

IMPLEMENTING PACKET FILTERING ON SOFTWARE DEFINED NETWORKS
USING MININET AND POX

Co-authored by Akash Danabhai Chavda

Dale Lindskog

Pavol Zavarsky

Project report

Submitted to the Faculty of Graduate Studies,

Concordia University of Edmonton

in Partial Fulfillment of the

Requirements for the

Final Research Project for the Degree

MASTER OF INFORMATION SYSTEMS SECURITY MANAGEMENT

Concordia University of Edmonton

FACULTY OF GRADUATE STUDIES

Edmonton, Alberta

April 2020

IMPLEMENTING PACKET FILTERING ON SOFTWARE DEFINED NETWORKS
USING MININET AND POX

Akash Danabhai Chavda

Approved:

Dale Lindskog [Original Approval on File]

Dale Lindskog Date: April 6, 2020

Primary Supervisor

Edgar Schmidt [Original Approval on File]

Edgar Schmidt, DSocSci Date: April 15, 2020

Dean, Faculty of Graduate Studies

Implementing Packet Filtering on Software Defined

Networks using Mininet and POX
Akash Danabhai Chavda Dale Lindskog Pavol Zavarsky

Information Systems Security Management Information Systems Security Management Information Systems Security Management
Concordia University of Edmonton Concordia University of Edmonton Concordia University of Edmonton

Edmonton, AB, Canada Edmonton, AB, Canada Edmonton, AB, Canada
achavda@student.concordia.ab.ca dale.lindskog@concordia.ab.ca pavol.zavarsky@concordia.ab.ca

Abstract – This research paper investigates security

components of the POX controller and describes an

additional component, developed by the author, that

provides enhanced filtering functionality.

Keywords – SDN, POX, Mininet, OpenFlow, CLI,

Packet Filtering

I. INTRODUCTION

Software Defined Network (SDN) is a paradigm which
enables the separation of data plane and control plane by
means of centralized control over the data plane, and
therefore the network topology, by allowing the data plane to
be monitored remotely through control plane. It can also be
explained as centralized control over the topology through
control the plane. The control plane consists of those
elements that monitors the switches of SDN network
topology, and the data plane consists of forwarding elements
such as switches. Software Defined Networking enables
network programmability, facilitated by the OpenFlow
architectural paradigm. “The OpenFlow protocol is an
architectural approach that enables SDN to separate the
control plane from data plane, and abstract a forwarding path
that enables a controller, connected by a secure channel to
network devices, to address network functions” [6].

There are several tools available in the market to create
Software Defined Networking environment. Mininet is a
network simulator which allows, with use of only one
computer, quick prototyping of a large virtual infrastructure
network [1]. A controller is a component which can, from a
single point of management, modify the topology, view the
topology, and deploy security. POX, NOX, OpenDayLight
and some other controllers are examples. In this paper, the
POX controller is being used to implement security features
on the SDN topologies created by Mininet. The POX
controller has a number of components which provide
various of functions useful in managing topology centrally.
This paper has focused on components that provide packet
filtering functionality.

POX is currently distributed with components that enable
layer 2 filtering and specifically the ability to block the
incoming traffic based on MAC addresses. This paper
describes the addition of layer 3 filtering, and specifically
filtering based on seven out of the twelve attributes specified
in the OpenFlow protocol, namely MAC source address
(dl_src), MAC destination address (dl_dst), IP source address
(nw_src), IP destination address (nw_dst), TCP or UDP
source port (tp_src), TCP or UDP destination port (tp_dst)
and transport layer protocol (nw_proto). In addition, this
implemented component which is developed by author by
revising the script of [20], can block or allow the traffic
based on the direction. It also implements both blacklisting
and whitelisting.

This paper is organized into four sections. Section II
presents related work and technologies; Section III describes
experimental environment, software development, results.
The paper concludes with Section IV: Contribution to
Knowledge.

II. RELATED WORK AND TECHNOLOGIES

 In traditional networks, network configuration is on a

per node basis, and this is time consuming and error prone.

Network Virtualization (NV), Network Function

Virtualization (NFV), and Software Defined Networking

(SDN) address this issue. Although these technologies

operate differently, they all facilitate programmable

networks [2].

A. NV, NFV,SDN

Researchers from [2] have elaborated Network
Virtualization as linking element of two network segments in
a logical way. This virtual network can be created by
combining multiple physical networks or software-based
networks. This virtual network not only combines multiple
networks, but it can also create separate independent network
from a physical network.

