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Abstract

With machine learning models becoming more complicated and more widely

applied to solve real-world challenges, there comes the need to explain their

reasoning. In parallel with the advancements of deep learning methods, Ex-

plainable AI (XAI) algorithms have been proposed to address the issue of

transparency and shed some light on the decisions of black box machine learn-

ing models. Many works try to categorize and compare XAI methods to one

another, but they usually provide a subjective outlook. The first contribution

of this research is proposing a quantifiable approach to compare XAI methods

based on causal inference.

LIME and SHAP are two of the most popular XAI methods. The result

of these two algorithms is a ranking of feature importance. In a sense, they

seek to demonstrate how important a feature is in predicting the outcome. We

thoroughly question this pipeline of training a black box deep learning model

and then explain it afterward using XAI methods. Generating a diverse set

of experiments with various causal relationships, we quantify how much the

output of LIME and SHAP aligns with the causal relationships at hand. The

second contribution of this work is to use our suggested quantifiable framework

in action to see how aligned the output of these widely used XAI methods is

according to the causal baseline.
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A human being is a part of the whole, called by us “Universe,” a part limited

in time and space. He experiences himself, his thoughts and feelings as

something separate from the rest — a kind of optical delusion of his

consciousness. This delusion is a kind of prison for us, restricting us to our

personal desires and to a↵ection for a few persons nearest to us. Our task

must be to free ourselves from this prison by widening our circle of

compassion to embrace all living creatures and the whole of nature in its

beauty.

– Albert Einstein, 1950.

We made a prison out of our thoughts and feelings, in which we experience

ourselves as separate. Dig a hole in this prison and free yourself to see what

you really are.

– Rumi, 1200s
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Chapter 1

Introduction

Deep Neural Networks (DNNs) are becoming prevalent in solving real-world

problems and automated decision-making. DNNs are being used in image and

language processing, self-driving cars, drug discoveries, personalized medicine,

detecting crop disease, and so on ([30], [35], [36]).

DNNs are a family of Machine Learning (ML) systems that use an exten-

sive set of parameters to model and find solutions for complex problems. The

current trend in using DNNs encourages higher complexity. This higher com-

plexity enables them to model more complicated patterns from the observed

data. So, neural networks that are a combination of many parameters and

non-linear functions are preferred, and they are capable of reaching high accu-

racies ([4], [8], [31]). However, the more complicated the design of the networks

is, the more di�cult it gets to explain them in a human-understandable way

([4]). That is why they are also referred to as black box models.

1.1 The need to explain AI models

These black-box machine learning systems are often involved in sensitive decision-

making scenarios, such as in the medical, criminal justice, and financial do-

mains. With more societies and companies allowing machine learning algo-

rithms to make decisions, more questions are raised regarding the essence of

these decisions. It is di�cult for humans to trust a judgment without an

awareness of the underlying thought process of that system. In addition to

that, some problematic decisions made by ML systems created distrust about
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these systems.

A famous example of this is a case of machine bias in the criminal field. A

machine learning system was responsible for assigning recidivism probability

of defendants with criminal records [18]. This system was used in some of the

courts of the United States to assist the judges until its bias against minorities

like people with black skin color was revealed.

1.1.1 What is XAI

The example of machine bias in the criminal justice field is only one of the

many critical situations where an AI model, despite its high accuracy, was

reasoning in an undesired and harmful way. These behaviors and the incredible

increase in using machine learning systems made it necessary to explain why

ML models are making certain decisions. As a result the field of Explainable

AI (XAI) emerged to address the need to interpret AI models.

1.1.2 What do we mean by explanation?

In general, an explanation can be thought of as anything that assists humans

in comprehending the behavior of a black box model. In other words, explana-

tions should be human-understandable. This explanation can take the format

of a text, number, image, graph, or anything else.

1.1.3 Who needs XAI?

XAI aims to generate explanations that help users understand how the black

box works and why it behaves in a certain way. Di↵erent types of users can

benefit from these explanations. A user can be a person who wants to use

AI in their decision-making procedure. For instance, a business owner that

wants to gain new insights might want to know why AI is suggesting a certain

strategy.

On the other hand, the user can be a person who is being impacted by

AI decisions. An example of this can be a person who is denied a loan. This

person might want to know the reason behind their rejection and what to

2



improve in the future to be granted a loan.

The other users who can benefit from XAI are data scientists, ML re-

searchers, and engineers. XAI can help them debug and modify their ML

models to meet their needs. XAI can also help them choose one model over

another based on their explanations or how explainable each of them is ([3]).

1.1.4 How can we get explanations?

Markus et al. classified XAI techniques based on two features; the type and

scope of explanation [17]. We use the same taxonomy and divide the XAI

methods into three types: Model-Based Explanations, Attribution-Based Ex-

planations, and Example-Based Explanations, and two scopes: global and

local (We open each of these types in the next chapter (Section 2.1)).

Since we focus on a group of attribution-based explanations called model-

agnostic explainers in this research, we present on a high level how these model-

agnostic XAI methods learn from a trained black-box and how they explain

the black-box model. Figure 1.1 shows how XAI learns from the black-box

model’s prediction on a dataset. The trained black box model would teach

XAI algorithm how it is making predictions of the rows in the dataset. After

XAI algorithm finished learning from the black box model, it will be used to

explain black box predictions of each row in the dataset (Figure 1.2).

1.1.5 What is being overlooked in explaining AI models
this way

Explaining AI models seems very promising and gives legitimacy to the cur-

rent trend of increasing black-box complexity to yield higher accuracy. We

questioned this whole pipeline of having a black box model to explaining it

later. We expect that these explanations, although very promising, might be

misleading and incorrect.

To see how close these explanations are to reality, we need a real expla-

nation of the system. This real explanation should capture all the underlying

factors that impact an outcome in a system. If we know the real explanation

of how a system should work, we can evaluate the pipeline of using tools to

3



Figure 1.1: XAI method learning from the black box

Figure 1.2: XAI method explaining the black box

explain a black box model. Are XAI results close to that real explanation?

Are there scenarios in which XAI’s results di↵er from the real explanation?

To answer these questions, we needed to visit the realm of causality.

1.2 Causality

Causality provides a set of mathematical tools that might enable us to move

from an educated guess to a cause-and-e↵ect relationship between two random

variables ([21], [22]). In the context of XAI, causality can provide us with
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Mortality Rate
A 16% (240/1500)
B 19% (105/550)

Table 1.1: Mortality Rate of two di↵erent treatments

the reasoning we seek in terms of a real explanation. While both the black

box model and some XAI methods function mainly at an associational level,

causal inference focuses on finding the causal impact of a random variable on

an outcome variable.

1.2.1 Motivation to use Causality

Consider a case where there are two treatments available, and we want to

know which treatment is better. We call them treatment A and treatment B,

and there are two outcomes surviving or not surviving the disease ([19]). Let’s

suppose that we have a results like Table 1.1 for this treatments.

Based on this table, it is natural to suppose that treatment A is better than

treatment B. However, what if we know people with di↵erent health conditions

are treated with di↵erent treatments (Table 1.2)?

Mild Severe Total

A
15%

(210/1500)
30%

(30/100)
16%

(240/1600)

B
10%
(5/50)

20%
(100/500)

19%
(105/550)

Table 1.2: Mortality Rate of two di↵erent treatments based on patients health
condition

Each one of the table’s columns in Table 1.2 shows the exact opposite of

what we infer from Table 1.1. In each category, treatment B is performing bet-

ter. This phenomenon is called Simpson’s paradox. Whenever the marginal

probability is di↵erent than partial association when controlled for one vari-

able, it is an occurrence of Simpson’s paradox. So, can we conclude that
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treatment B is better based on the Table 1.2? In fact, it still depends.

Consider the following two scenarios. Scenario one is when treatment B is

prescribed for severe cases only because the available resources for this treat-

ment are limited. Scenario two is when taking treatment B takes so long;

while waiting for the treatment, many patients’ conditions worsen, and their

symptoms change from mild to severe. In these two scenarios, the statistical

numbers are the same; however, our conclusions can be the opposite. In sce-

nario one, treatment B is the clear winner, and in scenario two, treatment A

is preferred because patients won’t experience a waiting time that can worsen

their symptoms. In causal inference, a certain type of diagram is used, called

causal graphs or causal models. These two di↵erent scenarios can be shown

with two di↵erent causal models (Detailed information on Causal graphs can

be found on Section 2.4.1). As you see in Figure 1.3, the figure on the left

is capturing the first scenario that the condition of a patient (C) is causing

the chosen treatment (T). On the other hand, the figure on the right side, is

capturing the second scenario in which the chosen treatment is a cause for the

condition of a patient. In both scenarios, both treatment and condition are

causing the outcome (Y).

[1] [2]

Figure 1.3: Causal Graphs for Two Hypothetical Scenarios with The Same
Statistical Information.

1.2.2 Correlation Is Not Causation

Correlation does not imply causation. This is a frequently used statement

in the statistics and machine learning literature. In the context of machine
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learning, we can even alter it a bit and say prediction does not imply causation!

Following the same example we discussed above (Section 1.2.1), if we look at

the connection between treatment and outcome without controlling for the

common causes, the prediction shows the correlation between treatment and

outcome, not the causation. This correlation might rank two treatments in

an opposite way of causal relationships. In the same example, it considers

the weaker treatment better than the stronger one. ML models that are being

deployed in many di↵erent fields are able to capture correlations only, and there

is no guarantee for causation ([21], [22]). Our prediction might be reasoning

in contradiction to a true cause-and-e↵ect relationship. This is a crucial fact

that is sometimes overlooked.

