−

1
d−3ρo(1− S)

1−S
2(d−3) (1 + S)

1+S
2(d−3) . (5.85)
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For S = 1 we have R∗ = ρo = ro, which corresponds to the Schwarzschild-

Tangherlini black hole, and for S = 0 we have R∗ = 2
−

1
d−3ρo, which corresponds to

the massless Fisher solution. Thus, the area of the (d− 2)-dimensional marginally
trapped surface is

A∗ =
2Rd−2

∗ π
d−1

2

Γ(d−1
2

)
. (5.86)

Figure 5.2(b) illustrates how this area depends on the value of S for the fixed value
of the mass µ = 1.

5.4.2 Misner-Sharp energy

In a spherically symmetric spacetime the Misner-Sharp energy, which is a space-
time invariant, defines the “local gravitational energy” inside a sphere of the areal
radius R (see, e.g.,[20, 42]). It has many interesting properties (see, e.g., [43]).
In particular, at spatial infinity in an asymptotically flat spacetime it reduces to
the Arnowitt-Deser-Misner energy. For a central singularity, a negative value of
the Misner-Sharp energy implies that the singularity is untrapped and timelike. If
the dominant energy condition holds on an untrapped sphere, the Misner-Sharp
energy is monotonically increasing in outgoing spatial or null directions. As we
shall see below, this is exactly the case for the central singularity at r = ro of
the Fisher spacetime. Here we use the following expression for the Misner-Sharp
energy generalized to a d-dimensional spacetime:

M(r) =
(d− 2)π

d−3

2

8Γ(d−1
2

)
R(r)d−3

[
1− grr(r)

(
dR(r)

dr

)2
]
. (5.87)

For the Fisher spacetime (5.5), r ∈ (ro,∞) we have

R(r) = r

[
1−

(ro
r

)d−3
] 1−S

2(d−3)

, (5.88)

and the Misner-Sharp energy is

M(r) =
(d− 2)π

d−3

2

32Γ(d−1
2

)

rd−3
o

(
4Srd−3 − (1 + S)2rd−3

o

)

r(1−S)
d−3
2 (rd−3 − rd−3

o )
1+S

2

.

(5.89)
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In the limit r →∞ we have M(r)→M . The Misner-Sharp energy (5.89) vanishes
for

r = re = ro(4S)
−

1
d−3 (1 + S)

2
d−3 , re > ro , (5.90)

where S ∈ [0, 1), and it is negative for r ∈ (ro, re). Note that R β̂

α̂β̂α̂
is zero for

r = re [see, (D.4)]. For S = 1, which corresponds to the Schwarzschild-Tangherlini
black hole, we have

M(r) =
(d− 2)π

d−3

2

8Γ(d−1
2

)
rd−3
o = M > 0 . (5.91)

For a negative mass Schwarzschild-Tangherlini spacetime which has naked singu-
larity, M(r) = M < 0 everywhere.

The Misner-Sharp energy (5.87) can be expressed in terms of the trapping
scalar ΘT [see, (5.76)] as follows:

M(r) =
(d− 2)π

d−3

2

8Γ(d−1
2

)
R(r)d−3

[
1 +

2R(r)2

(d− 2)2
ΘT

]
. (5.92)

Thus, it defines a condition when a sphere of the areal radius R is trapped. Another
way to define this condition is to introduce the “local (Newtonian) gravitational
potential energy” associated with M(r) as follows:

U(R) =
4Γ(d−1

2
)M(r)

(d− 2)π
d−3

2 R(r)d−3
. (5.93)

Then, the trapping condition is the following: if U(R) > 1/2 the surface R = const
is trapped, if U(R) = 1/2 the surface is marginally trapped, and if U(R) < 1/2
the surface is untrapped. Figure 5.3 illustrates M(R) and U(R) for d = 4. For
any d > 4, M(R) is monotonically increasing and U(R) has the maximum Um =
U(Rm) = S2/2 6 1/2 4 , where

Rm ≡ R(rm) = ro(2S)
−

1
d−3 (1− S)

1−S
2(d−3) (1 + S)

1+S
2(d−3) , (5.94)

4 Let us note that for a Reisner-Nordström spacetime behavior of the corresponding functions
M(R) and U(R) is qualitatively the same. However, the Misner-Sharp energy is negative in the
region behind the Cauchy horizon, and maximum of U(R) > 1/2, were the equality sign stands
for the extremal Reisner-Nordström spacetime.
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and

rm = ro

(
1 + S

2S

) 1
d−3

, rm > re . (5.95)

For the Schwarzschild-Tangherlini black hole we have Rm = ro. Note that R α̂
r̂α̂r̂

is zero for r = rm [see, (D.3)].

Figure 5.3: Misner-Sharp energy M(R) and the “local (Newtonian) gravitational
potential energy” U(R) for M = 1, S = 1/2, and d = 4. The maximum Um =
U(Rm) corresponds to Rm = 2 · 33/4 and is equal to 1/8.

Let us calculate geometric invariants of the region where M(r) 6 0. The proper
distance corresponding to nonpositive M(r) is

Le =

∫ re

ro+0

dr

[
1−

(ro
r

)d−3
] 1−S

2(d−3)
−

1
2

. (5.96)

Figure 5.4(a) illustrates the proper distance Le as a function of S for the fixed value
of the mass M = 1. According to the figure, the proper distance Le is a monoton-
ically decreasing function of S. This function diverges for S → 0 corresponding to
infinite value of the scalar charge Σ [see expression (5.8)].

Let us calculate the area of the sphere corresponding to zero Misner-Sharp
energy. The areal radius corresponding to re [see, (5.90)] is

Re ≡ R(re) = ro(4S)
−

1
d−3 (1− S)

1−S
d−3 (1 + S)

1+S
d−3 . (5.97)
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(a) (b)

Figure 5.4: (a): Proper distance Le as a function of S for the fixed value of the
mass M = 1 and d = 4, 5, 6. (b): Area Ae as a function of S for M = 1. In any
dimension, the minimal value of Ae corresponds to S ≈ 0.834 and for S ≈ 0.611
the value of Ae equals to the horizon surface area of the Schwarzschild-Tangherlini
black hole of M = 1 and Σ = 0, (S = 1).

