
What to do when your discrete optimization is the size
of a neural network?

by

Hugo Luis Andrade Silva

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Hugo Luis Andrade Silva, 2023

Abstract

Oftentimes, machine learning applications using neural networks involve solv-

ing discrete optimization problems, such as in pruning, parameter-isolation-

based continual learning and training of binary networks. Still, these discrete

problems are combinatorial in nature and are also not amenable to gradient-

based optimization. Additionally, classical approaches used in discrete settings

do not scale well to large neural networks, forcing scientists and empiricists

to rely on alternative methods. Among these, two main distinct sources of

top-down information can be used to lead the model to good solutions: (1)

extrapolating gradient information from points outside of the solution set (2)

comparing evaluations between members of a subset of the valid solutions.

We take continuation path (CP) methods to represent using purely the for-

mer and Monte Carlo (MC) methods to represent the later, while also noting

that some hybrid methods combine the two. The main goal of this work is

therefore to compare both approaches. For that purpose, we first overview

the two classes while also discussing some of their drawbacks analytically.

Then, on the experimental section, we compare their performances, starting

with smaller Microworld experiments, which allow more fine-grained control

of problem variables, and gradually moving towards larger problems in the

overparametrized regime, including neural network regression and neural net-

work pruning for image classification, where we additionally compare against

magnitude-based pruning. A future version of this work will also include ex-

periments on sequential task learning, which are currently underway.

ii

Acknowledgements

I would like to thank my supervisor Martha White for supporting me, being

patient and giving me the opportunity to work with her since right after I

joined the University of Alberta, when the world was on lockdown and I was

working remotely from the other side of the world. Her being always in contact

with research on many different topics and taking the time to share relevant

papers with me has greatly helped me keep this thesis more up-to-date. I

acknowledge also that access to Compute Canada significantly reduced the

time taken to run the experiments. Finally, I would also like to thank my

parents, siblings and my spouse for supporting me and being here with me

throughout this entire journey. With their love, support and humour, my life

has been meaningful and fun.

iii

Contents

1 Introduction 1

2 Pseudo-Boolean optimization 7
2.1 Basics . 7
2.2 Examples . 10
2.3 Algorithmic approaches . 13

3 Numerical Continuation 17
3.1 Basics . 17
3.2 Application to PB optimization 19
3.3 Drawbacks . 21

4 Monte Carlo gradient estimation 25
4.1 Basics . 25

4.1.1 A Probabilistic Framework 26
4.1.2 Using samples . 28

4.2 Methods . 31
4.2.1 Overview . 31
4.2.2 REINFORCE . 34
4.2.3 LOORF . 36
4.2.4 ARMS . 37
4.2.5 Beta∗ . 42

4.3 Drawbacks . 43
4.3.1 Dependence on the current distribution 43
4.3.2 Unwanted generalization 45

4.4 Alternative parametrizations 50

5 Alternative stochastic gradient approaches 53
5.1 Overview . 53

6 Smaller-scale experiments 57
6.1 Microworld . 57

6.1.1 Benchmarks . 58
6.1.2 Estimators . 59
6.1.3 Parametrizations . 61
6.1.4 Approaches . 63

6.2 Neural network regression . 64
6.2.1 Benchmark . 64
6.2.2 Estimators . 65
6.2.3 Parametrizations . 66
6.2.4 Approaches . 67

iv

7 Pruning 68
7.1 Overview . 69

7.1.1 Problem Motivation 69
7.1.2 Structured and unstructured sparsity 71
7.1.3 Common approaches 72

7.2 Algorithms . 74
7.2.1 Magnitude pruning . 75
7.2.2 L0 regularization . 76

7.3 Experiments . 78
7.3.1 Supermask . 79
7.3.2 Joint pruning . 80

8 Conclusion 83

References 88

Appendix A Proofs 100
A.1 Multilinear form . 100
A.2 Iterative ARMS procedure . 103
A.3 Beta∗ . 107
A.4 Generalization of stochastic formulation 109

Appendix B Experimental details 112
B.1 Microworlds . 112

B.1.1 Variance experiments 112
B.1.2 Comparing methods 116

B.2 MaskedNNRegression . 116
B.3 Pruning . 117

B.3.1 Supermask . 118
B.4 Hyperparameter generalization 119

B.4.1 Joint pruning . 120
B.5 Summary of results . 124

v

List of Tables

4.1 Example of J(·) following the conditions from Theorem 5 for
d = 3 and z∗ = 1. 48

4.2 Summary of alternative parametrizations. (*) Inverse map as-
sumes θi /∈ {0, 1}. (**) If θ(ri) ∈ {0, 1}, we use zero instead of
these formulas. 52

B.1 Closed form expressions for probabilities of {z̃(s)}ns=1, for n = 1
and d = 4. If θ > 0.5, p({z̃(s)}ns=1; θ) = f({z̃(s)}ns=1; θ), otherwise
p({z̃(s)}ns=1; θ) = f({1− z̃(s)}ns=1; 1− θ). 115

B.2 Supermask hyperparameter sweep. 118
B.3 Joint pruning broad sweep. 122
B.4 Joint pruning “specialized” sweep. Other parameters are the

same as Table B.3. 123
B.5 Summary of all experiments performed 124

vi

List of Figures

3.1 Effect of varying the temperature of a sigmoid. 20
3.2 Completely different choices of J(·) lead to the same PB opti-

mization problem. 22
3.3 J(·) for the counter examples. 22
3.4 Performance of different learning rates (α) for the problem in

Example 6. 23

4.1 Contour plots, captions indicate the matrix , blue regions indi-
cate low J(·), arrows indicate gradients. 27

4.2 (a) Illustration of the main multivariate gradient estimation vec-
tors and (b-d) example contour plots of the PDF for different
e. 31

4.3 Contour plots of J(·) for d = 2. Arrows indicate the summands
from (a) Equation (4.18), with n = 2 (b) Equation (4.19). If
pθ(ζ2) is low, the gradient may not point towards z∗ = ζ2, such
as in (a). 44

4.4 Illustration for Example 9. Blue regions correspond to lower
J(·), arrows correspond to the gradient field. 47

6.1 Comparing estimator variances following a fixed trajectory on
Microworld domains. The model was not able to solve the set-
ting marked with (*). 60

6.2 Comparing estimators on Microworld domains. 61
6.3 Comparing parametrizations on Microworld domains. 62
6.4 Comparing parametrizations on Microworld domains. Alterna-

tive visualization of NNLoss from Figure 6.3 showing the final
loss for each seed. 63

6.5 Comparing approaches on Microworld domains. 63
6.6 Comparing estimators on masked NN regression. 65
6.7 Comparing parametrizations on masked NN regression. 66
6.8 Comparing approaches on masked NN regression. 67

7.1 Different ways of pruning. Pruned weights or neurons are repe-
sented in red. 71

7.2 Examples where weight magnitudes do not correlate with their
importance. On Figure 7.2a, the larger weights have less influ-
ence on the model output than the smaller ones due to their
outgoing connections. In Figure 7.2b, one row is a scaled ver-
sion of another. Despite the difference in magnitude, subsequent
batch normalization equates their outputs. 75

7.3 Pareto front for supermask experiments. 79
7.4 Pareto front for joint pruning experiments. 81

vii

7.5 Per-layer sparsity for the runs indicated in Figure 7.4. Rectan-
gles correspond to epochs with manually frozen masks. 82

8.1 Temperature annealing collapses J(·) at the origin. 85

B.1 Scatter plot for hyperparameter generalization on supermask
results. 119

B.2 Parallel coordinates plot for hyperparameter generalization on
supermask results. We omit failed runs. 120

viii

Chapter 1

Introduction

Problems in the mathematical sciences often involve the minimization of a

function J(·) over some set S. Initializing some tentative parameters, then

changing them according to how J(·) behaves locally is one way to approach

these problems. Assuming the current local direction in which J(·) decreases

the most leads to reasonable next values of the tentative parameters, we can

recalculate and follow it iteratively until local improvement no longer seems

possible. If such a direction is determined using the gradient, methods following

the above procedure belong to the field of gradient-based optimization (Boyd

et al. 2004; Chong and Zak 2013).

Gradient-based optimization, however, is not applicable in many problems

of interest to mathematicians. Firstly, the objective function has to be differ-

entiable, otherwise it is not possible to calculate the gradients. Furthermore,

following the direction of the gradient often involves changing the tentative

parameters slightly in the desired direction. In general, for the next poten-

tial solutions to also belong to S, all points in a small enough neighbourhood

around the current parameter values have to also belong to S. Tabular prob-

lems, where S consists of a finite set of values, for example, are not suitable for

gradient-based optimization, since no two elements of S are arbitrarily close

to each other.

Pseudo-Boolean (PB) functions are mappings from d dimensional binary

vectors to R and correspond to tabular functions that map each of the 2d

1

possible entries to a real number (Boros and Hammer 2002).1 Notably, there

is a similarity between these problems and the multi-armed bandit problem

(Lattimore and Szepesvári 2020; R. S. Sutton and Barto 2018), where the

learner has to test each of K different choices, here called arms, until finding

the best one, receiving stochastic rewards in the process. The main difference

is that PB optimization involves deterministic rewards. Exact optimization of

a PB function is of combinatorial nature: in general, finding the best binary

value involves trial-and-error evaluation of all elements in the set, which can

be prohibitive in case d is also large (Korte et al. 2011).

Then again, such problems appear in many different fields, including game

theory (Hammer and Holzman 1992), computer science (Karp 2010; Madhu-

latha 2012), VLSI design (Boros, Hammer, et al. 1999; Jünger et al. 1994),

statistical mechanics (Phillips and Rosen 1994), finance (Hammer and Shlifer

1971), manufacturing (Kubiak 1995) and operations research (Picard and

Ratliff 1978). For a more comprehensive list, refer to Tavares (2008). The

maximum satisfiability problem (Karp 2010), for example, consists on find-

ing the Boolean input that satisfies the maximum number of clauses from a

given set of Boolean expressions and we can write it as a PB optimization

problem. Similarly, the maximum independent set problem (Luby 1985), a

well-known problem in graph theory that consists on finding the independent

set of largest cardinality from an input graph, also fits this framework. Yet

another example is training binary neural networks (Courbariaux et al. 2015;

Hubara et al. 2016), where the weights are restricted to be either 1 or −1,

usually to comply with computational constraints, such as model deployment

in a resource-limited setup where it is only possible to represent each weight

using a single bit.

In this work, we will study PB optimization problems that involve training

Neural Networks. Particularly, we will focus on pruning and a future version of

this work will also include results on sequential task learning. The first prob-

lem corresponds to finding the sparsest subnetwork possible without incurring

1They are called pseudo because they map to the reals, whereas a Boolean function has
binary outputs. See O’Donnell (2014) for an overview of these.

2

significant loss of performance compared to the dense version (Blalock et al.

2020; Gale et al. 2019; Reed 1993). Similarly to the training of binary networks,

this can be specially useful if deploying on a resource-constrained environment,

where it is only possible to store a small percentage of the full network. Deep

Learning frameworks or languages that make it possible to customize lower

level computation, such as Julia, can take advantage of such a sparse struc-

ture to reduce inference times. Algorithmic and hardware support for these

sparse structures is an active area of research (Hoefler et al. 2021, chapter 7).

Since pruning corresponds to finding an optimal binary mask to apply to the

neural network weights, it also falls under the framework of optimizing PB

functions.

Sequential task learning, on the other hand, refers to the learning of mul-

tiple tasks in sequence using the same model (De Lange et al. 2021; Mai et al.

2022; Parisi et al. 2019). Performing well on this problem is imperative to the

goal of developing a general artificial intelligence, for the deployed agent will

have to constantly be learning and using the acquired knowledge to solve a

continuing stream of incoming tasks. One of the main challenges that appear

in this context is catastrophic forgetting, where the adaptation to the current

task causes forgetting of the older ones (French 1999; McCloskey and Cohen

1989; R. Sutton 1986). Protecting weights important to the initial tasks is one

of the approaches to retain performance and applying binary masks to these

weights is one way of protecting them. This mechanism for protecting weights

also has some neuroscience basis (Cichon and Gan 2015; Kuchibhotla et al.

2017; Otazu et al. 2009) and finding the correct binary mask can be cast under

PB optimization.

The combinatorial nature of finding the optimal point on these large ma-

chine learning problems makes it necessary to forfeit exact optimization in

favour of approximate solutions. Local search methods (Glover 1990; Hansen

1986; Johnson et al. 1988), for example, settle for points whose value of J(·) is

the lowest in a local neighbourhood measured by the Hamming distance. Other

methods involve reducing the original problem to an equivalent quadratic PB

optimization form (Boros and Hammer 2002), a simpler version that is solvable

3

in polynomial time if it satisfies some additional properties (Kolmogorov and

Rother 2007). Unfortunately, theoretical guarantees for local search methods

only exist for some specific cases and, although quadratic PB optimization

is solvable in polynomial time if the submodularity condition is satisfied, the

general problem is NP-hard. More recently, to cope with this high complexity,

studies have started applying quantum computing to speed up optimization

of some PB problems (McGeoch and Wang 2013; Montanaro 2016), although

these are still preliminary and of limited application. Even some polynomial

time algorithms, however, may not be suitable for neural network contexts,

where d can correspond to millions of parameters.

With this is mind, in this study we will focus mainly on two ways of ap-

proaching PB optimization: (1) construction of smooth continuation paths

(Allgower and Georg 2003) and (2) Monte-Carlo gradient estimation (Mo-

hamed et al. 2020). The first involves replacing the original problem with a

surrogate differentiable alternative that can be annealed back to the original

problem according to a parameter τ . The model then learns in a curricular

fashion, starting from a version that is different from the desired one but

gradually becomes closer to it, being possible to make it equivalent as τ → 0.

The second corresponds to changing the PB optimization to the optimization

over parameters of a factorized Bernoulli. The new problem becomes finding

min
θ

E
z∼pθ(·)

[J(z)] and its minimum is the same as the original one (Boros and

Hammer 2002).

This study will start by analyzing the behaviour of Monte Carlo (MC) and

continuation path (CP) methods in Microworld scenarios, where it is possible

to have greater control over problem variables, as well as calculate closed-form

expectations, variances and the exact solutions to the PB problems. After-

wards, we move to larger neural network pruning tasks on common benchmark

datasets. Here, closed-form solutions are no longer possible. On this last sce-

nario, when training of neural network weights happens alongside the search

for masks, determining masks based on the magnitude of the weights also be-

comes possible (Frankle and Carbin 2018; S. Han et al. 2015; Zhu and Gupta

4

2017). We will also investigate the so-called magnitude-based pruning (MP)

approaches alongside the other two in this study.

The goals of this work can be summarized as follows:

1. To understand the trade-offs of CP and MC methods when used on PB

optimization problems, as well as the hidden assumptions necessary for

both approaches to work well.

2. To compare the performances of CP, MC and MP on larger scale prob-

lems with neural networks.

Investigation of both of these goals will be somewhat focused on the MC

methods, which are less explored for pruning (and for sequential task learning

as well). For the first goal, we show analytical results and then perform smaller

experiments. Our main contributions are as follows:

• Showing failure cases for CP and MC.

• Deriving a bound for the performance of MC methods on PB optimiza-

tion.

• Deriving and experimenting with a closed-form expression for the opti-

mal MC control-variate.

• Introducing two new benchmarks: one with a tabular J(·) and mappings

sampled from an exponential distribution and the other with a multilayer

neural network J(·).

• Comparing different MC estimators and parametrizations.

• Introducing a medium scale regression benchmark where the parameters

mask weights of a fixed neural network.

For the second goal, we focus on pruning, while noting that a future ver-

sion will additionally contain multi-head sequential task learning experiments,

which are currently underway.2 Our main contributions are as follows:

2For sequential task learning, representative methods for CP and MP approaches are
HAT (Serra et al. 2018) and Packnet (Mallya and Lazebnik 2018) respectively.

5

• Developing iterative versions of MC gradient estimators, which enable

their use without the memory cost scaling with the number of samples.

• Extending already proposed MC algorithms, allowing them to be used

with different estimators and parametrizations. We compare the resulting

methods with the CP method from Savarese et al. (2020) and with the

MP methods from S. Han et al. (2015) and Zhu and Gupta (2017).

6

Chapter 2

Pseudo-Boolean optimization

In this chapter, we first start by presenting some basics of pseudo-Boolean

optimization and introducing some notation. Then, we present some problems

appearing in different fields and show how they are instances of PB. Finally, we

briefly go over some common classes of algorithms used to find (approximate)

solutions.

2.1 Basics

We will often use boldface to denote vectors, unless otherwise noted. A pseudo-

Boolean function J(z) is a mapping {0, 1}d → R. One simple way to identify

such a function is to note that it is a table containing 2d entries, each entry

corresponding to one of the possible inputs. Additionally, there is a one-to-one

correspondence between each such input and the binary representation of the

first 2d natural numbers. To denote this relation, we will use ζh to represent

the vector in {0, 1}d satisfying:

d∑︂
i=1

2i−1(ζh)i = h for h ∈ {0, ..., 2d − 1}.

Where the notation (ζh)i is used to index the i-th element of the vector

ζh. Sometimes, to avoid clutter, we will denote the i-th element of a vector z

as simply zi. To exemplify, considering d = 2 we have:

ζ0 =

[︃
0
0

]︃
; ζ1 =

[︃
1
0

]︃
; ζ2 =

[︃
0
1

]︃
; ζ3 =

[︃
1
1

]︃

7

and J(z) can be represented by the table listing all possible J(ζh). Notably,

any alternative function J ′ : [0, 1]d → R satisfying:

J(ζh) = J ′(ζh), for h ∈ {0, ..., 2d − 1} (2.1)

can also be used to generate the same mapping, regardless of how J ′(·) behaves

outside of {0, 1}d. This observation will be used to motivate some methods in

subsequent parts of this work. We can additionally represent J(z) with the

following equivalent form:

PJ(z) =
2d−1∑︂
h=0

(︄
d∏︂

i=1

z
(ζh)i
i z

(ζh)i
i

)︄
J(ζh). (2.2)

Where we denote z = 1− z, for 1 = [1, · · · , 1]⊤, and we adopt the conven-

tion 00 = 1. For reference, z and z are often called literals. Another notation

that we will sometimes use is the following, considering D = {1, 2, ..., d}:

PJ(z) =
∑︂
S⊆D

(︄
d∏︂

i=1

z
(1S)i
i z

(1S)i
i

)︄
J(1S),

where:

(1S)i =

{︄
1 if i ∈ S
0 otherwise

. (2.3)

We emphasize that PJ(z) = J(z) for all ζh, since the only summand that

is ̸= 0 for z = ζk is the iterate where h = k and the inner product inside the

parenthesis will evaluate to 1 for this summand.

Note also that, for two different J ′(·) and J ′′(·) satisfying Equation (2.1),

PJ ′(u) = PJ ′′(u) for u ∈ [0, 1]d. This will be important later in this work,

when we explore the behavior of PJ(·) outside of {0, 1}d.

The form in Equation (2.2) is a multilinear polynomial, since it corresponds

to a polynomial whose terms never appear exponentiated by more than a factor

of 1. The polynomial can be alternatively denoted as:

PJ(z) =
∑︂
S⊆D

wS
∏︂
i∈S

zi. (2.4)

Where wS are weights assigned to subsets of D and the product is one for the

empty set. The following result makes it simpler to notice that the two forms

are equivalent:

8

Theorem 1. An arbitrary twice differentiable function f : Rd → R will have

a Hessian whose diagonal is equal to 0 = [0, · · · , 0]⊤ if and only if it can be

represented in the form of Equation (2.4).

Proof. Section A.1 in the appendix.

Inspecting Equation (2.2), we can see that its Hessian has diagonal equal to

zero, so it can indeed be expressed in the form of Equation (2.4). Additionally,

for an arbitrary pseudo-Boolean function J(·), its multilinear polynomial form

is unique (Boros and Hammer 2002, section 4.1). We present an example of

these forms below:

Example 1. Considering the following pseudo-Boolean function for d = 2:

J(ζ0) = A; J(ζ1) = B; J(ζ2) = C; J(ζ3) = D.

Expressing PJ(z) as in Equation (2.2) corresponds to:

PJ(z) = (1− z1)(1− z2)A+ z1(1− z2)B + (1− z1)z2C + z1z2D

= z1z2A+ z1z2B + z1z2C + z1z2D,

whereas Equation (2.4) corresponds to:

PJ(z) = A+ (B − A)z1 + (C − A)z2 + (A−B − C +D)z1z2.

The degree of the PB function is the size of the largest S ⊆ D for which

wS ̸= 0 in Equation (2.4). Finally, in PB optimization, some local search

methods use the following alternative definition of derivative:

∆i(z) = J(z1, · · · ,zi−1, 1, zi+1, · · · , zd) (2.5)

− J(z1, · · · , zi−1, 0, zi+1, · · · , zd).

On this study, whenever we mention the term derivative, it will always refer to

the conventional derivative, not the one in Equation (2.5), unless specifically

stated. Optimization of PB functions therefore involves finding:

z∗ = arg min
z∈{0,1}d

J(z). (2.6)

9

Note that rewriting the optimization over a categorical variable under the

PB framework is also possible. Particularly, if the number of categories is

K = 2d, and Cat : {0, 1}d → {1, 2, · · · , K} is some invertible mapping, we

have:

arg min
C∈{1,2,··· ,K}

g(C) = arg min
h∈{0,...,2d−1}

g(Cat(ζh))

= arg min
z∈{0,1}d

g(Cat(z))

= arg min
z∈{0,1}d

J(z).

Even if K ̸= 2d, it is straightforward to extend the above. For K < 2d,

for example, we can make Cat(·) a surjective (but not injective) mapping,

although this extension would lead to a less natural interpretation.

2.2 Examples

Many combinatorial optimization problems can be easily formulated under the

PB optimization framework, we present some examples below.

Example 2 (Maximum Satisfiability, adapted from section 3 of Boros and

Hammer (2002)). This is a very frequently studied problem in applied math-

ematics/theoretical computer science. The input is a family C of clauses C,

where each of them is a set C ⊆ {z1, z1, · · · , zd, zd}. A clause is satisfied when

any of its literals evaluate to one. In logic notation, considering ui ∈ C as the

literals in an arbitrary clause, the clause is satisfied when:

u1 ∨ u2 ∨ · · · ∨ u|C| = 1.

Mathematically, this happens when:∏︂
u∈C

u = 0,

the problem corresponds to the following minimization:

arg min
z∈{0,1}d

∑︂
C∈C

∏︂
u∈C

u.

10

Example 3 (Maximum Independent Set, adapted from section 3 of Boros

and Hammer (2002)). Considering a graph G = (V , E), with vertex set V and

edge set E, where V = {1, · · · , d}, an independent set is one in which no two

vertices belong to the same edge e ∈ E. The problem becomes finding:

arg max
U⊆V

|U| s.t. N(v) ∩ U = ∅, ∀v ∈ U .

Where N(v) represents the neighbours of vertex v. Tavares (2008, theorem 2.1)

shows that the maximum of this problem is equal to:

max
z∈{0,1}d

∑︂
i∈V

zi −
∑︂

(i,j)∈E

zizj.

Although this equation corresponds to the cardinality of the maximum indepen-

dent set, an arbitrary maximizing z = z∗ is not guaranteed to be independent.

Nonetheless, its conversion to a maximizing independent set will take at most

(|V | −
∑︁

z∗i) iterations. Note that we present this as a maximization problem

for consistency with the literature, but since:

max
x

J(x) = −min
x
−J(x),

every maximization problem has a minimization equivalent.

Example 4 (Computer Vision). These problems often involve assigning dis-

crete labels for every pixel in an image. For example, in image segmentation,

one may want to discern foreground from background, or to identify pixels cor-

responding to human skin in an image. In tracking, the goal is to follow some

object on a sequence of frames, which also involves labeling pixels as either

pertaining to the object or not (Szeliski 2022).

Assuming we have two labels, such as in binary image segmentation, the

loss can often be formulated using energy minimization (LeCun, Chopra, et al.

2006; Szeliski et al. 2008):

E(z) = Ed(z) + λEs(z).

11

Where Ed is the data energy, which penalizes deviation from the data, whereas

Es(z) is the smoothness energy, which enforces spacial coherence, and λ is

just a tradeoff parameter. Interestingly, Ed(z) corresponds to the negative log-

likelihood of a Markov Random Field whereas Es(z) corresponds to that of the

prior (S. Z. Li 2012). This probabilistic interpretation is reminiscent of the

ones done for classification and regression in Machine Learning (White 2022,

chapter 3).

The problem then becomes that of finding:

arg min
z∈{0,1}d

Ed(z) + λEs(z)

Where d can correspond, for example, to the width times the height of an image,

or to their sum in case of multiple images, such as a video or a dataset.

Example 5 (Training of Binary Neural Networks). Considering problems

where the model is parametrized by a neural network, minimizing the loss cor-

responds to:1

minimize J(w) = E
X,Y ∼D

[ℓ(f(X;w), Y)] , for w ∈ W .

Where X and Y are the data and labels respectively, D is the data distribution,

w represents the weights of the neural network, which belong to the setW. The

neural network evaluation is denoted by f(·) and ℓ(·) is the loss, which can be,

for instance, a regression or a classification loss.

Sometimes it is desirable to constrain Neural Network weights to only have

a discrete set of possible values, which can be due to memory constraints. Work

done in Courbariaux et al. (2015) and Hubara et al. (2016), for example,

allows weights to be either 1 or −1. The problem becomes finding:

arg min
z∈{0,1}d

E
X,Y ∼D

[ℓ(f(X; 2z− 1), Y)] .

1We emphasize that some problems have an infimum, but not a minimum. Still, a solution
close to the lower bound is often desired even in these cases. When we say the goal is to
minimize the problems we refer to both situations.

12

2.3 Algorithmic approaches

In this section, we make a brief and non-comprehensive overview of some

algorithmic approaches commonly used on PB optimization. By reason of the

exponential number of solutions, it may be necessary to waive the search for

the global optimum and instead stop it when a local solution is reached. Local

search methods are a broad class of iterative approaches that look for the

best solution in a neighbourhood N(z) around the current solution z (see, for

example, Schuurmans and Southey (2001) or sections 4.3 and 4.6 of Boros

and Hammer (2002)). Considering, for instance, a neighbourhood using the

Hamming distance, which here corresponds to the number of coordinates where

1S is different from 1S′
, for S and S ′ both ∈ {1..d}, the method may return a

local solution ẑ∗ satisfying:

J(ẑ∗) ≤ J(z), for z ∈ N(ẑ∗).

The high level approach the deterministic version of these methods take is

summarized in Algorithm 1. Nevertheless, a greedy search around the current

solution is likely to get stuck on a poor local optimal, justifying the emergence

of alternative approaches that allow some degree of exploration. As an example,

tabu search methods (Glover 1989; Glover 1990) accept changing the solution

for another whose value of J(·) is higher, in case it is no longer possible to

get improvement in the current neighbourhood. Moreover, they discourage

re-visiting previous solutions by means of a technique they call prohibitions.

Algorithm 1 General procedure for approximation algorithms

Input: PB function J(·), initial solution z0, neighbourhood function N(·);
t← 0
while u < zt, for u ∈ N(zt) do

zt+1 ← u
t← t+ 1

Return: zt

Similarly, simulated annealing (Salamon et al. 2002; Van Laarhoven et al.