1.3 Research Question

In this research, we explored how much the explanation that is provided by

popular XAI methods aligned with a real explanation of the system’s behavior.

We would like to know how trustworthy the pipeline of having a black box

model and XAI is. We address this question using popular XAI methods to

explain black-box ML classifiers while monitoring the process from a causal

viewpoint.

1.3.1 A Toy Example

Before diving deeper into each concept, we present a toy example to introduce

our general idea. Assume we have a dataset with three features, W1, W2, W3,

and one outcome y. Also, in this case, we have information on the underlying

relationship between the features and the outcome. In other words, we know

how much the outcome changes if we change any of these features. Let us call

this background information the baseline.

This dataset would later be used to train a black box model. After training

is finished, XAI methods are applied to this trained black box to generate

explanations, as we illustrated in Figure 1.1 and Figure 1.2. Now, we can

compare an explanation generated by XAI methods with the baseline and see

7



how much they agree. Using pie charts in Figure 1.4, we demonstrated a

comparison based on a hypothetical case of XAI outcome and a baseline. The

numbers for each feature demonstrate how much is the share of that feature

in contributing to the outcome.

Figure 1.4: A toy example showing how an XAI output can assign feature
importance in comparison to a corresponding baseline
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Chapter 2

Background

In order to observe how XAI algorithms perform, we need a black-box machine

learning model on which we apply XAI methods. Our choice of the black box

throughout this project is a neural network (Section 4.3), and our choice of

XAI methods are LIME (Section 2.2) and SHAP (Section 2.3). Our main

reason for choosing this combination is the high recurrence of this setting in

the real-world usage of XAI ([12], [20]). In addition, we use notions of causality

in the data generation process to get a baseline of features’ relationships to

the outcome (Section 2.4).

2.1 XAI

Concepts of explainability and interpretability are used interchangeably in

the literature [17]. Some researchers refer to models that are interpretable

by design as interpretable models. Decision trees, and regression models, are

examples of interpretable models. On the other hand, models that are not

interpretable by design (black box models, like deep neural nets) are considered

non-interpretable. Explainable AI (XAI) methods are proposed to understand

these non-interpretable models. Another important concept is fidelity, which

is an abstraction for how faithful is the explanation of the XAI method in its

whole domain. Di↵erent taxonomies of explanation have been proposed in the

literature to categorize XAI methods [3], [10], [32].

Taxonomy proposed by Markus et al. ([17]) summed that all up well. They

classified explanations based on the type of the explanation and its scope.
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Types of explanation are model-based (Section 2.1.1), attribution-based (Sec-

tion 2.1.3), and example-based (Section 2.1.2). The scope of the explanation

can be local and global. Local explanations explain a specific sample or, in

general, a part of the space on which the black box model is being trained.

Global explanation explains the behavior of the black box model everywhere

([17]).

2.1.1 Model-Based Explanations

XAI methods that use a model to explain the behavior of the model of interest

are in this category. Either the model of interest itself will be used to explain,

or a more interpretable model will be utilized. Suppose the model itself is

interpretable and is being used to explain. In that case, it will provide a

global explanation, which is a special case of having interpretable models by

design that we discussed above. If other models are being used to help provide

insight and explanation for the model, its scope is usually local ([17]).

2.1.2 Example-Based Explanations

Methods that fall into this category explain the black box’s system by using

some examples. These examples can be chosen from the dataset or can be

newly generated samples (counterfactual examples). The scope of this type of

explanation can be local or global. For instance, SP-LIME (Submodular Pick

LIME) selects a group of samples from the dataset that it considers essential

to explain the behavior of black box globally ([24]).

2.1.3 Attribution-Based Explanations

Without knowing any details about the black box model, this type of explana-

tion assigns a score to each feature based on its contribution to the outcome

using the black box’s behavior. This process of generating an explanation

without the need to know the black box model itself is called model-agnostic

explanation.

The scope of this type of explanation is mainly local. Examples are LIME
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and SHAP, which provide local insights. Nonetheless, It is possible to make

an aggregation of the local explanations into a global explanation ([17]).

We chose SHAP and LIME as the XAI methods in our analysis. This

choice is because these two are widely used in the literature and the industry

([1], [7], [16], [33], [34]). We targeted their global explanation by aggregating

their local explanations.

2.2 LIME

Local Interpretable Model-Agnostic Explanations (LIME) is a method to pro-

vide an explanation for a single prediction of any classifier or regressor. So,

LIME tries to explain the behavior of the black-box model around a specific

sample of interest, and its objective is to train an interpretable model that

behaves similarly to the original model in the vicinity of one instance that we

are interested in having explained [24].

To provide an explanation, LIME introduced the idea of interpretable data

representation. An important note about these interpretable data representa-

tions is that they are not necessarily the features used by the original model.

For example, in the field of natural language processing, while an interpretable

data representation might be the presence or absence of a word, the feature

the model uses could be word embeddings. LIME authors use x 2 IRd notation

for the original representation of an instance that is going to be explained and

use x
0 2 {0, 1}d

0
for the interpretable binary vector representation.

After defining the interpretable data representation, LIME proposes an idea

for the fidelity-interpretability trade-o↵. This solution addresses the challenge

of finding an interpretable model that ensures local fidelity (The meaning of

local fidelity is a good approximation to the prediction of the original model lo-

cally). LIME defines a class of potentially interpretable models called G. This

set of potentially interpretable models can contain linear models or decision

trees. A model g 2 G has the domain of {0, 1}d
0
. In other words, the chosen

potentially interpretable model uses the presence or absence of interpretable

components. We discussed in the previous paragraph that the interpretable
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components could be di↵erent from the components that the original model

uses. LIME uses the word ”potentially” interpretable because these models

can become too complicated and uninterpretable. For example, a deep deci-

sion tree with many branches might become very di�cult to interpret. The

following objective function has been introduced to guarantee that the poten-

tial interpretable models stay as interpretable as possible while satisfying local

fidelity:

⇠(x) = argmin
g2G

(L(f, g, ⇡x) + ⌦(g)) (2.1)

L is the loss function that measures how much the interpretable model g

was incorrect in approximating f in the local vicinity of x defined by ⇡x. ⌦(g)

is a measure of how complex the interpretable model is. ⌦(g) for decision

trees might be their depth, while for linear models, it may be the number of

non-zero weights. By minimizing such objective function LIME tries to find

the best interpretable model which satisfies local fidelity.

So, LIME aims to minimize the mentioned objective function, which com-

bines locality-aware loss and complexity. The LIME algorithm doesn’t make

any assumptions about the model f ; that is why it is called model-agnostic.

It treats the model f as a black box, give samples to it, and see its output.

The process of giving samples to the model is also another essential part of

LIME’s methodology. As previously mentioned, the domains of g and f might

be di↵erent. While f might use complicated feature representation, g converts

those complex features to interpretable representations. For example, consider

the interpretable data representation of x
0
, which has a domain of {0, 1}d

0
and

it is converted from the original feature space of x, which has the domain of

IRd.

LIME samples new instances around interpretable representation x
0
by

drawing non-zero elements of x
0
uniformly at random. The number of these

new samples is also determined using a uniform distribution. Then, labels are

needed for these newly generated samples to train LIME. In order to acquire

labels, interpretable representations would be transferred back to the original
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feature space IRd, fed to the model f , and get the label. As we see later in the

SHAP algorithm(Section 2.3), SHAP uses the notation of h for a function that

transforms this feature between the original feature space and the interpretable

representation space. Afterward, the interpretable model g would be trained

with these newly generated instances and their labels. Similarly to how it used

x for the sample, we want to know its explanation, and x
0
for the interpretable

representation of it, z
0
is used for newly generated samples in the interpretable

feature space, and z is for their transformation back to the original feature

space. The weighting function ⇡x, measures the importance of new instances,

z
0
, based on their distance to x

0
. This weighting is used in calculating the

loss function L. Their choice for loss function is a locally weighted function as

below:

L(f, g, ⇡x) =
X

z,z02Z

⇡x(z)(f(z)� g(z
0
))2 (2.2)

As one can see, ⇡x(z) weights the error of each generated sample based on

the distance of the generated samples to the original data.

2.3 SHAP

SHAP unified most of the previously widely used feature importance methods

under the umbrella of additive feature attribution methods. Then, SHAP

authors provided their own method, which is based on the game theory concept

of Shapley Values [15].

2.3.1 Additive Feature Attribution (AFA) Methods

SHAP uses a similar notation to LIME. f is the original prediction model,

and g is the explanation model. Simplified input representations have the

same format of x
0
, and the original input representation has the notation of x.

SHAP added a new notation of hx compared to LIME (Section 2.2) which is

a mapping function between the original and simplified representation space.
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x = hx(x
0
) (2.3)

The other similar notation is z
0
, which is a point in the local vicinity of x

0
.

SHAP considers the goal of local XAI algorithm as g(z
0
) ⇡ f(hx(z

0
)) where

z
0 ⇡ x

0
. SHAP authors unify the goal of all of the six families in the additive

feature attribution methods as:

g(z
0
) = �0 +

MX

i=1

�iz
0

i (2.4)

Here z
0 2 0, 1M , where M is the number of simplified input features. �is

are scalar quantities that show the importance of each simplified feature, so

�i 2 IR. In this paper, authors unified six other popular XAI methods as

AFA methods. These XAI methods are LIME (Section 2.2), DeepLIFT ([27]),

Layer-Wise relevance propagation ([2]), Shapley regression value ([14]), Shap-

ley sampling values ([29]), and Quantitative Input Influence ([6]).