For the Schwarzschild-Tangherlini black hole (S = 1) we have Re = ro and for the
massless Fisher solution (S = 0) we have Re → +∞. The area of the (d − 2)-
dimensional sphere corresponding to zero Misner-Sharp energy is

Ae =
2Rd−2

e π
d−1

2

Γ(d−1
2

)
. (5.98)

Figure 5.4(b) illustrates how this area depends on the value of S for the fixed
value of the mass M = 1. It is remarkable that in any dimension d > 4 both
the areas Ae and A∗ [see Fig. 5.2(b)] have minimal values at the same value of
S ≈ 0.834, and for S ≈ 0.611 they are equal to the horizon surface area of the
Schwarzschild-Tangherlini black hole of M = 1 and Σ = 0, (S = 1).

5.4.3 Causal structure

To study the causal structure of the Fisher spacetime and the Fisher universe
we consider first radial null geodesics. We start from the Fisher spacetime (5.5),
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r ∈ (ro,∞) and consider radial null geodesics in the (t, R) plane, where R = R(r)
is the areal radius [see, (5.88)], which is a geometric invariant. Using (5.48) and
(5.49) we present the solution for the radial null geodesics in the following form:

t(r) = ±
∫
dr

[
1−

(ro
r

)d−3
] 1−S

2(d−3)
−

1+S
2

, (5.99)

R(r) = r

[
1−

(ro
r

)d−3
] 1−S

2(d−3)

, (5.100)

where “+” stands for outgoing and “−” stands for ingoing radial null geodesics.
The coordinate t is timelike and the areal radius R(r) is spacelike. Local null cones
are defined by

dt

dR
= ±2r(1+S)

d−3
2

(
rd−3 − rd−3

o

)1−S
2

2rd−3 − (1 + S)rd−3
o

. (5.101)

Figure 5.5: Radial null geodesics in the Schwarzschild-Tangherlini spacetime of
M ′ = 2, Σ′ = 0, [see, (5.31)] and d = 4. The behavior of the geodesics is generic
for other values of d > 4. The black hole event horizon is located at R = ro = 4.
It separates the exterior I and interior II regions. The spacelike singularity is
located at R = r = 0. The direction of local time is illustrated by the future null
cones.
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Figure 5.6: Radial null geodesics in the Fisher spacetime of M = 1, S = 1/2,
and d = 4. The behavior of the geodesics is generic for other values of d > 4
and S ∈ [0, 1). The areal radius corresponding to zero value of the Misner-Sharp
energy is given by Re = 3

√
3/2. The timelike singularity is located at R(ro) = 0.

The direction of local time is illustrated by the future null cones.

The radial null geodesics in the Fisher universe (5.34) can be derived by ap-
plying the transformations (5.32) to expressions (5.99) and (5.100), or directly by
using (5.60) and (5.61),

τ(ρ) = ∓
∫
dρ

[(
ρo
ρ

)d−3

− 1

] 1−S
2(d−3)

−
1+S

2

, (5.102)

R(ρ) = ρ

[(
ρo
ρ

)d−3

− 1

] 1−S
2(d−3)

, (5.103)

where “−” stands for outgoing and “+” stands for ingoing radial null geodesics.
The coordinate τ is spacelike and the areal radius R(ρ) is timelike. The local null
cones are defined by

dR

dτ
= ∓1

2
ρ−(1+S)

d−3
2

(1 + S)ρd−3
o − 2ρd−3

(ρd−3
o − ρd−3)

1−S
2

. (5.104)

This expression vanishes at ρ = ρ∗ which corresponds to the marginally trapped
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Figure 5.7: Radial null geodesics in the Fisher universe of µ = 1, S = 1/2, and
d = 4. The behavior of the geodesics is generic for other values of d > 4 and
S ∈ [0, 1). The marginally trapped surface is located at R∗ = 33/4. The spacelike
singularities corresponding to ρ = ρo and ρ = 0 are located at R = 0. The
direction of local time is illustrated by the future null cones.

surface (5.79).

The radial null geodesics corresponding to S = 1 are illustrated in Fig. 5.5. To
construct a similar picture for the radial null geodesics corresponding to S ∈ [0, 1)
we define the direction of time in the Fisher universe in accordance with the
Schwarzschild-Tangherlini black hole interior (see region II in Fig. 5.5). Namely,
for S = 1 the timelike coordinate ρ = ρo = ro is past and ρ = r = 0 is future. We
shall keep this convention for other values of S ∈ [0, 1). The radial null geodesics
in the Fisher spacetime and the Fisher universe are illustrated in Figs. 5.6 and 5.7,
respectively.

The Fisher universe is an anisotropic universe whose topology is R
1
τ×R

1
ρ×S

d−2.
At the moment of its “Big Bang” (ρ = ρo) the Fisher universe is a point of zero
proper (d−1)-dimensional volume. It begins to expand in all spatial directions and
at the moment ρ = ρ∗ [see, (5.79)] its boundary area along the angular directions
reaches the maximal value A∗ [see, (5.86)], and the universe begins to contract in
the angular directions and continues to expand in the spatial τ direction. At the
moment of its “Big Crunch” (ρ = 0) its boundary area along the angular directions
vanishes and its expansion along the τ direction diverges.