1987) allows some degree of exploration, controlled by a temperature param-

eter. When the temperature is high, the model will have a higher probability

13

of choosing a next solution worse than the current one. As the temperature

goes to zero, the probability of the worse choice becomes arbitrarily close to

zero. The method then follows a temperature schedule based on the computa-

tional budget. The name annealing comes from an technique from metallurgy,

where the material goes through heating and then controlled cooling to alter

its physical properties.

Yet another popular approach surfaces by interpreting some problems as

graph optimization. In computer vision, for example, Boykov et al. (2001)

and Szeliski et al. (2008) re-cast problems involving pixel labelling as finding

the minimum cut of a graph. The max-flow min-cut theorem (Dantzig and

Fulkerson 2003) draws a connection between this problem and the maximum

value of the flow in a flow network, allowing the reuse of efficient algorithms

from graph theory to speed-up the search for approximate solutions (Dinitz

1970; Edmonds and Karp 1972).

Alternatively, genetic algorithms take inspiration from natural selection

to find the approximate solution while avoiding getting stuck on poor local

optima (Kramer and Kramer 2017). They start with a population of randomly

initialized solutions (called individuals) which correspond to an iterate (called

generation) of the algorithm. The method assigns each candidate solution a

fitness score, which, in our case, is based on the function J(·). Then, selection

of a subset of the individuals happens according to this fitness score2 and is

succeeded by a merging phase. Merging follows a problem-specific formulation

and outputs the candidates of the next generation. In our case, to illustrate,

one possibility is to select a cutoff index and swap the values before and after

the index between the two parents. Moreover, to further increase stochasticity,

randomly changing some part of the children via mutation is common practice.

The algorithm ends when a desired fitness level is achieved, the fitness plateaus

or the computational budget is used up. Notably, this method can help avoid

poor local minima due to the multiple distinct initializations.

2Sometimes it may be wise to also include less fit candidates to make the population
more diverse.

14

Meanwhile, branch-and-bound algorithms (Lawler and Wood 1966) are also

prominent. The essence of such methods is to break down the search, recur-

sively splitting the original search space into smaller subspaces. For each sub-

space S, the algorithm will compute a lower bound on J(z) for z ∈ S and will

use its value to discard subspaces where it is certain that the desired solution

will not be found. The problem instance (and the sub-problem instances gen-

erated thereafter) must define three operations: (1) branching, which breaks

the instance into sub-instances (2) bounding, which computes the lower bound

on the function for the current instance (3) returning candidate, which returns

a candidate solution from the set of values in the current instance.

Finally, quadratization methods reduce the degree of the original multi-

linear polynomial from Equation (2.2), rewriting it as:

P ′(z′) = a∅ +
∑︂
i∈D′

biz
′
i +

∑︂
i,j∈D′

i<j

cijz
′
iz

′
j.

Where d ≤ d′, D ⊆ D′ = {1, · · · , d′} and z′ ∈ {0, 1}d′ . One can transform

the polynomial iteratively by increasing the size of the set by one each time.

Adding a new element can, for example, be performed by selecting a pair from

the previous iteration set and having the new member correspond to their

product. Weights from the old P(·) can then be changed in a way that re-

duces the degree of some of the summands by one while also enforcing that

the new element is indeed the product of the chosen pair. For more details of

the complete example, refer to Boros and Hammer (2002, section 4.4). Rosen-

berg (1975) shows that this procedure can be completed in polynomial time.

Furthermore, if the following submodularity condition is satisfied:

P ′(1A) + P ′(1B) ≥P ′(1A∪B) + P ′(1A∩B),

finding the solution P(z∗) in polynomial time is possible (Grötschel et al.

1981). In general, however, this condition is not satisfied and the problem is

NP-hard. Nonetheless, development of algorithms tailored to the quadratic

case is an active area of research. Tavares (2008) overviews some quadratic PB

optimization methods.

15

To conclude, sometimes deriving sub-optimality bounds on an approxima-

tion of the true solution and finding this approximation in polynomial time is

feasible. Algorithms that search for solutions this way are called approximation

algorithms. In general, not all PB optimization problems admit polynomial-

time algorithms with reasonable approximation guarantees as discussed in

Williamson and Shmoys (2011, chapter 16).

Nevertheless, in our case d is high and a single pass through all of the

dimensions might be prohibitive, causing even the best-case polynomial algo-

rithms to be unsuitable. Namely, d will be the number of weights on a neural

network, sometimes reaching the order of millions. High dimensions therefore

warrant alternative approaches, some of which are explored in this study.

16

Chapter 3

Numerical Continuation

This chapter introduces concepts of numerical continuation, which serve as the

basis for the continuation path methods (CP) that we will study in this work.

The first section introduces basics of numerical continuation, the second one

explains how to use numerical continuation to approximately solve pseudo-

Boolean optimization problems. We note that there are alternative ways to

approach PB optimization with CP methods, but we will restrict our discussion

to its recent use on pruning and sequential task learning. Finally, the third

section presents very simple failure cases of CP applied to PB optimization

and we reason about when these methods can fail.

3.1 Basics

Continuation methods, sometimes called embedding or homotopy methods,

are useful when solving a system of equations of the form

F (x) = 0 (3.1)

where F : Rn → Rn is smooth. There exist iterative methods for finding roots

of F (x), such as Newton-Raphson, where

xt+1 = xt − (∇F (xt))
−1F (xt)

17

with ∇F (xt) being the n×n Jacobian matrix evaluated at xt. These methods

often depend on a good initial value x0 and are unlikely to work if such an ini-

tialization is not available. Continuation methods start with a simpler problem,

where finding (reasonable approximations of) the solution is relatively easy,

and then transition iteratively to the original problem. The solutions found

for the k-th problem should serve as reasonable initial values when apply-

ing methods akin to Newton-Raphson to the k + 1-th problem, simplifying

the search. Namely, we construct a smooth homotopy or continuation path

H : Rn+1 → Rn, where

H(x, 0) = F (x), H(x, 1) = G(x)

and G(x) is some simpler function where finding roots is easier. One possible

homotopy, for example, is to simply use the interpolation between G(x) and

F (x). Based on that idea, Algorithm 2, often called embedding algorithm,

describes the most direct way of approaching the problem.

Algorithm 2 General procedure for embedding algorithms

Input: initial value xinit, homotopy H(·);
Define τ schedule 1 = τ0 > τ1 > · · · > τK = 0
for k = 0 · · ·K do

Find x̂k ≈ arg min
x∈Rn

H(x, τk), starting with xinit

▷ (e.g. using Newton-Raphson)
xinit ← x̂k

Return: x̂K

Denoting by H−1(0) the set of solutions of H(·) such that

H−1(0) = {(x, τ) | H(x, τ) = 0},

implicitly, we attempt to trace a curve with elements ∈ H−1(0) that starts with

an easy to find solution (x∗
0, 1) and ends with (x∗, 0), where x∗ is a solution to

Equation (3.1). We denote this curve by c(s), with c : R → Rn+1. Note that

this curve does not have to be parametrized with s = τ . Predictor-corrector,

for instance, parametrize s using the arc length instead.

18

The existence of such a smooth curve c(s) starting from c(0) = (x∗
0, 1) is

guaranteed if the Jacobian ∇H(·) is full-rank at c(0). Furthermore, this curve

will have non-zero derivative at s = 0. If the Jacobian is also full-rank for the

other points from H−1(0), the curve will have similar structural properties to

a circle. Additionally, for the curve to also contain (x∗, 0), as opposed to going

to infinity or returning to (x∗
0, 1), the problem must satisfy some boundary

conditions. For more details, see Allgower and Georg (2012, chapter 11).

Alternatively to Algorithm 2, some methods approach the problem by vary-

ing the s parameter directly. Particularly, one can writeH(c(s)) = 0 and differ-

entiate both sides with respect to s, combining the resulting equation with the

requirement that H(x∗
0, 1) = 0 to arrive at an initial value problem. Approxi-

mately solving the resulting differential equation can then yield a solution close

to c(s). One of the main branches of numerical continuation methods, called

predictor-corrector methods, alternate between coarse numerical integration

of the differential equation and using a local stabilizing step to eventually ar-

rive at a solution close to (x∗, 0). Another main branch of homotopy methods,

the piecewise linear methods, instead consider piecewise linear approximation

of the homotopy map. These are more general than predictor-corrector, but

they tend to perform worse in cases where both are applicable. Our discussion,

nevertheless, will be centered in approaches following Algorithm 2.

For a more detailed presentation of numerical continuation methods, see

Allgower and Georg (2012). Horst and Pardalos (2013, chapter Homotopy

Methods, section 2) additionally list many different applications of CP meth-

ods for engineering, economics and overall mathematical problems.

3.2 Application to PB optimization

There are multiple ways to apply CP methods for PB optimization. One could,

for example, take Equation (2.2) and use τ as a multiplicative factor zeroing

out the higher order terms on the easier problems, then recovering them as τ →

0. Alternatively, one could attempt to approach the problem as constrained

optimization, use Lagrange multipliers and then have τ control the strength

19

τ = 1.0 τ = 0.5 τ = 0.2 τ = 0.01

-4 -2 0 2 4

0.5

1.

r

(a) σ
(︂
x
τ

)︂ -4 -2 0 2 4

0.5

1.5

r

(b) d
dxσ

(︂
x
τ

)︂
Figure 3.1: Effect of varying the temperature of a sigmoid.

of the constraints. We will, however, focus on parametrizing z as a sigmoid.

This idea surfaces by firstly noting that

min
z∈{0,1}d

J(z) = min
x∈Rd

J(1[x ≥ 0])

where 1[·] is the indicator function, which is applied element-wise and can

represent any z as long as we choose x in the appropriate quadrant. Secondly,

we note that

lim
τ→0

σ
(︂x
τ

)︂
=

{︄
1[x > 0] x ̸= 0

0.5 x = 0

where

σ(x) =
1

1 + e−x

is the logistic sigmoid function, which here we consider to be applied element-

wise when the input is a vector. We will ignore the case x = 0, as it rarely

occurs in practice when the algorithms get to τ ≈ 0. Combining the two

observations, we can then take some arbitrary τ and write the problem as

minimize lim
τ→0

J
(︂
σ
(︂x
τ

)︂)︂
, for x ∈ Rd. (3.2)

Figure 3.3 shows how the plot of σ(·/τ) changes as we vary the temperature

τ , as well as what happens to its derivative. Notably, the derivative becomes

large near x = 0 and almost zero everywhere else, causing gradient-based

optimization to become infeasible for τ close to zero.

20

Nonetheless, we can take an approach similar to the one from Section 3.1.

Starting from τ = 1, which corresponds to a problem amenable to gradient-

based optimization and iteratively changing τ to be closer to zero, we make

the problem gradually closer to the desired one. Conveniently, the procedure

also yields good starting solutions for the problems corresponding to the in-

termediate values of τ . To make the connection to Section 3.1 more explicit,

for an arbitrary τ , our goal is to find x close to stationary, which satisfies

∇xJ
(︂
σ
(︂x
τ

)︂)︂
≈ 0. (3.3)

We reiterate that the gradient might not ever be exactly zero. For example, if

d = 1 and J(·) is the identity mapping, the gradient can get arbitrarily close,

but it will never be zero. Despite that, we can take:

H(x, τ) = ∇xJ
(︂
σ
(︂x
τ

)︂)︂
and then follow Algorithm 2. Instead of using Newton-Raphson, here it is more

straightforward to simply use stochastic gradient descent (SGD).

Finally, the reader may have noted that we cannot use τ = 0, as that

involves division by zero. Be that as it may, a small enough τ will have the

same effect, for limited computer precision will cause σ(x/τ) ∈ {0, 1} if x ̸= 0.

Interestingly, this method is reminiscent of curriculum learning, where the

learner starts with an easier problem that also becomes harder over time. Luo

and Wu (2020), Savarese et al. (2020), and Yuan et al. (2020) have successfully

used this homotopy for pruning, whereas Azarian et al. (2020) also suggest it,

but adopt a simplified version. Serra et al. (2018) have used it for sequential

task learning.

3.3 Drawbacks

One concerning aspect of PB methods from Section 3.2 is the extrapolation

of information from evaluations inside the hypercube (i.e. [0, 1]d) to the differ-

ences between evaluations at the vertices (i.e. {0, 1}d). To clarify, x is initialized

to some finite value, usually 0, so that σ(xi/τ) = 0.5, and SGD uses gradi-

ents evaluated there to arrive at a new x. The goal, however, is to find one of

21

Figure 3.2: Completely different choices of J(·) lead to the same PB optimiza-
tion problem.

0 0.5 1

-1

0

1.

z

J
(z
)

(a) Example 6

0 0.5 1
0

1.

2.

z
J
(z
)

(b) Example 7

Figure 3.3: J(·) for the counter examples.

the vertices where J(·) is lower than in other elements from {0, 1}d. Since the

gradient only indicates changes in a small neighbourhood around the current

value, can one reliably use it to draw conclusions about J(·) in regions far from

the current x?

Furthermore, as we mentioned in Section 2.1, any function whose evalu-

ations on the corners are the same as from the multi-linear polynomial will

correspond to the same PB optimization problem (Equation (2.1) and the sub-

sequent discussion). Figure 3.2 illustrates one such example, for d = 1. The

J(·) at hand will often not be the multilinear polynomial P(·) from Equa-

tion (2.2). Since these derivatives can be completely different depending on

the choice of J(·) is their information really relevant? For example, the deriva-

tive at x = 0 can make it seem that the right choice is to go towards z = 1,

but the (negative) gradient might as well have pointed to z = 0 had a different

J(·) been used. With all of these in mind, we present some failure cases for

CP methods implementing the ideas from Section 3.2.

22

Example 6. Consider the following function, whose plot is shown in Fig-

ure 3.3a

J(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1− 2z z < 0.125

−51 + 398z 0.125 ≤ z < 0.13

1− 2z 0.13 ≤ z < 0.87

−347 + 398z 0.87 ≤ z < 0.875

3− 2z 0.875 ≤ z

.

In this case, we have J(0) < J(1). However, for most of the (0, 1) interval, the

negative gradient points towards z = 1. Taking conclusions about the behaviour

of J(·) in {0, 1} using these derivatives is therefore incorrect.

Luckily, however, for z ∈ [0.125, 0.13)∪ [0.87, 0.875), the negative gradient

has a large magnitude and points towards z = 0. Therefore, depending on the

learning rate, the model might be able to reach these regions, which will in turn

help lead it to the correct solution. Figure 3.4 depicts running the CP algorithm

for this loss starting with x = 0 and training for 100 iterations before updating

τ . On these examples, we use J(σ(x/τ)) during training, but the curves only

show J(1[x > 0]) at each timestep, since only 0 and 1 are valid solutions to

the problem. Only the higher learning rates got to the correct solution.

101 102 103 104

Iteration

1

0

1

J(
)

(a) α = 0.5

101 102 103 104

Iteration

1

0

1

J(
)

(b) α = 0.1

101 102 103 104

Iteration

1

0

1

J(
)

(c) α = 0.05

101 102 103 104

Iteration

1

0

1

J(
)

(d) α = 0.01

Figure 3.4: Performance of different learning rates (α) for the problem in Ex-
ample 6.

Example 7. Consider the following function, depicted in Figure 3.3b:

J(z) =

{︄
2− 12.5(z − 0.4)2 z < 0.4

2− 1
0.36

(z − 0.4)2 0.4 ≤ z
.

23

In this case, whenever z = σ(x/τ) is greater than 0.4, the derivative is negative

and gradient descent will go towards z = 1, even though the correct solution

is z = 0. This will happen regardless of the learning rate being used. For

the CP algorithm to get to the correct solution, it has to be initialized with

xinit < Logit(0.4). Since in general we cannot assume prior knowledge about

the problem, it is customary to use xinit = 0, making it impossible to solve the

problem with this CP method. For problems like these, initializing the method

in the right region amounts to knowing what the solution is before running the

method, which would defeat the purpose of using CP.

These examples showcase how these extrapolations can be inaccurate. We

note that gradient-based optimization has a similar problem: general theoreti-

cal guarantees only exist for local minima, not global, and there is an underly-

ing assumption that these minima will be good enough solutions. Nevertheless,

here the problem is exacerbated, for the comparisons between corners are all

that matters to find good solutions. The failure cases arise because the meth-

ods only take them into account indirectly. Truly, they may not even reach a

local minimum in a neighbourhood of Hamming distance 1, such as in Exam-

ple 7. In the experimental section, we will compare CP methods to alternative

approaches in a range of different settings to see how well the extrapolations

hold.

24

Chapter 4

Monte Carlo gradient
estimation

This chapter starts by presenting an alternative way of writing pseudo-Boolean

optimization by optimizing probabilities instead (Section 4.1.1). Then, in Sec-

tion 4.1.2, we talk about how to use Monte Carlo estimation on this framework.

Section 4.2 starts by categorizing MC gradient estimation methods and ex-

plaining why some of them cannot be used here, then explaining the ones this

work will focus on. Section 4.3 presents counter-examples elucidating some of

the drawbacks of the stochastic approach, as well as presenting a bound that

the loss must satisfy for the problem to be solvable, regardless of the vari-

ance reduction achieved. Finally, Section 4.4 introduces alternative ways of

parametrizing the probabilities, all of which will be investigated in this work.

4.1 Basics

The current section presents the basic framework used as basis for all methods

from this chapter by firstly showing how to write the PB optimization problem

using probabilities. Then we discuss how to make such a framework more

practical by estimating expectations with samples.

25

4.1.1 A Probabilistic Framework

As mentioned before, in pseudo-Boolean optimization, we want to find:

z∗ = arg min
z∈{0,1}d

J(z)

= arg min
z∈{0,1}d

PJ(z).

The probabilistic approach involves parametrizing the dimensions as factor-

ized Bernoulli random variables and optimizing their expectation instead. The

equivalence becomes more explicit after noticing the following:

Theorem 2. Assuming a vector θ ∈ [0, 1]d and considering z ∈ {0, 1}d such

that zi ∼ Ber(θi) and zi, zj independent for i ̸= j, with PJ(·) as defined in

Section 2.1 we have:

E
zi∼Ber[θi]

[J(z)] = PJ(θ). (4.1)

Proof Proposition 5 of Boros and Hammer (2002, section 4.2)

We rewrite the objective as:

minimize E
zi∼Ber[θi]

[J(z)] , for θ ∈ [0, 1]d. (4.2)

It is straightforward to verify the equivalence. On the one hand, by Equa-

tion (4.1), the optimization in Equation (4.2) has the same objective function

as the previous one: PJ(·), but now it considers the whole hypercube, not

only the vertices. Therefore:

min
θ∈[0,1]d

PJ(θ) ≤ min
z∈{0,1}d

PJ(z)

min
θ∈[0,1]d

E
zi∼Ber[θi]

[J(z)] ≤ min
z∈{0,1}d

J(z).

On the other hand, any such expectation is a weighted average of the eval-

uations in the corners and thus cannot be smaller than the lowest of those

values:

min
θ∈[0,1]d

E
zi∼Ber[θi]

[J(z)] ≥ min
z∈{0,1}d

J(z).

26

Z1

Z2

(a) [m M
l M]

Z1

Z2

(b) [m l
l M]

Z1

Z2

(c) [m M
M l]

Z1

Z2

(d) [m M
l l]

Figure 4.1: Contour plots, captions indicate the matrix
[︂
J(ζ2) J(ζ3)
J(ζ0) J(ζ1)

]︂
, blue re-

gions indicate low J(·), arrows indicate gradients.

Therefore, the two minima have to be the same. The main change from the

original problem is that, in case of multiple maximizing z values, the proba-

bilistic form will also include solutions that sample randomly between them.

Daulton et al. (2022, theorem 1) formalize this result and extend it to ordinal

and categorical formulations.

We illustrate the optimization surface obtained from this parametrization

in the following example:

Example 8. Similarly to Example 1, we use d = 2, then:

E
zi∼Ber[θi]

[J(z)] = PJ(θ)

= θ1θ2J(ζ0) + θ1θ2J(ζ1) + θ1θ2J(ζ2) + θ1θ2J(ζ3).

Assuming global optimum m = 0.0, local optimum l = 0.5 and maximum M =

1.0, Figure 4.2 illustrates the contour plots of E
zi∼Ber[θi]

[J(z)] for configurations

listed in the captions.

At least in this simple example, the optimization surface of the probabilistic

objective looks reasonable.

Using the probabilistic objective instead of the discrete one benefits from

the fact that we can now piggyback on advances from related fields which solve

similar problems. One can, for example, attempt to discover latent structure on

some simpler space and find the solution using variational inference (Blei et al.

2017). Alternatively, one can also attempt to adapt novelty search approaches

from machine learning methods or exploration strategies from reinforcement

27

learning (Ladosz et al. 2022). In this chapter, we will focus on applying Monte

Carlo methods, described in the next sections.

4.1.2 Using samples

Although we can rewrite the problem using the probabilistic formulation, we

remind the reader that the expectation in Equation (4.2) consists of a sum

of 2d terms and therefore still suffers from the problems of the original for-

mulation. Nonetheless, we can use Monte Carlo methods, which approximate

the expected value by sampling. In its simplest form, we could, for example,

approximate the expected cost by using

E
zi∼Ber[θi]

[J(z)] ≈ 1

n

n∑︂
s=1

J(z(s)), for z(s) ∼
d∏︂

i=1

Ber[θi], (4.3)

where z(s) indicates the s-th sample and z ∼
∏︁d

i=1 Ber[θi] is an alternative

notation to indicate that zi are independent Bernoulli random variables. Here,

in addition to the d per-sample coordinates (i.e. z
(s)
i for sample s) being inde-

pendent, the n samples (i.e. z(s) for s ∈ {1 . . . n}) are iid.

By the law of large numbers, the RHS of Equation (4.3) will converge to

the true expectation as n→∞. We can also show that1

E
{z(s)∼pθ(·)}ns=1

[︄
1

n

n∑︂
s=1

J(z(s))

]︄
= E

zi∼Ber[θi]
[J(z)]

and

Var

[︄
1

n

n∑︂
s=1

J(z(s))

]︄
=

1

n
Var [J(z)] . (4.4)

Alternative estimators to that of the RHS in Equation (4.3) are also possible,

where each technique has its own pros and cons. In case the expected value

of the estimator is equal to the desired quantity, the estimator is called un-

biased. In some cases, a biased estimator may have lower variance or better

convergence rate than unbiased alternatives. In this work, however, we will

focus on unbiased estimators. Monte Carlo estimation is an active area of

1Where {z(s) ∼ pθ(·)}ns=1 denotes that z(s) ∼ pθ(·) for s ∈ {1, . . . , n}. We will also use
{z(s)}ns=1 to denote {z(1), . . . , z(n)}.

28

research and techniques improving estimation include: control variates, Rao-

Blackwellization, stratification, importance sampling and antithetic sampling.

For a more in-depth introduction to these, refer to Owen (2013)

In our problem, however, we do not simply aim at estimating the objective

for some fixed θ, but at finding the minimizing θ. For this, we can apply a

SGD procedure where we choose an initial θ0, estimate the gradient of the

objective and use it to update θ. Note, however, that, on typical SGD usage

in machine learning problems we have that

∇w E
X,Y ∼D

[ℓ(f(X,w), Y)] ≈ 1

B

B∑︂
b=1

∇wℓ(f(X
(b),w), Y (b)).

This estimator is unbiased because the gradient can simply be moved outside

(or inside) the expectation:

E
X(b),Y (b)∼D

[︄
1

B

B∑︂
b=1

∇wℓ(f(X
(b),w), Y (b))

]︄
= ∇w E

X(b),Y (b)∼D

[︄
1

B

B∑︂
b=1

ℓ(f(X(b),w), Y (b))

]︄
= ∇w E

X,Y ∼D
[ℓ(f(X,w), Y)] .

Interchanging the order of expectation and gradient is only possible because

there is no dependency between the sampling probabilities and the desired

parameter (i.e. D is not a function of w in the above example). If there was

such a dependency, the estimator would change. For example:

∇θ E
z∼pθ(·)

[f(z,θ)] = ∇θ

∫︂
pθ(z)f(z,θ)dz

=

∫︂
(∇θpθ(z)) f(z,θ) + pθ(z)∇θf(z,θ)dz

=

∫︂
pθ(z) (∇θ log pθ(z)) f(z,θ) + pθ(z)∇θf(z,θ)dz

= E
z∼pθ(·)

[f(z,θ)∇θ log pθ(z)] + E
z∼pθ(·)

[∇θf(z,θ)]

̸= E
z∼pθ(·)

[∇θf(z,θ)] . (4.5)

Estimating ∇θE [f(z,θ)] with:

1

n

n∑︂
s=1

∇θf(z
(s),θ) for s = {1, . . . , n}

29

like before would only account for E [∇θf(z,θ)]. The cost function in Equa-

tion (4.2) presents a dependency of the probability on the gradient parameter.

Therefore, gradient estimators have to account for that. Particularly, given

samples z(1), . . . , z(n) and denoting (z(s))ns=1 as the ordered set containing these

samples, we want ĝ(·) such that:

E
[︁
ĝ((z(s))ns=1;θ)

]︁
= ∇θ E

zi∼Ber[θi]
[J(z)]

Section 4.2 will present some different ĝ(·) to estimate the gradient. When

estimating scalars, such as in Equation (4.3), different unbiased estimators

are usually chosen based simply on how much they can reduce the variance

in the desired problems. For gradient estimation, nonetheless, d is usually

greater than one and there are multiple scalar variances, one per dimension.

In that case, variance is usually considered element-wise or as a sum of these d

individual scalar variances. Notice that the estimated gradient ĝ is a random

variable and that its deviation from the true gradient can be written as:

e = ∇θE [J(z)]− ĝ.

Figure 4.2a illustrates these vectors. The expected squared L2-norm of the

error random variable e is given by:

E

[︄
d∑︂

i=1

e2i

]︄
= E

[︄
d∑︂

i=1

(gî − (∇θE [J(z)])i)
2

]︄

=
d∑︂

i=1

E
[︃
(gî −

∂

∂θi
E [J(z)])2

]︃

=
d∑︂

i=1

Var [gî] .

Which corresponds to the sum we mentioned. For unbiased estimators, e has

mean equal to zero, but its covariance matrix will depend on the distribution of

ĝ. The variable e may have identity covariance matrix such as in Figure 4.2b,

but it may also behave irregularly, such as in Figure 4.2c or Figure 4.2d.

The dimensions are often looked at independently, but it is possible that, for

example, some alignment between the eigenvectors of the covariance matrix

and the true gradient may lead to desirable properties. To our knowledge,

covariance between dimensions has not been sufficiently investigated yet.

30

Z2

Z1

(a)

Z2

Z1

(b)

Z2

Z1

(c)

Z2

Z1

(d)

Figure 4.2: (a) Illustration of the main multivariate gradient estimation vectors
and (b-d) example contour plots of the PDF for different e.

4.2 Methods

Firstly, we give a broad overview of Monte Carlo gradient estimation. Then,

we detail the methods used in our experiments.

