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Abstract

Due to its wide application in various fields, clustering, as a fundamentabengsed learning
problem, has been intensively investigated over the past few decadigstunately, standard clus-
tering formulations are known to be computationally intractable. Although mamyegaelaxations
of clustering have been proposed to overcome the challenge of computatteaetability, current
formulations of clustering remain largely restricted to spherical Gaussidiscniminative models
and are susceptible to imbalanced clusters. To address these shortcameipgspose a new class
of convex relaxations that can be flexibly applied to more general forniBrefman divergence
clustering. By basing these new formulationsrammalized equivalence relation matriwe retain
additional control on relaxation quality, which allows improvement in clusteqioglity. We fur-
thermore develop optimization methods that improve scalability by exploiting raaplitit matrix
norm methods. We find that the new formulations are able to efficiently pedtilyltter clusterings

that improve the accuracy of state of the art methods.
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Chapter 1

Introduction

Discovering latent class structure in data, clustering is a fundamental problem in many fields,
such as bioformatics, machine learning, and statistics. Given data, the tasisisgn each obser-
vation a latent cluster label or distribution over cluster labels based on sotioa 0f similarity.
Because of its important role in exploratory data analysis, clustering hagearange of applica-

tions, including:

e Astronomy A catalog of billions of sky objects represented by their radiation in fraque

bands can be clustered into similar objeetg, galaxies, nearby stars, quasars.
e Biology. DNA sequences can be clustered based on edit distance.

e Marketing Customers can be clustered based on their profile as well as their paristo-

ries or products can be clustered based on the sets of customers.

e Banking Credit card behaviori.efraud vs normal use) is clustered based on cardholder’s

transaction history.

o WWW Documents can be clustered based on similar words.

A common goal of clustering formulations is to promote intra-cluster similarity and ahtister
dissimilarity. However, there is no best clustering criteria. In practicesusave to supply various
forms of prior knowledge. In addition to specifying prior information on thenier of clusters,
some applications require a strict partition while others require a probabilsgigranent. Also,
some applications might only require finding cluster representatives whiesattight require dis-

covering useful unknown properties from the data.



Clustering has a long history, with diverse approaches proposedrtunately, computational
tractability remains a fundamental challenge: standard clustering formulatieN$-hard (Aloise
etal., 2009; Dasgupta, 2008; Arora & Kannan, 2005) and additionalem structure must be pos-
tulated before efficient solutions can be guaranteed. Meanwhile, sthaldatering formulations
are also efficiently approximable (Kumar et al., 2004; Arthur & VassilvitskiD2), and much work
has sought practical algorithms that improve solution quality, even in lieu ofétieal bounds. A
popular approach for approximation is through convex relaxation tmabeaolved in polynomial
time. Therefore, in this thesis, | investigate possible convex relaxationsofomon clustering

paradigms with corresponding efficient optimization algorithms.

1.1 Contributions

The main contributions of this thesis are:

1. For centroid-based Bregman divergence clustering, we develep tamily of convex relax-
ations that use aormalizedequivalence relation matrix to improve the quality of previous

convex relaxations. We also analyze the tightness of this new convezatielax

2. Based on the analysis eérmalizedequivalence relations, we design an induced matrix norm
technique that can be applied across a broad range of convex retesatttich results in effi-

cient optimization algorithms for the corresponding nonlinear semidefinitegm(SDPS).

3. Finally, by using a standard rounding procedure, we observe taatHulting clustering
algorithms provide superior or comparable empirical performance tordusmoroaches on
various kinds of datasets. In particular, our formulation of discriminatlustering is at
least 10 times faster than existing approaches, while automatically alleviatingotiiem of

imbalanced cluster assignment.

1.2 Organization

In this thesis, | will first review related work on clustering in Chapter 2, thiessent background on
the general loss models | consider (Bregman divergences) and thdying optimization strategy
I will primarily use (generalized conditional gradient method). Then, | wigent a new fam-

ily of convex relaxations with efficient algorithms for hard conditional cltistg discriminative
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clustering, and hard joint clustering, respectively, in Chapters 3 to ére§uonding experimental
evaluations of the proposed convex relaxations will be presented inceagier. Finally, the con-
clusions and potential future work will be discussed in Chapter 6. Thdtsesf this thesis have

been published in (Cheng et al., 2013).



Chapter 2

Background

In this chapter, | will provide the necessary background on clusteorgilations, Bregman diver-

gences and the generalized conditional gradient method for optimization.