The causal structure of the Fisher solution can be summarized in the corre-
sponding Penrose diagrams (see Figs. 5.9 and 5.10). For comparison, we present
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Figure 5.8: Penrose diagram for the maximally extended Schwarzschild-Tangherlini
spacetime. Each interior point in the diagram represents a (d − 2)-dimensional
sphere.

the Penrose diagram of the Schwarzschild-Tangherlini spacetime (see Fig. 5.8).
The topology of the spacelike singularity located at r = 0 is R

1
t × S

d−2 5 . Fig-
ure 5.9 represents the region conformal to the Fisher spacetime (3.25), r ∈ (ro,∞).
It is asymptotically flat and has timelike curvature singularity at r = ro. The
topology of the timelike singularity located at r = ro is R

1
t for S ∈ [0, 1/(d− 2)),

and R
1
t × S

d−2 for S ∈ [1/(d− 2), 1). Figure 5.10 represents the region conformal
to the Fisher universe (5.34). The coordinate ρ and the corresponding “tortoise
coordinate,” which is given by the right-hand side of (5.102), take finite values,
whereas τ ∈ (−∞,∞). There is no conformal transformation which makes the
infinite interval τ ∈ (−∞,∞) finite and does not shrink the finite interval of the
tortoise coordinate to a point, thus inducing a coordinate singularity 6 . Here we
present spacelike infinities τ → ±∞ by two disjoint points I0. The spacetime
singularities of the Fisher universe located at ρ = ρo and ρ = 0 are both space-
like. The topology of the spacelike singularities located at ρ = ρo and at ρ = 0 is
R

1
τ × S

d−2. According to the time direction convention the singularity at ρ = ρo
is in the past and the singularity ρ = 0 is in future. Thus, any causal curve in
the Fisher universe originates at ρ = ρo and terminates at ρ = 0. As a result, for
geodesic families of observers both particle and event horizons exist. The geodesic
of one such observer O and the corresponding past and future event horizons are
shown in the diagram.

5 Here, and in what follows by topology of a spacetime singularity, we mean topology of ideal
points of a spacetime which represent the singularity (see, e.g., [2, 44]).

6 A similar problem arises in the construction of the Penrose diagram of the anti-de Sitter
spacetime (see, [2], p. 133 and Fig. 20).
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Figure 5.9: Penrose diagram for the Fisher spacetime. Each interior point in the
diagram represents a (d− 2)-dimensional sphere.

5.5 Isometric embedding

One of the ways to study geometry of a d-dimensional (pseudo-)Riemannian space
which has an analytic metric of signature p − q 6 d is to construct its isomet-
ric embedding into a D-dimensional (pseudo-)Euclidean space with the signature
r − s 6 D. A local analytic isometric embedding is always possible if the dimen-
sion of the (pseudo-)Euclidean space of the signature r − s is D = d(d + 1)/2
and r > p, s > q , [45]. For a global isometric embedding the dimension D gener-
ally should be greater [46]. For example, a 4-dimensional Schwarzschild solution

Figure 5.10: Penrose diagram for the Fisher universe. Each interior point in the
diagram represents a (d− 2)-dimensional sphere. The marginally trapped surface
of the Fisher universe is schematically illustrated by the infinite line ρ = ρ∗.
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whose metric has the signature 3 − 1 = 2 can be isometrically embedded into
a 6-dimensional pseudo-Euclidean space of the signature 5 − 1 = 4 [47]. Ex-
amples of isometric local and sometimes global embeddings of some 4-dimensional
Lorentzian spacetimes into pseudo-Euclidean spaces of higher dimensions are given
in [48]. When dealing with spacetimes of the general theory of relativity one has
usually d > 4 and higher values of D. Thus, having an embedding it is impossible
to construct the corresponding visual picture illustrating the spacetime geometry.
However, if a spacetime has symmetries defined by its Killing vectors, one can
study its geometry by considering embeddings of the spacetime (hyper)surfaces
orthogonal to the orbits of its Killing vectors. In the case if such a 2-dimensional
surface exists, one can construct a 3-dimensional picture illustrating its isometric
local embedding.

Here we shall consider local isometric embeddings of 2-dimensional subspaces
of the Fisher spacetime and the Fisher universe. Both the spacetimes have a set
of Killing vectors which allows us to study their geometry by considering embed-
ding of the corresponding 2-dimensional subspaces. The geometry of the Fisher
spacetime (5.5), r ∈ (ro,∞) and the Fisher universe (5.34) is the same for any
value of the coordinate t and τ , respectively. In addition, the spacetimes spherical
symmetry implies that any 2-dimensional surface defined by t = const (τ = const)
and θα = const, α = 3, ..., d − 1, where θα ∈ [0, π] and φ ∈ [0, 2π) are d − 2 (hy-
per)spherical coordinates, has the same geometry. Thus, to visualize the geometry
of the spacetimes we present local isometric embeddings of their 2-dimensional
subspaces defined by t = const (τ = const) and θα = π/2, α = 3, ..., d− 1.

Let us begin with the Fisher spacetime (5.5) whose 2-dimensional subspace
metric is given by

ds2 = F
1−S
d−3

−1
dr2 + r2F

1−S
d−3 dφ2, (5.105)

where r ∈ (ro,∞) and F is given by (5.6). Let us embed this surface into a
3-dimensional Euclidean space endowed with the following metric:

dl2 = dZ2 + dR2 +R2dφ2, (5.106)

where (Z,R, φ) are the cylindrical coordinates. To construct the embedding we
consider the following parametrization of the surface:

Z = Z(r), , R = R(r). (5.107)

Thus, the surface metric in the cylindrical coordinates takes the following form:

dl2 = (Z2
,r +R2

,r)dr
2 +R(r)2dφ2. (5.108)
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Matching the metrics (5.105) and (5.108) we derive the following embedding map:

R(r) = r

[
1−

(ro
r

)d−3
] 1−S

2(d−3)

, (5.109)

Z(r) = r
d−3
2

o

∫
dr

[4Srd−3 − (1 + S)2rd−3
o ]

1
2

2r
1−S

2 (rd−3 − rd−3
o )

1−
1−S

2(d−3)

. (5.110)

We see that for r ∈ (ro, re), where re is given by (5.90), the coordinate Z(r)
is imaginary. Thus, the corresponding region of the surface cannot be isometri-
cally embedded in this way into the 3-dimensional Euclidean space. Note that the

Misner-Sharp energy (5.89) and R β̂

α̂β̂α̂
(D.4) are negative in this region.

