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Abstract

Histological examination of biopsy slides is the gold standard for the diagnosis of

skin cancer such as cutaneous melanoma. However, visual evaluations performed

by pathologists are prone to inter- and intra-observer variations. In addition, it

is very labor-intensive to manually analyze a whole biopsy slide due to the large

amount of data involved. With recent advances in digital scanners and computation-

al powers, automatic biopsy image analysis has been desired to assist pathologists

in their clinical diagnosis. In this dissertation, several computerized algorithms that

can aid towards building a computer-aided diagnosis (CAD) system for digitized

skin biopsy slides are developed.

The main contributions of this dissertation are five fold. First, automated tech-

niques are proposed to segment skin epidermis and dermis regions in skin whole

slide images (WSIs). The proposed techniques segment the skin epidermis using a

coarse-to-fine procedure based on thickness measurement and k-means clustering,

and segment skin dermis based on a predefined depth of interest value. Second, two

automated techniques are proposed to detect nuclei seeds in skin histopathological

images. The first technique detects nuclei seeds based on ellipse descriptor analysis

and an improved voting algorithm, while the second technique detects nuclei seeds

by using generalized Laplacian of Gaussian (gLoG) kernels. Third, an automat-

ed technique is proposed to delineate nuclei boundaries in skin histopathological

images. The technique segments nuclei boundaries by a multi-scale radial line

scanning (mRLS) method, which incorporates image gradient, intensity variance

and shape prior together for nuclei boundary determination. Fourth, a comput-
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erized technique for melanocytic tumor classification in skin WSIs is developed.

The technique analyzes both epidermis and dermis areas, and performs skin tissue

classification by using a multi-class support vector machine (mSVM) with a set of

cytological and textural features. These four set of techniques have been developed

primarily for H&E stained images, which are widely used for clinical diagnosis.

The nuclei detection and segmentation techniques work for both H&E and Ki-67

stained skin images. Finally, an automated technique is proposed for measuring

the melanoma depth of invasion (DoI) in MART-1 stained skin histopathologi-

cal images. Note that MART-1 is a melanoma specific stain typically used for

melanoma grading. The proposed technique identifies the skin granular layer based

on a Bayesian classifier, and computes the melanoma DoI using a multi-resolution

framework with the Hausdorff distance measure.

Evaluations of proposed techniques have been thoroughly performed on a set

of skin biopsy images provided by pathologists, which mainly includes 66 H&E

stained skin WSIs, 40 Ki-67 stained and 30 MART-1 stained skin histopathological

images. Experimental results indicate that the proposed techniques can provide

superior performances compared to closely related methods in the literature. Due to

the promising performance and relatively low complexity, the proposed techniques

have the potential to be used for assisting pathologists in skin biopsy image analysis

and disease diagnosis.
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Chapter 1

Introduction

With recent advances in medical imaging and artificial intelligence, computer-aided

diagnosis (CAD) is playing an increasingly important role in the routine clinical

diagnosis procedure. A wide variety of CAD schemes have been developed for de-

tection and classification of various lesions in different medical imaging modalities,

such as computed tomography (CT) [1], magnetic resonance imaging (MRI) [2]

and histopathology imaging (HPI). Existing CAD systems have demonstrated their

advantages in tedious tasks such as counting malignant cells and identifying tumor

regions in biopsy tissues. The main goal of this thesis is to develop quantitative

image analysis techniques that analyze skin histopathological images and assist

pathologists in the diagnostic process. This chapter presents the motivations be-

hind the CAD systems in skin histopathology for disease detection and classifica-

tion. We briefly present the process of specimen preparation and digital imaging in

histopathology. We also briefly explain skin cancer and the corresponding diagnos-

tic features used by pathologists.

1.1 Skin Cancer and Diagnosis

Cancer is a major health problem around the world, and skin cancer is one of the

most common types of cancer. Melanoma, which is a form of skin cancer, is the

leading cause of mortality among all forms of skin cancers [3]. According to a
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recent statistics, about 76,100 people were diagnosed with skin melanoma, and

about 9,710 died from it in the United States alone in 2014 [4]. Melanoma develops

from an abnormal growth of melanocytes which generate melanin, the dark pigment

in skin. Cutaneous melanoma starts and grows locally, initially spreading across

the surface of the skin (radial growth phase), and later invading into the dermis or

even subcutaneous fat (vertical growth phase) [5]. If the melanoma is detected at

early stages, it can be cured by a simple excision [3]. Therefore, an early detection

and accurate prognosis of malignant melanoma will definitely help to lower the

mortality from this cancer.

In the diagnosis of skin melanoma, a few diagnostic steps are performed at

hospitals. The first step that doctors usually take is to do the physical exam (e.g., by

naked eyes) and get patient’s medical history. The patient with suspicious lesions is

then referred to a dermatologist (a doctor specialized in skin diseases), who utilizes

some advanced techniques (e.g., dermatoscopy) to observe the skin lesions more

clearly. If a dermatologist thinks a spot might be a melanoma, a sample of skin

will be excised from the suspicious area and sent to a laboratory for histopatho-

logical examinations by pathologists. Histopathological examination is a process

of the microscopic examination of nuclei morphology and tissue distributions for

disease diagnosis. The diagnosis from histopathology image is the gold standard in

diagnosing almost all types of cancers, including skin melanoma [6].

1.2 Histopathology Imaging

Histopathology refers to the microscopic examination of tissue to study the mani-

festations of disease [7]. In order to identify cytological features (i.e., characteristics

of cell nuclei) that indicate the presence of cancer, pathologists observe histological

slides under the microscope and examine tissue components at different scales to

make a judgement based on their personal experience and knowledge. Generally, a

few steps are required for slide preparation before diagnostic examination. First, a

biopsy sample is excised from suspicious lesion. Second, fixation by some chemical
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fixatives (e.g., formalin) is performed to stop the enzyme activity, and preserve the

cells and their morphological and architectural structures. Third, water is removed

from the tissue, and some chemical agent (e.g., paraffin) that solidifies the tissue is

embedded into the specimen to allow thin sections to be cut. Next is the sectioning

where the embedded tissue sample is cut into thin sections (e.g., 4µm for light

microscope) by a steel knife mounted in a microtome. Finally, these thin sections

are mounted to a glass slide and stained with one or more microscopical stains.

Since cells and other extracellular structures making up most tissue specimen

are colourless, staining is applied to reveal cellular components and provide con-

trast to the tissue [8], [9]. In clinical histology, the most-widely used stain is a

combination of hematoxylin and eosin (H&E) [10]. Hematoxylin is an alkaline

stain with deep purple or blue color, and eosin is an acidic stain with a red color.

With H&E staining, the chromatin rich cell nuclei are stained with blue shade,

while the cytoplasm and other connective tissues are stained with different shades

of pink (see Fig. 1.1(a)). Although H&E stains provide a good contrast between

cellular and extra-cellular structures, they are not specific to a certain type of cell

nuclei. Immunohistochemical (IHC) stains are also widespread staining pigments

in histopathology, which use antibodies to stain particular antigens (e.g., proteins).

IHC stains are typically used to identify specific types of cells in the tissue spec-

imen. For example, MART-1 (i.e., melanoma-associated antigen recognized by T

cells) stain is commonly used to highlight the melanocytes in skin histopathological

images, where melanocytes are observed as brown color and other types of cell

nuclei are observed as blue color (see Fig. 1.1(b)). Ki-67 stain is widely-used

to evaluate the tumor cell proliferation index [11], where immuno-positive and

immuno-negative tumor cell nuclei are observed as brown and blue colors (see

Fig. 1.1(c)), respectively. For other IHC stains for skin biopsy image analysis,

please refer to the Appendix A.1. Using tissue specific stains, physicians diagnose

a tumor as benign or malignant, and determine the stage and grade of a tumor.

After staining, the tissue specimens are covered with a glass (or plastic) cov-

erslip to hold the specimen in place. In the past, pathologists view the slides with
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Fig. 1.1. Examples of skin histopathological images. (a) An H&E stained image. (b) A MART-1
stained image. (c) A Ki-67 stained image. Note that the images are viewed at 40X.

the specimen under a microscope, and make the diagnosis based on a series of

observed features (e.g., cell types and distributions). With recent development in

digital tissue slide scanners, glass slides of tissue specimen can now be digitized

at high magnification to generate whole slide images (WSIs) [12]. Pathologists

examine the digitized tissue slides at different scales using computer visualization

softwares such as Mirax Viewer [13] and Image Scope [14] to make a diagnosis and

judgement.

1.3 Histological Diagnosis and Melanoma Grading

Histopathological examination based on cytological and architectural features is

currently used to confirm the presence of skin melanoma. In the following, we

briefly explain the typical structures of human skin, and then illustrate how to

diagnose and grade skin melanoma from histopathological images.

1.3.1 Skin Structure

The human skin is the outer covering of the body, which has many functions (e.g.,

thermoregulation and protection) [15]. It consists of three main layers: epidermis,

dermis and subcutaneous tissue, each providing a distinct role in the overall function

of the skin. Fig. 1.2 shows an anatomy of normal skin. The descriptions of each
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skin layer are provided below.

Fig. 1.2. Anatomy of normal skin (Image Credit: [16]).

The epidermis is the outermost layer of the skin, which serves as the first barrier

to infection. Generally, the epidermis can be broadly divided into four layers: corni-

fied layer, granular layer, spinous layer and basal layer (see Fig. 1.3). It is mainly

composed of keratinocytes (95%) but also contains melanocytes, Langerhans cells

and Merkel’s cells. The thickness of epidermis varies in different regions of body

but is usually around 0.1mm thick.

The dermis is a layer of skin between the epidermis and subcutaneous tissues,

which cushions the body from stress and strain. It consists of two layers: papillary

dermis and reticular dermis. The papillary layer includes the ridges and papillae.

The reticular layer is composed of coarse interlacing collagenous fibers and an

elastic network. Hair follicles, sebaceous glands, sweat glands, receptors and blood

vessels are also located in the reticular layer. The thickness of dermis may vary

greatly ranging from 0.3mm (e.g., eyelids) to 4.0mm (e.g., palms and soles of

feet), but most parts of human body generally have a thickness about 2mm.

The subcutaneous tissue is the lowermost layer of human skin, which blends

5



indistinctly with the dermis. It contains loose connective tissue and lobules of fat

that holds large blood vessels and nerves. Fig. 1.3 shows a skin WSI with annotated

tissue components.

Fig. 1.3. An example of H&E stained skin histopathological image. (a) Skin WSI. (b) Sebaceous
fat. (c) Blood vessel. (d) Sweat glands. (e) Hair follicle. (f) Muscle. (g) Selected epidermis and
dermis areas. Note that (b)(c)(d)(e)(f)(g) are the magnifications of selected image patches in (a).
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1.3.2 Histologic Diagnosis of Skin Melanoma

In the diagnosis of skin melanoma by analyzing histopathological images, pathol-

ogists are mainly interested in the epidermis and dermis-epidermis junction (DEJ)

areas as most histologic diagnosis criteria are observed in these regions [17]. In the

following, we list the commonly-used features to identify skin melanomas in H&E

stained images.

1.3.2.1 Epidermis features

There are a series of architectural and cytological features within epidermis that

are related to malignant melanoma. Generally, architectural changes seen within

the epidermis in melanoma include broader lesion breadth, poor circumscription of

melanocytes, single melanocytes predominating over nests of melanocytes, asym-

metrical changes in epidermis thickness, the presence of melanocytes above the

basal layer and the irregular configuration of epidermis [17], [18]. Besides archi-

tectural features, cytological features are also important in indicating the presence

of melanoma. These features include large size of melanocytes, irregular contours

of nuclei, prominent or multiple nucleoli and severe mitosis.

1.3.2.2 Dermis features

In the dermis area, the architectural changes indicating the presence of melanoma

mainly include the irregular shape of dermis base contour (close to the DEJ region),

the lack of maturation and asymmetrical host inflammatory response [17]. Just

like the cytological features in the epidermis area, the severe mitotic activity, the

highly nuclear pleomorphism (e.g., irregular nuclei shape and size), prominent or

multiple nucleoli and hyperchromatism (i.e., excessive nuclei staining) also indicate

the presence of melanoma in the dermis area.

More explanations and examples of histologic features for skin melanoma di-

agnosis can be found in [17], [18]. However, it should be mentioned that it is

difficult to make a 100% correct judgement based on the above listed features,
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even by an experienced pathologists. In practice, the experience and knowledge

of pathologists are quite important in disease diagnosis, and cannot be replaced by

any CAD systems in near future.

1.3.3 Histologic Grading of Skin Melanoma

If a skin lesion is diagnosed with malignant melanoma, pathologists will further

examine the biopsy to determine the state (extent) of the disease in order to ef-

fectively plan patient’s treatment. The Breslow thickness, which is defined as the

maximum distance between malignant cells and the top of the granular layer [19],

is one of the most important prognostic factors to stage the skin melanoma. The

deeper is the Breslow thickness, the greater is the possibility of metastases and the

worse is the prognosis for the patient. For example, a study in [20] has indicated

that a 5-year survival rate decreases continuously with the increase of tumor depth,

which is illustrated in Table 1.1. Since MART-1 stain is specific to the melanocytes,

it is usually used to determine the depth of melanoma invasion by pathologists.

Fig. 1.4 shows an example of measuring Breslow thickness in a MART-1 stained

skin image. Note that in Fig. 1.4 the melanoma (malignant cells) is stained with

dark brown color, while other normal cells are stained with light blue color. As

observed in Fig. 1.4, the depth of melanoma invasion is 351.7µm.

TABLE 1.1
SURVIVAL RATES WITH DIFFERENT MELANOMA DEPTH.

Melanoma Depth <1mm 1-2mm 2.1-4mm >4mm
Survival Rates (∼5 years) 95-100% 80-96% 60-75% 50%

1.4 Problem Statements and Motivation

Although many non-invasive techniques have been developed for melanoma diag-

nosis, e.g., epiluminescence microscopy [3] and confocal microscopy [21], which

can provide initial diagnosis, the histopathological examination of a skin WSI by
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Fig. 1.4. Breslow thickness measurement. (a) A skin image stained by MART-1. (b) Breslow
thickness.

pathologists remains the gold standard for the diagnosis as the histopathology slides

provide a cellular level view of the disease [22]. Traditionally, the histopathological

slides are examined under a microscope, and pathologists make the diagnosis based

on their personal experience and knowledge. However, the diagnosis by patholo-

gists are typically subjective and often lead to intra- and inter-observer variabili-

ty [23], [24]. For example, it has been reported that in the diagnosis of melanoma

(on a randomly selected set of 62 suspicious pigmented skin lesions), the inter-

observer variation of diagnosis sensitivity ranges from 55% to 100% between 20

pathologists (overall sensitivity 87%) [25]. Additionally, the manual analysis of the

WSI with high resolution is labor intensive due to the large volume of the data to

be analyzed [26]. To address these problems, computer-aided image analysis which

can provide reliable and reproducible results is desirable.

Besides bringing benefits in objectivity and labour-saving, computerized analy-

sis of digitized histological slides also has advantages in other aspects. For example,

it usually can provide a wide variety of micro and macro prognostic cues, which

may not be easily observed by a qualitative visual examination. Using quantitative

histopathology, it is possible to process the entire WSI instead of only examining

representative image regions, and hence the sampling bias by manual examination

is prevented. Providing quantitative tools for characterization of tissue changes and
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structure is also important for basic biological research to understand the biological

mechanisms of disease progression [3].

Fig. 1.5. Schematic of the proposed skin melanoma diagnosis and grading system.

The aim of this thesis is to develop robust and accurate image analysis algo-

rithms for computer-aided interpretation of skin histopathology imagery. A CAD

system for skin histopathological image classification based on the features from

both epidermis and dermis areas will be developed. This CAD system will operate

on reliable quantitative measures (from pixel-level to object-level), and will pro-

vide objective and reproducible information that can be used by pathologists for

diagnosis. For the specimens identified with melanoma, the depth of invasion (DoI)

will be measured to determine the severity of skin melanoma. Fig. 1.5 shows the

framework of the proposed CAD system for skin melanoma diagnosis and grading.

As observed in Fig. 1.5, the proposed CAD system includes five main modules:

epidermis & dermis segmentations, epidermis analysis, dermis analysis, skin tissue

classification and melanoma invasion measurement. The techniques proposed in

this thesis are used by this CAD system for skin biopsy image analysis, but they are
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also expected to be applied into other CAD applications of biopsy image analysis.

1.5 Major Contribution of the Thesis

Parts of this thesis have been published in the following journals and conferences:

Refereed Journals

[1] H. Xu and M. Mandal, “Epidermis segmentation in skin histopathological

images based on thickness measurement and k-means algorithm”, EURASIP

Journal on Image and Video Processing, vol.2015, no.1, pp.1-14, 2015. (Chap-

ter 3)

[2] H. Xu, C. Lu, N. Jha and M, Mandal, “An efficient technique for nuclei

segmentation based on ellipse descriptor analysis and improved seed detec-

tion algorithm”, IEEE Journal of Biomedical and Health Informatics, vol.18,

no.5, pp.1729-1741, 2014. (Chapter 4)

[3] H. Xu, C. Lu, R. Berendt, N. Jha and M. Mandal, “Automatic nuclei de-

tection based on generalized Laplacian of Gaussian filters”, IEEE Journal of

Biomedical and Health Informatics, vol.21, no.3, pp.826-837, 2017. (Chapter

4)

[4] H. Xu, C. Lu, R. Berendt, N. Jha and M. Mandal, “Automatic nuclear segmen-

tation using multi-scale radial line scanning with dynamic programming”,

accepted by IEEE Transactions on Biomedical Engineering, January 2017.

(Chapter 5)

[5] H. Xu, R. Berendt, N. Jha and M. Mandal, “Automatic measurement of

melanoma depth of invasion in skin histopathological images”,Micron, vol.97,

pp.56-67, 2017. (Chapter 7)

Refereed Conference Proceedings
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[1] H. Xu and M. Mandal, “Efficient segmentation of skin epidermis in whole

slide histopathological images”, Proc. of the 37th Annual International Con-

ference of the IEEE Engineering in Medicine and Biology Society (EMBC),

2015, pp.3855-3858. (Chapter 3)

[2] H. Xu, C. Lu and M. Mandal, “Automated segmentation of regions of interest

in whole slide skin histopathological images”, Proc. of the 37th Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC), 2015, pp.3869-3872. (Chapter 3)

[3] H. Xu, H. Wang, R. Berendt, N. Jha and M. Mandal, “Automated nuclear

segmentation in skin histopathological images using multi-scale radial line s-

canning”, Proc. of IEEE-NIH 2016 Special Topics Conference on Healthcare

Innovations and Point-of-Care Technologies, 2016, pp.175-178. (Chapter 5)

[4] H. Xu, R. Berendt, N. Jha and M. Mandal, “Automated diagnosis of melanoma

from skin biopsy images”, Proc. of BHI-2017 International Conference on

Biomedical and Health Informatics, February 2017. (Chapter 6)

[5] H. Xu, H. Wang, R. Berendt, N. Jha and M. Mandal, “Computerized mea-

surement of melanoma depth of invasion in skin biopsy images”, Proc. of

BHI-2017 International Conference on Biomedical and Health Informatics,

February 2017. (Chapter 7)

1.6 Organization of the Thesis

The rest of this thesis is organized as follows: Chapter 2 presents the broad literature

review on image processing techniques used for histology analysis as well as exist-

ing whole slide image analysis systems. Chapter 3 presents the proposed techniques

for epidermis and dermis segmentations in skin WSIs. Chapter 4 presents two

proposed techniques for nuclei detections (e.g., identify nuclei locations) in skin

histopathological images. Chapter 5 presents the proposed nuclei segmentation
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technique (e.g., delineate nuclear boundaries) in skin histopathological images.

Chapter 6 presents the proposed technique for automatic analysis and classification

of melanocytic tumor on skin WSIs. Chapter 7 presents the proposed technique for

measuring Breslow depth in MART-1 stained skin histopathological images. Future

work and conclusion for the research are presented in Chapter 8, which is followed

the bibliography and appendix.
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Chapter 2

Literature Review

In this chapter we present a brief overview of computer-aided image analysis tech-

niques for histopathological images. The literature review covers a range of com-

monly used image processing algorithms related to regions of interest (ROI) seg-

mentation, features construction and classification. The state of the art techniques

related to WSIs analysis with different types of cancer including skin cancer are

also included.

2.1 ROI Detection and Segmentation

In the diagnosis of various cancers by analyzing microscopic images, the ROI

detection and segmentation are usually the first step before any subsequent quanti-

tative analysis, as the architectural and morphological features of these ROI often

provide the most important diagnostic clues in cancer identification. Numerous

works have been conducted to detect and segment different tissue components from

microscopic images.

2.1.1 Thresholding

Thresholding is an intuitive and simple method in image segmentation, which con-

verts an intensity image into a binary image by assigning all pixels to the value one
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or zero as follows:

B (x, y) =





1 if I (x, y) ≥ T

0 otherwise
(2.1)

where (x, y) represents a pixel coordinate in the image I or B, and T is a pre-defined

threshold. Many researchers [24], [27]–[30] have used thresholding techniques for

ROIs segmentation. Gurcan et al. [27] proposed a thresholding based method for

nuclear segmentation in neuroblastoma images, which first performs image pre-

processing by morphological top-hat transform (i.e., subtracting an opened image

from the original), and then image binarization by the hysteresis thresholding fol-

lowed by watershed segmentation. Korde et al. [28] proposed to segment cell nuclei

in bladder and skin images by a global threshold. The technique tries to find the

valley of the image histogram as the threshold. If no distinct valleys are detected

in the image, the darkest 20% of the pixels in the image are assumed to be nuclear

pixels. Lu et al. [30] proposed a locally adaptive threshold selection technique

for nuclear segmentation in skin histopathological images. This technique first

performs image binarization by an adaptive thresholding [31], and then determines

an optimal threshold for abnormally large nuclear regions (i.e, nuclear clumps)

based on prior knowledge about nuclear size and shape. Although these thresh-

olding techniques have advantages of efficiency and simplicity, it usually results

in under segmentations or missed segmentations when there exist considerable

intensity variations in the image.

2.1.2 Watershed

Watershed is another popular segmentation technique in image processing field. It

considers the grayscale image as a topographic surface, where pixels intensity are

interpreted as heights. The “water” starts from the local mimima in the image and

gradually floods the surrounding regions (i.e., catchment basin), and the watershed

lines are formed when “waters” from different basins meet together. The whole

process of “water” flooding stops when the water level has reached the highest peak

in the topographic surface, and thus the image is divided into different meaningful
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regions [31]. The watershed transform can be represented as:

L (x, y) = W (I(x, y)) (2.2)

where W (·) represents the watershed transform operation, and L (x, y) is the seg-

mented image. The watershed segmentation can be conducted by combining with

the Euclidean distance transform or image gradient maps, but it tends to produce

severe over-segmentations when there are too many local minima in the image. In

order to tackle this problem, a number of marked watershed algorithms [32]–[36]

have been proposed. These algorithms differ in the strategies of finding the markers

of interested objects. For instance, Yang et al. [32] proposed a method that detects

nuclei markers for segmentation by an iteratively coarse and fine erosion process.

Jung et al. [34] formulated the marker extraction based on H-minima transform as

an optimization problem, which determines an optimal depth value (corresponds to

the minimum fitting error) to suppress the undesired local minima in the Euclidean

distance map. George et al. [37] proposed to detect nuclei markers by a circular

Hough transform, followed by watershed segmentation. The accuracy of these

marked watershed segmentation depends critically on the accuracy and reliability

of detected markers.

2.1.3 Filtering

In order to identify the locations and numbers of objects in an image (e.g., cell

nuclei), filtering based techniques which can enhance the signals around object

centers may provide a good performance. Laplacian of Gaussian (LoG) filter, as

defined below, has been widely used in histological images:

LoG(x, y; σ) =
∂2G(x, y; σ)

∂x2
+

∂2G(x, y; σ)

∂y2
(2.3)
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where G(x, y; σ) is a Gaussian kernel with zero mean and scale σ, as defined below:

G(x, y; σ) =
1

2πσ
exp(−x2 + y2

2σ2
) (2.4)

Byun et al. [38] proposed a nuclear detector in retinal images that is designed based

on the LoG filter at a fixed scale (set empirically). This method has advantages such

as simple implementation and low computational complexity, but it fails to provide

a good performance when the image has nuclei with different size (corresponding

to different scales). Al-Kofahi et al. [39] proposed a method that detects nuclei

based on multi-scale Laplacian of Gaussian (mLoG) filters, which first extracts

image foreground with a graph-cuts-based binarization, and then detects nuclear

seeds by mLoG filtering with a distance-map-constrained adaptive scale selection.

The mLoG filter is efficient in locating the centers of 2-D near-circular blobs but

has limitations in detecting blobs with general elliptical shapes. Kong et al. [40]

proposed a generalized Laplacian of Gaussian (gLoG) filter based technique, which

tries to detect general elliptical blob structures (like cell nuclei) in images. Although

a good performance is reported in [40], the technique is highly sensitive to the image

noise and often misses low intensity nuclei in the image.

2.1.4 Active Contour Model (ACM)

A widely-used approach for object segmentation is based on ACM or snakes. The

basic idea of these algorithms is to evolve a continuous curve in a 2-D plane to

delineate structures in an image. The evolution of the ACM is subject to constraints

from the given image by seeking to minimize an energy function based on gradient

or intensity information. For example, A classical snake model, acting as an edge-

detector, is proposed in [41], which evolves the curve by minimizing the following

energy function:

Esnake = α

∫ 1

0

∣∣∣C ′

(s)
∣∣∣
2

ds+ β

∫ 1

0

∣∣∣C ′′

(s)
∣∣∣
2

ds− λ

∫ 1

0

|∇I (C (s))|2ds (2.5)

17



where C (s) , s ∈ [0, 1] represents a parametric curve, α, β and λ are the positive

weight parameters. The first two terms on the right side control the smoothness of

the contour (i.e., internal energy), while the third term attracts the contour toward

object boundaries in the image (i.e., external energy). Several works have applied

the ACM for ROI segmentation in microscopic images. These works are related

to cell segmentation [42], [43], nuclear and glandular structures segmentation [44],

[45]. Although these techniques are reported to provide a good performance, the

results are very sensitive to the initialization of ACM and local intensity variations

in images. In addition, the ACM has a high computational complexity.

2.1.5 Clustering

Clustering is a process of grouping objects into different clusters, where the objects

in the same group (i.e, a cluster) are more similar to each other than those in other

groups. The k-means algorithm is a popular clustering technique that divides a set of

observations (i.e., feature vectors) into k sets S = {S1, S2, · · · , Sk} by minimizing

the within-cluster variances, i.e.,

S = argmin
S

k∑

i=1

∑

x∈Si

‖x− µi‖2 (2.6)

where x represents the observation and µi is the mean of feature vectors in Si.

Many works have utilized clustering analysis techniques for objects segmentation

and identification in medical image applications. Sertel et al. [46] designed a system

for follicular lymphoma grading, which utilizes k-means clustering algorithm on the

lymphoma microscopic images to segment cell nuclei, cytoplasm and extra-cellular

material based on La*b* color features. Lu et al. [22] applied mean-shift clustering

algorithm to smooth the image and make nuclear regions homogenous such that nu-

clei can be accurately segmented by adaptive thesholding in skin histopathological

images. Qi et al. [43] proposed a cell seed detection algorithm that uses mean-shift

clustering on a voting map and considers cluster centres as cell seeds.
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2.1.6 Probabilistic Models

Based on the prior knowledge (e.g., color distribution of detected objects), prob-

abilistic models can be used to classify the objects in an image into different cat-

egories. The well-known Bayesian theorem has been used in many medical ap-

plications. Using the Bayesian theorem [31], the posterior conditional probability

P (ωj|X) can be computed as:

P (ωj|X) =
p(X|ωj)P (ωj)∑

j∈{1...K} p(X|ωj)P (ωj)
(2.7)

where X is a feature vector (e.g., pixel intensities), ωj is the index of classes and

K is the number of classes. p(X|ωj) and P (ωj) are the likelihood function and

prior probabilities, respectively. The evidence
∑

j∈{1...K} p(X|ωj)P (ωj) is the scale

factor. By using the Bayesian theorem, Naik et al. [47] segmented the image into

three classes including lumen, cytoplasm, and nuclei for prostate cancer grading.

Sertel et al. [48] detected the mitosis and karyorrhexis cells in neuroblastoma histo-

logical images. Basavanhally et al. [49] detected the lymphocytes in breast cancer

images by the Bayesian model. Lu et al. [50] segmented mitotic cells from multi-

spectral images based on Bayesian classification. Since the likelihood and the prior

terms are generally determined from training samples, the performance of Bayesian

theorem based detection techniques are highly relied on the training database.

2.1.7 Comparison of Segmentation Techniques

Figs. 2.1(a)(b) show an H&E stained color skin image and its corresponding gray-

scale image, respectively. Figs. 2.1(c)(d)(e)(f)(g)(h) separately show the nuclei seg-

mentations by using Otsu’s thresholding method [51], marked watershed algorith-

m [34], LoG filter [38], ACM [41], k-means clustering algorithm [52] and Bayesian

classification technique [50]. Note that in Fig. 2.1(f), the initializations (i.e., yellow

circles in the image) for ACM are obtained based on a voting algorithm [53]. As

observed in Fig. 2.1, the global thresholding, clustering and probabilistic model
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Fig. 2.1. Examples of nuclei segmentations by different techniques. (a) Original color image. (b)
Gray-scale image. (c) Otsu’s thresholding. (d) Watershed algorithm. (e) LoG filtering. (f) ACM. (g)
K-means clustering. (h) Bayesian classification. Note that in (f) the yellow circles around nuclear
centers are the initializations for ACM.

(see Fig. 2.1(c)(g)(h)) generally results in under-segmentations for the touching or

overlapping cell nuclei, as these techniques perform segmentations mainly based

on pixel intensities. The marked watershed and LoG filters can generally split

clustered nuclei (Fig. 2.1(d)(e)), but the obtained nuclear boundaries are usually

not very accurate due to the color variations within nuclei regions. In comparison,

the ACM can provide much smoother nuclear boundaries and achieve more accu-

rate segmentations (see Fig. 2.1(f)). However, the performance of ACM is quite

sensitive to the initializations and local intensity variations in the image.
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2.2 Features for Histology Images

There have been numerous research works that characterize histological images

with different features. These features are usually related to the texture, morphology

and architecture of segmented ROI.

2.2.1 Textural Features

Textural features are important in histology analysis since different tissue compo-

nents (e.g., melanoma and normal cells) are stained with different colors and present

different textures [54]. A frequently-used approach for texture analysis is based

on statistical properties of the intensity histogram. Given a set of pixels from a

segmented ROI, the textural features from intensity histogram including the mean,

standard deviation, smoothness, third moment, uniformity and entropy [31] can

be extracted. For more explanation of these features, please see the Appendix

A.2.1.1 These feature descriptors have been used in tissue counter analysis for

distinguishing benign nevi and malignant melanoma [55]. In [26], they were used

as texture features to segment squamous epithelium by the SVM classifier.

Haralick texture features [56] are another category of popular features used in

histological image analysis. These features are derived from the gray level co-

occurrence matrix C,

C =




p(1, 1) p(1, 2) · · · p(1, Ng)

p(2, 1) p(2, 2) · · · p(2, Ng)
...

... . . . ...

p(Ng, 1) p(Ng, 2) · · · p(Ng, Ng)




(2.8)

where Ng is the total number of gray levels, p(i, j) is the probability that a pixel with

gray level i is adjacent to a pixel with gray level j. The co-occurrence matrix records

the spatial dependency between the gray-level pairs. Although there are many

Haralick features [56], [57], only some of them are commonly used in histological
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applications. These features include energy, contrast, correlation, homogeneity,

dissimilarity and entropy. For more explanations about Haralick texture features,

please see the Appendix A.2.1.2. Sertel et al. [58] proposed an automatic tech-

nique to classify the stromal development in neuroblastoma images, which utilizes

Haralick features for classification. Lu et al. [59] proposed a technique for nuclear

atypia classification in breast cancer images, which is designed based on Haralick

features.

There are also other kinds of texture features that have been applied for histo-

logical image analysis such as local binary pattern [58], Gabor features [60], [61]

and Tamura features [62]. For more details about these features, please refer to the

provided references.

2.2.2 Morphological Features

During the manual analysis of digitized biopsies, pathologists usually describe

many gland or cell characteristics in terms of morphology, and hence morphological

features play a significant role in automatic histopathological image analysis. Based

on the segmented ROI, a set of morphological features can be calculated. Table 2.1

lists the common morphological features used in histology.

TABLE 2.1
DESCRIPTION OF MORPHOLOGICAL FEATURES.

Name Description
Regional features The features are derived directly from the segmented ROI, and

usually include the area, perimeter and center.
Convex hull
features

The features are derived from the convex hull [63] of ROI. These
features may include the solidity, convex deficiency, convex area
and concavity.

Elliptical features The features are derived from the best fit ellipse [64] of ROI.
These features may include the major and minor axis and the
ratio between them, eccentricity, orientation, and ellipticity.

Fig. 2.2(a) shows the convex hull of a ROI (i.e., lymph node). The solidity

is the ratio of ROI pixels (e.g., green pixels in Fig. 2.2(a)) over the total pixels

in the convex hull, while the convex deficiency is the ratio of pixels in concavity
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Fig. 2.2. Convex hull and best fit ellipse. (a) The convex hull for a lymph node. (b) The best fit
ellipse for a lymph node.

regions (e.g., white regions in Fig. 2.2(a)) over the total pixels in the convex hull.

Fig. 2.2(b) shows the best fit ellipse of a ROI. The eccentricity is the ratio of the

distance between the foci of the ellipse and its major axis length, while the ellipticity

is the ratio of ROI pixels within the ellipse over the total pixels of the ellipse.

For more explanations about different morphological features, please refer to [31].

The morphological features are usually combined with other features (e.g., textural

features) for disease diagnosis and grading. The typical applications include follic-

ular lymphoma grading [46], cervical intraepithelial neoplasia diagnosis [26] and

melanocytic histology classification [65].

2.2.3 Architectural Features

Architectural features measure the spatial arrangement and structural information

of ROI in the histological image. The graphs can generally be used for encoding the

spatial-relation features. Formally, a simple graph is defined as G = (V,E), with V

and E being the node and edge set. To capture the spatial distribution of segmented

ROI, the centers of ROI can be considered as the nodes for constructing graphs.