2.3.2 Shapley Values

The use of Shapley values ([26]) to compute an explanation was not unknown

before SHAP. Before going through those methods, let us first talk about the

Shapley values. Shapley value is a concept used in game theory to calculate

the contribution of several players in a coalition that leads to a gain or loss.

The Shapley value for one player in a game can be calculated using an average

expected marginal contribution of one player through all possible combina-

tions of players. Using the idea of Shapley Values in the context of additive

feature attribution methods would be something similar to this:

Game: Prediction of a single instance

Gain: Prediction of this instance - Average prediction of all in-

stances

Players: Features that collaborate in the Game, which results in a
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Gain

Goal: Calculate the contribution of each player in total Gain inside

the Game

Three other methods also used the idea of Shapley Values in the framework

they provided to explain model prediction. Shapley regression value, Shapley

sampling values, and Quantitative Input Influence. Shapley regression values

research, as their name suggests, calculates feature importance for linear mod-

els. This calculation is based on retraining the model on di↵erent subsets of

features. F is used for the set of all features, and S is used to denote subsets.

The feature of ”interest” is denoted by i. To compute the contribution (gain)

of i, a model would be trained with i and another model without i. This would

be repeated on all possible combinations of i with other features. If we look

at it from the game theory perspective, each of these combinations is a unique

cooperation of features as players in the game. The weighted sum of these

cooperations makes �i which is the importance of the feature i in the dataset.

�i would be calculated as:

�i =
X

S2F�i

|S|!(|F |� |S|� 1)

|F |! [fS[i(xS[i)� fS(xS)] (2.5)

Here x is a sample we want to explain. Set S is the subset of features we

consider important in the explanation along with feature i. Another way to

say this in the context of game theory is that features in the subset S and

feature i are in a coalition. We ignore the contribution of other F � S � 1

features in this permutation. xS[i keeps only the subset S of all features with

the feature of interest i (S 2 F � i). Similarly, fS[i refers to a model that

is trained on these filtered data with S 2 F � i features along with feature i

and ignores the rest of the features. fS and xS refers to training a model only

with subset S while feature i is withheld. The subtraction of these two models

creates a part of the contribution of feature i to the explanation. This needs to

be repeated with other subsets of the feature space that can be in cooperation
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with feature i (all the possible choices of features from F � {i}). When we

choose a subset S from F�i, there are |S|! permutation for this set of assumed

important features and (|F |� |S|� 1)! permutation for unimportant features.

So, the weight of this set of chosen weights would be |S|!(|F |�|S|�1)
|F |! .

In Shapley Regression Values, the mapping function hx simply means if

this feature is included in the model or not (as in the subset S or not). One

indicates a feature would be in the model, and zero indicates exclusion from

the model. If we consider �0 as the contribution of an empty set f;(;), then we

can see that Shapley Regression Values follow the Additive Feature Attribution

methods formula (Equation (2.4)).

2.3.3 Desiredness of using Shapley values in XAI

SHAP defines three desired properties for AFA (Section 2.3.1) XAI methods

and proved that only AFA methods that calculate feature importance propor-

tionate to Shapley values satisfy all three of these properties. These properties

are local accuracy, missingness, and consistency. Local accuracy requires the

explanation model to match the original model’s output for the sample of in-

terest. Missingness checks the features that are missing from the original space

do not impact the explanation. Consistency states that if a feature contributes

more to a model’s output among all of the model inputs compared to another,

it must have greater explanatory importance in the output of the first one

compared to the other one.

Other AFA methods that are not using Shapley values to calculate feature

importance satisfy missingness; however, they violate one or both of the other

properties. On the other hand, the exact calculation of Shapley values is time-

consuming. SHAP proposes the novel idea of kernel SHAP to address this

complexity issue.

2.3.4 Kernel SHAP

In Kernel SHAP, LIME algorithm is used to find the Shapley values faster.

SHAP proved by setting LIME parameters equal to some specific values,

LIME’s answer reaches an explanation that is aligned with Shapley values.
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LIME’s answer under these conditions satisfies all three desired properties

and is relatively fast. Thus, this model-agnostic approach became the only

AFA method that satisfies all three desired metrics and is not computation-

ally expensive. In Equation (2.1), we demonstrated LIME’s formula. The

following equation shows the conditions in which LIME’s answer would satisfy

all three desired properties.

⌦(g) = 0,

⇡x0 (z
0
) = (M�1)

(Mchoose|z0 |)|z0 |(M�|z0 |) ,

L(f, g, ⇡x) =
P

z02Z
[f(h�1

x (z
0
))� g(z

0
)]2⇡x0 (z

0
)

(2.6)

Setting ⌦(g) = 0 means that there would be no penalty on how complex the

interpretable model is. ⇡x0 uses |z0 | and M for assigning a score to how close

this newly generated instance is to the original data point from the dataset.

|z0 | is the number of non-zero elements in z
0
and M is the maximum coalition

size based on x
0
. Similar to LIME, loss function L is a sum of squared errors,

which is weighted by ⇡. From this point onward, whenever we mention SHAP,

we are referring to Kernel SHAP.

2.4 Causality

Causality’s role in this thesis is in the data generation process, which we will

discuss in details later. As we mentioned in the research question (Section 1.3),

we want to compare XAI’s outcome with a real explanation of the system.

Real explanation as we defined in the introduction, captures all the underlying

factors that impact an outcome in a system. Generating datasets based on a

known causal relationship between features gives us the real explanation that

we are looking for. This causal knowledge will serve as a baseline to compare

XAI methods. We walk through how we generated datasets with an underlying

causal relationship in Chapter 4. In this section, we take a look into causality

concepts.

Our logic works in terms of cause and e↵ect. Analyzing, learning and expla-
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nation is tied to causal reasoning for us [9]. Despite ML models’ outstanding

performance, There is no guarantee that these models can learn cause and ef-

fect relationships among di↵erent features. They are not designed to capture

cause-and-e↵ect relationships. As Judea Perl articulates, we do not empower

machine learning algorithms with the causal logic tools [22]. Thus, there is no

expectation that ML models, from the simplest to the most complex models,

can accurately capture existing causal relationships.

In the introduction, with an example, we showed that correlation does not

imply causation (Section 1.2). Therefore, by relying solely on correlation, our

analysis might be misleading and result in making a wrong decision. Using

causality, we want to research how much our decisions while using XAI can be

misleading. Let us first define what a causal graph is.

2.4.1 Graphical Structures

Before defining causal graphs, we need to define terminologies such as directed

acyclic graphs and Bayesian networks.

Graphs and Related Terminologies

Figure 2.1 is an example of an undirected graph. Nodes or vertices are

A, B, C, and D. These nodes are connected together with undirected edges.

That is why they are called undirected graphs.

Figure 2.1: Example of An Undirected Graph
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On the other hand, if all of the edges are directed, the graph would be

considered a directed graph. The directed version of the above example can

be something like Figure 2.2.

Figure 2.2: Example of A Directed Graph

Adjacent nodes, are nodes that are connected directly with an edge. In

this example, A and D are adjacents, A and B are adjacent, but B and D are

not. In directed graphs, a Parent Node is a node that an edge comes out of,

and a Child Node is a node that edge comes into it. In the directed graph

example, A is the parent of nodes B, C, and D; therefore, B, C, and D are

children of A. A path exists between two nodes in a graph when there is a

sequence of edges between them. This sequence does not need to go exactly

in the direction of the edges. For example, there is a path from A to B to C

that is aligned with the direction of edges, and there is a path from B to A to

D that does not exactly follow the direction of edges. However, there is also

a Directed Path that needs to go in the direction of edges. So, A to B to C

is a directed path while B to A to D is not. Nodes that can be reached from

a chosen node via a directed path are Descendants of that node, and that

node itself is called an Ancestor. B, C, and D are all Descendants of A in

this graph. If each of these descendants has other children and descendants of

their own, those will still be considered descendants of A.
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Causal Graph

Directed Acyclic Graph (DAG) structure can be used to show causal relation-

ships. DAG can be a causal graph if its edges are drawn to show a cause-

and-e↵ect relationship between the parent node and the child node. In order

for a DAG to be a causal graph, besides the causal edges assumption, the

local Markov assumption should also hold between independent nodes. The

Local Markov assumption states that a node is independent of all of its non-

descendants given its parents. In the next paragraph, we express this definition

mathematically.

Let X = {X1, X2, . . . , Xn} be a finite set of random variables in a directed

graph G in a way that descendant nodes have a number higher than their

parents. For example, X4 and X5 can be children of X2, but X2 can not

be a child of X2. Let V be the set of directed edges (Xi, Xj) in G, with

i, j = 1, 2, . . . , k � 1 and j > i. j > i condition ensures that we will not

have any loops and an edge from a node to itself. This graph is called a

directed acyclic graph (DAG) on X. A directed path from Xh to Xk is a

sequence Xh, Xm, . . . , Xk nodes, connected with directed edges (Xi, Xj) in G.
The parents Pa(Xj) of Xj are those Xi such that (Xi, Xj) 2 V. Similarly, the

Children of Xi are those Xj such that (Xi, Xj) 2 V.

If the edges (Xi, Xj) are viewed as Xi is a direct cause of Xj, we say G is

a causal graph [21].

Bayesian networks and causal graphs have similar graphical diagrams.

Bayesian networks help model joint probabilistic distributions by modeling

where there is only a true dependency between two variables. This is similar

to a causal graph when they model where there is a causal relationship. When-

ever there is a causal relationship, there is a dependency, but the opposite does

not hold necessary.

