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I. INTRODUCTION  

Software Defined Network (SDN) is a paradigm which 
enables the separation of data plane and control plane by 
means of centralized control over the data plane, and 
therefore the network topology, by allowing the data plane to 
be monitored remotely through control plane. It can also be 
explained as centralized control over the topology through 
control the plane. The control plane consists of those 
elements that monitors the switches of SDN network 
topology, and the data plane consists of forwarding elements 
such as switches. Software Defined Networking enables 
network programmability, facilitated by the OpenFlow 
architectural paradigm. “The OpenFlow protocol is an 
architectural approach that enables SDN to separate the 
control plane from data plane, and abstract a forwarding path 
that enables a controller, connected by a secure channel to 
network devices, to address network functions” [6].  

There are several tools available in the market to create 
Software Defined Networking environment. Mininet is a 
network simulator which allows, with use of only one 
computer, quick prototyping of a large virtual infrastructure 
network [1]. A controller is a component which can, from a 
single point of management, modify the topology, view the 
topology, and deploy security. POX, NOX, OpenDayLight 
and some other controllers are examples. In this paper, the 
POX controller is being used to implement security features 
on the SDN topologies created by Mininet. The POX 
controller has a number of components which provide 
various of functions useful in managing topology centrally. 
This paper has focused on components that provide packet 
filtering functionality.  

POX is currently distributed with components that enable 
layer 2 filtering and specifically the ability to block the 
incoming traffic based on MAC addresses. This paper 
describes the addition of layer 3 filtering, and specifically 
filtering based on seven out of the twelve attributes specified 
in the OpenFlow protocol, namely MAC source address 
(dl_src), MAC destination address (dl_dst), IP source address 
(nw_src), IP destination address (nw_dst), TCP or UDP 
source port (tp_src), TCP or UDP destination port (tp_dst) 
and transport layer protocol (nw_proto). In addition, this 
implemented component which is developed by author by 
revising the script of [20], can block or allow the traffic 
based on the direction. It also implements both blacklisting 
and whitelisting.  

This paper is organized into four sections. Section II 
presents related work and technologies; Section III describes 
experimental environment, software development, results. 
The paper concludes with Section IV: Contribution to 
Knowledge. 

II. RELATED WORK AND TECHNOLOGIES 

          In traditional networks, network configuration is on a 

per node basis, and this is time consuming and error prone. 

Network Virtualization (NV), Network Function 

Virtualization (NFV), and Software Defined Networking 

(SDN) address this issue. Although these technologies 

operate differently, they all facilitate programmable 

networks [2].  

A. NV, NFV,SDN 

Researchers from [2] have elaborated Network 
Virtualization as linking element of two network segments in 
a logical way. This virtual network can be created by 
combining multiple physical networks or software-based 
networks. This virtual network not only combines multiple 
networks, but it can also create separate independent network 
from a physical network.    

NFV virtualizes network layers 4 through 7, such as 
firewalls or IDPSs or even load balancing. The functions 
that, traditionally, need specialized hardware to run, are 
being emulated by NFV to use in virtualization technology 
[14]. Since the NFV only replaces the proprietary middle box 
and networks devices with virtual function, the centralized 
management of topology cannot be achieved only through 
NFV [14].  

The main characteristic of SDN is separation of data 
plane and control plane which makes the network 
programmable. The control plane indicates the network what 
to do while the data plane sends packets to specific 
destinations. Unlike traditional networks, SDN relies on 
switches that can be programmed by the controller.  

OpenFlow is a standardized protocol to control SDN 
switches and an implementation of these switches is known 
as OpenVswitch [2]. An OpenFlow controller in SDN allows 
us to periodically collect information from network devices 
concerning their status, and can send commands instructing 
the network about how to handle traffic [3]. Controllers that 
use the OpenFlow protocol are POX, NOX, Beacon, 
OpenDayLight, Ryu and Floodlight. These controllers are 
developed in different programming languages such as 
Python, Ruby, Java, etc. The information gathered by 
OpenFlow protocol, is being passed to controller operating 
system for monitoring [3]. Network Function Virtualization 
becomes more feasible with the introduction of SDN, where 
the virtualized network functions can move around the 
network dynamically with SDN’s network reconfiguration 
functionality. “NV and NFV can work on existing networks 



because the reside on servers and interact with traffic sent to 
them while the SDN requires a new network concept where 
data and control planes are separated” [2]. 