There are many graph structures that can be used to encode spatial information,

and correspondingly many features can be selected for classification [54]. The

typical graphs include Voronoi Tesselation, Delaunay Triangulation and Minimum

Spanning Tree. Let us assume that an image region I contains m objects of interest
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Fig. 2.3. A histological image and its graph structures with nuclear centers as nodes (Image
Credit: [54]).

with centroids c1, c2, . . . , cm. The graphs are defined as follows:

• Voronoi Tesselation: The Voronoi diagram V is a set of polygons P =

{P1, P2, . . . , Pm}. For any polygon Pi (1 ≤ i ≤ m), it is comprised of pix-

els x (x ∈ I) if d (x, ci) = minj {‖x− cj‖} where i, j ∈ {1, 2, . . .m} and

d (a, b) is the Euclidean distance between any two pixels a, b ∈ I .

• Delaunay Triangulation: The Delaunay triangulation D is constructed on

top of the Voronoi diagram V , where any two centroids ci and cj with i, j ∈
{1, 2, . . .m} are connected by an edge if Pi and Pj share a side in V .

• Minimum spanning tree: The minimum spanning tree MST is a non-cyclic

subgraph that connects all nodes in D. Note that a single graph D may have

many different spanning trees, but the spanning tree with the minimum length

(i.e., edge length) is selected as the MST .

Fig. 2.3 shows an example of Voronoi tesselation, Delaunay triangulation and

Minimum spanning tree for the nuclei in the histopathological image. The fea-

tures derived from these graphs are provided in Table 2.2. Many works on his-

tological image classification have used architectural features derived from graphs.
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TABLE 2.2
DESCRIPTION OF ARCHITECTURAL FEATURES.

Graph structure Typical features
Voronoi tesselation number of nodes, number of edges, average polygon area,

area disorder and roundness factor
Delaunay Triangulation number of nodes, average edge length, maximum edge

length, number of edges and average triangle area
Minimum spanning tree number of nodes, average edge length, total edge length,

edge length disorder and number of neighbors

These works includes lymphocytic infiltration grading in breast histological images,

colon tissue classification [66], prostate cancer grading [60] and cervical cancer

grading [67]. Besides features from graphs, some other architectural features are

also used for measuring spatial arrangement of objects in the image. For exam-

ple, Petushi et al. [24] proposed to measure nuclear density (i.e.,number of nuclei

per square window) to assist breast cancer grading. Sertel et al. [46] proposed

a histopathological image analysis system for follicular lymphoma grading, which

uses measurements such as number of neighboring nuclear components and average

distance to neighboring nuclear components to encode architectural features of the

image.

2.2.4 Features Selection

In real applications, it is usually difficult to perform the diagnosis and grading of

tissue diseases based on one category of features, and hence textural, morphological

and architectural features are usually combined together for tissue classification.

The combination of different categories of features may result in a large dimension

of feature vector, including redundant features without contributing much to the

discrimination power. In fact, a large set of features may possibly degrade the over-

all classification performance, a phenomenon known as “the curse of the dimen-

sionality” [54]. To avoid this problem, the well-known dimensionality reduction

methods such as principal component analysis (PCA) [31] and linear discriminant

analysis (LDA) [68] can be used such that the feature dimensionality is reduced.
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However, such kind of features projection will “hide” some feature elements that

contribute (although not much) to the classification performance. Feature selection

methods which aim at determining the optimal subset of features and providing

the best classification performance have been widely-studied and used in histo-

logical applications [54]. Among many different methods, the sequential forward

selection (SFS) method is well known and widely used in practice due to its good

performance and relatively low computational cost [69]. The SFS algorithm starts

with selecting the individual feature that maximizes an optimality criterion F (e.g.,

the classification accuracy). Each consequent stage of the algorithm augments the

set of already selected features by including a new feature such that the resulting

feature subset maximizes F . The process of adding new features is continued until

F reaches the maximum. The SFS algorithm has been used for features selection

before classification of prostate cancer biopsies in [70].

2.3 Classification

After constructing a number of feature vectors, the classification of histopathologi-

cal images is performed to judge the tissue biopsy and divide them into different

categories. The classification can be performed by many classifiers such as k-

nearest neighbors (KNN) classifier [58], LDA classifier [67], Bayesian classifi-

er [46], SVM [26], [60], [66], [71], Neural network [24], Decision tree [24], [55],

or combinations of different classifiers [72]. Among these classifiers, SVM is one

of the most widely used classifiers mainly due to its excellent performance and

efficiency. Let {xi, yi}Ni=1 be the training data where xi ∈ Rn is a feature point and

yi ∈ {−1, 1} is the corresponding label. The optimal hyperplane w · φ (x) + b = 0

for separating two classes by SVM can be obtained by minimizing the following

function:

min
1

2
‖w‖2, s.t., yi [w · φ (xi) + b] ≥ 1, 1 ≤ i ≤ N (2.9)
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where w and b are the coefficients for the hyperplane, and φ (·) is the kernel function

(e.g., linear kernel φ (xi) = xi). Once the optimal hyperplane is determined by E-

q. (2.9), the input data points xi are mapped to one of two classes by using the binary

decision function f (xi) = sgn [w · φ (xi) + b]. By using the SVM classifier, Wang

et al. [26] developed a computer assisted system to diagnose cervical intraepithelial

neoplasia based on cytological features. Altunbay et al. [66] proposed to diagnose

and grade colon cancers by using SVM classifier with tissue component structures

computed from color graphs. Ali et al. [73] proposed to use SVM classifier with

spatially aware cell cluster graphs to distinguish oropharyngeal p16+ tumors.

2.4 General WSIs Analysis and Classifications

The WSI is a high magnification digital image of an entire microscopic slide, which

can provide global information of tissue specimen for quantitative image analysis.

With recent development in computational powers, several systems on different

cancers of diagnosis and grading based on the multi-resolution framework have

been proposed. Table 2.3 shows the state-of-the-arts literatures about digitized

WSIs analysis and classifications.

Petushi et al. [24] proposed a technique for grading breast cancer from his-

tology images. They first partitioned each breast WSI into 64 sections, and then

partitioned each of these section-images into 25 sub-images. For each sub-image,

they employed gray scale conversion, adaptive thresholding and morphological

operations to segment cell nuclei, and classified nuclei into three different types

(e.g., lymphocytes, epithelial cells and cancer cells) using supervised learning. The

nuclear densities and the number of segmented tubules in images are used as the

features for classification by quadratic classifier. The classification accuracy of

75% has been reported on a database of 24 H&E stained WSIs.

Mete et al. [71] proposed a block-based supervised technique for detection of

malignancy in head and neck histopathological images. The proposed technique

first divides the training WSI into half-overlapping sub-images (e.g., 128 × 128
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TABLE 2.3
RELATED WORKS ON VARIOUS CANCER DIAGNOSIS BY ANALYZING H&E STAINED WSIS

Reference Dataset Feature Classifier Accuracy
[24] 24 Breast, 40X Architectural features of

nuclei and tubules
Quadratic 75%

[71] 7 Head and Neck,
20X

Color features of HSV
channels

SVM 96.25%

[26] 31 Cervical, 40X Morphological and
architectural features of
nuclei

SVM 79.74%

[58] 43 Neuroblastoma,
40X

Textural features of image
blocks

KNN 88.4%

[72] 33 Neuroblastoma,
40X

Textural features of
cytoplasm and neuropil

Multiple* 87.88%

[61] 100 Prostate, 40X Textural features Bayesian 74%
[59] 66 Skin, 40X Morphological and

architectural features
SVM 89.07%

*Multiple refers to a combination of different classifiers such as KNN, Bayesian and SVM.

pixels), and then extracts prominent colors from malignant and normal training

samples, respectively. These extracted colors are clustered into several groups that

are used to train the SVM. For malignancy detection in a candidate image, the

trained SVM is applied to classify the divided sub-images into different categories.

A classification accuracy of 96.25% has been achieved on 7 H&E stained WSIs.

Wang et al. [26] developed a computer-aided system for the diagnosis of cer-

vical intraepithelial neoplasia. The system first segments the squamous epithelium

using texture features in conjunction with SVM, and then generates the perpen-

dicular lines in the segmented epithelium (with respect to the medial axis). Based

on the computed features (e.g., nuclear size and density) in image blocks along

perpendicular lines, the SVM is employed to perform the classification. This CAD

system achieves an overall 79.74% accuracy for four-class tissue classification on

31 H&E stained WSIs.

Sertel et al. [58] developed a multi-resolution CAD system for classification

of stromal development in neuroblastoma. The system uses texture features ex-

tracted from co-occurrence statistics and local binary patterns of divided image

tiles for classification. At each resolution level, the most discriminative features
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are determined by the feature selection method that minimizes the leave-one-out

classification error on the training set. A modified KNN classifier is employed

to determine the confidence level of the classification at each resolution. The

classification starts from the low resolution and switches to high resolution when

necessary. Experimental results on 43 H&E stained WSIs show a 88.4% classifica-

tion accuracy.

Kong et al. [72] developed a multi-resolution CAD system for grading of neu-

roblastic differentiation in WSIs. This system first divides the WSI into a set of non-

overlapping image tiles (e.g., 500×500) with different resolutions, and then seg-

ments each image tile into multiple cytological components (e.g., nuclei, cytoplasm,

neuropil) using an expectation maximization (EM) based approach.The statistical

and Haralick features derived from the pre-segmented cytological components are

fed to a multi-classifier combiner for training. The trained classification system is

tested on 33 images and provides a 87.88% accuracy.

Doyle et al. [61] proposed a technique for detection of prostate cancer from

digitized needle biopsies. The technique starts from the low resolution image,

where the texture features such as Haralick and Gabor features are extracted. The

extracted features are fed into a set of boosted Bayesian classifiers to generate a

mask with cancerous tissues as foreground. The segmented cancerous tissues are

then mapped to high resolution for another round of classification. This process

repeats until image resolution is sufficient for application of advanced region-based

grading systems. Experiments on 100 H&E stained WSIs show a 74% classification

accuracy.

Lu et al. [59] proposed a CAD system for classification of skin histopathological

images. The system first down-samples the WSI and segments the skin epidermis

area at the low resolution level. The segmented epidermis is then mapped to the

high resolution such that nuclei and melanocytes within epidermis are segment-

ed. Based on the morphological features and architectural features of melanocytes

in the epidermis area, the skin image is classified into different categories (e.g.,

melanoma, nevi, normal) by SVM. A classification accuracy of 89.07% has been
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obtained based on 10-fold cross validation on 66 H&E stained WSIs.

2.5 Summary

In this chapter, we presented a brief review of automated image analysis techniques

in histopathology, which includes ROI detection and segmentation, feature extrac-

tion and selection, and image classification. Several representative works on WSIs

analysis and classification with different types of cancers (including skin cancer)

are also provided.
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Chapter 3

Automated Epidermis and Dermis

Segmentations

Automatic segmentation of epidermis and dermis areas in skin histopathological

images is an essential step for computer-aided diagnosis of various skin cancer-

s including skin melanoma. However, it is a challenging problem to accurately

segment epidermis and dermis regions from digitized WSIs due to the presence of

many different structures within skin tissues and the large volume of image size. In

this chapter, we first propose an epidermis segmentation technique that segments

skin epidermis based on thickness measurement and k-means classification. We

then propose a dermis segmentation technique that segments skin dermis based on

morphological operations and the predefined depth of interest. Experiments and

comparisons indicate that the proposed techniques provide a good performance in

epidermis and dermis segmentations.

Part of this chapter has been published in: Xu et al. “Epidermis segmentation in skin
histopathological images based on thickness measurement and k-means algorithm”, EURASIP
Journal on Image and Video Processing, vol.2015, no.1, pp.1-14, 2015. Xu et al. “Automated
segmentation of regions of interest in whole slide skin histopathological images”, Proc. IEEE
Engineering in Medicine and Biology Society (EMBC), pp.3855-3858, August 2015.
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3.1 Introduction

Fig. 3.1 shows a skin WSI stained with H&E. As observed in Fig. 3.1, a typical

digitized skin slide can be divided into three main parts: epidermis, dermis and sub-

cutaneous tissues. The epidermis area has dark purple color due to the large amount

of absorption of the haematoxylin by cell nuclei. On the other hand, the dermis

area is mainly presented the pink color due to the large absorbtion of eosin whereas

the subcutaneous tissues have net-like pattern with white color background. The

diagnosis of skin melanoma can generally be made by analyzing the architectural

and morphological features of atypical cells in the epidermis and DEJ areas [18]. In

addition, epidermis segmentation helps in identifying the relative positions between

carcinoma cells and epidermis boundaries. The invasion depth of carcinoma cells

into the skin tissue can be measured, which is a critical indicator for skin caner grad-

ing and therapy [21]. Therefore, automatic segmentation of epidermis and dermis

areas is an important step in melanoma diagnosis by analyzing histopathological

images.

Fig. 3.1. Skin tissue digitized slide. Note that a selected image patch is zoomed in for better
viewing. The epidermis is manually labeled with cyan contours, while the dermis with a depth of
650µm is labeled with dashed black contours.

Recently a few techniques for epidermis segmentation have been proposed. Lu

et al. [74] proposed a Global Thresholding and Shape Analysis based technique

(henceforth referred to as the GTSA technique) that segments epidermis area in skin
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histopathological images. The GTSA technique first down-samples WSIs with 40X

magnification by a factor of 16, and then performs epidermis segmentation on the

red channel of the down-sampled image. Haggerty et al. [75] presented a Contrast

Enhancement and Thresholding based technique (henceforth referred to as the CET

technique) for epidermal tissue segmentation in WSIs with 10X magnification.

Unlike GTSA technique, the CET technique performs global thresholding on a

contrast enhanced composite image (which is a combination of Y and b∗ channel).

Both GTSA and CET techniques assume that there are small number of cell nuclei

present in the dermis area, and they eliminate noisy regions by shape and area

analysis. Mokhtari et al. [21] developed a system for measuring melanoma depth

of invasion in microscopic images, which includes the segmentation of epidermal

layer. The epidermal layer is segmented by a Morphological Closing and Global

Thresholding based technique (henceforth referred to as the MCGT technique). The

MCGT technique makes an assumption that the morphological closing operation

can remove all low intensity components in the dermis area (e.g., cell nuclei and

other skin components). However, it is usually difficult to define an appropriate

structuring element for closing operation to remove all low intensity components

in the dermis area and keep epidermis unchanged when dealing with the WSIs.

Note that since all existing epidermis segmentation techniques are mainly relied on

threshoding, they usually fail to provide a high precision when different dark skin

components (e.g., cell nuclei, hair follicles) are present in the dermis area.

In this chapter, we propose an epidermis segmentation technique, which has

overcome the limitations (i.e., low segmentation precision) of existing techniques.

Based on epidermis segmentation, we further propose a dermis segmentation tech-

nique, which is, to our knowledge, the first technique to segment skin dermis in skin

WSIs. The details of the proposed techniques and experimental results are provided

in following sections.
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3.2 Image Dataset

The dataset used for evaluating epidermis and dermis segmentation performance

includes histopathological images from formalin-fixed paraffin-embedded tissue

blocks of skin biopsies. The sections prepared are about 4µm thick and are stained

with H&E using automated stainer. The original digital WSIs were captured under

40X magnification on Carl Zeiss MIRAX MIDI Scanning system. All images

were obtained from University of Alberta hospital. For examples of skin WSIs,

please refer to the Appendix A.3. Since the original WSIs have a large volume

size (e.g., several gigabytes) and are difficult for real time processing, these images

were down-sampled by a factor of 16 and saved into TIFF format using MIRAX

Viewer software. Overall the image dataset consists of 66 different skin WSIs with

the resolution between 2,500×3,000 and 6,000×10,000 pixels. Table 3.1 lists the

distributions of different tissue biopsies included in the dataset.

TABLE 3.1
IMAGE DATASET USED FOR EVALUATING EPIDERMIS AND DERMIS SEGMENTATIONS.

Tissue biopsies No. Pct.

Normal 17 25.7%
Nevus 17 25.7%

Melanoma 32 48.6%

3.3 Proposed Epidermis Segmentation

The schematic of the proposed technique for epidermis segmentation is shown in

Fig. 3.2. The technique has three modules. In the first module, the epidermis

coarse segmentation is performed based on thresholding and shape analysis. In the

second module, the thickness of coarsely segmented epidermis area is measured

using line segments perpendicular to the main axis of the epidermis mask. The

coarsely segmented result is evaluated based on the measured epidermis thickness.

In the third module, a second-pass fine segmentation by an unsupervised clustering
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algorithm is performed on the epidermis region with the poor quality segmentation

result. The three modules are now presented in details in the following.

Fig. 3.2. Schematic of epidermis segmentation.

3.3.1 Coarse Segmentation

Given an RGB image I l, the red channel Rl is selected for the epidermis coarse

segmentation, since the red channel of the H&E stained skin histopathological

image provides good distinguishable information [74]. With the red channel image

Rl, the epidermis coarse segmentation is performed as follows:

(1) Removing white background pixels: In this step, we empirically select a

threshold τ1 (e.g., τ1 = 240) to separate skin tissues from the background (which

are typically white). The pixels in Rl with gray values smaller than τ1 are classfied

as the foreground. Let the foreground pixels be denoted by {Fk}k=1...M , where M

is the number of pixels.

(2) Applying global thresholding: The Otsu’s thresholding technique [51] is

applied to group the pixels {Fk}k=1...M into two classes. A binary mask b0 is
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generated as follows:

b0 (i, j) =





1 if Fk ≤ τ2

0 if Fk > τ2
(3.1)

where (i, j) is the 2-D coordinate of the pixel Fk in Rl, τ2 is the threshold obtained

by the Otsu’s technique.

(3) Eliminating false regions: We label all the regions in the binary mask b0 via

8-connected criterion. Let the 8-connected regions in b0 be denoted by {Ck}k=1···O

where O is the number of connected regions. For each region Ck, we calculate

the area Carea, the major axis length rmaj and minor axis length rmin of the best

fit ellipse [64]. A binary mask b1 with epidermis regions as the foreground is

determined as follows:

b1 (Ck) =





b0 (Ck) , if (Carea > Tarea) ∧ (rmaj/rmin > Tratio)

0, otherwise
(3.2)

where b0 (Ck) represents the pixels of the region Ck in b0, ∧ is the AND operation,

Tarea and Tratio are the predefined thresholds. Note that Tarea is used to remove

small noisy regions in b0, while Tratio is used to select the epidermis region that has

a long and narrow shape after global thesholding [74][75]. In this work, Tarea and

Tratio values are determined based on the domain prior knowledge and experiments

on training images. Specially, we set the thresholds as Tarea = 0.006M , and

Tratio = 3. For more details, please refer to parameters selection in the section

of epidermis segmentation evaluations.

Fig. 3.3 shows two examples of both intermediate and final coarse segmentation

results. Figs. 3.3(d)(h) show the segmented epidermis regions (b1) corresponding

to Figs. 3.3(a)(e), respectively. Note that Fig. 3.3(d) shows a good quality segmen-

tation, whereas Fig. 3.3(h) shows a poor quality (incorrect) segmentation where the

false positive region is highlighted by the manually labeled (red) contour.
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Fig. 3.3. Two examples of epidermis coarse segmentation. (a) & (e) Red channel images. (b) & (f)
Images after removing background pixels. (c) & (g) Binary images after global thresholding. (d) &
(h) Final binary masks. Note that white regions in (d) and (h) correspond to segmented epidermis
areas.

3.3.2 Thickness Measurement

It is observed in Fig. 3.3 that coarse segmentation module may result in both good

and poor quality segmentations. With a pixel resolution of 3.72 µm/pixel, the

segmented epidermis as shown in Fig. 3.3(d) on average has a thickness of 52

pixels (or 0.19 mm), whereas the segmented epidermis as shown in Fig. 3.3(h) has

a thickness of 276 pixels (or 1.03 mm). The skin epidermis varies in thickness in

different parts of a body but should be within a limited range [76]. In our database,

the epidermis of skin histopathological images roughly has a thickness of 0.1-0.4

mm, and hence a second-pass segmentation can be carried out based on thickness

measurement. In this module, we measure the thickness of the coarsely segmented

result to classify it as good or poor quality segmentation. The steps of thickness

measurement are detailed below.
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(1) Morphological preprocessing: In order to smooth the boundaries of the

epidermis area, the morphological closing operation is first performed on the mask

b1 as follows:

b2 = b1 • S (3.3)

where • is the morphological closing operator, and S is the structuring element. In

this work, a disk shape structuring element with a radius of 10 pixels is empirically

selected for the closing operation. Next, the holes within the mask b2 are filled by

performing the morphological reconstruction operation:

b3 = [ℑ (bc2, bm)]
c (3.4)

where ℑ is the morphological reconstruction operator [31], bc2 is the complement

of b2, and bm is the marker image which is set to be 0 everywhere except on the

image border, where it is set to be bc2. Fig. 3.4(a) shows a mask b1 [cropped from

Fig. 3.3(h)], and Figs. 3.4(b)(c) show the corresponding b2 and b3.

Fig. 3.4. Illustration of morphological preprocessing. Epidermis mask (a) b1. (b) b2. (c) b3. Note
that figures (a)-(c) are cropped from the whole slide image and zoomed up for clear illustration here.

(2) Thinning of epidermis mask: This step reduces the epidermis area in the

mask b3 to a connected stroke (a thin line) that is only a single pixel wide. The

connected stroke can be considered as the skeleton of the epidermis area. To obtain

the connected stroke, the parallel thinning algorithm [77] is performed on the mask

b3. The algorithm is executed in a number of iterations until the generated mask b4

stops changing. Fig. 3.5(a) shows the generated epidermis skeleton in the mask b4

superimposed on the mask b3.

(3) End points extraction: After generating the mask b4, the end points of the

epidermis skeleton are detected by a lookup table (LUT) technique [31]. A LUT
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Fig. 3.5. Epidermis skeleton and end points. (a) Skeleton b4 superimposed on epidermis mask b3.
(b) Epidermis skeleton with end points marked by + symbols.

is first constructed based on the observation that an end point (in the epidermis

skeleton) has exactly one foreground neighbor. The mask b4 is then processed by

using the generated LUT to extract end points of the epidermis skeleton. Let the

end points be denoted by {Ek}k=1...N , where N is the number of end points. In

Fig. 3.5(b) the end points are marked with + symbols.

(4) Main axis identification: It is observed in Figs. 3.5(a)(b) that there are many

branches in the epidermis skeleton. The longest path joining two end points on the

skeleton reflects the main axis of the mask b3. In this step, we calculate all paths

joining each possible pair of end points on the skeleton, and select the longest path

as the main axis. Given two arbitrary end points Ei and Ej , let the geodesic distance

(i.e., the number of pixels on the shortest path connecting Ei and Ej) be denoted by

Dij . The main axis is calculated as follows:

Step 1: Calculate all possible Dij based on the geodesic distance transform [78],

where 1 ≤ i, j ≤ N .

Step 2: Select the longest geodesic distance among all possible Dij and consider

the corresponding constrained path as the main axis.

Step 3: Smooth the main axis by using a moving average filter of length 200

pixels.

Note that there are usually a large number of end points, and hence it may be

computationally expensive to calculate all possible Dij in Step 1. As observed in

Fig. 3.5(b), the pair of end points corresponding to the longest constrained path

usually has a relatively long Euclidean distance. In order to speed up the main axis

identification, we calculate the Euclidean distance between all possible end points,
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and select a short list of pairs (e.g., 10 pairs) based on (large) Euclidean distance.

The main axis identification can then be efficiently performed by applying steps 1-3

on the selected pairs.

Fig. 3.6. Illustration of main axis identification. (a) A constrained path joining Ei and Ej .
Epidermis mask b3 with main axis (b) before smoothing. (c) after smoothing.

Let the obtained main axis be denoted by the points set {Zk}k=1...Q where

Q is the number of points on the main axis. Fig. 3.6 illustrates the main axis

identification with an example. Fig. 3.6(a) shows a constrained path (the red line)

joining points Ei and Ej . Figs. 3.6(b)(c) show the epidermis main axis before

smoothing and after smoothing, respectively, superimposed on the mask b3.

(5) Epidermis thickness calculation: In this step, we first calculate the gradient

image of the mask b3 (obtained by Eq. 3.4). The epidermis boundary points corre-

spond to the points with non-zero gradients (on the binary mask). Let this boundary

points set be denoted by {Ak}k=1...W where W is the number of points. We then

calculate the epidermis thickness based on the epidermis main axis and epidermis

boundary points. Note that there are Q points on the main axis. In order to reduce

the computational complexity, we calculate the epidermis thickness using selected

points on the main axis. In this work, a set of r points, {Zk}k=h,2h,··· ,rh where

r =
⌊
Q
h

⌋
, is selected. Fig. 3.8(a) shows the epidermis contour with r selected

points on the main axis, where h = 3. To calculate the epidermis thickness, a

perpendicular line for each selected point on the main axis is defined. Given a point

Zk (xk, yk) (see Fig. 3.7), the steps to calculate the local thickness are as follows.

Step 1: Let fk denote the directed line passing through points Zk−1 (xk−1, yk−1)

and Zk+1 (xk+1, yk+1). Note that the direction is from the point Zk−1 to Zk+1. The
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Fig. 3.7. Example of epidermis local thickness measurement (with h = 3).

slope sk of the line lk perpendicular to fk is computed as follows:

sk =





0, if xk+1 = xk−1

∞, if yk+1 = yk−1

xk−1 − xk+1

yk+1 − yk−1
, otherwise

(3.5)

Step 2: The intersection points between the line lk and the epidermis boundary

{Ak}k=1...W are calculated. A boundary point Ak (uk, vk) is considered to be on the

perpendicular line lk if it satisfies the following condition:

∣∣∣∣tan
−1 (sk)− tan−1

(
vk − yk
uk − xk

)∣∣∣∣ ≤ η (3.6)

where η is a small positive number (e.g., η = 0.05) to allow for a small error in

intersection points calculation. Note that for an arbitrary point Zk, there will be two

or more intersection points. For example, in Fig. 3.7 the line lk intersects with the

epidermis contour at four points A1, A2, A3 and A4.

Step 3: The directed line fk divides the intersection points (e.g., A1, A2, A3 and

A4) into two groups: right side points (RSP) and left side points (LSP). Note that

RSP and LSP are seen from the direction of the line fk. The position of a point

Ak (uk, vk) with respect to the line fk is determined by the following equation:

ϕ = ukα + vkβ + γ (3.7)
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where α = yk+1− yk−1, β = xk−1−xk+1, γ = xk+1yk−1−xk−1yk+1. If ϕ < 0, the

point belongs to RSP (i.e., Ak is located on the right side of fk); if ϕ > 0, the point

belongs to LSP; if ϕ = 0, the point is on the fk. In Fig. 3.7, the points A2, A3, A4

are in the LSP, whereas the point A1 is in the RSP.

Fig. 3.8. Illustration of epidermis thickness measurement. (a) Epidermis contour with selected
points on the main axis (h = 20). (b) Line segments measuring epidermis thickness.

Step 4: The local thickness tk for a point Zk is computed as follows:

tk = min {‖Ai −Aj‖} , Ai ∈ RSP,Aj ∈ LSP (3.8)

where ‖·‖ is the 2-D Euclidean distance between points Ai and Aj . In Fig. 3.7, the

Euclidean distance between points A1 and A2 is computed as the local thickness tk.

Likewise, the local thicknesses {tk}k=h,2h,··· ,rh for all selected points on the

main axis are calculated by using steps 1-4. Fig. 3.8(b) shows the line segments

measuring epidermis thickness.

(6) Segmentation quality evaluation: The quality of coarse segmentation result

is evaluated based on the average value of measured epidermis thickness, which is

as follows:

ρ =





1 if t < τ3

0 otherwise
(3.9)

where t̄ = 1
r

∑r
k=1 tkh, τ3 is a threshold value and ρ is a parameter to indicate

the coarse segmentation quality. Note that the threshold τ3, which corresponds to

the maximum epidermis thickness, is determined based on experiments on training

images (please see parameters selection in the section of epidermis segmentation

evaluations). In this work, we set the threshold τ3 as 150 pixels (or 0.55 mm).

For a good quality segmentation, ρ = 1, whereas for a poor quality segmentation,
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ρ = 0, which needs to be enhanced by the fine segmentation module.

3.3.3 Fine Segmentation

The coarse segmentation results are classified into good and poor quality segmenta-

tions based on thickness measurement. In this module, we consider the poor quality

segmentation for further analysis in order to obtain a more accurate segmentation.

When ρ = 0, it is likely that some dermis pixels are incorrectly classified as

epidermis pixels. In order to obtain a more accurate segmentation, it is necessary

to conduct a second-pass fine segmentation to divide the pixels into two classes

(e.g., epidermis and dermis pixels). To obtain a robust performance, we perform

the second-pass fine segmentation by using {R,G,B} color channels. Due to the

possible variations in the color spectrum between different digitized slides, k-means

classification [52], which is an unsupervised classification algorithm, is selected to

perform the fine segmentation. The {R,G,B} values of the pixels that are binary

true in the coarsely segmented epidermis area (e.g., the mask b1) are taken from the

image I l and used as clustering attributes. The k-means algorithm divides the pixels

into 2 classes based on their attributes (e.g., {R,G,B} color values) by iteratively

minimizing the following cost function:

J =

2∑

j=1

nj∑

i=1

∥∥xj
i − cj

∥∥2 (3.10)

where nj is the number of pixels in the class j, xj
i is the ith pixel in the class j,

and cj is the centroid of the class j. Note that the number of classes is set as 2 that

corresponds to dermis and epidermis respectively.

Fig. 3.9(a) reproduces the coarse segmentation result shown in Fig. 3.4(a) in

color. Figs. 3.9(b)(c) show two classes of pixels obtained by the k-means algorithm.

It is observed that the class with epidermis pixels has relatively darker color (i.e.,

lower R,G,B values) than the class with dermis pixels. The two classes can be
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Fig. 3.9. Illustration of k-means classification. (a) Coarse segmentation result Fig. 3.4(a) in color.
(b) Class with dermis pixels (k∗ = 2). (c) Class with epidermis pixels (k∗ = 1).

identified as follows:

k∗ =





1 if
(
R1 +G1 +B1

)
<

(
R2 +G2 +B2

)

2 otherwise
(3.11)

where
(
R1, G1, B1

)
and

(
R2, G2, B2

)
are the centroids of the two classes. Note that

for the class with epidermis pixels, k∗ = 1, while for the class with dermis pixels,

k∗ = 2;

The foreground pixels shown in Fig. 3.9(c) are considered to be epidermis pixels

according to the Eq (3.11). However, it is observed in Fig. 3.9(c) that a number

of low intensity pixels in the dermis area are classified as epidermis pixels. Note

that most of the false positive pixels (belonging to dermis area) are isolated pixels,

or correspond to regions with smaller area. Therefore, false positive pixels can

easily be eliminated by the area opening operation. Regions that have areas below

the threshold Tarea (see the coarse segmentation module) are removed. Finally,

the morphological closing operation with a disk shape structuring element (with a

radius of 5 pixels) is performed to smooth the epidermis area, and the holes within

the epidermis area are filled by the reconstruction operation. Fig. 3.10(a) shows the

finally obtained epidermis region. Fig. 3.10(b) shows the epidermis contour on the

original image.

3.4 Epidermis Segmentation Evaluations

In this section, we present the performance of the proposed technique and compare

it with the performance obtained by existing techniques.
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Fig. 3.10. Fine segmentation result. (a) Finally segmented epidermis area. (b) Epidermis contour
on the original image.

3.4.1 Evaluation Metrics

The automatic epidermis segmentation results are compared to the ground truth

segmentations obtained by visual inspection. The evaluations are performed by

computing area based metrics [74] namely precision (APRE), sensitivity (ASEN )

and specificity (ASPE), and boundary based metrics [79] namely Hausdorff dis-

tance (DHD) and mean absolute distance (DMAD). We denote the manually ob-

tained boundary as g = {cgi |i ∈ (1, 2, · · · , m)}, and the boundary of the automatic

segmentation as s =
{
csj |j ∈ (1, 2, · · · , n)

}
, where m and n are the numbers of

the ground truth and automatically segmented boundary points, respectively. The

area based metrics are defined as follows:

APRE =
|ℜ (s) ∩ ℜ (g)|

|ℜ (s)| × 100% (3.12)

ASEN =
|ℜ (s) ∩ ℜ (g)|

|ℜ (g)| × 100% (3.13)

ASPE =
|ℜc (s) ∩ ℜc (g)|

|ℜc (g)| × 100% (3.14)

where ℜ (·) is the area of the closed boundary, |·| is the cardinality operator, ∩
is the intersection operation and ℜc (·) is the complement of ℜ (·). To evaluate

the automatically segmented boundary contours, we calculate the distance of every

point in g from all points in s. The boundary based metrics are defined as follows:

DHD = max
i

[
min
j

∥∥csj − cgi
∥∥
]

(3.15)
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DMAD =
1

m

m∑

i=1

[
min
j

∥∥csj − cgi
∥∥
]

(3.16)

Note that the Hausdorff distance (DHD) measures the worst possible disagreement

between two contours. The mean absolute distance (DMAD) estimates the disagree-

ment averaged over the two contours.

3.4.2 Parameters Selection

There are 66 different skin histopathological images in the whole dataset, which

are provided with ground truth segmentations by pathologists. The 66 WSIs consist

of three categories: 17 normal skins, 17 melanocytic nevi and 32 skin melanomas.

Note that there are three parameters that should be selected appropriately in the

proposed technique, which includes Tarea, Tratio (thresholds for eliminating false

positive regions in Section 3.3.1), and τ3 (threshold to determine the coarse seg-

mentation quality in Section 3.3.2). To determine the values of these parameters,

we randomly selected 6 normal skins, 6 melanocytic nevi and 8 skin melanomas

as training images. The 20 training images were randomly selected from three

categories to avoid any bias. The other 46 images were taken as testing images,

which were used as an independent validation set. The values of training parameters

are shown in Table 3.2. We explain the process of determining parameter values in

the following.

TABLE 3.2
TRAINING PARAMETERS OF EPIDERMIS SEGMENTATION TECHNIQUE.