4.2.1 Overview

On a recent survey, Mohamed et al. (2020) categorized approaches for MC

gradient estimation, arriving in three fundamentally distinct strategies: score

function estimation, pathwise gradient estimation and measure-valued gradi-

ents. The first one follows the derivation outlined in Equation (4.5), substitut-

ing f(z,θ) for J(z), this estimator becomes:

∇θ E
z∼pθ(·)

[J(z)] = E
z∼pθ(·)

[J(z)∇θ log pθ(z)]

≈ 1

n

n∑︂
s=1

J(z(s))∇θ log pθ(z
(s)). (4.6)

For our purposes, pθ(·) is a discrete distribution, but the estimator is also

applicable in the continuous case.2 In practice, this estimator is known to have

high variance. In some cases, it is possible to instead use pathwise gradient

estimators, also known as reparametrization trick, by writing:

z = fz(ϵ;θ) For ϵ ∼ p(·). (4.7)

2This estimator will be biased in some cases, as explained in Mohamed et al. (2020,
section 4.3.2) Particularly, for vector z, scalar θ and h→ 0, they show that p(z; θ+h) has to
be greater than zero for every z where p(z; θ) > 0. See the referred section for more details,
as well as a simple case where this condition is not met. For our use cases, however, it is
unbiased.

31

Where the underscript in fz(·) is merely to indicate that it maps to z (i.e. not

a parameter relation, like in pθ(·) = p(·;θ)). Note that p(·) above no longer

depends on θ. In that case, we have:

∇θ E
z∼pθ(·)

[J(z)] = ∇θ E
ϵ∼p(·)

[J(fz(ϵ;θ))]

= E
ϵ∼p(·)

[∇θJ(fz(ϵ;θ))]

= E
ϵ∼p(·)

[︂
∇θfz(ϵ;θ)(∇zJ(z))

⃓⃓
z=fz(ϵ;θ)

]︂
≈ 1

n

n∑︂
s=1

∇θfz(ϵ
(s);θ)(∇zJ(z))

⃓⃓
z=fz(ϵ(s);θ)

. (4.8)

One very popular distribution where it is possible to write z as in Equa-

tion (4.7) is the multivariate Normal. This method is well-known empirically

for having lower variance compared to the score function estimator from Equa-

tion (4.6), with successes in generative modeling (Kingma and Welling 2013)

and reinforcement learning (Haarnoja et al. 2018). More recently Lan et al.

(2021) derived alternatives to some of the main theorems in reinforcement

learning to use pathwise gradient estimators instead of the score function coun-

terparts.

Interestingly, the variance of the reparametrized estimators can be shown

to be bounded by the squared Lipschitz constant of the cost function J(·)

(Glasserman 2004, section 7.2.2 and Fan et al. 2015, section 10) without the

presence of the dimension d in the bound. Conversely, as we will see in Sec-

tion 4.3, the dimensionality of z can have catastrophic consequences for the

score function estimators from Equation (4.6). Xu et al. (2019) compares both

estimators theoretically in a simplified variational inference setting, attribut-

ing the increased variance of the score function estimators to the presence of

higher order terms in the variance formulas. These successes led to general-

izations of the reparametrization trick, including relaxations allowing p(·) in

Equation (4.7) to also be a function of the θ parameter3, which in turn allowed

the method to be applicable to the Beta, Gamma and Dirichlet distributions.

3In this case, more terms appear in the formula to correct for the dependency.

32

Nonetheless, this method requires differentiable cost functions and con-

tinuous inputs, while z ∈ {0, 1}d in our problem setting. As mentioned in

Bengio et al. (2013), a reparametrization exists for Bernoulli variables, since,

for u ∼
∏︁d

i=1 U [0, 1]:

∇θ E
zi∼Ber[θi]

[J(z)] = ∇θ E
ui∼U [0,1]

[J(1[u ≤ θ])]

= E
ui∼U [0,1]

[∇θJ(1[u ≤ θ])] . (4.9)

Still, similarly to what happened in Section 3.2, the coordinates of the

gradient of J(1[u ≤ θ]) are undefined for θi = ui and zero everywhere else,

rendering the reparametrization trick unusable.

Moreover, variance when using reparametrization is not guaranteed to be

lower than when using the score function. As mentioned before, it depends

on the Lipschitz constant of J(·), which can act as a double-edged knife and

cause them to perform worse than the score function methods (Mohamed et al.

2020, figure 3, section 3 and section 5.3.2). Despite all that, multiple methods

attempt to incorporate the reparametrization trick in discrete settings some-

how, culminating in estimators that are hybrid, with characteristics from both

the CP approaches from Section 3.2 as well as approaches from the current

chapter. These approaches will be discussed in Chapter 5. One of the goals of

this work is to understand if incorporating the gradients is indeed beneficial,

as well as to explain why.

Finally, measure-valued gradients, which correspond to the third category,

are not very common in machine learning. They are also unbiased and their

derivation uses Hahn decomposition theorem to write the gradient of some

signed probability measure as a difference of two unsigned measures (Mohamed

et al. 2020, chapter 6). However, these estimators require O(nd) evaluations of

J(·), the same problem the PB optimization methods from Section 2.3 suffer

from. For the reasons discussed, this chapter will focus only on score function

estimators.

33

4.2.2 REINFORCE

REINFORCE (Williams 1992), which also sometimes appears in the literature

with alternative names (Glynn 1990; Rubinstein and Shapiro 1990), corre-

sponds to the simplest form of score function estimator, which we derived and

discussed above. For convenience, we repeat its equation in this section:

ĝREINFORCE((z
(s))ns=1;θ) =

1

n

n∑︂
s=1

J(z(s))∇θ log pθ(z
(s)), for z(s) ∼ pθ(·).

(4.10)

In our case, we also have:

pθ(z) =
d∏︂

i=1

Ber[θi]

=
d∏︂

i=1

θ
zi

i θ
zi
i . (4.11)

For our experimental section, each z will be a mask applied element-wise to

large neural network weights. To avoid storing all n samples in memory simul-

taneously, which would have memory cost O(nd), we resort to iterative versions

of the estimators, changing the memory cost to O(d). For REINFORCE, this

simply corresponds to following Algorithm 3.

Algorithm 3 Iterative form of REINFORCE

ĝ ← 0;
for s = 1 · · ·n do

Sample z(s) according the distribution from Equation (4.11)
ĝ ← s−1

s
ĝ + 1

s
J(z(s))∇θ log pθ(z

(s))

Return: ĝ

As mentioned above, REINFORCE has very high variance. For this rea-

son, it is common to apply some form of variance reduction technique to

ĝREINFORCE. One of the main ones, which will be used in most of the methods

discussed in this paper, is called control variates. Briefly going back to the case

of estimating E [J(z)] instead of its gradient, notice that, for arbitrary h(·) and

considering:

E
z∼pθ(·)

[h(z)] = µh,

34

where µh a known constant4, we can write:

E
z∼pθ(·)

[J(z)] = E
z∼pθ(·)

[J(z)− h(z)] + E
z∼pθ(·)

[h(z)]

≈

(︄
1

n

n∑︂
s=1

J(z(s))− h(z(s))

)︄
+ µh.

The above quantity will be an unbiased estimator of E [J(z)] and its variance

is equal to:
1

n
Var [J(z)− h(z)] .

Comparing it to Equation (4.4), we can see that, if the difference J(z)− h(z)

has smaller variance than J(z), using control variates will be beneficial. Going

back to estimating gradients, we denote:

gh = ∇θ E
z∼pθ(·)

[h(z)]

and similarly, by adding and subtracting this quantity, we can arrive at:

∇θ E
z∼pθ(·)

[J(z)] = E
z∼pθ(·)

[(J(z)− h(z))∇θ log pθ(z)] +∇θ E
z∼pθ(·)

[h(z)]

≈

(︄
1

n

n∑︂
s=1

(J(z(s))− h(z(s)))∇θ log pθ(z
(s))

)︄
+ gh. (4.12)

By using this principle, some methods select h(·) close to J(·), but whose

corresponding ∇θPh(·) is feasible to compute, such as a Taylor expansion of

J(·) (Gu et al. 2015). More generally, other methods subtract and re-add the

expectation, but use a reparametrization estimator instead of gh, combining

score function and pathwise gradient estimation and resulting in hybrid meth-

ods (Grathwohl et al. 2017; Tucker et al. 2017). As mentioned before, some

of these methods will be discussed in Chapter 5. In this section, we consider

control variates which do not rely on ∇J(·).
4We omit its dependence on θ to simplify the notation.

35

4.2.3 LOORF

Proposed initially by Kool et al. (2019), this method arises by deriving a control

variate similarly to Equation (4.12), but now considering all of the samples

simultaneously when designing the baseline to be subtracted. Particularly, for

a single s ∈ {1, . . . , n}, we denote the ordered set containing all other samples

by

(z(s
′))s′ ̸=s = (z(s

′) | s′ ∈ {1, . . . , n} \ {s}).

Then, considering z(1), . . . , z(n) iid, we have:

E
z(s)∼pθ(·)

[︁
J(z(s))∇θ log pθ(z

(s))
]︁
= E

[︂
(J(z(s))− h((z(s

′))s′ ̸=s))∇θ log pθ(z
(s))
]︂
+

E
[︂
h((z(s

′))s′ ̸=s)∇θ log pθ(z
(s))
]︂

= E
[︂
(J(z(s))− h((z(s

′))s′ ̸=s))∇θ log pθ(z
(s))
]︂
+

E
[︂
h((z(s

′))s′ ̸=s)
]︂
����������⁓0
E
[︁
∇θ log pθ(z

(s))
]︁

= E
[︂
(J(z(s))− h((z(s

′))s′ ̸=s))∇θ log pθ(z
(s))
]︂
.

(4.13)

Where we used that the expected value of the score function is zero. This

means that we can use any function of the other n−1 samples to compose the

control variate. To keep h(·) and J(·) close, Kool et al. (2019) use:

h((z(s
′))s′ ̸=s) =

1

n− 1

∑︂
s′ ̸=s

J(s′),

for iid z(s) ∼ pθ(·). By linearity of expectations, we can average Equation (4.13)

for all s and the estimator then becomes:

ĝLOORF ((z
(s))ns=1;θ) =

1

n

n∑︂
s=1

(︂
J(z(s))− 1

n− 1

∑︂
s′ ̸=s

J(z(s
′))
)︂
∇θ log pθ(z

(s))

=
1

n− 1

n∑︂
s=1

(︂
J(z(s))− 1

n

n∑︂
s=1

J(z(s
′))
)︂
∇θ log pθ(z

(s)).

(4.14)

36

Where the proof of equivalence between the two forms is shown in Kool et

al. (2019). Although this is a simple estimator, it is a strong baseline which

has outperformed more advanced variance reduction techniques (Dimitriev

and M. Zhou 2021). Richter et al. (2020) shows an alternative derivation of

this estimator using a variational inference perspective and also enumerates

conditions in which it behaves closely to the optimal control variate. Similarly

to REINFORCE, we require a way of sampling iteratively, which is shown in

Algorithm 4

Algorithm 4 Iterative form of LOORF

Start accumulators:
Ĵ ← 0;
Λ∇ log ← 0;
ΛJ∇ log ← 0;
for s = 1 · · ·n do

Sample z(s) according the distribution from Equation (4.11)
Ĵ ← s−1

s
Ĵ + 1

s
J(z(s))

Λ∇ log ←
max (s−2,1)

max (s−1,1)
Λ∇ log +

1
max (s−1,1)

∇θ log pθ(z
(s))

ΛJ∇ log ←
max (s−2,1)

max (s−1,1)
ΛJ∇ log +

1
max (s−1,1)

J(z(s))∇θ log pθ(z
(s))

ĝ ← ΛJ∇ log − Λ∇ logĴ
Return: ĝ

4.2.4 ARMS

This estimator extends the idea of antithetic sampling from Monte Carlo es-

timation to gradient estimation. The base principle is to use samples that are

opposite in some way and rely on their error cancellation to reduce variance.

To understand it, we once more go back to the case where we are estimating

a scalar quantity. Say we want to estimate E [f(u)], for u ∈ D (instead of

{0, 1}d). Furthermore, assume that u ∼ p(·), where p(·) is a symmetric density

with respect to point c. Namely, we define a reflection of u through c, here

called u, such that:

u− c = −(u− c).

37

For p(·) to be symmetric, we must have:

p(u) = p(u).

Notice that requiring such a density is not too restrictive. The uniform density

on D = [0, 1]d with c = [0.5 0.5 . . .]⊤ and u = 1−u, for example, satisfies this

condition. This density is commonly used as the basis for sampling from some

distributions, since applying specific functions to uniform random variables,

such as when using inverse transform sampling or the Gumbel max trick, is

often statistically equivalent to sampling from the desired distributions (Owen

2013, chapter 4). The antithetic sampling estimate is obtained by:

E
u∼p(·)

[f(u)] ≈ 1

n

n/2∑︂
s=1

f(u(s)) + f(u(s)).

The efficacy of this estimator for variance reduction will depend heavily on

how f(·) behaves. Its variance is equal to:

1

n
Var [f(u)] (1 + Corr [f(u), f(u)]),

as opposed to (1/n)Var [f(u)] as in simple Monte Carlo estimation. In a mono-

tonic function, for instance, the correlation should be closer to −1, causing

antithetic sampling to be efficient. More generally, we can write f(·) as a sum

of even part fE(·) and odd part fO(·):5

f(u) =
f(u) + f(u)

2⏞ ⏟⏟ ⏞
fE(u)

+
f(u)− f(u)

2⏞ ⏟⏟ ⏞
fO(u)

.

The odd part has expectation zero and the even part has the same expectation

as f(·). Antithetic sampling has benefit of eliminating the variance from the

odd part, but has the drawback of doubling the variance from the even part.

Going back to the discrete case, estimating the expected loss can be done as

follows:

E
zi∼Ber[θi]

[J(z)] = E
ui∼U [0,1]

[J(1[u ≤ θ])]

≈ 1

n

n/2∑︂
s=1

J(1[u(s) ≤ θ]) + J(1[u(s) ≤ θ]).

5Even and odd are meant with respect to c, not 0.

38

For u(s) ∼
∏︁d

i=1 U [0, 1] and u(s) = 1− u(s).

We now move the discussion back to gradient estimation. In the context

of Neural Networks, the first paper that tried to incorporate this technique

was ARM (Yin and M. Zhou 2018), which was later improved by two con-

current works: DisARM (Dong et al. 2020) and U2G (Yin, Ho, et al. 2020),

both discovering an equivalent improvement of ARM independently. Notably,

however, these methods seem to underperform LOORF for larger n as noted

by Dimitriev and M. Zhou (2021). Specifically, this work argues that LOORF

leverages all possible combinations of pairs among the n samples, whereas

ARM/U2G/DisARM only combine the antithetic pairs.

To use the idea of antithetic sampling while still taking advantage of all

pairs, they propose ARMS. Starting with d = 1 and n = 2, considering

z(1), z(2)
iid∼ Ber[θ] we can write the expected value of LOORF as:

E
pθ(·)

[︁
ĝLOORF ((z

(1), z(2)); θ)
]︁
= E

p̃θ(·)

[︃
pθ(z̃

(1), z̃(2))

p̃θ(z̃
(1), z̃(2))

ĝLOORF ((z̃
(1), z̃(2)); θ)

]︃
= E

p̃θ(·)

[︃
pθ(z̃

(1))pθ(z̃
(2))

p̃θ(z̃
(1), z̃(2))

ĝLOORF ((z̃
(1), z̃(2)); θ)

]︃
.

(4.15)

Where we use importance sampling (Owen 2013, chapter 9) to change the

sampling distribution, introducing dependency between the random variables.6

Dimitriev and M. Zhou (2021) also require that the marginals of the impor-

tance distribution remain the same as the ones from the nominal distribution,

namely: ∫︂
p̃θ(z̃

(1), z̃(2))dz̃(2) = p̃θ(z̃
(1)) = pθ(z̃

(1)),

and similarly for p̃θ(z̃
(2)). Using the fact that the ĝLOORF ((z̃

(1), z̃(2)); θ) = 0

whenever z̃(1) = z̃(2) as well as that the marginals remain the same, they show

that the RHS of Equation (4.15) reduces to:

E
p̃θ(·)

[︃
1

1− ρ
ĝLOORF ((z̃

(1), z̃(2)); θ)

]︃
, where ρ = Corr

[︁
z̃(1), z̃(2)

]︁
.

6Some authors denote importance sampling without changing the variable inside the

expectation (i.e. E
p(·)

[f(x)] = E
q(·)

[︂
p(x)
q(x)f(x)

]︂
), we opt to use z̃ instead of z to emphasize that

the sampling distribution changes.

39

Notably, if ρ is the smallest negative value possible, we recover the antithetic

pair from above (i.e. (z̃(1), z̃(2)) = (1[u(1) ≤ θ],1[u(1) ≤ θ])). After some alge-

bra, the expression above can be generalized to d > 1 and n > 2, yielding the

ARMS estimator:

ĝARMS((z̃
(s))ns=1;θ) =

1

1− ρ
ĝLOORF ((z̃

(s))ns=1;θ), (4.16)

where ρi = Corr
[︂
z̃
(s)
i , z̃

(s′)
i

]︂
, for s ̸= s′.

Importantly, for each dimension i ∈ {1, . . . , d}, they assume that the correla-

tion between all pairs of scalar samples (z̃
(s)
i , z̃

(s′)
i) will be the same value.

To obtain samples satisfying such a structure, they rely on copula sampling

(Owen 2013, section 5.6). To summarize, applying a CDF of some random

scalar varible to that same variable results in an output distributed according

to U [0, 1]. Therefore, if we sample a d-dimensional random variable and apply

each marginal CDF to the corresponding dimension, we get d (marginally)

uniform random variables. If the original distribution causes the d original

variables to have mutual negative dependence, the uniforms should keep some

of this dependence. Then, these uniform variables can be used to produce

Bernoulli samples by the reparametrization from Equation (4.9).

Dimitriev and M. Zhou (2021) propose two different ways to get these

uniforms: Dirichlet copula and Gaussian copula. On their experiments, the

Dirichlet copula performed the best, and for that reason it is the one we are

going to use in this work. The full procedure as proposed in their paper is

summarized Algorithm 5. As before, we require the algorithm to be iterative

and therefore modify their sampling procedure7 to the one outlined in Algo-

rithm 6, shown only for d = 1 to simplify exposition. Proof of equivalence

between the two sampling procedures is provided in Section A.2, as well as the

full iterative algorithm to compute the ARMS estimator, obtained by combin-

ing Algorithms 4 to 6.

7Note that
∑︁n

s′=1 log u
(s′)
i in Algorithm 5 requires all n samples to have been computed

beforehand.

40

Algorithm 5 Original ARMS with Dirichlet copulas

▷ This loop can be parallelized with vectorized implementations
for i ∈ 1 . . . d do

Sample u
(s)
i

iid∼ U [0, 1] for s ∈ {1, . . . , n}
d
(s)
i ←

log u
(s)
i∑︁n

s′=1 log u
(s′)
i

▷ Convert iid uniforms to Dirichlet r.v.

ũ
(s)
i ← 1− (1− d

(s)
i)n−1 ▷ Apply marginal CDF

if θi > 0.5 then ▷ Additional steps from ARMS paper
z̃
(s)
i ← 1[ũ

(s)
i ≤ θi]

ρi ← max(0,2(1−θi)
1

n−1−1)n−1−(1−θi)
2

θi(1−θi)
▷ Correlation from ARMS paper

else
z̃
(s)
i ← 1[1− ũ

(s)
i ≤ θi]

ρi ← max(0,2θ
1/(n−1)
i −1)n−1−θ2i
θi(1−θi)

▷ Correlation from ARMS paper

ĝ ← ĝARMS((z̃
(s))ns=1;θ)

Return: ĝ

Algorithm 6 Iterative sampling from Dirichlet copula (d = 1)

Sample
∑︁

s′ E
(s′) ∼ Gamma[n, 1]

R←
∑︁

s′ E
(s′)

for s ∈ 1 . . . n do
if s < n then

Sample U ∼ U [0, 1]

E(s) ← −RU
1

n−s +R
else

E(s) ← R
R← R− E(s)

▷ Get single Dirichlet r.v. (PS:
∑︁

s′ E
(s′) was already computed)

d(s) ← E(s)∑︁
s′ E

(s′)

ũ(s) ← 1− (1− d(s))n−1 ▷ Apply marginal CDF
yield ũ(s)

41

4.2.5 Beta∗

As shown in Equation (4.13), if the control variate is of the form h(·)∇θ log pθ(·),

as long as h(·) is not a function of the current sample z(s), the correction sum-

mand is simply zero. We here consider only constant functions (i.e. h(·) = β),

but allow different βi for different dimensions. Theorem 3 shows a closed-form

expression for the optimal control variate in this case.

Theorem 3. Consider the problem of estimating:

∂

∂θi
E

z∼pθ(·)
[J(z)] = E

z∼pθ(·)

[︃
∂ log pθ(z)

∂θi
J(z)

]︃
by sampling z(s)

iid∼ pθ(·), for s ∈ {1, . . . , n} and using:

ĝβi
((z(s))ns=1;θ) =

1

n

n∑︂
s=1

(︂
J(z(s))− βi

)︂∂ log pθ(z(s))
∂θi

. (4.17)

The optimal β∗
i such that

β∗
i = arg min

βi∈R
Var

[︁
ĝβi

((z(s))ns=1;θ)
]︁

is given by

β∗
i = E

z∼qi(·;θ)
[J(z)] , where qi(·;θ) ∝ pθ(·)

(︃
∂ log pθ(·)

∂θi

)︃2

.

Proof. Section A.3 in the appendix.

The quantity pθ(·)
(︂

∂ log pθ(·)
∂θi

)︂2
above is the integrand of the (diagonal)

Fisher information metric for the corresponding i. The Fisher information

corresponds to the integral of this function and quantifies how much a random

variable z distributed according to pθ(·) is predictive of the parameter θi. If

this quantity is high then it should take less observations of z to compute θi

accurately via Monte Carlo. The distribution qi(ζh;θ), for h ∈ {0, . . . , 2d−1},

weights the relative contribution of the value ζh among the possible values z

can assume.

To exemplify, if d = 1 and θ = 0.999, sampling z will yield multiple 1 values,

but it is the zeros that are going to enable better discernment of whether θ is

0.9, 0.99 or 0.999. Theorem 4 shows what the optimal β∗
i is when z is sampled

from a factorized Bernoulli.

42

Theorem 4. For the same setting as in Theorem 3, but with the additional

condition that pθ(·) =
∏︁d

i=1 Ber[θi], the optimal β∗
i becomes:

β∗
i = E

z∼pθ(·)
[J(z1, . . . , zi−1, 1− zi, zi+1, . . .)] .

Proof. Section A.3 in the appendix.

This control variate changes the input on the i-th coordinate from zi to 1−zi
while keeping the other dimensions as they were, bearing some resemblance to

the alternative definition of derivative used in classical PB approaches from

Equation (2.5).

Since it is not feasible to compute this estimator in closed-form for the

larger experiments, we will only use it for the smaller ones. It should be seen

as an upper-bound of variance reduction achievable by the other methods, as

well as an indicator of the implications of such variance reduction when solving

the desired PB optimization problems.

4.3 Drawbacks

This section overviews issues with the methods presented throughout this

chapter.

4.3.1 Dependence on the current distribution

When put into the perspective of solving a PB optimization problem, one of the

main limitations of the methods presented in this section is their dependence

on pθ(·). To exemplify, we note that the REINFORCE expression

1

n

n∑︂
s=1

J(z(s))∇θ log pθ(z
(s)),

corresponds to a weighted average of multiple J(ζh)∇θ log pθ(ζh) terms, for

h ∈ {0, . . . , 2d − 1}, where some of the summands are likely to have higher

weights if pθ(ζh) is higher. In other words, we can rewrite it as:

2d−1∑︂
h=0

(︂nζh

n

)︂
J(ζh)∇θ log pθ(ζh) =

2d−1∑︂
h=0

(︂nζh

n

)︂(︂ 1

pθ(ζh)

)︂
J(ζh)∇θpθ(ζh). (4.18)

43

(a) Sampled (b) True

Figure 4.3: Contour plots of J(·) for d = 2. Arrows indicate the summands
from (a) Equation (4.18), with n = 2 (b) Equation (4.19). If pθ(ζ2) is low, the
gradient may not point towards z∗ = ζ2, such as in (a).

Where nζh
is the number of samples satisfying z(s) = ζh. In each summand,

the term ∇θpθ(ζh) is the direction that increases the probability of ζh being

sampled again, while J(ζh) scales that direction according to the cost function

and (1/pθ(ζh)) up-scales rare values. We can see the sum as multiple ζh values

attracting θ towards themselves (or repelling if J(·) < 0), as illustrated in

Figure 4.3.

A big difference between MC methods and the ones using true gradients,

such as a method using the vector field from Example 8, is that, in the true

gradient case, the sum becomes:

∇θ E
z∼pθ(·)

[J(z)] = ∇θ

2d−1∑︂
h=0

pθ(ζh)J(ζh)

=
2d−1∑︂
h=0

J(ζh)∇θpθ(ζh). (4.19)

Notably, it includes all ζh values, whereas a value that is unlikely to be

sampled may not be present in Equation (4.18). Hence, while the true gradient

vector field might indicate a smooth surface leading towards the minimizing

z∗, these gradients always account for the entirety of {0, 1}d. Conversely, MC

implementations may never sample z∗ with low pθ(·). Even in the rare occasion

that they do, some optimizers normalize the gradient updates, diminishing the

joint effect of J(ζh)(1/pθ(ζh)) and making it less likely that pθ(·) will get close

to placing significant probability mass on z∗.

44

Although one might consider using importance sampling to make the op-

timization more exploratory, a large d severely limits its applicability. To ex-

emplify, in case the importance distribution is a factorized Bernoulli with pa-

rameters θq, the sampling estimate will be

1

n

n∑︂
s=1

(︄
pθ(z̃

(s))

pθq(z̃
(s))

)︄
J(z̃(s))∇θ log pθ(z̃

(s)) =

1

n

n∑︂
s=1

⎛⎝ d∏︂
i=1

(θ)
z̃
(s)
i

i (θ)
1−z̃

(s)
i

i

(θq)
z̃
(s)
i

i (θq)
1−z̃

(s)
i

i

⎞⎠ J(z̃(s))∇θ log pθ(z̃
(s)).

The IS ratios will be large whenever a z̃(s) that is more likely under pθ(·)

than under pθq(·) is sampled. Since there are d per-sample coordinates where

this can happen, it might be infeasible to avoid exploding gradients without

limiting θq
8 or resorting to some biased approach, such as weighted importance

sampling (Owen 2013, section 9.2).

Generally it is a rule of thumb to not use IS for large dimensions (Au and

Beck 2003; B. Li et al. 2005). See Owen (2013, example 9.3) for an example

using mean zero Gaussian distributions where slight changes in variance from

the importance distribution result in massive variance increments for large

d. ARMS manages to bypass this problem because of the condition that the

marginals remain unchanged, leading to some cancellation. Nonetheless, since

the search space is so large, it is infeasible to cover it entirely, causing the

design of an adequate importance distribution to either be heuristic or to rely

on domain knowledge.