Although the region r ∈ (ro, re) cannot be isometrically embedded in this
way into the 3-dimensional Euclidean space, we can embed it isometrically into
3-dimensional pseudo-Euclidean space endowed with the following metric:

dl2 = −dZ2 + dR2 +R2dφ2, (5.111)

where Z is a timelike coordinate. Repeating the steps above we derive the corre-
sponding embedding map

R(r) = r

[
1−

(ro
r

)d−3
] 1−S

2(d−3)

, (5.112)

Z(r) = r
d−3
2

o

∫
dr

[(1 + S)2rd−3
o − 4Srd−3]

1
2

2r
1−S

2 (rd−3 − rd−3
o )

1−
1−S

2(d−3)

. (5.113)

Embeddings of the surfaces corresponding to S = 1 and S = 1/2 are presented in
Figs. 5.11(a) and 5.11(b), respectively. In the case of the Fisher spacetime, the
region between Re [see, (5.97)] and asymptotic infinity (R → ∞) corresponds to
positive Misner-Sharp energy. The region between R(ro) and Re corresponds to
negative Misner-Sharp energy. At the convolution point Rm [see, (5.94)] we have
Z,R = S/

√
1− S2. For S = 0 we have Re → ∞ and the Misner-Sharp energy is

negative everywhere.

Let us now consider the Fisher universe (5.34) whose 2-dimensional subspace
metric is given by

ds2 = −Φ
1−S
d−3

−1
dρ2 + ρ2Φ

1−S
d−3 dφ2, (5.114)
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(a) (b)

Figure 5.11: Embedding diagrams for d = 4. (a): Exterior region of the
Schwarzschild-Tangherlini black hole of M ′ = 2 and Σ′ = 0, [see, (5.31)]. The
dashed circle of the radius R(ro) = ro represents its event horizon. (b): Fisher
spacetime corresponding to M = 1 and S = 1/2. The point R(ro) = 0 represents
the naked timelike singularity. The dotted circle of the radius Re represents the
region where the Misner-Sharp energy is zero. The dashed circle of the radius Rm

represents the region where the “local (Newtonian) gravitational potential energy”
U(R) is minimal (see Fig. 5.3). The diagrams are qualitatively generic for other
values of d > 4.

where ρ ∈ (0, ρo) and Φ is given by (5.35). This surface can be isometrically
embedded into a 3-dimensional pseudo-Euclidean space endowed with the following
metric:

dl2 = −dZ 2 + dR2 + R
2dφ2, (5.115)

Matching the metrics (5.114) and (5.115) we derive the following embedding map:

R(ρ) = ρ

[(
ρo
ρ

)d−3

− 1

] 1−S
2(d−3)

, (5.116)

Z (ρ) = ρ
d−3
2

o

∫
dρ

[(1 + S)2ρd−3
o − 4Sρd−3]

1
2

2ρ
1−S

2 (ρd−3
o − ρd−3)

1−
1−S

2(d−3)

. (5.117)

Embeddings of the surfaces corresponding to S = 1 and S = 1/2 are presented in
Figs. 5.12(a) and 5.12(b), respectively.

We shall discuss the embedding diagrams in the following section.
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(a) (b)

Figure 5.12: Embedding diagrams for d = 4. (a): Interior region of the
Schwarzschild-Tangherlini black hole of M ′ = 2 and Σ′ = 0, [see, (5.31)]. The
dashed circle R(ρo) = ρo = ro represents its event horizon and the point R(0) = 0
represents its spacelike singularity. (b): Fisher universe corresponding to µ = 1
and S = 1/2. The points R(ρo) = 0 and R(0) = 0 represent its spacelike singular-
ities corresponding to the universe’s Big Bang and Big Crunch, respectively. The
dashed circle of the radius R∗ represents the marginally trapped surface (5.85).
For S = 0 the diagram is symmetric with respect to the circle. The diagrams are
qualitatively generic for other values of d > 4.

5.6 The Fisher spacetime and the Fisher uni-

verse

So far we were considering the Fisher spacetime and the Fisher universe separately.
This approach is based on the fact that the Fisher solution is singular at r = ro
(ρ = ρo) and the disconnected parts of the Fisher manifold, which represent the
Fisher spacetime and the Fisher universe, seem to not be related to each other.
However, we can show that there are certain relations between some geometric
quantities of the Fisher spacetime and the Fisher universe. Namely, if we consider
expressions (5.79), (5.90), and (5.95), we observe that the following relation holds:

ρ∗
ρo

=
re
rm

=

(
1 + S

2

) 1
d−3

. (5.118)
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In the limit S → 1 we have ρ∗ = ρo = re = rm, where ρo = ro defines the event
horizon of the Schwarzschild-Tangherlini black hole which is dual to the Fisher
solution. There is an analogous relation between surface areas corresponding to
ρ∗, re, rm and the area AEH of the black hole event horizon surface (r = ro = ρo)
[see Eqs. (5.85),(5.86),(5.94),(5.97), and (5.98)],

A∗

AEH
=
Ae
Am

=

[
1

2
(1− S)

1−S
2 (1 + S)

1+S
2

]d−2
d−3

. (5.119)

In the limit S → 1 we have A∗ = AEH = Ae = Am. In addition, in Sec. IV
we found that in any dimension d > 4 both the areas Ae and A∗ calculated for
the fixed value of the mass M = µ = 1 have minimal values at the same value of
S ≈ 0.834, and for S ≈ 0.611 they are equal to the horizon surface area of the
Schwarzschild-Tangherlini black hole of M = 1 and Σ = 0 [see Figs. 5.2(b) and
5.4(b)].

An analysis of the Kretschmann invariant (D.5) shows that there is another
property which holds for any member of the Fisher family of solutions correspond-
ing to S ∈ [0, 1). Namely, the ratio of the Kretschmann invariant to the corre-
sponding squared Ricci scalar (5.45) calculated at ρ = ρ∗, r = re, and r = rm does
not depend on S and M (or µ),

K
R2

∣∣∣∣
ρ=ρ∗

=
2(2d− 5)

(d− 2)(d− 3)
, (5.120)

K
R2

∣∣∣∣
r=re

=
d

d− 2
, (5.121)

K
R2

∣∣∣∣
r=rm

=
2(2(d− 2)2 − 1)

(d− 2)(d− 3)
, (5.122)

where S ∈ [0, 1). Thus, these ratios, as well as ro, are invariants of the duality
transformation (5.27) corresponding to S ∈ [0, 1).