2.1 General Formulations of Clustering

Two of the most important paradigms for centroid-based clustering aes lmagenerativeversus
discriminativemodeling, with generative clustering consisting of hard clustering with coméitio
models, hard clustering with joint models, and soft clustering with joint modellsatd clustering,
one seeks a disjoint partition of data points such that each data point bétjugt one cluster. In
soft clustering, each observation is assigned a certain probability af baimember to each of the
clusters.

Traditionally, clustering has usegknerative modelto capture interesting latent structure in
data. LetX denote the observed variable aWddenote a latent class variable. The simplest gen-
erative approach optimizes the conditional mo#éX|Y') only, with Y assigned the most likely
value; this is also known dsard conditionalclustering. WhenP(X|Y) is Gaussian, a popular
approach is to use the hakdmeans clustering algorithm (MacQueen, 1967) where one alternates
between optimizingY and the conditional model. Banerjee et al. (2005) extended tmeans
formulation to general exponential family by modeliRgX|Y') with Bregman divergences.

Although hard conditional clustering provides a standard baseline, §irglobal solutions in
this case is intractable; efficient methods are only known when the numtotustérs or the di-
mensionality of the space is constrained (Hansen et al., 1998; Inaba E23%4). Consequently,

there has been significant work on developing approximations, particularconvex relaxations



that can be solved in polynomial time. For example, Zha et al. (2001) deaivanvex quadratic
reformulation of conditional Gaussian clustering, and Peng & Wei (20b®ined a tighter semi-
definite programming (SDP) relaxation. By analyzing the complete positivity iEéperties of
the resulting constraint, Zass & Shashua (2005) propose an approxirnf@tiGaussian clustering
based on CP factorization. These can be further extended to relaxafionsmalized graph-cut
clustering (Xing & Jordan, 2003; Ng et al., 2001). By augmentingitilmeans with randomized
seeding technique, Arthur & Vassilvitskii (2007) obtained an algoriéfiog k)-competitive to the
optimal. Unfortunately, all of these relaxations are restricted to Gaussiaalsnoid?(X|Y), and
the optimization algorithms depend heavily on the linearity of the SDP objective.

The conditional clustering approach can be extended tojbentctlustering by explicitly includ-
ing the class prior, thus optimizing the joint likelihodd{ X, Y') with the most likelyY. Again,
efficient solution methods are not generally known, leaving local appesaas the only known
option currently.

To smooth these objectives, tkeft joint model optimizes the marginal likelihoo®(X) =
>y P(Y)P(X]Y) (Neal & Hinton, 1998; Banerjee et al., 2005), which has traditionally baek:
led by the expectation-maximization (EM) algorithm (Dempster et al., 1977). ENhalgorithm
remains susceptible to local optima however. Intensive research hasiesed to understanding
properties of the Gaussian mixture model in particular (Moitra & Valiant, 26H0ai et al., 2010;
Dasgupta & Schulman, 2007; Chaudhuri et al., 2009). Although runtiimg can be reduced to
polynomial when the number of clusters or data dimensionality are constrdimechains expo-
nential in these quantities jointly. A few convex relaxations for soft jointteltiisg models have
therefore been proposed. For example, Lashkari & Golland (2@3Tict cluster centers to data
points, while Nowozin & Bakir (2008) impose sparsity inducing regularizabwer the class priors
(while still embedding an intractable subproblem). Recent spectral te@sagun provably recover
an approximate estimate of Gaussian mixtures in polynomial time (Hsu & Kakatig;, 28andku-
mar et al., 2012). Unfortunately, this formulation remains restricted to sgthéimussian models
of P(X]Y).

Finally, discriminative modelprovide a distinct paradigm for clustering that can be more effec-
tive when the goal of learning is to predict labels from the observ&ipe.g.as in semi-supervised

classification (Chapelle et al., 2006). In this approach, one maximizeswuhieseeconditional like-



lihood P(Y|X), with Y imputed by the most likely label. A straightforward optimization strategy
can alternate between optimizing and the conditional modeP(Y|X), but this quickly leads to
local optima. Thus, here too, convex relaxation has been a popularnappation strategy, either
in the case of a large margin loss (Xu & Schuurmans, 2005) or logistic logér{& Bach, 2012;
Joulin et al., 2010; Bach & Harchaoui, 2007; Guo & Schuurmans, 2007 date, such formula-
tions have been entirely based on SDP relaxations wittormalizedequivalence matrices, whose
elements indicate whether two examples belong to the same cluster. Such @acagprprone to
discovering imbalanced clusters, since the model employs no natural nerohthat automatically
avoids assigning all examples to a single cluster.