4.3.2 Unwanted generalization

The problems outlined in the previous section revolved mostly around how

hard it can be for the sampling to get close to minimizing values. In this sec-

tion, we show that issues with the probabilistic formulation from Section 4.1.1

go beyond the stochasticity introduced by sampling. To understand why, we

remind the reader that the problem involves finding the best solution among

8One possibility to control the variance introduced by IS is to use defensive importance
sampling, where the importance distribution is designed to be a mixture between the nominal
distribution and some desired alternative (Owen 2013, section 9.11).

45

2d candidates and that, in general, the value of a single J(ζh) does not imply

anything about evaluations in the rest of the set.

A straightforward approach to solve this problem might be to store a logit

vector with 2d entries, one corresponding to each vertex, and increase or de-

crease them according to comparisons between multiple J(·) evaluations. Nat-

urally, these logits could map to probabilities by the use of some function,

a common choice being the softmax. That way, increasing the probability of

some solution z would not affect the probabilities of unseen z′ relative to each

other.

Yet, because we cannot store such a large vector, we resorted to using

multiple Bernoulli in this chapter. Although this choice can make gradient-

based optimization possible, it also means that increasing the probability of

some solution z will also increase pθ(·) in points that are close to it. When

we say close, we refer to the Hamming distance between both vectors, which

corresponds to the number of dimensions in which they differ. In our particular

case, the Hamming distance between z and z′ is given by:

dH(z, z
′) =

d∑︂
i=1

zi(1− z′i) + (1− zi)z
′
i.

In Example 9, we show a simple case where this is problematic

Example 9. For d = 2, we take J(·) such that:[︃
J(ζ2) J(ζ3)
J(ζ0) J(ζ1)

]︃
=

[︃
m M
M m

]︃
, where m < M.

Assume the update rule is:9

θt = θt−1 − α

(︃
∇θ E

z∼pθ(·)
[J(z)]

)︃⃓⃓⃓⃓
θ=θt−1

.

If we initialize θ0 =
[︁
0.5 0.5

]︁⊤
, we have that:(︃

∇θ E
z∼pθ(·)

[J(z)]

)︃⃓⃓⃓⃓
θ=θ0

= 0

and the optimization will be stuck at θ0. In that case, the final solution will

have 50% change of sampling M instead of m. Figure 4.4 shows the contour

plot for this problem.

9In general, θt would additionally have to be projected to [0, 1]d in case it falls outside
of this region. In this section we assume that it will always stay there.

46

Z1

Z2

Figure 4.4: Illustration for Example 9. Blue regions correspond to lower J(·),
arrows correspond to the gradient field.

Initializing θ in the middle of the hypercube is a reasonable choice when

nothing else is known about the optimal solution, since it is equidistant to all

vertices. For this simple example, using MC instead of true gradients would

actually help getting the optimization away from the saddle point. Nonetheless,

it illustrates how different ζh can interfere with each other. Theorem 5 shows

another example of undesired behaviour due to this generalization.

Theorem 5. For some arbitrary z∗ in {0, 1}d, define J : {0, 1}d → R as:

J(z) =

⎧⎨⎩m if z = z∗

M0 − dH(z, z
∗)
∆M

d
otherwise

,

where M0 ∈ R, ∆M ∈ R>0 and m = minz∈{0,1}d J(z) is unique. Particularly,

this is only satisfied if:

m < M0 −∆M,

where J(1 − z∗) = M0 − ∆M is the second lowest value. For any arbitrary

dimension i and assuming pθ(·) is a factorized Bernoulli with parameter θ, we

have: (︃
−∇θ E

z∼pθ(·)
[J(z)]

)︃
i

(∇θpθ(z
∗))i ≥ 0 (4.20)

⇐⇒ m ≤M0 −
∆M

d
∏︁

j ̸=i pθj(z
∗
j)
.

Proof. Section A.4 in the appendix.

47

z dH(z, z
∗) J(z)[︁

0 0 0
]︁⊤

3 M0 −∆M[︁
0 0 1

]︁⊤
;
[︁
0 1 0

]︁⊤
;
[︁
1 0 0

]︁⊤
2 M0 − 2∆M/3[︁

0 1 1
]︁⊤

;
[︁
1 1 0

]︁⊤
;
[︁
1 0 1

]︁⊤
1 M0 −∆M/3[︁

1 1 1
]︁⊤

0 m

Table 4.1: Example of J(·) following the conditions from Theorem 5 for d = 3
and z∗ = 1.

The LHS of Equation (4.20) corresponds to the i-th summand of the inner

product between the direction used in gradient descent (i.e. −∇θE[J(z)]) and

the direction that increases the probability of z∗ the most (i.e. ∇θpθ(z
∗)).

Their sign being the same implies the (negative) gradient is pointing towards

the optimal solution in that dimension. Table 4.1 illustrates one J(·) following

the description from the theorem. The intuition behind J(·) is that, if not for

z∗, the optimal value would be 1−z∗, the furthest point from the true solution.

Additionally, the closer z is to 1−z∗, the better J(z) gets. To overcome the joint

effect where most of the gradients (in the PB perspective of Equation (2.5))

evaluated on the set {0, 1}d \z∗ point away from z∗, m must be much less than

M0 −∆M .

Corollary 6. For the setting described in Theorem 5, define error ϵ such that

maxi∈{1,...,d} pθi(z
∗
i) = 1−ϵ and assume ϵ is greater than zero.10 Equation (4.20)

is satisfied if and only if:

m ≤ −Θ

(︄
1

d

(︃
1

1− ϵ

)︃d
)︄

= −Θ
(︃
cd

d

)︃
, for c > 1.

It is worth it to mention that m, M0 and ∆M are pre-defined values and

none of them needs to have any dependence on d for J(·) to be of the described

form (e.g. m does not need to go to −∞ as d → ∞ to be the minimum).

Moreover, J(·) will always be bounded to the interval [m,M0). What happens

as d increases is that the differences between evaluations of neighbours (e.g.

10Similar results can be derived if some coordinates have error zero, but we opt to use
these assumptions to simplify the exposition.

48

J(z)−J(z′) = ∆M/d) become smaller and multiple (J(z), J(z′)) become closer

together. Because the number of vertices increases exponentially, but ∆M/d

only decreases linearly, relative contribution of the 2d−1 points towards 1−z∗

will increase at a large rate in this example.

From an optimization perspective, this means that, asymptotically, the

solution will not converge to z∗, even if pθ(·) is initialized close to it. Once

more, we point out that this is all considering true gradients, which correspond

to either using MC with n → ∞ or using 2d evaluations per timestep. This

number of evaluations of J(·) would be enough to solve the problem by simply

searching among solutions, without even needing any method. Therefore, the

probabilistic approach has a hidden assumption that good solutions must also

be close to each other according to the Hamming distance, or, alternatively, the

best solution must be low enough to compensate for the difference. Although

we presented results on a global scale, it is likely that the same effect will

occur locally in the optimization landscape. The assumption could very well

be broken in large Neural Networks, given that they operate in complex ways.

Another point that becomes apparent after looking at this example is the

dependence of these methods on the scale of the loss. The relative ordering of

J(z) remains the same, regardless of which m, M0 and ∆M are chosen. Still,

values of m that do not comply with the bound from Theorem 5 will cause

the method to fail, which would not be the case had m been small enough. We

finalize this section by citing the following result:

Theorem 7. Let θ̂t,m be the best solution after running stochastic gradient

descent for t time steps on the probabilistic objective Ez∼pθ(·)[J(z)] from m

starting points with unbiased gradient estimators. Assume the sequence of step

sizes, here denoted by {αt}∞t=1, satisfies 0 <
∑︁∞

t=1 α
2
t < ∞ and

∑︁∞
t=1 αt = ∞.

Further, assume that θi = σ
(︂

ri−1/2
τ

)︂
for all dimensions.11 Let ẑt,m ∼ pθ̂t,m

(·).

Then, as n→∞, m→∞ and τ → 0, we have that ẑt,m → z∗ in probability.

Proof Theorem 2 of Daulton et al. (2022)

11This reparametrization was used by the authors because the score function ∇θ log pθ(z)
is not defined if pθ(z) = 0.

49

This theorem outlines convergence guarantees for MC methods presented in

this chapter. Nevertheless, it assumes infinitely many initializations and time

steps for some fixed size problem. Corollary 6 and the subsequent discussion,

on the other hand, investigate behaviour as d → ∞ for a constant number

of initializations. In the overparametrized regime, we should have a d much

larger than the number of possible parallel runs, so our assumption is likely

more reflective of the neural network problems we will focus on.

4.4 Alternative parametrizations

Throughout this chapter, we focused on the case where:

pθ(z) =
d∏︂

i=1

pθi(zi), for pθi(zi) =

{︄
θi if zi = 1

1− θi if zi = 0
,

which we alternatively denoted as:

pθ(z) =
d∏︂

i=1

θ
zi

i θ
zi
i .

Note that, when updating θ, care must be taken so that it does not fall out of

[0, 1]d. It is common practice to, instead of updating θ directly, reparametrize

it by writing:

θ = θ(r), for r ∈ R,

where θ(·) is applied element-wise and usually chosen such that its range is

[0, 1]. The most common choice for θ(·) is the sigmoid function due to its

simplicity.

Nevertheless, there are some results in the literature questioning the effec-

tiveness of the sigmoid for this purpose. We note that it corresponds to the

softmax function when we have only two outputs. Mei et al. (2020) establish,

both theoretically and empirically, two problems that appear whenever op-

timizing an expectation with respect to the softmax: high sensitivity to the

initialization (“softmax gravity well”) and slow convergence (“softmax damp-

ing”). Y. Li and Ji (2020) use sigmoid gates as probability masks on NN prun-

ing, where they point out the slow transition between ones and zeros, which

50

they then attempt to reduce by using fixed temperature parameters. Similarly,

Serra et al. (2018) apply annealed sigmoid gates directly as NN masks in se-

quential task learning, and also point out that the low gradient magnitudes

of the sigmoid (with τ = 1) harmed performance, which led them to add a

compensation to their annealing schedule.

Based on these observations, our experimental sections will also include

the following alternative choices for θ(·):

• Direct parametrization: where r = θ, similarly to what was done previ-

ously in this chapter, with the caveat that each θi has to be clamped to

[0, 1] after being updated.12

• Sinusoid parametrization: we normalize a sinusoid to lie in the [0, 1]

interval. Qualitatively, its main distinction from the sigmoid is that high

values of ri oscillate between one and zero, rather than causing zi to get

arbitrarily close to deterministic.

• Escort: Mei et al. (2020) propose this is an alternative parametrization to

the softmax to avoid the described problems. In this work, we simply use

the version they propose in their paper, where, for a categorical random

variable with two classes, θ(·) is input two scalars (i.e. (r)i = ri ∈ R2),

instead of a single scalar as in sigmoid, where one of the logits from the

corresponding softmax is fixed at zero. Following the authors, we use

P = 4 in the experiments.

For all of the gradient estimators presented in this chapter, changing the

parametrization simply amounts to changing the score function ∇θ log pθ(·)

for ∇r log p(·; θ(r)) in all ĝ(·) formulas. In our experiments, the methods will

also require inverting given probabilities to initialize r to the desired values.

Sometimes it is possible to invert the mapping in multiple ways, in which case

we chose an arbitrary inverse map. Table 4.2 summarizes all estimators used,

as well as their expressions, inverse maps and score functions.

12In practice we had to clamp it to [ϵ, 1 − ϵ] instead, for some small ϵ. This avoided the
gradient becoming zero prematurely.

51

Name
Domain
ri ∈

Expression
θ(ri)

Inverse map*
r−1(θi)

Score Function**
(∇r log p(z; θ(r)))i

Cosine R 1
2
(1− cos(ri)) − arccos(2θi − 1) + π cos(ri)+(2zi−1)

sin(ri)

Direct R ri θi
zi−θ(ri)

θ(ri)(1−θ(ri))

Sigmoid R 1
1+e−ri

log θi − log(1− θi) zi − θ(ri)

Escort R2 |(ri)1|P
|(ri)1|P+|(ri)2|P

[︃(︂
θi

1−θi

)︂ 1
P

1

]︃⊤ [︂
− (θ(ri)−zi)P

(ri)1

(θ(ri)−zi)P
(ri)2

]︂⊤
Table 4.2: Summary of alternative parametrizations. (*) Inverse map assumes
θi /∈ {0, 1}. (**) If θ(ri) ∈ {0, 1}, we use zero instead of these formulas.

52

Chapter 5

Alternative stochastic gradient
approaches

Chapter 3 discussed CP approaches where a smooth function is iteratively an-

nealed and minimized until it becomes close to the desired discrete function,

whereas Chapter 4 discussed MC methods, which store a parametrized prob-

ability distribution that tracks regions with seemingly better performances

using a gradient-based procedure. These gradients are essentially comparisons

between evaluations at the corners. There, we mentioned the reparametriza-

tion trick and explained why it is not applicable here. Nonetheless, due to the

aforementioned successes of pathwise gradient estimation in other contexts,

the belief that incorporating them in PB optimization should be beneficial has

led to attempts to do so. In this section, we briefly mention some of these at-

tempts, while emphasizing that they are not the focus of this study. Intuitively,

they correspond to hybrid versions which use both the gradients, like CP ap-

proaches, but also rely on sampling and comparing evaluations on {0, 1}d like

MC methods.

5.1 Overview

One of the simplest and most widely used ways of combining MC methods

and gradient information is by using straight-through estimation. Originally

introduced by Bengio et al. (2013) as a way of adding stochastic units to

53

Neural Networks, the forward pass consists of a sampling operation,1 but the

backward pass treats the sampling operation as if it had been the identity.

Specifically, they propose to use:

Forward pass: E[J(z)] ≈ J(z) For z ∼
d∏︂

i=1

Ber[σ(ri)]

Backward pass:
∂E[J(z)]

∂ri
≈ ∂J(z)

∂zi
.

Note that, in addition to treating the sampling operation as if it had been

an identity, the above steps ignore the derivative of the sigmoid with respect

to ri. Bengio et al. (2013) claimed that including the additional derivative

harmed performance. Despite this estimator being biased, many works have

used it throughout the years, mainly motivated by its empirical performance

rather than analytical results (Bethge et al. 2019; Bulat, Martinez, et al. 2020;

Bulat, Tzimiropoulos, et al. 2019; Martinez et al. 2020; Srinivas, Subramanya,

et al. 2017; H. Zhou et al. 2019).

More recently, Shekhovtsov and Yanush (2021) presented theoretical rea-

soning behind straight-through estimation considering a more general frame-

work that includes the method above. Particularly, ST estimation corresponds

roughly to approximating the PB derivative of Equation (2.5) by using a first

order Taylor expansion instead. Additionally, the paper proves that, for di-

mension i, if the expected fi(z) = ∂J(z)/∂zi has absolute value larger than

the Lipschitz constant of fi(z), the corresponding (negative) straight-through

gradient will be a descent direction.

Another very popular way of combining gradients and sampling in PB

optimization is via the Gumbel-softmax estimator (Jang et al. 2016; Maddison,

Mnih, et al. 2016), a technique that is inspired by the Gumbel max trick. In

general, sampling from a categorical distribution with probabilities (θc)
C
c=1 can

be equivalently done with this trick as follows:

1. Sample uc ∼ U [0, 1].

2. Transform it using inverse transform sampling Tc = log θc−log(− log uc).

1Some works simplify this even further by using a threshold instead of sampling.

54

3. Output arg max
c={1,...,C}

Tc (sometimes in one-hot vector form).

Samples from the Gumbel-softmax distribution, also called Concrete distri-

bution, are obtained by changing the last step for exp(Tc/τ)/
∑︁

exp(Tc′/τ).

Naturally, relaxing the estimation of an expectation with respect to a cate-

gorical distribution by instead using the Gumbel-softmax results in a biased

estimator. On the other hand, this estimator can be promptly combined with

the reparametrization trick. Furthermore, this distribution can be annealed

towards the categorical as τ goes to zero.2 Some methods use this biased ap-

proach directly (Louizos et al. 2017; M. B. Paulus et al. 2020; X. Zhou et al.

2021). Maddison, Tarlow, et al. (2014) extend the Gumbel-softmax to contin-

uous random variables and M. Paulus et al. (2020) extend it to more general

combinatorial spaces.

Some unbiased approaches also incorporate the Gumbel-softmax to the

design of control variates. When computing the estimator following Equa-

tion (4.12), h(z) is taken to be J(zG), where zG is dependent on z, but is

ultimately sampled from the Gumbel-softmax. The correction is often done

using a reparametrization-based estimator, instead of using closed-form gh.

Popular methods approaching the problem this way are REBAR (Tucker et

al. 2017) and RELAX (Grathwohl et al. 2017).

Other works use Taylor expansions as control variates for unbiased estima-

tion, therefore also relying on first-order derivatives, such as Muprop (Gu et

al. 2015) and the control-variate used in the experiments from Mohamed et

al. (2020), referred to as delta method. More recently Titsias and Shi (2022)

propose combining a two-level application of LOORF and Taylor expansions,

which was later improved by Shi et al. (2022) by also incorporating Stein op-

erators to the two-level estimator, but ultimately also relying on inclusion of

∂J(z)/∂zi in the control variates.

2In fact, the same logic used to motivate CP methods could also be used with Gumbel-
softmax. We choose to focus on the deterministic algorithms in Chapter 3 due to their more
pronounced recent successes as well as to better separate sampling from gradients as two
different sources of top-down information.

55

Some of these methods have known pitfalls. Andriyash et al. (2018) point

out that the raw Gumbel-sotmax estimators are highly dependent on tuning

the temperature and that the apparent improvement obtained by such tuning

can be replicated in other methods via simple entropy regularization. Addi-

tionally, Tucker et al. (2017) show that these same Gumbel estimators fail

in a very simple one dimensional problem where J(z) = (z − C)2 and C is

chosen to be very close to 0.5. We also verified empirically that the version of

straight-through estimation presented above fails in this same problem setting.

Comparisons between unbiased hybrid methods and MC methods that do

not use ∇zJ(z) (i.e. methods from Chapter 4) show mixed results. In a non-

exhaustive analysis of recent works, we found five papers reporting mostly su-

perior results of variants of ARMS3 while three reported superior performances

of RELAX/REBAR.4 We mention that both REBAR and RELAX compute

three forward passes and two backward passes for each sample s = {1, . . . , n}.

Perhaps this computation would have been better used with larger n instead.

In more general comparisons between pathwise gradient estimators and score

function estimators, Mohamed et al. (2020) noted that the later seems to ben-

efit more from larger n. In our experiments, we will occasionally include some

of the hybrid methods from this chapter.

3Dimitriev and M. Zhou (2021), Dong et al. (2020), Shi et al. (2022), Yin, Yue, et al.
(2019), and Yin and M. Zhou (2018).

4Andriyash et al. (2018), Dong et al. (2021), and Lorberbom et al. (2019).

56

Chapter 6

Smaller-scale experiments

Now that we understand the ideas behind CP and MC methods, the next step

is to see how well the intuitions developed in the previous chapters generalize

to more practical settings. By first scaling experiments down to smaller d, we

can compute closed form expressions for expectations and variances for the

MC methods. Furthermore, non-overparametrized settings can help us under-

stand how reliant the described CP methods are on large neural networks.

Accordingly, we start with two problems where z is directly input to arbitrary

J(·), for d ≤ 10. Then, we scale up by moving to a regression problem, where

d = 8, 050 and the multiple zi act as element-wise masks to the weights of a

fixed backbone neural network.

6.1 Microworld

In this section, we restrict ourselves to d ∈ {4, 10} and n ∈ {1, 4, 10}, as well

as using true gradients, which corresponds to n → ∞. Our experiments aim

at first comparing the different estimators from Section 4.2, then comparing

the different parametrizations proposed in Section 4.4 and finally comparing

MC and CP methods, as well as comparing both against some of the methods

from Chapter 5. We always initialize θ0 = [0.5, . . . , 0.5]⊤ in the experiments

and optimize with SGD.

57

6.1.1 Benchmarks

Most MC gradient estimation papers start by comparing estimators in prob-

lems of the form J(z) = (z−C)2, for C close to 0.5 and then moving to larger

ones involving discrete Variational Autoencoders, usually combined with image

datasets. The former setting serves to eliminate confounding factors present

in the later, while also allowing computation of closed-form expressions. Still,

we believe it might be overly simplistic and as a result not bring to light the

differences between the estimators. For example, a simple second order Taylor

expansion is enough to completely reconstruct the quadratic J(·) everywhere.

On the other hand, examples from Sections 3.3 and 4.3 were adversarial,

designed specifically to highlight some of the main flaws from MC and CP

methods. We propose new benchmarks that, while compatible with small scale

settings, also require some additional search, either because of the presence of

local minima or because ∇zJ(z) might not be too informative of J(·) away

from the current z.

• ExponentialTabularLoss: we first sample 2d values, where Eh
iid∼ Exp[1.5]

and h ∈ {0, . . . , 2d − 1}. Then, we calculate the costs by normalizing

{Eh}2
d−1

h=0 such as to map maxhEh to −1 and minh Eh to 1. Because of

the exponential distribution, most z points will have J(·) closer to 1, with

a few rare exceptions closer to −1, meaning the solutions will be harder

to find. As sampling is agnostic to the Hamming distance, dH(z, z
∗) will

not be indicative of anything about J(·) in z′ /∈ {z, z∗}. In fact, sampling

might result in multiple local solutions in different parts of {0, 1}d. Im-

portantly, this benchmark is not differentiable, so we will only evaluate

MC methods using it.

• NNLoss: we input z directly to a fixed neural network with a scalar

output corresponding to the cost. In addition to the input and output

layers, this network has 9 fully-connected hidden layers with 20 neurons

each. Normalization and LeakyRelu follow the respective linear opera-

tions of all but the output layer, which simply maps to a scalar that is

then only normalized.

58

We initialize weights to be either 1 or −1 with 50% chance and pre-

process the input z by mapping it to the [−1, 1]d range. The normaliza-

tion uses one dimensional “batch norm” layers (Ioffe and Szegedy 2015)

without affine parameters. One should run these layers in evaluation

mode only, otherwise the output J(z) will depend on the whole input

batch instead of only on z. Before fixing moving normalization statistics,

we initialize them by running some forward passes on random uniform

points from [0, 1]d.

In both cases, for any fixed d, we initialize the loss only once and reuse it

across methods and runs from the same method.

6.1.2 Estimators

Experiments in this section use only sigmoid parametrization. We start by

comparing the variances of different MC estimators. As mentioned when we

introduced control variates in Section 4.2, they will only reduce Var [(g(·))i] if

(J(z)−h(z))∂ log pθ(z)/∂θi has smaller variance than J(z)∂ log pθ(z)/∂θi. An-

alytical guarantees of variance reduction only exist in limited contexts. Richter

et al. (2020), for example, show that LOORF can have lower variance than RE-

INFORCE, but enumerate some conditions in their proof. Similarly, Dimitriev

and M. Zhou (2021) prove that the ARMS gradient will have lower variance

than LOORF for negatively correlated z and z′, given that d = 1 and n = 2.

This however, does not automatically imply that the same is true for general

n and d.1

With that in mind, we run a single trajectory starting from θ0 in the middle

of the hypercube and then following the true gradient of the expected cost

for 10, 000 steps. This trajectory serves as a guide, providing θt for different

timesteps. For each of them, we calculate the variances for all estimators and

compare their across-dimension sums. We consider two settings: d = 4 with

n = 4 and d = 10 with n = 10. In the first, we compute the variances in closed

1Dimitriev and M. Zhou (2021) show that, for general n > 2 and d = 1, both LOORF
and ARMS correspond to an average of their respective ĝ((z, z′); θ) (i.e. n = 2 estimates).
Still, the variance for n > 2 also has to account for the correlation between these summands.

59

form after leveraging some combinatorial analysis, whereas in the second we

estimate them by using 10, 000 per-iteration evaluations of ĝ(·). More details

can be found in Section B.1.1. Importantly, computing ARMS variance in

closed-form requires knowing the IS weights, which we derive algebraically.

REINFORCE LOORF ARMS *
0.00.20.40.60.81.0

Normalized Entropy

101 102 103 104

Iteration

0.00

0.03

0.06

0.09

0.12

0.15

Va
ria

nc
e

True Var; n=4; d=4

101 102 103 104

Iteration

0.00

0.03

0.06

0.09

0.12

0.15

Va
ria

nc
e

Estimated Var; n=10; d=10

ExponentialTabularLoss

Figure 6.1: Comparing estimator variances following a fixed trajectory on Mi-
croworld domains. The model was not able to solve the setting marked with
(*).

Figure 6.1 shows the results for both settings and benchmarks, considering

only learning rate 0.1. We can see that REINFORCE indeed has lower variance

than ARMS or LOORF in some cases. By overlaying the plots with the entropy,

which is shared by all methods, we see that REINFORCE tend to perform

better when pθ(·) is almost deterministic.

Despite analytical proof of ARMS superior variance reduction being re-

stricted to n = 2 and d = 1, here it indeed seems to perform better than

LOORF, even when using closed-form results instead of estimates. As ex-

pected, β∗ always had the lowest variance, indicating perhaps the lower bound

achievable by using control variates without further problem-specific informa-

tion.

After analyzing the variances, the next question in how that impacts the

solution of the PB optimization problems on self-generated trajectories. Since

the setting with d = 4 is not too challenging and all methods perform similarly

well on it, we restrict ourselves to d = 10 and compare the estimators for

varying n. Figure 6.2 shows the results averaged across 100 seeds.

60

REINFORCE LOORF ARMS * True gradient Solution

101 102 103 104

Iteration

0.8

0.4

0.0

0.4

0.8

Ex
pe

ct
ed

 L
os

s
n=4; d=10

101 102 103 104

Iteration

n=10; d=10

ExponentialTabularLoss

101 102 103 104

Iteration

10.0

7.5

5.0

2.5

0.0

Ex
pe

ct
ed

 L
os

s

n=4; d=10

101 102 103 104

Iteration

n=10; d=10

NNLoss

Figure 6.2: Comparing estimators on Microworld domains.

REINFORCE now performs clearly worse than the other methods. The

contrast to its previous performance is reminiscent of what happens in im-

itation learning for sequential decision-making problems. There, an agent is

trained to replicate expert behaviour on supplied trajectories, often via su-

pervised learning. Even if training is seemingly successful, deployment can be

catastrophic: the stochasticity of the problem often leads the agent to unseen

regions of the state-space. There, the learned behaviour can be useless and take

the agent even further from the states it has seen before (Ross et al. 2011).

In Figure 6.2, the higher initial variance of REINFORCE, when the entropy

was also high, was likely responsible for the model ending up far from where

it would have gone had it followed the true gradient.

For the other estimators, variance reduction relative to each other did not

seem to matter much. Despite using the optimal control variate, β∗ failed to

perform better than LOORF and ARMS in both problems. On NNLoss, even

the model using true gradients failed to reach the correct solution, although

eliminating the variance still led it to a better local minimum than the MC

estimators. We can explain this observation using the generalization discussion

from Section 4.3.2, where interactions between ζh impede the model from

reaching the correct solution.