NFV virtualizes network layers 4 through 7, such as
firewalls or IDPSs or even load balancing. The functions
that, traditionally, need specialized hardware to run, are
being emulated by NFV to use in virtualization technology
[14]. Since the NFV only replaces the proprietary middle box
and networks devices with virtual function, the centralized
management of topology cannot be achieved only through
NFV [14].

The main characteristic of SDN is separation of data
plane and control plane which makes the network
programmable. The control plane indicates the network what
to do while the data plane sends packets to specific
destinations. Unlike traditional networks, SDN relies on
switches that can be programmed by the controller.

OpenFlow is a standardized protocol to control SDN
switches and an implementation of these switches is known
as OpenVswitch [2]. An OpenFlow controller in SDN allows
us to periodically collect information from network devices
concerning their status, and can send commands instructing
the network about how to handle traffic [3]. Controllers that
use the OpenFlow protocol are POX, NOX, Beacon,
OpenDayLight, Ryu and Floodlight. These controllers are
developed in different programming languages such as
Python, Ruby, Java, etc. The information gathered by
OpenFlow protocol, is being passed to controller operating
system for monitoring [3]. Network Function Virtualization
becomes more feasible with the introduction of SDN, where
the virtualized network functions can move around the
network dynamically with SDN’s network reconfiguration
functionality. “NV and NFV can work on existing networks

because the reside on servers and interact with traffic sent to
them while the SDN requires a new network concept where
data and control planes are separated” [2].

The layered architecture of Software Defined Networks
allows users to program the controller. It has three
architecture layers, namely the Infrastructure layer,
Controller layer, and Application layer.

The infrastructure layer consists of network elements. In
this layer switches and hosts are being placed that is called as
network elements. The controller layer consist element that
instructs switches placed in infrastructure layer. Controller
monitors the topology and can make necessary changes to
topology. The application layer enables users for network
programming. In other words, the network administrator sits
at this layer and passes the instruction to controller through
programs which can be developed in different programming
languages. The southbound interface acts as a
communication link between infrastructure layer and
controller layer. The northbound interface pass instruction to
controller layer received from application layer.

Separation of control plane from data plane enables a
controller, with a secure channel connecting network
devices, to directly manipulate network functions. In
addition, OpenFlow switches store cached information in
form of flow tables that include detailed information about
the traffic streams in the switch which can be analyzed to
manage flow [4]. The logically centralized view of SDN
topologies is achieved via open interfaces and abstraction of
lower-level functionalities, and which transforms the
network into a programmable platform to dynamically adapt
behavior of SDN topologies [5]. SDN architecture carries
several benefits with it which are listed [4][6]: SDN
architecture allows faster implementation of new and
enhanced services; It enables deep viewing into all network
flows through an OpenFlow switch.

This analysis enables enhanced direct management and
control over those flows, and therefore, enhanced network
service and infrastructure management and control. It also
allows for many more options for dynamic provisioning and
automated dynamic response to conditions based on flow
analytics. It provides substantially improved options for
creating customizable network services and infrastructure.

B. OpenFlow Protocol

“Programmable networking using SDN is generally

based on the OpenFlow protocol, an architectural approach

that separates the control plane from the data plane, abstract

the forwarding path, and enables a controller, connected by

a secure channel to network devices to address network

functions” [6]. An OpenFlow switch has a flow table that

stores cached information on traffic streams, and this
information can be interrogated and analyzed at a highly

granular level so that the results can initiate a response to

control the behaviors of specific individual flows supported

by the switch [7]. The technique for analysis of flow, that is

monitor the flow through controller to detect flow and

patterns and respond to the generated result, was primarily

developed and deployed for L2 services, and then was

extended to both L2 and L3 services [6]. The OpenFlow

controllers and OpenFlow switches are connected through

an interface called OpenFlow channel, through which

switches are configured and managed by controller, events

are received from the switches and packets are sent out to

the switches [8]. The main type of messages sent through

this channel are threefold [8]:

• Controller-to-switch messages are sent by the
controllers to directly manage and inspect the state

of the switch

• Asynchronous messages are sent by the switch to

update the controller about network events and

changes to the switch state

• Symmetric messages can be initiated by either the

switch or the controller and sent without

solicitation

C. SDN and Packet Filtering Scripts on POX Controller

In Software Defined Networking, network topologies

have three main components, namely switches, hosts and the

controller. Packet filtering rules can be implemented at

switches or at the controller. The reason to select switches

as filtering elements is to reduce workload on the controller,

and therefore reduce latency.