Flow of Association in Graphical Building Blocks

The graphical building blocks that we are going to talk about apply to both

causal and non-causal DAGs. We explain them from the perspective of causal-
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ity and causal graphs, but a similar explanation applies to bayesian networks

in a non-causal graph. With two connected nodes, there is only one possible

interconnected network shape. Both graphs in Figure 2.3 are examples of that

one possible network.

Figure 2.3: There is one possible structure for two connected nodes

In graphs with three nodes or more, there can exist three important struc-

tures. Chains, Forks, and Immoralities are the graphical building blocks of

causal graphs ([21]). These are considered building blocks because they can

determine the dependence or independence of nodes and the flow of depen-

dency or causality in a graph. We will only describe the chain structure since

it is the one we used in our research.

Chain

The structure of a chain is shown in Figure 2.4. Here we know that X1 and

X2 are in a causal relationship. Similarly, X2 and X3 are also in a causal

relationship. Now the question is, are X1 and X3 causally related too? It

turns out that they are also causally related because of the flow of causation;
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X1 will cause X2, and X2 will cause X3. Thus, although X1 is not a direct

cause of X3, a change in X1 causes a change in X3 as well.

Figure 2.4: chain graphical structure

2.4.2 Confounder

A confounder is a node in a specific causal relationship between three nodes.

In Figure 2.5, node C is the confounder. It causes both T (treatment node)

and Y (outcome). Treatment node, in general, refers to a feature where we

want to know its contribution to an outcome. A confounder is a feature that

contributes to the occurrence of both the treatment and outcome nodes.

Figure 2.5: A causal graph showing the confounder structure

While estimating the contribution of treatment to the outcome, it is crucial
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to take confounders into account. Without taking confounders into account,

the estimation of the treatment’s contribution to the outcome would be either

higher or lower than the original amount. This wrong estimation is due to the

fact that the confounder’s impact would be mixed with treatment. We will

see more of causal graphs and causal structures in the methodology section

(Chapter 4). However, before diving into that, we will talk about some related

research in the next chapter (Chapter 3).
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Chapter 3

Related Work

There are some works in the literature that explored a similar goal to this

research. CXPlain ([25]), and Causal SHAP ([11]) are two of the most related

ones.

3.1 CXPlain

Using Granger’s causality, CXPlain provides a di↵erent approach to explain.

Granger’s causality says there exists a causal relation between a featureXi and

output y if we can better provide a prediction with the presence of feature Xi.

In other words, if the absence of random variable Xi decreases the prediction

power of output y. From the point of view of Pearl’s causality, which we are

referring to as causality, Granger’s causality is not necessarily referring to a

cause-and-e↵ect relationship, and it will still capture correlations. By referring

to causality in this research we means Pearl’s causality.

CXPlain’s authors train a deep neural network using a customized objective

based on Granger’s causality to explain feature importance. So, they are also

from the attribution-based explanation group (Section 2.1.3), which is the

same family of approaches as SHAP and LIME.

3.2 Causal SHAP

Using Perl’s causality, causal SHAP incorporates concepts of causality into the

SHAP (Section 2.3) algorithm. Causal SHAP belongs to the attribution-based
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explanations (Section 2.1.3) because the output is similar to SHAP ranking

features’ importance. While having the same observational dataset, causal

SHAP shows how di↵erent SHAP’s explanations can be when we have di↵erent

causal graphs (Section 2.4.1). Furthermore, they divide the total e↵ect of each

feature into direct and indirect e↵ects of that feature into the outcome.

Causal SHAP also proposes a method for cases where true causal order is

unavailable and there is access to only partial causal orders. This is a novel

algorithm based on what they call causal chain graphs ([13]). The di↵erence

between this research and ours is that they are trying to improve the SHAP

algorithm to be more aligned to a causal explanation, while we are analyz-

ing how close is the explanation provided by LIME and SHAP to a causal

relationship between the features.
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Chapter 4

Methodology

According to our goal to investigate XAI through causality, we generated many

synthetic datasets. For generating a synthetic dataset, we first developed a

causal relationship between features and the outcome (we also refer to this

relationship as the causal baseline for this data). Then, data points were

generated based on that causal baseline. Next, we trained neural network

classifiers, with di↵erent levels of complexity, on those generated datasets.

Then, XAI algorithms, SHAP (Section 2.3) and LIME (Section 2.2), were

applied to explain the neural network classifier’s outcome. After LIME and

SHAP returned their feature importance ranking, we compared that ranking

with the causal baseline.

4.1 Synthetic Data Generation

We used the DoWhy 1 library to generate our synthetic datasets. DoWhy is

one of the most used Python libraries in causal inference. They provided many

tools for causality, and we used the help of one of the tools in their library

to generate synthetic datasets. SHAP and LIME use a linear function to

approximate the black box model’s performance around a data point. To make

the experiments more favorable and fair for SHAP and LIME, we designed

linear causal relationships between the features. Then, we generated datasets

based on the defined underlying causal relationships. In other words, the

causal relationships in all of the generated datasets are linear. For example,

1py-why.github.io/dowhy/
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in a case with one treatment and two confounders, our outcome y will have

the following linear causal relationship with treatment T and confounders C0

and C1:

y = c0T + c1C0 + c2C1

We might have other causal relations in cases with more causal complex-

ities. For example, In the cases with confounders, we will have a separate

causal procedure for generating the treatment node. The following expands

on the same example with one treatment T and two confounders C0 and C1

that we had above. Here, we will have the following generative formula for

treatment in addition to the one we have mentioned for the outcome:

t = c3C0 + c4C1

In the case of having confounders, this causal generative formula for treat-

ment based on confounders are not of interest to us. We focus only on the

generative formula for the outcome since XAI methods are trying to find the

explanation for the outcome. However, this is a bit di↵erent in our last causal

scenario Section 4.2.4. We will discuss this in depth in the related section for

each of the causal scenarios. These coe�cients, like c0 to c4 in the above exam-

ple, are randomly generated within a range. We used this range to reduce the

chances of having large distances between feature causal contributions. This

range has a distinct value for each new dataset. In some cases, we explicitly

chose these coe�cients to test some special and extreme cases.

4.1.1 Machine Learning Task

Binary classification was the chosen task for monitoring SHAP and LIME

performance. To have a binary classification dataset, after generating y from

the linear causal formula, we converted our numerical outcome to a binary

outcome. Then, we took the sigmoid of the number; if it is more than or

equal to 0.5, it will be converted to True, and if it is less than 0.5, it will be

converted to False. Another way to look at this binarization process is if the

numerical outcome is less than zero, we consider it false, and if it is greater or
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equal to zero, we consider it true. In this research, we generated data based

on four main causal network shapes that we will discuss in more detail in the

next section.

4.1.2 Causal Groundtruths

10000 data points were generated for each one of the synthetic datasets based

on specified causal relationships. Each of the features inside the dataset is

generated with a Gaussian distribution. The mean of the distribution was

chosen randomly between -1 and 1. The standard deviation was set to 1.

To add more variety to these causal scenarios, we have added some fea-

tures that do not have any causal relationship with other features. We call

these features random nodes. From the perspective of the causal graph, these

random nodes are the nodes that do not have any causal edges with other

nodes. The causal relationship between the features will be saved and used as

a baseline for XAI’s performance.

4.2 Causal Scenarios

We targeted four di↵erent scenarios of causal complexity. Figure 4.1 shows

the general idea behind them.

Scenario one is the simplest possible causal complexity of features with the

outcome because all features have only one causal relation with the outcome.

Scenario two, scenario three, and scenario four are designed with a higher level

of causal complexity inspired by chain structure (Section 2.4.1) and having a

confounder in the graph(Section 2.4.2). In all of these scenarios, we use the

word treatment to refer to a specific node in the graph. The treatment node

is usually the node in causal analysis that we are interested to know about its

contribution to the outcome. In the examples and figures, it is denoted by T .

We mentioned the treatment node before in the example of medical treatment’s

causal e↵ect on mortality with having confounders of the patient’s condition

(Table 1.1). Now we will dive deeper into each of these four scenarios.
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Figure 4.1: Overview of Our Experiments’ Causal Architecture

4.2.1 Causal Scenario One

In the simplest form of causal structures, we generated networks with multiple

direct causes. In other words, all features have only a direct causal relation-

ship to the outcome and nothing else. Here, the treatment node is one of these

direct causes. We added random nodes to see if LIME and SHAP can success-

fully di↵erentiate between e↵ective features and random ones. Figure 4.2, and

Figure 4.3 are examples of this kind of network.

[1] [2]

Figure 4.2: Two causal structures of scenario one causal relations without
random nodes
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4.2.2 Casual Scenario Two

In the second scenario, we generated networks with confounders (Section 2.4.2).

We kept the number of treatment nodes fixed at one for simplicity (treatment

node, T ), and we have only altered the number of confounders and random

nodes in di↵erent network shapes. So, in this scenario of causal complexity,

we have one treatment that has a direct causal e↵ect on the outcome, one out-

come, multiple confounders, and multiple non-related nodes. In other words,

the only di↵erence in this network shape with the previous scenario is that

we have included confounders in the network. Figure 4.4 and Figure 4.5 are

examples of the similar number of nodes we had in Figure 4.2 and Figure 4.3,

but with scenario two of causal complexity.

Real-world examples of these causal structures are abundant. We can still

refer to the medical field, that many genetics-related factors can act as con-

founders and cause both the treatment of choice by doctors and the mortality

rate [5], [23], [28].

4.2.3 Causal Scenario Three

This scenario is inspired by the famous example of smoking, lung cancer, and

x-ray results. While x-ray results help doctors to detect if the cancer is present

or not, they can not be the cause of cancer, and they are simply an outcome.