6.1.3 Parametrizations

In this section, we run the same experiments as before, but keep the estimator

fixed and vary the parametrization instead. Namely, we use REINFORCE for

61

Cos Sigmoid Direct Escort Solution

101 102 103 104

Iteration

0.8

0.4

0.0

0.4

0.8

Ex
pe

ct
ed

 L
os

s
n=1; d=10

101 102 103 104

Iteration

n=4; d=10

101 102 103 104

Iteration

n=10; d=10

101 102 103 104

Iteration

n ; d=10

ExponentialTabularLoss

101 102 103 104

Iteration

10.0

7.5

5.0

2.5

0.0

Ex
pe

ct
ed

 L
os

s

n=1; d=10

101 102 103 104

Iteration

n=4; d=10

101 102 103 104

Iteration

n=10; d=10

101 102 103 104

Iteration

n ; d=10

NNLoss

Figure 6.3: Comparing parametrizations on Microworld domains.

n = 1 and LOORF for n ∈ {4, 10}. We sweep learning rates in {0.1, 0.01}

and select the best one based on the final loss. Figure 6.3 shows the results

averaged over 100 seeds.

By inspecting the figure, we note that the parametrizations can roughly

be categorized in two groups: direct and escort; sigmoid and cosine. The first

converges much faster, but often to worse values, whereas the second converges

slower, but to better final values. As more samples are used, the faster group

seems to maintain superior convergence speed while arriving at better final

solutions

Figure 6.4 depicts NNLoss scatter plots for this same experiment, where

each circle corresponds to the final per-seed loss. Losses are more spread out

for low n, but converge towards −8 as samples increase. For n = 1, the higher

variance caused the model to be more exploratory and even find z∗ in some

runs, indicated with arrows. However, these ouliers stopped appearing as vari-

ance was reduced with increasing n and the generalization problem stopped

the model from ever reaching z∗.

62

Figure 6.4: Comparing parametrizations on Microworld domains. Alternative
visualization of NNLoss from Figure 6.3 showing the final loss for each seed.

6.1.4 Approaches

CP REBAR REINFORCE RELAX ST Solution

101 102 103 104

Iteration

12

8

4

0

4

Ex
pe

ct
ed

 L
os

s

n=10; d=10

CP REBAR REINF RELAX ST

n=10; d=10

NNLoss

Figure 6.5: Comparing approaches on Microworld domains.

Finally, we compare MC and CP in Figure 6.5. We also include hybrid

approaches from Chapter 5, where ST is a biased method and both REBAR

and RELAX are unbiased, but use ∇zJ(z) in their control variates. Similarly

to the above, we sweep learning rates in {0.1, 0.01} and use 100 seeds on non-

deterministic algorithms. Additional details about hyperparameters particular

to each method are deferred to Section B.1.2. We parametrize REINFORCE

with sigmoid. Differently from the previous experiments, selecting hyperpa-

rameters based on the lowest final loss, led to poor choices. Settings often had

similar final losses and tie-breaking sometimes chose models that converged

63

much slower. Therefore, we select by comparing the average value from itera-

tion 10 onward instead.

By inspecting the plots, we can see that CP has a “jagged” format, likely

due to sudden temperature changes, causing the model to reach a new solution

quickly and stay there until τ changes again. Overall, it did not seem that

∇zJ(z) was helpful here: ST and CP, which arguably rely on it the most,

were stuck in poor local solutions, whereas the methods that combine MC and

gradients had similar performances to merely using REINFORCE. Alternative

parametrizations and estimators already outperformed REINFORCE for this

same benchmark in the previous sections.

We can again put these results in light of previous discussions. In particular,

Section 3.3 mentioned that, when applied to PB optimization in the described

manner, numerical continuation methods tend to extrapolate local information

from inside the hypercube to differences between its corners. The same is true

for the other methods relying on the gradient of J(·). This extrapolation is

only heuristic and appears to be inaccurate in this benchmark.

6.2 Neural network regression

The goal of this section is to perform comparisons similar to the previous one,

but on a larger scale, although not as large as in image classification tasks.

This time, it is not feasible to compute expectations in closed form, so we

restrict ourselves to n ∈ {2, 10, 100, 1000} and report losses with respect to

a sampled z. Just as before, we initialize θ0 = [0.5, . . . , 0.5]⊤, but now we

optimize parameters with RMSprop. Results are averaged over 10 seeds and

d is equal to 8, 050. We select hyperparameters by comparing the average loss

in the second half of training.

6.2.1 Benchmark

For these experiments, we use a single benchmark, called MaskedNNRegres-

sion, consisting of two fixed neural networks: a backbone NN and a target NN.

z is a binary mask applied weight-wise to the backbone NN and the goal is to

64

learn the input-output mapping from the target NN while only changing the

masks. Furthermore, the target has higher capacity than the backbone and a

more complexity-inducing initialization, so these experiments are not in the

overparametrized regime yet.

First, we sample some random input data uniformly from [−1, 1]10 and

map each 10-dimensional vector to a scalar output using the target network.

We fix this data and split it into training and validation datasets. Importantly,

we sample datasets, backbone and target networks only once and re-use them

across different random seeds. The loss is the expected (absolute) difference

between target and output of the masked backbone network. More details

about the architectures used and experimental setup are in Section B.2

6.2.2 Estimators

REINFORCE LOORF ARMS

0 100 200 300
Epoch

0.08

0.16

0.24

0.32

0.40

Lo
ss

n=2; d=8050

0 100 200 300
Epoch

n=10; d=8050

0 100 200 300
Epoch

n=100; d=8050

0 100 200 300
Epoch

n=1000; d=8050

MaskedNNRegression

Figure 6.6: Comparing estimators on masked NN regression.

As we show in Figure 6.6 (for learning rate = 0.1 and sigmoid parametriza-

tion), REINFORCE still performs worse than ARMS and LOORF, but this

time the difference is much higher. Recall that the entropy of a random variable

that can assume 2d values is at most d log 2, which is also the initial entropy

in these experiments. Considering the previous REINFORCE results, where

entropy, variance and loss were positively correlated, this more entropic initial

model should indeed lead to relative worsening of its performance.

65

Despite that, lower entropy does not necessarily imply lower variance. The

former corresponds roughly to the spread of a random variable with respect

to the set of values it can assume, whereas the later concept is tied to a scalar

function, measuring how much it changes as a consequence of the changes from

this variable.

ARMS and LOORF again performed similarly. The ratio between n and

samples needed to solve the PB optimization (i.e. n/2d) will get even worse in

the later experiments. Perhaps ARMS being superior for n = 2 in Figure 6.6

and also having lower variance in Figure 6.1 is indicative that it will perform

slightly better than LOORF in the larger experiments.

6.2.3 Parametrizations

Cos Sigmoid Direct Escort

0 100 200 300
Epoch

0.08

0.16

0.24

0.32

0.40

Lo
ss

n=2; d=8050

0 100 200 300
Epoch

n=10; d=8050

0 100 200 300
Epoch

n=100; d=8050

0 100 200 300
Epoch

n=1000; d=8050

MaskedNNRegression

Figure 6.7: Comparing parametrizations on masked NN regression.

Figure 6.7 depicts the results of comparing parametrizations, where we

sweep learning rates in {0.1, 0.01} and use LOORF (approach-specific param-

eters are as before). Similarly to the previous experiments, direct parametriza-

tion is quick to converge, but to sub-optimal values. This effect is even more

pronounced now. Cosine parametrization is still slow, but, in contrast with

the previous section, its final values are worse than those of the other esti-

mators. Escort and sigmoid were the best performing parametrizations. The

first maintained its convergence speed, but reached better final values, while

the later got faster. On the larger experiments, we will only use sigmoid and

escort.

66

6.2.4 Approaches

CP LOORF REBAR REINFORCE ST

0 100 200 300
Epoch

0.08

0.16

0.24

0.32

0.40

0.48
Lo

ss
n=10; d=8050

CP LOORF REBAR REINF ST

n=10; d=8050

MaskedNNRegression

Figure 6.8: Comparing approaches on masked NN regression.

As seen in Figure 6.8 (for learning rates in {0.1, 0.01}, n = 10 for the

non-deterministic methods and sigmoid parametrization), results from this

experiment were different from those of Section 6.1.4. The combination of

larger d and neural network structure is somewhat compatible with approaches

reliant on ∇zJ(z). Differently from last time, simply using REINFORCE was

much worse than combining MC and gradients, such as in REBAR and ST.

The best performances were from ST and LOORF, where the first converged

faster, but the later had more runs converging to the lower loss values (see the

scatter plot).

CP often seemed to be getting close to the best performing methods, but,

apparently, the sudden temperature changes during the last half of training led

θ away from previous well-performing values. Combined with the extrapolation

problem described before, this seems to have caused CP to perform relatively

poorly. It remains to be seen if the performance gains when using ∇zJ(z)

relative to MC will become even more prominent in the larger settings.

67

Chapter 7

Pruning

The goal of this chapter is to compare approaches based on Monte-Carlo gra-

dient estimation (MC), continuation path (CP), as well as magnitude-based

methods (MP) on pruning benchmarks. Even though there are papers already

comparing CP and MP, MC is not well represented in the literature. Namely,

Monte-Carlo gradient estimation is an active area of research, lots of new ap-

proaches to reduce variance during estimation and improve convergence to

the true gradient have been proposed in the last few years, as described in

Chapter 4. Studies comparing against these approaches for pruning, however,

are scarce, and mostly focus on straight-through estimators from Chapter 5.

One can argue that MC approaches have more theoretical justification than

CP and MP, as we saw in the previous sections. Additionally, MC approaches

were usually the most successful on the experiments from Chapter 6. With

that in mind, we attempt to bridge the gap between the Monte-Carlo gradient

estimation literature and the pruning literature.

Section 7.1 starts by introducing and motivating the problem, as well as

listing some common approaches. Then, Section 7.2 describes the algorithms

used in the experiments. Finally Section 7.3 describes the experimental setup

and presents the results.

68

7.1 Overview

This section starts by presenting the motivation for studying pruning, then

we categorize it according to the pruned structure and finally we give a broad

overview of the existing methods.

7.1.1 Problem Motivation

Deep learning methods have shown great successes in many areas, includ-

ing vision, natural language processing and recommendation systems. Con-

veniently, it automates the discovery of data representations in domains that

previously required human expertise. In computer vision, for example, modern

approaches based on CNN’s (Krizhevsky et al. 2017) and R-CNN (Ren et al.

2015), specially when used in conjunction with transfer learning, have some-

what replaced older representations such as SIFT (Lowe 1999), HOG (Dalal

and Triggs 2005) and Bag-of-Visual-Words (Csurka et al. 2004). Yet, even the

design of deep neural networks requires humans to make arbitrary decisions.

Deciding the exact model size and capacity can be particularly challenging,

justifying the search for automated approaches to do so. One such approach

is to start with a dense, overparametrized model and sparsify it by pruning

some of its connections, which can be either neurons or weights.

The idea of pruning is not new, with early work in the 80’s and 90’s study-

ing the generalization and interpretability of pruning smaller models (see Reed

(1993) for a survey of these older works). Nonetheless, interest in funding AI

companies greatly decreased in the late 80’s, a period some authors call the

“AI winter” (Russell 2021, section 1.3.4). This was mostly due to failure to

satisfy expectations on more complex domains, with systems breaking down

easily in the face of uncertainty and unable to learn from experience. The “AI

winter” lasted until about 2012, when Deep Learning frameworks started bet-

ter leveraging the available compute resources, for example, by incorporating

graphics processing units on their workflows.

Since then, larger models became increasingly common. Inception-V3 (Szegedy

et al. 2016), has 5.7 billion arithmetic operations and 27 million parameters,

69

whereas GPT-3 (Brown et al. 2020) requires 175 billion parameters. Some

works even have models requiring trillions of parameters (Fedus et al. 2022;

Lepikhin et al. 2020). This phenomenon was one of the main motivators for

new research on pruning, since many of these pruned models can benefit from

faster inference times and smaller memory footprints, specially on deployment,

as we will discuss in Section 7.1.2. Recent pruning strategies can sometimes

lead to 100x reduction of network size (Hoefler et al. 2021). To illustrate the

popularity of the field, on their recent survey, Hoefler et al. (2021) plot the

number of published papers on the topic per year: since 2012, there were more

than 266, the curve indicates growth close to exponential.

Pruning of neural networks has also some theoretical justifications. Malach

et al. (2020) prove that, with high probability, any network can be approxi-

mated with arbitrary accuracy by pruning a polynomially larger random net-

work (without even changing the weights). Later, Orseau et al. (2020) and

Pensia et al. (2020) showed that a logarithmically larger network suffices. In

addition to that, training overparametrized networks also benefits from good

convergence. Brutzkus et al. (2017) and Du et al. (2018) prove that it leads to

a convexity-like property, Allen-Zhu et al. (2019) and Neyshabur et al. (2018)

later supported these results. Then, depending on the level of sparsity de-

sired,1 pruning can act as a form of regularization for these models, improving

generalization and robustness. In fact, sparse models sometimes even outper-

form their fully dense counterparts (Frankle and Carbin 2018; Lee et al. 2019;

Pensia et al. 2020).

With all that in mind, we choose pruning as a benchmark to compare the

different PB optimization approaches. Particularly, for this section, we aim at

understanding how well the MC gradient estimation apparent advantage on

the Microworld problems still holds on the larger benchmarks. We believe such

knowledge can help guide future research when incorporating these methods

to the pruning literature. Analyzing its pros and cons can help either improve

1For moderate levels of sparsity, there seems to be an increase in test accuracy, often
attributed to the reduction on learned noise. At high levels, however, we start to see the
performance decrease. See Hoefler et al. (2021, section 2.1) for more details.

70

current MC methods or develop alternative stochastic formulations achieving

high performance.

7.1.2 Structured and unstructured sparsity

It should be mentioned that current research often classifies pruning methods

as either structured or unstructured. We illustrate both types in Figure 7.1 for

a fully connected layer. The main difference is that, for unstructured pruning,

weight or neuron removal happens indiscriminately, whereas entire structures

are removed at once for structured pruning. For the later, it is common to

prune whole matrix columns of fully-connected layers and whole feature maps

of convolutional layers. Pruning these structures often reduces memory con-

sumption and inference speed immediately in common frameworks. When a

pruning a feature map, for example, one can simply recreate the convolutional

filter as a smaller tensor including only the depths that do not correspond

to that map. Structured sparsity, nonetheless, is not limited to these struc-

tures and recent works have studied pruning contiguous blocks of weights, as

well as the development of deep learning accelerators specifically tailored for

sparse networks. For an overview of such research, refer to Hoefler et al. (2021,

chapter 7).

(a) Dense network (b) Structured pruning (c) Unstructured pruning

Figure 7.1: Different ways of pruning. Pruned weights or neurons are repe-
sented in red.

Unstructured sparsity, on the other hand, will not yield any speedups if

implemented naively, as the common deep learning frameworks have limited

support for weights pruned in a completely arbitrary manner, often performing

computations and storing data as if the network was dense. For this reason,

71

one can see unstructured pruning as an upper bound on the possible sparsity

or as a way to advance pruning research more easily by focusing more on

the algorithmic aspects and less on the deployment limitations. Nevertheless,

frameworks allowing lower level implementations can avoid storing these sparse

tensors as dense structures by instead storing only the nonzero weights, along

with some metadata indicating how the computations should be performed.

Coordinate offset, for example, stores only the non-zero elements, along with

their absolute offsets. There are other ways to represent sparse tensors, such

as compressed sparse row or compressed sparse column, both used in high

performance computing. For a brief overview of the approaches to represent

unstructured sparse tensors, refer to Hoefler et al. (2021, section 2.2). Hoefler

et al. (2021, section 7) also summarizes recent successes on accelerating neural

network computations using unstructured sparsity.

Finally, although high performance computing has a long history in scien-

tific workflows, its common use cases consist on sparsities larger than 99.9%,

which goes beyond what current pruning methods can accomplish (i.e. 50-

99%). Nonetheless, if the current trend continues, it is likely to culminate in

even sparser models, which will in turn take better advantage of libraries such

as Intel’s MKL and computing kernels such as sparse BLAS or cuSPARSE.

Moreover, scientific computing workflows often leverage non-zero patterns that

follow a banded matrix structure, where the non-zero elements are concen-

trated in few adjacent diagonals. Consequently, successes in reproducing such

patterns with structured sparsity are even more likely to benefit from existing

high performance computing frameworks. Nonetheless, for simplicity, we will

focus on unstructured sparsity in this paper.

7.1.3 Common approaches

We here give a brief and non-exhaustive survey of existing pruning approaches.

Notably, magnitude-based methods are ubiquitous in the field. In particular,

Hoefler et al. (2021, figure 18a) categorize 157 papers published between 1988

and 2020, concluding that magnitude pruning is the most common category,

comprising 48 of the surveyed papers (30.57%). Their high presence in the

72

field, combined with their simplicity, makes them good baselines, justifying our

choice to include them in our experiments. The second most common category

is regularization, totalling 34 papers (21.66%). As we will see in Section 7.2,

writing the pruning objective as L0 regularized optimization makes its relation

to PB optimization more explicit. We use L0 regularization as a foundation for

presenting both the CP and MC methods in Section 7.2. In addition, Hoefler

et al. (2021, figure 26b) gather reported results of around 90 methods from the

last decade that prune a Resnet-50 on Imagenet. There, the Pareto frontier of

regularization methods corresponds to the best performances, the second best

corresponding to magnitude pruning. Following Hoefler et al. (2021), one can

roughly categorize other works as follows:

• Data-free methods: although most of these are in fact magnitude prun-

ing, alternative approaches exist, often involving inspection of the final

(dense) weights and activations and then fusion or elimination of some

based on similarities or regularities (Mussay et al. 2021; Srinivas and

Babu 2015).

• Input/output sensitivity: inspired by Sietsma and Dow (1988), they also

work by inspecting neural network behaviour, but now on a data-driven

manner. Particularly, studying how the output of a neuron varies with

respect to training data guides the detection of “pruning behaviour”. For

example, we can eliminate neurons that are almost constant with respect

to different training inputs, adding their values back to the network as

constant bias terms. Luo, Wu, and Lin (2017) apply this same logic

for convolutional filters. Some approaches even use Fourier analysis to

detect “pruning behaviour” (H.-G. Han and Qiao 2013; Lauret et al.

2006). Alternatively, other approaches prune via searching for redundant

activity after looking at the correlation between weights. Cuadros et al.

(2020), for example, detect such redundancy using PCA.

• First and second order expansion methods: these methods rely on Tay-

lor’s theorem. In particular, the later assumes that the second order

73

expansion approximates the loss behaviour reasonably well near a local

minimum of the dense network. Then, they use the per-weight saliency

measure to determine which should be pruned (Hassibi and Stork 1992;

LeCun, Denker, et al. 1989). This requires inverting the Hessian, which

one can, in turn, approximate by using the diagonal Fisher matrix (Theis

et al. 2018), or, more recently, by using K-FAC (Wang et al. 2019; Zeng

and Urtasun 2019) or revisiting the classic Sherman-Morrison formula

(Singh and Alistarh 2020).

• Variational methods: inspired by Kingma, Salimans, et al. (2015), they

model weights as latent random variables and achieve sparsity by propos-

ing arbitrary prior distributions, such as the log-uniform in Molchanov

et al. (2017). Recently, Gale et al. (2019) showed that these methods can

achieve good performance on large models, although results had high

variance with respect to both accuracy and sparsity.

Hoefler et al. (2021, section 3) made a more comprehensive list of works

pertaining to each of these categories. Even combined, they account for less

than half of the studies surveyed there. Furthermore, these methods are more

complex and often conceived with only one specific task in mind, making it

hard to analyze them in more general PB optimization contexts. For instance,

manual heuristics based on inspecting neural network sensitivity to inputs can-

not be used in some problems presented in this study. Thus, these alternative

methods are not implemented in our experiments.

7.2 Algorithms

In this section, we first talk about magnitude-based approaches in more detail.

Then, we discuss how to write pruning as PB optimization and connect it to

CP and MC methods from previous chapters.

74

7.2.1 Magnitude pruning

As mentioned before, magnitude-based methods are dominant in the field.

They heuristically rely on L2-norm summarizing the importance of weights in

the neural network, thus choosing the smallest ones for removal. In general,

there are some obvious counter-examples to that assumption when taken as

such, see Figure 7.2. Nonetheless, when taken in conjunction with gradient-

based training, it yields good empirical results. Some of the clear advantages of

these methods is their simplicity and the absence of need for storing additional

parameters in many of them. In situations where the dense model already oc-

cupies most of the available memory, MP approaches are specially convenient.

Their performances were among the best in the comparative study by Gale et

al. (2019).

(a) Output connections (b) Batch normalization

Figure 7.2: Examples where weight magnitudes do not correlate with their
importance. On Figure 7.2a, the larger weights have less influence on the model
output than the smaller ones due to their outgoing connections. In Figure 7.2b,
one row is a scaled version of another. Despite the difference in magnitude,
subsequent batch normalization equates their outputs.

In addition to that, under some strong assumptions, magnitude pruning has

a theoretical justification. Particularly, it is a special case of the second order

methods mentioned in Section 7.1.3 where the Hessian is roughly diagonal

and uniform. The saliency measure then becomes proportional to the L2-norm.

Naturally, we also require the other assumptions from Hassibi and Stork (1992)

and LeCun, Denker, et al. (1989): the gradient has to be approximately zero

when pruning (although Singh and Alistarh (2020) extended the framework

to waive this assumption); the Hessian has to be invertible; pruning multiple

75

weights at a time, as opposed to a single one, requires no correlation between

them, otherwise we could have the removal of one weight causing a previously

unimportant weight to become important.

Pruning can happen following different schedules, such as training and then

choosing some percentage of weights to be removed at once. Here, we will follow

the gradual magnitude pruning scheme proposed by Zhu and Gupta (2017),

which Savarese et al. (2020) showed to be a competitive baseline. The schedule

removes the lowest norm weights at specified pruning steps to achieve prede-

fined sparsities. Considering final sparsity sf , initial sparsity si, initial pruning

timestep t0, pruning interval ∆t and total number of pruning operations n,

sparsity at time t is given by:

st = sf+(si−sf)
(︃
1− t− t0

n∆t

)︃3

, for t ∈ {t0, t0+∆t, . . . , t0+n∆t}. (7.1)

7.2.2 L0 regularization

This approach involves writing the pruning objective explicitly as:

minimize E
X,Y ∼D

[ℓ(f(X;w), Y)] + λ∥w∥0, for w ∈ W , (7.2)

where notation is the same as in Example 5, λ is a positive hyperparameter

controlling the tradeoff between sparsity and accuracy and the L0 norm is

given by:

∥w∥0 =
d∑︂

i=1

1[wi ̸= 0].

One advantage of using the L0 norm as opposed to L1 or L2 norms, is that

it more directly represents what we desire from the optimization. Other ap-

proaches, such as Lasso (Tibshirani 1996), rarely cause weights to be exactly

zero, requiring subsequent thresholding steps for pruning to occur. Further-

more, L1 and L2 regularization are both incompatible with batch normaliza-

tion layers (Ioffe and Szegedy 2015), since the affine parameters can simply

undo the regularizarion, allowing weights with small norms to have significant

impact on the output (Azarian et al. 2020). The objective in Equation (7.2)

76

is equivalent to:

minimize E
X,Y ∼D

[ℓ(f(X;w⊙ z), Y)] + λ
d∑︂

i=1

zi, for w ∈ W , z ∈ {0, 1}d,

where we simply defer the L0 norm of the original weights to an auxiliary

discrete variable z. For a fixed w, searching for the optimal z is an instance

of PB optimization and the loss can be written as in Equation (2.2).2 Then,

to use the CP framework described in Section 3.2, one can simply take the

homotopy

E
X,Y ∼D

[︂
ℓ(f(X;w⊙ σ

(︂ r
τ

)︂
), Y)

]︂
+ λ

d∑︂
i=1

σ
(︂ri
τ

)︂
, for w ∈ W , r ∈ Rd.

We again mention that Luo and Wu (2020), Savarese et al. (2020), and Yuan et

al. (2020) successfully implemented variations of this approach and Azarian et

al. (2020) also suggested it. Interestingly, again on the same survey, Hoefler et

al. (2021, section 8.7) define a new parameter efficiency metric using the per-

class difficulty on Imagenet, obtained by inspecting Resnet-50 results from

papers published the last 10 years. After applying this metric to compare

around 90 different papers, the method proposed by Savarese et al. (2020) had

the best parameter-efficiency of all.

Alternatively, to use the MC framework described in Chapter 4, one can

simply minimize:

E
X,Y∼D

zi∼Ber[θ(ri)]

[︄
ℓ(f(X;w⊙ z), Y) + λ

d∑︂
i=1

zi

]︄
, for w ∈ W , r ∈ R. (7.3)

By linearity of expectations and independence of the Bernoulli random vari-

ables, the above quantity is the same as3

E
X,Y∼D

zi∼Ber[θ(ri)]

[ℓ(f(X;w⊙ z), Y)] + λ
d∑︂

i=1

θ(ri). (7.4)

2When implementing the methods, updates to both main weights and the auxiliary vari-
ables happen concurrently, but here we fix w for ease of exposition.

3In some of our preliminary experiments, we attempted to optimize the objective in Equa-
tion (7.3) directly, but this proved much more challenging that the one in Equation (7.4).

77

Notably, in addition to MC methods from Chapter 4, Gumbel-softmax and

straight-through estimators described in Chapter 5 can also be combined with

Equation (7.4) to be used for pruning. In fact, most of the pruning papers based

on stochastic L0 regularization use the biased estimators from Chapter 5.

L0 regularized stochastic methods were popularized in pruning by Louizos

et al. (2017), which combine the Gumbel-softmax with clipping and use a

CDF to approximate the regularization term. Some studies report instabilities

when implementing their method for image classification (Gale et al. 2019; Y.

Li and Ji 2020; Savarese et al. 2020). On the other hand, for language tasks, it

showed superior performance compared to three other baselines in McCarley

et al. (2019). Subsequent works optimizing stochastic objectives close to Equa-

tion (7.4) include Y. Li and Ji (2020), Srinivas, Subramanya, et al. (2017), H.

Zhou et al. (2019), and X. Zhou et al. (2021). Among these, most use the biased

approaches from Chapter 5, the only exception being Y. Li and Ji (2020). Still,

Y. Li and Ji (2020) limit their analysis to structured sparsity and only use 2

samples with the ARM estimator. In our experiments, we will focus on unbi-

ased estimators and include different parametrizations, as well as investigate

increasing the number of samples.

7.3 Experiments

We make the transition between smaller and larger scale settings more gradual

by first running supermask experiments (H. Zhou et al. 2019), where the back-

bone network is fixed and only the masks change throughout training. Then,

we move to the more common pruning setup and train both backbone weights

and masks together. We run experiments for 200 epochs and optimize r with

RMSprop, while again initializing θ in the middle of the hypercube. Results

reported for each setting correspond to averages over 5 seeds. We report results

on the test set, while noting that the training results were similar.

78

7.3.1 Supermask

We run experiments on two architecture-dataset combinations: Lenet (LeCun,

Bottou, et al. 1998) on MNIST and a 6 layer convolutional neural network

on CIFAR-10 (Krizhevsky 2009). We exclude MP methods from the compar-

ison, as they rely on training the main network. Further, we only show re-

sults for ARMS and escort, since they performed slightly better than sigmoid

and LOORF. Additional experimental details can be found in Sections B.3

and B.3.1.