Modules Parameters Values

Coarse segmentation Tarea 0.006M pixels
Coarse segmentation Tratio 3

Thickness measurement τ3 150 pixels

To determine an adaptive threshold value for Tarea, we calculate the portion

of epidermis pixels about skin tissue pixels in training images. It has been found

that the portion of epidermis pixels ranged between 0.7% and 6%, and hence the
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threshold Tarea is set as 0.006M where M is the number of foreground pixels (i.e.,

skin tissue pixels) in the WSI. Similarly, we calculate the ratio rmaj/rmin for all

ground truth epidermis regions in training images, and the rmaj/rmin values have

been found to be in the range between 3.3 and 26.6. Therefore, the threshold Tratio

is set as 3.

The parameter τ3 is determined based on experiments on training images in

this work. Based on visual examination, the coarsely segmented result of training

images are divided into two groups: subsets A and B. In subset A (11 WSIs), the

segmented results are quite similar to ground truths, while in subset B (9 WSIs)

a large number of false positive pixels in dermis area are classified as epidermis

pixels. The coarsely segmented masks of subset B have markedly large thickness

than masks of subset A. Table 3.3 shows the performance evaluations of subsets

A, B by the area based metrics, and the corresponding average epidermis mask

thickness x. As observed in Table 3.3, the segmentation precision for the subset B

is significantly low, only 38.69%. The average thickness x for subset B is 211.60

pixels, which is much higher than 63.26 pixels for subset A. The boxplot for the

epidermis thickness of subsets A and B is shown in Fig. 3.11. As observed in

Fig. 3.11, the maximum thickness in subset A is smaller than 150 pixels, while the

minimum thickness in subset B is larger than 150 pixels. Therefore, the threshold

τ3 is finally set as 150 pixels.

TABLE 3.3
PERFORMANCE EVALUATIONS OF EPIDERMIS COARSE SEGMENTATION IN SUBSETS OF

TRAINING IMAGES.

Subsets APRE(%) ASEN(%) ASPE(%) x(pixels)

A 98.11 97.04 99.96 63.26
B 38.69 99.83 93.70 211.60

In order to test how sensitivities are the parameter values to the choice of train-

ing images, we selected another set of 20 skin images randomly (from the testing

images) and calculated the values of Tarea, Tratio and τ3 following a similar process

of parameters selection. Experiments show that the values of these three parameters
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Fig. 3.11. Thickness variations of coarsely segmented epidermis masks in subsets A and B of
training images. Subset A (B) includes images with correct (incorrect) segmentations after coarse
segmentation module.

only have marginal variations (Tarea = 0.007M , Tratio = 3 and τ3 = 155). In other

words, the parameter values do not fluctuate too much across databases.

3.4.3 Quantitative Results

To illustrate the efficacy of the proposed epidermis segmentation technique, the

performance of the proposed technique is compared with the existing epidermis

segmentation techniques including the GTSA [74], CET [75] and MCGT [21] tech-

niques. The GTSA technique has two parameters Tarea and Tratio, which were set

the same values as our proposed technique. The CET technique has several key

parameters including the low output thresholds for contrast enhancement, the sizes

of smoothing mean filter and morphological operations and the thresholds to elimi-

nate noisy regions after thresholding. For the parameters (e.g., the size of smoothing

filter) that are not used in the proposed technique, we set them following the work

in [75]. While for parameters (e.g., Tarea used to eliminate noisy regions) that

are used in the proposed technique, we set them the same values as our proposed

technique. The MCGT technique has only one key parameter that is the radius of the

circular structuring element for the morphological closing operation. To determine

an optimal radius value, we selected a set of values from 20 to 50 with a step of 5 to

do experiments. 30 is finally determined as the radius of the structuring element, as
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it provides the best performance of epidermis segmentation in our training images.

The average results of quantitative evaluations by Eqs. (3.12)-(3.16) on both

training and testing sets are shown in Table 3.4. It is observed in Table 3.4 that

the proposed technique provides an overall superior performance in epidermis seg-

mentation than the existing techniques. Although the sensitivities of the proposed

technique (90.39% and 92.78%) are marginally lower than those of the GTSA [74]

technique, the proposed technique achieves much higher precisions (98.69% and

96.53%), roughly 20% higher than the GTSA technique. The k-means algorithm

used by fine segmentation module of the proposed technique incorrectly classifies a

small number of epidermis pixels as dermis pixels, which results in the marginal

drop in sensitivity. The poor performances of the GTSA and CET techniques

are mainly because a large number of dermis pixels are incorrectly classified as

epidermis pixels in images where there are a large number of cell nuclei in the

dermis area (see Figs. 3.13(c)(d)). The cell nuclei in the dermis area appear dark

purple, and global thresholding incorrectly considers them as epidermis pixels.

In addition, the CET technique [75] applies global thresholding on an equally

weighted linear combination of the Y (i.e., gray) and b∗ channel (i.e., b∗ in L∗a∗b∗

color space) images, which provides a poor performance than using the red channel

in the our database. The performance of the MCGT [21] technique is much poorer

than that of the other techniques, as it does not work on skin WSIs which include

epidermis, dermis and sebaceous areas. The MCGT technique assumes that the

morphological closing operation can remove all unrelated components (typically

dark appearance) in the skin dermis area, and hence the epidermis area can be

segmented out by thresholding. However, the dermis areas of WSIs contain many

different dark skin components such as hair follicles, sweat glands and nuclear

clumps. Since the size of different skin components may vary greatly, it is difficult

to define an appropriate structuring element for closing operation which can remove

all unrelated skin tissues and keep the epidermis area unchanged. It is also noted

from the Table 3.4 that the proposed technique has achieved relatively smaller

DHD and DMAD values in both training and testing sets, and hence the proposed
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technique provides a better matching between the ground truth contours and the

automatically segmented contours.

TABLE 3.4
QUANTITATIVE EVALUATIONS OF EPIDERMIS SEGMENTATION BETWEEN EXISTING

TECHNIQUES AND PROPOSED TECHNIQUE.

Datasets Techniques APRE(%) ASEN(%) ASPE(%) DHD DMAD

Training
(20 WSIs)

MCGT [21] 29.12 76.59 90.14 147.99 26.31
CET [75] 56.53 91.44 95.14 143.45 23.75

GTSA [74] 75.01 98.13 97.53 140.25 12.43
Proposed 98.69 90.39 99.98 130.16 7.71

Testing
(46 WSIs)

MCGT [21] 27.61 77.41 86.26 152.63 27.41
CET [75] 49.91 91.25 93.84 139.39 24.33

GTSA [74] 77.82 98.42 97.15 117.37 13.82
Proposed 96.53 92.78 99.84 86.83 6.99

For further comparison of the proposed epidermis segmentation technique with

existing techniques, the thickness of automatically segmented epidermis masks of

different techniques was measured by the proposed thickness measurement method

(see thickness measurement module), and compared with the thickness of manually

labeled epidermis masks. Fig. 3.12 shows the thickness comparisons between the

automatically segmented masks and ground truth masks for 46 testing images. It is

observed in Fig. 3.12 that the thickness of epidermis mask obtained by the proposed

technique is very close to that of manually labeled epidermis mask, whereas the seg-

mented epidermis masks by existing techniques tend to have much larger thickness

than manually labeled epidermis masks. The MCGT [21], CET [75] and GTSA [74]

techniques incorrectly segment some low intensity areas (e.g., cell nuclei) in the

dermis area as the epidermis area, which increases the thickness of the segmented

epidermis mask.

3.4.4 Qualitative Results

Qualitative results of epidermis segmentation for a whole slide skin histopatho-

logical image is illustrated in Fig. 3.13. Note that Fig. 3.13(a) shows the WSI

with the manually labeled epidermis contour, while Figs. 3.13(b)(c)(d)(e) show the
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Fig. 3.12. Comparison of epidermis thickness between manually labeled epidermis masks and
automatically obtained results for testing images.

corresponding automatically segmented results by the MCGT [21], CET [75], GT-

SA [74] and proposed technique, respectively. Figs. 3.13(a1−e1) and (a2−e2) show

the corresponding selected parts of magnified segmentation results, respectively.

Note that the magnification of selected parts are indicated by the rectangles on the

WSIs. It is observed in Fig. 3.13 that the proposed technique provides more accurate

segmentations than existing epidermis segmentation techniques. The MCGT [21]

technique segments many false positive regions in the dermis area as epidermis

area, as a simple closing operation fails to remove dark regions in the dermis area

which are subsequently classified as epidermis area by thresholding. The CET [75]

and GTSA [74] techniques incorrectly segment many low intensity dermis areas as

epidermis areas, since these low intensity areas are segmented as binary foregrounds

by thesholding but not eliminated by subsequent shape and area analysis.

3.5 Proposed Dermis Segmentation

Unlike epidermis areas which are easily distinguishable from other skin compo-

nents, the dermis areas do not have clear borders from other tissues (e.g., subcu-

taneous tissues). In addition, pathologists are mainly interested in the DEJ areas

(dermis-epidermis junction) instead of the whole dermis area when diagnosing skin

melanomas. So it is not necessary to segment out the whole dermis region. In the
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Fig. 3.13. Comparative segmentation results on a skin WSI. (a) Manually labeled epidermis
contour. (a1) & (a2) Magnification of selected parts in (a). (b) MCGT [21]. (b1) & (b2)
Magnification of selected parts in (b). (c) CET [75]. (c1) & (c2) Magnification of selected parts
in (c). (d) GTSA [74]. (d1) & (d2) Magnification of selected parts in (d). (e) Proposed technique.
(e1) & (e2) Magnification of selected parts in (e). Note that a large number of dermis pixels are
incorrectly segmented as epidermis pixels in (b)(c)(d).

following, we present a technique to segment skin dermis based on a predefined

depth of interest from epidermis outer boundary. The schematic of the proposed

dermis segmentation technique is shown in Fig. 3.14. As observed in Fig. 3.14,

the proposed technique has three modules. First, the epidermis area is segmented

out from the skin WSI, and the epidermis outer boundary is determined. The line

segments with a predefined length (i.e., depth of interest) are then generated from

the epidermis outer boundary. Image morphological operations are finally applied

to obtain desired dermis areas.

52



Fig. 3.14. Schematic of dermis segmentation.

3.5.1 Epidermis Segmentation & Outer Boundary Selection

To segment skin dermis areas, the first step is to locate skin epidermis areas. In

this module, the coarse-to-fine epidermis segmentation technique presented in Sec-

tion 3.3 is applied to segment skin epidermis areas. Given an input RGB image Il, a

binary mask be with epidermis areas as foreground is obtained. Fig. 3.15(a) shows

a H&E stained skin WSI, while Fig. 3.15(b) shows the corresponding segmented

epidermis mask be. On the mask be, the left-bottom and right-bottom points E1

and E2 are identified (see the solid red dots in Fig. 3.15(c)). The points E1 and E2

divide the boundary of epidermis mask be into two parts: outer boundary and inner

boundary. Based on the average distance between boundary points and the geomet-

ric center of skin pixels (i.e., outer boundary on average has a longer distance), the

epidermis outer boundary B is determined. These two extrema points E1 and E2

and the epidermis outer boundary B (the green contour in Fig. 3.15(c)) are to be

used for generation of line segments in the next module.

Fig. 3.15. Example of epidermis segmentation. (a) A skin WSI. (b) Epidermis mask be. (c)
Epidermis extrema points and outer boundary. Note that (c) is cropped from (b) and zoomed up here
for clear illustration.

53



3.5.2 Line Segments Generation

In this module, we generate a series of line segments emerging from epidermis

outer boundary, and the dermis regions for segmentation will be covered by these

generated line segments. The two steps of line segments generation are as follows.

(1) Down-sampling outer boundary: Given the epidermis outer boundary B,

we first down-sample it and select a subset of boundary points B∗ such that the

subsequent processing is performed more efficiently. Assuming that there are z

points on the boundary B and the down-sampling factor is h (e.g., h = 3), the

down-sampled boundary B∗ is obtained as follows:

B∗ = {pi ∈ B |i = h, 2h, . . . , mh,m = ⌊z/h⌋} (3.17)

For brevity, let us denote the down-sampled outer boundaryB∗ as {Pi}i=1...m, where

m is the number of points.

(2) Generating line segments: After obtaining the boundary B∗, we define a

perpendicular line segment (with a length of d) for each point Pi (2 ≤ i ≤ m − 1)

based on its two neighboring points. Since the outer boundary (see Fig. 3.15(c)) is

not a smooth contour, it will result in noisy directions for generated line segments.

In this step, we first smooth the outer boundary points {Pi}i=1...m using a moving

average filter with a predefined length (e.g., 201 taps). A set of smoothed outer

boundary points {P ∗
i }i=1...m is obtained and used for estimating directions of line

segments. Given a point Pi (see Fig. 3.16), the perpendicular line segment is

generated as follows:

Step 1: Three consecutive points P ∗
i−1, P ∗

i and P ∗
i+1 are selected from the set

{P ∗
i }i=1...m, and a curve Ci (as shown in Fig. 3.16) is fitted based on the three

consecutive points using a polynomial curve fitting method.

Step 2: A line Ti, which is tangent to the fitted curve Ci at point P ∗
i , is calculated.

Step 3: A line V i passing through the point Pi and perpendicular to the line Ti

is calculated.

Step 4: A line segment PiQi is generated such that it satisfies the following
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Fig. 3.16. Illustration of line segments generation.

equation:

d = ‖Pi −Qi‖ (3.18)

where the point Qi is an end point of line segment PiQi.

By using steps 1-4, the line segments for all outer boundary points {Pi}i=2...(m−1)

are generated. Figs. 3.17(a)(b) separately show the mask be and the image Il

with pixels of line segments. As observed in Fig. 3.17(b), the line segments have

covered almost all pixels of desired dermis regions (based on depth d). However,

two small areas A1 and A2 (highlighted by the green contours) are missed. To

incorporate these two regions, four more line segments P2F2, F2Q2, Pm−1Fm−1 and

Fm−1Qm−1 are created, where the points F2 and Fm−1 have coordinates (xP2
, yQ2

)

and
(
xPm−1

, yQm−1

)
, respectively. Note that xP2

and xPm−1
are the x coordinates of

the points P2 and Pm−1, respectively. yQ2
and yQm−1

are the y coordinates of the

points Q2 and Qm−1, respectively.

Fig. 3.17. Example of line segments generation. (a) Mask be with line segments. (b) Image Il with
line segments. (c) Mask bl. Note that the depth value d is set as 650µm.
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After this step, a binary mask bl with pixels of epidermis and line segments as

foreground is generated. Fig. 3.17(c) shows the mask bl with a predefined depth

d of 650µm. Note that the depth d is a critical parameter which determines the

segmentation depth of dermis regions for analysis.

3.5.3 Morphological Processing

As observed in Fig. 3.17(c), there are gaps and holes within foreground pixels (i.e.,

white pixels) of the mask bl. In order to obtain an intact dermis mask, the mor-

phological closing operation with a disk shape structuring element (with a radius

of 30 pixels) is first applied on bl to join isolated pixels. The holes are then filled

by performing morphological reconstruction operation. Let us denote the obtained

mask as be+d. Fig. 3.18(a) shows the mask be+d, while Fig. 3.18(b) shows be+d in

the red channel image Rl (i.e., the red channel of Il).

Fig. 3.18. Illustration of dermis mask generation. (a) be+d. (b) be+d in red channel Rl. (c) bd. (d)
bd in red channel Rl. (e) Segmented epidermis (white color) and dermis (gray color) regions. (f)
Image Il overlapping with epidermis contours (green color) and dermis contours (blue color).

As observed in Fig. 3.18(b), the coarse mask be+d contains a small number of

background pixels (typically white in Il) and epidermis pixels. To generate the

dermis mask, an intensity threshold τ (e.g., τ = 240) is first applied (on foreground

pixels in Fig. 3.18(b)) to remove white background pixels. Epidermis pixels, which

have been segmented out during epidermis segmentation are then discarded. A
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binary mask bd with dermis pixels as foreground is finally generated after removing

small noisy regions. Figs. 3.18(c)(d) show the dermis mask bd and dermis pixels in

the image Rl, respectively. Fig. 3.18(e) shows the segmented epidermis and dermis

regions, while Fig. 3.18(f) shows the image Il overlapping with the contours of

epidermis and dermis regions.

3.6 Dermis Segmentation Evaluations

To the best of our knowledge, this is the first work to segment skin dermis from skin

WSI based on a predefined depth of interest. To evaluate the proposed technique,

we ran two experiments based on our dataset, where the depth value d is set as

650µm and 800µm, respectively. During the experiment, the thickness of each

automatically segmented epidermis and dermis mask is manually measured based

on three randomly selected points using a computer program (based on Matlab).

For each epidermis and dermis mask, the thickness ti is computed as the average of

three manually measured thickness, and compared with the predefined depth value

d. A small difference between ti and d indicates a good performance of the dermis

segmentation.

Let the average thickness over all ti (1 ≤ i ≤ 66) values be denoted by t,

and the standard deviation over all ti values be denoted by σt. Table 3.5 shows

the experimental results of t and σt values. Fig. 3.19 compares the thickness ti

of automatically segmented epidermis and dermis mask with the predefined depth

values d. As observed in Table 3.5 and Fig. 3.19, there is a small difference between

ti and d values, and hence the proposed technique provides a good performance in

dermis segmentation.

TABLE 3.5
PERFORMANCE EVALUATIONS OF DERMIS SEGMENTATION.

Experiments t σt

d = 650µm 646.7µm 12.6µm
d = 800µm 797.1µm 13.6µm

57



0 10 20 30 40 50 60 70
500

550

600

650

700

750

800

850

900

950

The index of images

Th
e 

th
ic

ke
ns

s 
va

lu
e 

(µ
m

)

 

 

Experiment I
Experiment II

Fig. 3.19. Comparison of manually obtained dermis depth with the predefined segmentation depth.
Note that the red and blue lines are the predefined segmentation depth (i.e., ground truths). The
diamonds and squares indicate the manually measured segmentation depth. The manually measured
values vary around ground truths mainly due to the errors caused by manual measurement.

Fig. 3.20 shows examples of epidermis and dermis segmentations, where the

manually measured thickness is overlapped on the magnifications of selected image

patches. Note that the green contours indicate the segmented epidermis regions,

while the blue contours indicate the segmented dermis regions. In the second

row, the selected image patches are zoomed in for better viewing. As observed in

Fig. 3.20, the desired dermis regions have been correctly segmented by the proposed

dermis segmentation technique.

3.7 Computational Complexity

All experiments of epidermis and dermis segmentations were done on a 1.80 GHz

Intel Core II Duo CPU, with 16GB of RAM using MATLAB version R2013a.

The proposed techniques roughly take 6.7s to segment both epidermis and dermis

regions from a whole slide skin histopathological image with size of 3200x3000

pixels, where epidermis and dermis segmentations take about 4.2s and 2.5s, respec-

tively.
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Fig. 3.20. Epidermis and dermis segmentations. (a) & (c) d = 650µm. (b) & (d) d = 800µm.
Note that blue contours indicate the segmented dermis regions, while green contours indicate the
segmented epidermis regions.

3.8 Summary

This chapter presents the proposed techniques for automatic segmentation of epi-

dermis and dermis regions in skin WSIs. The proposed epidermis segmentation

follows a coarse-to-fine processing procedure, where the coarse segmentation is

performed using global thresholding and shape analysis, and the fine segmentation

is performed using k-means algorithm. Based on epidermis segmentation, the

proposed dermis segmentation is performed based on morphological operations

and a predefined depth of interest. Experiments on 66 digitized skin WSIs show

that the proposed techniques provide a good performance in epidermis and dermis

segmentations. The proposed epidermis and dermis segmentations are important

pre-requisite steps towards the automated skin histopathological image analysis,

since most of diagnostic clues for skin melanoma are observed in the epidermis and

DEJ junctional areas.

59



Chapter 4

Automated Detection of Cell Nuclei

Robust nuclei detection is an important step towards automatic pathological analy-

sis, as the abnormal growth or loss of cell nuclei are usually indicative to a certain

disease (e.g., skin cancer). In addition, automated segmentation of cell nuclei is

usually dependent on accurate nuclei detection. Although there have been a number

of computerized techniques proposed for nuclei detection, robust nuclei detection is

still a very challenging problem due to the presence of clustered nuclei and nuclear

variations in terms of color, size and shape. In this chapter, we propose two nuclei

detection techniques, which are implemented based on voting analysis and gLoG

kernels, respectively. Experimental results show that the proposed techniques are

superior to existing techniques in nuclei detection.

4.1 Introduction

Robust nuclei detection is an important step in histopathology for disease diagnosis,

as the counts of nuclei provide quantitative information when studying changes in

cells, tissues and organs [38]. For example, the density of cell nuclei in histological

images is an important feature for automatic breast tumor grading [24]. In addition,

Part of this chapter has been published in: Xu et al. “An efficient technique for nuclei
segmentation based on ellipse descriptor analysis and improved seed detection algorithm”, IEEE
Journal of Biomedical and Health Informatics (JBHI), vol.18, no.5, pp.1-14, 2014. Xu et al.
“Automatic nuclei detection based on generalized Laplacian of Gaussian filters”, IEEE Journal of
Biomedical and Health Informatics (JBHI), vol.21, no.3, pp.826-837, 2017.
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nuclei detection is usually the first step for nuclei segmentation, and the accuracy

of segmentation depends critically on the accuracy and reliability of the detected

points (i.e., seed points) [42]. Although it is intuitive to manually identify cell nuclei

in biopsy images, there still remains a huge challenge for a computer algorithm

to perform automated detection. Fig. 4.1 shows examples of cell nuclei in H&E

stained skin histopathological images, where cell nuclei have been stained as blue-

purple and the intra-cellular matters have been stained as bright pink. Figs. 4.1(b)(d)

show the magnifications of selected image patches in Figs. 4.1(a)(c), respectively,

where the cell nuclei are highlighted by yellow dots. As observed in Fig. 4.1, since

the image is the 2-D section of a 3-D tissue sample, the nuclear size and shape

are usually different, and there exist touching and overlapping nuclei. The nuclear

variations and presence of clustered nuclei are main obstacles for accurate nuclei

detection.

Fig. 4.1. Nuclei in skin histopathological images. (a) Epidermis. (b) Magnification of selected
part in (a). (c) Dermis. (d) Magnification of selected part in (c). Note that the yellow dots in (b)(d)
highlight the existence of cell nuclei.
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TABLE 4.1
SUMMARY OF NUCLEI DETECTION TECHNIQUES

Authors Key techniques Main limitations

Parvin et al. [80] Multi-pass voting High computational complexity
Qi et al. [43] Single-pass voting Sensitive to thresholding values
Byun et al. [38] Single-scale LoG filter Poor performance on blobs with

different scales
Niazi et al. [81] Multi-scale DoG filter Poor performance on elliptical blobs
Al-Kofahi et al. [39] Multi-scale LoG filter Sensitive to image binarizations
Kong et al. [40] Multi-scale gLoG filter Sensitive to image noises

Recently several nuclei detection techniques have been proposed (see the sum-

mary listed in Table 4.1). Parvin et al. [80] proposed a multi-pass voting technique

for inferring the centers of cell nuclei. This technique initially votes along the

gradient direction of high gradient pixels in a cone-shape voting area, and then

iteratively votes in multiple passes with a shrunk voting area and updated voting

direction (towards the highest votes in the previous pass). The points which have the

votes above a predefined threshold are finally considered as nuclei seeds. To speed

up the multi-pass voting in [80], Qi et al. [43] proposed a single-pass voting (SPV)

technique for nuclei detection, which only performs one round voting followed by

mean shift clustering to detect nuclei seeds. Although these techniques have been

reported to provide a good performance, they are either sensitive to the predefined

parameters or have high computational complexity. They tend to be infeasible for

high-throughput analysis of images with a large number of cell nuclei. Byun et

al. [38] proposed to detect nuclei seeds in retinal images by a single-scale LoG

filter. This method has a low computational complexity, but it is usually difficult to

determine an optimal scale for the LoG filter due to the size and shape variations

of cell nuclei. Niazi et al. [81] proposed to detect cytotoxic T-cells by multi-scale

difference of Gaussian (DoG) filters, with false seeds removed based on blobness

measurement. Al-Kofahi et al. [39] proposed a multi-scale LoG filters (mLoG)

based technique which detects nuclei seeds by mLoG filtering and adaptively s-

elects scales for filters using inner distance transform. The LoG operators have

shown a promising performance in locating the seeds of circular blobs, but they
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have limitations in detecting blobs with general elliptical shapes. This is because

the conventional LoG operators are generated from the uniform Gaussian kernels

which are rotational symmetric in all directions. In order to identify elliptical

blob structures and their scales, Kong et al. [40] proposed a gLoG filter based

technique. The technique first generates a set of response maps by convolving gLoG

kernels with the image, and then aggregates all obtained response maps together and

searches blob centers (e.g., nuclei seeds) from the aggregated response map. Since

the technique in [40] has not taken the advantage of gLoG kernels’ directional

information, it is likely to miss seeds for nuclear regions that do not have peak

responses in the aggregated response map. Besides, the technique is quite sensitive

to the local noise in the image background [82], as it considers all local maxima in

the aggregated response map as blob seeds.

In this chapter, we propose two improved nuclei detection techniques for biopsy

image analysis, which overcome many of the limitations of existing techniques. The

first technique performs nuclei detection based on ellipse descriptor analysis and an

improved voting algorithm, while the second technique performs nuclei detection

based on directional gLoG kernels and mean-shift clustering. The details of two

proposed techniques and experimental results are provided in following sections.

4.2 Proposed Voting-based Technique

The schematic of the proposed voting-based technique is shown in Fig 4.2. It is

observed that the proposed technique has three modules. In the first module, an

initial segmentation of cell nuclei regions is performed using an adaptive thresh-

olding technique. In the second module, an elliptical descriptor is used to filter the

isolated nuclei with elliptical shapes in the initially segmented binary image. In the

third module, a voting algorithm is applied to detect seeds of nuclear clumps and

the nuclei with irregular shapes.
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Fig. 4.2. Schematic of the voting-based technique.

4.2.1 Initial Segmentation

Due to the staining imperfection and variation, the pixel intensity in nuclear regions

is not homogenous. Blurred nuclei boundaries and noisy pixels in the background

are usually observed. The traditional low level segmentation methods (i.e., his-

togram based method [83]) generally fail to precisely segment nuclear regions from

the background pixels. After comparing several segmentation techniques including

Otsu’s method [51], active contour model [84], [85], and graph cut [86], an adaptive

threshold technique [30] is adopted for the initial segmentation of cell nuclei. The

principal steps for initial segmentation by the adaptive threshold technique are as

follows:

(1) Enhance the image using the hybrid gray-scale morphological reconstruc-

tions (HGMR) module. In this module, the R channel of the original RGB image is

used as the input. Opening-by-Reconstruction and Closing-by-Reconstruction [31]

are consecutively applied to reduce the impact of undesirable variations in the image

and to make the nuclear region homogenous.

(2) Apply an adaptive thresholding [31] on the enhanced image. For each pixel

in the enhanced image, a threshold is calculated as the mean intensity of the local

neighborhood (e.g., 60x60). Since the intensity of nuclear regions is lower than

the background, a pixel value below the threshold is set to the foreground value

(represented by 1), and a pixel value above the threshold is set to the background

value (represented by 0).

(3) Enhance the segmented result by a series of morphological operations. The
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holes within the segmented regions are filled by performing the morphological

reconstruction. The small isolated regions, unlikely to be the nuclei, are removed

by conducting an opening operation with a disc structuring element. Fig. 4.3(a)

shows an original image, and Fig. 4.3(b) shows the segmentation result.

Fig. 4.3. An example of the initial segmentation. (a) The original image. (b) The segmentation
result. Note that ∗ indicate the isolated nuclei, whereas + indicate the touching nuclei.

4.2.2 Ellipse Descriptor Analysis

It is observed in Fig. 4.3(b) that initial segmentation results in both isolated nuclei

and nuclei clumps. Assume that the segmented regions in Fig. 4.3(b) are denoted

as {Np}p=1...Z , where Z is the total number of regions. In this module, we classify

{Np}p=1...Z as the isolated nuclei or nuclei clump. Based on the observation that

isolated nuclei in skin histopathological images typically have elliptical shapes,

most isolated nuclei can be detected by using an elliptical model. To build the

elliptical model for each region in {Np}p=1...Z , we first calculate the gradient image

of the initial segmentation result, and then obtain the boundary points by selecting

positions with non-zero gradient magnitudes. Using the obtained boundary points,

each region in {Np}p=1...Z is now mathematically described by an elliptical model.

Let (x, y) be a 2-D boundary point of a connected region. The ellipse is modeled

by the following second-order polynomial [64]:

E (
_
a,

_
x) =

_
a · _

x = ax2 + bxy + cy2 + dx+ ey + f = 0 (4.1)
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where
_
a = [a b c d e f ]T denotes the ellipse coefficients,

_
x = [x2 xy y2 x y 1]

T ,

and E (a, x) is the algebraic distance from the point (x, y) to the conic E (a, x) = 0.

The optimal ellipse fitting the nuclear shape is generated by minimizing the sum of

squared algebraic distances between the ellipse and the 2-D boundary points of the

connected region [64].

After generating the elliptical model for each region Np, the ellipticity evalua-

tion is performed by comparing the region of Np and the corresponding ellipse. Let

Rn be the set of pixels in Np (i.e., the nucleus or the nuclear clump), and Re be the

set of pixels in the elliptical region. We use the following two parameters e1 and e2

to measure the ellipticity of a region:

e1 =
|Rn ∩Re|

|Re|
(4.2)

e2 =
|Rn∆Re|

|Re|
(4.3)

where |·| is the cardinality of the pixels set, ∩ is the intersection operation, and ∆

is the symmetric difference operation. Intuitively, the higher value of the ellipticity

parameter e1 and the lower value of the ellipticity parameter e2 represent a closer

match to an elliptical shape. Thus a candidate region with high value of e1 and low

value of e2 is more likely to be a single nucleus. On the other hand, a region with

lower value of e1 but higher value of e2 is expected to be a nuclei clump or a nucleus

with the irregular shape.

Fig. 4.4. The elliptical modeling for each connected region. (a) The ellipse model constructed from
Fig. 4.3(b). (b) The ellipse model superimposed on the original image. Note that the symbols × in
(b) mark the ellipse centers for the detected isolated nuclei.
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TABLE 4.2
VALUES OF ELLIPTICITY PARAMETERS FOR SEVERAL SELECTED CANDIDATE REGIONS

SHOWN IN FIG. 4.4(A).

Ellipticity Parameters A B C D E F

e1 0.87 0.88 0.86 0.95 0.97 0.94
e2 0.26 0.21 0.29 0.09 0.07 0.10

An example of the ellipse descriptor analysis is shown in Fig. 4.4. Fig. 4.4(a)

shows the ellipses obtained by fitting the boundary points of the binary image

shown in Fig. 4.3(b). The markers A,B,C indicate the three regions formed by

the touching nuclei, while the markers D,E, F indicate three typically isolated

cell nuclei with elliptical shapes. Fig. 4.4(b) also shows the constructed ellipses

superimposed on the original image. The values of the ellipticity parameters e1 and

e2 for the candidate regions A− F are shown in Table 4.2. It is observed that the

regions of the single nucleus D,E, F have high values of e1 (close to 1.0) and low

values of e2 (close to 0.0). In contrast, the candidate regions A,B,C are separately

formed by two touching nuclei, and they have relatively lower values of e1 (around

0.8 ∼ 0.9) but higher values of e2 (around 0.2 ∼ 0.3). Therefore, a single nucleus

with elliptical shape is detected by the above two defined parameters. A segmented

region Np is determined as a single nucleus if both of the following two conditions

are satisfied:

e1 ≥ τ1 (4.4)

e2 ≤ τ2 (4.5)

where τ1 and τ2 are the predefined thresholds. In order to calculate the parameters

τ1 and τ2, 170 nuclear regions in 15 randomly selected image patches are manually

labeled, and the values of e1 and e2 for each region are calculated. Fig. 4.5 shows

the box plots of ellipticity parameters for isolated nuclei and nuclei clumps in 170

nuclear regions. It is observed that isolated nuclei on average have a high value of

e1 (0.96) and a low value of e2 (0.07), whereas nuclei clumps have a lower value of
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e1 (0.85) and a higher value of e2 (0.30). The isolated nuclei with elliptical shapes

can be separated from nuclei clumps by thresholding the two ellipticity parameters.

In our work, the values of τ1 and τ2 are calculated as follows:

τ1 =
e1N + e1C

2
(4.6)

τ2 =
e2N + e2C

2
(4.7)

where e1N and e1C are the average values of e1 for isolated nuclei and nuclei clumps,

e2N and e2C are the average values of e2 for isolated nuclei and nuclei clumps,

respectively. Note that nuclear regions (i.e., single nucleus) that satisfies the above

two conditions in Fig 4.4(b) are marked with crosses at the ellipse centers.
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Fig. 4.5. Variations of ellipticity parameters for isolated nuclei and nuclear clumps. (a) Parameter
e1. (b) Parameter e2. Note that the results are obtained based on 170 randomly selected nuclear
regions.

4.2.3 Voting Detection

After the ellipse descriptor analysis, most isolated cell nuclei with elliptical shapes

have been detected. To identify the number and location of the remaining cell nuclei

regions, for example the regions A− C shown in Fig 4.4(a), a voting algorithm is

proposed in this module.

Assume that the nuclear regions, which are waiting for seed detection, are
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denoted as {Ni}i=1...K , where K is the number of connected regions. The regions

{Ni}i=1...K are first labeled via 8-connected criterion [31], and then each region is

put into a binary image which has the same size as the original image. Let Ii (x, y)

be a binary image which contains a region Ni. The boundary points set Ti (x, y), the

corresponding image gradient ∇Ti (x, y) and the gradient magnitude ‖∇Ti (x, y)‖
are computed subsequently. Since the nuclear regions in the binary image Ii (x, y)

are the white foreground, the voting direction for a boundary point is defined as

the positive gradient direction ∇T (x,y)
‖∇T (x,y)‖

= (cos (θ (x, y)) , sin (θ (x, y))), where θ

is the angle of the gradient direction with respect to the horizontal direction of

the image. Fig. 4.6 illustrates an example of voting for a boundary point (x0, y0).