There are two approaches to place firewall rules at the

switch: the reactive approach and the proactive approach.
[13] have used the reactive approach at the switch level to

implement firewall rules using twelve match fields defined

in the OpenFlow standard. These match fields are listed in

Table II. With the reactive approach, packets are handled

directly as they come into the switch, while for the proactive

approach, rules are pre-installed in the switch’s flow table.

Software Defined Networking is a vast field and many

packet filtering scripts have been implemented using

different controllers and topology simulators. This research

has focused on packet filtering scripts that have been

implemented using POX controller and written in Python

programming language. This research evaluated a number of
packet filtering scripts found on GitHub that facilitate users

to implement packet filtering capabilities on their SDN

topology. These packet filtering scripts are evaluated based

on the attributes they use to filter traffic. In addition, the

detailed comparison of these scripts is represented in

TABLE I.

Most of the packet filtering scripts used files that

contains comma separated values such as source address,

destination address, and so on, which are considered as

preliminary attributes to filter a packet. The user needs to

modify this file every time the new traffic flow hit the
switches, and this is no feasible in the real world. In

addition, these rules are for blocking traffic between

specified source and destination address, that is, they

implement default permit policy. Moreover, most of the

POX scripts examined in this research do not change their

security policies as new traffic flows appear on switch.

Instead, the rule must be manually inserted in the file. To

load this CSV file, a Python script needs to be run again,

and that is not exactly a programmable network. There are

other ways through which rules can be added to the flow

table of switches, and that is by creating lists in the Python
script itself. These lists contain values of attributes to be

passed to the function at the time of execution.

TABLE I. Comparison of different Firewall Python Script on POX

TABLE I represents the fact that no evaluated scripts

have the capability of adding rules at the command line

interface (CLI). The addition of rules at the CLI is

essential part of making a controller capable of filtering

traffic as new traffic flow hits the switch. TABLE I also

represents that many scripts make use of a small number
of attributes supported by OpenFlow protocol. The Python

script implemented by [17] considered all seven attributes

to filter traffic, but that script implements only

blacklisting.

D. Related Research on OpenFlow Protocol

Researchers from [10] proposed that OpenFlow

switches can be used as packet filters by considering the

packet attributes such as source IP, destination IP, source

port, destination port and type of packet (TCP/UDP).

They allowed ICMP and ARP packets to perform

communication tests in a topology they created using the

Mininet network emulator [10]. They wrote a Python

script that reads from the CSV file, and therefore that user

will have to modify that

file manually whenever need the arises to allow a flow

from a new incoming packet.

It is true that an OpenFlow controller does not
implement security by itself. But a controller can be

programmed in a way that it can secure the network

topology controlled by it. Researchers in [8] proposed a

secure OpenFlow Ryu controller in which basic packet

filtering rules are implemented that inspect properties of

each packet and use a Bayesian network classifier for

detecting and filtering unusual packet flows or DDoS

attacks.

E. Mininet

Mininet is an open source network simulator that

allows user to create network environments for

experiments. Typically, it is used for creating SDN

environments and testing. The latest version of Mininet

comes with pre-installed controller named POX. It allows

quick prototyping of large virtual networks with the use of

only one computer.

It enables users to create virtual prototypes of scalable

networks based on protocol such as OpenFlow, using

primitive virtualization operating system [1]. Researchers

from [1] have listed features of Mininet as described
below:

• It provides a simple and cheap way for testing

networks for OpenFlow application

development.

• It allows multiple researchers to independently

work on the same network topology.

• It allows the testing of a large and complex

topology, without even the necessity of a

physical network.

• It includes tools to debug and run tests across the

network.

• It supports numerous topologies and includes a

basic set of topologies.

• It provides simple Python APIs for creating and

testing networks.

F. POX

The POX controller is a Python-based controller that

allows user to control a network topology created by

Mininet. POX can also provide some security features in

the given topology with the help of components.

Components can be understood as functionalities of the

POX controller. POX has a number of components for

different functionalities, but there are few components

which provide or are related to security of network

topology. POX allows user to develop their own

components according to their need. POX has evolved

over the years and has five versions/branches: Angler,

Betta, Carp, Dart, and Eel.
The EEL is the latest branch of POX controller and is

still under development. POX supports OpenFlow 1.1.

This paper has made use of the EEL branch of the POX

controller.