The relations (5.118), (5.119) may seem “natural” because both the Fisher
spacetime and the Fisher universe originate from the same metric (5.5). However,
such relations may have deeper roots. Our analysis of the Fisher solution yields
the following results. The Schwarzschild-Tangherlini black hole solution follow
from the same action (3.21), and it is dual to the Fisher solution. The duality
transformation (5.27) maps the exterior region of the Schwarzschild-Tangherlini
black hole r ∈ (ro,∞) into the Fisher spacetime r ∈ (ro,∞) and the interior
region of the black hole r ∈ (0, ro) into the Fisher universe ρ ∈ (0, ρo). Such a map
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may be visualized with the help of the embedding diagrams presented in Figs. 5.11
and 5.12 in Sec. V. Namely, according to expressions (5.85),(5.88),(5.94), and
(5.97) we have

R∗|S→1 = Rm|S→1 = Re|S→1 = R(ro) = ro . (5.123)

This expression implies that in the limit, which corresponds to zero value of the
scalar charge, the region between the dashed circle of the radius Rm and the
point R(ro) = 0 in Fig. 5.11(b) maps into the circle of the radius R(ro) = ro in
Fig. 5.11(a), and the region between the dashed circle of the radius R∗ and the
point R(ρo) = 0 in Fig. 5.12(b) maps into the circle of the radius R(ρo) = ρo
in Fig. 5.12(a). Both the circles in Figs. 5.11(a) and 5.12(a) represent the event
horizon of the Schwarzschild-Tangherlini black hole, i.e., R(ro) = ro = R(ρo) =
ρo. Thus, the region of the Fisher spacetime between the (d − 2)-dimensional
sphere of the areal radius Rm and the timelike naked singularity at r = ro and
the region of the Fisher universe between the spacelike naked singularity at ρ = ρo
and the marginally trapped surface at ρ = ρ∗ map into the event horizon of the
Schwarzschild-Tangherlini black hole. Note that this is not a one-to-one map.

5.7 Summary and discussion

In this Chapter we studied the d-dimensional generalization of the Fisher solu-
tion, which has a naked curvature singularity that divides the Fisher manifold
into two disconnected parts, the Fisher spacetime and the Fisher universe. The
d-dimensional Schwarzschild-Tangherlini solution and the Fisher solution follow
from the same action (5.1) and are dual to each other. The duality transforma-
tion (5.27) maps the exterior region of the Schwarzschild-Tangherlini black hole
into the Fisher spacetime, which has a naked timelike singularity, and the interior
region of the black hole into the Fisher universe, which is an anisotropic expanding-
contracting universe and which has two spacelike singularities representing its Big
Bang and Big Crunch. The Big Bang singularity and the singularity of the Fisher
spacetime are radially weak in the sense that a 1-dimensional object moving along a
timelike radial geodesic can arrive at the singularities intact. These results and the
relations between geometric quantities of the Fisher spacetime, the Fisher universe
and the Schwarzschild-Tangherlini black hole presented in Sec. VI may suggest the
following scenario. The massless scalar field, which according to the results of Sec.
III contracts the spacetime in the angular directions, transforms the event horizon
of the Schwarzschild-Tangherlini black hole into the naked radially weak disjoint
singularities of the Fisher spacetime and the Fisher universe which are “dual to
the horizon.” The properties of the Fisher solution presented above may suggest
that one could “join” the Fisher spacetime and the Fisher universe together. If
such a “junction” is possible, then a 1-dimensional object traveling along a radial
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geodesic can pass through the timelike naked singularity of the Fisher spacetime
and emerge out of the Big Bang singularity into the Fisher universe.

One may think of how to construct a junction between the Fisher spacetime
and the Fisher universe. As it was mentioned at the end of Sec. III, one may
suggest a C0 local extension of the 2-dimensional (t, r) and (τ, ρ) spacetime sur-
faces through the singularities which could provide a junction between the Fisher
spacetime and the Fisher universe. However, this does not solve the problem com-
pletely, as far as it may provide a 2-dimensional junction only. Thus, one may try
to look for other possibilities. For example, in a domain of Planckian curvatures,
K ∼ l−4

P l = c6/(~G)2 ≈ 1.47 × 10139m−4, quantum effects can be dominant and
may “smooth out” curvature singularities. If this is indeed true, then we may
expect that the Fisher spacetime and the Fisher universe may be physically (in the
quantum way) joined together. Another way to smooth out the singularities is to
consider the Einstein action with higher curvature interactions which are dominant
near a spacetime curvature singularity and may remove it. However, there are ar-
guments based on ground state stability which imply that curvature singularities
(eternal and timelike) play a useful role as being unphysical [49]. For example, the
timelike singularity of the negative mass Schwarzschild solution, if smoothed out,
would give us a negative energy regular solution. As a result, Minkowski space-
time would not be stable. In the case of the Fisher solution, which is a nonvacuum
solution, there is a compact region near the singularity (which can be arbitrary
small) where the Misner-Sharp energy is negative. However, the energy conditions
are not violated. Thus, the singularity of the Fisher spacetime may be “physical.”

How generic can the properties of the Fisher solution be? According to a the-
orem presented in [50] for 4-dimensional spacetime, any static, asymptotically flat
solution to Eqs. (5.3) and (5.4) with ϕ 6= 0 has a singular, simply connected
event horizon defined by k2 = 0, where −k2 is the squared norm of the timelike
Killing vector δat [see, (5.18)]. The event horizon remains singular if a solution to
Eqs. (5.3) and (5.4) with ϕ 6= 0 is not asymptotically flat. For example, apply-
ing the duality transformation (5.25) to a 4-dimensional axisymmetric distorted
Schwarzschild black hole discussed in [51], we can construct the corresponding
axisymmetric distorted Fisher solution. There are other 4-dimensional singular so-
lutions with a massless scalar field which are generalizations of the Fisher solution.
These are the Penney solution, which is a generalization of the Reissner-Nordström
solution in the presence of the massless scalar field [52] and the Kerr solution with
the addition of the massless scalar field [3]. These solutions indicate that the mass-
less scalar field transforms the event horizon into a naked singularity. Whether the
naked singularity in these solutions is radially weak and the solutions have proper-
ties similar to the Fisher solution is an open question. We believe that it is likely
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to be the case.