The layered architecture of Software Defined Networks 
allows users to program the controller. It has three 
architecture layers, namely the Infrastructure layer, 
Controller layer, and Application layer. 

The infrastructure layer consists of network elements. In 
this layer switches and hosts are being placed that is called as 
network elements. The controller layer consist element that 
instructs switches placed in infrastructure layer. Controller 
monitors the topology and can make necessary changes to 
topology. The application layer enables users for network 
programming. In other words, the network administrator sits 
at this layer and passes the instruction to controller through 
programs which can be developed in different programming 
languages. The southbound interface acts as a 
communication link between infrastructure layer and 
controller layer. The northbound interface pass instruction to 
controller layer received from application layer. 

Separation of control plane from data plane enables a 
controller, with a secure channel connecting network 
devices, to directly manipulate network functions. In 
addition, OpenFlow switches store cached information in 
form of flow tables that include detailed information about 
the traffic streams in the switch which can be analyzed to 
manage flow [4]. The logically centralized view of SDN 
topologies  is achieved via open interfaces and abstraction of 
lower-level functionalities, and which transforms the 
network into a programmable platform to dynamically adapt 
behavior of SDN topologies [5]. SDN architecture carries 
several benefits with it which are listed [4][6]: SDN 
architecture allows faster implementation of new and 
enhanced services; It enables deep viewing into all network 
flows through an OpenFlow switch. 

This analysis enables enhanced direct management and 
control over those flows, and therefore, enhanced network 
service and infrastructure management and control. It also 
allows for many more options for dynamic provisioning and 
automated dynamic response to conditions based on flow 
analytics. It provides substantially improved options for 
creating customizable network services and infrastructure. 

B. OpenFlow Protocol 

“Programmable networking using SDN is generally 

based on the OpenFlow protocol, an architectural approach 

that separates the control plane from the data plane, abstract 

the forwarding path, and enables a controller, connected by 

a secure channel to network devices to address network 

functions” [6]. An OpenFlow switch has a flow table that 

stores cached information on traffic streams, and this 
information can be interrogated and analyzed at a highly 

granular level so that the results can initiate a response to 

control the behaviors of specific individual flows supported 

by the switch [7]. The technique for analysis of flow, that is 

monitor the flow through controller to detect flow and 

patterns and respond to the generated result, was primarily 

developed and deployed for L2 services, and then was 

extended to both L2 and L3 services [6]. The OpenFlow 

controllers and OpenFlow switches are connected through 

an interface called OpenFlow channel, through which 

switches are configured and managed by controller, events 

are received from the switches and packets are sent out to 

the switches [8]. The main type of messages sent through 

this channel are threefold [8]:  

• Controller-to-switch messages are sent by the 
controllers to directly manage and inspect the state 

of the switch 

• Asynchronous messages are sent by the switch to 

update the controller about network events and 

changes to the switch state 

• Symmetric messages can be initiated by either the 

switch or the controller and sent without 

solicitation 

C. SDN and Packet Filtering Scripts on POX Controller 

In Software Defined Networking, network topologies 

have three main components, namely switches, hosts and the 

controller. Packet filtering rules can be implemented at 

switches or at the controller. The reason to select switches 

as filtering elements is to reduce workload on the controller, 

and therefore reduce latency.   

There are two approaches to place firewall rules at the 

switch: the reactive approach and the proactive approach. 
[13] have used the reactive approach at the switch level to 

implement firewall rules using twelve match fields defined 

in the OpenFlow standard. These match fields are listed in 

Table II. With the reactive approach, packets are handled 

directly as they come into the switch, while for the proactive 

approach, rules are pre-installed in the switch’s flow table. 