A word about the notation: bold faced uppercase variaklgsX, Y, are used to represent ob-
served and latent variables respectively. Bold faced lowercasélegiare used to denote vectors.
Matrix variables are represented by uppercase alphabgts, Y. For consistency, afterwards, we
will use t to denote the number of data pointsto denote the dimension of each data point and

for the number of latent clusters.

2.2 Bregman Divergences

All of the loss models and probability models considered in this thesis will bedb@as®regman
divergences, which will therefore will play a key role in the clusteringrfolations | consider. A
Bregman divergence defines a notion of dissimilarity between two points loasg strictly convex

potential function. In particular, a Bregman divergence is definedlmsvia

Definition 1. LetF : S — R,S§ = dom(F) C R", be a strictly convex function such thatis

differentiable andf = VF'. The Bregman divergeneg-(x,y) is defined as

dr(x,y) == F(x) = F(y) — (x—y, f(¥))- (2.1)

The strict convexity off’ confers several important propertiesdp based on this definition.
First, letF* : R™ — R be the Fenchel conjugate 6f, i.e.
F*(y)= sup y'x— F(x). (2.2)
x€edom(F)

and let f* = VF*. Since the strict convexity of' implies thatf is invertible, we have that



F(x) f(x) dr(x,y) Divergence
x? x (x—y) Squared loss
log(1%5) | xlog(x) + (1 —x)log(l —x) | xlog(3) + (1 — x) log(%:—;‘) Logistic loss
—1 —log(x) * —log(¥) —1 Itakura-Saito distance
1+ log(x) x ! log(x) x! log(%) KL-divergence

Table 2.1: Some Common Bregman Divergences

F*(y)=y'f~'(y) — F(f~'(y)). Based on this observation, one can conclude that

f*y) = VF*(y)

Sy + T )y = T () F () (2.3)
= f(y)

Y

where J;-1 is the Jacobian of ~!. Note that the Definition 1 is the difference between a strictly
convex functionF’ at x and its first order Taylor approximation at another pgintBased on this
fact, several important properties follow.
1. Non-negativity. dr(x,y) > 0. This fact follows because a convex function necessarily domi-
nates its first order Talyor approximation. Here equality is achieved if ahdifox = y.
2. Convexity. dr is always convex in the first argument, but not necessarily convex isdtend
argument.
3. Dual divergence.Given a strictly convex differentiable functiafi, and its invertible gradient
function f = VF' and conjugate functiof™, one can establish the following relationship between
Bregman divergence and its dual divergence
dr(x,y) = F(x)—-F(y) - (x-y,f(y)
= (fG0, F7H () = () = (&), £ () + F(f(v))
—(x—y, f(¥)) (2.4)

= F*(f(y)) - F(f(x) = (f(y) = f[(x),y)
= dp-(f(y), f(x)))-

Some examples of commonly used convex functions and their correspdigman divergence
are listed in Table 2.1. A more detailed discussion of other important propefteregman diver-
gences are given in (Banerjee et al., 2005).

Since later on we will work closely with matrix notation, we will first introduce tbédwing



notation:
Dp(A,B) = ZdF(Ai:7 B;.) (2.5)
Die-(A, f(B)) = 3 dr+ (A, f(By)). (2.6)
That is, we will write D (A, B) to denote the ;um of row-wise Bregman divergences. Also, with
some abuse of notation, we will 1é2z- (A, f(B)) denote the sum of row-wise dual Bregman di-

vergences. Throughout the thesis, whengiferor f~1(-) are applied to a matrix variable, we will

assume these functions are applied row-wise.
2.2.1 Exponential Family Distributions

To explicitly model Bregman divergence clustering, we need to providedfigition of exponen-
tial family distributions, then we show the relationship between regular Bregtiwargences and

regular exponential family models.

Definition 2. A probability density function or probability mass functipfw|@) for w € R™ and

6 € © C R" is in the exponential family, if it is of the form

p(wl0) = Srgshtw)esp (07o(w)) 2.7)
— h(w)exp (9T¢(w)—A(9)), (2.8)

for some functiong andh, where
2(0) = / h(w) exp (9T¢(w)) (2.9)
A0) = logZ(0). (2.10)
Here @ are callednatural parameters, ¢(w) € R™ is called a vector o$ufficient statistics Z(0)

is called the partition functionA(0) is called thelog-partition function , andh(w) is the scaling

function, often 1.