The parameters rmin, rmax and ∆ define a cone-shape voting area. The dashed

contours represent the extracted boundary points. The potential voting region (e.g.,

the yellow region) is obtained by performing the erosion operation on the original

nuclear region. The points (e.g., red points) in both the cone-shape voting area and

the potential voting region get the votes weighed by the Gaussian kernel centered

at the point (ux, uy). The Gaussian kernel is defined as follows:

g (x, y, ux, uy, σ) =
1

2πσ2
exp

(
−(x− ux)

2 + (y − uy)
2

2σ2

)
(4.8)

where ux = x0 + r cos θ, uy = y0 + r sin θ and r = (rmin+rmax)
2

.

Fig. 4.6. Illustration of voting algorithm for nuclei seed detection.
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Note that prior to voting towards the gradient direction of boundary points, the

erosion operation is applied to shrink the nuclear region Ni. The structuring element

S for the erosion operation is defined as follows:

S =




0 0 0 1 0 0 0

0 1 1 1 1 1 0

0 1 1 1 1 1 0

1 1 1 1 1 1 1

0 1 1 1 1 1 0

0 1 1 1 1 1 0

0 0 0 1 0 0 0




(4.9)

The disk shape structuring element with a radius of 3 pixels is empirically applied

such that the erosion operation is able to retain the actual shape when reducing

the size of nuclear regions. In this work, the size of each region in {Ni}i=1...K

is reduced by at least half. But note that if the erosion operation has generated

the isolated small region (i.e., ≤100 pixels), it should stop continually eroding

the obtained small region to avoid the small nucleus disappearing. The erosion

operation is performed for two reasons. First, nuclei centers are far away from

nuclei boundaries, and hence there is no need to vote for pixels near nuclei edges.

Second, the erosion operation contributes to reducing the time requirement of the

voting algorithm by reducing the number of calculations, since the potential voting

region (i.e., the original nuclei region) has been shrunk and there are fewer pixels

that can get votes. For example, in Fig. 4.6 only the pixels in the eroded nuclear

region (i.e., yellow region) may get votes.

Now let Vi (x, y) be the vote image for the binary image Ii, and have the same

size as the original image. All pixels in Vi (x, y) are first initialized as zeros, and

then updated as:

Vi (x, y) = Vi (x, y) +
∑

(x,y)∈A(m,n)

‖∇Ti (m,n)‖ g (x, y, um, un, σ) (4.10)
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where (m,n) represents a nuclear edge point, A (m,n) is the voting area for the

point (m,n), g (x, y, um, un, σ) is the Gaussian kernel centered at (um, un). The

final vote image V is the sum of all images Vi. Assume the value for a point

(x, y) ∈ V be n, we interpret that the point (x, y) is observed n times. Using

the positions of the points in V as the two dimensional feature space, the nuclei

seeds are computed by executing mean shift clustering algorithm [87]. The detailed

process of the proposed voting algorithm is shown in Algorithm 1.

Algorithm 1 The proposed voting algorithm
Input: Candidate nuclei regions set {Ni}i=1...K .
Initialization: rmin = 0.4d, rmax = 1.5d, ∆ = π

6
, σ = 7 and w1 = 0.6d, where d

is the estimated average radius of the nuclei in the image, w1 is the bandwidth of
the mean shift algorithm.
for each region Ni do

Compute boundary points set Ti (x, y), image gradient ∇Ti (x, y), gradient
magnitude ‖∇Ti (x, y)‖ and gradient directions ∇T (x,y)

‖∇T (x,y)‖
.

Perform erosion operation on nuclear region Ni.
Initialize the vote image Vi, and conduct the single-path voting using
Eq. (4.10).

end for
Sum all the vote images Vi and run the mean shift clustering algorithm to localize
nuclei seeds.
Output: Nuclei seeds for regions {Ni}i=1...K .

Fig. 4.7 illustrates an example of voting-based nuclei detection. Fig. 4.7(a)

shows the image with nuclei boundary points (i.e., voting points) obtained after

initial segmentation. Fig. 4.7(b) shows the final vote image with ellipse contours

of isolated nuclei. Fig. 4.7(c) shows the original image with ellipse contours of

isolated nuclei. Fig. 4.7(d) shows the nuclei detection results indicated by × or

+ symbols. Note that in Fig. 4.7(d) the × symbols are obtained based on ellipse

descriptor analysis, and the + symbols are obtained based on the voting algorithm.

4.3 Proposed gLoG-based Technique

The schematic of the proposed gLoG-based technique is shown in Fig. 4.8. It is ob-

served that there are three modules. In the first module, a bank of scale-normalized
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Fig. 4.7. Illustration of voting-based nuclei detection. (a) Image with extracted voting points (i.e.,
nuclei boundary points). (b) Final vote image with ellipse contours of isolated nuclei. (c) Image with
vote points and ellipse contours of isolated nuclei. (d) Image with detected nuclei seeds. Note that
green × symbols are the seeds (i.e., geometrical centers) obtained after ellipse descriptor analysis,
and white + symbols are the seeds obtained by the voting algorithm.

gLoG kernels with different scales and orientations are constructed. In the second

module, the constructed gLoG kernels are aggregated together according to their

orientations, and the response maps are generated by convolving the aggregated

gLoG kernels with the image. In the third module, nuclei seeds are detected from

multiple response maps with redundant detections merged by mean-shift clustering.

The details of three modules are now presented in the following.

Fig. 4.8. Schematic of gLoG-based technique.
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4.3.1 gLoG Kernels Construction

Because cell nuclei in digitized histopathological images typically have circular

or elliptical shape, the gLoG kernels are appropriate for nuclei detection. In this

module we illustrate the gLoG kernels construction and show that traditional scale-

normalization for gLoG kernels performs better than log-scale normalization in [40].

The gLoG kernel ∇2G (x, y) is given as follows:

∇2G (x, y) =
∂2G (x, y)

∂x2
+

∂2G (x, y)

∂y2
(4.11)

where (x, y) are the image domain coordinates, G (x, y) = λ · e−(ax2+2bxy+cy2), and

the Laplacian ∂2G (x, y)/∂x2, ∂2G (x, y)/∂y2 are given by:

∂2G (x, y)

∂x2
=

[
(2ax+ 2by)2 − 2a

]
G (x, y) (4.12)

∂2G (x, y)

∂y2
=

[
(2bx+ 2cy)2 − 2c

]
G (x, y) (4.13)

where λ is a normalization factor and the parameters a, b, c control the shape and

orientation of the gLoG kernel, which are defined as follows:

a =
cos2θ

2σ2
x

+
sin2θ

2σ2
y

(4.14)

b = −sin 2θ

4σ2
x

+
sin 2θ

4σ2
y

(4.15)

c =
sin2θ

2σ2
x

+
cos2θ

2σ2
y

(4.16)

where (σx, σy) are the scales and θ is the orientation of the gLoG kernel. By

varying the scales and orientations, a set of different gLoG kernels ∇2G (x, y) can

be obtained. To construct a bank of gLoG kernels for nuclei identification, we first

set angles that the gLoG kernel’s orientation can take, which is as follows:

θ =
π

k
(i− 1) , i = 1 . . . k (4.17)
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where k is the number of orientations. The range of scales σx and σy are then

set as positive integers between σmin and σmax, where σmin and σmax are determined

based on the estimated radius of detected nuclei [88]. Without loss of generality, we

assume that σx ≥ σy. Table 4.3 shows an example of gLoG kernels’ configuration,

where θ has 4 orientations and 4 ≤ σy ≤ σx ≤ 8.

TABLE 4.3
INDEX OF GLOG KERNELS’ CONFIGURATION.

Index σx, σy θ (degree) Index σx, σy θ (degree)
1 8,8 0 2-5 8,7 0,45,90,135

6-9 8,6 0,45,90,135 10-13 8,5 0,45,90,135
14-17 8,4 0,45,90,135 18 7,7 0
19-22 7,6 0,45,90,135 23-26 7,5 0,45,90,135
27-30 7,4 0,45,90,135 31 6,6 0
32-35 6,5 0,45,90,135 36-39 6,4 0,45,90,135

40 5,5 0 41-44 5,4 0,45,90,135
45 4,4 0

When convolving gLoG kernels with the image containing blobs with general

elliptical shapes, it produces a scale-and-orientation selective peak response at the

center of each object. This can be considered as a pattern matching process, which

matches the predefined gLoG kernels of different scales and orientations to the

given image patterns. However, a direct application of multi-scale gLoG kernels

to images of blobs would be unreliable, since the signal amplitude of the gLoG

convolution at blob regions decreases monotonically as the scales increase. A

straightforward way to keep the signal amplitude invariant across changes of image

scale is to apply the scale normalization. Lindeberg [89] proposed a traditional

normalization method for the LoG filter. This normalization method has been used

by Xiao et al. [90] for detection of curvilinear structures using the bi-Gaussian

kernel. For the scale normalization of gLoG filters in our work, the traditional

normalization method in [89] can be intuitively extended and defined as:

∇2Gn (x, y) = σxσy∇2G (x, y) (4.18)

where ∇2Gn (x, y) is the scale-normalized gLoG kernel. Kong et al. [40] proposed

74



a log-scale normalization for gLoG filter, that is:

∇2Gn (x, y) = (1 + α log (σx)) (1 + α log (σy))∇2G (x, y) (4.19)

where α is a positive number (e.g., α = 0.5) which can control the eccentricities

of detected blobs. To evaluate the capacity of scale normalization by Eq. (4.18)

and Eq. (4.19), we have separately applied the traditional scale normalized gLoG

kernels and log-scale normalized gLoG kernels on our testing images, i.e.,

Ln (x, y) = I(x, y) ∗ ∇2Gn (x, y) (4.20)

where I (x, y) is the original red channel image and I (x, y) = 255 − I (x, y).

Ln (x, y) is the convolution response map. Note that nuclear regions appear as dark

blobs in the original red channel image, and hence the complement operation in

Eq. (4.20) is performed to make nuclear regions as bright foreground.

Fig. 4.9. Nuclei in a skin image. Note that the orientations for nucleus1 and nucleus2 are about
135◦ and 90◦, respectively. The ratios between σx and σy for both nuclei are about 2.

Fig. 4.9 shows cell nuclei in a testing skin image, where the orientations of nu-

cleus1 and nucleus2 are about 135◦ and 90◦, respectively, and the ratios between σx

and σy for both nuclei are about 2. Figs. 4.10(a)(b) show the maximum convolution

responses by applying traditional scale-normalized gLoG kernels (using Eq. (4.20))

on nucleus1 and nucleus2, respectively. Figs. 4.10(c)(d) show the maximum convo-

lution responses by applying log-scale normalized gLoG kernels (α = 1) on nucle-

us1 and nucleus2, respectively. The kernel index (in horizontal axis) of Fig. 4.10 has
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Fig. 4.10. Peak responses by traditional scale normalization and log-scale normalization. (a) &
(b) Peak responses at nucleus1 and nucleus2 shown in Fig. 4.9 using traditional scale normalization.
(c) & (d) Peak responses at nucleus1 and nucleus2 shown in Fig. 4.9 using log-scale normalization.
Note that the kernel index in the horizontal axis has been shown in Table 4.3.

been provided in Table 4.3. As observed in Figs. 4.10(a)(b), the maximum respons-

es are obtained when the kernel indices are 17 and 16 respectively. By contrast,

in Figs. 4.10(c)(d) the maximum responses are obtained when the kernel indices

are 45 and 43 respectively. Table 4.4 shows gLoG kernels’ configurations which

provide the maximum responses using different normalization methods. As shown

in Table 4.4, it is apparent that the traditional scale normalization performs better

than log-scale normalization, since the traditional normalized gLoG kernel with the

maximum response has a good matching with the cell nucleus. Therefore, in our

work, we utilized the traditional normalization on gLoG kernels (see Eq. (4.18))

for nuclear detection. Figs. 4.11(a)(b) show examples of traditional normalized
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TABLE 4.4
INDEX OF NORMALIZED GLOG KERNELS WITH MAXIMUM RESPONSES.

Nuclei Traditional normalization Log-scale normalization
Index σx, σy θ Index σx, σy θ

Nucleus1 17 8,4 135◦ 45 4,4 0◦

Nucleus2 16 8,4 90◦ 43 5,4 90◦

gLoG kernels with scales between [8, 8] and [4, 4] in 4 directions. As observed in

Fig. 4.11(a), the gLoG kernels are rotational-symmetric when σx = σy, which are

essentially the LoG kernels.

Fig. 4.11. Example of normalized gLoG kernels (with k = 4). (a) Rotational symmetric LoG
kernels with σx = σy ∈ {8, 7, 6, 5, 4}. (b) gLoG kernels with θ ∈ {0◦, 45◦, 90◦, 135◦}, σx ∈
{8, 7, 6, 5}, σy ∈ {7, 6, 5, 4} and σx > σy . (c) ∇2Gs (x, y) (see Eq. (4.21)). (d) ∇2Gs (x, y; θ) (see
Eq. (4.22)). Note that in (a) and (b) (·, ·) corresponds to (σx, σy).

4.3.2 Response Maps Generation

After constructing a set of normalized gLoG kernels, the next is to convolve the

image with gLoG kernels to obtain response maps which provide information about

nuclei numbers and locations. Although it is possible to do the convolution between

each gLoG kernel and the image (like the blob localization algorithm in [40]),

it is time-consuming due to multiple convolutions. To speed up the algorithm,

we make use of distributivity property of convolution operation and compute the
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aggregation of gLoG kernels before convolution operation. Specifically, for the

rotational symmetric gLoG kernels (see Fig.4.11(a)), the aggregated gLoG filter

∇2Gs (x, y) is given by:

∇2Gs (x, y) =
1

S0

σmax∑

σ=σmin

∇2Gn (x, y; σ) (4.21)

where S0 is the number of aggregated rotational symmetric gLoG kernels. For

other general elliptical shapes of gLoG kernels (see Fig.4.11(b)), the aggregated

gLoG filter ∇2Gs (x, y; θ) is given by:

∇2Gs (x, y; θ) =
1

Sk

σmax∑

σx=σmin

σx∑

σy=σmin

∇2Gn (x, y; σx, σy, θ) (4.22)

where Sk is the number of aggregated elliptical gLoG kernels. Note that ∇2Gs (x, y; θ)

is the aggregation of gLoG kernels in the orientation θ. Figs. 4.11(c)(d) show the

corresponding aggregated results of gLoG kernels. With k orientations, there are

k + 1 aggregated gLoG kernels in total. For brevity, let us denote the aggregated

gLoG kernels as ∇2Gj
s (x, y), where j = 0 . . . k. The scale-space response map

Lj (x, y) is then obtained as:

Lj (x, y) = I (x, y) ∗ ∇2Gj
s (x, y) (4.23)

Note that the response map Lj (x, y) corresponds to the pattern matching result

between the image and the gLoG kernel ∇2Gj
s (x, y).

Using k+1 normalized gLoG kernels, there are k+1 response images obtained

by Eq. (4.23). Fig. 4.12(a) shows two touching nuclei with elliptical shapes and

(major axis) directions about 45◦, while Figs. 4.12(b)-(f) show the response maps

obtained by convolving Fig. 4.12(a) with gLoG kernels in Figs. 4.11(c)(d), respec-

tively. In Figs. 4.12(b)-(f) the local maxima (usually round nuclear centers) are also

searched and superimposed on the image with (red) plus symbols. As observed

in Fig. 4.12, only the response map (d) provides two local maxima points, which
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correctly identifies the existence of two nuclei. By contrast, nuclei are not correctly

detected from response maps (b)(c)(e)(f). Fig. 4.12(d) provides a correct detection,

mainly because the gLoG kernel used in (d) has a similar direction with nuclei in

(a). More details about searching nuclei seeds from multiple response maps will be

presented in the next section.

Fig. 4.12. Response maps with local maxima. (a) Two touching nuclei. (b)-(f) Response maps
obtained by convolving (a) with gLoG kernels in Figs. 4.11(c)(d), respectively. Note that nuclei are
correctly detected in image (d) which has two local maxima points indicating the existence of nuclei.

4.3.3 Nuclei Seeds Detection

Using the above obtained response maps Lj (x, y), nuclei seeds can be detected as

the points of local maxima which are usually around nuclei centers. In this module,

we present the process of determining nuclei seeds from multiple response maps,

which consists of four main steps as follows.

(1) Searching local maxima: We first search the points of local maxima from

each response map Lj (x, y). Let us denote them as {Bi}i=1...M , where M is the

number of local maxima in k + 1 response maps. Fig. 4.13(a) shows the image

I (x, y) overlapped with local maxima (red + symbols).

(2) Filtering false local maxima: To filter out false local maxima in image

background, we first apply an adaptive thresholding based technique to perform

image binarization. The adaptive thresholding based technique has two passes of

Otsu’s thresholding. In the first pass, Otus’s thresholding is applied on the whole
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image I (x, y), which segments nuclear regions into foreground. In the second

pass, the bounding box (i.e., the smallest rectangle containing the region) for each

foreground region is computed, and the pixels (retrieved from the image I (x, y))

within the bounding box are adaptively classified by Otsu’s method. Note that

two passes of Otsu’s thresholding are sequentially applied which can reduce the

impact of image variations on image binarization. After adaptive thresholding, a

binary mask b1 is generated with nuclei pixels as foreground. The local maxima

{Bi}i=1...M , which are in the background of mask b1 are then eliminated, as they

are generated due to the local noise in the image background. Let us denote the

local maxima after this step as {Bi}i=1...N , where N is the number of local maxima.

In Fig. 4.13(a), the local maxima generated due to the local noise are highlighted

by the (blue) circles. Fig. 4.13(b) shows the image I (x, y) with local maxima

{Bi}i=1...N . Note that in Fig. 4.13(b) the (green) contours of nuclear regions are

obtained after image binarization by adaptive thresholding.

(3) Clustering local maxima: As observed in 4.13(b), there are usually more

then one point of local maxima for each nuclear region. In other words, it exists re-

dundant detections of cell nuclei by searching local maxima from multiple response

maps. But it is also noted that the local maxima corresponding to each nucleus

usually cluster together with a closely geometrical distance. This is because the

locations of detected nuclei seeds are mainly determined by the scales of gLoG

kernels. In the previous module (i.e., Section 4.3.2), we generate the aggregated

gLoG filters based on the same set of σx and σy for any specific orientation θ, and

hence different orientation of responses can generate closely located local maxima.

Fig. 4.14 illustrates an example of seed detection by different gLoG filters. In

Fig. 4.14(a), the gLoG filters σx = 8, σy = 7, θ = {45◦, 90◦} are used, while

in Fig. 4.14(b) the gLoG filters σx = 8, σy = 7, θ = 45◦ and σx = 5, σy = 4,

θ = 45◦ are used. As observed in Fig. 4.14(a), the generated nuclear seeds are close

with each other mainly due to the same scales of gLoG filters used. By contrast,

nuclei seeds in Fig. 4.14(b) are far away from each other as the scales of gLoG

filters differ greatly.
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Fig. 4.13. Illustration of nuclei detection. (a) I (x, y) with all local maxima (shown as +). (b)
I (x, y) with filtered local maxima (shown as +). (c) Original image with detected nuclei seeds.
(d) Original image with ground truths (shown as squares). Note that in (a) circles indicate the local
maxima generated by noise in the image background. In (b) nuclei contours are obtained by adaptive
thresholding.

Fig. 4.14. Nuclei detection by different scales of gLoG kernels. (a) By gLoG filters σx = 8,
σy = 7, θ = 45◦ (shown as ×) and σx = 8, σy = 7, θ = 90◦ (shown as +). (b) By gLoG filters
σx = 8, σy = 7, θ = 45◦ and σx = 5, σy = 4, θ = 45◦ (shown as +). Note that nuclei seeds
detected by gLoG filters with the same scales are close with each other in (a).

To cluster the local maxima, we apply the mean-shift algorithm [87] on N local

maxima points {Bi}i=1...N and group them based on their geometric closeness such

that each nucleus corresponds to one cluster of local maxima. The bandwidth w2

of mean-shift algorithm is determined based on estimated radius of nuclei (e.g., 6
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pixels in Fig. 4.13). Let the number of clusters be denoted by p after this step, and

the p clusters be denoted by Tl, 1 ≤ l ≤ p.

(4) Identifying nuclei seeds: Since each nucleus corresponds to one cluster

of local maxima, it is necessary to determine one point as a nucleus seed. In

this work, the point which has the maximum response value (retrieved from the

corresponding response image Lj (x, y) obtained in Eq. (4.23)) is selected as the

nucleus seed from each cluster Tl, 1 ≤ l ≤ p. Fig. 4.13(c) shows the original RGB

image with the detected nuclear seeds (+ symbols) by the proposed gLoG-based

technique, and Fig. 4.13(d) shows the manually labeled ground truths. As observed

in Figs. 4.13(c)(d), the proposed gLoG-based technique has correctly detected most

of cell nuclei, even for nuclei with light stains.

Once nuclei seeds are detected, we can easily estimate the orientation and scales

of cell nuclei. Let us denote the detected nuclei seeds as Cl, 1 ≤ l ≤ p. Assume

that the nucleus seed Cl corresponds to a peak response searched in the response

map Lj (x, y) (see Eq. (4.23)), and the orientation of the aggregated gLoG kernel

(∇2Gj
s (x, y)) is considered as the orientation of the nucleus. The aggregated gLoG

kernel ∇2Gj
s (x, y) is summed from the same directional gLoG filters. Let us

assume that the ∇2Gj
s (x, y) is obtained by summing S normalized gLoG ker-

nels ∇2Gn (x, y) (see Eqs (4.21), (4.22)). To estimate the scales of nuclei, we

can separately convolve the nuclei with each gLoG kernel ∇2Gn (x, y) to obtain

S response maps. The response map that has the highest response value at the

nucleus seed point Cl is selected, and the corresponding scales of the gLoG kernel

∇2Gn (x, y) are estimated as the nuclei scales. Fig 4.15(a) illustrates an example of

nuclei scales estimation. The overlapped ellipses have a semi-major axis of
√
2σ̂x,

a semi-minor axis of
√
2σ̂y and an orientation of θ̂, where σ̂x, σ̂y and θ̂ are the

estimated scales and orientations of nuclei. Using the detected seeds as markers,

nuclei boundaries can also be efficiently obtained by such as marked watershed

algorithm [91]. Fig. 4.15(b) shows nuclei segmentations by the marked watershed

algorithm.
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Fig. 4.15. Nuclei scales estimation and segmentation. (a) Nuclei ellipses generated based on scales
and orientation estimation. (b) Marked watershed segmentation.

4.4 Performance Evaluation

To evaluate the performance of two proposed nuclei detection techniques, we car-

ried out a series of experiments on skin and breast biopsy images. The main

objective of evaluation is to determine if the automatically detected nuclei seeds

are consistent with the manually labeled ground truths. In this section, we present

the nuclei detection performance of two proposed techniques and compare them

with several existing techniques.

4.4.1 Dataset Description

The study of nuclei detection was based on two datasets of H&E stained histopathol-

ogy images. Table 4.5 lists the summary of two datasets. The first dataset (Dataset-

I) includes 12 skin histopathological images, which were cropped skin DEJ regions

from six WSIs (i.e., 2 images are cropped from each WSI). Note that the original

skin images were captured under 40X magnification on Carl Zeiss MIRAX MI-

DI scanning system. The cropped images were saved in TIFF format with 10X

magnification for a good balance between image quality and size. The 12 images

on average have a size of 1326×667 pixels, and have a total of 7,701 cell nuclei.

The second dataset (Dataset-II) is a published online dataset [92], which consists of
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18 breast histopathology images. The 18 breast images on average have a size of

896×768 pixels, and have a total of 6,048 cell nuclei. Since cell nuclei in Datasets

I and II have similar size variations, we have used the same set of parameter values

for two datasets during our subsequent evaluations.

TABLE 4.5
IMAGE DATASET USED FOR NUCLEI DETECTION EVALUATIONS.

Datasets Tissue Types Image No. Nuclei No.

Dataset-I Skin biopsy 12 7701
Dataset-II Breast biopsy 18 6048

4.4.2 Parameter Configuration and Comparisons

In the proposed voting-based technique (henceforth referred to as the P-Voting

technique), three parameters should be selected appropriately to obtain a good

performance. These three parameters are the minimum voting radius rmin, the

maximum voting radius rmax and the bandwidth w1 of mean-shift clustering to find

the modes of voting image. Note that all these parameters are determined by the

estimated nuclei radii (see Algorithm 1). That is: rmin = 0.5d, rmax = 1.5d and

w1 = 0.6d, where d is the estimated average nucleus radius. In order to estimate

the value of d, we manually measure the radii of 170 randomly selected cell nuclei

(from 15 image patches) and compute the average value as d (i.e., d = 10 pixels).

In the proposed gLoG-based technique (henceforth referred to as the P-gLoG

technique), four parameters should be determined appropriately to obtain a good

performance. These four parameters are the k (i.e., the number of orientations

for gLoG kernels), scales (σmin, σmax) of gLoG kernels, and the bandwidth w2

of mean-shift clustering to merge redundant seeds. The parameter k is set as 9,

which corresponds to nine orientations (i.e., θ = mπ/9, m = 0, . . . , 8) with an

angular resolution of 20◦. The parameters σmin and σmax are determined based

on the relationship between the radius d of detected objects and scales of gLoG

kernels
√
2σmin ≤ d ≤

√
2σmax [88]. Here we measure the minimal and maximal
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radii (dmin, dmax) of nuclei (in pixels) in 170 manually labeled nuclei regions, and

set σmin and σmax as dmin

/√
2 and dmax

/√
2, respectively. The bandwidth w2 is

empirically set as the minimal radius dmin of detected objects. That is: σmin = 4,

σmax = 8 and w2 = 6.

The proposed techniques have been compared with several existing techniques

for blob (e.g., cell nuclei) detection. These techniques include the restricted ran-

domized hough transform (RRHT) [93], DoG filters with blobness measure [81],

mLoG method [39], gLoG method [40] and SPV method [43]. The parameters

of these methods are mainly determined by the estimated nuclei size (i.e., nuclei

radii range). For comparisons, we have experimentally set the optimal parameter

values for these techniques such that the best performance is achieved with our

testing images. Note that the original SPV method [43] determines the set of points

for voting by empirically selecting the points with a large gradient magnitude.

Since it is difficult to set an appropriate threshold to select large gradient points for

different images, we use the Canny operator to compute image edges (e.g., nuclei

boundaries) for voting. The original gLoG method [40] is highly sensitive to the

image noise which cannot be directly applied on our testing datasets. We have

determined a threshold τ based on trial and error tests to filter out false seeds in

the image background. In particular, if the points of local maxima searched from

the aggregated response map have a response value above τ (i.e., τ = 45), they

are considered as nuclei seeds. Figs. 4.16(a)(b) show nuclei detection results by

the technique in [40] before and after filtering false seeds by the threshold τ . As

observed in Fig. 4.16, the threshold τ can effectively remove false seeds in the

image background.

4.4.3 Nuclei Detection Results

To evaluate the nuclei detection performance, the automatically detected nuclei

seeds are compared with the manually labeled ground truths (provided by pathol-

ogists). An automatically detected seed si is counted as a true positive (TP) if and

only if its location is in a detection pair (si, gj) for which the corresponding (near-
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Fig. 4.16. Nuclei detection results by the technique in [40]. (a) Results before filtering false seeds.
(b) Results after filtering false seeds.

est) ground truth seed gj has not been paired [82], and also their Euclidean distance

is within a certain range of t (number of pixels). Fig. 4.17 illustrates examples of

TPs and false positives (FPs). Figs. 4.17(a)(b) show two simple examples of TP

and FP, respectively. In Fig. 4.17(c), s1 is counted as a TP because it has the closest

distance (smaller than t) with g1, whereas s2 is counted as a FP because g1 has been

used and paired with s1. In Fig. 4.17(d), if t1 < t2 < t3, s1 is paired with g1 and

counted as a TP. Meanwhile s2 is paired with g2 and counted as a TP. However, if

t2 < t1 < t3, s1 is paired with g2 and counted as a TP, but s2 is now counted as a

FP.

Let NGT , NDS and NTP denote the numbers of ground truth seeds, detected

seeds and true positives seeds, respectively. The performance is evaluated with

respect to the recall (DREC), precision (DPRE) and F-measure (DF ) which are

defined as follows:

DREC =
NTP

NGT
× 100% (4.24)

DPRE =
NTP

NDS
× 100% (4.25)

DF =
2× (DREC ×DPRE)

(DREC +DPRE)
(4.26)

Table 4.6 shows the quantitative evaluations of nuclei detections for the two

proposed techniques (i.e., P-Voting and P-gLoG) and existing techniques, where

the distance t is set as 6 pixels. Note that F-measure DF is the harmonic mean of
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Fig. 4.17. Definition of true positives and false positives. Note that in (d) t1, t2 and t3 are the
Euclidean distances corresponding to different pairs of points.

precision and recall, which provides a comprehensive measurement of the perfor-

mance. It is observed in Table 4.6 that the RRHT [93] and SPV [43] techniques pro-

vide much poorer performances than other techniques, with only around 78% and

74% of DF on Datasets-I and II, respectively. The poor performance of these two

techniques is mainly because they are critically replied on the accuracy of detected

image edges, and hence inaccurate edge detections have significantly negative influ-

ence on nuclei detections. The DoG [81] and mLoG [39] techniques provide inter-

mediate performances, which are mainly limited by either consideration of nuclei

as circular blobs or filtering of false seeds using unstable post-pruning approaches.

The gLoG method [40] and P-Voting technique achieve a similar performance.

More specifically, the P-Voting technique provides a better performance (88.58%

of DF ) than the gLoG method [40] in Dataset-I, but a poorer performance (82.76%

of DF ) in Dataset-II. The relative poor performance on Dataset-II is because the

P-Voting technique is highly dependent on image binarizations, while the breast

images in Dataset-II tend to be more difficult to be binarized. Among all techniques,

the P-gLoG technique achieves the highest F-measures for two testing datasets (on
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TABLE 4.6
COMPARISON OF NUCLEI DETECTION PERFORMANCE (t = 6).

Datasets Techniques NGT NDS DREC(%) DPRE(%) DF (%) T (s)

Dataset-I
(12 Images)

RRHT [93] 7701 6613 72.97 85.94 78.89 13.0
SPV [43] 7701 6764 74.47 83.18 78.42 334.8
DoG [81] 7701 8193 83.05 80.20 81.53 32.5

mLoG [39] 7701 7991 88.67 87.08 87.83 7.4
gLoG [40] 7701 7052 83.63 89.55 86.39 36.3
P-Voting 7701 7400 86.17 91.21 88.58 173.4
P-gLoG 7701 7424 89.45 94.20 91.72 11.3

Dataset-II
(18 Images)

RRHT [93] 6048 6553 76.42 70.74 73.27 7.3
SPV [43] 6048 5510 70.47 78.61 74.14 215.1
DoG [81] 6048 6430 78.39 73.88 75.92 9.1

mLoG [39] 6048 6429 85.07 79.96 82.35 3.0
gLoG [40] 6048 5795 83.94 87.28 85.50 27.5
P-Voting 6048 5893 81.81 83.91 82.76 92.9
P-gLoG 6048 5963 87.44 88.42 87.87 6.7

average 91.72% and 87.87%, respectively). This indicates that the gLoG kernels are

superior to other methods in detecting elliptical blobs. In addition, the post-pruning

algorithms based on mean-shift clustering and adaptive thresholding can efficiently

remove false seeds.

Fig. 4.18 compares nuclei detection performance with respect to F-measures of

different techniques, where the distance t is ranged from 1 to 12 pixels. As observed

in Fig. 4.18, the DF values of different techniques go up exponentially when t

values increase from 1 to 6 pixels, but then go up marginally when t values increase

from 6 to 12 pixels. This indicates that most of detected true positive seeds by

automated techniques are lying within a distance of 6 pixels from manually labeled

ground truth seeds. The proposed techniques (especially the P-gLoG technique)

provide a markedly superior performance with different t values.

For visual comparison, Fig. 4.19 shows two randomly cropped image patch-

es with nuclei seeds detected by different techniques. In Fig. 4.19, the first and

third rows show a skin image, while the second and fourth rows show a breast

image. The automatically detected nuclei seeds are indicated by (green) + sym-

bols, while the ground truths shown in Fig. 4.19(h) are indicated by yellow �

symbols. The rectangles in the images highlight missed or false seeds generated
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Fig. 4.18. F-measures with different distance t values. (a) Performances on Dataset-I. (b)
Performances on Dataset-II.

by computerized methods. As observed in Fig. 4.19, the proposed techniques

(see Figs. 4.19(f)(g)) provide a superior performance in nuclei detections, which

have less false and missed detections than existing techniques. Although a good

performance is achieved by proposed techniques, there still exist failure cases when

nuclei are closely clustered together. If cell nuclei are severely clustered together,
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Fig. 4.19. Nuclei detection in skin (first and third rows) and breast (second and fourth rows) images.
(a) RRHT [93]. (b) SPV [43]. (c) DoG [81]. (d) mLoG [39]. (e) gLoG [40]. (f) P-Voting. (g) P-
gLoG. (h) Ground truths. Note that automatically detected nuclei seeds are indicated by + symbols,
while ground truths in the column (h) are indicated by � symbols. The missed or false seeds are
highlighted with rectangles.
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it is actually very difficult to be identified even by an experienced pathologist.

Fig. 4.20 shows nuclei detections by the P-gLoG technique in a skin image, where

the second row shows two zoomed-in image patches for better illustration. As seen

in Fig. 4.20, the P-gLoG technique can correctly detect most of cell nuclei.

Fig. 4.20. Nuclei detection by the P-gLoG technique. Note that the second row shows zoomed-in
image patches for better viewing.

4.4.4 Parameter Sensitivity Evaluations

As explained in section 4.4.2, the estimated nucleus radius d plays a key role in

determining the values of other parameters in the P-Voting technique. To evaluate

the sensitivity of the parameter d, its value is varied by 10% and 20% around the

estimated optimal value (d = 10). Fig. 4.21 shows the F-measures with different

values of parameter d. As observed in Fig. 4.21, a selection of smaller values for d

(e.g., 8 and 9 pixels) roughly does not change F-measures in two datasets, while a

selection of larger values for d (e.g., 11 and 12 pixels) has marginally decreased F-
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measures about 2% for two datasets. Considering the slight changes of F-measures

with different d values, it can be concluded that the P-Voting technique is not very

sensitive to the parameter d, but using an appropriate value of d is still important

for achieving the best performance.
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Fig. 4.21. Parameter sensitivity evaluation of the P-Voting technique.