Software Defined Networking is a vast field and many 

packet filtering scripts have been implemented using 

different controllers and topology simulators. This research 

has focused on packet filtering scripts that have been 

implemented using POX controller and written in Python 

programming language. This research evaluated a number of 
packet filtering scripts found on GitHub that facilitate users 

to implement packet filtering capabilities on their SDN 

topology. These packet filtering scripts are evaluated based 

on the attributes they use to filter traffic. In addition, the 

detailed comparison of these scripts is represented in 

TABLE I. 

Most of the packet filtering scripts used files that 

contains comma separated values such as source address, 

destination address, and so on, which are considered as 

preliminary attributes to filter a packet. The user needs to 

modify this file every time the new traffic flow hit the 
switches, and this is no feasible in the real world. In 

addition, these rules are for blocking traffic between 

specified source and destination address, that is, they 

implement default permit policy. Moreover, most of the 

POX scripts examined in this research do not change their 

security policies as new traffic flows appear on switch. 

Instead, the rule must be manually inserted in the file. To 

load this CSV file, a Python script needs to be run again, 

and that is not exactly a programmable network. There are 

other ways through which rules can be added to the flow 

table of switches, and that is by creating lists in the Python 
script itself. These lists contain values of attributes to be 

passed to the function at the time of execution. 

 

 

 



TABLE I. Comparison of different Firewall Python Script on POX 

 

 

TABLE I represents the fact that no evaluated scripts 

have the capability of adding rules at the command line 

interface (CLI). The addition of rules at the CLI is 

essential part of making a controller capable of filtering 

traffic as new traffic flow hits the switch. TABLE I also 

represents that many scripts make use of a small number 
of attributes supported by OpenFlow protocol. The Python 

script implemented by [17] considered all seven attributes 

to filter traffic, but that script implements only 

blacklisting. 

D. Related Research on OpenFlow Protocol 

Researchers from [10] proposed that OpenFlow 

switches can be used as packet filters by considering the 

packet attributes such as source IP, destination IP, source 

port, destination port and type of packet (TCP/UDP). 

They allowed ICMP and ARP packets to perform 

communication tests in a topology they created using the 

Mininet network emulator [10]. They wrote a Python 

script that reads from the CSV file, and therefore that user 

will have to modify that  

file manually whenever need the arises to allow a flow 

from a new incoming packet.  

It is true that an OpenFlow controller does not 
implement security by itself. But a controller can be 

programmed in a way that it can secure the network 

topology controlled by it. Researchers in [8] proposed a 

secure OpenFlow Ryu controller in which basic packet 

filtering rules are implemented that inspect properties of 

each packet and use a Bayesian network classifier for 

detecting and filtering unusual packet flows or DDoS 

attacks.   

E. Mininet 

Mininet is an open source network simulator that 

allows user to create network environments for 

experiments. Typically, it is used for creating SDN 

environments and testing. The latest version of Mininet 

comes with pre-installed controller named POX. It allows  

 

 

quick prototyping of large virtual networks with the use of 

only one computer.  

It enables users to create virtual prototypes of scalable 

networks based on protocol such as OpenFlow, using 

primitive virtualization operating system [1]. Researchers 

from [1] have listed features of Mininet as described 
below: 

• It provides a simple and cheap way for testing 

networks for OpenFlow application 

development. 

• It allows multiple researchers to independently 

work on the same network topology. 

• It allows the testing of a large and complex 

topology, without even the necessity of a 

physical network. 

• It includes tools to debug and run tests across the 

network. 

• It supports numerous topologies and includes a 

basic set of topologies. 

• It provides simple Python APIs for creating and 

testing networks. 

F. POX 

The POX controller is a Python-based controller that 

allows user to control a network topology created by 

Mininet. POX can also provide some security features in 

the given topology with the help of components. 

Components can be understood as functionalities of the 

POX controller. POX has a number of components for 

different functionalities, but there are few components 

which provide or are related to security of network 

topology. POX allows user to develop their own 

components according to their need. POX has evolved 

over the years and has five versions/branches: Angler, 

Betta, Carp, Dart, and Eel. 
The EEL is the latest branch of POX controller and is 

still under development. POX supports OpenFlow 1.1. 

This paper has made use of the EEL branch of the POX 

controller. 