To simplify the subsequent statements, we follow (Banerjee et al., 2005 efire regular

exponential family distributions through their minimal sufficient statistic R".

Definition 3. A regular exponential family is a multivariate parametric family of distributiongrgh

each probability density has the form

p(x]0) = exp(8Tx — A(0))po(x), ¥x € R™. (2.11)



Distribution p(x;0) dp(x, p)
1-D Gaussian \/2;7 exp <— (”2_02)2> gaz (x — p1)?
d-D Spherical Gaussian \/2;7 exp (—%) gz |lx — p?
1-d Binomial e (1= 9N | wlog(2) + (N - x)log (¥=2)
d-D Multinomial T e, ¢ xT log (ﬁ)

Table 2.2: Some popular exponential families and corresponding Bregrexgehce.

The only difference between this definition and (2.8) is that we have ersbetthé feature
function ¢ in the minimal sufficient statistis. Exponential family distributions and Bregman di-

vergences are closely related. In fact, we have the following lemma freme(fee et al., 2005).

Lemma 1. (Banerjee et al., 2005) IF* is the log-partition function of a regular exponential family

with natural parameter spac®* = int(dom(F™)), then

1. F* is strictly convex or®*, and its conjugate functiod' is also strictly convex oi® =

int(dom(F)).

2. BothF and F* are differentiable or® and ©* respectively. The gradient functiohF' = f

is invertible and continuous, afdF = f = f* = f~ L.

With this lemma, one can then establish the following relationship between regplamential

family distributions and Bregman divergences.
Theorem 2. (Banerjee et al., 2005) Let
p(x10) = exp (87x — F*(9) ) po(x) (2.12)

be the probability density function of a regular exponential family distributicet. A* be the con-

jugate of F'. Thenp(x|@) can be uniquely expressed as
p(x160) = exp (—=dr(x, f~1(8)) Zr(x)) (2.13)
whereZr : dom(F') — Ry is a uniquely determined function.

More detailed discussion on bijections between regular exponential fammigeBragman di-

vergences can be found in (Banerjee et al., 2005).

9



This theorem shows that every regular exponential family corresporasinique and distinct
Bregman divergence and every choice of Bregman divergenceti@adegular exponential family.
Note that the proof of this bijection is not the contribution of this thesis. Somalpopxponential

family distributions and the corresponding Bregman divergences aza giviable 2.2.

2.3 Clustering Formulations based on Bregman divergences

Following (Banerjee et al., 2005), we formulate clustering as maximum likelilegtichation in an
exponential family model with a latent variab¥e € {1,...,d} (the class indicator). The observed
variableX is in R™, from which aniid sampleX = (x1, ..., x;)’ has been collected.

Generative models.In generative modeling we parameterize the joint distribution ¢¥erY')

asyY — X:

p(Y =J) =g, (2.14)

p(X =x|Y =j) = exp (—dr(x, 1j)) Z;(x). (2.15)

Here® :={g;, uj}?zl are the parameters, whatec A4, thed dimensional simplex. We assume
P(X]Y) is an exponential family model defined by the Bregman divergépc&xamples of com-
monly used Bregman divergences include Euclidegdn ) = x), and sigmoid f(x) = log -£).

11—z

Given dataX € R!*", the parameter® can be estimated via

argmax m}gmxp(X, Y|©) (2.16)
©

or argmax p(X|0) = maXZp(X,Y|@), (2.17)
© S

depending on whethéf is to be maximized (hard clustering) or summed out (soft clustering). Here
we are lettingt” denote a x d assignment matrix such that; € {0,1} andY'1 = 1 (a vector
of all 1's with proper dimension). If we additionally 1€ = (p1,...,pq) andB = (by, ..., by),
such thatb; = f(u;), then the conditional likelihood (2.15) can be rewritten over the entire data

set as

P(X[Y) = exp (—Dp(X, YT)) Z(X) (2.18)

= exp (=Dp(Y B, f(X))) Z(X), (2.19)