There are four key parameters that should be predefined for the P-gLoG tech-

nique. Parameters σmin and σmax can be intuitively determined based on the average

radius of detected nuclei. Parameter k determines the angular resolution of gLoG

kernels, which is empirically set as 9 (corresponds to 20◦ angular resolution). To

evaluate the sensitivity of this parameter, we test k with values {7, 8, 10, 11} on

two datasets. Fig. 4.22(a) shows the F-measures with different k values on two

datasets. As seen in Fig. 4.22(a), the F-measures for the same dataset are similar

with different k values. This indicates that the P-gLoG technique is generally

robust to the choice of parameter k. However, note that since k determines the

angular resolution of gLoG kernels, with a larger k value, more accurate estimation

of nuclear orientation will be obtained. Another adjustable parameter in the P-

gLoG technique is the bandwidth w2 of mean-shift algorithm which is used for

post-pruning to merge redundant seeds. The parameter w2 is empirically set as the

minimal nuclear radius (i.e., w2 = 6 pixels). To evaluate the sensitivity of this

parameter, we varied w2 by 10% and 20% around 6 (or tuned it from 4.8 to 7.2 with

a step of 0.6). Fig. 4.22(b) shows the F-measures with respect to different w2 values
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on two datasets. As observed in Fig 4.22(b), the F-measures only have marginal

fluctuations, and hence the P-gLoG technique is not sensitive to the parameter w2

when a reasonable value is selected.
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Fig. 4.22. Parameter sensitivity evaluation of the P-gLoG technique. (a) F-measures with different
k values. (b) F-measures with different w2 values.

4.4.5 Computational Complexity and Limitations

To evaluate the computational complexity, the average run time T on two datasets

is separately calculated. All our experiments were carried out on a 2.9-GHz CPU

with 4 GB RAM using MATLAB R2013a. In Table 4.6, the eighth column shows

the values of T for different techniques on Datasets-I and II, respectively. It is

observed in Table 4.6 that the SPV [43] and the P-Voting techniques have much

higher computational complexity (e.g., the SPV [43] takes 334.8s and 215.1s on

two datasets, respectively) than other techniques. These two techniques detect

nuclei seeds based on a voting procedure, which requires intensive computations.

However, since the potential voting regions are only the eroded nuclear regions

rather than the whole image (like the SPV [43]), the P-Voting technique is much

faster (about 2 times) than the SPV method. The P-gLoG technique is more efficient

than voting-based techniques, which takes about 11.3s and 6.7s for Datasets-I and

II, respectively. Note that the P-gLoG technique is about three times faster than

the gLoG method in [40]. This is due to the accumulations of gLoG kernels with

93



the same orientations before performing convolution operation, which reduces the

number of convolutions (convolution takes a relatively long time for a large image).

It should be mentioned that like every computerized method, the proposed tech-

niques for nuclei detections also have limitations. Based on our experience, the

P-Voting technique is heavily replied on accurate image binarizations, while the

P-gLoG technique may fail to detect cell nuclei that do not have homogeneous

gray level intensities. However, these weaknesses can be relieved by utilizing

appropriate image binarization methods and performing image pre-processings to

make nuclear region homogenous.

4.5 Summary

This chapter presents two automated techniques for nuclei detection in histopatho-

logical images. The first proposed technique, P-Voting, performs nuclei detection

based on ellipse descriptor analysis and an improved voting algorithm, while the

second proposed technique, P-gLoG, performs nuclei detection by using multi-

scale gLoG kernels with redundant seeds merged by mean-shift clustering. The P-

Voting technique provides a very good performance in nuclei detection compared

to existing techniques, but it has a high computational complexity. The P-gLoG

technique provides a further improvement in nuclei detection, with a significantly

low computational complexity. The proposed techniques have been thoroughly

evaluated on two datasets of skin and breast histopathological images. The pro-

posed techniques can be used to evaluate nuclei densities and distributions in biopsy

images, and also they are the key steps for automated nuclei segmentation.
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Chapter 5

Automated Segmentation of Cell

Nuclei

Analysis of cell nuclei such as nuclear size, shape and presence or absence of

nucleoli plays an important role in the histopathological examination and diagnosis.

However, it is very labor-intensive and error-prone for manual analysis of cellular

features, as there is usually a large amount (e.g., millions of cell nuclei) of cell

nuclei in biopsy images. Although many existing computerized methods have been

proposed for nuclei segmentation, robust and efficient segmentation of cell nuclei is

still an open problem because of overlapping nuclei, inhomogeneous staining, and

presence of noisy pixels and other tissue components. In this chapter, we propose

an automated technique that segments cell nuclei using a multi-scale radial line

scanning (mRLS) based method. Comparisons with several existing techniques

indicate that the proposed technique can segment cell nuclei more accurately.

5.1 Introduction

Evaluation of cell nuclei plays an important role in the histopathological exami-

nation and analysis of digitized slides. The parameters like nuclear size, shape,

Part of this chapter has been published in: Xu et al. “Automatic nuclear segmentation using
multi-scale radial line scanning with dynamic programming”, accepted by IEEE Transactions on
Biomedical Engineering (TBME), January, 2017.
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contours and presence or absence of nucleoli are generally used by pathologists

for various cancer diagnosis. The abnormal cell distributions and morphological

changes often indicate the malignancy of the lesion [38]. However, manual seg-

mentation and evaluation of cell nuclei are very tedious works, and also are prone

to inter- or intra-observer variability due to poor contrast and clumping of nuclei.

To reduce the workload and obtain more objective results, many efforts have been

devoted to develop automated nuclei segmentation techniques.

Threshold-based techniques have been widely used for nuclei segmentation in

histological images. These works are related to segmentation of cell nuclei in

the digitized neuroblastoma slides [27], breast histopathological images [24] and

skin histopathological images [30]. A major limitation of these threshold-based

techniques is the under-segmentation of clumped cell nuclei. In order to address

this issue, a number of techniques for segmentation of cellular or nuclei clumps have

been reported. These techniques mainly include two categories: concavity analysis

based techniques [79], [94]–[99], and “seed” (or “marker") based techniques [32]–

[35], [43], [91].

For concavity analysis based techniques, the first step is to identify valid con-

cave points for splitting. Several techniques exist for identifying concave points

on the contour. For example, the concave points have been detected based on

computing the cross product of vectors defined by three consecutive points [79], or

minimizing a cost function to find the bottleneck positions on the contour [94]. With

detected concave points, the next step is to connect them and split cellular or nuclear

clumps into isolated ones. This step can be achieved iteratively by connecting the

shortest path between concave points until all split regions are considered to be

isolated [98]. Although concavity analysis based techniques have been reported to

provide a good performance, the performance is overly sensitive to image binariza-

tions, and the predefined thresholds (usually several thresholds) that are used for

finding valid concave points [94], [97].

For “seed” ( or “marker”) based techniques, the first step is to identify “seeds”

for nuclear regions. These detected “seeds” are usually close to nuclei centers, and
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used as the starting points for active contours or watershed segmentation. The seg-

mentation performance depends critically on the accuracy and reliability of initial

seed points. Because of the advantages of simplicity, speed and absence of ad-

justable parameters, several marked watershed algorithms have been developed for

cellular or nuclear segmentation. For example, the markers of watershed algorithm

are detected by condition erosion [32], H-minima transform [33], [34], improved

voting algorithm [91] and radial symmetry transform [35]. These watershed based

segmentations are sensitive to the accuracy of image binarizations as the topograph-

ic surfaces for segmentation are built from distance maps of binary images. In order

to get more accurate segmentations, Al-Kofahi et al. [39] proposed a technique

that detects nuclei seeds by mLoG filters and segments cell nuclei based on size-

constrained clustering with further refinement by a graph-cuts based algorithm. Qi

et al. [43] proposed to detect cell seeds in breast histopathological images by a SPV

algorithm and delineate cell contours by a repulsive level set model [42]. Xing

et al. [100] proposed a cell detection and segmentation technique for evaluating

Ki-67 proliferation index in gauge neuroendocrine tumor images. This technique

detects cell seeds by a hierarchical voting method, and delineates cell boundaries

by a repulsive active contour model. The active contour based techniques tend to

provide more accurate segmentations, but they (e.g., in [43], [100]) cannot delineate

occluded nuclear boundaries for overlapping nuclei.

Recently a few techniques based on active shape models and deep learning

(DL) have been proposed for nuclei segmentation. Plissiti et al. [101] proposed

a technique that segments overlapping cell nuclei by driving the deformable model

based on physical principals, but this technique only works automatically for the

image with a known number of cell nuclei. Lu et al. [102] proposed a technique

to perform cervical cell segmentation by joint optimization of multiple level set

functions. This technique has a high computational complexity and its performance

is critically replied on initial segmentations for level set functions. Janowczyk et

al. [103] proposed a resolution adaptive deep hierarchical (RADHical) learning

scheme for nuclei segmentation in histological images. The RADHical employs the
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AlexNet network [104] in a multi-resolution framework which provides a similar

performance with the naive DL model [105] (e.g., processing the high-resolution

images directly), but it achieves about 6 times speed improvement. Although the

DL methods are very powerful to learn image features, they are generally quite

time-consuming to train and apply.

In this chapter, we propose a “seed” based technique for nuclei segmentation

in histological images, which can resolve nuclear overlap and obtain occluded

nuclei boundaries in clumped nuclei. The proposed technique detects nuclei seeds

by using multi-scale gLoG kernels, and delineate nuclei boundaries by using a

mRLS method. The details of the proposed technique and experimental results

are provided in the following sections.

5.2 Proposed mRLS-based Technique

The schematic of the proposed mRLS-based technique for nuclei segmentation is

shown in Fig. 5.1. It is observed that there are two main modules. In the first

module, nuclei seeds are detected using a bank of gLoG kernels with different

scales and orientations. In the second module, nuclei boundaries are delineated

by using a multi-scale radial line scanning (mRLS) based method. This method

consists of three sub-modules. The first module estimates candidate nuclei contours

using mRLS with dynamic programming (DP) based on gradient information. The

second module selects the optimal nuclei contours by integrating nuclear intensity

and shape prior with gradient information. The third module resolves overlapped

nuclei based on a predefined area-overlapping allowance. In the following, we

explain the two modules with an emphasis on nuclei segmentation module.

5.2.1 Seeds Detection

Because cell nuclei in digitized histological images typically have circular or ellip-

tical shapes, we apply a gLoG kernels based technique (presented in Chapter 4 )

to detect nuclei seeds. This technique first generates a bank of gLoG kernels with
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Fig. 5.1. Schematic of the proposed mRLS-based technique.

different scales and orientations. The gLoG kernel ∇2G (x, y) is defined as:

∇2G (x, y) =
∂2G (x, y; σx, σy, θ)

∂x2
+

∂2G (x, y; σx, σy, θ)

∂y2
(5.1)

where G (x, y; σx, σy, θ) is a generalized Gaussian kernel with scales (σx, σy) and

orientation θ [106]. After generating multi-scale gLoG kernels, the same directional

kernels are aggregated together and convolved with the image I (x, y) (the red

channel of original color image) to generate response maps. The points of local

maxima are then searched from multiple response maps and clustered into different

groups using mean-shift algorithm [87]. Finally, the geometrical means of local

maxima points in different groups are computed and considered as nuclei seeds.

Fig. 5.2 shows examples of gLoG kernels with different scales and orientations.

Figs. 5.3(a)(c) shows two skin histological images where nuclei are observed as blue

blobs. Figs. 5.3(b)(d) shows seed detection results using gLoG kernels shown in

Fig. 5.2 (e.g., 95 gLoG kernels), where the detected seeds are indicated by (yellow)

crosses. Note that Figs. 5.3 (a)(b) shows skin images stained with Ki-67, while

Figs. 5.3 (c)(d) shows skin images stained with H&E. As observed in Fig. 5.3,

nuclei have been correctly detected by the gLoG kernels based method [106].

5.2.2 Nuclei Segmentation

After detecting nuclei seeds, the next step is to delineate nuclei boundaries. In

order to capture nuclei boundaries, we propose a mRLS based technique in this

module. In the following, we explain the mRLS based technique in three sub-

modules: candidate contour generation, nuclei contour selection and nuclei overlap

99



Fig. 5.2. gLoG kernels. Note that parameters (·, ·) below a kernel correspond to (σx, σy).

Fig. 5.3. Nuclei detections. (a) & (c) Original skin images. (b) & (d) Nuclei detection results.
Symbols + in (b)(d) indicate detected nuclei seeds.

processing. Details of these three modules are as follows:

5.2.2.1 Candidate Contour Generation

The radial line scanning (RLS) method has been successfully utilized to detect

melanocytes in skin epidermis areas [107]. To utilize the RLS method, the detected

seeds are considered as nuclei centers. A set of radial lines emerging from the

nucleus center are then computed. These radial lines have radial orientations as

follows:

θi =
2π

N
(i− 1) , i = 1 . . . N (5.2)

where N indicates the number of radial lines. For each radial line, we denote the

minimum scanning radius as RS and maximum scanning radius as RE . Fig. 5.4(a)
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illustrates an example of scanning radii for one radial line, where θ1 = 0. Fig. 5.4(b)

shows a real example with 30 radial lines (i.e., N = 30) emerging from the detected

nucleus seed. The (yellow) contour in Fig. 5.4(b) is the reference nuclear boundary.

As observed in Fig. 5.4(b), each radial line intersects the nuclear boundary at only

one point. Let us assume there are M discrete points on each radial line between RS

(green circle) and RE (blue circle). Hence, we have MN different possible closed

contours, where a contour uses only one point in each of N lines. The nuclear

boundary shown in Fig. 5.4(b) is one of these possible configurations.

Fig. 5.4. Illustration of radial line scanning. (a) Scanning radii of one radial line. (b) 30 radial lines
emerging from a detected nucleus seed. (c) Gradient map overlapped on a nuclear image. Note that
in (b)(c) nuclear boundaries are indicted by yellow contours.

In order to automatically delineate a nuclear boundary (like it shown in Fig. 5.4(b))

from MN different configurations, image gradient is utilized. Since the original im-

age I (x, y) usually includes noisy pixels, a smooth image Is (x, y) is first obtained

by convolving the image with a Gaussian kernel as follows:

Is (x, y) = G (x, y; σ) ∗ I (x, y) (5.3)

where G (x, y; σ) = σ−1/2e−(x
2+y2)/4σ. The gradient magnitude map Gm (x, y) and

gradient direction map Gd (x, y) are then generated using following equations:

Gm (x, y) =

√(
∂Is (x, y)

∂x

)2

+

(
∂Is (x, y)

∂y

)2

(5.4)
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Gd (x, y) = arctan

(
∂Is (x, y)

∂y

/
∂Is (x, y)

∂y

)
(5.5)

Fig. 5.4(c) shows a close-up view of nucleus overlapped with the gradient map,

where gradients are indicated by arrows. As seen in Fig. 5.4(c), the reference

nuclear boundary consists of high gradient points. In addition, if assuming that

the directions of radial lines are outward (i.e., pointing from the nuclear center to

the boundary), nuclear boundary points have gradient directions similar to that of

corresponding radial lines. Based on these observations, we append a cost value

for each point of radial lines. Let pi denote a variable that can take any of the M

discrete points on the ith radial line. The appended cost value C (pi) is computed

as:

C (pi) = α cos (|θi − Gd (pi)|) + βG ′

m (pi) (5.6)

where α and β are weights of gradient directions and magnitudes, respectively.

G ′

m (pi) is the normalized Gm (pi), which is calculated as follows:

G ′

m (pi) =
Gm (pi)

maxGm (pi)
, 1 ≤ i ≤ N (5.7)

Note that in Eq. (5.6) the gradient direction is incorporated into the cost value

C (pi), which can suppress undesirable influence of high gradient points from other

neighboring nuclei boundaries. This is because orientations of radial lines for one

nucleus, in an ideal case, are opposite to gradient directions of other neighboring

nuclei boundaries.

After appending a cost value to each point of radial lines, it might appear that

points of nuclei boundaries can be selected by maximizing the cost value C (pi)

in each radial line. However, such simple selection of boundary points is difficult

to obtain a smooth nuclear contour, as the determined boundary points are prone

to be disturbed by isolated high gradient noisy pixels. In order to obtain accurate

and smooth nuclear contours, we consider all radial lines together and define the
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following cost function (corresponding to a nuclear gradient):

Egradient (p1, p2, . . . , pN) = E1 (p1, p2) + E2 (p2, p3)

+ · · ·EN−1 (pN−1, pN) + EN (pN , p1)
(5.8)

where each additive cost value Ei is calculated as:

Ei (pi, pi+1) =





κ− C (pi) if D (pi, pi+1) ≤ δ

∞ otherwise
(5.9)

where κ = maxC (pi), 1 ≤ i ≤ N . D (pi, pi+1) is the Euclidean distance between

points pi and pi+1, and δ is a predefined distance value (e.g., δ = 1). Note that the

cost function in Eq. (5.8) has a typical overlapping and additive form that can be

efficiently optimized by DP in O (NM2) computations [108]. The cost component

in Eq. (5.9) implies that if the Euclidean distance D between two consecutive points

on the contour are within a predefined distance δ, the cost value Ei equals to κ −
C (pi). Otherwise the cost value is assigned to be positive infinity. With Eq. (5.9)

as the individual cost component, the net effect of minimizing Eq. (5.8) would be

to obtain a contour consisting of points with high gradient magnitudes and gradient

directions similar to orientations of corresponding radial lines. Besides, any two

consecutive points on the contour have the Euclidean distance smaller than δ.

Although the RLS technique with DP can generally provide smooth and accu-

rate nuclei contours, the technique is relatively sensitive to the parameter RE (the

maximal scanning radius). This is because nuclei size and shape in histological

images (even for the same type of images) usually vary from each other, and there

exist touching and overlapping nuclei in 2-D images. When a small RE value is

applied, the large nuclei in the image may be truncated (see Figs. 5.6(c)(d) with

arrows). However, when a large RE value is applied, it not only increases the com-

putational complexity but also may under-split clustered nuclei (see Figs. 5.6(e)(f)

with arrows). Therefore, it is difficult to obtain accurate boundary contours for

all nuclei in a large image by using a fixed RE value. In order to overcome this
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limitation, we propose to use a set of RE values (i.e., Rmin
E ≤ RE ≤ Rmax

E )

rather than a fixed value to adapt nuclear size variations. The parameters Rmin
E

and Rmax
E can be estimated based on nuclei radii in the image. Using a set of

RE values (or mRLS with DP), each nucleus has several obtained contours. For

example, Fig. 5.5(a) shows a skin image with three cell nuclei. Figs. 5.5(b)-(f)

show the nuclei contours obtained by the mRLS technique with DP, where RS = 3

and RE = {14, 15, 16, 17, 18}, respectively. As observed in Figs. 5.5(b)-(f), with

different RE values, each nucleus has several different obtained contours. Since

there are several candidate contours for each nucleus, the optimal contour is to be

determined in the next module.

Fig. 5.5. Candidate nuclei boundaries. (a) Skin image with three cell nuclei (40X magnification).
(b) RE = 14. (c) RE = 15. (d) RE = 16. (e) RE = 17. (f) RE = 18. (g) Automatic
segmentations compared with manual segmentations. Note that parameter settings for mRLS with
DP are: N = 100, RS = 3, α = 1.0, and β = 0.5. In (b)-(f) symbols + are the detected nuclei
seeds. In (d)(e) arrows indicate optimal nuclei contours. In (g) dotted contours indicate manual
segmentations.

5.2.2.2 Nuclei Contour Selection

Several boundary contours are obtained for every nucleus by using the mRLS with

DP. In this module, we select the optimal contour for each nucleus. In order to

select the optimal contour, we integrate nuclear intensity variance and shape prior

with the gradient information (obtained by Eq. (5.8)). Based on the observation

that nuclear blobs in our dataset have relatively homogeneous intensities, the cost

component corresponding to the intensity variance is defined as follows:

Eintensity =

∫∫

(x,y)∈ΩN

|I (x, y)− c|2 dx dy (5.10)
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where ΩN denotes a segmented nucleus region, and c is the mean intensity in the

region ΩN . Note that a smaller Eintensity value indicates a more homogeneous

nucleus region.

The nuclei typically have circular or elliptical shapes, and hence the shape

prior is incorporated for nuclear contour selection. Given a nuclear region ΩN ,

an elliptical region ΩE that has the same second moments as ΩN is obtained by

the ellipse-fitting algorithm [64]. Let An and Ae be the sets of pixels in ΩN and

ΩE , respectively. The cost component Eshape corresponding to a nuclear shape is

computed as follows:

Eshape = 1− |An ∩ Ae|
|Ae|

(5.11)

where |·| is the cardinality of pixels set and ∩ is intersection operation. Eshape has a

dynamic range of [0, 1), and a smaller value of the Eshape represents a closer match

to an elliptical shape.

Let Egradient be a vector of Egradient obtained by Eq. (5.8) with different RE

values. Similarly, let Eintensity and Eshape be the vectors of Eintensity (see Eq.

(5.10)) and Eshape (see Eq. (5.11)), respectively. We integrate gradient, intensity

and shape information together and define the following energy cost function:

Etotal = λ1
Egradient

‖Egradient‖
+ λ2

Eintensity

‖Eintensity‖
+ λ3

Eshape

‖Eshape‖
(5.12)

where λ1, λ2 and λ3 are weights of each term, and ‖·‖ is the Euclidean norm. Note

that Etotal is a vector of overall cost function for different RE values. Egradient

assures that nuclei boundaries are located on high gradient points. Eintensity assures

that the segmented nuclear region is homogenous. Eshape assures that the segment-

ed nuclear region has an elliptical shape. By selecting the minimal cost value in Eq.

(5.12), it is expected to obtain a nuclear boundary lying on high gradient points

and surrounding a region with an elliptical shape and homogeneous intensities.

The parameters λ1, λ2 and λ3 can be adaptively adjusted according to different

applications. For instance, a smaller value λ2 can be utilized when nuclear regions

in testing images are not homogeneous. In this work, we have empirically set them
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TABLE 5.1
COST VALUES Etotal FOR NUCLEI SHOWN IN FIG. 5.5.

Nuclei Etotal

RE=14 RE=15 RE=16 RE=17 RE=18
A 1.66 1.57 1.47 1.52 1.50
B 1.74 1.59 1.49 1.48 1.48
C 1.62 1.64 1.60 1.52 1.54

as: λ1 = 1, λ2 = 1 and λ3 = 1. Table 6.2 lists the costs Etotal for nuclei A, B and

C shown in Fig. 5.5(a), where RS = 3, 14 ≤ RE ≤ 18. It is observed in Table 6.2

that the cost Etotal for the nucleus A is the smallest when RE = 16. In other words,

the optimal nuclear contour, as indicated by the arrow in Fig. 5.5(d), is obtained

when RE = 16. For nuclei B and C, the optimal nuclear contours, as indicated

by arrows in Fig. 5.5(e), are obtained when RE = 17. Fig. 5.5(g) compares the

finally obtained nuclei contours with manually labeled nuclei boundaries (shown as

doted contours). As seen in Fig. 5.5(g), the automatically obtained nuclei contours

by the mRLS based technique have a good matching with manually labeled nuclei

contours.

Fig. 5.6. Blob segmentations. (a) A synthetic image with three blobs. (b) A H&E stained skin
image (25X magnification). (c) & (d) RS = 3, RE = 7. (e) & (f) RS = 3, RE = 11. (g) & (h)
RS = 3 and 7 ≤ RE ≤ 11. In (c)(d)(e)(f) arrows indicate inaccurate segmentations.

To further illustrate the advantages of the mRLS based technique, two examples

of elliptical blob segmentations are shown in Fig. 5.6. The top row of Fig. 5.6

shows a synthetic image with three elliptical blobs and Gaussian white noise (with
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0.1 variance), and the bottom row shows a H&E stained skin image. Figs. 5.6(c)(d)

show blob segmentations with RS = 3 and RE = 7, where inaccurately-segmented

blobs (indicated by hollow arrows) have been observed in both synthetic and real

images due to a small RE value used. Figs. 5.6(e)(f) show blob segmentations with

RS = 3 and RE = 11. In Figs. 5.6(e)(f) although the inaccurately-segmented

blobs in (c)(d) have been correctly segmented, inaccurate segmentations (indicated

by solid arrows) have been observed for some other blobs because of a large RE

value used. Figs. 5.6(g)(h) show blob segmentations by the mRLS based technique,

where RS = 3 and 7 ≤ RE ≤ 11. It is observed that segmentation results in

Figs. 5.6(g)(h) are more accurate than those in Figs. 5.6(c)(d)(e)(f), respectively.

5.2.2.3 Nuclei Overlap Processing

In previous steps, we presented a procedure to delineate each nucleus individually.

The obtained nuclei contours may intersect with each other (see Fig. 5.5(g)), as

cell nuclei usually overlap or touch together in 2-D images. Note that although ex-

cessive or sometimes complete overlap may also be occurred in real cases, manual

evaluations usually consider excessively overlapped nuclei as single nucleus. In this

module, we impose an overlap allowance limitation such that the segmented nuclear

regions do not severely overlap with each other. The overlap limitation is imposed

based on the Dice coefficient. Specially, for each group of overlapped nuclei, the

following steps are iteratively applied until the stop criteria:

Step 1: Let s denote the number of individual candidate nucleus in the over-

lapped nuclei region. The Dice coefficient for two cell nuclei i and j is computed

as follows:

D(Ai,Aj) =
2× |Ai ∩ Aj|
|Ai|+ |Aj|

(5.13)

where Ai and Aj denote the set of pixels in the ith and jth nuclear regions, 1 ≤
{i, j} ≤ s, i 6= j. The Dice coefficient D(Ai,Aj) is a distance measure to evaluate

the similarity of two sets [35]. The measure has a maximum value of 1 when two

nuclear regions are completely overlapped with each other and a minimum value of
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0 when two nuclear regions do not intersect.

Step 2: In this step, we first compute the largest Dice coefficient among s (s− 1)/2

pairs of overlapped nuclei. Let us assume that the mth and nth nuclei have the

largest Dice coefficient. If D(Am,An) satisfies the following stop condition:

D(Am,An) < τ (5.14)

where τ is a predefined overlap allowance (e.g., τ = 0.6), then the overlap process-

ing stops. Otherwise, if Etotal (Am) < Etotal (An), the mth nucleus is kept and the

nth nucleus is discarded, and vice versa. If this happens, the s value is reduced by

1 and the algorithm goes to the Step 3. Note that the cost values Etotal (Am) and

Etotal (An) are obtained by minimizing Eq. (5.12).

Step 3: If condition (5.14) is not satisfied and s > 1, we repeat Step 1 and Step

2. Otherwise, the algorithm stops.

By utilizing the above three steps, we try to add an overlap allowance for

clustered nuclei such that the segmented nuclei are not severely overlapped with

each other. Fig. 5.7(a) shows a cell nucleus, and Fig. 5.7(b) shows two detected

nuclei seeds. Fig.5.7(c) shows the obtained nuclei contours based on the two de-

tected seeds, where segmented nuclear regions severely overlap with each other.

Figs. 5.7(d) shows the finally obtained nuclear contour after overlap processing,

where the dashed (white) nuclear contour in Fig.5.7(c) has been discarded.

Fig. 5.7. Nuclei overlap processing. (a) An nucleus. (b) An nucleus with two seeds (where the false
seed is indicated by the red arrow). (c) Nuclei boundaries obtained by the mRLS based technique.
(d) Final nuclear boundary after overlap processing.
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5.3 Performance Evaluations

In this section, we evaluate the performance of the proposed mRLS-based technique

(henceforth referred to as the P-mRLS technique) for nuclei segmentation. First we

illustrate the testing datasets used in this work. We then present the quantitative and

qualitative evaluations of the P-mRLS technique and several existing techniques for

nuclei segmentation.

5.3.1 Datasets Description

This study was based on two datasets of skin histopathological images which were

collected from the Cross Cancer Institute, University of Alberta. Table 5.2 lists the

summary of two datasets. The first dataset (Dataset-I) consists of 40 Ki-67 [109]

stained skin images which were cropped from four digital biopsy slides. The biopsy

slides were digitized under 40X magnification on Aperio Scanscope CS scanning

system. The images have a pixel resolution of 0.248µm/pixel, and include 1446

manually identified cell nuclei in total. The second dataset (Dataset-II) consists

of 28 H&E stained skin images which were cropped from five biopsy slides. The

biopsy slides were digitized under 25X magnification on Carl Zeiss MIRAX MIDI

scanning system. These images have a pixel resolution of 0.372µm/pixel, and

include 714 manually identified cell nuclei in total. Note that all nuclei centroids in

Datasets-I and II were first manually labeled by an imaging expert with over 3 years

of experience on skin pathology. The results were then examined and fine-tuned by

an experienced pathologist, and finally used as the ground truth seeds.

TABLE 5.2
IMAGE DATASET USED FOR NUCLEI SEGMENTATION EVALUATIONS.

Datasets Tissue Stains Image No. Nuclei No.

Dataset-I Ki-67 40 1446
Dataset-II H&E 28 714
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5.3.2 Quantitative Evaluations

To illustrate the efficacy of nuclei segmentation, the performance of the P-mRLS

technique is compared with several existing techniques including local optimal

thresholding (LOT) [30], marker optimization with watershed algorithm (MOW) [34],

improved voting with watershed algorithm (IVW) [91], repulsive active contours

model (RACM) [100], deep learning method (DLM) [110] and graph search based

method (GSM) [111]. The LOT technique is chosen as the baseline thresholding

method, and it segments cell nuclei based on two prior knowledge: nuclei size

and shape. There are two key parameters namely predefined nuclei area range

[Amin, Amax] that should be adaptively selected when using the LOT technique.

We have experimentally set them as [400,900] and [100,400] for our Datasets-I

and II, respectively. The MOW technique segments cell nuclei based on H-minima

transform and watershed algorithm. There is only one key parameter namely an-

gular margin ω that is used to avoid over-segmentation by the MOW technique.

As verified in [34], the MOW technique is not very sensitive to the parameter ω,

and hence it is set as π/12 (the same as that in [34]) for comparisons. Both the

IVW and RACM techniques detect nuclei seeds by a voting procedure, where the

voting radial range [rmin, rmax] and the bandwidth bw of mean-shift clustering are

the key parameters determining nuclei detection performance. The voting radial

range [rmin, rmax] are estimated based on nuclei radii, which are set as [5,16] and

[2,9] for our Datasets-I and II, respectively. The bandwidth bw is adaptively set

as (rmin + rmax)/2, as was done in [91]. After detecting nuclei seeds, the RACM

technique delineates nuclei boundaries by the active contours model with a repul-

sive term to prevent evolving contours from crossing and merging with one another.

There are a few weight parameters (α, β, γ, λ and η), which controls the elasticity,

rigidity, pressure force, image force and repulsive force of the active contour model,

respectively. We have experimentally set these parameters as: α = 0.05, β = 0,

γ = 0.25, λ = 2 and η = 1 for our two datasets. For the DLM, we implemented the

VGG style CNN [110] with Batch Normalization technique [112]. Specifically, a 9
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layers DL architecture which consists of 1 input layer, 6 convolution layers, 1 fully

connected layer and 1 output layer is constructed. The input layer accepts an image

patch of 64×64 pixels, and the output layer is a soft-max function which outputs

the class probability of being nucleus or non-nucleus. During training, we randomly

select 20 images from each of our Datasets-I and II as training samples, and the DL

architecture is trained following the procedure proposed by [105]. During testing,

a threshold of 0.3 is experimentally selected to binarize the probability map output

by the DLM. The GSM is originally proposed for intestinal gland segmentation

in H&E stained biopsy images. We adaptively modified it to perform nuclei seg-

mentation for comparison with the proposed technique. In our implementation,

we utilize the gradient magnitude as graph node weights instead of using image

intensity information like [111], as nuclei boundaries tend to be located on high

gradient points (rather than low intensity points). The graph search radii are set as

18 and 11 pixels in our Datasets-I and II, respectively. After obtaining boundary

probability map by graph search, watershed segmentation is performed with false

nuclear regions removed based on area and color analysis.

Automatic segmentation results by different methods have been manually in-

spected by an interactive software (based on Matlab). Let NCS, NOS, NUS and

NER represent the numbers of correct-segmentation (CS), over-segmentation (OS),

under-segmentation (US) and encroachment errors (ER). Note that OS refers to

excessive splitting (i.e., one nuclear region is split into two subregions as shown in

Fig. 5.8(b)). US refers to the failure to split nuclear regions into the correct number

of nuclei (see Fig. 5.8(c)). ER refers to the case that automatically obtained nuclei

boundaries are visually not accurate (see Fig. 5.8(d)). The performance of nuclei

segmentations has been evaluated by several widely-used evaluation metrics [39],

[98]: CS, OS, UR and ER rates, which are defined as follows:

CS =
NCS

NGT
× 100%, OS =

NOS

NGT
× 100% (5.15)

US =
NUS

NGT
× 100%, ER =

NER

NGT
× 100% (5.16)

111



where NGT represents the number of manually identified (ground truth) nuclei.

Fig. 5.8. Illustration of over-segmentation, under-segmentation and encroachment errors. (a) Two
nuclei with manually labeled boundaries. (b) Over-segmentation. (c) Under-segmentation. (d)
Encroachment error.

The comparison of segmentation results with different methods is shown in

Table 5.3. It is observed that the LOT [30] provides only 62.03% and 67.93% of CS

on our Datasets-I and II, respectively. The poor performance of the LOT technique

is mainly because our testing images include a large number of nuclei clumps which

cannot be efficiently split by a thresholding method. The DLM [110] only provides

a slightly better performance than the LOT, with 64.72% and 68.80% of CS on

our two datasets, respectively. The main reason behind this poor performance is

that the DLM cannot resolve overlapping nuclei (as also mentioned in [103]), while

our datasets mainly include image patches with clustered nuclei. Another reason

is that the DLM requires a large number of dedicated training samples, but our

training samples are limited due to the relatively small dataset. The MOW [34]

provides a better performance than the LOT and DLM, which has correctly seg-

mented 67.61% and 75.49% of cell nuclei in two datasets. The IVW [91] further

improves the segmentation performance from the MOW, with around 80% of CS

values on two datasets. The MOW [34] and IVW [91] perform nuclei segmentations

by applying marked watershed algorithm on inner distance transform maps, both of

which critically depend on the accuracy of image binarizations. In our datasets, Ki-

67 stained skin images tend to be more difficult to be binarized than H&E stained

skin images, and hence the performances of these two techniques [91] [34] on Ki-

67 stained images are poorer than those on H&E stained images. The GSM [111]
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TABLE 5.3
COMPARISON OF NUCLEI SEGMENTATIONS.