Reference Behavior 

Addition 

of Rules 

to 

Switch 

at CLI 

Filtering Functionality 

Source 

MAC 

Destination 

MAC 

Source 

IP 

Destination 

IP 

Source 

Port 

Destination 

Port 
Protocol 

[15] Blacklisting No Yes Yes No No No No No 

[16] Blacklisting No Yes Yes No No No No No 

[17] Blacklisting No Yes Yes Yes Yes Yes Yes Yes 

[18] Blacklisting No No No Yes Yes No No Yes 

[19] Blacklisting No Yes Yes No No No No No 

[20] Blacklisting No Yes Yes Yes Yes No No No 

[21] Blacklisting No No No Yes Yes Yes Yes No 

[22] Blacklisting No Yes Yes Yes Yes No No No 

[23] Blacklisting No No No Yes Yes Yes Yes Yes 

[24] Blacklisting No Yes Yes No No No No No 

[25] Blacklisting No Yes Yes Yes Yes Yes Yes No 

[26] Blacklisting No No No Yes Yes No Yes No 

[27] Blacklisting No Yes Yes No No No No No 

[28] Blacklisting No Yes Yes No No No No No 



TABLE II. SDN Firewall Attributes in OpenFlow [13] 

 

Attribute Type Description Example 

in_port Integer It denotes 

the switch 

port number 

the packet 

arrived on. 

Int: 30 

dl_src String Ethernet 

Source 

address 

String: 

’00:00:00:00:00:01’ 

dl_dst String Ethernet 

Destination 

address 

String: 

’00:00:00:00:00:02’ 

dl_vlan Integer Indicates 
VLAN ID 

Int: 2 

dl_vlan_pcp Integer Indicates 

VLAN 

priority 

Int: 0 

dl_type String Indicates 

Ether type 

IP_TYPE, 

ARP_TYPE 

nw_tos Integer Indicates 

TOS/DS 

bits 

Int: 0 

nw_proto String Indicates IP 

protocol 

ICMP_PROTOCOL, 

TCP_PROTOCOL, 

UDP_PROTOCOL 

nw_src String Indicates IP 

Source 

address 

String: ’10.0.0.1’ 

nw_dst String Indicates IP 

Destination 
address 

String: ’10.0.0.2’ 

tp_src Integer Indicates 

TCP/UDP 

Source port 

Int: 80 

tp_dst Integer Indicates 

TCP/UDP 

Destination 

port 

Int: 333 

III. EXPERIMENTAL ENVIRONMENT, SOFTWARE 

DEVELOPMENT AND RESULTS 

The experiment performed for this research made use 
of a virtual Ubuntu Linux instance created and run on 
VMware Workstation. The Mininet network emulator and 
POX controller were installed on this Ubuntu machine. 
After investigating existing security components of POX, a 
Python script was written and integrated into POX, in 
order to provide layer 2 and layer 3 filtering functionality, 
to support the seven different attributes supported by the 
OpenFlow protocol: source and destination MAC 
addresses, source and destination IP addresses, source and 
destination transport layer port addresses, and protocol. In 
addition, blacklisting and whitelisting capabilities were 
implemented. The source code for this Python script is 
given in Appendix A of this paper.  

On the virtual Ubuntu machine, two terminals were 
opened: one for running the SDN topology and a second 
for running Python script that adds packet filtering 
capabilities to the switches of SDN topology started in 

terminal one. The commands used for running topology 
and Python script are as follow: 

Mininet terminal: 
sudo mn --topo single,7 --mac --switch ovsk --controller 
remote 
POX terminal: 
/home/pox/pox.py log.level --DEBUG pox.py 
pox.misc.SDN_FIREWALL 

The command used in Mininet terminal, shown above, 
will create a topology with seven hosts connected to a 
single switch. The Python script is placed in the ‘pox/misc’ 
directory, and has the name ‘SDN_FIREWALL.py’. To open a 
CLI in the POX terminal, the pre-existing component of 
POX, ‘pox.py’, is executed along with the Python script 
implemented for this research. After the command is 
executed in both the terminals, rules can be added from the 
CLI using interactive variables of the implemented Python 
script depicted (6) in Appendix A. The Python script in 
Appendix A allows adding and deleting specific rules, 
clearing all the rules, and listing rules from the CLI using 
interactive variable, all achieved via various depicted in 
(2), (3), (4), and (5) of Appendix A.   