10



where
t
Dp(X,YT):=) dp(X;,Y;T) (2.20)
=1
and
t
Dp+(YB, f(X)) := Y dp+(Yi:B, (X)) (2.21)
=1
are row-wise sums, such that. stands for theé-th row of X .
Discriminative models. As an alternative approach, discriminative clustering uses a graphical

modelX — Y, and focuses on modeling the dependence of the |abeisen X:
p(Y|X; W, b) = exp(—Dp- (Y, f(XW + 1b'))) Z(X), (2.22)

wherelV € R"*4 s the parameter to learn abde R? is the offset for all clusters. A soft clustering
model cannot be applied in this case, sifce p(X,Y) = p(X). Instead, hard optimization &f

leads to

in Dp(X 1, F~1(Y)). 2.23
Juin, F(XW 4+ 1b', f7(Y)) (2.23)

All of these problems involve a mix of discrete and continuous variables,hwhises consid-
erable challenges. Our goal is to develop convex relaxations that caolNe efficiently while

leading (after rounding) to higher quality solutions than those obtainedibg lwecal optimization.

2.4 Generalized Conditional Gradient Method

All of the relaxations of clustering that will be investigated in this thesis redaagptimization
problems. To cope with these problems, | will develop scalable algorithmgl lmase simple
but powerful optimization template, the generalized conditional gradient methor the sake of

completeness, | first provide some background on conditional gradiethiods.
2.4.1 Conditional Gradient Method

Consider the optimization problem,

min f(x), (2.26)

11



Algorithm 1 Conditional gradient method

1: Choosery € Q arbitrarily, setk = 0;
2: Solve

Y, € argmin (y, V f(zx)) ; (2.24)
yeQ

3: Perform a line-search by solving

min f((1 — pg)er + pryr) (2.25)
ﬂke[ovl]

4: Assignrg iy <= (1 — pg) ok + Yk

Algorithm 2 Generalized Conditional Gradient Method

1: Chooser € H such that:(z() < co and set = 0;
2: Solve

ye € argmin (y, V.f(zx)) + h(y); (2.27)
3: Perform a line-search by solving

min f (1 — pg)zp 4+ prye) + b (1 — pr)or + pye) 5 (2.28)
pr€[0,1]

4: Assignrgq < (1 — pg) ok + feYk-

whereQ is a convex and bounded feasible region, &nd convex and smooth. The conditional
gradient method is given in Algorithm 1. Note that, since findjpds actually a linear minimization
problem, wherQ is a polyhedra, (2.24) reduces to a linear program. Moreover, eadltidteis
well-defined becaus@ is bounded. Thus, each step of the algorithm involves a linear constrained
minimization followed by a one-dimensional convex optimization, both of whicltansidered to

be easy. However, the convergence rate is somehow slow (sublihémglso worth noting that the

conditional gradient method is generally ineffective to apply in nonsmoasitoohastic settings.
2.4.2 Generalized Conditional Gradient Method

Although nonsmooth problems cause difficulty for the conditional gradigmitceach, a reasonable
procedure can be achieved if the objective can be decomposed into thsmda nonsmooth part.
A generalized conditional gradient method (K. Bredies & Maass, 2089pben developed for this

case.

12



Consider the following problem:

iréig f(z) + h(z) (2.29)

whereQ is convex and bounded such thfais smooth and convex while is convex but not neces-
sarily smooth.

The generalized conditional gradient algorithm is shown in Algorithm 2. Withalgerithm,
each step is now a smooth convex program, followed by a one dimensionstnooth convex
optimization. Often, the smooth functidn is a quadratic and) is a polytope, making (2.27)
a quadratic program. This algorithm can also be slow to converge to a glohaion, since it
has a sublinear rate (Zhang et al., 2012). A nice property of the demeef@onditional gradient
framework, however, is that many machine learning problems can be fdedulathe form: a

convex and differentiable loss function and a convex but not neglyssaooth regularization term.
2.4.3 Hybrid Approach: Local Search for Matrix-norm Regulari zation

The main optimization problems | consider in this thesis all involve optimization oveixnvaiti-
ables, where the regularization functibrconsists of a matrix norm, and challenging constraints
such as positive semidefiniteness are also included. Therefore, tlcecbaditional gradient and
generalized conditional gradient method have to be extended and impmweashdle the matrix
variable case.