Reference Behavior

Addition

of Rules

to

Switch

at CLI

Filtering Functionality

Source

MAC

Destination

MAC

Source

IP

Destination

IP

Source

Port

Destination

Port
Protocol

[15] Blacklisting No Yes Yes No No No No No

[16] Blacklisting No Yes Yes No No No No No

[17] Blacklisting No Yes Yes Yes Yes Yes Yes Yes

[18] Blacklisting No No No Yes Yes No No Yes

[19] Blacklisting No Yes Yes No No No No No

[20] Blacklisting No Yes Yes Yes Yes No No No

[21] Blacklisting No No No Yes Yes Yes Yes No

[22] Blacklisting No Yes Yes Yes Yes No No No

[23] Blacklisting No No No Yes Yes Yes Yes Yes

[24] Blacklisting No Yes Yes No No No No No

[25] Blacklisting No Yes Yes Yes Yes Yes Yes No

[26] Blacklisting No No No Yes Yes No Yes No

[27] Blacklisting No Yes Yes No No No No No

[28] Blacklisting No Yes Yes No No No No No

TABLE II. SDN Firewall Attributes in OpenFlow [13]

Attribute Type Description Example

in_port Integer It denotes

the switch

port number

the packet

arrived on.

Int: 30

dl_src String Ethernet

Source

address

String:

’00:00:00:00:00:01’

dl_dst String Ethernet

Destination

address

String:

’00:00:00:00:00:02’

dl_vlan Integer Indicates
VLAN ID

Int: 2

dl_vlan_pcp Integer Indicates

VLAN

priority

Int: 0

dl_type String Indicates

Ether type

IP_TYPE,

ARP_TYPE

nw_tos Integer Indicates

TOS/DS

bits

Int: 0

nw_proto String Indicates IP

protocol

ICMP_PROTOCOL,

TCP_PROTOCOL,

UDP_PROTOCOL

nw_src String Indicates IP

Source

address

String: ’10.0.0.1’

nw_dst String Indicates IP

Destination
address

String: ’10.0.0.2’

tp_src Integer Indicates

TCP/UDP

Source port

Int: 80

tp_dst Integer Indicates

TCP/UDP

Destination

port

Int: 333

III. EXPERIMENTAL ENVIRONMENT, SOFTWARE

DEVELOPMENT AND RESULTS

The experiment performed for this research made use
of a virtual Ubuntu Linux instance created and run on
VMware Workstation. The Mininet network emulator and
POX controller were installed on this Ubuntu machine.
After investigating existing security components of POX, a
Python script was written and integrated into POX, in
order to provide layer 2 and layer 3 filtering functionality,
to support the seven different attributes supported by the
OpenFlow protocol: source and destination MAC
addresses, source and destination IP addresses, source and
destination transport layer port addresses, and protocol. In
addition, blacklisting and whitelisting capabilities were
implemented. The source code for this Python script is
given in Appendix A of this paper.

On the virtual Ubuntu machine, two terminals were
opened: one for running the SDN topology and a second
for running Python script that adds packet filtering
capabilities to the switches of SDN topology started in

terminal one. The commands used for running topology
and Python script are as follow:

Mininet terminal:
sudo mn --topo single,7 --mac --switch ovsk --controller
remote
POX terminal:
/home/pox/pox.py log.level --DEBUG pox.py
pox.misc.SDN_FIREWALL

The command used in Mininet terminal, shown above,
will create a topology with seven hosts connected to a
single switch. The Python script is placed in the ‘pox/misc’
directory, and has the name ‘SDN_FIREWALL.py’. To open a
CLI in the POX terminal, the pre-existing component of
POX, ‘pox.py’, is executed along with the Python script
implemented for this research. After the command is
executed in both the terminals, rules can be added from the
CLI using interactive variables of the implemented Python
script depicted (6) in Appendix A. The Python script in
Appendix A allows adding and deleting specific rules,
clearing all the rules, and listing rules from the CLI using
interactive variable, all achieved via various depicted in
(2), (3), (4), and (5) of Appendix A.

In Appendix A, (1) depicts the function that is loaded
to enable whitelisting. This rule will have priority 65535.
This script is implemented in a way that rules with the least
priority will be executed first. In other words, rules will be
executed in a descending order of priority.

In Appendix A, (2) shows the function that allows us to
add blocking/allowing rules to the switches. It has the
capability to consider seven different attributes at a time to
make packet filtering decisions. In Appendix A, (3)
represents the function of deleting rules with a specified
priority. In Appendix A, (4) represents the function of
clearing all the rules from the switches’ flow table. In
Appendix A, (5) represents the function of listing the
active rules on switches.

In the given Python script, rules can also be added into
the script itself before executing it. For the purpose of
testing this script, nine different rules were added to the
script in a way, chosen in such a way as to test all the
filtering functionalities implemented for this research. The
tabular representation of these rules is given in Appendix B
of this paper.