CP MC (n=2) MC (n=10) MC (n=100)

0.01%0.1%1%5%50%
Weights Remaining

20%

40%

60%

80%

100%

Te
st

 A
cc

ur
ac

y

Lenet on MNIST
(d = 265,200)

0.01%0.1%1%5%50%
Weights Remaining

15%

30%

45%

60%

75%

Te
st

 A
cc

ur
ac

y
Conv6 on CIFAR-10

(d = 2,258,624)

Supermask

Figure 7.3: Pareto front for supermask experiments.

In Figure 7.3, we show the Pareto front for CP and MC. For multiple

objectives and a set of solutions S, this is the largest subset where no ele-

ment surpasses another in all objectives. Visually, it is a curve with the best

performances for each sparsity level.

These results reaffirm those of MaskedNNRegression: it seems that large

neural networks change the discrete problem in a way that benefits approaches

reliant on ∇zJ(z). Extrapolations from evaluations outside of {0, 1}d, which

were misleading before (Sections 3.3 and 6.1.4), now produce good results.

On top of that, this happens even without the co-adaptation of the backbone

network.

79

On the other hand, it seems that the difficulty of finding better solutions

by mere search, such as in MC methods, increases significantly with larger

d. Even using 100 samples is now worse than using a single combination of

forward and backward passes. MC methods seem to catch up to CP for very

high sparsity, but, at this point, none of the methods performs particularly

well.

The contrast between these results and those from Section 6.1 can be con-

nected to previous discussions. Chapter 3 showed the unreliability of the gra-

dient extrapolations from CP methods on simple examples, later confirmed by

Microworld experiments. However, there were also signs that performance of

such methods might be more correlated with properties of J(·) other than d. As

an example, when introducing pathwise gradients from Section 4.2, we noted

that the reparametrization estimators had their variance linked to the Lips-

chitz constant of J(·) instead. Similarly, in Chapter 5, we also cited analytical

results linking the Lipschitz constant and “correctness” of ST.

Conversely, the drawbacks discussed in Section 4.3 (i.e. dependence on the

current θ and generalization between ζh), are both worsened by high d. The

introduction of NN, combined with the initializations, activations and losses

used, might have helped control how fast J(·) changes in (0, 1)d, which benefits

CP methods, but not MC. Nonetheless, this does not explain what exactly

changes, nor how overparametrization leads CP to good solutions or how far

these solutions are from the best possible. Those are still open questions whose

answers might lead to better algorithms and architecture designs.

7.3.2 Joint pruning

Next, we move to deeper convolutional networks and start training the main

weights. Since running sweeps with n = 100 on these larger models is chal-

lenging, we reuse the best hyperparameters from n ∈ {2, 10}. See Section B.4

for alternative visualizations of data from supermask experiments suggesting

this is a valid extrapolation. Other experimental details are in Section B.4.1.

80

MC (n=2) MC (n=10) MC (n=100) MP GMP CP

1%3%10%50%
Weights Remaining

75%

78%

81%

84%

87%

90%

Te
st

 A
cc

ur
ac

y
Resnet-20 on CIFAR-10

(d = 267,696)

1%3%10%50%
Weights Remaining

Resnet-20 on CIFAR-10
(d = 267,696)

Pruning

(a) Moderate sparsity (b) High sparsity

Figure 7.4: Pareto front for joint pruning experiments.

In Figure 7.4 we first plot MC settings only, then we show MC (n=100)

together with CP4 and the magnitude based approaches. Lastly, we plot only

the best performing methods from each category on extreme sparsity ranges.

MP does one-shot pruning and GMP follows Equation (7.1).

Surprisingly, MC methods now start getting more competitive against CP,

even outperforming it in almost all of the 1% to 0.1% range (note the log

scale). Concurrently training w and r provides the model with a chance to

adapt to the new masks, which seems to significantly benefit MC.

For high sparsity, the best method varies by range of weights remaining:

MC when closer to 1%, CP when closer to 0.1% and GMP when closer to

0.01%. To better understand the solutions, we generate Figure 7.5 by selecting

one run (out of 5) from each of the settings indicated by arrows in Figure 7.4

and plotting their per-layer sparsities over time.5 For each method, left plots in-

dicate the percentage of weights remaining relative to the dense layer, whereas

right plots show how much of the computation is allocated to each layer at a

particular time.

As seen in the left plot, all methods prioritized the protection of the first

layer and pruned mostly the higher-level ones. From the right plots, it is evident

4Savarese et al. (2020) reported better results for this same benchmark. We attribute the
difference to the hyperparameter sweep and initialization, see Section B.3 for details.

5We emphasize that we studied this same plots for settings from Figure 7.4 other than
the selected. Per-method results were similar across high sparsity settings.

81

0.01%0.1%1%10%100%

Weights remaining
(relative to dense version)

0%8%15%57%100%

Weights remaining
(relative to other layers)

0 50 100 150 200
Epoch

2

5

8

10

12

15

18

La
ye

r

0 50 100 150 200
Epoch

2

5

8

10

12

15

18

La
ye

r

Pruning with GMP
(Resnet-20 on CIFAR-10)

0 50 100 150 200
Epoch

2

5

8

10

12

15

18

La
ye

r

0 50 100 150 200
Epoch

2

5

8

10

12

15

18

La
ye

r

Pruning with CP
(Resnet-20 on CIFAR-10)

0 50 100 150 200
Epoch

2

5

8

10

12

15

18

La
ye

r

0 50 100 150 200
Epoch

2

5

8

10

12

15

18

La
ye

r

Pruning with MC (n=100)
(Resnet-20 on CIFAR-10)

Figure 7.5: Per-layer sparsity for the runs indicated in Figure 7.4. Rectangles
correspond to epochs with manually frozen masks.

that the dense Resnet-20 architecture has more (prunable) weights on high-

level layers. Even though this initial allocation is mostly maintained in CP

and MC, GMP seems to have benefitted from reverting it. It appears to have

been an effective way to keep its performance much higher for the sparsest of

settings (weights remaining ≈ 0.01%).

In addition to that, CP plots consisted mostly of fixed horizontal stripes,

in contrast with the “jagged” stripes from MC. CP seems to change the (dis-

crete) masks only in the very first epochs, while MC takes longer to find its

solutions. Even after that, MC keeps switching between masks (close in Ham-

ming distance) until fine-tuning begins. GMP is the most gradual of the three,

utilizing the whole range of epochs.

82

Chapter 8

Conclusion

Perhaps one of the main difficulties of adapting PB optimization to neural net-

work contexts is that most of their knowledge base was built around smooth

optimization. Techniques such as backpropagation, initialization schemes, op-

timizers, regularization, normalization, architectures, activations and even loss

functions were designed with continuous optimization in mind. In multivariate

calculus, the gradient of the loss is already indicative of the best solution in

a small neighbourhood. At least locally, a short step in that direction should

give the desired outcome. Then, researchers and practitioners formulate their

objectives in terms of such functions, while attempting to make the problem

as “convex”-like as possible. Finally, neural network design connects this ob-

jective with a computational graph that takes advantage of this differentiable

framework.

In contrast, a similar set ot techniques is lacking when combining larger-

scale PB optimization and neural networks. Problem formulation will not nec-

essarily involve functions that interact particularly well with discrete parame-

ters. The unavailability of equivalent closed-form expressions for the best im-

mediate direction signifies searching exhaustively for such a solution. Still, PB

optimization problems resurface when attempting to improve certain aspects

of machine learning.

As a consequence of the referred disparity, approaches trying to extend

smooth optimization to discrete contexts have to overcome the incompatibility

between the two settings. One such approach involves utilizing the gradient of

83

the loss and annealing the problem, as described in this study. Unfortunately,

most such methods are afterthoughts and still poorly understood. Perhaps

one future direction for improving the PB optimization solutions is to adapt

problem and architecture designs by also considering the discrete variables.

Table B.5 summarizes all experimental results from this work. By analyzing

them and the background discussion, CP and MC appear to be poor choices

for general PB optimization. MC methods are greatly harmed by larger dimen-

sionality. In addition to the inherent difficulty of searching in a large space,

exploding importance sampling ratios and unwanted generalization between

evaluations make it even less applicable. Despite renewed interest in propos-

ing new estimators with increasingly lower variance, our underwhelming results

using optimal control-variates or even true gradients suggest this might be in-

sufficient. Notably, even using 100 samples was not enough to outperform CP

in the supermask section.

In spite of concerns regarding the sigmoid, our results indicate that using it

is unlikely to be the bottleneck for this use case. Widely different parametriza-

tions appear to have the same limitations. Alternative ideas for improving MC

estimation include modeling dependency between the discrete variables and

mapping a smaller parameter vector to z, instead of working directly with d

dimensions.1 As none of these avoid the limitations discussed, we believe they

are unlikely to lead to long-term advances, serving at best to slightly improve

results on some benchmark. Clearly, regardless of having smaller parameters

or dependent variables, the resulting method will still ultimately be searching

a complex function in an enormous space by mere trial and error.

On the other hand, there is no specific reason why adapting numerical

continuation ideas to bridge the gap between continuous and discrete domains

should work. Studies often rely on the general intuition of curriculum learn-

ing instead. As explained in Section 3.1, homotopy methods were designed to

find roots of a non-linear system of equations. Given some assumptions, which

we overviewed then, a path between the simplified problem and the original

1As a sidenote, depending on how one implement these changes, the equivalence of the
PB and MC objectives discussed in Section 4.1.1 might be lost.

84

τ = 1.0 τ = 0.5 τ = 0.2 τ = 0.01

0.0 0.2 0.4 0.6 0.8 1.0

z

(a) J(z)

-6 -4 -2 0 2 4 6

r

(b) J
(︂
σ
(︂

r
τ

)︂)︂
Figure 8.1: Temperature annealing collapses J(·) at the origin.

one will exist. Gradient-based optimization has a similar motivation: the sys-

tem equations correspond to the dimensions of the gradient vector and the

roots are the critical points. Thus, when CP methods follow the the negative

gradient of the smooth loss, there is an implicit attempt to find such points

for increasingly lower temperatures. Still, it is not clear why finding a critical

point is desirable for infinitely small temperature, or how that connects to

the differences between multiple ζh. The original assumptions from numerical

continuation are likely false in this context.

What ends up happening in these methods is the extrapolation of local be-

haviour. Although reconstructing J(·) away from the current point is no new

endeavour, with Taylor expansions and Padé approximant being some exam-

ples, precision decays for far-away regions, which are exactly the ones needed

here. Moreover, accurate results require higher-order terms, whose computa-

tion is prohibitive if d is large. Our results indicate that these extrapolations

are indeed unreliable.

In addition to that, CP methods resulted in solutions oscillating consid-

erably throughout training in all experiments. To understand why, we can

take d = 1 and note that the chained function J(σ(·/τ)) has an active range

(−∆r,∆r), where behaviour is similar to that of J(·) when restricted to [0, 1].

For r outside of this range, the chained function will be constant: J(ζ0) for

lower values or J(ζ1) for higher values. As τ → 0, the whole active range col-

85

lapses towards the origin, causing rt to traverse many of the critical points

from J(·). The parameter will then change direction depending on whether its

per-timestep neighbourhood is ascending or descending. See Figure 8.1 for an

illustration.

We did not discuss magnitude-based approaches much in this work. Since

the (implicit) masks come from training the main weights, which utilize the

gradient of the loss, they are naturally closer to CP methods than to MC. The

connection between the two goes beyond that. Considering a single weight w

from the neural network, CP rewrites it as:

w′ = wσ
(︂ r
τ

)︂
and weights with r > 0 by the end of training are not pruned. The chain rule

in this case gives

−∂J

∂r
= w

∂σ(r/τ)

∂r

(︃
− ∂J

∂w′

)︃
.

The derivative of the sigmoid is never negative, regardless of τ , whereas the

rightmost factor corresponds to the feedback signal from the problem to w′.

The LHS is the direction used when updating r. From this expression, r in-

creases in two situations: when w is positive and the gradient feedback indicates

it should go up, or when w is negative and the same signal indicates it should

go down.

Interestingly, a positive weight that always goes up or a negative weight

that always goes down will tend to have larger magnitude, which explains

the connection. When used explicitly, this exact criterion: pruning weights by

removing those moving toward zero, was shown to work by itself multiple times

(Bellec et al. 2017; Sanh et al. 2020; H. Zhou et al. 2019). This observation

can perhaps help explain recent successes when generating sparse masks via

CP approaches.

One remaining open question is what would happen to joint training if

computation was not a problem and we could find the optimal solution of the

PB optimization. Using pruning as an example, on the one hand, this perhaps

could lead to major improvements and neural networks significantly smaller

86

than the current state-of-the-art would perform closely to dense models. Con-

veniently, this could unlock a multitude of applications, specially if deployment

speedups using the scientific workflows from Section 7.1.2 became possible.

In contrast, it could also be the case that training of the main network ends

up being robust to worse mask choices. MC results from the pruning section

seem to be one such example: supermask experiments indicated that the high

d handicapped MC methods, but their performance was significantly improved

when pruning jointly. This robustness could then imply that using the optimal

z∗ does not improve the current state-of-the-art much.

One key point for future work is answering what changed for the methods

using ∇zJ(z) when combined with neural networks. Despite the main NN

being fixed, MaskedNNRegression and supermask had them performing well.

We believe studying similar phenomena more analytically is paramount for

future progress, as it provides understanding that might not be achievable by

more practical investigation on larger models. Broadly speaking, the scale of

such systems and the excess of confounding factors limit the range of possible

tools when interpreting results.

Of equal importance is the design of smaller experiments that, despite

the scale, still capture the essence of the problem. Relative computational

feasibility allows for more trial-and-error of new ideas, while also benefiting

from a wider range of tools. Using pruning as an example once more, if the

input-output mapping is part of the experimental design, we can compare the

size of solutions found to the actual number of degrees of freedom, which is

not possible for image classification problems.

Better understanding the aforementioned behaviour is a more immediate

step that perhaps can lead to more conscious model and algorithmic design.

These advances, in turn, can likely be adapted to a wide array of different

fields and problems, including continual learning, multi-task learning, pruning,

transfer-learning, ticket search, Bayesian optimization, training binary/ternary

NN and mixed-precision NN quantization.

87

References

[1] Z. Allen-Zhu, Y. Li, and Z. Song, “A convergence theory for deep learn-
ing via over-parameterization,” in International Conference on Machine
Learning, PMLR, 2019.

[2] E. L. Allgower and K. Georg, Introduction to numerical continuation
methods. Society for Industrial and Applied Mathematics, 2003.

[3] E. L. Allgower and K. Georg, Numerical continuation methods: an in-
troduction. Springer Science & Business Media, 2012, vol. 13.

[4] E. Andriyash, A. Vahdat, and B. Macready, “Improved gradient-based
optimization over discrete distributions,” Computing Research Reposi-
tory, 2018. arXiv: 1810.00116.

[5] S.-K. Au and J. Beck, “Important sampling in high dimensions,” Struc-
tural safety, vol. 25, no. 2, 2003.

[6] K. Azarian, Y. Bhalgat, J. Lee, and T. Blankevoort, “Learned threshold
pruning,” Computing Research Repository, 2020. arXiv: 2003.00075.

[7] G. Bellec, D. Kappel, W. Maass, and R. Legenstein, “Deep rewiring:
Training very sparse deep networks,” Computing Research Repository,
2017. arXiv: 1711.05136.

[8] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagat-
ing gradients through stochastic neurons for conditional computation,”
Computing Research Repository, 2013. arXiv: 1308.3432.

[9] J. Bethge, H. Yang, M. Bornstein, and C. Meinel, “Back to simplic-
ity: How to train accurate BNNs from scratch?” Computing Research
Repository, 2019. arXiv: 1906.08637.

[10] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is
the state of neural network pruning?” Proceedings of machine learning
and systems, vol. 2, 2020.

[11] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” Journal of the American statistical Associ-
ation, vol. 112, no. 518, 2017.

[12] E. Boros and P. L. Hammer, “Pseudo-Boolean optimization,” Discrete
applied mathematics, vol. 123, no. 1-3, 2002.

88

https://arxiv.org/abs/1810.00116
https://arxiv.org/abs/2003.00075
https://arxiv.org/abs/1711.05136
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1906.08637

[13] E. Boros, P. L. Hammer, M. Minoux, and D. J. Rader Jr, “Optimal
cell flipping to minimize channel density in VLSI design and pseudo-
Boolean optimization,” Discrete applied mathematics, vol. 90, no. 1-3,
1999.

[14] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cam-
bridge university press, 2004.

[15] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy mini-
mization via graph cuts,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 23, no. 11, 2001.

[16] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D.
Amodei, “Language models are few-shot learners,” Advances in neural
information processing systems, vol. 33, 2020.

[17] A. Brutzkus, A. Globerson, E. Malach, and S. Shalev-Shwartz, “SGD
learns over-parameterized networks that provably generalize on linearly
separable data,” Computing Research Repository, 2017. arXiv: 1710.
10174.

[18] A. Bulat, B. Martinez, and G. Tzimiropoulos, “High-capacity expert
binary networks,” Computing Research Repository, 2020. arXiv: 2010.
03558.

[19] A. Bulat, G. Tzimiropoulos, J. Kossaifi, and M. Pantic, “Improved
training of binary networks for human pose estimation and image recog-
nition,” Computing Research Repository, 2019. arXiv: 1904.05868.

[20] E. K. Chong and S. H. Zak, An introduction to optimization. John
Wiley & Sons, 2013, vol. 75.

[21] J. Cichon and W.-B. Gan, “Branch-specific dendritic Ca2+ spikes cause
persistent synaptic plasticity,” Nature, vol. 520, no. 7546, 2015.

[22] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Train-
ing deep neural networks with binary weights during propagations,”
Advances in neural information processing systems, vol. 28, 2015.

[23] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual cat-
egorization with bags of keypoints,” in Workshop on statistical learning
in computer vision, European Conference on Computer Vision, vol. 1,
2004.

[24] X. S. Cuadros, L. Zappella, and N. Apostoloff, “Filter distillation for
network compression,” in Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision, 2020.

89

https://arxiv.org/abs/1710.10174
https://arxiv.org/abs/1710.10174
https://arxiv.org/abs/2010.03558
https://arxiv.org/abs/2010.03558
https://arxiv.org/abs/1904.05868

[25] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in IEEE computer society conference on computer vision
and pattern recognition, IEEE, vol. 1, 2005.

[26] G. Dantzig and D. R. Fulkerson, “On the max flow min cut theorem of
networks,” Linear inequalities and related systems, vol. 38, 2003.

[27] S. Daulton, X. Wan, D. Eriksson, M. Balandat, M. A. Osborne, and
E. Bakshy, “Bayesian optimization over discrete and mixed spaces via
probabilistic reparameterization,” Advances in Neural Information Pro-
cessing Systems, vol. 35, 2022.

[28] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,
G. Slabaugh, and T. Tuytelaars, “A continual learning survey: Defying
forgetting in classification tasks,” IEEE transactions on pattern analy-
sis and machine intelligence, vol. 44, no. 7, 2021.

[29] A. Dimitriev and M. Zhou, “ARMS: Antithetic-REINFORCE-multi-
sample gradient for binary variables,” in International Conference on
Machine Learning, PMLR, 2021.

[30] Y. Dinitz, “Algorithm for solution of a problem of maximum flow in
networks with power estimation,” Soviet Mathematics Doklady, vol. 11,
1970.

[31] Z. Dong, A. Mnih, and G. Tucker, “DisARM: An antithetic gradient
estimator for binary latent variables,” Advances in neural information
processing systems, vol. 33, 2020.

[32] Z. Dong, A. Mnih, and G. Tucker, “Coupled gradient estimators for
discrete latent variables,” Advances in Neural Information Processing
Systems, vol. 34, 2021.

[33] S. S. Du, X. Zhai, B. Poczos, and A. Singh, “Gradient descent provably
optimizes over-parameterized neural networks,” Computing Research
Repository, 2018. arXiv: 1810.02054.

[34] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” Journal of the ACM, vol. 19,
no. 2, 1972.

[35] K. Fan, Z. Wang, J. Beck, J. Kwok, and K. A. Heller, “Fast second
order stochastic backpropagation for variational inference,” Advances
in Neural Information Processing Systems, vol. 28, 2015.

[36] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity,” The Jour-
nal of Machine Learning Research, vol. 23, no. 1, 2022.

[37] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” Computing Research Repository,
2018. arXiv: 1803.03635.

90

https://arxiv.org/abs/1810.02054
https://arxiv.org/abs/1803.03635

[38] R. M. French, “Catastrophic forgetting in connectionist networks,”
Trends in cognitive sciences, vol. 3, no. 4, 1999.

[39] T. Gale, E. Elsen, and S. Hooker, “The state of sparsity in deep neural
networks,” Computing Research Repository, 2019. arXiv: 1902.09574.

[40] P. Glasserman,Monte Carlo methods in financial engineering. Springer,
2004, vol. 53.

[41] F. Glover, “Tabu search—part i,” ORSA Journal on computing, vol. 1,
no. 3, 1989.

[42] F. Glover, “Tabu search—part ii,” ORSA Journal on computing, vol. 2,
no. 1, 1990.

[43] P. W. Glynn, “Likelihood ratio gradient estimation for stochastic sys-
tems,” Communications of the ACM, vol. 33, no. 10, 1990.

[44] W. Grathwohl, D. Choi, Y. Wu, G. Roeder, and D. Duvenaud, “Back-
propagation through the void: Optimizing control variates for black-
box gradient estimation,” Computing Research Repository, 2017. arXiv:
1711.00123.

[45] M. Grötschel, L. Lovász, and A. Schrijver, “The ellipsoid method and
its consequences in combinatorial optimization,” Combinatorica, vol. 1,
1981.

[46] S. Gu, S. Levine, I. Sutskever, and A. Mnih, “Muprop: Unbiased back-
propagation for stochastic neural networks,” Computing Research Repos-
itory, 2015. arXiv: 1511.05176.

[47] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V.
Kumar, H. Zhu, A. Gupta, P. Abbeel, and S. Levine, “Soft actor-critic
algorithms and applications,” Computing Research Repository, 2018.
arXiv: 1812.05905.

[48] P. L. Hammer and R. Holzman, “Approximations of pseudo-Boolean
functions; applications to game theory,” Zeitschrift für Operations Re-
search, vol. 36, no. 1, 1992.

[49] P. L. Hammer and E. Shlifer, “Applications of pseudo-Boolean methods
to economic problems,” Theory and decision, vol. 1, 1971.

[50] H.-G. Han and J.-F. Qiao, “A structure optimisation algorithm for feed-
forward neural network construction,” Neurocomputing, vol. 99, 2013.

[51] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” Advances in neural informa-
tion processing systems, vol. 28, 2015.

[52] P. Hansen, “The steepest ascent mildest descent heuristic for combina-
torial programming,” in Congress on numerical methods in combinato-
rial optimization, 1986.

91

https://arxiv.org/abs/1902.09574
https://arxiv.org/abs/1711.00123
https://arxiv.org/abs/1511.05176
https://arxiv.org/abs/1812.05905

[53] B. Hassibi and D. Stork, “Second order derivatives for network prun-
ing: Optimal brain surgeon,” Advances in neural information processing
systems, vol. 5, 1992.

[54] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” Computing Research Repository, 2012. arXiv:
1207.0580.

[55] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, “Sparsity
in deep learning: Pruning and growth for efficient inference and train-
ing in neural networks,” The Journal of Machine Learning Research,
vol. 22, no. 1, 2021.

[56] R. Horst and P. M. Pardalos, Handbook of global optimization. Springer
Science & Business Media, 2013, vol. 2.

[57] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” Advances in neural information process-
ing systems, vol. 29, 2016.

[58] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in International
conference on machine learning, pmlr, 2015.

[59] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
Gumbel-softmax,” Computing Research Repository, 2016. arXiv: 1611.
01144.

[60] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis, “How easy is
local search?” Journal of computer and system sciences, vol. 37, no. 1,
1988.

[61] M. Jünger, A. Martin, G. Reinelt, and R. Weismantel, “Quadratic 0/1
optimization and a decomposition approach for the placement of elec-
tronic circuits,” Mathematical programming, vol. 63, 1994.

[62] R. M. Karp, Reducibility among combinatorial problems. Springer, 2010.

[63] D. P. Kingma and M.Welling, “Auto-encoding variational bayes,” Com-
puting Research Repository, 2013. arXiv: 1312.6114.

[64] D. P. Kingma, T. Salimans, and M. Welling, “Variational dropout and
the local reparameterization trick,” Advances in neural information
processing systems, vol. 28, 2015.

[65] V. Kolmogorov and C. Rother, “Minimizing nonsubmodular functions
with graph cuts - a review,” IEEE transactions on pattern analysis and
machine intelligence, vol. 29, no. 7, 2007.

[66] W. Kool, H. van Hoof, and M. Welling, “Buy 4 reinforce samples, get
a baseline for free!” International Conference on Learning Representa-
tions Workshop, 2019.

92

https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1312.6114

[67] B. H. Korte, J. Vygen, B. Korte, and J. Vygen, Combinatorial opti-
mization. Springer, 2011, vol. 1.

[68] O. Kramer and O. Kramer, Genetic algorithms. Springer, 2017.

[69] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, 2009.

[70] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Communications of the
ACM, vol. 60, no. 6, 2017.

[71] W. Kubiak, “New results on the completion time variance minimiza-
tion,” Discrete Applied Mathematics, vol. 58, no. 2, 1995.

[72] K. V. Kuchibhotla, J. V. Gill, G. W. Lindsay, E. S. Papadoyannis,
R. E. Field, T. A. H. Sten, K. D. Miller, and R. C. Froemke, “Parallel
processing by cortical inhibition enables context-dependent behavior,”
Nature neuroscience, vol. 20, no. 1, 2017.

[73] P. Ladosz, L. Weng, M. Kim, and H. Oh, “Exploration in deep rein-
forcement learning: A survey,” Information Fusion, vol. 85, 2022.

[74] Q. Lan, S. Tosatto, H. Farrahi, and A. R. Mahmood, “Model-free policy
learning with reward gradients,” Computing Research Repository, 2021.
arXiv: 2103.05147.

[75] T. Lattimore and C. Szepesvári, Bandit algorithms. Cambridge Univer-
sity Press, 2020.

[76] P. Lauret, E. Fock, and T. A. Mara, “A node pruning algorithm based
on a Fourier amplitude sensitivity test method,” IEEE transactions on
neural networks, vol. 17, no. 2, 2006.

[77] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”
Operations research, vol. 14, no. 4, 1966.

[78] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, 1998.

[79] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, “A tuto-
rial on energy-based learning,” Predicting structured data, vol. 1, no. 0,
2006.

[80] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” Advances
in neural information processing systems, vol. 2, 1989.

[81] N. Lee, T. Ajanthan, S. Gould, and P. H. Torr, “A signal propagation
perspective for pruning neural networks at initialization,” Computing
Research Repository, 2019. arXiv: 1906.06307.

93

https://arxiv.org/abs/2103.05147
https://arxiv.org/abs/1906.06307

[82] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun,
N. Shazeer, and Z. Chen, “Gshard: Scaling giant models with con-
ditional computation and automatic sharding,” Computing Research
Repository, 2020. arXiv: 2006.16668.

[83] B. Li, T. Bengtsson, and P. Bickel, “Curse-of-dimensionality revisited:
Collapse of importance sampling in very large scale systems,” Rapport
technique, vol. 85, 2005.

[84] S. Z. Li, Markov random field modeling in computer vision. Springer
Science & Business Media, 2012.