In Appendix A, (1) depicts the function that is loaded 
to enable whitelisting. This rule will have priority 65535. 
This script is implemented in a way that rules with the least 
priority will be executed first. In other words, rules will be 
executed in a descending order of priority. 

In Appendix A, (2) shows the function that allows us to 
add blocking/allowing rules to the switches. It has the 
capability to consider seven different attributes at a time to 
make packet filtering decisions. In Appendix A, (3) 
represents the function of deleting rules with a specified 
priority. In Appendix A, (4) represents the function of 
clearing all the rules from the switches’ flow table. In 
Appendix A, (5) represents the function of listing the 
active rules on switches. 

In the given Python script, rules can also be added into 
the script itself before executing it. For the purpose of 
testing this script, nine different rules were added to the 
script in a way, chosen in such a way as to test all the 
filtering functionalities implemented for this research. The 
tabular representation of these rules is given in Appendix B 
of this paper.  

In Appendix B, the first rule is added to test 
whitelisting. Rules numbered 2, 3, 6, and 7 allow only 
ICMP communication among the specified hosts, and the 
results of testing these rules are given in Appendix C. In 
the results shown in Appendix C, successful 
communication among hosts is denoted as host names and 
unsuccessful communication among hosts is denoted as ‘X’. 
The rules numbered 4 and 5, test filtering based on source 
and destination transport layer port addresses. The result 
achieved by adding rule number 4 and 5 is presented  in 
Appendix D of this paper. The rules numbered 8 and 9, 
allow UDP traffic on the specified port and IP addresses. 
Appendix E shows the results achieved by adding rules 
numbered 8 and 9. All the results were as expected. In 
order to implement blacklisting, the very first rule in 
Appendix B should be removed, and the value of the 
‘Permit’ argument should be set to ‘false’.     



IV. CONTRIBUTION TO KNOWLEDGE 

Experimental results show that the added POX 
component not only provides layer 2 security, such as 
filtering based on MAC addresses, but it can also provide 
layer 3 security, such as filtering through IP addresses, and 
layer 4 security, such as transport layer port numbers. Prior 
to the software development described in section III, the 
available distribution of POX was capable only of 
inspecting the source and destination IP or MAC address 
fields. But a real-world firewall must be capable of 
examining many more fields of the packet, and the 
extensions to POX described in this paper contribute to 
that. In addition, as SDN is emerging partly because of its 
capability for network programming, these experiments 
were performed both on simple topologies with seven 
hosts, along with more complex topologies such as you 
might find in a datacenter. This Python script provides 
more intelligent filtering functionality such as filtering 
based on source/destination port addresses, 
source/destination MAC and IP addresses, and transport 
layer protocol. This Python script also has capability of 
filtering the traffic based on the direction of traffic: 
incoming/outgoing. In addition, the filtering rules can be 
added to switch from the CLI as described in section III. 
This CLI makes the Python script more user friendly to use 
and allows users to handle the traffic as they hit the switch. 
Finally, this script implements both blacklisting and 
whitelisting. 
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APPENDIX 

 

 
A. The source code of implemented Python script. 

 

  from pox.core import core 

import pox.openflow.libopenflow_01 as of 

from pox.lib.util import dpid_to_str 

from pox.lib.util import str_to_bool 

from pox.lib.addresses import EthAddr,IPAddr,parse_cidr 

import pox.lib.packet as pkt 

import time 

 

log = core.getLogger() 
 

_flood_delay = 0 

 

class LearningSwitch (object): 

  def __init__ (self, connection, transparent): 

    self.connection = connection 

 self.transparent = transparent 

  

 self.macToPort = {} 

 self.priority = 65535 

 self.rules = {} 

  
 self.defaultRules() 

 connection.addListeners(self) 

 self.hold_down_expired = flood_delay == 0 

   

  def defaultRules(self): ________________________________________________________________________ (1) 

    self.writeRule('0.0.0.0/0', '0.0.0.0/0', priority=0) 

  
#add rules to be allowed according to source and destination MAC addresses, source and destination IP addresses, 
source and destination Port addresses and Protocol. 