In Appendix B, the first rule is added to test
whitelisting. Rules numbered 2, 3, 6, and 7 allow only
ICMP communication among the specified hosts, and the
results of testing these rules are given in Appendix C. In
the results shown in Appendix C, successful
communication among hosts is denoted as host names and
unsuccessful communication among hosts is denoted as ‘X’.
The rules numbered 4 and 5, test filtering based on source
and destination transport layer port addresses. The result
achieved by adding rule number 4 and 5 is presented in
Appendix D of this paper. The rules numbered 8 and 9,
allow UDP traffic on the specified port and IP addresses.
Appendix E shows the results achieved by adding rules
numbered 8 and 9. All the results were as expected. In
order to implement blacklisting, the very first rule in
Appendix B should be removed, and the value of the
‘Permit’ argument should be set to ‘false’.

IV. CONTRIBUTION TO KNOWLEDGE

Experimental results show that the added POX
component not only provides layer 2 security, such as
filtering based on MAC addresses, but it can also provide
layer 3 security, such as filtering through IP addresses, and
layer 4 security, such as transport layer port numbers. Prior
to the software development described in section III, the
available distribution of POX was capable only of
inspecting the source and destination IP or MAC address
fields. But a real-world firewall must be capable of
examining many more fields of the packet, and the
extensions to POX described in this paper contribute to
that. In addition, as SDN is emerging partly because of its
capability for network programming, these experiments
were performed both on simple topologies with seven
hosts, along with more complex topologies such as you
might find in a datacenter. This Python script provides
more intelligent filtering functionality such as filtering
based on source/destination port addresses,
source/destination MAC and IP addresses, and transport
layer protocol. This Python script also has capability of
filtering the traffic based on the direction of traffic:
incoming/outgoing. In addition, the filtering rules can be
added to switch from the CLI as described in section III.
This CLI makes the Python script more user friendly to use
and allows users to handle the traffic as they hit the switch.
Finally, this script implements both blacklisting and
whitelisting.

PRELIMINARY BIBLIOGRAPHY

[1] L.R. Prete, C.M. Schweitzer, A.A. Shinoda, and R.L. Oliveira,
“Simulation in an SDN network scenario using the POX

Controller,” 2014 IEEE Colombian Conference on

Communications and Computing (COLCOM), 2014.

[2] A. Haji, A. Letaifa, and S. Tabbane, “Elastic Architecture based

NFV and OpenStack to deploy VA service,” 2018 32nd
International conference on Advanced Information Networking and

Application Workshops, 2018.

[3] S.R. Basnet, R.S. Chaulagain, S. Pandey and S. Shakya,
“Distributed High Performance Computing in OpenStack Cloud

over SDN Infrastructure,” 2017 IEEE International Confernece on

Smart Cloud, 2017.

[4] J. Mambretti, J. Chen, and F. Yeh, “Next Generation Clouds, The

Chameleon Cloud Testbed, and Software Defined Networking
(SDN),” 2015 International Conference on Cloud Computing

Research and Innovation, 2015.

[5] A.N. Toosi, J. Son, and R. Buyya, “Clouds-Pi: A Low-Cost
Raspberry-Pi-Based Micro Datacenter for Software Defined Cloud

Computing,” IEEE Cloud Computing, Vol. 5, 2018.

[6] J. Mambretti, J. Chen, and F. Yeh, “Software-Defined Network
Exchanges (SDXs) and Infrastructure (SDI): Emerging Innovations

In SDN and SDI Interdomain Multi-Layer Services and

Capabilities,” 26th International Teletraffic Congress (ITC), 2014.

[7] N. McKeown, et al., OpenFlow: Enabling Innovation in Campus
Networks, ACM SIGCOMM Computer Communication Review,

2008, 2 , 69-74.

[8] N. Sophakan, and C. Sathiwiriyawong, “Securing OpenFlow
Controller of Software-Defined Networks using Bayesian

Network,” 2018 22nd International Computer Science and

Engineering Conference (ICSEC), 2018.

[9] J. Son, and R. Buyya, “SDCon: Integrated Control Platform for

Software-Defined Clouds,” IEEE Transactions on Parallel and

Distributed Systems, Vol. 30, No. 1, 2019.

[10] D. Balagopal, and X.K. Rani, “NetWatch: Empowering Software-

Defined network Switches for Packet Filtering,” 2015 International

Conference on Applied and Theoretical Computing and

Communiation Technology, 2015.