We were curious to see how much importance would be given to the causes

[1] [2]

Figure 4.3: Previous example of scenario one causal relations with random
nodes added to it
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[1] [2]

Figure 4.4: similar examples of scenario one causal complexity in scenario two
of complexity

[1] [2]

Figure 4.5: causal diagram for scenario two of causal complexity with some
random nodes
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of the outcome versus the importance of the outcome’s children nodes in the

XAI methods’ explanations. For example, if we truly know all the causes of

cancer and have those causes as features in our dataset, how much does the

explanation notice them? That was our goal in designing this scenario. To

examine what happens to LIME and SHAP’s explanation when the outcome

is a parent for some feature nodes in the dataset. This scenario, in its most

basic form with three nodes, can be seen as a chain structure Section 2.4.1.

For simplicity, we kept only one cause for the outcome node, and we increased

the children nodes of the outcome. Figure 4.6 and Figure 4.7) depict some

examples in this causal scenario with the same number of nodes in the previous

scenarios’ examples.

[1] [2]

Figure 4.6: similar number of nodes in the previous scenarios’ examples in
scenario three of complexity

[1] [2]

Figure 4.7: causal diagrams for scenario three of causal complexity with some
random nodes
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4.2.4 Causal Scenario Four

For the fourth scenario, we designed causal relationships in a way to have

nodes between the treatment node and the outcome. The treatment node will

have children nodes which are the parent nodes for the outcome. We kept the

number of treatments fixed at one and changed the number of nodes between

treatment and outcome. Similar to the previous scenario, in the most basic

form with three nodes, we can see this scenario as a chain. The main di↵erence

between this scenario and the previous one is in the positioning of treatment

and the outcome in relation to each other. In the figures below (Figure 4.8,

Figure 4.9), we show examples with two and four nodes in between treatment

and outcome.

[1] [2]

Figure 4.8: similar number of nodes in the previous scenarios’ example, this
time with scenario four of complexity

[1] [2]

Figure 4.9: Examples of causal graph for scenario four of causal complexity
with some random nodes
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As mentioned in the synthetic data generation section (Section 4.1), in this

scenario, the causal relationship between other features and treatment node

matter. This matters because treatment is indirectly causing the outcome,

and to find the true causal impact of treatment on the outcome, we use these

relationships. For example, consider the left diagram in the Figure 4.8 with two

nodes of F1 and F2 between the treatment and the outcome. If the generative

formulas for those nodes in between are as below:

F1 = c0 ⇤ T
F2 = c1 ⇤ T

(4.1)

And if we have the following generative formula for the outcome:

Y = c2 ⇤ F1 + c3 ⇤ F2 (4.2)

Then, the causal contribution of T on Y would be: c0 ⇤ c2 + c1 ⇤ c3.

4.3 Our Classifiers

For our black box classifier, we chose three Neural Network (NN) architec-

tures, since they are the most widely used ML architecture in recent years.

Inspired by human brains, NNs are mathematical models designed to recog-

nize patterns, predict, and make decisions. We ran our experiments on one

single-layer and two multi-layer networks. We use MLPClassifier 2 class from

Scikit-Learn library for our Neural Network code. Since generated datasets

do not have many features and high-dimensional complexity, we did not find

the need to use more advanced NN libraries. To train each of these networks,

we kept 80 percent of the data for the training phase and 20 percent for the

testing phase.

4.3.1 Single Layer Neural Network

This is our simplest classifier, and it has the least amount of parameters to train

among the three classifiers. The table below (Table 4.1) are the parameters

of this network that we explicitly set while using the library (the rest of the

parameters are kept as default).

2https://scikit-learn.org/stable/modules/generated/sklearn.neuralnetwork.MLPClassifier.html
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Model Parameter Amount

Hidden Layer Size 100
Batch Size 10
Initial Learning Rate 0.001
Optimizer Adam
Beta 1 0.9
Beta 2 0.999
L2 Regularization Penalty 0.00001

Table 4.1: Single-Layered Neural Network Parameters

4.3.2 Neural Network with Two Hidden Layers

With two layers, this was our default case of experimenting. Since it was able

to capture higher-level complexity than the single-layered NN (Section 4.3.1),

and it was faster and easier to train compared to our most complex structure

(Section 4.3.3). The only di↵erence between this classifier and the previous

one is the hidden layer size. The rest of the parameters are kept intact for the

sake of comparability.

Model Parameter Amount

Hidden Layer Size (100, 100)
Batch Size 10
Initial Learning Rate 0.001
Optimizer Adam
Beta 1 0.9
Beta 2 0.999
L2 Regularization Penalty 0.00001

Table 4.2: Parameters of Neural Network with Two Layers

4.3.3 Neural Network with Five Hidden Layers

To have a higher level of complexity to compare the results, we chose a NN

with five hidden layers. The rest of the parameters are the same as previous

networks (Section 4.3.1, Section 4.3.2).
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Model Parameter Amount

Hidden Layer Size (100, 100, 100, 100, 100)
Batch Size 10
Initial Learning Rate 0.001
Optimizer Adam
Beta 1 0.9
Beta 2 0.999
L2 Regularization Penalty 0.00001

Table 4.3: Parameters of Neural Network with Five Layers

4.3.4 A Discussion On The Process Of Choosing These
Three Classifiers

The goal of this research is not to find the best parameters that can lead to

the most accurate classifier. Even if we have a hypothetical classifier that has

an accuracy of hundred percent and is also empowered with all of the causal

knowledge, LIME and SHAP will not be able to learn the underlying causal

rules. This is because LIME and SHAP are not able to learn causal reasoning

by their design (Section 2.2, Section 2.3). The role of the classifier is to label

newly generated points in the local vicinity of the point of interest for them

(as depicted in Figure 1.1). Let’s say that we have two perfect classifiers in

terms of accuracy. One of them functions based on causal knowledge, while the

other functions based on correlations. Because the labels these two classifiers

will generate for LIME and SHAP are the same, there is no way that SHAP

and LIME learn anything more from the first classifier, which is empowered

by causal knowledge. LIME and SHAP will find the simplest possible way

to explain how those limited numbers of points are labeled in that locality.

Using correlations, they fit an interpretable model like regression family to the

generated points around the point of interest. In the same way that we can not

expect regression models or decision trees to learn causal relationships([22]),

we can not expect LIME and SHAP to do so.

As mentioned in the introduction of our research question (Section 1.3), our

goal is to see how aligned the outcome of LIME and SHAP is compared to the

causal baseline and if this explanation can lead to a misleading analysis. So,
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we chose NNs and their parameters in a way that leads to very high accuracy

on the generated dataset. We want to overfit networks to our data to have

a better teacher for XAI methods to explain these specific datasets, and the

generalizability of the NN is not important to us. Because of the small size of

the feature space in our generated datasets, which is usually less than thirty,

and the linear relation between features and the outcome, even a simple logistic

regression can yield high accuracy. To have a classifier with higher accuracy,

we chose these three NNs and tuned their parameters until we had a network

with almost perfect accuracy (the most complex architecture). In this way,

we could also explore how much the accuracy of classifiers can impact LIME

and SHAP’s outcome while one of them perfectly fits the data. After finding

this setting that yields perfect accuracy in most datasets, we did not need to

explore more architectures and parameters because we had the perfect teacher

we were looking for and other reasons mentioned above. The accuracy of these

three classifiers will be reported in the next chapter Section 5.1.

4.3.5 A Note On Addressing These Three Networks

We will refer to the network with one layer as our simple network, the network

with two layers as our medium network, and the network with five layers as

our complex network. We do this to simplify addressing these three archi-

tectures later on. By using these terminologies, we mean in relation to each

other. When we say complex, we do not intend to say this is a complicated

network compared to other NNs that researchers use nowadays. Even our

complex architecture is very simple compared to state-of-the-art DNNs. How-

ever, because of our dataset’s low dimension, all three networks have more

than enough complexity to learn patterns and reach high accuracies.

4.4 Explanations

As we saw in the background section (Chapter 2), SHAP and LIME provide

explanations locally. In order to have a global explanation of the black box

algorithm, SHAP averages over all local explanations. In averaging, it takes
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the absolute value of local feature importance. As an example of this process,

we demonstrated it for a hypothetical dataset with only two samples that con-

tains three features each (A, B, C):

A B C
data 1 0.3 -0.5 0.8
data 2 -0.7 -0.1 -0.3

Table 4.4: Local Explanations for a Hypothetical Dataset with Two Samples
only

In this case, the global explanation would be:

A B C

Global Explanation |0.3|+|�0.7|
2

|�0.5|+|�0.1|
2

|0.8|+|�0.3|
2

Table 4.5: Global Explanation for the Hypothetical Explanation

We applied the same averaging mechanism to LIME’s explanations to have

a global explanation.

4.5 Metrics

We used three metrics, and we believe that the combination of these three can

give us an informative analysis. Before describing our metrics in detail, we

briefly link some of the information in the other sections of the chapter since

we are going to use them to unpack the details of our metrics.

We explained how we generate causal baselines and datasets based on

causal relationships (Section 4.1.2). The causal baseline for each dataset is

sorted based on the features’ importance. This causal baseline can be shown

using a vector. For example, consider a case that has two random features and

four features that contribute to the outcome (six in total). A causal baseline

can be something like:

[w1: 0.5, w2: 0.35, w3: 0.1, w4: 0.05, rand1 : 0, rand2: 0]
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The XAI explanation for each dataset can also be shown using vectors as

well. To demonstrate how metrics work and their strengths and weaknesses,

we will use four di↵erent hypothetical XAI results.