 

 self.writeRule('0.0.0.0/0','10.0.0.1',permit=True,proto=1) 

 self.writeRule('10.0.0.1','0.0.0.0/0',permit=True,proto=1) 

 self.writeRule(’10.0.0.2’,’0.0.0.0/0’,permit=True,src_port=80,proto=6) 

 self.writeRule('10.0.0.3','10.0.0.2',permit=True,dst_port=80,proto=6) 

 self.writeRule(’00:00:00:00:00:05’,’10.0.0.7’,permit=True,proto=1) 

 self.writeRule(’10.0.0.7’,’00:00:00:00:00:05’,permit=True,proto=1) 

 self.writeRule('10.0.0.4','0.0.0.0',permit=True,src_port=53,proto=17) 

 self.writeRule('10.0.0.3','10.0.0.4',permit=True,dst_port=53,proto=17) 

 
#Function to add rules to the switches  

def writeRule(self,src,dst,permit=False,duration=1000,src_port=None,dst_port=None,proto=None,priority=None): ___ (2) 

     

       if priority != None: 

            try: 

                  self.deleteRule(priority) 

        except: 

            log.debug('Rule does not exist') 

 

    log.debug("Adding firewall rule in between %s: %s",src,dst) 

    if not isinstance(duration, tuple): 

      duration = (duration,duration) 
    match = of.ofp_match(dl_type = 0x800) 

 

    try: 

        src.index(".") 

        match.nw_src = parse_cidr(src) 



    except ValueError: 

        match.dl_src = EthAddr(src) 

 

    try: 

        dst.index(".") 

        match.nw_dst = parse_cidr(dst) 

    except ValueError: 
        match.dl_dst = EthAddr(dst) 

         

    match.tp_src = src_port 

    match.tp_dst = dst_port   

    match.nw_proto = proto 

 

    msg = of.ofp_flow_mod() 

    msg.match = match 

    msg.idle_timeout = duration[0] 

    msg.hard_timeout = duration[1] 

    msg.command = of.OFPFC_ADD 

    if priority == None: 
        priority = self.priority 

        self.priority -= 1 

    msg.priority = priority 

    if permit == True: 

        action = of.ofp_action_output(port=of.OFPP_NORMAL) 

        msg.actions.append(action) 

    self.rules[msg.priority] = msg 

    self.connection.send(msg) 

 

  def deleteRule(self, priority): #To delete specific rule ___________________________________________ (3)  

    msg = of.ofp_flow_mod(command=of.OFPFC_DELETE, priority=priority) 

    for connection in core.openflow.connections: 
      connection.send(msg) 

      log.debug("Clearing all flows from %s",dpid_to_str(connection.dpid)) 

    try: 

     del self.rules[priority] 

    except: 

        log.debug('Rule does not exist') 

 

  def clearRules(self):     #To clear rules from every switch that is connected __________________________ (4) 

    msg = of.ofp_flow_mod(command=of.OFPFC_DELETE) 

    for connection in core.openflow.connections: 

      connection.send(msg) 

      log.debug("Clearing all flows from %s",dpid_to_str(connection.dpid)) 
 

  def listRules(self):                 #Function to show the rules that are currently active on switches _______________ (5)                                                                                  

      for i in self.rules: 

       log.debug(self.rules[i].match) 

 

  def _handle_PacketIn (self, event): 

    packet = event.parsed 

 

    def flood (message = None): 

      msg = of.ofp_packet_out() 

      if time.time() - self.connection.connect_time >= _flood_delay:                                                                                                                                                                      

        if self.hold_down_expired is False: 
          self.hold_down_expired = True 

          log.info("%s: Flood hold-down expired -- flooding", 

              dpid_to_str(event.dpid)) 

 

        if message is not None: log.debug(message) 

        msg.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD)) 