Finally, one can ask if the Fisher solution is physical indeed. This question can
be divided into two parts. The first part is whether such a solution can be consid-
ered as a result of a gravitational collapse, disproving cosmic censorship conjecture.
Spherical gravitational collapse of a massless scalar field (without scalar charge)
was studied, e.g., in [53, 54]. It was found that in some cases naked singularities
do appear. However, later it was shown that formation of the naked singulari-
ties is an unstable phenomenon [55]. An alternative to gravitational collapse is
the existence of primordial singularities (see, e.g., [56]). The second part of the
question is concerned with the stability of the Fisher solution. To the best of our
knowledge this issue is open. The related problem of stability of the negative mass
Schwarzschild solution under linearized gravitational perturbations was discussed
in [57]. It was found that for a physically preferred boundary conditions corre-
sponding to the perturbations of finite energy the spacetime is stable. A different
conclusion concerning to stability of the negative mass Schwarzschild solution had
been reached in [58]. It would be interesting to study the stability of the Fisher
spacetime singularity.

We hope that in the future more can be said about the issues discussed here.
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Chapter 6

Conclusion

In this thesis we have considered two different gravitational objects, a 5-dimensional
distorted black hole and a d-dimensional naked singularity. In Chapter 3 we studied
how the distortion generated by a static, neutral, external distribution of matter
affects the horizon and the exterior and interior regions of a static, vacuum, 5-
dimensional Schwarzschild-Tangherlini black hole. The solution is presented in the
generalized Weyl form and admits three Killing vectors. Therefore, it represents
a static, U(1) × U(1) symmetric 5-dimensional black hole. We have shown that
the 4-dimensional and 5-dimensional distorted black holes exhibit common prop-
erties, i.e., their features are similar although different in details. For example,
the following properties are observed for both the static, axisymmetric, vacuum,
distorted 4-dimensional black hole and the static, U(1)×U(1) symmetric, vacuum,
5-dimensional distorted black hole. There exist a certain duality relation between
the horizon surface of such a distorted black hole and surface of its “stretched” sin-
gularity (3.161). The boundary of the “stretched” singularity for the 5-dimensional
Shwarzschild-Tangerlini black hole or the distorted 5-dimensional black hole is a
surface of constant proper time. Namely, the topology of the boundary of the
“stretched” singularity does not change under the effect of the distortion. Also,
it is proved that the Kasner-like behavior of the distorted 5-dimensional black
is the same as the undistorted Schwarzschild-Tangherlini one. It might be that
these properties are due to the specific symmetry of the Weyl form of solutions
in both four and five dimensions. We derived an expression for the space-time
Kretschmann invariant K calculated on the horizon of a 5-dimensional, asymmet-
ric, vacuum black hole in terms of the trace of the square of the Ricci tensor
RABRAB of the 3-dimensional horizon surface (3.145).

In Chapter 4 we have constructed the solution representing a distorted 5-
dimensional electrically charged static, U(1) × U(1) symmetric black hole. There
exists a certain duality relation between the outer horizon surface of such a dis-
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torted black hole and the surface of its inner horizon. We derived an expression
for the Kretschmann invariant K calculated on the horizon of a 5-dimensional,
asymmetric, electrically charged black hole in terms of the electromagnetic field
invariant F 2 calculated on the black hole horizon and the geometric invariants of
the horizon surface, i.e., the 3-dimensional Ricci scalar R, and the trace of the
square of the Ricci tensor RABRAB (4.114). This is the generalization of relation
(3.145) for a vacuum, static, asymmetric 5-dimensional black hole presented in
Chapter 3.

In Chapter 5 we have considered the d-dimensional Fisher solution which rep-
resents a static, spherically symmetric, asymptotically flat space-time with a mass-
less scalar field. The solution has two parameters, the mass M and the “scalar
charge” Σ. The Fisher solution has a naked curvature singularity which divides
the spacetime manifold into two disconnected parts. The part which is asymp-
totically flat we call the Fisher spacetime, and another part we call the Fisher

universe. The d-dimensional Schwarzschild-Tangherlini solution and the Fisher
solution belong to the same theory and are dual to each other. The duality trans-
formation acting in the parameter space (M,Σ) maps the exterior region of the
Schwarzschild-Tangherlini black hole into the Fisher spacetime which has a naked
timelike singularity, and interior region of the black hole into the Fisher universe,
which is an anisotropic expanding-contracting universe and which has two space-
like singularities representing its “Big Bang” and “Big Crunch”. The Big Bang
singularity and the singularity of the Fisher spacetime are radially weak in the sense
that a 1-dimensional object moving along a timelike radial geodesic can arrive to
the singularities intact. At the vicinity of the singularity the Fisher spacetime
of nonzero mass has a region where its Misner-Sharp energy is negative. The
Fisher universe has a marginally trapped surface corresponding to the state of its
maximal expansion in the angular directions. These results and derived relations
between geometric quantities of the Fisher spacetime, the Fisher universe, and the
Schwarzschild-Tangherlini black hole may suggest that the massless scalar field
transforms the black hole event horizon into the naked radially weak disjoint sin-
gularities of the Fisher spacetime and the Fisher universe which are “dual to the
horizon.”
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Appendix A

Gaussian curvatures

The Gaussian curvatures (3.100)–(3.102) corresponding to the 3-dimensional hori-
zon surface defined by the metric (3.97) are the following:

K+φ = N
(

1 + 4w+,θθ − 8w2
+,θ − 4u+,θw+,θ −

2 sin θ

1 + cos θ
(u+,θ + 3w+,θ)