Datasets Techniques CS (%) OS (%) US (%) ER (%)

Dataset-I
(Ki-67)

LOT [30] 62.03 8.62 10.50 18.85
DLM [110] 64.72 3.44 16.66 15.18
MOW [34] 67.61 3.23 9.24 19.92
IVW [91] 79.10 2.19 6.42 12.29

GSM [111] 77.04 3.53 7.40 12.03
RACM [100] 88.13 1.62 4.65 5.60

P-mRLS 90.05 1.72 2.88 5.35

Dataset-II
(H&E)

LOT [30] 67.93 4.76 13.59 13.73
DLM [110] 68.80 5.66 13.39 12.15
MOW [34] 75.49 1.40 9.24 13.87
IVW [91] 80.81 2.38 6.44 10.36

GSM [111] 80.95 4.90 6.58 7.56
RACM [100] 83.89 1.96 4.62 9.52

P-mRLS 88.10 1.12 4.90 5.88

achieves a similar performance with the IVW. This technique performs watershed

segmentation on a boundary probability map obtained by graph search algorithm,

which is likely to under-split overlapping nuclei or over-split heterogeneous nu-

cleus. The RACM [100] is one of the latest nuclei segmentation methods, which

provides the best segmentation performance (88.13% and 83.89%) among all tested

existing methods. The P-mRLS technique achieves 90.05% and 88.10% of CS

on two databases, which are slightly better than the RACM. The RACM [100]

detects nuclei seeds by a voting based algorithm, and delineates nuclei boundaries

by evolving active contours. As has been verified in [106], the voting algorithm

is prone to be affected by image noisy pixels which will result in false positive

seeds. The active contours model for nuclei segmentation not only has a high

computation complexity but also is critically dependent on the accuracy of detected

nuclei seeds [39]. In comparison, the P-mRLS technique detects nuclear seeds by

a bank of multi-scale gLoG kernels, which is more accurate and efficient for nu-

clei detection. The P-mRLS technique delineates nuclear boundaries by analyzing

multi-scale radial lines, which is more robust with nuclear seed detection.

We also evaluate nuclei detection performances by different techniques, where
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the centroids of segmented nuclear regions are compared with manually labelled

ground truth seeds. A nuclear centroid ci (automatically obtained) is counted as a

true positive if and only if its location is in a detection pair (ci, gj) for which the cor-

responding (nearest) ground truth seed gj has been paired, and also their Euclidean

distance is within a range of t (number of pixels) [106]. Let NDS and NTP denote

the numbers of centroids for the segmented nuclei and true positive detections. The

performance of nuclei detections is evaluated with respect to the recall (DREC),

precision (DFRE) and F-measure (DF ), as defined by Eqs. (4.24)(4.25)(4.26) in

Chapter 4.

The performance of nuclei detections with different techniques are listed in

Table 5.4. Note that different t values (i.e., 6 and 4 pixels) are used for evalua-

tion as images in Datasets-I and II have different pixel resolutions. As observed

in Table 5.4, the LOT [30] only provides 70.51% and 74.03% of F-measures on

nuclei detections. The DLM [110] provides 74.16% and 76.27% of F-measures on

nuclei detections. The MOW [34], IVW [91] and GSM [111] achieve intermediate

performances with F-measures ranged between 77% and 86%. The RACM [100]

provides 89.02% and 90.27% of F-measures, which are much better than other

existing techniques. The P-mRLS technique provides the highest F-measure values

among all techniques, with 90.77% and 93.62% on Datasets-I and II, respectively.

Since the centroids of segmented nuclear regions are computed and compared with

manually labeled ground truth seeds, the performance of nuclei detections is highly

dependent on nuclei segmentations.

In order to further evaluate the accuracy of segmented nuclei contours, we

compare the automatic segmentations with manual delineations by computing a

boundary based metric, namely mean absolute distance (MAD) [91]. The MAD

value estimates the disagreement averaged over two contours, and a better seg-

mentation corresponds to a smaller MAD value (i.e., close to zero). However, since

manual delineation of all cell nuclei is tedious and time consuming process, 113 and

96 nuclei are randomly chosen from Datasets-I and II, and manually delineated by

using an interactive software [30]. The MAD computations are performed on these
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TABLE 5.4
COMPARISON OF NUCLEI DETECTIONS.

Datasets Techniques NTP DREC (%) DPRE (%) DF (%) MAD (px)

Dataset-I
(t = 6)

LOT [30] 911 63.00 80.05 70.51 3.09
DLM [110] 945 65.35 86.94 74.16 2.78
MOW [34] 1078 74.55 79.26 76.84 1.94
IVW [91] 1196 82.71 80.59 81.64 1.67

GSM [111] 1214 83.96 76.54 80.08 1.52
RACM [100] 1310 90.59 87.51 89.02 1.64

P-mRLS 1318 91.15 90.40 90.77 1.12

Dataset-II
(t = 4)

LOT [30] 489 68.49 80.56 74.03 1.71
DLM [110] 497 69.61 85.10 76.27 1.53
MOW [34] 567 79.41 81.35 80.37 1.15
IVW [91] 640 89.64 82.69 86.02 0.88

GSM [111] 634 88.80 79.65 83.97 0.87
RACM [100] 654 91.60 88.98 90.27 0.92

P-mRLS 660 92.44 94.83 93.62 0.68

manually delineated cell nuclei. In Table 5.4, the seventh column separately lists the

computed MAD values for different techniques. It is observed from Table 5.4 that

the P-mRLS technique has achieved the smallest MAD values (1.12 and 0.68 pix-

els, respectively) among all techniques, which indicates a good matching between

automatically obtained nuclei boundaries and manually labeled nuclei contours.

5.3.3 Qualitative Evaluations

Fig. 5.9 shows visual examples of nuclei segmentations by the P-mRLS technique

and several existing methods. In Fig. 5.9, the columns (a)(b) show the original

image patches and manually labeled nuclei contours, respectively. The columns

(c)-(i) separately show the automated nuclei segmentations by different techniques.

For better viewing, nuclei boundaries obtained by the P-mRLS technique in the

column (i) have been indicated by different color of contours (e.g., magenta, blue).

As seen in Fig. 5.9, the LOT [30] and DLM [110] are likely to under-segment

nuclei clumps. Although the MOW [34], IVW [91] and GSM [111] can segment

nuclei clumps by watershed algorithms, the obtained nuclei boundaries are usually

not very accurate. The RACM [100] can provide smooth and more accurate nuclei
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Fig. 5.9. Comparative nuclei segmentations. (a) Original image patches. (b) Ground truths. (c)
LOT [30]. (d) DLM [110]. (e) MOW [34]. (f) IVW [91]. (g) GSM [111]. (h) RACM [100]. (i)
P-mRLS technique.
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contours, but it is limited in estimating occluded nuclei boundaries for overlapped

nuclei. In comparison, the P-mRLS technique provides a more precise and reliable

segmentation results compared to existing techniques. In addition, the occluded

nuclei boundaries have been generated by the P-mRLS technique.

Fig. 5.10 shows qualitative evaluations of the P-mRLS technique on two large

images, each of which includes hundreds of cell nuclei. Fig. 5.10(a) shows nuclei

detection results by the gLoG kernels based method [106], where the detected seeds

are indicated by (yellow) crosses. Fig. 5.10(b) shows nuclei segmentation results by

the P-mRLS technique. Note that in Fig. 5.10 the third row shows selected zoomed-

in image patches of nuclei detections and segmentations for better viewing. The

superimposed circles and arrows in the third row of Fig. 5.10 highlight inaccurate

nuclei detections and segmentations. It is observed in Fig. 5.10 that the P-mRLS

technique have correctly detected and segmented most of the cell nuclei in testing

images, although there exist a small number of false detections and segmentations.

5.3.4 Sensitivity Evaluation & Computational Complexity

In nuclei contour selection module, there are three weighting parameters (λ1, λ2, λ3)

(see Eq. (5.12)) that can be adaptively adjusted for processing different biopsy

images. In this work, (λ1, λ2, λ3) have been empirically set as (1, 1, 1) for eval-

uations of our two datasets. To test the sensitivities of these three parameters,

we slightly vary their values and compute the correct-segmentation (CS) rates

with several different combinations of (λ1, λ2, λ3) values. This is (λ1, λ2, λ3) ∈
{(1± 0.5, 1, 1) , (1, 1± 0.5, 1) , (1, 1, 1± 0.5)}. Fig. 5.11 shows the correct seg-

mentation rates of Datasets-I and II with different combinations of weighting pa-

rameters. As observed from Fig. 5.11, the correct segmentation rates vary within

about 1% for both datasets when weighting parameters are slightly changed. There-

fore it can be concluded that the P-mRLS technique is not sensitive to the marginal

change of different (λ1, λ2, λ3) values.

All experiments were carried out on a 1.8-GHZ Intel Core i7-4500U CPU with

16-GB RAM using MATLAB 8.10. The P-mRLS technique only takes around 30
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Fig. 5.10. Visual examples of nuclei detections and segmentations. (a) Nuclei detections. (b)
Nuclei segmentations. Note that the first and second rows show H&E and Ki-67 stained skin images,
respectively, and the third row shows the selected zoomed-in image patches. In the third row, the
superimposed circles highlight false seeds detected by gLoG kernels, and the superimposed arrows
indicate inaccurate segmentations by the P-mRLS technique.
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Fig. 5.11. Sensitivity evaluation of weighting parameters (λ1, λ2, λ3) on nuclei segmentation.

seconds to perform nuclei detection and segmentation on a skin image like the Ki-

67 stained image (800x980) shown in Fig. 5.10 with hundreds of cell nuclei, which

indicates the efficiency of the proposed technique. The LOT [30], DLM [110],

MOW [34], IVW [91], GSM [111] and RACM [100] separately take about 5s, 12s,

106s, 73s, 58s and 512s (or 8.5 minutes) to process the same skin image. Note

that the P-mRLS technique is well suited for parallelization, and hence parallel

implementations of the algorithm (e.g., to process thousands of cell nuclei simulta-

neously) can be many times faster than sequential implementations.

5.4 Summary

This chapter presents an automated technique for nuclei segmentation in skin biop-

sy images. The proposed technique relies on a bank of gLoG kernels for nuclei seed

detection, and thereafter on a mRLS with DP method for nuclei contour delineation.

Experiments have been thoroughly performed on two datasets of skin microscopic

images with different stains, which indicates that the proposed technique is su-

perior to several existing techniques for nuclei segmentations. In addition, the

proposed technique has the advantage of recognizing occluded nuclei boundaries
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for overlapped nuclei. Compared with level sets and active contours, the proposed

technique is very efficient and suitable for parallel implementations, which has the

potential to be used for processing the image with a large number of cell nuclei.

120



Chapter 6

Analysis and Classification of Skin

WSI

Histological examination of biopsy slides is the gold standard for skin melanocytic

tumor diagnosis. However, visual analysis performed by pathologists is typically

subjective and often leads to inter- and intra-observer variability. Besides, it is very

labor-intensive to examine the whole biopsy slide due to the large volume of data to

be analyzed. In this chapter, we propose a computer-aided technique for automated

analysis and classification of melanocytic tumor on skin whole slide biopsy images.

The proposed technique first analyzes skin epidermis and dermis regions, and then

classifies skin WSI into different categories such as melanoma, nevus or normal

skin using extracted textural and cytological features. Experiments on 66 skin WSIs

show that the technique can achieve over 95% classification accuracies.

6.1 Introduction

A typical skin tissue slide includes three main parts [113]: epidermis, dermis and

sebaceous areas (see Fig 3.1). In the diagnosis of skin melanoma by analyzing

biopsy images, pathologists are mainly interested in the epidermis and DEJ areas as

Part of this chapter has been presented in: Xu et al. “Automated diagnosis of melanoma from
skin biopsy images”, Proc. IEEE International Conference on Biomedical and Health Informatics
(BHI), February 2017.
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most of histological features are observed in these regions [17]. In the past decade,

there have been a few research works that analyze skin epidermis or DEJ areas

for melanocytic tumor classification (see the summary in Table 6.1). Smolle [114]

proposed a tissue counter analysis (TCA) technique to recognize skin structures

like epidermis and dermis. In the TCA technique, the digital images are dissected

into non-overlapping subregions (elements), and the digital information such as

colors and textures in each element is extracted for statistical analysis and classi-

fication. Wiltgen et al. [55] applied the TCA technique to classify benign nevus

and malignant melanoma based on histogram and co-occurrence matrix features

of skin histological images. Although a good classification accuracy (about 92%)

is reported in [55], its performance is sensitive to staining variations as the TCA

technique analyzes skin images by using color and texture features [115]. Miedema

et al. [65] reported an image analysis system for melanocytic lesion classification,

which distinguishes melanoma from nevus by using cytological and textural fea-

tures in DEJ areas. Nielsen et al. [116] proposed an automated technique that

differentiates melanoma and nevus based on quantification of MART1-verified Ki-

67 indices in skin epidermis and dermis areas. These techniques only consider a

representative region within the WSI. The selection of representative regions from

WSIs requires interactive manual operation. In addition, analysis of representative

regions may bring the sampling bias in the diagnostic system.

TABLE 6.1
SKIN BIOPSY IMAGE ANALYSIS AND CLASSIFICATION.

Authors Images Regions Performance
Wiltgen et al. [55] 80 H&E biopsies Epidermis & Dermis ∼92%
Miedema et al. [65] 49 H&E biopsies DE junctions ∼95%
Nielsen et al. [116] 379 MART1-verified

Ki-67 biopsies
Epidermis & Dermis ∼89%

Lu et al. [59] 66 H&E biopsies Epidermis ∼90%

Recently Lu and Mandal [59] proposed an automated technique for analysis and

diagnosis of melanoma on skin WSIs. This technique first segments epidermis areas

from WSIs based on global thresholding and shape analysis [74]. The keratinocytes
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and melanocytes within epidermis areas are then segmented by adaptive threshold-

ing [30] and radial line scanning [107]. Based on the segmented regions of interest,

the spatial distributions of melanocytes and morphological features of cell nuclei

are computed. These computed features are finally utilized by a multi-class SVM

(mSVM) method for skin melanoma diagnosis. Experimental results show that the

technique achieves about 90% classification accuracies. However, the technique

in [59] only analyzes skin epidermis areas and classifies skin tissues using epider-

mis features. During the real evaluation by pathologists, in addition to epidermis

examination, dermis examination is also important because melanoma may invade

into skin dermis tissue. Nuclei densities and types in dermis regions often vary from

one another among different skin tissues, and hence cytological and textural features

of dermis areas are important for automatic melanoma diagnosis. Fig. 6.1 shows

examples of H&E stained skin histological images, where Figs. 6.1(a)(b)(c) show

normal skin, benign nevus and malignant melanoma, respectively. As observed in

Fig. 6.1, the epidermis presents relatively darker color than the dermis. There is

a high density of cell nuclei (keratinocytes and melanocytes) in epidermis of all

three skin tissues. In comparison, the dermis has a low density of cell nuclei in

normal skin tissue shown in Fig. 6.1(a), but has a high density of cell nuclei in

the nevus and melanoma shown in Figs. 6.1(b)(c). In Fig. 6.1(b) cell nuclei within

the dermis are mainly the melanocytes which have roughly uniform color and size,

while in Fig. 6.1(c)) cell nuclei within the dermis includes both melanocytes (e.g.,

with irregular nuclei shape and size) and lymphocytes (e.g., small, round and dark

nuclei).

In this chapter, we propose an automatic technique for analysis and classifica-

tion of melanocytic tumor on H&E stained skin WSIs. The proposed technique is

built on the work in [59] that performs skin melanoma diagnosis based on epider-

mis analysis. Besides skin epidermis, this work further analyzes skin dermis and

computes a set of dermis features for melanocytic tumor classification. The details

of the proposed technique and experimental results are provided in the following

sections.
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Fig. 6.1. Examples of H&E stained skin images. (a) Normal skin. (b) Benign nevus. (c) Malignant
melanoma. Note that in (a)(b)(c) green contours indicate the borders of epidermis and dermis
regions. Cell nuclei in both epidermis and dermis regions are observed as blue blobs.

6.2 Proposed Technique

The schematic of the proposed technique is shown in Fig. 6.2. It is observed that

the proposed technique consists of four main modules. First epidermis and dermis

regions are segmented, and a number of epidermis and dermis tiles are generated

for subsequent analysis. Next, epidermis and dermis analysis are performed in a

parallel manner. In the epidermis analysis, we first segment cell nuclei and detect

melanocytes, and then construct a set of morphological and spatial features from

epidermis regions. In the dermis analysis, we first perform color normalization and

nuclei segmentation, and then compute a set of textural and cytological features

from dermis regions. Finally, the computed epidermis and dermis features are uti-

lized by a mSVM method that classifies the input skin WSI into different categories.

Details of the four modules are presented in the following.

6.2.1 Epidermis & Dermis Segmentations

The epidermis and DEJ areas are the most important observation regions for skin

melanoma diagnosis. The cytological features in these regions are very critical

for pathological diagnosis. In this module, we segment skin epidermis and dermis
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Fig. 6.2. Schematic of the proposed technique.

from the WSI such that the subsequent image analysis is focused on these regions.

The schematic of epidermis and dermis segmentations is shown in Fig. 6.3. In the

following, we explain the four steps shown in Fig. 6.3.

Fig. 6.3. Schematic of epidermis and dermis segmentations.

6.2.1.1 Down-sampling

Since the skin WSI has a large size, we employ a multi-resolution framework [74]

to segment skin epidermis and dermis such that the segmentation is performed more

efficiently and accurately. Given a high resolution color skin WSI Ih with a size of

m×n×3, it is down-sampled by a factor of k to produce a low resolution image Il.

The image Il has a size of ⌊m/k⌋×⌊n/k⌋×3. In this work, k is empirically set as 4,

which reduces the size of high resolution image by 16 times after down-sampling.
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6.2.1.2 Epidermis Segmentation

After down-sampling the high resolution skin WSI, a coarse-to-fine segmentation

method [113] is utilized to segment skin epidermis from the image Il. This method

first performs a coarse epidermis segmentation using global thresholding and shape

analysis on the red channel of image Il. The epidermis thickness is then measured

by a series of line segments perpendicular to the main axis of the initially segmented

epidermis mask. If the segmented epidermis mask has a thickness greater than a

predefined threshold (i.e., the expected largest epidermis thickness), a second-pass

of fine segmentation using k-means algorithm is applied to enhance the coarsely-

segmented result. Finally, morphological operations such as opening and closing

are utilized to fill holes and smooth boundaries of the epidermis region. Let the

obtained epidermis mask be denoted by be. Fig. 6.4(a) shows a skin image Il,

and Fig. 6.4(b) shows the mask be where the binary foreground corresponds to

segmented epidermis areas.

6.2.1.3 Dermis Segmentation

In this step, we segment skin dermis based on a predefined interest of depth value

d [117]. First epidermis outer boundary is determined from the mask be. A series

of line segments, which are perpendicular to epidermis outer boundary and have a

length of d, are then generated. Next, morphological closing operation is applied to

join line segments together, and a mask be+d including both epidermis and dermis

regions (see Fig. 6.4(c) where d = 600µm) is obtained. Finally, the dermis mask

bd is obtained by removing epidermis pixels from the mask be+d. Fig. 6.4(d) shows

the dermis mask bd, and Fig. 6.4(e) shows the epidermis and dermis segmentations

which are labeled by the cyan and blue contours.

6.2.1.4 Image Tiles Generation

After segmenting epidermis and dermis regions, we generate high resolution epi-

dermis and dermis tiles for further analysis. The steps of epidermis and dermis tiles
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Fig. 6.4. Epidermis and dermis segmentations. (a) Skin WSI Il. (b) Epidermis mask be. (c)
Epidermis and dermis mask be+d. (d) Dermis mask bd. (e) Segmentation results. Note that in (e)
segmented epidermis and dermis regions are labelled with cyan and blue contours, respectively. The
bottom-left corner in (e) shows a small zoomed-in image patch.

generation are as follows:

Step 1: The binary masks be, be+d and bd are mapped to the original high

resolution field before down-sampling.

Step 2: The bounding box of the foreground region in mask be+d (see Fig. 6.4(c))

is computed, and a mask bce+d (i.e., cropped be+d) which contains only the regions

within the bounding box is cropped from the mask be+d. We also crop the same

regions as surrounded by the bounding box in Fig. 6.4(c) from the images Ih, be

and bd, respectively, to obtain the images Ich, bce and bcd.

Fig. 6.5. Image rotation and division. (a) bce+d with the best fitted ellipse (red contour). (b) bre+d.
(c) bre. (d) brd. (e) Irh. Note that in (c)(d) the red vertical lines illustrate the division of bre and brd into
several image tiles.

Step 3: The best fitted ellipse [64] that has the same second-moments as the

foreground region in bce+d is computed. Let the angle between the x-axis and the

major axis of the fitted ellipse be denoted by θ (see Fig. 6.5(a)). We rotate the masks

bce+d, bce and bcd by −θ (e.g., clockwise rotation of θ in Fig. 6.5) to obtain the rotated
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masks bre+d, bre, and brd. Similarly, we rotate the image Ich to obtain the rotated image

Irh. Figs. 6.5(b)(c)(d)(e) separately show the bre+d, bre, brd and Irh, respectively.

Step 4: For easy of processing, the masks bre and brd are equally divided into

several image tiles (e.g., 5 tiles in Figs. 6.5(c)(d)). The foreground regions in image

tiles are mapped to skin tissue pixels in Irh. Fig. 6.6 shows an example of generated

high resolution epidermis and dermis tiles. Let the obtained epidermis and dermis

tiles be denoted by Ine and Ind , respectively, where 1 ≤ n ≤ T and N is the number

of image tiles.

Fig. 6.6. Epidermis and dermis tiles.

6.2.2 Epidermis Analysis

After obtaining epidermis tiles Ine , 1 ≤ n ≤ N , epidermis analysis is now per-

formed. The schematic of epidermis analysis is shown in Fig. 6.7. As observed

in Fig. 6.7, there are three modules for epidermis analysis. First, we segment

cell nuclei (including keratinocytes and melanocytes) in the epidermis area. The

melanocytes are then detected from the pre-segmented cell nuclei. Finally, epider-

mis features reflecting nuclear morphologies and spatial distributions of melanocytes

are constructed. The steps of epidermis analysis are explained below.
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Fig. 6.7. Schematic of epidermis analysis.

6.2.2.1 Nuclei Segmentation

In H&E stained skin images, cell nuclei are mainly observed as dark blue blobs.

In order to efficiently segment cell nuclei in epidermis regions, an adaptive thresh-

olding technique [30] is applied. This technique first applies a series of gray-scale

morphological reconstructions [31] (on the red channel of Ine ) to enhance the image

and make nuclear regions homogeneous. An adaptive threshold selection method

is then used to achieve nuclei segmentation. Fig. 6.8(a) shows the red channel

of Ine after gray-scale morphological reconstructions. Figs. 6.8(b)(c) show nuclei

segmentations in the image tile. Figs. 6.8 (d) shows two close-up views of image

patches in Fig. 6.8(c), where segmented nuclei in Fig. 6.8 are labeled with cyan or

yellow contours.

6.2.2.2 Melanocytes Detection

In skin tissues, cell nuclei in epidermis are mainly keratinocytes and melanocytes.

In normal skin tissue, the number of melanocytes accounts for 5% to 10% of all

nuclei in epidermis [59]. However, in skin melanoma or nevus, there will be an

increasing proportion of melanocytes in epidermis. In addition, melanocytes are not

only found in the basal layer (i.e., epidermis close to dermis) but also found in other

epidermis layers (e.g., spinous layer) in melanomas [17]. Therefore, identification

of melanocytes in epidermis is important for melanoma diagnosis.

Figs. 6.9(a)(b) illustrate the typical appearance of melanocytes in epidermis,
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Fig. 6.8. Nuclei segmentation and melanocytes detection. (a) Red channel image after
morphological reconstruction operations. (b) Nuclei segmentation. (c) Nuclei boundaries
superimposed on the color image. (d) Zoomed-in image patches. Note that in (c)(d) yellow contours
indicate detected melanocytes, and cyan contours indicate segmented keratinocytes.

Fig. 6.9. Illustration of melanocytes detection. (a) Epidermis image patch with melanocytes
(highlighted by yellow dots). (b) Close-up view of a melanocyte. (c) Radial line scanning. (d)
Melanocytes detection overlapped with RHN values.

where melanocytes are highlighted by yellow dots in Fig. 6.9(a). As observed in

Figs. 6.9(a)(b), melanocytes have brighter halo-like surrounding regions compared

with other keratinocytes (i.e., blue blobs) [107]. Based on this observed pattern, a

radial line scanning (RLS) method [107] is employed to detect melanocytes. First,

a set of radial lines emerging from nuclear centers (i.e., obtained based on nuclei
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segmentation) are generated (see Fig. 6.9(c)). The outer boundary points of the

halo region are then estimated based on the gradient information on each radial

line. Intuitively, the outer boundary of the halo region consists of points that have

a large gradient magnitude and gradient direction pointing to the nuclear center.

Finally, melanocytes are detected using a ratio parameter RHN which is calculated

as follows:

RHN =
AHR

ANR
(6.1)

where AHR and ANR are the areas of the halo region and corresponding nuclear

region, respectively. If a nucleus has a ratio RHN larger than the pre-defined

threshold τ (e.g., τ = 0.8), the nucleus is determined as a melanocyte. In Fig. 6.8

the detected melanocytes are highlighted by yellow contours. Fig. 6.9 (d) shows

the obtained boundaries (yellow contours) of halo regions, and the values of RHN

overlapped inside nuclei.

6.2.2.3 Epidermis Features Construction

Since spatial distributions of melanocytes are important factors considered by pathol-

ogists for melanoma diagnosis, we follow the work in [59] to construct a set of

spatial features reflecting melanocyte distributions. In order to construct spatial

features, we first select a set of sampling points from epidermis outer boundary,

and then measure the local thickness from the selected outer boundary points to

inner boundary points (red dots in Fig. 6.10). Based on the measured thickness,

the epidermis is evenly divided into three sub-layers: outer layer, middle layer and

inner layer. Fig. 6.10 illustrates an example of dividing epidermis into three layers.

The ratio between the number of melanocytes and the total number of cell nuclei

within these sub-layers reflects spatial distributions of melanocytes. Thus the spatial

features Ri
mn, Rm

mn and Ro
mn are calculated as follows:

Ri
mn = N i

mel

/
N i

nuc (6.2)

Rm
mn = Nm

mel/Nm
nuc (6.3)
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Ro
mn = N o

mel/N o
nuc (6.4)

where N i
mel, Nm

mel and N o
mel denote the numbers of melanocytes in the inner layer,

middle layer and outer layer, respectively, and N i
nuc, Nm

nuc and N o
nuc denote the total

number of cell nuclei in three corresponding layers.

Fig. 6.10. Division of epidermis into three sub-layers: inner layer, middle layer and outer layer.

Besides spatial features, morphological features of cell nuclei are also impor-

tant for melanoma diagnosis. To capture nuclear morphologies, we compute five

widely-used morphological features from segmented keratinocytes and melanocytes

for skin tissue classification. The five computed morphological features of cell

nuclei include area, perimeter, eccentricity, equivalent diameter (i.e., the diameter

of a circle that has the same area as the nuclear region) and ellipticity [59]. For

each morphological feature, both the mean and standard deviation (SD) values are

computed, which results in 10 morphological features in total. Table 6.2 lists 13

constructed epidermis features and their corresponding labels.

TABLE 6.2
SUMMARY OF EPIDERMIS FEATURES.

Feature Type Feature Name Label
Spatial Ratios Ri

mn, Rm
mn and Ro

mn for the inner, middle and
outer layer, respectively

F1-F3

Morphological Area, Perimeter, Eccentricity, Equivalent diameter
and Ellipticity (mean and SD values)

Mean: F4-F8
SD: F9-F13
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6.2.3 Dermis Analysis

In parallel with epidermis analysis, dermis analysis is also performed on image tiles

Ind , 1 ≤ n ≤ N . Fig. 6.11 shows the schematic of dermis analysis. It is observed in

Fig. 6.11 that there are three modules for dermis analysis. First color normalization

is performed to reduce the effect of staining variations on dermis textural analysis.

Next, cell nuclei (mainly melanocytes and lymphocytes) in skin dermis are detected

and segmented. Finally a set of textural and cytological features are computed as

dermis features. Details of these steps are described below.

Fig. 6.11. Schematic of dermis analysis.

6.2.3.1 Color Normalization

Because of different storage time, procedures and stains of biopsy slides, the digi-

tized histological images generally have different color appearances. Since textural

features will be computed from dermis regions for melanocytic tumor classification,

in this module, we perform color normalization on dermis pixels to suppress the in-

fluence of staining variations. There have been several existing color normalization

methods on histopathology images [118], [119]. In this work, a color deconvolution

based method [120] is applied to normalize dermis pixels. For each image, we first

adaptively determine the H&E stain vectors by using a singular value decomposi-

tion method [120]. The color deconvolution [121] is then utilized to normalize the

image into standard color appearance based on pre-determined H&E stain vectors.

Fig. 6.12(a) shows two dermis image patches with different color appearances, and
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Fig. 6.12(b) shows the normalized image patches. As observed in Fig. 6.12, the

color appearance of dermis images look similar after color normalization.

Fig. 6.12. Example of color normalization. (a) Before color normalization. (b) After color
normalization.

6.2.3.2 Nuclei Segmentation

After color normalization, we segment cell nuclei (most of them are melanocytes

in melanoma and nevus images) in dermis regions. Since cell nuclei usually touch

or overlap together in 2-D dermis images, the adaptive thresholding method [30]

used during epidermis analysis usually cannot provide a good performance. In

this module, we utilize a multi-scale radial line scanning (mRLS) based method

(presented in the Chapter 5) to detect and segment cell nuclei. The technique first

detects nuclei seeds by using a bank of gLoG kernels with different scales and

orientations [106]. Based on the detected nuclei seeds, the mRLS method [122] is

then applied to delineate nuclei boundaries. Since nuclear size usually varies from

one another and there exist nuclei clumps in dermis regions, the mRLS method

delineates the nuclear boundary by adaptively adjusting the maximal scanning ra-

dius RE . For each nucleus, a set of candidate nuclear boundaries (with different

RE values) are first generated by analyzing image gradient on radial lines. The

gradient, intensity and shape information are then integrated together to determine
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the optimal boundary for the nucleus, i.e.,

E (RE) = λ1Eg (RE) + λ2Ei (RE) + λ3Es (RE) (6.5)

where Rmin
E ≤ RE ≤ Rmax

E , and parameters Rmin
E and Rmax

E are estimated based on

nuclei radii in the image. Eg (·), Ei (·) and Es (·) represent the gradient, intensity

and shape terms, respectively, and λ1, λ2, λ3 are the corresponding weights. By

selecting the minimal cost in Eq. (6.5), it is expected to obtain a nuclear boundary

lying on high gradient points, and surrounding a region with an elliptical shape and

homogeneous intensities.

Fig. 6.13(a) shows a dermis image patch with detected nuclei seeds (indicated

by + symbols). Fig. 6.13(b) shows the image with candidate nuclei boundaries,

where 7 ≤ RE ≤ 11. Note that in Fig. 6.13(b) the candidate nuclei boundaries

are represented by five different colors: green, magenta, cyan, red and yellow.

Fig. 6.13(c) shows the final nuclei boundaries with λ1 = λ2 = λ3 = 1. Fig. 6.14

shows examples of nuclei detections (yellow + symbols) and segmentations, where

the first, second and third rows are the normal, nevus and melanoma images, re-

spectively.

Fig. 6.13. Illustration of nuclei segmentation. (a) Nuclei seeds + detected by gLoG kernels. (b)
Nuclei candidate boundaries obtained by the mRLS method. (c) Finally obtained nuclei boundaries.
Note that in (b) it contains five different color of contours each of which corresponds to different
RE values. That is green: RE = 7, magenta: RE = 8, cyan: RE = 9, red: RE = 10 and yellow:
RE = 11. In (b) the top-left corner shows a zoomed-in image patch in the bottom-right corner for
illustrating different colors.
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Fig. 6.14. Nuclei detection and segmentation in dermis. (a) Nuclei detection. (b) Close-up view
of image patches in (a). (c) Nuclei segmentation. (d) Close-up view of image patches in (c). Note
that the first row is an image from normal skin, while the second and third rows are the images from
skin nevus and melanoma, respectively. In (a)(b) detected seeds are indicated by yellow + symbols.
In (c)(d) segmented nuclei are indicated by different color of contours.

6.2.3.3 Dermis Features Computation

Since textural appearance of dermis regions usually varies from one another for

different types of skin tissues, textural features are important for melanocytic tumor

classification. In this work, we compute a set of textural features from the histogram

and gray-level co-occurrence matrix (GLCM) of dermis pixels. Note that although

the dermis tiles Ind , 1 ≤ n ≤ N , are color images, only red channel images are

utilized for computing textural features as the red channel of H&E stained skin im-

ages has the most information compared with green and blue channels [74]. Given

a red channel image of dermis tile Ind , 6 histogram features including mean value,

variance, skewness, kurtosis, energy and entropy of the grey level distribution [55]

are computed. The GLCM records the joint frequency of intensity levels for a

pair of pixels. Studies [26], [55], [58] suggest that Haralick features derived from
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the GLCM can be used to distinguish different tissue types, especially contrast,

correlation, energy, entropy, homogeneity, and dissimilarity. Therefore, these six

Haralick features are selected and computed. For calculation of the GLCM, we use

a distance of one pixel in four directions (i.e., 0◦, 45◦, 90◦ and 135◦), and hence it

gives 24 Haralick features in total.