[85] Y. Li and S. Ji, “L0-ARM: Network sparsification via stochastic bi-
nary optimization,” in The European Conference on Machine Learning,
Springer, 2020.

[86] G. Lorberbom, A. Gane, T. Jaakkola, and T. Hazan, “Direct optimiza-
tion through argmax for discrete variational auto-encoder,” Advances
in neural information processing systems, vol. 32, 2019.

[87] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural
networks through L0 regularization,” Computing Research Repository,
2017. arXiv: 1712.01312.

[88] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proceedings of the seventh IEEE international conference on computer
vision, IEEE, vol. 2, 1999.

[89] M. Luby, “A simple parallel algorithm for the maximal independent set
problem,” in Proceedings of the seventeenth annual ACM symposium on
Theory of computing, 1985.

[90] J.-H. Luo and J. Wu, “Autopruner: An end-to-end trainable filter prun-
ing method for efficient deep model inference,” Pattern Recognition,
vol. 107, 2020.

[91] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in Proceedings of the IEEE in-
ternational conference on computer vision, 2017.

[92] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution:
A continuous relaxation of discrete random variables,” Computing Re-
search Repository, 2016. arXiv: 1611.00712.

[93] C. J. Maddison, D. Tarlow, and T. Minka, “A* sampling,” Advances in
neural information processing systems, vol. 27, 2014.

[94] T. S. Madhulatha, “An overview on clustering methods,” Computing
Research Repository, 2012. arXiv: 1205.1117.

[95] Z. Mai, R. Li, J. Jeong, D. Quispe, H. Kim, and S. Sanner, “Online
continual learning in image classification: An empirical survey,” Neuro-
computing, vol. 469, 2022.

94

https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/1712.01312
https://arxiv.org/abs/1611.00712
https://arxiv.org/abs/1205.1117

[96] E. Malach, G. Yehudai, S. Shalev-Schwartz, and O. Shamir, “Proving
the lottery ticket hypothesis: Pruning is all you need,” in International
Conference on Machine Learning, PMLR, 2020.

[97] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a single
network by iterative pruning,” in Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, 2018.

[98] B. Martinez, J. Yang, A. Bulat, and G. Tzimiropoulos, “Training binary
neural networks with real-to-binary convolutions,” Computing Research
Repository, 2020. arXiv: 2003.11535.

[99] J. McCarley, R. Chakravarti, and A. Sil, “Structured pruning of a
BERT-based question answering model,” Computing Research Reposi-
tory, 2019. arXiv: 1910.06360.

[100] M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” in Psychology of
learning and motivation, vol. 24, Elsevier, 1989.

[101] C. C. McGeoch and C. Wang, “Experimental evaluation of an adiabiatic
quantum system for combinatorial optimization,” in Proceedings of the
ACM International Conference on Computing Frontiers, 2013.

[102] J. Mei, C. Xiao, B. Dai, L. Li, C. Szepesvári, and D. Schuurmans,
“Escaping the gravitational pull of softmax,” Advances in Neural In-
formation Processing Systems, vol. 33, 2020.

[103] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih, “Monte carlo gra-
dient estimation in machine learning.,” J. Mach. Learn. Res., vol. 21,
no. 132, 2020.

[104] D. Molchanov, A. Ashukha, and D. Vetrov, “Variational dropout spar-
sifies deep neural networks,” in International Conference on Machine
Learning, PMLR, 2017.

[105] A. Montanaro, “Quantum algorithms: An overview,” npj Quantum In-
formation, vol. 2, no. 1, 2016.

[106] B. Mussay, D. Feldman, S. Zhou, V. Braverman, and M. Osadchy,
“Data-independent structured pruning of neural networks via coresets,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 33,
no. 12, 2021.

[107] B. Neyshabur, Z. Li, S. Bhojanapalli, Y. LeCun, and N. Srebro, “To-
wards understanding the role of over-parametrization in generaliza-
tion of neural networks,” Computing Research Repository, 2018. arXiv:
1805.12076.

[108] R. O’Donnell,Analysis of boolean functions. Cambridge University Press,
2014.

95

https://arxiv.org/abs/2003.11535
https://arxiv.org/abs/1910.06360
https://arxiv.org/abs/1805.12076

[109] L. Orseau, M. Hutter, and O. Rivasplata, “Logarithmic pruning is all
you need,” Advances in Neural Information Processing Systems, vol. 33,
2020.

[110] G. H. Otazu, L.-H. Tai, Y. Yang, and A. M. Zador, “Engaging in an
auditory task suppresses responses in auditory cortex,” Nature neuro-
science, vol. 12, no. 5, 2009.

[111] A. B. Owen, Monte carlo theory, methods and examples, 2013.

[112] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Contin-
ual lifelong learning with neural networks: A review,” Neural networks,
vol. 113, 2019.

[113] M. Paulus, D. Choi, D. Tarlow, A. Krause, and C. J. Maddison, “Gra-
dient estimation with stochastic softmax tricks,” Advances in Neural
Information Processing Systems, vol. 33, 2020.

[114] M. B. Paulus, C. J. Maddison, and A. Krause, “Rao-blackwellizing
the straight-through Gumbel-softmax gradient estimator,” Computing
Research Repository, 2020. arXiv: 2010.04838.

[115] A. Pensia, S. Rajput, A. Nagle, H. Vishwakarma, and D. Papailiopoulos,
“Optimal lottery tickets via subset sum: Logarithmic overparameteriza-
tion is sufficient,” Advances in neural information processing systems,
vol. 33, 2020.

[116] A. T. Phillips and J. B. Rosen, “A quadratic assignment formulation of
the molecular conformation problem,” Journal of Global Optimization,
vol. 4, 1994.

[117] J.-C. Picard and H. D. Ratliff, “A cut approach to the rectilinear dis-
tance facility location problem,” Operations Research, vol. 26, no. 3,
1978.

[118] R. Reed, “Pruning algorithms - a survey,” IEEE transactions on Neural
Networks, vol. 4, no. 5, 1993.

[119] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” Advances in neu-
ral information processing systems, vol. 28, 2015.

[120] L. Richter, A. Boustati, N. Nüsken, F. Ruiz, and O. D. Akyildiz, “Var-
grad: A low-variance gradient estimator for variational inference,” Ad-
vances in Neural Information Processing Systems, vol. 33, 2020.

[121] I. G. Rosenberg, “Reduction of bivalent maximization to the quadratic
case.,” 1975.

[122] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, The Journal of Machine Learning Research - Workshop and
Conference Proceedings, 2011.

96

https://arxiv.org/abs/2010.04838

[123] R. Y. Rubinstein and A. Shapiro, “Optimization of static simulation
models by the score function method,” Mathematics and Computers in
Simulation, vol. 32, no. 4, 1990.

[124] S. J. Russell, Artificial intelligence a modern approach, 4th edition.
Pearson Education, Inc., 2021.

[125] P. Salamon, P. Sibani, and R. Frost, Facts, conjectures, and improve-
ments for simulated annealing. Society for Industrial and Applied Math-
ematics, 2002.

[126] V. Sanh, T. Wolf, and A. Rush, “Movement pruning: Adaptive sparsity
by fine-tuning,” Advances in Neural Information Processing Systems,
vol. 33, 2020.

[127] P. Savarese, H. Silva, and M. Maire, “Winning the lottery with continu-
ous sparsification,” Advances in neural information processing systems,
vol. 33, 2020.

[128] D. Schuurmans and F. Southey, “Local search characteristics of incom-
plete SAT procedures,” Artificial Intelligence, vol. 132, no. 2, 2001.

[129] J. Serra, D. Suris, M. Miron, and A. Karatzoglou, “Overcoming catas-
trophic forgetting with hard attention to the task,” in International
Conference on Machine Learning, PMLR, 2018.

[130] A. Shekhovtsov and V. Yanush, “Reintroducing straight-through esti-
mators as principled methods for stochastic binary networks,” inDAGM
German Conference on Pattern Recognition, Springer, 2021.

[131] J. Shi, Y. Zhou, J. Hwang, M. Titsias, and L. Mackey, “Gradient esti-
mation with discrete Stein operators,” Advances in neural information
processing systems, vol. 35, 2022.

[132] Sietsma and Dow, “Neural net pruning - why and how,” in IEEE 1988
International Conference on Neural Networks, IEEE, 1988.

[133] S. P. Singh and D. Alistarh, “Woodfisher: Efficient second-order ap-
proximation for neural network compression,” Advances in Neural In-
formation Processing Systems, vol. 33, 2020.

[134] S. Srinivas and R. V. Babu, “Data-free parameter pruning for deep
neural networks,” Computing Research Repository, 2015. arXiv: 1507.
06149.

[135] S. Srinivas, A. Subramanya, and R. Venkatesh Babu, “Training sparse
neural networks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, 2017.

[136] R. Sutton, “Two problems with back propagation and other steepest
descent learning procedures for networks,” in Proceedings of the Eighth
Annual Conference of the Cognitive Science Society, 1986, 1986.

97

https://arxiv.org/abs/1507.06149
https://arxiv.org/abs/1507.06149

[137] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction.
MIT press, 2018.

[138] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethink-
ing the inception architecture for computer vision,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016.

[139] R. Szeliski, Computer vision: algorithms and applications. Springer Na-
ture, 2022.

[140] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A.
Agarwala, M. Tappen, and C. Rother, “A comparative study of en-
ergy minimization methods for markov random fields with smoothness-
based priors,” IEEE transactions on pattern analysis and machine in-
telligence, vol. 30, no. 6, 2008.

[141] G. Tavares, New algorithms for Quadratic Unconstrained Binary Opti-
mization (QUBO) with applications in engineering and social sciences.
Rutgers The State University of New Jersey, School of Graduate Stud-
ies, 2008.

[142] L. Theis, I. Korshunova, A. Tejani, and F. Huszár, “Faster gaze pre-
diction with dense networks and Fisher pruning,” Computing Research
Repository, 2018. arXiv: 1801.05787.

[143] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society: Series B (Methodological), vol. 58,
no. 1, 1996.

[144] M. Titsias and J. Shi, “Double control variates for gradient estima-
tion in discrete latent variable models,” in International Conference on
Artificial Intelligence and Statistics, PMLR, 2022.

[145] G. Tucker, A. Mnih, C. J. Maddison, J. Lawson, and J. Sohl-Dickstein,
“REBAR: Low-variance, unbiased gradient estimates for discrete latent
variable models,” Advances in Neural Information Processing Systems,
vol. 30, 2017.

[146] P. J. Van Laarhoven, E. H. Aarts, P. J. van Laarhoven, and E. H. Aarts,
Simulated annealing. Springer, 1987.

[147] C. Wang, R. Grosse, S. Fidler, and G. Zhang, “Eigendamage: Struc-
tured pruning in the Kronecker-factored eigenbasis,” in International
conference on machine learning, PMLR, 2019.

[148] M. White, “Intermediate machine learning,” in University of Alberta
course notes, 2022.

[149] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, 1992.

[150] D. P. Williamson and D. B. Shmoys, The design of approximation al-
gorithms. Cambridge university press, 2011.

98

https://arxiv.org/abs/1801.05787

[151] M. Xu, M. Quiroz, R. Kohn, and S. A. Sisson, “Variance reduction
properties of the reparameterization trick,” in The 22nd international
conference on artificial intelligence and statistics, PMLR, 2019.

[152] M. Yin, N. Ho, B. Yan, X. Qian, and M. Zhou, “Probabilistic best
subset selection via gradient-based optimization,” Computing Research
Repository, 2020. arXiv: 2006.06448.

[153] M. Yin, Y. Yue, and M. Zhou, “Arsm: Augment-REINFORCE-swap-
merge estimator for gradient backpropagation through categorical vari-
ables,” in International Conference on Machine Learning, PMLR, 2019.

[154] M. Yin and M. Zhou, “ARM: Augment-REINFORCE-merge gradient
for stochastic binary networks,” Computing Research Repository, 2018.
arXiv: 1807.11143.

[155] X. Yuan, P. Savarese, and M. Maire, “Growing efficient deep networks
by structured continuous sparsification,” Computing Research Reposi-
tory, 2020. arXiv: 2007.15353.

[156] W. Zeng and R. Urtasun, “MLPrune: Multi-layer pruning for auto-
mated neural network compression,” Computing Research Repository,
2019. arXiv: 2101.06608.

[157] H. Zhou, J. Lan, R. Liu, and J. Yosinski, “Deconstructing lottery tick-
ets: Zeros, signs, and the supermask,” Advances in neural information
processing systems, vol. 32, 2019.

[158] X. Zhou, W. Zhang, H. Xu, and T. Zhang, “Effective sparsification of
neural networks with global sparsity constraint,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021.

[159] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the efficacy
of pruning for model compression,” Computing Research Repository,
2017. arXiv: 1710.01878.

99

https://arxiv.org/abs/2006.06448
https://arxiv.org/abs/1807.11143
https://arxiv.org/abs/2007.15353
https://arxiv.org/abs/2101.06608
https://arxiv.org/abs/1710.01878

Appendix A

Proofs

A.1 Multilinear form

We start with the following lemma, then proceed to the main proof.

Lemma 8. As in the main text, we denote D = {1, 2, ..., d}. With x ∈ Rd,

consider the following:

g(x) =
∑︂

S⊆D\{i}

qS(xi)
∏︂
j∈S

xj.

g(x) being independent of xi implies qS(xi) is also independent of xi for all

S ⊆ D \ {i}.

Proof To simplify exposition, we will consider only z ∈ {0, 1}d instead of

x. Extension to Rd follows a similar argument, which we mention in the end.

Using notation from Equation (2.3), g(z) independent of zi means:

g(1S) = g(1S∪{i}), for S ⊆ D \ {i}.

Also, for S ⊆ D \ {i}, we have:

g(1S) =
∑︂
T ⊆S

qT (0) and g(1S∪{i}) =
∑︂
T ⊆S

qT (1).

We want to show that:

qS(0) = qS(1), for S ⊆ D \ {i},

which we prove by induction:

100

• Base case: we consider the empty set

g(1∅) = q∅(0) and g(1{i}) = q∅(1).

By our main assumption from the statement, g(1∅) = g(1{i}). Therefore:

q∅(0) = q∅(1).

• General case: assume that, for S ′ ⊆ D \ {i} and |S ′| ≤ d− 1, we have

qS′(1) = qS′(0). Then, for S ⊆ D \ {i} and |S| = d:

g(1S∪{i}) =
∑︂
T ⊆S

qT (1)

= qS(1) +
∑︂
T ⊈S

qT (1)

= qS(1) +
∑︂
T ⊈S

qT (0)

and we know that:

g(1S∪{i}) = g(1S) =
∑︂
T ⊆S

qT (0).

Combining both:

qS(1) +
∑︂
T ⊈S

qT (0) =
∑︂
T ⊆S

qT (0)

qS(1) = qS(0).

To extend this proof to Rd, simply use zi = x′ and zi = x′′ in the comparisons,

instead of 0 and 1 and allow arbitrary zj for j ̸= i in place of zj = 1. The

additional terms due to the product of the coordinates ̸= i will cancel.

Theorem 1. An arbitrary twice differentiable function f : Rd → R will have

a Hessian whose diagonal is equal to 0 = [0, · · · , 0]⊤ if and only if it can be

represented in the form of Equation (2.4).

101

Proof We consider x ∈ Rd and start by proving:

f(x) = PJ(x)⇒
∂2f(x)

∂x2
i

= 0, for all i.

Which follows from the fact that no xi appears squared for PJ(x) following

Equation (2.4). Then, we prove the reverse implication:

∂2f(x)

∂x2
i

= 0 for all i⇒ f(x) = PJ(x).

By induction:

• Base case: We assume f : R→ R. Using integration we have

∂2f(x)

∂x2
= 0

f(x) = ax+ b

= w1x+ w∅.

• General case: we assume that, for f ′ : Rd−1 → R

∂2f ′(x)

∂x2
i

= 0, for 1 ≤ i ≤ d− 1⇔ f ′(x) = PJ ′(x)

=
∑︂

S⊆{1,...,d−1}

w′
S

∏︂
i∈S

xi.

(A.1)

Then, we consider a function fd : R→ R. Assuming that:

∂2f(x)

∂x2
i

= 0, for all 1 ≤ i ≤ d,

we want to show that this implies f(·) can be written in the form of

Equation (2.4). Fix an arbitrary i, and note that, for any value of xi,

since the other d− 1 coordinates have corresponing entries on the diag-

onal of the Hessian equal to zero, we can write f(·, xi, ·) as in the RHS

of Equation (A.1) (with coordinates remapped). The specific d− 1 mul-

tilinear polynomial from Equation (A.1) will depend on the value of xi.

Therefore, we can write f(·) as:

f(x) =
∑︂

S⊆D\{i}

wS(xi)
∏︂
j∈S

xj.

102

Taking the derivative:

∂f(x)

∂xi

=
∑︂

S⊆D\{i}

∂wS(xi)

∂xi

∏︂
j∈S

xj.

In addition, by assumption, we also have ∂2f(x)/∂x2
i = 0. Consequently,

∂f(x)/∂xi does not depend on xi. Using Lemma 8, with g(x) = ∂f(x)/∂xi

and qS(xi) = ∂wS(xi)/∂xi, we have that ∂wS(xi)/∂xi is also independent

of xi. Meaning:

wS(xi) = w′
S + xiw

′′
S .

Finally, this implies:

f(x) =
∑︂

S⊆D\{i}

wS(xi)
∏︂
j∈S

xj

=
∑︂

S⊆D\{i}

(w′
S + xiw

′′
S)
∏︂
j∈S

xj

=
∑︂
S⊆D

wS
∏︂
i∈S

xi.

Where, for any S ⊆ D \ {i}, we have wS = w′
S and wS∪{i} = w′′

S .

A.2 Iterative ARMS procedure

To prove that the sampling procedure is equivalent, since dimensions are in-

dependent, we restrict ourselves to d = 1 and omit the index i. Assume:

E(s) = − logU (s), for U (1), . . . , U (n) i.i.d.∼ U [0, 1].

Note also that the original ARMS procedure from Algorithm 5 samples the

Dirichlet by using:

d(s) =
logU (s)∑︁n

s′=1 logU
(s′)

=
E(s)∑︁n

s′=1E
(s′)

. (A.2)

Furthermore, for E(s) as defined above and considering the exponential and

Gamma distributions, the following holds:

E(s) ∼ Exp[1] = Gamma[1, 1].

103

The PDF of E(s) is:

fE(s)(x) = e−x, for x ≥ 0.

Additionally, the sum of these multiple independent Gamma random variables

with common scale parameter satisfies

n∑︂
s′=1

E(s′) ∼ Gamma[n, 1], f∑︁E(s′)(x) =
xn−1e−x

(n− 1)!
, for x ≥ 0. (A.3)

The procedure involves sampling the whole
∑︁n

s′=1E
(s′) sum at once and then

iteratively sampling each of its composing summands E(s). We therefore want

to know the PDF of E(s) given the sum. By Bayes rule:

fE(s)|
∑︁

E(s′)=R(x) =
fE(s)(x)f∑︁E(s′)|E(s)=x(R)

f∑︁E(s′)(R)

=
fE(s)(x)f∑︁

s′ ̸=s E
(s′)|E(s)=x(R− x)

f∑︁E(s′)(R)

=
fE(s)(x)f∑︁

s′ ̸=s E
(s′)(R− x)

f∑︁E(s′)(R)
▷ Since E(s)

and E(s′)

are i.i.d.

=
e−x

(︂
(R−x)n−2e−(R−x)

(n−2)!

)︂
Rn−1e−R

(n−1)!

, for 0 ≤ x ≤ R

=
n− 1

R

(︂
1− x

R

)︂n−2

.

The CDF of this r.v. is:

FE(s)|
∑︁

E(s′)=R(x) =

∫︂ x

0

fE(s)|
∑︁

E(s′)=R(x
′)dx′

= 1−
(︂
1− x

R

)︂n−1

, for 0 ≤ x ≤ R, (A.4)

and its inverse is given by

(FE(s)|
∑︁

E(s′)=R)
−1(y) = −R(1− y)

1
n−1 +R, for 0 ≤ y ≤ 1. (A.5)

104

By inverse transform sampling, we can sample a random variable with CDF

from Equation (A.4) by first sampling U ∼ U [0, 1] and then applying Equa-

tion (A.5) to it. In that case, 1− U is also distributed according to U [0, 1], so

we can use it instead. Therefore, sampling E(s) given
∑︁n

s′=1E
(s′) = R is the

same as sampling U ∼ U [0, 1], then doing:

E(s) = −RU
1

n−1 +R. (A.6)

The iterative procedure outlined in Algorithm 6 then consists of the following

steps:

1. Sample
∑︁n

s′=1E
(s′) (Equation (A.3)).

2. Sample E(s) given this sum (Equation (A.6)).

3. Compute the Dirichlet d(s) (Equation (A.2)).

4. Compute uniform ũ using the marginal Dirichlet CDF (similar to Algo-

rithm 5).

5. Repeat this process for the next iteration, but, instead of sampling∑︁n
s′=1 E

(s′) again, use R minus the previous E(s), with the caveat that

Equation (A.5) has to be adapted to consider one less sample.

The final algorithm, resulting from combining Algorithms 4 to 6 is outlined in

Algorithm 7.

105

Algorithm 7 Iterative ARMS with Dirichlet copulas

▷ Start accumulators:
Ĵ ← 0;
Λ∇ log ← 0;
ΛJ∇ log ← 0;
▷ Start variables for iterative Dirichlet sampling:

Sample
∑︁

s′ E
(s′)
i ∼ Gamma[n, 1] for i ∈ {1, · · · , d}

Ri ←
∑︁

s′ E
(s′)
i

▷ Compute correlations:
for i ∈ 1 . . . d do

if θi > 0.5 then

ρi ← max(0,2(1−θi)
1

n−1−1)n−1−(1−θi)
2

θi(1−θi)

else

ρi ← max(0,2θ
1/(n−1)
i −1)n−1−θ2i
θi(1−θi)

▷ Main loop:
for s ∈ 1 . . . n do

▷ The loop below can be parallelized with vectorized implementations
for i ∈ 1 . . . d do

if s < n then
Sample U ∼ U [0, 1]

E
(s)
i ← −RiU

1
n−s +Ri

else
E

(s)
i ← Ri

Ri ← Ri − E
(s)
i

▷ Get single Dirichlet r.v. (PS:
∑︁

s′ E
(s′)
i was already computed)

d
(s)
i ←

E
(s)
i∑︁

s′ E
(s′)
i

ũ
(s)
i ← 1− (1− d

(s)
i)n−1 ▷ Apply marginal CDF

if θi > 0.5 then ▷ Additional steps from ARMS paper
z̃
(s)
i ← 1[ũ

(s)
i ≤ θi]

else
z̃
(s)
i ← 1[1− ũ

(s)
i ≤ θi]

▷ Accumulate values, similarly to LOORF
Ĵ ← s−1

s
Ĵ + 1

s
J(z̃(s))

Λ∇ log ←
max (s−2,1)

max (s−1,1)
Λ∇ log +

1
max (s−1,1)

∇θ log pθ(z̃
(s))

ΛJ∇ log ←
max (s−2,1)

max (s−1,1)
ΛJ∇ log +

1
max (s−1,1)

J(z̃(s))∇θ log pθ(z̃
(s))

ĝ ← 1
1−ρ

(︂
ΛJ∇ log − Λ∇ logĴ

)︂
Return: ĝ

106

A.3 Beta∗

Theorem 3. Consider the problem of estimating:

∂

∂θi
E

z∼pθ(·)
[J(z)] = E

z∼pθ(·)

[︃
∂ log pθ(z)

∂θi
J(z)

]︃
by sampling z(s)

iid∼ pθ(·), for s ∈ {1, . . . , n} and using:

ĝβi
((z(s))ns=1;θ) =

1

n

n∑︂
s=1

(︂
J(z(s))− βi

)︂∂ log pθ(z(s))
∂θi

. (4.17)

The optimal β∗
i such that

β∗
i = arg min

βi∈R
Var

[︁
ĝβi

((z(s))ns=1;θ)
]︁

is given by

β∗
i = E

z∼qi(·;θ)
[J(z)] , where qi(·;θ) ∝ pθ(·)

(︃
∂ log pθ(·)

∂θi

)︃2

.

Proof For arbitrary f(·) and d = 1, consider estimating E[f(z)] by using

control variates as follows:

E [f(z)] ≈

(︄
1

n

n∑︂
s=1

f(z(s))− βh(z(s))

)︄
+ βE [h(z)] . (A.7)

From Owen (2013, section 8.9), the optimal β is given by

β∗ =
Cov [f(z), h(z)]

Var [h(z)]
.

Estimation from Equation (4.17) is equivalent to Equation (A.7) for the fol-

lowing choices:

f(z) =
∂ log pθ(z)

∂θi
J(z) and h(z) =

∂ log pθ(z)

∂θi
.

107

We have:

β∗ =
Cov

[︂
∂ log pθ(z)

∂θi
J(z), ∂ log pθ(z)

∂θi

]︂
Var

[︂
∂ log pθ(z)

∂θi

]︂

=

E
[︃(︂

∂ log pθ(z)
∂θi

)︂2
J(z)

]︃
E
[︃(︂

∂ log pθ(z)
∂θi

)︂2]︃ ▷ Since E
z∼pθ(·)

[︂
∂ log pθ(z)

∂θi

]︂
= 0

=

∫︁
pθ(z)

(︂
∂ log pθ(z)

∂θi

)︂2
J(z)dz∫︁

pθ(z′)
(︂

∂ log pθ(z′)
∂θi

)︂2
dz′

=

∫︂ ⎛⎜⎝ pθ(z)
(︂

∂ log pθ(z)
∂θi

)︂2
∫︁
pθ(z′)

(︂
∂ log pθ(z′)

∂θi

)︂2
dz′

⎞⎟⎠ J(z)dz

= E
z∼qi(·;θ)

[J(z)] .

Where:

qi(z;θ) =
pθ(z)

(︂
∂ log pθ(z)

∂θi

)︂2
∫︁
pθ(z′)

(︂
∂ log pθ(z′)

∂θi

)︂2
dz′

∝ pθ(z)

(︃
∂ log pθ(z)

∂θi

)︃2

.

Theorem 4. For the same setting as in Theorem 3, but with the additional

condition that pθ(·) =
∏︁d

i=1 Ber[θi], the optimal β∗
i becomes:

β∗
i = E

z∼pθ(·)
[J(z1, . . . , zi−1, 1− zi, zi+1, . . .)] .

Proof Since we have pθ(z) =
∏︁d

i=1 pθi(zi), qi(z;θ) becomes:

qi(z;θ) =
pθ(z)

(︂
∂ log pθ(z)

∂θi

)︂2
∫︁
pθ(z′)

(︂
∂ log pθ(z′)

∂θi

)︂2
dz′

=
pθ(z)

(︂
∂ log pθ(zi)

∂θi

)︂2
∫︁
pθ(z′i)

(︂
∂ log pθ(z

′
i)

∂θi

)︂2
dz′i

.

108

Which, for pθ(·) =
∏︁d

i=1 Ber[θi], becomes:

qi(z;θ) =
∏︂
j ̸=i

pθj(zj)

1
pθi (zi)

1
pθi (zi)

+ 1
1−pθi (zi)

=

(︄∏︂
j ̸=i

pθj(zj)

)︄
(1− pθi(zi)).