)
,

(A.1)

K+χ = N
(

1 + 4u+,θθ − 8u2
+,θ − 4u+,θw+,θ +

2 sin θ

1− cos θ
(w+,θ + 3u+,θ)

)
,

(A.2)

K+θ = N
(

1− 4u+,θw+,θ −
2

sin θ
(u+,θ − w+,θ) + 2 cot θ(u+,θ + w+,θ)

)
,

(A.3)

where N = e−2(u+(θ)+w+(θ)+u1+w1).
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Appendix B

Û , Ŵ , and V̂ near the horizon and

singularity

To study the behavior of the distortion fields Û , Ŵ , and V̂ near the distorted
black hole horizon and singularity, it is convenient to use the ψ coordinate. We
can expand the distortion fields given by the exact solutions (3.45)–(3.51) of the
Einstein equations near the black hole horizon and singularity. However, to derive
a simple form of such expansions, it is easy to construct an approximate solutions
to the Einstein equations (3.34)–(3.36). Using Eq. (3.62) we present Eq. (3.34) in
the following form:

DψX̂(ψ, θ) = DθX̂(ψ, θ) , X̂ := (Û , Ŵ ) , (B.1)

where
Dσ := ∂2

σ + cotσ∂σ , σ := (ψ, θ) . (B.2)

The black hole horizon and singularity correspond to ψ = 0 and ψ = π, respec-
tively. To consider both the cases simultaneously we denote ψ+ := ψ − 0 = ψ and
ψ− := π − ψ. According to Eq. (3.45), the function X̂ is an even function of ψ±.
Thus, near the horizon and the singularity it has the following expansion:

X̂(ψ, θ) =

∞∑

k=0

X
(2k)
± (θ)ψ2k

± . (B.3)
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Using the series expansion for cotψ± (see, e.g., [39], p. 75)

cotψ± = ψ−1
±

[
1−

∞∑

m=1

C2mψ
2m
±

]
, (B.4)

C2m =
(−1)m−122mB2m

(2m)!
, |ψ±| < π , (B.5)

where B2m are the Bernoulli numbers

B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
. . . , (B.6)

we derive

Dψ±
ψ2k
± = 4k2ψ

2(k−1)
± − 2k

∞∑

m=1

C2mψ
2(k+m−1)
± . (B.7)

Substituting expansion (B.3) into Eq. (B.1) and using Eq. (B.7) we derive the

following recurrence relations for X
(2k)
± (θ):

X
(0)
± = x±(θ) + x0 ,

X
(2)
± =

1

4
(x±,θθ + cot θx±,θ) , (B.8)

...

X
(2k+2)
± =

1

4(k + 1)2

[
DθX

(2k)
± + 2

k∑

m=1

(k −m+ 1)C2mX
(2(k−m+1))
±

]
,

k = 0, 1, 2, . . . . (B.9)

Here x± := (u±, w±) and x0 := (u0, w0) (see Eqs. (3.70), (3.71), (3.73), and (3.74)).

The asymptotic expansion of the distortion field V̂ , which is an even function
of ψ±, near the horizon and the singularity can be written in the form

V̂ (ψ, θ) =
∞∑

k=0

V
(2k)
± (θ)ψ2k

± . (B.10)

Substituting this expansion together with expansion (B.3) of the distortion fields

Û and Ŵ into equation (3.35) (with η replaced by ψ, according to (3.62)) we can
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determine the functions V
(2k)
± (θ). The first two of these functions are the following:

V
(0)
+ = −3

2
(u0 + w0)−

1

2
(u1 + w1) ,

V
(2)
+ =

1

4
(2u2

+,θ + u+,θw,+θ + w2
+,θ)−

u+,θ − w+,θ

4 sin θ
− 3

4
cot θ(u+,θ + w+,θ) ,

...

V
(0)
− =

1

2
[u1 + w1 − 3(u0 + w0)]− 3(u−(θ) + w−(θ)) ,

V
(2)
− =

1

4
(2u2

−,θ + u−,θw−,θ + w2
−,θ)−

u−,θ − w−,θ

4 sin θ
− 3

4
(u−,θθ + w−,θθ) ,

... (B.11)
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B.1 Geodesics near the singularity

For a free particle moving in a 5-dimensional distorted black hole interior there
exist three integrals of motion related to the Killing vectors (3.25), the energy

E := −pT = −ξα(T )pα , (B.1)

and the angular momenta

Lχ := pχ = ξα(χ)pα , Lφ := pφ = ξα(φ)pα . (B.2)

which correspond to the “axes” θ = π and θ = 0, respectively. The other five
constants of motion that characterize geodesic motion in the black hole interior
are L0, the limiting value of L = [r0 sin(ψ−/2)]2θ̇ at the singularity ψ− = 0 (with
ψ− = π−ψ), and θ0, t0, χ0, and φ0, the limiting values of θ, t, χ, and φ, respectively,
at the singularity. For the Schwarzschild-Tangherlini black hole metric (21), L =
r2θ̇ is a constant of motion, but for a distorted black hole it is not. However, it
does have a finite limiting value L0 at the singularity that may be taken to be a
characteristic value for the entire geodesic and hence a constant of motion.