XAI output 1: [w1: 0.3, w2: 0.2, rand1 : 0.2, w3: 0.1, w4: 0.1, rand2: 0.1]

XAI output 2: [w1: 0.5, w4: 0.15, rand1: 0.15, rand2: 0.1, w3 : 0.08, w2: 0.02]

XAI output 3: [w2: 0.4, w1: 0.38, w3: 0.12, w4: 0.1, rand1 : 0, rand2: 0]

XAI output 4: [w4: 0.5, w1: 0.2, w3: 0.2, w4: 0.1, rand1 : 0, rand2: 0]

There can be di↵erent ways to interpret the results. The following metrics

can capture some of the important ways of interpreting them. Using each of

the metrics, we will rank them based on the causal baseline.

4.5.1 Absolute Error (AE)

Since both causal baseline and XAI results can be seen as vectors, any error

function that applies to vectors can be used here. We chose to use absolute

error for each case in causal scenarios. For each causal scenario, we will use

Absolute Error (AE) twice. First, to calculate the error of the target variable

(which is denoted by T in the causal graphs). Second, to calculate the total

average error, using all features along with T . We call the first one target

absolute error and use the notation of AEtarget for it, and the second one is

the total absolute error and we use the notation of AE for it. We use the

word causal to demonstrate the causal vector in the equation. Similarly, XAI

represents the XAI vector. The mathematical notation for target absolute

error would be:

AEtarget = |causal[t]�XAI[t]| (4.3)

And mathematical notation for total absolute error is:

AE =
nX

i=1

|causal[i]�XAI[i]| (4.4)

The average of these two errors among all the cases in a scenario gives us

the mean total absolute error, noted by MAE, and mean target absolute error,

noted by MAEtarget. We use these notations in the next chapter to show the

results.
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Table (Table 4.6) shows examples of calculating the total absolute error

based on the four hypothetical XAI results.

Results AE
w1: 0.5, w2: 0.35, w3: 0.1, w4: 0.05, rand1 : 0, rand2: 0 0
w1: 0.3, w2: 0.2, rand1 : 0.2, w3: 0.1, w4: 0.1, rand2: 0.1 0.7
w1: 0.5, w4: 0.15, rand1: 0.15, rand2: 0.1, w3 : 0.08, w2: 0.02 0.7
w2: 0.4, w1: 0.38, w3: 0.12, w4: 0.1, rand1 : 0, rand2: 0 0.2
w4: 0.5, w1: 0.2, w3: 0.2, w4: 0.1, rand1 : 0, rand2: 0 0.3

Table 4.6: Absolute Error for our four hypothetical XAI results

Averaging all absolute errors of di↵erent cases inside each causal scenario

gives us the Mean Absolute Error (MAE). Therefore, we will have a target

MAE and a total MAE for each causal scenario. Target AE and Target MAE

have a range of [0, 1], while Total AE and Total MAE have a range of [0, 2].

The lower the error, the better.

4.5.2 Reciprocal Rank (RR)

Reciprocal rank is a popular method in information retrieval. It is a statistical

method to show how good the returned results of a query are. However, it

considers the relevance of documents in a binary manner. For each query, only

one document is relevant, and it is used to score the result. The positioning of

that relevant document among results (its rank) is used to score the returned

results. 1
Rank is the Reciprocal rank assigned to returned results. The mean

Reciprocal Rank (MRR) of a causal scenario is an average over all cases in

that scenario. MRR score has the range of (0, 1], with 1 being the best score.

The following table (Table 4.7) contains examples of the RR score of one fixed

query and di↵erent returned results:

Now, the question is how to apply MRR as a metric to our case. We

chose MRR to see how successful LIME and SHAP are in identifying the

most significant cause of the outcome (the feature with the highest causal

contribution). In the case of our example (causal baseline:w1: 0.5, w2: 0.35,

w3: 0.1, w4: 0.05, rand1 : 0, rand2: 0) the most significant cause is w1. So,
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Query Results RR
d1 d2, d1, d3 1

2

d1 d3, d1, d3 1
2

d1 d1, d2, d3 1
d1 d1, d3, d2 1
d1 d3, d2, d1 1

3

d1 d2, d3, d1 1
3

Table 4.7: Example of Reciprocal Ranking for Di↵erent Returned Results of
One Fixed Query

the ranking process will become something like the table of MRR examples

(Table 4.7). In the Table 4.8, we follow the four hypothetical XAI results and

rank them based on the causal baseline.

Query Results MRR
w1 w1, w2, rand1, w3, w4, rand2 1
w1 w1, w4, rand1, rand2, w3, w2 1
w1 w2, w1, w3, w4, rand1, rand2

1
2

w1 w4, w1, w3, w4, rand1, rand2
1
2

Table 4.8: MRR results for our four hypothetical XAI results

In some real-world scenarios, the most significant feature is interesting for

us. For example, financial companies might want to know the most influential

feature contributing to the acceptance or denial of a loan application. MRR

can show us how successful the explanations of LIME and SHAP are while

monitoring the most significant feature.

4.5.3 Kendall’s Tau

Kendall rank correlation coe�cient or Kendall’s Tau coe�cient is another sta-

tistical method that has the objective of ranking how relevant two documents

are. This is one of the most popular methods to calculate the correlation be-

tween the ordinal association of two sets. Instead of having a binary approach

and looking at the most relevant document, It considers all elements in the

order. So, Kendall’s Tau can give us a sense of how aligned the order of results
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is compared to an ideal ranking of them, while reciprocal rank (Section 4.5.2)

only tells how good the rank of the most relevant document is in the result.

Kendall’s Tau uses the concepts of concordant and discordant pairs to

calculate the correlation of two sets. In our case, one set is the causal baseline

which is the ideal ranking, and the other one is XAI results. Let us show

the ranking of the first element of a pair in the first ranking with R1, the

ranking of the second element in the first set with R
0
1. R2 and R

0
2 notate the

similar concept in the second set. Ranking of a pair of elements in two sets

of results is considered concordant if: R1 � R
0
1 has the same sign as R2 � R

0
2.

For example, if feature A is ranked higher than feature B in the first set of

results and in the second set, A is also ranked higher than B, they would be

considered concordant. If this condition is not met, the pair will be considered

discordant. If we represent all of the concordant pairs with variable C and all

of the discordant pairs with variable D, Kendall’s Tau would be:

⌧ =
C �D

C +D
(4.5)

Kendall rank correlation coe�cient would be a number between -1 and 1.

Higher Kendall’s Tau coe�cient means more similarity between sets. In our

cases, random features all have the same importance of zero, and their order

relative to themselves does not matter to us. The important part for us is how

these are ordered compared to relevant features. So, before calculating the

results, we renamed all of these random nodes to the unique name of ”rand”.

Using Kendall’s Tau as a metric will give us the following scores (Table 4.9) for

our four examples in correlation with baseline (random nodes are all renamed

to ”rand”):

Results Kendall’s Tau
w1, w2, rand, w3, w4, rand 0.0714
w1, w4, rand, rand, w3, w2 -0.5
w2, w1, w3, w4, rand, rand 0.8572
w4, w1, w3, w4, rand, rand 0.6671

Table 4.9: Kendall’s Tau result for the hypothetical examples
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4.5.4 A Note On The Chosen Metrics

These metrics are chosen from popular and well-known metrics in machine

learning and information retrieval fields. It is possible to use other similar

metrics that can compare the order of two di↵erent rankings or how close two

vectors are together. For example, cosine similarity can be used instead of

absolute error. Or Spearman’s Rho can be used instead of Kendall’s Tau.

Although using di↵erent metrics would yield di↵erent results, there should

not be inconsistencies in how we analyze the results inside each scenario by

averaging many rankings. For example, if the order of XAI’s outcome is very

di↵erent from the baseline, this would be reflected by using Spearman’s Rho

and Kendall’s Tau.
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Chapter 5

Results

As discussed in the previous chapter, four common scenarios of causal relation-

ships were studied. More than five hundred datasets were generated based on

those causal graphs, and di↵erent complexities of neural networks were trained

on them. Finally, we applied LIME (Section 2.2) and SHAP (Section 2.3) to

them and compared their results with the underlying causal baseline. In this

chapter, we represent the results and analysis of those four scenarios. We used

Absolute Error (Section 4.5.1, Reciprocal Rank (Section 4.5.2), and Kendall’s

Tau (Section 4.5.3). These metrics provide a quantifiable measure of how much

the explanations of XAI methods are aligned with the causal baseline. On top

of that, we break these numbers further and look into the specificity of each

scenario. As a brief overview of what has been observed in our experiments,

we provide the following figure (Figure 5.1).

Figure 5.1: Overview of Our Experiments’ Results
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5.1 The Impact of Classifiers’ Complexity

Before talking about XAI’s outcome, we want to report the average accuracy

of our chosen classifiers over all the scenarios. Table 5.1 shows the accuracy

of the three chosen architectures Section 4.3.

Accuracy
NN with One Layer 94%
NN with Two Layers 97%
NN with Five Layers 98%

Table 5.1: Accuracy of The Three Chosen Architectures

However, A thought-provoking observation was the irrelevance of the model’s

complexity on the XAI’s results. We will see an example of it in the next sec-

tion (Table 5.5). This example will represent a general theme that was present

in all of the scenarios. Based on our observations, the complexity of the neural

network and its higher accuracy are not helping the XAI’s output to be closer

to the causal baseline. We found the result of all three architectures almost the

same. Thus, to keep this chapter more concise, we do not provide examples of

all three architectures. The provided results are XAI’s outcome when applied

to the neural network with medium-level complexity (Section 4.3.2).