[11] U. Ashraf, “Placing Controllers in Software-Defined Wireless
Mesh Networks,” 2018 International Conference on Computing,

Mathematics and Engineering Technologies, 2018.

[12] P. Rengaraju, S. Senthil Kumar, and C. Lung, “Investigation of
Security and QoS on SDN Firewall Using MAC Filtering,” 2017

International Conference on Computer Communication and

Informatics (ICCCI), 2017.

[13] M. Suh, S. H. Park, B. Lee, and S. Yang, “Building Firewall over

Software-Defined Network Controller,” 16th International

Conference on Advanced Communication Technology, 2014.

[14] J. H. Cox, J. Chung, S. Donovan, J. Ivey, R. J. Clark, G. Riley, and

H. L. Owen, “Advancing Software-Defined Networks: A Survey”,

IEEE Access, 2017.

[15] GitHub, Repository: A-Firewall-on-POX-SDN-Controller,

Available at: https://github.com/vamshireddy/A-Firewall-on-POX-

SDN-Controller/blob/master/firewall.py

[16] GitHub, Repository: Hyderimran7SDN-POX-Firewall, Available

at: https://github.com/hayderimran7/sdn-pox-

firewall/blob/master/sdn-pox-openflow-fw.py

[17] GitHub, Repository: Codes-libertes/sdn-pox-firewall, Available at:
“https://github.com/codes-libertes/sdn-pox-

firewall/blob/master/stateful_firewall_legimity_debug.py”

[18] GitHub, Repository: Kyberdrb/sdnfirewall, Available at:

https://github.com/kyberdrb/sdnfirewall/blob/master/main.py

[19] GitHub, Repository: Bwjsfjz1969/mininet-SDN-POX-Firewall,

Available at: https://github.com/bwjsfjz1969/mininet-SDN-POX-

Firewall/blob/master/pox_firewall.py

[20] GitHub, Repository: yehiaArafa/SDN-Firewall, Available at:

https://github.com/yehiaArafa/SDN-Firewall

[21] GitHub, Repository: agrawalamod/SDN-Project, Availabel at:
https://github.com/agrawalamod/SDN-

Project/blob/master/firewall.py

[22] GitHub, Repository: jashdesai95/SDN-OpenFlow-Pox-Firewall,
Available at: https://github.com/jashdesai95/SDN-OpenFlow-Pox-

Firewall/blob/master/firewall.py

[23] GitHub, Repository: Biwenzhuu/SDN-firewall, Available at:

https://github.com/Biwenzhuu/SDN-

firewall/blob/master/controller.py

[24] GitHub, Repository: Waynezhang1995/Simple-POX-Firewall,

Available at: https://github.com/waynezhang1995/Simple-POX-

Firewall/blob/master/firewall.py

[25] GitHub, Repository: Uscwy/pox_router, Available at:

https://github.com/uscwy/pox_router/blob/master/bonus/firewall.py

[26] GitHub, Repository: Raonadeem/Pyretic-statefull-firewall,
Available at: https://github.com/raonadeem/Pyretic-statefull-

firewall/blob/master/statefull_firewall.py

[27] GitHub, Repository: FreddMai/SDN, Available at:

https://github.com/FreddMai/SDN/blob/master/firewall.py

[28] GitHub, Repository: Dominators-CMPE210/CMPE210_Project,

Available at: https://github.com/Dominators-

CMPE210/CMPE210_Project

https://github.com/hayderimran7/sdn-pox-firewall/blob/master/sdn-pox-openflow-fw.py
https://github.com/hayderimran7/sdn-pox-firewall/blob/master/sdn-pox-openflow-fw.py
https://github.com/kyberdrb/sdnfirewall/blob/master/main.py
https://github.com/bwjsfjz1969/mininet-SDN-POX-Firewall/blob/master/pox_firewall.py
https://github.com/bwjsfjz1969/mininet-SDN-POX-Firewall/blob/master/pox_firewall.py
https://github.com/yehiaArafa/SDN-Firewall
https://github.com/agrawalamod/SDN-Project/blob/master/firewall.py
https://github.com/agrawalamod/SDN-Project/blob/master/firewall.py
https://github.com/jashdesai95/SDN-OpenFlow-Pox-Firewall/blob/master/firewall.py
https://github.com/jashdesai95/SDN-OpenFlow-Pox-Firewall/blob/master/firewall.py
https://github.com/Biwenzhuu/SDN-firewall/blob/master/controller.py
https://github.com/Biwenzhuu/SDN-firewall/blob/master/controller.py
https://github.com/waynezhang1995/Simple-POX-Firewall/blob/master/firewall.py
https://github.com/waynezhang1995/Simple-POX-Firewall/blob/master/firewall.py
https://github.com/uscwy/pox_router/blob/master/bonus/firewall.py
https://github.com/raonadeem/Pyretic-statefull-firewall/blob/master/statefull_firewall.py
https://github.com/raonadeem/Pyretic-statefull-firewall/blob/master/statefull_firewall.py
https://github.com/FreddMai/SDN/blob/master/firewall.py
https://github.com/Dominators-CMPE210/CMPE210_Project
https://github.com/Dominators-CMPE210/CMPE210_Project