Besides textural features, we also compute a set of cytological features based

on pre-segmented nuclear regions. These cytological features reflect nuclear mor-

phologies, intensity statistics and spatial densities. To capture nuclear morpholo-

gies, 5 morphological features including area, perimeter, eccentricity, equivalent

diameter and ellipticity are computed from nuclear regions. To capture nuclear

intensity statistics, 6 statistical moments are computed (from the red channel image)

to estimate pixel properties within nuclear regions. These statistical moments [26]

include average intensity, average contrast, smoothness, third moment, uniformity

and entropy. To capture spatial densities of cell nuclei, 4 architectural features are

computed from Voronoi diagrams and Delaunay triangulations. The Voronoi dia-

gram and Delaunay triangulation [60] are constructed by considering the detected

nuclei seeds (by gLoG kernels) as nuclei centroids. The area and perimeter of

Voronoi diagrams, and the area and perimeter of Delaunay triangles are computed

as architectural features to reflect nuclear densities. Intuitively, the smaller area

and perimeter of polygons indicate a larger density of cell nuclei in dermis. Note

that unlike existing works such as [67] which computes geometry features based

on all obtained polygons, this work only considers the polygons within dermis

regions, which is intuitively more accurate for nuclear density estimation. For ex-

ample, Figs. 6.15(a)(b) show a dermis tile with constructed Voronoi diagrams, and

Figs. 6.15(c)(d) show the image with constructed Delaunay triangles. In Fig. 6.15

only the blue polygons within dermis regions are used for computing architectural

features, while the yellow polygons in the (black) background are discarded. For

each cytological feature, both the mean and SD values are computed, and hence

there are 30 cytological features in total. Table 6.3 summarizes 60 computed dermis

features and their corresponding labels.
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Fig. 6.15. Architectural constructions based on detected nuclei seeds. (a) Voronoi diagrams.
(b) Close-up view of (a). (c) Delaunay triangles. (d) Close-up view of (c). Note that only blue
polygons within dermis regions are used for architectural features computation. The red dots are the
automatically detected nuclei seeds.

6.2.4 Classification

After epidermis and dermis analysis, 73 meaningful features (13 epidermis and 60

dermis features) are extracted. These extracted features are now used by classifi-

cation techniques to classify the skin WSI into different categories. In this work,

the “one-against-one” multi-class support vector machine (mSVM) method [123]

is utilized to perform melanocytic tumor classification. Let k denote the number of

skin tissue classes. In “one-against-one” mSVM method, we construct k (k − 1) /2

SVM classifiers, and each classifier is trained on data from two classes during the

training phase. Given training data from the ith and jth classes, the hyperplane of
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TABLE 6.3
SUMMARY OF DERMIS FEATURES.

Feature type Feature name Label

Textural

Histogram Mean, Variance, Skewness,
Kurtosis, Energy and Entropy

F14-F19

Haralick Contrast, Correlation, Ener-
gy, Entropy, Homogeneity and
Dissimilarity (in 4 directions:
0◦, 45◦, 90◦ and 135◦)

0◦: F20-F25
45◦: F26-F31
90◦: F32-F37
135◦: F38-F43

Cytological

Morphology Area, Perimeter, Eccentricity,
Equivalent diameter and Ellip-
ticity (mean and SD values)

Mean: F44-F48
SD: F49-F53

Statistics Average intensity, Average
contrast, Smoothness, Third
moment, Uniformity and
Entropy (mean and SD values)

Mean: F54-F59
SD: F60-F65

Architecture Area and Perimeter of Voronoi
diagrams, Area and Perimeter
of Delaunay triangles (mean
and SD values)

Mean: F66-F69
SD: F70-F73

SVM classifier to separate these two classes is obtained by optimizing the following

function:

min
ωij ,bij ,ξij

1

2

∥∥ωij
∥∥2

+ C
n∑

t

ξijt (6.6)

with the following constraints:

(
ωij

)T
φ (xt) + bij ≥ 1− ξijt , if yt = i (6.7)

(
ωij

)T
φ (xt) + bij ≤ ξijt − 1, if yt = j (6.8)

where ωij , bij are the coefficients of the hyperplane, ξij is the slack variable, C is

a predefined regularization parameter, n represents the number of training data and

φ (·) is the kernel function. Note that x and y represent the extracted features set

and manually identified class label, respectively. In this work, the mSVM classifier

with a linear kernel is utilized for classification.

After obtaining k (k − 1) /2 SVM classifiers, the test image will be labeled by

all of them in the testing phase. Specially, if sign
(
(ωij)

T
φ (xt) + bij

)
indicates
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that xt belongs to the ith class, then the vote for the ith class is increased by 1.

Otherwise, the vote for the jth class is increased by 1. After evaluation by all

k (k − 1) /2 SVM classifiers, xt is predicted to be in the class with the largest vote.

6.3 Performance Evaluations

In this section, we evaluate the performance of the proposed technique for skin

melanocytic tumor diagnosis. First we illustrate the dataset and test strategies used

in this work. We then present classification results and experiments with feature

selection. Finally comparisons and computational complexity of the proposed tech-

nique are provided.

6.3.1 Image Dataset

This study was based on a dataset of 66 H&E stained skin WSIs which were collect-

ed from the Cross Cancer Institute, University of Alberta. The skin biopsies used for

digitizing images include 17 normal skin tissues, 17 nevi and 32 melanomas. Based

on pathologists’ manual analysis, all nevus biopsies are categorized into the same

type: compound nevus. Melanoma tissues are categorized into three sub-types:

lentiginous, superficial spreading, and nodular melanoma. The original skin WSIs

were captured under 40X magnification on Carl Zeiss MIRAX MIDI scanning

system. For higher efficiency and accuracy, these skin images were saved in TIFF

format with 25X magnification (0.372µm/pixel) by MIRAX viewer software. Each

testing image has a size between 1 and 2 gigabytes, with tens of thousands of cell

nuclei. Table 6.4 lists the distribution of different classes in the dataset.

6.3.2 Experimental Design

Considering the class distributions of our dataset, four test strategies were designed

to evaluate the performance of the proposed technique, which are described as

follows:
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TABLE 6.4
DESCRIPTION OF THE IMAGE DATASET.

Tissue Classes No. Pct.
Normal 17 25.7%

Nevus (compound) 17 25.7%

Melanoma
lentiginous 9 13.7%

superficial spreading 18 27.3%
nodular 5 7.6%

Total 66 100.0%

6.3.2.1 Test Strategy I

The whole dataset is tested with 2 classes: 32 melanomas and 34 non-melanomas

(including 17 normal tissues and 17 nevi). The objective of this testing is to evaluate

if the proposed technique can efficiently diagnose melanomas from a set of skin

biopsy tissues.

6.3.2.2 Test Strategy II

The whole dataset is tested with 3 classes: 17 normal skins, 17 nevi and 32 melanomas.

The objective of this testing is to evaluate if the proposed technique can efficiently

distinguish melanomas, nevi and normal skin tissues.

6.3.2.3 Test Strategy III

The melanoma WSIs are tested with 3 sub-types: 9 lentiginous melanomas, 18

superficial spreading melanomas and 5 nodular melanomas. The objective of this

testing is to evaluate if the proposed technique can efficiently distinguish different

melanoma sub-types.

6.3.2.4 Test Strategy IV

The whole dateset is tested with 5 classes: 17 normal skins, 17 nevi, 9 lentiginous

melanomas, 18 superficial spreading melanomas and 5 nodular melanomas. The

objective of this testing is to evaluate the overall capability of the proposed tech-

nique on classifying different skin WSIs.
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For each test strategy, if the automatically classified result is the same as the

expert class label, it is considered as a correct classification. The performance of

the proposed technique is evaluated by the classification accuracy Acc, which is

defined as follows:

Acc =

k∑
i=1

Nk∑
j=1

1
(
Bi

j = i
)

k∑
i=1

Nk

× 100% (6.9)

where Nk is the number of images belonging to the class k, Bi
j represents the

automatically classified result, and 1 (·) is an indicator function, which is defined as

follows:

1 (x) =





1 if x is true

0 if x is false
(6.10)

For test strategy I, the skin WSI is classified as either melanoma or non-melanoma,

which is a typical two-class classification problem. Besides the overall classifi-

cation accuracy Acc, we further evaluate the test strategy I using the following

widely-used evaluation metrics: sensitivity (SEN), specificity (SPE) and preci-

sion (PRE), which are defined as follows:

SEN =
NTP

NTP +NFN
× 100% (6.11)

SPE =
NTN

NFP +NTN
× 100% (6.12)

PRE =
NTP

NTP +NFP
× 100% (6.13)

where NTP , NFP , NTN and NFN denote the number of true positives, false posi-

tives, true negatives and false negatives, respectively.

By using the above evaluation criteria, we perform the 10-fold cross valida-

tion [59] on each test strategy. In the 10-fold cross validation, the whole dataset is

first divided into 10 subsets. 9 subsets are used as the training set, and the remaining

1 subset is used as the testing set. The evaluations are then performed on the testing
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set. By using different training and testing sets, the evaluations are performed by

10 times. Since the division of the dataset may slightly impact the performance of

the technique, we repeat the 10-fold cross validation by 100 times, and the average

values of different evaluation criteria are used as the final results.

6.3.3 Classification Results

Note that the regularization parameter C in Eq. (6.6) is a key parameter for clas-

sification by SVM with a linear kernel. A large C value generally achieves a good

performance on the training set but a poor performance on the testing set due to

overfitting. On the other hand, a small C value may ignore constraints and produce

sub-optimal classification results [124]. In order to select an appropriate C value

for our model, we test it with several empirically-selected values (i.e., 0.01, 0.1,

and 1.0). Table 6.5 lists the classification accuracies of four test strategies using

different C values, and Table 6.6 lists the evaluations of melanoma diagnosis in

test strategy I using different C values. It is observed from Table 6.5 and Table 6.6

that the proposed technique achieves the overall best performance with C = 0.1.

In particular, when C = 0.1 the proposed technique with all features achieves

97.90%, 95.78%, 91.32% and 91.98% classification accuracies (see Table 6.5) for

four test strategies, respectively. When C = 0.1 the proposed technique with all

features achieves 99.39%, 96.98% and 97.51% of SEN , SPE and PRE values

(see Table 6.6). Therefore, 0.1 is a suitable value for parameter C in our SVM

model.

Table 6.5 and Table 6.6 also compare the performance of the proposed tech-

nique by using epidermis, dermis and all features, respectively. It is observed from

Table 6.5 that the proposed technique with all extracted features provides better

performances (i.e., higher classification accuracies) than those by only using dermis

features or epidermis features in all four test strategies. The proposed technique

with dermis features provides overall better performances than the technique with

epidermis features in test strategies I, II and IV, but poorer performances in test

strategy III. This indicates that the spatial and morphological features extracted
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TABLE 6.5
CLASSIFICATION RESULTS OF FOUR TEST STRATEGIES.

Tests Classification Accuracies Acc (%)

Proposed technique
with epidermis features

Strategies C=0.01 C=0.1 C=1.0
I 84.74 92.88 92.98
II 82.33 94.43 91.61
III 84.38 88.04 89.60
IV 81.23 85.75 88.80

Proposed technique
with dermis features

Strategies C=0.01 C=0.1 C=1.0
I 82.88 97.68 97.31
II 91.39 94.38 94.13
III 84.93 86.92 87.45
IV 82.63 90.16 90.66

Proposed technique
with all features

Strategies C=0.01 C=0.1 C=1.0
I 92.66 97.90 96.71
II 95.14 95.78 95.75
III 87.84 91.32 90.82
IV 88.45 91.98 92.15

from epidermis regions contribute more for the discrimination of melanoma sub-

types in our dateset. It is observed from Table 6.6 that the proposed technique with

all features provides an overall better performance than the technique with only

epidermis features or dermis features in melanoma diagnosis (for test strategy I).

This indicates that the proposed technique with all features can more accurately

diagnose melanomas.

6.3.4 Experiments with Feature Selection

As in many other tissue classification applications, some of the extracted features

might be redundant, without contributing much to the discrimination power. In fact,

if more than the necessary number of features are used, it can degrade the overall

performance due to the “peaking phenomenon” [72]. Since the proposed technique

achieves the overall best performance when C = 0.1, in this section, we evaluate

the proposed technique with feature selection using C = 0.1.

Let X be the original set of features with m (i.e., m = 73 as mentioned in

Section 6.2) dimensions. The problem of feature selection is to select a subset Xs,
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TABLE 6.6
PERFORMANCE EVALUATION OF MELANOMA DIAGNOSIS.

Tests Evaluations on Strategy I

Proposed technique
with epidermis features

C SEN (%) SPE (%) PRE (%)
0.01 73.96 94.94 93.70
0.1 93.49 92.00 93.12
1.0 93.19 93.08 94.21

Proposed technique
with dermis features

C SEN (%) SPE (%) PRE (%)
0.01 71.65 93.11 91.81
0.1 98.82 96.70 97.14
1.0 97.85 96.92 97.40

Proposed technique
with all features

C SEN (%) SPE (%) PRE (%)
0.01 93.83 91.81 93.13
0.1 99.39 96.98 97.51
1.0 97.63 95.01 95.92

where Xs ⊆ X , such that the classification accuracy over all subsets of X to be

maximized, i.e.,

Xs = argmax
Xs⊆X

Acc (Xs) (6.14)

where Acc (Xs) is the predictive accuracy over the subset Xs. Although the optimal

subset Xs can be obtained by an exhaustive search (i.e., to evaluate all possible

candidate subsets of X), it is usually impractical, even for moderate values of

m, as the number of possible candidate subsets of X increases exponentially with

its dimensions m. Several algorithms have been proposed for finding the optimal

subset of features without searching the entire solution space [125]. For efficiency

and accuracy, a sequential forward selection (SFS) algorithm [69] is employed to

select the optimal subset of features in this work. This algorithm starts from an

empty feature set, and then sequentially adds features until Acc (Xs) is maximized.

During the feature selection, we utilize the mSVM classification method to per-

form the 10-fold cross validation over our dataset. Fig. 6.16 illustrates feature

selection by the SFS algorithm. As observed in Fig. 6.16, in the test strategy I,

the classification accuracy reaches the maximum value when 29 features are used,

and this classification accuracy stays unchanged over the range from 29 features

to 73 features. In the test strategy II, the classification accuracy has the maximum
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TABLE 6.7
SELECTED EPIDERMIS AND DERMIS FEATURES.

Tests Epidermis features Dermis features Dim.
I F1, F2, F3, F4, F7, F9,

F10, F11, F12, F13
F14, F15, F16, F18, F19, F46, F47,
F48, F49, F53, F54, F55, F57, F59,
F63, F68, F69, F71, F73

29

II F4, F9, F6, F11 F14, F18, F45, F49, F50, F52, F54,
F59, F60

13

III F1-F13 F14, F15, F16, F17, F20, F26, F32,
F60

21

IV F2-F13 F14, F15, F20, F43, F60, F69 18

value over the range from 13 features to 63 features. In the test strategy III, the

classification accuracy has the maximum value over the range from 21 features to

65 features. In the test strategy IV, the classification accuracy has the maximum

value over the range from 18 features to 47 features.
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Fig. 6.16. Feature selection by 10-fold cross validation. Note that the classification accuracy
reaches the maximum when 29, 13, 21 and 18 features are used for strategies I, II, III and IV,
respectively.

Although the classification accuracy achieves the maximum value over a range

of different number of features, for simplicity, we test proposed technique with the

minimum number (i.e., 29, 13, 21 and 18) of selected features for each test strategy.

Table 6.7 lists the labels of selected features in four test strategies I, II, III and IV, re-

spectively. As observed in Table 6.7, in test strategies III and IV, most of epidermis
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TABLE 6.8
COMPARISONS OF SKIN WSI CLASSIFICATION.

Techniques Average classification accuracies Acc (%)
I II III IV

LM technique [59] 88.86±1.71 89.07±2.72 90.17±2.23 90.24±1.51
Proposed technique 97.80±1.27 98.08±0.80 95.81±1.89 95.73±1.16

TABLE 6.9
COMPARISONS OF SKIN MELANOMA DIAGNOSIS.

Techniques Test strategy I
SEN(%) SPE(%) PRE(%)

LM technique [59] 90.35±3.22 87.97±3.37 87.42±3.83
Proposed technique 99.81±0.66 95.63±1.41 96.39±1.06

features are selected as they contribute more for classifying melanoma sub-types,

which is consistent with our results in Table 6.5. To evaluate the proposed technique

with selected features, we run 10-fold cross validation by 100 times for each test

strategy, and compute the average values of different evaluation criteria as the final

results. In the second rows of Table 6.8 and Table 6.9, it lists the evaluations of the

proposed technique with selected features. It is observed from Tables 6.8, 6.9 that

the proposed technique with selected features provides an overall superior perfor-

mance to the proposed technique with all features (see Tables 6.5, 6.6). Specifically,

the classification accuracies of four test strategies are all more than 95%. For

test strategy I, the proposed technique also provides more than 95% of sensitivity,

specificity and precision values. Therefore, the proposed technique with selected

features can more accurately diagnose melanomas and classify skin WSIs.

6.3.5 Comparisons

To our best knowledge, there is only one existing technique [59], henceforth re-

ferred to as LM technique, which has been proposed for skin WSI classification

in the literature. The LM technique analyzes skin epidermis areas and performs

skin WSI classification by utilizing epidermis features. The skin WSI is classified

into three categories: melanoma, nevus or normal tissue. For comparison, we
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implemented the LM technique and carried out more experiments based on our

experimental design such that the proposed technique is statistically compared with

the LM technique. In the first rows of Table 6.8 and Table 6.9, the experimental

results obtained by the LM technique are tabulated. It is observed that the proposed

technique achieves a superior performance compared to LM technique [59]. There

are two main reasons for the superior performance. First, instead of just analyzing

epidermis areas (like the LM technique), the proposed technique computes both

epidermis and dermis features, and thus more meaningful features are used for

skin tissue classification. Second, the SFS algorithm [69] is utilized to select the

discriminating features, which improves the capability of the classifier.

Fig. 6.17. An example of false diagnosis. (a) Skin melanoma WSI. (b) Zoomed-in image patch in
(a). Note that the superimposed green circles in (b) highlight some lymphocytes which are related
to lymphocytic infiltration.

Although a good performance for melanoma diagnosis is achieved by the pro-

posed technique, there still exist cases of missed detection. An example of missed

detection by the proposed technique is shown in Fig. 6.17. The skin tissue in

Fig. 6.17 belongs to the melanoma class (i.e., nodular melanoma), but the automated

technique incorrectly classifies it as a non-melanoma tissue. The missed detection

occurs because this skin melanoma is in-transit metastasis, where cytological and

textural features in the skin WSI (e.g., skin epidermis and dermis) are similar with

those in the normal skin tissue. To correctly classify this melanoma tissue, it would

be necessary to analyze much deeper skin dermis regions and incorporate other
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image features (e.g., by evaluating lymphocytic infiltration).

6.3.6 Computational Complexity

All experiments were carried out on a 1.8-GHZ Intel Core i7-4500U CPU with

16-GB RAM using MATLAB 8.10. Because of different image size and nuclear

densities, the processing time for different skin WSIs varies from each other. For

processing a 13786 × 10320 × 3 skin WSI with 2761 cell nuclei in epidermis and

4130 cell nuclei in dermis, the proposed technique takes about 38.5 minutes in

total. The epidermis and dermis segmentation module (see Fig. 6.2) takes 2.47%

of the whole processing time. The epidermis analysis module takes 77.67% of

the whole processing time, and the dermis analysis module takes 19.86% of the

whole processing time. Compared with the first three modules, the processing time

(less than 0.1%) for feature classification module is negligible. Among the four

modules, the epidermis analysis takes the largest proportion of the whole processing

time. This is due to the high computational complexity of melanocytes detection in

epidermis regions, which takes about 90.62% of epidermis analysis time. It should

be noted that our current implementation has not used any parallelization. In the

proposed technique, epidermis and dermis analysis can be performed in a parallel

manner. In addition, melanocytes detection in epidermis analysis module and nu-

clei segmentation in dermis analysis module are also suitable for parallelization.

Parallel implementation can speed up the proposed technique significantly.

6.4 Summary

This chapter presents an computer-aided technique for skin WSIs analysis and clas-

sification, especially for melanocytic tumor classification. The proposed technique

first analyzes skin epidermis and dermis regions to extract a set of 73 meaningful

features, and then classifies skin WSIs into different categories by using a mSVM

classification method. Experiments on 66 H&E stained skin WSIs indicates that

the proposed technique provides a good performance in skin tissue classification.
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In particular, it provides more than 95% classification accuracies by utilizing a

selected feature set. The proposed technique can potentially be used by pathologists

to obtain a second opinion during their melanoma diagnosis.
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Chapter 7

Automatic Measurement of

Melanoma Depth of Invasion

Measurement of melanoma depth of invasion (DoI) in skin tissues is of great sig-

nificance in grading the severity of skin disease and planning patient’s treatment.

However, accurate and automatic measurement of melanocytic tumor depth is a

challenging problem mainly due to the difficulty in skin granular identification

and melanoma detection. In this chapter, we propose an automated technique for

measuring melanoma DoI in MART-1 stained skin histopathological images. The

technique detects skin granular layer by a Bayesian classification based method, and

measures melanoma DoI by a Hausdorff distance measure. Experimental results

show that the proposed technique provides a superior performance in measuring

the melanoma DoI than two closely related techniques.

7.1 Introduction

The digitized skin histopathological images used in this study have been obtained

using the MART-1 stain (a type of immunohistochemical stain specific to melanoma).

Fig. 7.1 shows a typical skin image in our database, which mainly includes image

Part of this chapter has been published in: Xu et al. “Automatic measurement of melanoma
depth of invasion in skin histopathological images”, Micron, vol.97, pp.56-67, 2017.
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background, skin epidermis and dermis regions. As shown in Fig. 7.1, the epidermis

can be divided into three layers: cornified layer (L1), granular layer (L2) and

malpighian layer (L3). The dermis is located below the DEJ (indicated by the cyan

curve). In the skin dermis, the regions with dark brown colors represent MART-1

verified skin melanoma areas. In clinical setting, the melanoma DoI is measured

as the maximum distance between the malignant cells and the top of skin granular

layer [19]. In Fig. 7.1, the manually identified skin granular layer is indicated by the

red curve and the melanoma invasion depth is measured as 0.46mm. Note that since

skin granular layer is a middle (thin) layer of skin epidermis and looks similar to

other skin epidermis layers, the accurate detection of skin granular layer is critical

in achieving accurate melanoma DoI measurement.

Fig. 7.1. Melanoma DoI measurement in a MART-1 stained skin image. L1: Cornified layer, L2:
Granular layer, L3: Malpighian (squamous and basal) layer.

Recently, there have been two closely related works in the literature, where

the melanocytic tumor DoI in H&E stained skin images is measured. Mokhtari et

al. [21] proposed a technique to measure the melanoma DoI in skin microscop-

ic images. The technique first segments skin epidermis based on morphological

closing and thresholding. The melanocytes containing melanin are then detected
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based on color features by the SVM classifier. Finally, the epidermis orientation is

estimated based on Hough transform. The distance between the outermost pixel of

epidermis and the farthest melanocyte along a direction perpendicular to epidermis

orientation is calculated as the invasion depth. This technique has a few problems

which may result in an incorrect DoI measurement. For example, the skin cornified

layer is usually included in the segmented epidermis, which tends to increase the

measured invasion depth. Noroozi et al. [19] proposed an improved technique that

segments the skin cornified layer from epidermis based on entropy analysis. The

cell nuclei in skin dermis are segmented by using color features and active contour

model [84]. The segmented melanocytes are distinguished from lymphocytes based

on shape analysis. The maximum distance between the detected melanocyte and

the outer boundary of skin epidermis is finally measured as the invasion depth.

Since both cornified and granular layers in skin biopsy images have ridged shapes,

the technique in [19] may incorrectly segment granular layer into the cornified

layer. In addition, the technique assumes that there are only melanocytes and

lymphocytes present in skin dermis, which is usually not true. Besides melanocytes

and lymphocytes, the skin dermis may include many other types of cell nuclei

such as red blood cells, endothelial cells, and nevus cells. Some cell nuclei (e.g.,

endothelial cells) look similar to melanocytes in H&E stained skin images, and thus

can be incorrectly detected as melanocytes.

In this chapter, we propose a robust technique for measuring the melanoma

DoI in MART-1 stained skin microscopic images, which has overcome the lim-

itations of existing techniques for tumor invasion measurement. The proposed

technique identifies skin granular layer by a Bayesian classification based method,

and measures melanoma DoI by a multi-resolution approach with Hausdorff dis-

tance measure. Because of accurate detection of melanoma areas and skin granular

layer, the proposed technique provides a superior performance compared to existing

techniques for measuring melanoma DoI. The details of the proposed technique and

experimental results are provided in the following sections.
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7.2 Dataset Description

In this study, all skin histopathological images are collected from the Cross Cancer

Institute, University of Alberta in accordance with the protocol for the examina-

tion of specimens with skin melanoma. The histological sections of skin tissues

are about 4µm thick each and are stained with anti-MART-1 clone A103, 1:25

dilution using a avidin-biotin procedure with 3,3’-Diaminobenzidine (DAB) as the

chromogen. The skin images were captured under 40X magnification on Aperio

Scanscope CS scanning system (0.25µm/pixel). The dataset used in this work

consists of 29 MART-1 stained skin microscopic images. Among 29 images, one

representative image is selected as the training image, and the other 28 images are

used for testing. The ground truths of tumor invasion depth for all test images were

manually assigned by an expert pathologist using the Image-Scope slide viewing

software. Since the skin granular layer identification is of great importance for

measurement of melanoma DoI, the ground truths of skin granular layers for all

testing images are also provided by the expert pathologist. Fig. 7.1 shows the

manually labeled skin granular layer (red curve) and measured melanoma invasion

depth (0.46mm) in a skin image.

7.3 Proposed Technique

The schematic of the proposed technique for measurement of melanoma invasion

depth is shown in Fig. 7.2. It is observed that there are four modules. In the first

module, the skin melanoma areas are detected based on RGB color features. In the

second module, the skin epidermis is segmented by a multi-thresholding method.

In the third module, the skin granular layer is identified from the segmented skin

epidermis using a supervised classification technique. Finally, the tumor DoI is

measured as the distance between skin granular layer and the deepest pixel of

melanoma areas. The details of four modules are presented in the following.
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Fig. 7.2. Schematic of the proposed technique.

7.3.1 Melanoma Detection

In this module, we segment melanoma areas from MART-1 stained skin histopatho-

logical images. As observed in Fig. 7.1, melanoma areas in our MART-1 stained

skin images present dark brown colors. Based on this observed feature, skin melanoma

areas can be effectively detected using RGB color features. To segment melanoma

areas based on color features, we manually select a set of melanoma pixels x̂k, k =

1, · · · , K, from the training image It. Fig. 7.3 shows the distribution of selected

melanoma pixels in RGB color space, where K = 10454. As observed in Fig. 7.3,

the 3D shape of point cloud for melanoma pixels can be roughly described by a

solid 3-D elliptical model. A candidate image pixel within or on the surface of the

3-D elliptical model can be considered as a melanoma pixel. Let m̂ be a 3×1 vector

corresponding to the mean RGB values of K selected melanoma pixels, and C be

the 3× 3 covariance matrix for the K selected melanoma pixels, i.e.,

C =
1

K − 1

K∑

k=1

(x̂k − m̂)(x̂k − m̂)T (7.1)

If ẑ denotes a column vector containing RGB values for an arbitrary pixel in a

test image I , the pixel classification is performed based on the following distance

measure:

DIS (ẑ, m̂) =
[
(ẑ − m̂)TC−1 (ẑ − m̂)

]1/2
(7.2)

where DIS (ẑ, m̂) is the Mahalanobis distance between two vectors [31]. After

computing the Mahalanobis distance between the testing pixel and the training data

center, the pixel ẑ is determined as a melanoma pixel if it satisfies the following
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inequality:

DIS (ẑ, m̂) ≤ τ1 (7.3)

where τ1 is a specified threshold that determines if the pixel is contained within,

or on the surface of the 3-D elliptical model. In this work, the threshold τ1 is

empirically determined as follows:

τ1 = min
{√

C11,
√
C22,

√
C33

}
(7.4)

where C11, C22 and C33 are the main diagonal values in the matrix C. For our

dataset, the obtained covariance matrix C is as follows:

C =




977 682 425

682 527 358

425 358 271


 (7.5)

where the main diagonal elements (977, 527, 271) represent the variances of the

R, G, and B components, respectively. Following Eq. (7.4), the threshold τ1 was

selected as
√
271 or 16.5.

Fig. 7.3. RGB values for manually selected melanoma pixels.

After classifying all skin pixels using (7.3) in image I , a binary mask b1 with

melanoma pixels as foreground is first generated. A set of morphological oper-

ations are then applied on the mask b1 to remove noisy pixels and fill the holes
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within melanoma regions. Fig. 7.4 shows a MART-1 stained skin image, where the

contours of foreground regions in mask b1 (after morphological post-processings)

are shown in blue. It is observed that all visually discernable melanoma areas

have been correctly detected. Let us denote the boundaries of melanoma regions

as M = {mi |i ∈ (1, 2, · · · , p)}, where p is the number of melanoma boundary

points.

Fig. 7.4. Melanoma detection results (indicated by blue contours).

7.3.2 Epidermis Segmentation

After melanoma detection, the next step is to segment the skin epidermis. A few

epidermis segmentation techniques in H&E stained skin histopathological images

have been proposed in previous works [74], [113]. Note that the skin images used in

this work are stained using MART-1, and the contrast between epidermis and dermis

is not as strong as that in H&E stained images. Therefore, a similar technique

with appropriate modifications for skin epidermis segmentation in MART-1 stained

images is proposed. The principal steps for epidermis segmentations are as follows:

7.3.2.1 Pre-processing

In this step, the red channel R of the original RGB image I is used as input (just like

in H&E stained images in [74], [113]). To suppress the unwanted components (e.g.,

noisy regions), the morphological closing operation with a disk-shape structuring
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element (with a radius rd of 15 pixels) is first applied on the imageR. The histogram

equalization [31] is then performed to increase the contrast between epidermis

regions and other skin tissues.

7.3.2.2 Multi-thresholding

Except segmented melanoma areas (M), the image R mainly includes skin epider-

mis (E), dermis (D) and background (B) regions (see Fig. 7.5(a)). It is observed that

background (white), dermis (gray) and epidermis (relatively darker) have different

intensity levels. Based on this observation, we use two thresholds, 0 < t1 < t2 <

255, for separating three classes: epidermis, dermis and background pixels. The

thresholds t1 and t2 are automatically obtained using Otsu’s method [51], which

computes the optimal global thresholds by maximizing the inter-class variances.

Since the epidermis area has the darkest color, a binary mask b2 with epidermis as

foreground is generated as follows:

b2 (u, v) =





1 if R (u, v) < t1

0 otherwise
(7.6)

where R (u, v) indicates the pixel intensity at (u, v).

7.3.2.3 Post-processing

The morphological reconstruction operation is first performed to fill the holes in

the mask b2. We then label each connected region in the mask b2, and compute

the area of each region. The largest foreground region in b2 is finally selected as

the epidermis region, as other small regions are generated from noisy regions in

the dermis area. In Fig. 7.5(b) the segmented epidermis region has been shown

with green pixels, and the segmented background and dermis regions have been

shown with red and blue pixels, respectively. Fig. 7.5(c) shows the image R with

segmented epidermis (indicated by red contours).
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Fig. 7.5. Melanoma and epidermis segmentations. (a) R with segmented melanoma areas (brown
regions). (b) Segmented epidermis (green), dermis (blue) and background (red). (c) R with
segmented skin epidermis (red contours).

7.3.3 Granular Layer Identification

As observed in Fig. 7.5(c), the segmented skin epidermis includes skin cornified

layer, granular layer and malpighian layer. Since the melanoma DoI is measured as

the maximum distance between skin granular layer and the deepest tumor pixel

in dermis region, in this module, we propose a supervised technique to detect

the skin granular layer. The technique first classifies epidermis pixels into two

groups: cornified layer pixels, and granular-malpighian (GM) layer pixels. The

skin granular layer is then determined as the outer boundary of the skin GM layer.

The details are listed as follows.

7.3.3.1 Histogram specification

Since there is a large number of cell nuclei (e.g., keratinocytes) in skin GM layer

but no nuclei in skin cornified layer, the skin cornified layer has relatively lighter

color (i.e., brighter) than the GM layer. Therefore, the gray-level intensity feature

can be used to distinguish the cornified layer and GM layer. However, because there

usually exist staining inconsistences for different skin images, the performance of

the supervised classification technique based on color features is highly sensitive

to the training image. To address this problem, we perform histogram specification

on the testing image R to match it the histogram of epidermis pixels in the training

image Rt (the red channel of the training image It). Let the histograms of epidermis

pixels in the training and testing images be denoted by htr and hte, respectively.
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The histogram specification is performed in three steps [31]. First, the cumulative

distribution function (CDF) S (·) is computed from the testing image R as follows:

S (j) =
1

M

j∑

i=0

hte (j) j = 0, 1, · · · , 255 (7.7)

where M is the total number of epidermis pixels in image R. Next, the CDF V (·)
is computed from the training image Rt as follows:

V (j) =
1

N

j∑

i=0

htr (j) j = 0, 1, · · · , 255 (7.8)

where N is the total number of epidermis pixels in image Rt. Finally, for each gray

level x ∈ [0, 255], it is mapped to the gray level x̃ after histogram specification,

which is determined as follows [31]:

x̃ = argmin
k

|S (x)− V (k)| k = 0, 1, · · · , 255 (7.9)

Fig. 7.6(a) shows the manually segmented epidermis in the training image Rt,

and Fig. 7.6(d) shows the histogram htr. Figs. 7.6 (b)(c) separately show the

automatically segmented epidermis in R and R̃ (after histogram specification),

while Figs. 7.6(e)(f) separately show the corresponding histograms hte before and

after histogram specification. As observed from Fig. 7.6, the epidermis area in the

image R (see Figs. 7.6 (b)(e)) presents brighter color than that in the image Rt (see

Figs. 7.6 (a)(d)). However, after histogram specification, the grey-level appearance

of epidermis area in R̃ (see Figs. 7.6 (c)(f)) has looked like that in Rt. The histogram

specification is applied to normalize the gray level intensities of epidermis pixels

in the testing image to the same range of that in the training image, and hence the

subsequent Bayesian classification based on gray level intensities is not sensitive to

the Rt.
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Fig. 7.6. Histogram specification for skin epidermis. (a) Manually segmented epidermis in Rt.
(b) Originally segmented skin epidermis. (c) Skin epidermis after histogram specification. (d)
Histogram of epidermis pixels shown in (a). (d) Histogram of epidermis pixels shown in (b). (f)
Histogram of epidermis pixels shown in (c).