5.2 Scenario One’s Results

The results of this level of causal complexity were very much aligned with

the underlying causal baselines. Some may believe this is not surprising be-

cause each of the observed correlations from features to the outcome is also

conveying direct causation. However, an important point about this scenario

for us was the high level of alignment between XAI methods and the causal

baseline. For analyzing the results, it would be good to review that the first

two metrics, target MAE and total MAE, are capturing errors. For these two

metrics, the lower amount of error represents a better result. However, the

other two metrics, Kendall’s Tau and MRR, capture scores, and the higher

number represents a better result.
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XAI Method MAE MAE Target Kendall’s Tau MRR
LIME 0.311 0.0954 0.859 0.843
SHAP 0.262 0.0814 0.856 0.843

Table 5.2: Results of applying LIME and SHAP to a neural network with two
hidden layers that were trained on one of the datasets in scenario one

T W0 W1

Baseline 0.39 0.40 0.21
LIME 0.31 0.63 0.06
SHAP 0.32 0.63 0.05

Table 5.3: SHAP and LIME’s outcome for a case in the first causal scenario
with three features

A very high ratio for Kendall’s Tau tells that the order of importance

was almost always correct. A relatively low absolute error can tell us the

magnitude of feature importance given by XAI methods was also very close

to the real causal importance of those features. The combination of these two

metrics shows how perfect the XAI methods’ performance in this scenario was.

Also, as you can see, SHAP and LIME are both performing equally well. For

example, LIME does slightly better according to Kendall’s Tau, which shows

it captured the ordering of features slightly better than SHAP, while SHAP

performs slightly better according to absolute error. All of these di↵erences

in our metrics are small and negligible in our experimental settings. Below

are some examples of SHAP and LIME’s outcomes and the corresponding

causal baseline in this scenario. Both LIME and SHAP were successful in

detecting irrelevant features by assigning very small numbers to them. So, in

these results, we refrain from including them for simplicity and to make the

comparison between relevant features easier.

The first example (Table 5.3) is a case in this scenario with three features,

all of which are causally related to the outcome (we have no random nodes).

As you can see, both SHAP and LIME have very close predictions, and they

are very similar in how they make an error.

For the second example, we chose a case with only one cause but with four
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irrelevant features in the dataset. You can see how successful both of them

were in recognizing the true feature in play, giving almost all of the importance

to that node (Table 5.4).

T
Baseline 1
LIME 0.95
SHAP 0.97

Table 5.4: SHAP and LIME’s outcome for a case in the first causal scenario
with one relevant feature and four random ones.

For the third example, we chose a case with three relevant features and

four random ones. This was the case that the results of both of these two

methods were relatively di↵erent from the causal baseline compared to the

previous cases. We will only report the results of all three architectures in

this case to demonstrate the point we discussed on di↵erent complexities of

NN architecture (Section 5.1). It is interesting to see that changing the neural

network’s complexity is not helping the XAI methods at all. In Table 5.5, we

show the result of all three levels of the black box complexity, and you can see

how similar the results are among complexity levels and between LIME and

SHAP.

T W0 W1

Baseline 0.38 0.38 0.24
LIME SimpleNN 0.38 0.11 0.46
LIME MediumNN 0.38 0.11 0.45
LIME ComplexNN 0.36 0.11 0.48
SHAP SimpleNN 0.41 0.10 0.48
SHAP mediumNN 0.41 0.11 0.47
SHAP ComplexNN 0.41 0.10 0.48

Table 5.5: SHAP and LIME’s outcome for all three levels of NN complexities in
a case in the first causal scenario with three relevant features and four random
ones.

In all of them, we see a similar erroneous pattern. A relatively simple case

can give us a misleading analysis in the pipeline of applying XAI methods
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on top of a NN. Even more fascinating, below are the coe�cients of a simple

logistic regression model that is trained on the same dataset. In this case,

it is ironic how perfect the outcome of XAI is when it is applied to logistic

regression compared to NNs (compare Table 5.6 to Table 5.5).

T W0 W1

Baseline 0.38 0.38 0.24
Coe�cients of a Simple Logistic Regression 0.38 0.38 0.24

Table 5.6: Coe�cients of a logistic regression that is trained on the same
dataset as the third example above

Applied to this logistic regression model, SHAP and LIME also reflected

the exact same weights in their output.

With the last example, we want to illustrate two more findings about

this causal scenario. One is about an erroneous behavior, and the other is

a strength. The following example illuminates both of the mentioned points

altogether (Table 5.7) in a case with nine features that one of which is ir-

relevant to the outcome, and the eight rest of them are directly causing it.

First, let’s discuss the error. This error occurs when the causal contribution

of features becomes very small and very close to each other. In this case, the

output of LIME and SHAP can be slightly di↵erent than the causal baseline.

The positive point about the results of this causal scenario is that all random

features that do not have any causal contribution to the outcome are correctly

ranked lower than the relevant features. In this case, we included the score

of the random nodes in the table to demonstrate how well LIME and SHAP

are scoring this irrelevant feature compared to the other relevant features. As

you can see in the table below (Table 5.7), both LIME and SHAP score the

irrelevant feature (Rand0) lower than other relevant features. However, to see

the erroneous point mentioned in the previous paragraph, some features with

a relatively close causal contribution have their ranks slightly di↵erently by

LIME and SHAP. For example, you can see how T has a higher score than W2

in SHAP, while it is the opposite in the causal baseline and LIME.

All in all, explaining black box models that are trained on a dataset with
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T W0 W1 W2 W3 W4 W5 W6 Rand0
Baseline 0.216 0.091 0.201 0.022 0.217 0.240 0.007 0.007
LIME 0.214 0.087 0.203 0.015 0.215 0.230 0.011 0.017 0.007
SHAP 0.219 0.090 0.195 0.023 0.215 0.237 0.008 0.008 0.003

Table 5.7: Results of SHAP and LIME for a case with eight relevant features
and one random feature in scenario one.

this type of causal complexity seems to be consistent with the underlying

causal relationships. Remember that the dataset is being generated with a

linear generative formula (Section 4.1) to make it more aligned with the linear

approximation approach done by LIME and SHAP. Since the explanation is

aligned with the underlying causal baseline, we can also conclude that exper-

imentally, the black box model seems to capture relations between features

that are aligned with causal relations. So, if you have features in your dataset

that, based on your prior knowledge or by consulting with a domain expert,

you know are independently causing outcomes, then you can trust the outcome

of XAI methods, and you can be more certain that your black box model is

behaving according to the true causal relationship. However, we had a sur-

prisingly di↵erent set of findings in the other features.

5.3 Scenario Two’s Results

In this scenario, we saw an extreme bias towards the treatment node. Due to

the confounders’ variety of applications and importance in the real world, we

have designed many possible experiments. Remember, our chosen architec-

ture has one treatment and multiple confounders (Section 4.2.2). We further

divided our experiments in this scenario into three categories to understand

this bias better. In the first category, the causal contribution of the treatment

node is higher than all of the confounders. Confounders’ causal contributions

are chosen randomly within a range that has the maximum value of half of

the amount of the treatment’s causal contribution. In the second category, the

causal contribution of confounders is chosen around the treatment’s causal con-

tribution. In the last category, we experimented with cases where treatment
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is less causally influential than confounders.

5.3.1 First Category

Table 5.8 shows the performance of LIME and SHAP based on our four metrics

in the first category.

MAE MAE Target Kendall’s Tau MRR
LIME 0.60 0.27 0.64 1
SHAP 0.61 0.30 0.90 1

Table 5.8: SHAP and LIME’s explanation for cases in scenario two that treat-
ment has higher causal contribution than all of the confounders

SHAP is outperforming LIME based on Kendall’s tau metric. However,

delving deeper into what happened, it did not seem like an advantage of

SHAP over LIME, and both were performing similarly poorly. We observed

that LIME and SHAP results are highly biased toward the treatment node.

This bias was so high that almost all of the importance was given to the

treatment feature, and there was almost no di↵erence between the remaining

relevant features, confounders, and irrelevant features. The following example

is chosen from a case with one treatment, two confounders, and six random

nodes (Table 5.9). This example demonstrates how much the importance of

confounders is lost in the SHAP and LIME’s explanation. Here feature W0

has about one-third of the significance of T in the causal baseline, while in the

XAI outcome, it has been 50 times smaller than T . Also, irrelevant features,

starting with R in the table, have similar scores to confounders. Some unre-

lated features are scored even higher than relevant confounders. For instance,

R2 and R3 have higher scores than W1 in SHAP’s output, and R0 has a higher

score than W1 in LIME’s output.

This example clearly shows why MRR has its highest score while MAE is

showing a not impressive result. The most significant cause is being overem-

phasized in XAI’s output, so MRR will not capture any error. However, this

bias toward one feature and ignorance towards others is captured perfectly

with MAE.
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T C0 C1 R0 R1 R2 R3 R4 R5

Baseline 0.788 0.200 0.012 0 0 0 0 0 0
LIME 0.877 0.020 0.016 0.019 0.015 0.014 0.011 0.013 0.015
SHAP 0.960 0.013 0.004 0.004 0.003 0.004 0.004 0.003 0.004

Table 5.9: SHAP and LIME’s outcome versus causal baseline for a case in the
first category of scenario two

5.3.2 Second Category

In this category, although the causal contribution of treatment and confounders

is very close, the treatment node is still dominant in the SHAP and LIME’s

output. It has a score about ten times higher than the second feature in the

ranking. Similar to the first category, irrelevant features have a higher score

than relevant confounders. The example below is a case with three confounders

and three irrelevant features that will demonstrate those two mentioned points

(Table 5.10).