Plugging this in Ez∼qi(·;θ)[J(z)] and using z\i ∼ pθ(·) as shorthand for zj ∼

pθj(·) for j ̸= i:

β∗
i = E

z\i∼pθ(·)
zi∼1−pθi

(·)

[J(z)]

= E
z∼pθ(·)

[J(z1, . . . , zi−1, 1− zi, zi+1, . . .)] ,

where the last step follows from the fact that, in general, we can sample

b′ ∼ Ber[1− θ] as b′ = 1− b, for b ∼ Ber[θ].

A.4 Generalization of stochastic formulation

Theorem 5. For some arbitrary z∗ in {0, 1}d, define J : {0, 1}d → R as:

J(z) =

⎧⎨⎩m if z = z∗

M0 − dH(z, z
∗)
∆M

d
otherwise

,

where M0 ∈ R, ∆M ∈ R>0 and m = minz∈{0,1}d J(z) is unique. Particularly,

this is only satisfied if:

m < M0 −∆M,

where J(1 − z∗) = M0 − ∆M is the second lowest value. For any arbitrary

dimension i and assuming pθ(·) is a factorized Bernoulli with parameter θ, we

have: (︃
−∇θ E

z∼pθ(·)
[J(z)]

)︃
i

(∇θpθ(z
∗))i ≥ 0 (4.20)

⇐⇒ m ≤M0 −
∆M

d
∏︁

j ̸=i pθj(z
∗
j)
.

109

Proof As mentioned in the main text, J(·) is bounded to the interval [m,M0),

regardless of d . Since pθi(zi) is a factorized Bernoulli, we have:

pθi(zi) =

{︄
θi if zi = 1

1− θi if zi = 0
and pθ(z) =

d∏︂
i=1

pθi(zi).

We also have:
∂pθ(z)

∂θi
= (2zi − 1)

∏︂
j ̸=i

pθj(zj)

and the direction that increases pθ(z
∗) at the i-th coordinate is:

∂pθ(z
∗)

∂θi
= (2z∗i − 1)

∏︂
j ̸=i

pθj(z
∗
j).

Whereas the negative of the true gradient at the i-th coordinate is:

− ∂

∂θi
E

z∼pθ(·)
[J(z)] = −

2d−1∑︂
h=0

∂pθ(ζh)

∂θi
J(ζh)

= −
2d−1∑︂
h=0

(︄
(2(ζh)i − 1)

∏︂
j ̸=i

pθj((ζh)j)

)︄
J(ζh).

Therefore, the i-th coordinate of −∇θEz∼pθ(·)J(z) and that of ∇θpθ(z
∗) will

point in the same direction if the following is ≥ 0:

∂pθ(z
∗)

∂θi

(︃
− ∂

∂θi
E

z∼pθ(·)
[J(z)]

)︃
= (2z∗i − 1)

∏︂
j ̸=i

pθj(z
∗
j)

(︄
−

2d−1∑︂
h=0

(︄
(2(ζh)i − 1)

∏︂
j ̸=i

pθj((ζh)j)

)︄
J(ζh)

)︄
.

Since
∏︁

j ̸=i pθj(z
∗
j) does not change the sign of the expression, we will ignore

it. The remaining terms can be written as:

(2z∗i − 1)

(︄
−

2d−1∑︂
h=0

(︄
(2(ζh)i − 1)

∏︂
j ̸=i

pθj((ζh)j)

)︄
J(ζh)

)︄

= (2z∗i − 1)
(︂
−

1∑︂
zi=0

(2zi − 1)E{zj∼pθj (·)}j ̸=i
[J(z)]

)︂
= −

1∑︂
zi=0

(−1)1[zi ̸=z∗i]E{zj∼pθj (·)}j ̸=i
[J(z)]

110

= −
(︂
E{zj∼pθj (·)}j ̸=i

[J(z1, . . . , zi−1, z
∗
i , zi+1, . . .)] −

E{zj∼pθj (·)}j ̸=i
[J(z1, . . . , zi−1, 1− z∗i , zi+1, . . .)]

)︂
= − E{zj∼pθj (·)}j ̸=i

[︁
J(z1, . . . , zi−1, z

∗
i , zi+1, . . .) −

J(z1, . . . , zi−1, 1− z∗i , zi+1, . . .)
]︁
.

(A.8)

Note that the following implication is true for the given J(·):

(dH(z, z
′) = 1) ∧ (dH(z, z

∗)− dH(z
′, z∗) = −1)⇒(︃

(z = z∗) ∧
(︃
J(z)− J(z′) = m−

(︃
M0 −

∆M

d

)︃)︃)︃
∨(︃

(z ̸= z∗) ∧
(︃
J(z)− J(z′) =

∆M

d

)︃)︃
(A.9)

and the left statement from Equation (A.9) is satisfied for all pairs inside

the expectation from the RHS of Equation (A.8). Therefore Equation (A.8)

becomes:

− E{zj∼pθj (·)}j ̸=i

[︁
J(z1, . . . , zi−1, z

∗
i , zi+1, . . .) −

J(z1, . . . , zi−1, 1− z∗i , zi+1, . . .)
]︁

= −

(︄∏︂
j ̸=i

pθj(z
∗
j)

(︄
m−

(︄
M0 −

∆M

d

)︄)︄
+

(︄
1−

∏︂
j ̸=i

pθj(z
∗
j)

)︄
∆M

d

)︄
.

Finally, after some algebraic manipulation:

−

(︄∏︂
j ̸=i

pθj(z
∗
j)

(︄
m−

(︄
M0 −

∆M

d

)︄)︄
+

(︄
1−

∏︂
j ̸=i

pθj(z
∗
j)

)︄
∆M

d

)︄
≥ 0

⇐⇒ m ≤M0 −
∆M

d
∏︁

j ̸=i pθj(z
∗
j)
. ▷ Assuming

∏︂
j ̸=i

pθj(z
∗
j) ̸= 0

111

Appendix B

Experimental details

B.1 Microworlds

B.1.1 Variance experiments

We write the following in terms of θ instead of r to avoid clutter. First, we

note that none of the estimators used here require ∇zJ(z), so we can simply

compute all J(ζh) values and store them in a table to speed up computations.

The variance of the gradient estimators is given by:

Var
[︁
ĝ((z(s))ns=1;θ)

]︁
= E

[︁
ĝ((z(s))ns=1;θ)

2
]︁
− E

[︁
ĝ(z(s))ns=1;θ)

]︁2
= E

[︁
ĝ((z(s))ns=1;θ)

2
]︁
−
(︃
∇θ E

z∼pθ(·)
[J(z)]

)︃2

. (B.1)

For these smaller scale experiments, computing the right summand can

simply be done by using Equation (4.19), which requires 2d evaluations. Here,

this is feasible to compute, but not so much for the left summand, which is a

sum of 2dn terms. To reduce its complexity, we leverage the structure of the

expressions involved. Notably, ĝ(·) is order invariant with respect to z(s) in

all the estimators we use. Therefore, we only consider the combinations of n

elements from {ζh}2
d−1

h=0 instead of all possible n-tuples. Since each of them

is an n-combination of 2d elements with repetition, the number of different

values ĝ(·) can take is given by:(︃(︃
2d

n

)︃)︃
=

(︃
2d − 1 + n

n

)︃
. (B.2)

112

Therefore, to compute the left summand of Equation (B.1), we need to eval-

uate ĝ(·)2 only in these combinations, then multiply each evaluation by the

probability of the respective combination and sum all of these terms. The

probability of a combination will be the sum of the probabilities of all the

permutations corresponding to it.

Since, as mentioned before, these combinations may have repetition, each

of them corresponds to a set that can have repeated elements, sometimes called

multisets. The number of times each value appear in the multiset is called its

multiplicity. Considering a multiset M and denoting as mh the multiplicity

of ζh, where mh ≥ 0 and
∑︁2d−1

h=0 mh = n, we have that the number of n-

permutations ofM is given by:(︃
n

m0, . . . ,m2d−1

)︃
=

n!

m0! . . .m2d−1!
. (B.3)

For REINFORCE, LOORF, β∗, the n samples are iid, therefore, the prob-

ability of an arbitrary set of n samples is simply:

p((z(s))ns=1;θ) =
n∏︂

s=1

pθ(z
(s)). (B.4)

Which will be the same for all permutations corresponding to each mul-

tiset. To conclude, the left summand from Equation (B.1) can be computed

by iterating the combinations from Equation (B.2) and, for each of them,

computing the quantity from Equation (B.4), multiplying by the one in Equa-

tion (B.3) and by ĝ(·)2, then summing all of these results. For d = 4 and n = 4,

this reduces the number of per-step evaluations from 65, 536 to 3, 876 when

calculating E[ĝ(·)2].

For ARMS, however, sampling follows Algorithm 7, which introduces de-

pendence between different z(s), causing Equation (B.4) to be no longer valid.

To show how we calculate the new probabilities, we use d = 1, n = 2 and

(z̃(1), z̃(2)) = (1, 0) as an example. The algorithm has two cases: θ > 0.5, where

the Dirchlet copula (ũ(s))ns=1 is used; θ ≤ 0.5, where (1 − ũ(s))ns=1 is used. For

the first case, we have:

p(z̃(1) = 1, z̃(2) = 0; θ) = p(ũ(1) < θ, ũ(2) > θ)

= p(d(1) < F−1(θ), d(2) > F−1(θ)), (B.5)

113

where F−1(·) is the inverse of the marginal CDF of the Dirichlet distribution

used to get the copula in Algorithm 7:

F−1(θ) = 1− (1− θ)1/(n−1).

This function is monotonically increasing in [0, 1]. By the law of total proba-

bility, Equation (B.5) corresponds to:∫︂
p(d(1), d(2))1[(d(1) < F−1(θ))]1[(d(2) > F−1(θ))]dd(1)dd(2). (B.6)

We can input this integral to a symbolic equation solver, such as Mathematica,

by using the PDF of the Dirichlet and multivariate integration, yielding a

closed form expression in terms of θ.

To generalize the above (still on d = 1 for now), we note that these steps

are also order invariant with respect to z̃(s). Therefore, the number of pos-

sible integrals such as the one in Equation (B.6) is simply the number of

n-combinations of {0, 1} with repetition, given by:(︃(︃
2

n

)︃)︃
=

(︃
2− 1 + n

n

)︃
= n+ 1.

Once θt is known, we can compute these n + 1 values in closed-form and

store them in a table to then be repeatedly consulted for each possible set

{z̃(1), . . . , z̃(n)} when calculating the expectation E[ĝARMS(·)2] (taking the place

of Equation (B.4)), since they will not change until θt changes. In the second

case, where θ ≤ 0.5, ARMS uses a different copula, so the above steps can be

slightly changed to:

p(z̃(1) = 1, z̃(2) = 0; θ) = p(1− ũ(1) < θ, 1− ũ(2) > θ)

= p(ũ(1) > 1− θ, ũ(2) < 1− θ)

= p(d(1) > F−1(1− θ), d(2) < F−1(1− θ)).

θ is simply exchanged by 1− θ when computing the table and the inequalities

change sides when consulting it. In other words, it is the same result as running

the previous steps, but using 1− θ instead of θ and (z̃(1), z̃(2)) = (0, 1) instead

of (1, 0).

114

Multiset
∫︁
p((d(s))ns=1)

∏︁n
s=1 1[(d

(s) < F−1(θ))⊕ (z̃(s) = 0)]dd(s)

{0, 0, 0, 0} f(·; θ) =

{︄
−(4θ − 1)3 0 ≤ θ < 1

4

0 otherwise

{0, 0, 0, 1} f(·; θ) =

⎧⎪⎨⎪⎩
θ (37θ2 − 21θ + 3) 0 ≤ θ < 1

4

−(3θ − 1)3 1
4
≤ θ < 1

3

0 otherwise

{0, 0, 1, 1} f(·; θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
6(1− 3θ)θ2 0 ≤ θ < 1

4

46θ3 − 42θ2 + 12θ − 1 1
4
≤ θ < 1

3

−(2θ − 1)3 1
3
≤ θ < 1

2

0 otherwise

{0, 1, 1, 1} f(·; θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
6θ3 0 ≤ θ < 1

4

−58θ3 + 48θ2 − 12θ + 1 1
4
≤ θ < 1

3

23θ3 − 33θ2 + 15θ − 2 1
3
≤ θ < 1

2

−(θ − 1)3 1
2
≤ θ ≤ 1

{1, 1, 1, 1} f(·; θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 0 ≤ θ < 1

4

(4θ − 1)3 1
4
≤ θ < 1

3

−44θ3 + 60θ2 − 24θ + 3 1
3
≤ θ < 1

2

4θ3 − 12θ2 + 12θ − 3 1
2
≤ θ ≤ 1

Table B.1: Closed form expressions for probabilities of {z̃(s)}ns=1, for n = 1 and
d = 4. If θ > 0.5, p({z̃(s)}ns=1; θ) = f({z̃(s)}ns=1; θ), otherwise p({z̃(s)}ns=1; θ) =
f({1− z̃(s)}ns=1; 1− θ).

For d > 1, independence permits per-dimension parallelization of these

steps. The closed-form integral solutions will be the same across different i ∈

{1, . . . , d}, requiring only changing θ for θi. To allow reproducibility, Table B.1

gives closed-form expressions for integrals like the one in Equation (B.6) for

the case where n = 4 and d = 1, where we denote ⊕ to be the exclusive

disjunction (i.e. XOR).

For the other experiments, where n = 10 and d = 10, we use estimated

variance rather than closed forms. This simply amounts to changing the ex-

pectation in the left summand from Equation (B.1) for a Monte Carlo esti-

mate, where we computed the mean over 10, 000 evaluations of ĝ(·)2 for each

timestep, the right summand is still used in closed-form.

115

B.1.2 Comparing methods

Whenever possible, we follow the recommendations from the authors, either

directly from the papers or at least from the provided code. For REBAR, we

initialized log τ to 0.5 and η to 1, whereas for RELAX we also initialized log τ

to 0.5, but the method does not use η. We train these parameters using Adam

and the same learning rate as r. Additionally, the RELAX auxiliary neural

network had 1 hidden layer of size 10 and used tanh activations. We trained

it using Adam, with learning rate 1 and weight decay 0.001. For CP, the

temperature starts at one and follows an exponential schedule, being updated

every 100 iterations until arriving at the final value of 1/200. We naturally

show the loss for 1[·] instead of σ(·/τ) when reporting its results. Moreover,

we ran CP without learning rate decay, as it hindered performance.

B.2 MaskedNNRegression

The backbone network contained four fully connected hidden layers of size 50

with the linear operator followed by “batch norm” and then LeakyReLU. We

did not normalize outputs from the last layer. Weights used Xavier normal

initialization.

The target network, on the other hand, had a more complex design, con-

sisting of five fully connected hidden layers of size 500 with the same sequence

of per-layer operations as above. Here, we normalized outputs from the final

layer to [0, 1] by using the corresponding maximum and minimum from the

training dataset. We initialized weights to either −1 or 1 with 50% chance.

To avoid adding trainable variables, we used batch normalization without

affine parameters. We also excluded moving statistics from the implementa-

tion. Although Ioffe and Szegedy (2015) mention that this form can reduce

the expressiveness of the unnormalized layer, we observed major improvements

when including it. The trained models had much lower error for the same tar-

gets and the target NN could generate much more complex mappings.1 When

1We confirmed this by experimenting with one dimensional inputs and plotting the target
maps.

116

constructing the datasets via forward-passes, we inputted each of them in its

entirety, producing good average statistics for the normalization. Although we

generated them separately, our comparisons to joint generation indicated this

did not impact the results.

The training dataset consisted of 10, 000 samples and we used batch size

100, whereas the validation dataset consisted of 5, 000 samples, which were

input at once when validating. Reported results correspond to validation data,

as we saw no need to generate more data for testing. When validating MC

methods, we sample a batch of 500 data points and compare the average loss

over five random masks, selecting the best one.

B.3 Pruning

Similarly to H. Zhou et al. (2019) we apply dynamic weight rescaling to CP

and MC, with division of the weights by the mean of corresponding layer

masks during forward passes. This quotient is treated as a constant in the

backward pass. For CP, we consider the mean of the soft-mask during training

iterations, which will eventually correspond to the hard mask as τ → 0. Hinton

et al. (2012) also used DWR in the Dropout paper. We noticed that methods

tend to prune too aggressively without this addition. Although not using it

also leads to good results, sensitivity to λ gets higher.

When training stochastic masks with SGD, H. Zhou et al. (2019) had to

resort to unusual learning rates such as 20 or 100. We did not observe this

issue with RMSprop.

Our implementation of CP is very similar to Savarese et al. (2020), the

main difference being the initialization and the λ sweeps. They noted in their

experiments that setting λ close to zero and relying on tuning the mask initial-

ization instead seemed to yield better results. Particularly, all else maintained,

a lower mask initialization leads to sparser final networks. Since this is an

empirical trick, rather than a fundamental part of the method, we chose to

initialize θ0 = [0.5, . . . , 0.5]⊤ and rely on tuning lambda instead. Although this

led to worse CP results, we believe it is more fair to MC methods, which did

117

not benefit from similar pruning-focused algorithmic tuning. Moreover, this

initialization is also more consistent with the PB optimization discussion

In all experiments, we divided datasets in training, validation and test, with

the test sets following the default split from CIFAR-10 and MNIST, while the

validation sets consisted of 5, 000 random samples.

B.3.1 Supermask

Method Parameter Values
Shared Batch size {128}

Epochs {200}
Optimizer (r) {RMSprop}
θ0 = θ(r0) {[0.5, . . . , 0.5]⊤}
Random seed {0, 1, 2, 3, 4}

MC Parametrization {Escort, Sigmoid}
Estimator {ARMS, LOORF}
Learning rate (r) {0.1, 0.01, 0.001}
Learning rate schedule (r) {[60%]}
(% of training)
Learning rate schedule (r) {[0.5]}
(multipliers)
L0-regularization (λ) {1E− 1, 5E− 2,

. . . , 1E− 5}
n {2, 10, 100}

CP Learning rate (r) {0.1, 0.01, 0.001}
Learning rate schedule (r) {[40%, 60%]}
(% of training)
Learning rate schedule (r) {[0.1, 0.1]}
(multipliers)
L0-regularization (λ) {1E− 1, 5E− 2,

. . . , 1E− 5}

Table B.2: Supermask hyperparameter sweep.

Table B.3 summarizes the hyperparameter sweep used. As mentioned be-

fore, sigmoid and LOORF had similar, but slightly worse results than escort

and ARMS, so we only include these last two in the results. Remaining details

for architectures and datasets are as described in H. Zhou et al. (2019, section

S1), where they refer to Lenet as MNIST-FC.

118

B.4 Hyperparameter generalization

n=10 n=100

0.01%0.1%1%5%50%
Weights Remaining

20%

40%

60%

80%

100%
Te

st
 A

cc
ur

ac
y

Lenet on MNIST

1%10%25%50%
Weights Remaining

15%

30%

45%

60%

75%

Te
st

 A
cc

ur
ac

y

Conv6 on CIFAR-10

Figure B.1: Scatter plot for hyperparameter generalization on supermask re-
sults.

As mentioned before, we study the possibility of re-using the best hyper-

parameters for n = 10 on n = 100 by looking retroactively at the results from

supermask experiments.2 Figure B.1 shows a scatter plot, where each point is

the average result across seeds. Red regions indicate accuracy akin to chance

and runs with the same hyperparameter settings are linked and colored the

same. On the majority of cases, runs became sparser or retained similar spar-

sity, but achieved higher accuracy. The main exception were the sparser runs

on the red regions, but those are clearly failed runs.

Figure B.2 shows an alternative view of the same data, where each setting

corresponds to a line. Lower saturation (i.e. regions closer to gray) are further

from the Pareto front, whereas the more colored regions have better accuracies

for their respective sparsity. Hue represents weights remaining, with red regions

being sparse and green regions being dense. Overall, we note an agreement

across different n, with similar hyperparameter combinations leading to similar

sparsity and proximity to Pareto front

2For escort and ARMS only, although we saw similar results with sigmoid and LOORF.

119

Weights Remaining

0% 1% 5% 10% 25% 50% 100%

0.1

0.01

0.001

0.1

0.01

0.001

1E-4

1E-5

0.1

0.01

0.001

0.1

0.01

0.001

1E-4

1E-5

0.1

0.01

0.001

0.1

0.01

0.001

1E-4

1E-5

(a) Lenet on MNIST

0.1

0.01

0.001

0.1

0.01

0.001

1E-4

1E-5

0.1

0.01

0.001

0.1

0.01

0.001

1E-4

1E-5

0.1

0.01

0.001

0.1

0.01

0.001

1E-4

1E-5

(b) Conv6 on CIFAR-10

Figure B.2: Parallel coordinates plot for hyperparameter generalization on
supermask results. We omit failed runs.

B.4.1 Joint pruning

Differently from the supermask experiments, in joint pruning we use image

augmentation on the training set in the form of random horizontal flips and

random crops. Our backbone experimental settings mostly follow the Resnet-

20 description from Frankle and Carbin (2018, figure 2) (they call it Resnet-18),

except for the learning rate schedule and the total number of epochs, which

are based on Savarese et al. (2020).

Inspired by Hoefler et al. (2021), MC trains the only the dense network in

the first few epochs, the joint-training starts later. In the original GMP paper

(Zhu and Gupta 2017), they also train this same way. Since CP uses smooth

masks, joint training is already easier on the first epochs and there is no need

for freezing masks. Similarly to Savarese et al. (2020) masks are frozen in the

last epochs and only the main weights are fine-tuned.

As mentioned in the text, tentative hyperparameter values for n = 100 were

based on results for n = 10. Our sweep was performed in two stages. First we

used a broader range of hyperparameters, which we show in Table B.3. Then,

120

after analyzing its results, we ran a second “specialized” sweep (Table B.4) to

better cover some sparsity ranges. On the main paper, our plots correspond

to both sweeps combined.

121

Method Parameter Values
Shared Batch size {128}

Epochs {200}
Finetune only {80%}
(% of training)
Random seed {0, 1, 2, 3, 4}

MC Parametrization {Escort}
Estimator {ARMS}
Optimizer {RMSprop}
θ0 = θ(r0) {[0.5, . . . , 0.5]⊤}
Learning rate (r) {0.1, 0.01, 0.001}
Learning rate schedule (r) {[60%]}
(% of training)
Learning rate schedule (r) {[0.5]}
(multipliers)
L0-regularization (λ) {1E− 1, 5E− 2,

. . . , 1E− 5}
n {2, 10}
Start training r {[10%]}
(% of training)

MC (n = 100) Learning rate (r) {0.01}
n {100}
(Rest is the same as MC)

CP Optimizer {RMSprop}
θ0 = θ(r0) {[0.5, . . . , 0.5]⊤}
Learning rate (r) {0.1, 0.01, 0.001}
Learning rate schedule (r) {[40%, 60%]}
(% of training)
Learning rate schedule (r) {[0.1, 0.1]}
(multipliers)
L0-regularization (λ) {1E− 1, 5E− 2,

. . . , 1E− 5}
GMP Final weights remaining {50%, 10%, . . .

. . . , 0.1%, 0.05%}
(Rest is the same as
Zhu and Gupta (2017))

MP Final weights remaining {50%, 10%, . . .
. . . , 0.1%, 0.05%}

Global prune {True}

Table B.3: Joint pruning broad sweep.

122

Method Parameter Values
MC (n = 100) L0-regularization (λ) {0.075, 0.045, 0.04,

0.035, 0.03, 0.025,
0.02, 0.015, 0.0035,
0.0025}

CP Learning rate (r) {0.01}
L0-regularization (λ) {0.7, 0.6, 0.5, 0.4

0.3, 0.2, 0.045, 0.035
0.025, 0.015}

CP Learning rate (r) {0.1}
L0-regularization (λ) {1.0, 0.9, 0.8, 0.7, 0.6

0.5, 0.4, 0.3, 0.2}
GMP and MP Final weights remaining {32%, 21%, 16%, 7.5%

3%, 2.6%, 2%, 1.4%,
1.1%}

GMP only Final weights remaining {0.45%, 0.35%, 0.3%
0.25%, 0.15%}∪
{0.04%, 0.03%, 0.02%
0.01%}

Table B.4: Joint pruning “specialized” sweep. Other parameters are the same
as Table B.3.

123

B.5 Summary of results

Table B.5: Summary of all experiments performed

Experiment Comparison Summary

Microworlds,
Variance
(d ≤ 10)

Estimators

• REINFORCE sometimes had lower
variance than ARMS/LOORF

• ARMS always had lower variance
than LOORF

• β∗ had significantly lower variance
than the others

Microworlds
(d = 10)

Estimators

• REINFORCE performed the worst

• LOORF/ARMS/β∗ performed simi-
larly

• True gradient failed to reach the cor-
rect solution in NNLoss

Parametrization

• Escort and direct were faster, but
converged to worse final solutions

• Sigmoid and cosine were slower, but
converged to better final solutions

Approaches

• CP and ST performed the worst

• ∇zJ(z) did not seem to help hybrid
methods

NN regression
(d ≈ 8, 000)

Estimators • REINFORCE performed much worse
than the others

Parametrization

• Cosine was still slower, but converged
to worse values

• Direct was still fast and still con-
verged to poor values

• Escort and sigmoid performed rela-
tively well

Continued on next page

124

Table B.5: Summary of all experiments performed (Continued)

Approaches

• ∇zJ(z) started becoming helpful for
hybrid methods

• ST and LOORF performed the best

• CP was still unstable

Supermask
(d ≈ 300, 000

and
2, 000, 000)

Estimators • ARMS performed marginally better
than LOORF

Parametrization
• Escort performed marginally better
than sigmoid

Approaches • CP performed much better than MC,
even when n = 100

Pruning
(d ≈ 300, 000)

Approaches

• MC was highly benefited by joint
training

• Best method varied by sparsity range

• Qualitatively, per-method solutions
were very different

125

	Introduction
	Pseudo-Boolean optimization
	Basics
	Examples
	Algorithmic approaches

	Numerical Continuation
	Basics
	Application to PB optimization
	Drawbacks

	Monte Carlo gradient estimation
	Basics
	A Probabilistic Framework
	Using samples

	Methods
	Overview
	REINFORCE
	LOORF
	ARMS
	Beta*

	Drawbacks
	Dependence on the current distribution
	Unwanted generalization

	Alternative parametrizations

	Alternative stochastic gradient approaches
	Overview

	Smaller-scale experiments
	Microworld
	Benchmarks
	Estimators
	Parametrizations
	Approaches

	Neural network regression
	Benchmark
	Estimators
	Parametrizations
	Approaches

	Pruning
	Overview
	Problem Motivation
	Structured and unstructured sparsity
	Common approaches

	Algorithms
	Magnitude pruning
	L0 regularization

	Experiments
	Supermask
	Joint pruning

	Conclusion
	References
	Appendix Proofs
	Multilinear form
	Iterative ARMS procedure
	Beta*
	Generalization of stochastic formulation

	Appendix Experimental details
	Microworlds
	Variance experiments
	Comparing methods

	MaskedNNRegression
	Pruning
	Supermask

	Hyperparameter generalization
	Joint pruning

	Summary of results