APPENDIX

A. The source code of implemented Python script.

 from pox.core import core

import pox.openflow.libopenflow_01 as of

from pox.lib.util import dpid_to_str

from pox.lib.util import str_to_bool

from pox.lib.addresses import EthAddr,IPAddr,parse_cidr

import pox.lib.packet as pkt

import time

log = core.getLogger()

_flood_delay = 0

class LearningSwitch (object):

 def __init__ (self, connection, transparent):

 self.connection = connection

 self.transparent = transparent

 self.macToPort = {}

 self.priority = 65535

 self.rules = {}

 self.defaultRules()

 connection.addListeners(self)

 self.hold_down_expired = flood_delay == 0

 def defaultRules(self): __ (1)

 self.writeRule('0.0.0.0/0', '0.0.0.0/0', priority=0)

#add rules to be allowed according to source and destination MAC addresses, source and destination IP addresses,
source and destination Port addresses and Protocol.

 self.writeRule('0.0.0.0/0','10.0.0.1',permit=True,proto=1)

 self.writeRule('10.0.0.1','0.0.0.0/0',permit=True,proto=1)

 self.writeRule(’10.0.0.2’,’0.0.0.0/0’,permit=True,src_port=80,proto=6)

 self.writeRule('10.0.0.3','10.0.0.2',permit=True,dst_port=80,proto=6)

 self.writeRule(’00:00:00:00:00:05’,’10.0.0.7’,permit=True,proto=1)

 self.writeRule(’10.0.0.7’,’00:00:00:00:00:05’,permit=True,proto=1)

 self.writeRule('10.0.0.4','0.0.0.0',permit=True,src_port=53,proto=17)

 self.writeRule('10.0.0.3','10.0.0.4',permit=True,dst_port=53,proto=17)

#Function to add rules to the switches

def writeRule(self,src,dst,permit=False,duration=1000,src_port=None,dst_port=None,proto=None,priority=None): ___ (2)

 if priority != None:

 try:

 self.deleteRule(priority)

 except:

 log.debug('Rule does not exist')

 log.debug("Adding firewall rule in between %s: %s",src,dst)

 if not isinstance(duration, tuple):

 duration = (duration,duration)
 match = of.ofp_match(dl_type = 0x800)

 try:

 src.index(".")

 match.nw_src = parse_cidr(src)

 except ValueError:

 match.dl_src = EthAddr(src)

 try:

 dst.index(".")

 match.nw_dst = parse_cidr(dst)

 except ValueError:
 match.dl_dst = EthAddr(dst)

 match.tp_src = src_port

 match.tp_dst = dst_port

 match.nw_proto = proto

 msg = of.ofp_flow_mod()

 msg.match = match

 msg.idle_timeout = duration[0]

 msg.hard_timeout = duration[1]

 msg.command = of.OFPFC_ADD

 if priority == None:
 priority = self.priority

 self.priority -= 1

 msg.priority = priority

 if permit == True:

 action = of.ofp_action_output(port=of.OFPP_NORMAL)

 msg.actions.append(action)

 self.rules[msg.priority] = msg

 self.connection.send(msg)

 def deleteRule(self, priority): #To delete specific rule ___ (3)

 msg = of.ofp_flow_mod(command=of.OFPFC_DELETE, priority=priority)

 for connection in core.openflow.connections:
 connection.send(msg)

 log.debug("Clearing all flows from %s",dpid_to_str(connection.dpid))

 try:

 del self.rules[priority]

 except:

 log.debug('Rule does not exist')

 def clearRules(self): #To clear rules from every switch that is connected __________________________ (4)

 msg = of.ofp_flow_mod(command=of.OFPFC_DELETE)

 for connection in core.openflow.connections:

 connection.send(msg)

 log.debug("Clearing all flows from %s",dpid_to_str(connection.dpid))