T C0 C1 C2 R0 R1 R2

Baseline 0.326 0.240 0.308 0.127 0 0 0
LIME 0.807 0.041 0.047 0.026 0.023 0.033 0.024
SHAP 0.709 0.056 0.060 0.039 0.044 0.050 0.042

Table 5.10: SHAP and LIME’s outcome versus causal baseline for a case in
the second category of scenario two

Table 5.11 shows a summary of our metrics in this category. We can see a

reduction in MRR compared to Table 5.8. The reason is LIME and SHAP are

still ranking T as the most important feature, while it is not always aligned

with the baseline here.

MAE MAE Target Kendall’s Tau MRR
LIME 0.78 0.34 0.60 0.81
SHAP 0.77 0.33 0.62 0.80

Table 5.11: SHAP and LIME’s explanation for cases in scenario two that
treatment has a similar causal contribution to confounders
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T C0 C1 C2 C3 C4 R0

Baseline 0.063 0.077 0.302 0.072 0.318 0.169 0
LIME 0.390 0.076 0.171 0.042 0.177 0.126 0.020
SHAP 0.280 0.103 0.151 0.092 0.153 0.132 0.089

Table 5.12: SHAP and LIME’s outcome versus causal baseline for a case in
the third category of scenario two

MAE MAE Target Kendall’s Tau MRR
LIME 0.81 0.33 -0.12 0.56
SHAP 0.93 0.26 -0.11 0.58

Table 5.13: SHAP and LIME’s explanation for cases in scenario two that
treatment has smaller causal contribution compared to confounders

5.3.3 Third Category

We reduce the causal contribution of the treatment feature to the point that

there are confounders that have five times higher causal contributions in the

causal baseline, and the treatment feature has the smallest contribution com-

pared to all other nodes. However, we observed that treatment is still cap-

turing the highest importance in the XAI’s output ranking. The example in

Table 5.12 makes this point clear. It is from a case with five confounders, one

treatment, and one irrelevant feature.

Table 5.13 summarizes the results of this category based on the four met-

rics. MRR and Kendall’s Tau lowered, and they capture the fact that although

T is less important than every other feature, it is still being represented as the

most influential one.

5.4 Scenario Three’s Results

As mentioned in Section 4.2.3, we have only one cause for the outcome. How-

ever, our outcome is a cause for multiple nodes. It is surprising how much this

high correlation between outcome and its children nodes will remove the focus

from the actual cause of the outcome node. The complexity of the neural net-

works does not seem to help in this scenario either, and all three complexity
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levels yield similar results. Table 5.14 shows the medium model’s results.

XAI Method MAE MAE Target Kendall’s Tau MRR
LIME 1.993 0.989 0.095 0.140
SHAP 1.990 0.995 0.075 0.160

Table 5.14: Results of applying LIME and SHAP to a neural network with
two hidden layers that were trained on the datasets of scenario three

We are observing the worst possible cases of the target absolute and total

absolute errors. Target MAE can be anywhere between 0 and 1, with one

being the worst, and here it is almost at its maximum amount. The same

happened for the total MAE, which has a maximum error of 2. Also, the low

MRR and Kendall’s Tau score captured how incorrect the ranking order was.

All of these metrics are heavily influenced by the treatment node T . In these

scenarios, treatment is the only cause of the outcome, and in the XAI results,

node T is being seriously undervalued and covered by the high importance

that was given to children nodes of outcome that are not causally contributing

to the outcome. Following is an example with seven features. Three of them

are random features (denoted by R), three are children of outcome that can

not cause outcome (denoted by EC), and we have one true cause (T ). See how

the true cause is being scored after random nodes.

5.5 Scenario Four’s Results

In this scenario, we kept the number of treatments fixed at one and played

with the number of nodes between the treatment node and the outcome (Sec-

tion 4.2.4). Similar to scenario three, the treatment variable was also under-

T N0 N1 N2 R0 R1 R2

Baseline 1 0 0 0 0 0 0
LIME 0.012 0.505 0.008 0.366 0.017 0.012 0.009
SHAP 0.007 0.524 0.006 0.397 0.004 0.004 0.004

Table 5.15: SHAP and LIME’s outcome versus causal baseline for a case in
the third causal scenario

53



XAI Method MAE MAE Target Kendall’s Tau MRR
LIME 1.248 0.602 -0.020 0.325
SHAP 1.254 0.603 -0.016 0.334

Table 5.16: Results of applying LIME and SHAP to a neural network with
two hidden layers that were trained on the datasets in scenario four

T F0 F1 F2 F3 R0 R1 R2 R3

Baseline 0.656 0.147 0.021 0.091 0.085 0 0 0 0
LIME 0.012 0.598 0.094 0.178 0.067 0.011 0.012 0.016 0.017
SHAP 0.007 0.638 0.095 0.185 0.058 0.005 0.005 0.005 0.004

Table 5.17: SHAP and LIME’s outcome versus causal baseline for a scenario
in the fourth causal scenario

valued in the XAI methods’ outcome. It seems like a big part of the treatment

feature’s contribution is distributed amongst the features that are in between

the treatment and the outcome. It makes sense for the treatment to have a

low score in the presence of all its children nodes. When we have the value of

the treatment’s children nodes, we can predict the outcome without needing

to know the value of the treatment. In other words, although the treatment

node causally a↵ects the outcome, it does not have a direct causal contribu-

tion. However, another incorrect situation among the results is the ranking of

the treatment’s children nodes compared to each other. This ranking is also

not aligned with their corresponding causal contribution, leading to a very low

Kendall’s Tau score (Table 5.16).

Here is an example of the XAI methods’ outcome when we used a dataset

that had four nodes between our treatment and outcome and four irrelevant

features. We consider the total causal impact of treatment that is being chan-

neled through its children in the causal baseline instead of its zero direct causal

impact (Table 5.17).
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Chapter 6

Conclusion

Is it possible that trusting the explanation of black box models misleads us?

How much can the model-agnostic explanation of black box models be aligned

with a true relationship between features? Are there specific types of scenarios

within which we can trust XAI’s outcome? Is there a quantifiable way to

compare XAI methods?

These are some of the questions we had in mind while starting this re-

search. To address these questions, we needed some scenarios in which we

truly know the relationship between the features. Using concepts of causality,

we generated such scenarios, and we used this causal knowledge as a baseline

for the XAI methods’ performance. Four di↵erent causal scenarios were gen-

erated. Each of these scenarios was inspired by popular causal relationships

and real-world examples.

After generating datasets with known underlying relationships, black box

models were trained on them. The black box architecture of our choice was the

neural network. We trained neural networks with three di↵erent complexity

levels. After training black box models, we could apply XAI methods to them

to compare the results with the causal baseline.

LIME and SHAP are two of the literature’s most widely used XAI methods.

Thus, we chose them as our XAI methods and applied them to the trained

neural networks. In order to compare SHAP and LIME’s explanation with the

causal baseline, three di↵erent metrics were chosen. The chosen metrics were

absolute error, reciprocal rank, and Kendall’s tau.
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Using these metrics, we revealed that we could not trust the explanation

of XAI methods that are applied to a black box model. By trust, we mean

we can not see it as a real explanation of the features’ importance in the

system’s performance. Explanations were seriously deceiving in some cases.

In a general real-world case, part of this problem can be because the black

box model, like a neural network, is trained with the assumption of feature

independence and is not being empowered by any notions of causality. So, the

ML engineer can not say how much of the error is because of the black box

model’s insu�cient accuracy and how much is because of LIME and SHAP.

However, in this research, we created a controlled environment to minimize the

role of the black box model in the total error. We increased the complexity of

the black box to the point that we had perfect accuracy of almost a hundred

percent in most cases. So, although we can not say how much of this error

is coming from the classifier and how much is coming from the XAI method,

we can say that we minimized the error that is coming from the black box

classifier.

By having the accuracy of almost one in most cases for our complex clas-

sifier, we made the situation as ideal as possible for LIME and SHAP to

explain. However, this increase in NN complexity and higher accuracy did not

change the XAI methods’ results regarding their alignment with a correspond-

ing causal baseline. We saw severe mistakes in the XAI methods’ outcome

compared to the causal baseline. This error occurred within cases with rel-

atively simple causal scenarios and relatively low numbers of features. The

only time that XAI’s outcome was aligned with the causal baseline was when

all features independently caused the outcome, forming the simplest possible

causal scenario. In the cases with higher causal complexity, the XAI’s expla-

nation was inconsistent, biased, and in some cases, misleading compared to an

actual causal relationship between features.

SHAP and LIME did not show any significant di↵erence in their perfor-

mance. Although in the SHAP paper, it is claimed that SHAP’s explanations

are closer to human explanations because SHAP satisfies desired characteris-

tics defined in the paper, it was not the case when we looked into its perfor-
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mance compared to LIME from a quantifiable causal viewpoint.
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Chapter 7

Future Work

We generated datasets with a linear relationship between their features and

the outcome. We mentioned that this makes the environment ideal for LIME

and SHAP. Generating datasets with non-linear relationships can provide more

results on how LIME and SHAP can be misleading. We leave this for future

work due to our time constraints.

Also, it is possible to generate more causal scenarios that we did not cover

in this thesis and see how much the explanation provided by LIME and SHAP

aligns with the causal baseline in those scenarios. These new scenarios can be

designed based on consulting with an ML engineer or a domain expert in a

field like finance or medicine. In this way, we can generate more complicated

scenarios inspired by real-world cases.

Another interesting future work can be experimenting with smaller and

simpler networks that will not overfit the data and see how they can teach

LIME and SHAP. Finally, algorithms other than LIME and SHAP can be

added to these experiments. For example, CuasalSHAP can be a good candi-

date to choose and to see how close its explanations are to the causal baseline.
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