 



      else: 

        pass 

                                                           

      msg.data = event.ofp 

      msg.in_port = event.port                                                                                            

      self.connection.send(msg) 

    
def drop (duration = None): 

      if duration is not None: 

        if not isinstance(duration, tuple): 

          duration = (duration,duration) 

        msg = of.ofp_flow_mod() 

        msg.match = of.ofp_match.from_packet(packet) 

        msg.idle_timeout = duration[0] 

        msg.hard_timeout = duration[1] 

        msg.buffer_id = event.ofp.buffer_id 

        self.connection.send(msg) 

      elif event.ofp.buffer_id is not None: 

     msg = of.ofp_packet_out()                                                                                         
        msg.buffer_id = event.ofp.buffer_id 

        msg.in_port = event.port 

        self.connection.send(msg) 

 

    self.macToPort[packet.src] = event.port 

 

    if not self.transparent: 

      if packet.type == packet.LLDP_TYPE or packet.dst.isBridgeFiltered(): 

        drop()  

        return 

     

    if packet.dst.is_multicast: 
      flood()  

    else: 

      if packet.dst not in self.macToPort: 

        flood("Port for %s unknown -- flooding" % (packet.dst,)) #4a 

      else: 

        port = self.macToPort[packet.dst] 

        if port == event.port:  

          log.warning("Same port for packet from %s -> %s on %s.%s.  Drop." 

              % (packet.src, packet.dst, dpid_to_str(event.dpid), port)) 

          drop(10) 

          return   

 
        log.debug("installing flow for %s.%i -> %s.%i" % 

                  (packet.src, event.port, packet.dst, port)) 

  msg = of.ofp_flow_mod()                                                                                           

        msg.match = of.ofp_match.from_packet(packet, event.port) 

        msg.idle_timeout = 10 

        msg.hard_timeout = 30 

        msg.actions.append(of.ofp_action_output(port = port)) 

        msg.data = event.ofp  

        self.connection.send(msg) 

 

masterSwitch = list() 

class l2_learning (object): 
  def __init__ (self, transparent):                                                                                       

    core.openflow.addListeners(self) 

    self.transparent = transparent 

 

  def _handle_ConnectionUp (self, event): 

    log.debug("Connection %s" % (event.connection,)) 

    x = LearningSwitch(event.connection, self.transparent) 



    masterSwitch.append(x) 

    core.Interactive.variables['fw'] = x    #Interactive Variable to add rules to the switches from CLI  ____________ (6) 

 

 

def launch (transparent=False, hold_down=_flood_delay): 

  try: 

    global _flood_delay 
    _flood_delay = int(str(hold_down), 10) 

    assert _flood_delay >= 0 

  except: 

    raise RuntimeError("Expected hold-down to be a number") 

 

  core.registerNew(l2_learning, str_to_bool(transparent)) 

 

 

 
B. Following table represents the ruleset which was implemented to test the functionalities of Python script. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
C. Following image depicts the results achieved by implementing the rule number 1, 2, 3, 6 and 7. These rules 

allow ICMP communication between specified hosts. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Rule No. Action Source Destination Source Port Destination Port Protocol 

1 Deny 0.0.0.0/0 0.0.0.0/0 None None None 

2 Allow 0.0.0.0/0 10.0.0.1 None None 1 

3 Allow 10.0.0.1 0.0.0.0/0 None None 1 

4 Allow 10.0.0.2 0.0.0.0/0 80 None 6 

5 Allow 10.0.0.3 10.0.0.2 None 80 6 

6 Allow 00:00:00:00:00:05 10.0.0.7 None None 1 

7 Allow 10.0.0.7 00:00:00:00:00:05 None None 1 

8 Allow 10.0.0.4 0.0.0.0/0 53 None 17 

9 Allow 10.0.0.3 10.0.0.4 None 53 17 



D. Following image depicts the results achieved by implementing the rule number 4 and 5. These rules allow TCP 
traffic on port 80 between specified hosts. 

 

 

 
 

 

 
 

E. Following image depicts the results achieved by implementing the rule number 8 and 9. These rules allow UDP 
traffic on port 53 between specified hosts. 
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