 def listRules(self): #Function to show the rules that are currently active on switches _______________ (5)

 for i in self.rules:

 log.debug(self.rules[i].match)

 def _handle_PacketIn (self, event):

 packet = event.parsed

 def flood (message = None):

 msg = of.ofp_packet_out()

 if time.time() - self.connection.connect_time >= _flood_delay:

 if self.hold_down_expired is False:
 self.hold_down_expired = True

 log.info("%s: Flood hold-down expired -- flooding",

 dpid_to_str(event.dpid))

 if message is not None: log.debug(message)

 msg.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD))

 else:

 pass

 msg.data = event.ofp

 msg.in_port = event.port

 self.connection.send(msg)

def drop (duration = None):

 if duration is not None:

 if not isinstance(duration, tuple):

 duration = (duration,duration)

 msg = of.ofp_flow_mod()

 msg.match = of.ofp_match.from_packet(packet)

 msg.idle_timeout = duration[0]

 msg.hard_timeout = duration[1]

 msg.buffer_id = event.ofp.buffer_id

 self.connection.send(msg)

 elif event.ofp.buffer_id is not None:

 msg = of.ofp_packet_out()
 msg.buffer_id = event.ofp.buffer_id

 msg.in_port = event.port

 self.connection.send(msg)

 self.macToPort[packet.src] = event.port

 if not self.transparent:

 if packet.type == packet.LLDP_TYPE or packet.dst.isBridgeFiltered():

 drop()

 return

 if packet.dst.is_multicast:
 flood()

 else:

 if packet.dst not in self.macToPort:

 flood("Port for %s unknown -- flooding" % (packet.dst,)) #4a

 else:

 port = self.macToPort[packet.dst]

 if port == event.port:

 log.warning("Same port for packet from %s -> %s on %s.%s. Drop."

 % (packet.src, packet.dst, dpid_to_str(event.dpid), port))

 drop(10)

 return

 log.debug("installing flow for %s.%i -> %s.%i" %

 (packet.src, event.port, packet.dst, port))

 msg = of.ofp_flow_mod()

 msg.match = of.ofp_match.from_packet(packet, event.port)

 msg.idle_timeout = 10

 msg.hard_timeout = 30

 msg.actions.append(of.ofp_action_output(port = port))

 msg.data = event.ofp

 self.connection.send(msg)

masterSwitch = list()

class l2_learning (object):
 def __init__ (self, transparent):

 core.openflow.addListeners(self)

 self.transparent = transparent

 def _handle_ConnectionUp (self, event):

 log.debug("Connection %s" % (event.connection,))

 x = LearningSwitch(event.connection, self.transparent)

 masterSwitch.append(x)

 core.Interactive.variables['fw'] = x #Interactive Variable to add rules to the switches from CLI ____________ (6)

def launch (transparent=False, hold_down=_flood_delay):

 try:

 global _flood_delay
 _flood_delay = int(str(hold_down), 10)

 assert _flood_delay >= 0

 except:

 raise RuntimeError("Expected hold-down to be a number")

 core.registerNew(l2_learning, str_to_bool(transparent))

B. Following table represents the ruleset which was implemented to test the functionalities of Python script.

C. Following image depicts the results achieved by implementing the rule number 1, 2, 3, 6 and 7. These rules

allow ICMP communication between specified hosts.

Rule No. Action Source Destination Source Port Destination Port Protocol

1 Deny 0.0.0.0/0 0.0.0.0/0 None None None

2 Allow 0.0.0.0/0 10.0.0.1 None None 1

3 Allow 10.0.0.1 0.0.0.0/0 None None 1

4 Allow 10.0.0.2 0.0.0.0/0 80 None 6

5 Allow 10.0.0.3 10.0.0.2 None 80 6

6 Allow 00:00:00:00:00:05 10.0.0.7 None None 1

7 Allow 10.0.0.7 00:00:00:00:00:05 None None 1

8 Allow 10.0.0.4 0.0.0.0/0 53 None 17

9 Allow 10.0.0.3 10.0.0.4 None 53 17

D. Following image depicts the results achieved by implementing the rule number 4 and 5. These rules allow TCP
traffic on port 80 between specified hosts.

E. Following image depicts the results achieved by implementing the rule number 8 and 9. These rules allow UDP
traffic on port 53 between specified hosts.

	Chavda, Akash Danabhai - 139013 - MISSM - Title Page
	Chavda, Akash Danabhai - 139013 - MISSM - Signature Page
	Chavda, Akash Danabhai - 139013 - MISSM - Capstone Project