7.3.3.2 Low pass filtering

Although the skin cornified layer presents lighter appearance compared to other

skin epidermis layers, there are noises and heterogeneities in the image. Therefore,

it is not reliable to directly utilize the gray level intensities as features. For robust-

ness, we compute the mean intensity within small neighborhoods centered at every

image pixel as the feature to distinguish skin cornified layer and the GM layer. The

mean intensity around the epidermis pixel R̃ (u, v) is computed as:

R (u, v) =
1

(2z + 1)2

u+z∑

i=u−z

v+z∑

j=v−z

R̃ (i, j) (7.10)

where R (u, v) is the mean intensity value in a (2z + 1)× (2z + 1) sliding window,

and the parameter z (e.g., z = 8) determines the window size.
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7.3.3.3 Bayesian classification

Let wj , j ∈ {1, 2}, indicate the class label of epidermis pixels. Class w1 corre-

sponds to the cornified layer pixels (Class I), while class w2 corresponds to the

GM layer pixels (Class II). Using the mean intensity R (u, v) as the feature, the

classification of epidermis pixels in R is performed using the Bayesian theorem:

p
(
wj

∣∣R (u, v)
)
=

p
(
R (u, v) |wj

)
p (u, v;wj)

2∑
i=1

p
(
R (u, v) |wi

)
p (u, v;wi)

(7.11)

where p
(
wj

∣∣R (u, v)
)

is the posterior probability of R (u, v) belonging to class

wj , p
(
R (u, v) |wj

)
is the likelihood of observing feature value R (u, v) in class

wj , and p (u, v;wj) is the prior probability of coordinate (u, v) belonging to class

wj . Note that unlike existing works such as [50], [61] which use the same prior

probability for the same class of objects by Bayesian classifcation, in this work, the

prior probabilities adaptively change based on pixel coordinates.

To estimate the prior probability p (u, v;wj), we make use of a prior knowledge

that the granular layer is the middle layer of the epidermis. In other words, if a pixel

is closer to the image background, it is more likely to be in the cornified layer or

malpighian layer. By utilizing this prior knowledge, we compute the p (u, v;wj) for

different classes based on the inner distance transform [126] on mask b2 (with seg-

mented epidermis as foreground). Let D (u, v) be the Euclidean distance between

the foreground point (u, v) and the nearest background point (binary 0) in mask b2.

The pixels belonging to class I generally have smaller D (u, v) values, compared

to the pixels belonging to class II. Thus the prior probabilities are computed as

follows:

p (u, v;w2) = D (u, v)/Dmax (7.12)

p (u, v;w1) = 1− p (u, v;w2) (7.13)

where Dmax is the normalization term which is the maximum D (u, v) value for all
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(u, v) pixels in the epidermis.

To estimate the likelihood term p
(
R (u, v) |wj

)
, we manually segment cornified

layer pixels (20,166 pixels) and GM layer pixels (76,767 pixels) from the train-

ing image Rt (shown in Fig. 7.6(a)). The mean intensity (e.g., Rt (u, v)) within

each training pixel’s neighborhood is computed by Eq. (7.10). The probability

density functions (PDFs) for the Class I and Class II pixels are separately shown

in Figs. 7.7(a)(b). In order to reduce the local irregularities and create a smooth,

continuous distribution, the PDFs can be modeled by many different types of con-

tinuous distributions [127]. To select the best fitted model for our training pixels,

we have tested with 10 commonly-used parametric probability distributions such

as Normal, Gamma, and Generalized extreme value (Gev) distributions. Table 7.1

lists the Bayesian information criterion (BIC) [128] values for 10 fitted models.

The BIC is a criterion for models selection, and the model with the lowest BIC

value is preferred. In Figs. 7.7(a)(b), the overlapped continuous curves separately

indicate the top four preferred models for class I and II pixels. As observed from

Table 7.1 and Figs. 7.7(a)(b), the Gev model achieves the smallest BIC values for

two classes, and hence the Gev model is applied to estimate the likelihood term,

which is as follows:

p (x |wj ) ≈
1

σ
exp

(
−(∆)−

1

k

)
(∆)−1− 1

k (7.14)

where ∆ = 1 + k (x−µ)
σ

, µ, σ and k are the location, scale and shape parameters of

the Gev model. In Fig. 7.7(c), the two dashed curves indicate the PDFs of training

pixels for two classes, while the two solid curves indicate the estimated likelihood

terms for two classes.

With the estimated likelihoods and prior probabilities, the epidermis pixelR (u, v)

is classified using Bayesian theorem as follows:

R (u, v) =





I if p
(
w1

∣∣R (u, v)
)
> p

(
w2

∣∣R (u, v)
)

II otherwise
(7.15)

163



TABLE 7.1
BAYESIAN INFORMATION CRITERION (BIC) VALUES FOR DIFFERENT MODELS.

Class I

Normal Logistic Nakagami Gamma Gev
159860 160550 159840 159850 159800
Rician Weibull Extreme value Rayleigh t Location-Scale
159860 162030 163110 226170 159870

Class II

Normal Logistic Nakagami Gamma Gev
628350 627890 630360 632510 621510
Rician Weibull Extreme value Rayleigh t Location-Scale
628370 622060 622880 827620 627310
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Fig. 7.7. PDFs estimated from empirical training data. (a) Class I (cornified layer pixels). (b) Class
II (GM layer pixels.). (c) Gev fitted curves. Note that Class I and Class II plots in (c) correspond to
the original pdfs, and the parameters for fitted models Gev I and Gev II are (µ = 194.57, σ = 12.55,
k = −0.25) and (µ = 155.44, σ = 15.53, k = −0.46), respectively.

After classification of all epidermis pixels, we generate a binary mask b3 with GM

layer pixels as foreground. The small noisy regions (if any) in mask b3 are removed
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by morphological opening operation, and the holes within the foreground are filled

by morphological reconstruction operation. Fig. 7.8(a) shows the image R, where

the contours of foreground regions in mask b3 are shown in red. By comparing

Fig. 7.5(c) and Fig. 7.8(a), it can be seen that most skin cornified layer pixels have

been correctly removed from the GM layer.

7.3.3.4 Skin granular layer detection

In order to find the outer boundary of the granular layer from the mask b3, we first

detect the extrema points [117] of the foreground region in b3. In Fig. 7.8(b), the

detected extrema points are indicated by (blue and green) squares. The extrema

points that are close to dermis pixels are then removed. Note that the dermis pixels

have intensity values between the thresholds t1 and t2 which have been determined

during epidermis segmentation. In Fig. 7.8(b), blue squares are removed as they

are close to dermis pixels. The boundary pixels between the two green squares in

Fig. 7.8(b) are now selected as the outer boundary of granular layer. In order to

remove the irregularities, a moving average filter [113] with a predefined length st

(e.g., st=101 pixels) is finally applied to generate a smooth boundary of the granular

layer. Fig. 7.8(c) shows the identified granular layer with two extrama points (green

squares). Let us denote the detected granular layer as G = {gj |j ∈ (1, 2, · · · , q)},

where q is the number of granular layer points.

Fig. 7.8. Skin granular layer identification. (a) Skin GM layer (area enclosed by red contour).
(b) Extrema points (indicated by blue and green squares). (c) Skin granular layer with two extrema
points.
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7.3.4 Depth of Invasion Measurement

The melanoma boundary points M = {mi |i ∈ (1, 2, · · · , p)} were obtained in

melanoma detection module and the granular layer points G = {gj |j ∈ (1, 2, · · · , q)}
were obtained in granular layer identification module. Based on these two point

sets, the melanoma DoI can now be measured. Although it is possible to evalu-

ate the invasion depth for each melanoma boundary point, it is usually compute-

intensive due to the large number of melanoma boundary points. To speed up

the computation, we apply a multi-resolution approach where we first determine

a coarse set of M to evaluate the invasion depth and then measure the DoI with

higher precision. The steps for invasion depth measurement are as follows:

1) The points set M is down-sampled with a factor df , that is:

Md = {mk ∈ M|k = df × i, i = (1, 2, . . . , ⌊p/df⌋)} (7.16)

where the df is empirically set as 10 in this work, and Md is the point set after

down-sampling.

2) The point index k̃ corresponding to the deepest tumor pixel in the set Md is

determined based on the Hausdorff distance measure as follows:

k̃ = argmax
k

[
min
j

‖mk − gj‖
]
, mk ∈ Md (7.17)

where ‖·‖ is the 2D Euclidean distance between two point coordinates. Note that

k̃ denotes the index of the maximal invasion depth for the decimated melanoma

boundary pixels.

3) To obtain a more precise invasion measurement, we now calculate the DoI

for all pixels in the neighborhood of index k̃ in M, that is:

DoI = max
i

[
min
j

‖mi − gj‖
]
, k̃ − df < i < k̃ + df (7.18)

Our melanoma invasion measurement follows a coarse-to-fine procedure, which
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greatly reduces the computational complexity. For example, with df = 10, the

computational complexity reduces from O (pq) to O (pq/10 + 20q). In other words,

the multi-resolution approach reduces the computational complexity by a factor of

df (assuming pq ≫ 1). Fig. 7.9 shows the automatic measurement of melanoma

DoI, which is 1661.2 pixels (around 0.415mm).

Fig. 7.9. Automatic measurement of melanoma DoI. In this example, the melanoma DoI is
measured as 1661.2 pixels (around 0.415mm).

7.4 Performance Evaluation

To evaluate the performance of the proposed technique, we carried out a series of

experiments on our database. The main objectives of the evaluation are: 1) to eval-

uate if the automatically detected skin granular layer is consistent with the ground

truth, 2) to evaluate if the automatically measured melanoma DoI is consistent with

the ground truth. In this section, we present the evaluation results of the proposed

technique and compare it with two existing techniques.

7.4.1 Parameters Configuration

There are mainly four adjustable parameters in the proposed technique. Table 7.2

lists the adjustable parameters and their corresponding values used in this study.

Note that our testing images were captured under 40X magnification and have a
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pixel resolution of 0.25µm/pixel. These parameter values should adaptively change

with image resolutions.

TABLE 7.2
SUMMARY OF PARAMETERS CONFIGURATION IN THE PROPOSED TECHNIQUE.

Modules Parameter names Parameter values
Epidermis Segmentation Radius rd 15 pixels
Granular Layer Detection Window size z 8 pixels
Granular Layer Detection Smoothing length st 101 pixels

DoI Measurement Down-sampling factor df 10

To the best of our knowledge, there are only two existing works including [21]

and [19] that try to measure the tumor DoI. In [21], the epidermis is segmented

based on morphological closing operation and Otsu’s thresholding. The malignant

melanocytes are detected using statistical color features, and the melanoma invasion

is measured based on the estimation of epidermis orientation by Hough transform.

The radius of the structuring element for closing operation is the key parameter for

this technique, which is set as 15 pixels like the proposed technique. In [19], the

skin cornified layer is detected based on the observation that skin cornified layers

are typically ridge shaped regions. After segmenting the skin cornified layer, the

boundaries of remaining epidermis regions, which are not close to skin dermis, are

considered as skin granular layer. For this technique, three parameters for skin

cornified layer detection should be carefully determined, which includes the block

size bs for partitioning the image, the threshold Tλ to determine if a pixel is on the

ridge, and the threshold Tent for pixel orientation entropy. After experiments on our

database, we set them as: bs = 32, Tλ = 0.2 and Tent = 4.0.

7.4.2 Granular Layer Detection Performance

Let us denote the manually labeled skin granular layer as L = {lk |k ∈ (1, 2, · · · , r)},

where r is the number of manually labeled boundary points. To evaluate the gran-

ular layer detection performance, we calculate the distance of every point in G
(automatically obtained boundary points) from all points in L. The evaluation
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metrics are defined as follows:

DMAD =
1

q

q∑

j=1

[
min
k

‖lk − gj‖
]

(7.19)

DHD = max
j

[
min
k

‖lk − gj‖
]

(7.20)

where the mean absolute distance DMAD measures the average disagreement be-

tween the two boundaries, and the Hausdorff distance DHD measures the worst

possible disagreement between the two boundaries.

Table 7.3 shows the average evaluation results over 28 test images for differ-

ent techniques. The DMAD and DHD have been expressed in microns by mul-

tiplying the values obtained by Eq. (7.19) and Eq. (7.20) with pixel resolution

(0.25µm/pixel). Note that the technique in [21] does not explicitly detect the skin

granular layer, and hence the outer boundary of segmented skin epidermis has been

considered as skin granular layer for comparison. As observed in Table 7.3, the

proposed technique achieves the smallest DMAD and DHD values (2.95µm and

12.24µm, respectively) among three techniques. The technique in [21] provides the

poorest performance, with 9.59µm of DMAD and 33.65µm of DHD. This is mainly

because the skin cornified layer is generally included in the segmented skin epider-

mis, and thus the outer boundary of skin cornified layer is incorrectly considered

as skin granular layer. The technique in [19] provides a better performance than

that in [21], with 7.22µm of DMAD and 27.03µm of DHD. This technique tries to

segment the skin cornified layer before the skin granular layer detection. However,

the skin cornified layer is segmented based on the assumption that cornified layer

is the ridged shape region. In fact the skin granular layer is also the ridged shape

region, which is likely to be segmented out with skin cornified layer in [21].

Fig. 7.10 shows the visual comparison of skin granular detection by differen-

t techniques. Figs. 7.10(a)(b) separately show the detected skin granular layers

by [21] and [19], while Fig. 7.10(c) shows the detected skin granular layer by the

proposed technique. In Fig. 7.10 the green curves indicate the manually labeled

ground truths, and the red curves indicate the automatically detected results. As
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TABLE 7.3
COMPARISON OF GRANULAR LAYER DETECTION BY DIFFERENT TECHNIQUES.

Techniques DMAD (microns) DHD (microns)
Mokhtari et al. [21] 9.59 33.65
Noroozi et al. [19] 7.22 27.03

Proposed 2.95 12.24

seen in Fig. 7.10, the skin granular layer obtained by the proposed technique has a

good matching with the ground truth. By contrast, the existing techniques tend to

produce unsmooth and inaccurate skin granular layers.

Fig. 7.10. Skin granular layer detection. (a) Mokhtari et al. [21]. (b) Noroozi et al. [19]. (c)
Proposed technique. Note that green curves indicate the manually labeled ground truths, while red
curves indicate the automatically obtained results.

7.4.3 Melanoma Depth Measurement Performance

Let di and hi denote the automatically measured invasion depth and manually

measured ground truth, respectively, where i ∈ (1, 2, · · · , s) and s (s=28 in this

work) is the number of testing images. The performance of melanoma invasion

measurement is evaluated with respect to the average error (AE), standard deviation

(SD) and average percentage of error (APE) which are defined as follows:

AE =
1

s

s∑

i=1

|di − hi| (7.21)

SD =

√√√√1

s

s∑

i=1

(|di − hi| −AE)2 (7.22)
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APE =

(
1

s

s∑

i=1

|di − hi|
hi

)
× 100% (7.23)

where |·| is the absolute distance between two values.

The performance of the proposed technique has been compared with that of [21]

and [19]. Table 7.4 shows the evaluation results of different techniques in terms of

AE, SD and APE. It is observed in Table 7.4 that the proposed technique provides

the best performance in melanoma DoI measurement, with 10.95µm average error,

17.49µm standard deviation and 3.53% relative error compared to ground truths.

The technique in [19] has relatively poorer performance than our technique, which

has 20.54µm average error and 6.81% relative error. The technique in [21] has

the poorest performance with 28.03µm average error and 10.66% relative error.

The inaccuracies of melanoma DoI measurement for existing techniques are mainly

caused by inaccurate skin granular detections. Fig. 7.11 compares the automatically

measured melanoma DoI by different techniques with ground truths in 28 testing

images. Considering the visual assessment of samples as the reference, the percent-

age of error achieved by different computerized techniques on 28 testing images is

shown in Fig. 7.12. As observed in Fig. 7.11 and Fig. 7.12, the technique in [21]

tends to produce positive errors (i.e., di > hi), as the melanoma DoI measurement

is usually performed from the skin cornified layer instead of skin granular layer.

The technique in [19] is likely to produce negative errors (i.e., di < hi). This is

because the skin granular layer is usually segmented out with the skin cornified

layer, and the melanoma DoI measurement is usually from the outer boundary of

skin malpighian layer. Overall, the proposed technique provides a more reliable

melanoma invasion measurement due to accurate detections of melanoma regions

and skin granular layer.

For visual comparison, Fig. 7.13 shows a testing image with measured melanoma

DoI by different automatic techniques and visual assessment. Fig. 7.13(a) shows the

tumor invasion measurement by [21]. Note that the blue straight line in Fig. 7.13(a)

indicates the estimated epidermis orientation by Hough transform. The tumor in-
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TABLE 7.4
COMPARISON OF DOI MEASUREMENT BY DIFFERENT TECHNIQUES.

Techniques AE (microns) SD (microns) APE (%)
Mokhtari et al. [21] 28.03 29.70 10.66
Noroozi et al. [19] 20.54 17.21 6.81

Proposed 10.95 17.49 3.53
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Fig. 7.11. Comparison of automatically measured melanoma DoI and ground truths.
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Fig. 7.12. Normalized errors of computerized methods with ground truths as the gold standard.

vasion measurement is performed along the direction that is perpendicular to the

epidermis orientation (e.g. blue line). As has been verified in [19], Hough trans-

form may fail to detect epidermis orientation when the epidermis is not a roughly

straight structure, and hence it produce an inaccurate tumor invasion measurement.

Fig. 7.13(b) shows the tumor invasion measurement by [19]. This technique has

a main limitation that skin granular layer is usually segmented as skin cornified
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layer, as both layers usually have ridged shapes in skin images. The tumor invasion

measurement from the outer boundary of skin malpighian layer generally produces

a depth less than the ground truth. Figs. 7.13(c)(d) show the melanoma invasion

measurement by the proposed technique and visual assessment, respectively. As

seen in Fig. 7.13, the proposed technique provides the smallest error in measuring

the melanoma DoI.

Fig. 7.13. Visual comparison of melanoma invasion measurement. (a) Mokhtari et al. [21]. (b)
Noroozi et al. [19]. (c) Proposed technique. (d) Ground truth. Note that the blue straight line in (a)
indicates the estimated epidermis orientation by Hough transform.

7.4.4 Parameter Sensitivity Evaluation

As listed in Table 7.2, the proposed technique has four adjustable parameters. A-

mong these parameters, the parameters rd, st and df can be intuitively estimated

according to the resolution of testing images. The parameter z determines the
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window size to compute the average intensity for Baysesian classification, which

is empirically set as 8 pixels for our 40X magnification skin images. To evaluate

the sensitivity of this parameter, we also test z with 7 and 9 pixels, which correspond

to the window size of 15× 15 and 19× 19, respectively.

TABLE 7.5
PARAMETER SENSITIVITY EVALUATIONS OF THE PROPOSED TECHNIQUE.

Parameters Granular layer detection Melanoma invasion measurement
DMAD (µm) DHD(µm) AE(µm) SD(µm) APE(%)

z=7 3.02 12.72 10.93 17.48 3.53
z=8 2.95 12.24 10.95 17.49 3.53
z=9 2.94 12.29 10.94 17.48 3.53

Table 7.5 shows the experimental results with different z values in terms of skin

granular detection and melanoma invasion measurement. It is observed in Table 7.5

that the performance of the proposed technique is not very sensitive to the minor

changes of z values. In particular, the average percentage of error (APE) for three

z values are the same (3.53%). Therefore, it can be concluded that the proposed

technique is robust to the parameter z when an appropriate value is selected.

7.5 Summary

This chapter presents an automatic technique for measuring the melanoma DoI

in MART-1 stained skin histopathological images. The proposed technique de-

tects melanoma regions using color features with Mahalanobis distance measure,

and identifies skin granular layer based on a Bayesian classification method. The

melanoma DoI is computed by using the Hausdorff distance measure. Experimental

results show that the proposed technique can more robustly detect skin granular

layer and measure melanoma DoI than two closely related existing techniques.
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Chapter 8

Conclusions and Future Works

Over the last few years, computerized image analysis and diagnosis have been

playing an increasingly important role in assisting pathologists for their clinical rou-

tines. However, because of great variation in different tissue biopsies, much more

efforts are still required to be devoted to develop robust computer-aided techniques

for biopsy image analysis and caner diagnosis. This thesis has developed several

key techniques for quantitative analysis of skin biopsy images. In this chapter,

we conclude the works presented in this thesis and discusses some future research

directions.

8.1 Conclusions

In Chapter 1, we mainly introduced histopathology imaging and histological fea-

tures used by pathologists for skin melanoma diagnosis and grading. In Chapter 2,

we briefly reviewed the widely-used image processing techniques in histopathology

and existing WSIs analysis systems for different cancers. The main contributions

of this thesis were presented in Chapters 3 to 7. In the following, we summarize the

contributions of this thesis.

Chapter 3 presented the proposed techniques for automated epidermis and der-

mis segmentations in H&E stained skin WSIs. The epidermis segmentation follows

a coarse-to-fine processing procedure, where the segmentation is performed by
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thresholding and k-means clustering and the segmentation quality is evaluated by

thickness measurement. The dermis segmentation is performed based on diffusing

line segments from epidermis outer boundaries and morphological operations. Ex-

perimental results show that the proposed techniques achieve a good performance

(e.g., with over 90% sensitivities and precisions) in epidermis and dermis segmen-

tations.

Chapter 4 presented two proposed techniques for nuclei detection in skin biopsy

images. In the first technique (i.e., P-Voting), the isolated nuclei are detected

by ellipse descriptor analysis on binarized images, while the clumped nuclei are

detected by a voting algorithm with votes from nuclei boundaries. In the second

technique (i.e., P-gLoG), the nuclei are detected by a bank of multi-scale gLoG

kernels with redundant seeds merged by mean-shift clustering. Experimental results

on H&E stained biopsy images show that the proposed techniques achieve higher

precision and sensitivity than existing techniques for nuclei detection. Between the

two proposed techniques, the P-gLoG technique provides a superior performance,

and also has relatively lower complexity.

Chapter 5 presented the proposed technique for nuclei segmentation in skin

biopsy images. The proposed technique first generates several candidate nuclei con-

tours by analyzing gradient information on multi-scale radial lines. The intensity

variance and shape prior are then incorporated with gradient information to deter-

mine the best contour for each nucleus in the image. Severely overlapped nuclei

are finally merged together based on the Dice coefficient analysis. Experiments on

Ki-67 and H&E stained skin images indicate that the proposed technique is efficient

and accurate in delineating nuclei boundaries. In particular, the proposed technique

has the advantage of estimating occluded nuclei boundaries in the clustered nuclei.

Chapter 6 presented an automated melanoma diagnosis technique that diagnoses

melanoma by analyzing H&E stained skin WSIs. The technique first segments

skin epidermis and dermis regions by a multi-resolution framework, and generates

high resolution image tiles. Epidermis and dermis analysis are then performed in a

parallel manner, where a set of 73 cytological, textural and architectural features are
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computed from segmented epidermis and dermis regions. The computed features

are finally utilized by a SVM classification method that categorizes the test skin

WSI into different categories such as melanoma, nevus or normal tissue. Experi-

ments on 66 H&E stained skin WSIs show that the proposed technique with feature

selection can provide over 95% classification accuracies, which has the potential to

be used for assisting pathologists in melanoma diagnosis.

Chapter 7 presented the proposed technique for measuring melanoma DoI in

MART-1 stained skin biopsy images. The proposed technique detects melanoma

regions based on RGB color features with a Mahalanobis distance measure. The

skin granular layer is identified by a Bayesian classification based method, and the

melanoma DoI is measured by using a Hausdorff distance measure. Experiments

show that the proposed technique can more accurately identify skin granular layer

and measure melanoma DoI than existing techniques.

8.2 Future Works

Although this thesis has developed several key techniques for computerized analysis

of skin biopsy images, there are still many research works that should be done to

assist pathologists in real clinical settings. A few selected future research directions

are presented in the following.

Speedup & Statistic Testing

Chapter 6 presents the proposed technique for diagnosing skin melanomas from

H&E stained skin WSIs. The technique makes the judgement (e.g., melanoma or

non-melanoma) by analyzing both skin epidermis and dermis features, and it has

been designed and tested with sequential implementations using Matlab software.

Due to the large number of cell nuclei in skin WSIs, the technique has a high

computational complexity which may take one to two hours (depending on biopsy

image size and computer hardwares) to process a skin WSI. However, epidermis and

dermis analysis can be performed in a parallel manner in the proposed framework,
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and nuclei segmentations are also suitable for parallel computations. Therefore,

parallelized design and implementation by using such as Graphic Processing Unit

(GPU) [43] can be done for faster processing and diagnosis.

Another open problem is to test the technique (presented in Chapter 6) on

more skin WSIs, especially for identifying melanoma subtypes. In this study, the

proposed technique has been evaluated on 66 different skin WSIs which includes 32

melanoma biopsy images. This evaluation sample size is still quite small, and hence

more evaluations with statistic tests (e.g., Wilcoxon test [21]) will be necessary to

verify the robustness of the technique on skin melanoma diagnosis. In addition,

since the technique is currently only implemented in Matlab for testing, it would

be useful to design an user-friendly interface or integrate the technique into some

medical image processing softwares such that it can be tested or used in a more

practical manner by pathologists.

Lymph Node Analysis

If melanoma is found on skin and also has invaded into skin dermis with a

large thickness (e.g., more than 1mm), it would be necessary to exam the biopsy of

nearby (sentinel) lymph nodes to determine whether melanoma cells have spread

through the body’s lymphatic system. The lymph node evaluation for melanoma

diagnosis is mainly performed manually by pathologists. Computerized algorithms

are desired to analyze lymph node biopsy images and help doctors in grading the

severity of the disease. One efficient way to determine if melanoma has metasta-

sized to the local lymph nodes is to analyze the MART-1 stained biopsy images.

Since MART-1 stain is specific to melanoma cells and produces distinct colors, it

would be easy to detect melanoma regions based on image color features using

computer algorithms.

Proliferation Index Evaluation

Once the melanoma is detected in lymph nodes, it would be critical to evaluate

the proliferation index of melanoma cells within lymph nodes. High proliferative

index (e.g., 20% or more of tumor cells showing nuclear immunoreactivity) is
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significantly correlated with increased patient mortality [11]. In practice patholo-

gists mainly evaluate proliferation index by analyzing Ki-67 stained biopsy images,

where tumor cell nuclei with positive responses are stained with dark brown colors.

Since there is a large number of tumor cells to be analyzed, manual evaluation-

s of proliferation index are very subjective and often prone to inter- and intra-

observer variations. In order to obtain more objective and reliable proliferation

index evaluation, it is desirable to develop robust computer algorithms which could

automatically detect melanoma regions and compute the number of tumor cells with

positive responses.
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Appendix A

Histology Images and Features

A.1 Histology images with different stains

In order to diagnose and grade skin cancers such as melanomas, pathologists may

examine and analyze a set of of biopsy images with different stains, as biopsies with

different histochemical stains can provide more information for making a judgment.

The typical stains used in skin biopsies consists of the following six categories:

• H&E: Hematoxylin stains cell nuclei blue, while Eosin stains cytoplasm and

connective tissue pink (see Fig. A.1(a)). Pathologists generally diagnose skin

cancers by observing cytological features in H&E stained skin biopsy images.

• MART-1: MART-1 is a melanocyte specific transmembrane protein that is

present in normal melanocytes and widely expressed in malignant melanomas.

The MART-1 antibody has been considered as a superior immunohistochem-

ical marker for the diagnosis and grading of melanomas [129]. Fig. A.1(b)

shows a MART-1 stained skin biopsy image, where melanoma regions have

been stained with brown hues.

• Ki-67 (MIB-1): Ki-67 is a nuclear protein expressed exclusively during the

active cell cycle phases (i.e., interphase and cell division), but it is absent

from resting cells (i.e., resting phase). Ki-67 antibody has been used to
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Fig. A.1. Skin histopathological images with different stains. (a) An H&E stained image. (b) A
MART-1 stained image. (c) A Ki-67 stained image. (d) A S-100 stained image. (e) A HMB-45
stained image. (f) A CD-45 stained image. Note that the images are viewed at 40X.

evaluate the tumor cell proliferation, which is an important factor to grade the

severity of the tumor. Fig. A.1(c) shows a Ki-67 stained skin biopsy image,

where immuno-positive and immuno-negative tumor cell nuclei are observed

as brown and blue colors, respectively.

• S-100: S-100 protein is expressed in all melanocytic cells and in most of ma-

lignant melanomas. Although very sensitive, S-100 is not specific to melanoma

as it also stains most peripheral nerve sheath tumors and some other sarco-

mas, as well as a minority of Langerhans cell histiocytosis [130]. Because of

its low specificity, S-100 is of diagnostic value for melanoma only in selected

cases [129]. Fig. A.1(d) shows a S-100 stained skin biopsy image, where

melanoma regions have been stained with dark brown colors.
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• HMB-45: HMB-45 (Human Melanoma Black) antibody is similar with MART-

1 antibody, which is often diffusely positive in melanomas. Pathologists

usually diagnose and grade malignant melanomas by using HMB-45 stained

biopsy images, especially before MART-1 antibodies become commercially

available. Fig. A.1(e) shows a HMB-45 stained skin biopsy image, where

melanoma regions have been stained with brown hues.

• CD-45: CD-45 is known to have high sensitivity and specificity for lymphoid

tumors. CD-45 immunoreactivity has been considered exquisitely specific for

hematopoietic cells. Melanoma tissues in CD-45 stained biopsy images have

immuno-negative responses. Fig. A.1(f) shows a CD-45 stained skin biopsy

image. Note that since melanoma cells in Fig. A.1(f) have immuno-negative

responses, the tumor cell nuclei are observed with blue hues.

A.2 Features of histology images

In this section, definitions and explanations of some texture features are provided.

A.2.1 Textural features

A.2.1.1 Statistical features from intensity histogram

A frequently used approach for texture analysis is based on statistical properties

of the intensity histogram. Given a segmented region R with Λ pixels. Let us

assume zi is a random variable indicating pixel intensity in R. p (z) is the histogram

of intensity levels in R, and L is the number of possible intensity levels. The

descriptions of statistical features including mean, standard deviation, smoothness,

third moment, uniformity and entropy are listed in Table A.1.

A.2.1.2 Haralick features

Haralick features including energy, contrast, correlation, homogeneity, dissimilarity

and entropy are widely-used in histological image analysis, which are defined in
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TABLE A.1
DESCRIPTION OF STATISTICAL TEXTURE FEATURES.

Name Expression Measure of Texture

Mean m =
L−1∑
i=0

zip (zi) a measure of average
intensity

Standard deviation σ =

√
L−1∑

i=0

(zi2p(zi))−Λm2

Λ−1 a measure of average
contrast

Smoothness R = 1− 1/
(
1 + σ2

)
a measure of relative
smoothness

Third moment µ3 =
L−1∑
i=0

(zi −m)3p (zi) a measure of skewness of the
histogram

Uniformity U =
L−1∑
i=0

p2 (zi) a measure of uniformity

Entropy e = −
L−1∑
i=0

p (zi) log2p (zi) a measure of randomness

Table A.2.

TABLE A.2
DESCRIPTION OF HARALICK FEATURES.

Name Expression Measure of Texture
Energy

∑
i

∑
j p(i, j)

2 a measure of uniformity.

Contrast
∑Ng−1

n=0 n2
{∑Ng

i=1

∑Ng

j=1 p (i, j)
}
,

where |i− j| = n
a measure of variation between
intensity levels

Correlation
∑

i

∑
j (ij) p (i, j)−µxµy

/
σxσy a measure of correlation between

a pixel and its neighborhood
Homogeneity

∑
i

∑
j

p(i,j)

1+(i−j)2
a measure of homogeneity

Dissimilarity
∑

i

∑
j |i− j| p (i, j) a measure of dissimilarity in

intensity values
Entropy −∑

i

∑
j p (i, j) log (p (i, j)) a measure of randomness

Note that in Table A.2, µx, µy, σx and σy are the means and standard deviations

of the partial probability density functions, which are given by:

µx =
∑

i

∑

j

i · p (i, j) (A-1)

µy =
∑

i

∑

j

j · p (i, j) (A-2)
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σx =
∑

i

∑

j

(i− µx)
2 · p (i, j) (A-3)

σy =
∑

i

∑

j

(j − µy)
2 · p (i, j) (A-4)

A.3 Examples of skin WSIs

Fig. A.2 shows examples of H&E stained normal skin biopsies, where the first

row shows three skin WSIs and the second row shows selected skin epidermis and

dermis image patches. Note that most cell nuclei in epidermis layer of normal

skin tissue are the keratinocytes, and only a very small number of melanocytes are

present in the skin DEJ regions. In the skin dermis layer of normal tissue, cell nuclei

mainly includes fibroblasts, macrophages and adipocytes.

Fig. A.2. Examples of H&E stained normal skin biopsies.

Fig. A.3 shows examples of H&E stained skin nevus biopsies, where the first

row shows two skin WSIs and the second row shows selected skin epidermis and

dermis image patches. Note that in the epidermis layer of nevus biopsies, there is an
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increasing number of melanocytes distributed along the skin basal layer. In the skin

dermis layer of nevus biopsies, there is a large number of melanocytes, but these

melanocytes have low degree of nuclei pleomorphism (i.e., shape, size and color do

not vary greatly from each other).

Fig. A.3. Examples of H&E stained skin nevus biopsies.

Fig. A.4 shows examples of H&E stained skin biopsies with melanomas. In

the first and third rows of Fig. A.4, it shows five skin WSIs, while in the second

and fourth rows it shows selected skin epidermis and dermis image patches. Note

that in the epidermis layer of melanoma biopsies, there is an increasing number

of melanocytes which are not only found in the basal layer but also in the spinous

layer. In the skin dermis layer of melanoma biopsies, there is a large number of

melanocytes and lymphocytes. The melanocytes in the skin dermis layer have high

degree of nuclei pleomorphism in term of shape, color and size.
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Fig. A.4. Examples of H&E stained skin melanoma biopsies.
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