Consider an initial point with coordinates (ψ−i, θi, ti, χi, φi) near the singularity
of the distorted black hole (ψ−i ≪ 1). The proper time τ to fall from this point
to the singularity depends on the location of the point and also on the geodesic
constants of motion E, Lχ, Lφ, and L0. One can show that the maximal proper
time from the point to the singularity corresponds to E = Lχ = Lφ = L0 = 0. We
shall call the corresponding geodesic “radial”. For the “radial” geodesic (t, χ, φ) =
const, along the geodesic, so t0 = ti, χ0 = χi, and φ0 = φi. In the Schwarzschild-
Tangherlini black hole, θ would also be constant for a radial geodesic (which has
L = 0 all along it), so there θ0 = θi, but for a distorted black hole neither L nor
θ is constant, so θ0 6= θi, though θ0 is uniquely determined by the initial point
(ψ−i, θi, ti, χi, φi) and is actually a function only of ψ−i and θi for a fixed distorted
black hole metric. This “radial” geodesic is a geodesic of the 2-dimensional metric

dγ2 = B−(dθ2 − dψ2
−) , (B.3)

obtained by the dimensional reduction (T, χ, φ) = const of the metric (3.146).
The Christoffel symbols for the metric (B.3) are

Γ
ψ−

ψ−ψ−
= Γθ θψ−

= Γ
ψ−

θθ =
B−,ψ−

2B−

,

Γθ ψ−ψ−
= Γθ θθ = Γ

ψ−

θψ−
=
B−,θ

2B−

. (B.4)
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Thus, the geodesic equation

ẍα + Γαβγ ẋ
β ẋγ = 0 (B.5)

for the metric (B.3) takes the following form:

2B−ψ̈− +B−,ψ−
(ψ̇2

− + θ̇2) + 2B−,θψ̇−θ̇ = 0 , (B.6)

2B−θ̈ +B−,θ(ψ̇
2
− + θ̇2) + 2B−,ψ−

ψ̇−θ̇ = 0 . (B.7)

Here the over dot denotes the derivative with respect to the proper time τ . These
equations obey the constraint

B−(ψ̇2
− − θ̇2) = 1 , (B.8)

that is, the normalization condition uαu
α = −1 for the 5-velocity uα.

Expansion (3.147) for the metric function B− near the singularity in the leading
order in ψ− is

B− ≈
ψ2
−

16
e−4(u−(θ)+w−(θ)−u1−w1) . (B.9)

Substituting this expression into the geodesic equations (B.6), (B.7), and the con-
straint (B.8), we derive

ψ−ψ̈− + ψ̇2
− + θ̇2 − 4(u−,θ + w−,θ)ψ−ψ̇−θ̇ ≈ 0, (B.10)

ψ−θ̈ − 2(u−,θ + w−,θ)ψ−(ψ̇2
− + θ̇2) + 2ψ̇−θ̇ ≈ 0, (B.11)

e−4(u−(θ)+w−(θ)−u1−w1)ψ2
−(ψ̇2

− − θ̇2) ≈ 16 . (B.12)

According to expression (B.9), the order of approximation in the geodesic equations
(B.10)–(B.12) corresponds to the order of approximation of the metric (3.146).

We use the shift freedom of the proper time τ to set τ = 0 at the singularity for
each of the “radial” geodesics approaching the singularity (see footnote 3). The
point τ = 0 is a singular point of equations (B.10)-(B.12). To find an approxi-
mate solution to the geodesic equations near the singular point, one can apply the
method of asymptotic splittings described in [2]. A “radial” geodesic approaching
the singularity is uniquely determined by the limiting value θ = θ0 at τ = 0. The
asymptotic expansions of ψ− and θ near τ = 0 have the following form:

ψ− = 2
√

2 τ̃ 1/2 +
3√
2
f 2
,θ(θ0) τ̃

3/2 +O(τ̃ 5/2) , (B.13)

θ = θ0 + 2f,θ(θ0) τ̃ +O(τ̃ 2) , (B.14)

where τ̃ = ef(θ0)τ and f(θ) = 2(u−(θ) + w−(θ)− u1 − w1).
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Appendix C

The Einstein and the

Klein-Gordon Equations

The Einstein equations (5.3) for a static, spherically symmetric metric of the form

ds2 = −eAdt2 + eBdr2 + eCdΩ2
(d−2) , (C.1)

where A,B,C are functions of r, reduce to

2A,rr + A,r[A,r − B,r + (d− 2)C,r] = 0 , (C.2)

C,r[2A,r + (d− 3)C,r]− 4(d− 3)eB−C =
4ϕ2

,r

d− 3
, (C.3)

A,rrC,r − C,rrA,r + 2(d− 3)A,re
B−C = 0 . (C.4)

The Klein-Gordon equation (5.4) for the static, spherically symmetric scalar field
ϕ = ϕ(r) is (

e
1

2
[A−B+(d−2)C]ϕ,r

)
,r

= 0 . (C.5)

Integrating this equation with an appropriate constant of integration we derive

ϕ,r =
4(d− 3)Γ(d−1

2
)Σ

(d− 2)π
d−3

2

e−
1
2
[A−B+(d−2)C] . (C.6)

A substitution of Eq. (C.6) into Eq. (C.3) gives a closed system of equations for
the metric functions A,B,C.
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Appendix D

The Riemann Tensor and the

Kretschmann Invariant

The Riemann tensor components for the metric (5.5) defined in a local orthonormal
frame are (no summation over α̂)

R r̂
t̂r̂t̂ = − S

1− S2

R

rd−3
o

[
2rd−3 − (1 + S)rd−3

o

]
, (D.1)

R α̂
t̂α̂t̂ = −

R , r̂

t̂r̂t̂

d− 2
, (D.2)

R α̂
r̂α̂r̂ = −R

[
2Srd−3 − (1 + S)rd−3

o

]

(1− S2)(d− 2)rd−3
o

, (D.3)

R α̂
β̂α̂β̂

=
R
[
4Srd−3 − (1 + S)2rd−3

o

]

(1− S2)(d− 2)(d− 3)rd−3
o

, (D.4)

where R is the Ricci scalar (5.45) and the indices α̂, β̂ = 3, ..., d stand for orthonor-
mal components in the compact dimensions of the (d−2)-dimensional round sphere.
The corresponding Kretschmann invariant is given by

K ≡ Râb̂ĉd̂R
âb̂ĉd̂ =

2

(1− S2)2

R2

r
2(d−3)
o

(
d− 1

d− 2

){
2S2

[
2rd−3 − (1 + S)rd−3

0

]2

+
2

(d− 1)

[
2Srd−3 − (1 + S)rd−3

0

]2
+

1

(d− 1)(d− 3)

[
4Srd−3 − (1 + S)2rd−3

0

]2
}
,

(D.5)

where {â, b̂, ĉ, d̂} = {t̂, r̂; α̂, β̂ = 3, ..., d}.
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