Consider the convex optimization problem using matrix notation

;{nelg F(X) + h(X), (2.30)

whereX is an x m matrix, f(X) : R**™ — R is a convex and smooth functioh(X) : R"*™ —

R is a convex but not necessarily smooth function, @nid a convex feasible region. The clustering
problems discussed in this thesis nicely fit into the generalized conditiordiégtdramework. The
drawback of the generalized conditional gradient method is its sublineatHawever, Zhang et al.
(2012) observed that a fix-rank local optimization can be interlaced witheheralized conditional
gradient procedure to significantly speed up the sparse learning mitkd@hatrix-norm regulariza-
tion and semidefinite constraints. Specifically, when the matrix norm reguiartigces a low rank

optimal matrixX, we can represeX with a low-rank factorization (sa)X = UV ") at each step.
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Algorithm 3 Hybrid Generalized Conditional Gradient Method

1: One step conditional gradient on l.h.s. of (2.31);
2: Construct initialization for r.h.s. of (2.31);

3: Locally optimize over r.h.s. of (2.31);

4: Initialize Lh.s. of (2.31);

Then, the optimization problem can be reformulated as a hybrid algorithmlitbatates between:
min f(X) + h(X) « min FOVT)+hUVT) (2.31)

The hybrid generalized conditional gradient descent is outlined in AlgorBh For analysis and
other applications, we refer to (Zhang et al., 2012) and (Laue, 20t Mydre details.
This optimization strategy will allow scalable training methods to be developedbir &f the

convex relaxation schema developed later in this thesis.
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Chapter 3

Conditional Generative Clustering
Case 1: Jointly Convex Bregman
Divergence

In this chapter, we first consider the casdnafd conditional clusteringor jointly convex Bregman
divergences, where the class pripe A, has been fixed to some value in thdimensional simplex
beforehand.

Following the discussion in the background chapter, we formulate clust@singaximum like-
lihood estimation in an exponential family model with a latent varid¥le {1,...,d} (the class
indicator). The observed variab® is in R”, from which aniid sampleX = (xi, ...,x;)’ has
been collected.

Recall that in generative modeling, we parameterize the joint distribution(34€Y ) asY —

X, where
p(Y =j) = qj, (3.1)
p(X =x|Y = j) = exp (—dr(x, pj)) Z;(x). (3.2)

Becausey; is fixed to some value, her® := {uj}?zl are the parameters to be optimized. We
assumeP(X|Y) is an exponential family model defined by the Bregman divergéhee
Since we focus on conditional generative hard clustering, givenXlathe parameter® can

be estimated via
argmax m}z/ixp(X, Y1|0). (3.3)
)
Here we are letting” denote & x d assignment matrix such thig; € {0,1} andY'1 = 1 (a vector
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of all 's with proper dimension). If we additionally I€t= (u1,...,pqs) andB = (by,...,by),

such thab; = f(u;), then the conditional likelihood (3.2) can be rewritten over the entire data set

as
p(X|Y) = exp (~Dr(X,YT)) Z(X) (3.4)
= exp (—Dp+ (Y B, f(X))) Z(X), (3.5)

where
Dp(X,YT) := Zt:dF(Xi:,Yi:F) (3.6)

i=1
and

Dp-(YB, f(X)) := Zt:dF* (Yi:B, f (X)) (3.7)

i=1

are row-wise sums, such thit. stands for theé-th row of X .

3.1 Formulation
First note that by using (3.4), the estimator (3.3) can be reduced to
min Dp(X,YT). (3.8)

Here Banerjee et al. (2005) showed that for any fixed assignixiethie optimall’ is given by
I' = (Y'Y)'Y'X (t+ denotes the pseudoinverse), for any Bregman divergénee Plugging the

solution back into the formulation, the problem becomes
min Dp(X, Y(Y'Y)Y'X). (3.9)
Now let us introduce thaormalized equivalence relation matrix
M=YY'V)Y' =Y diag(Y'1)TY’, (3.10)

and letM denote the set of possibilities. Thati%f = {M : 3Y € {0,1}*4 Y1 =1, M =
Y (Y'Y)TY’}. It then suffices to solve

in Dp(X,MX). A1
in r(X, ) (3.11)
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This resulting problem is challenging for two reasons. First, the objectivetinecessarily convex
in M, sinceDp is only guaranteed to be convex in its first argument. Another challenge libs in
non-convexity of the constraint sét.

However, it is interesting that many widely used Bregman divergenceiatey convex in
both argumentse.g. Mahalonobis distance, KL divergence, Bernoulli entropy, BosetEinsen-
tropy, Itakura-Saito distortion, and von Neumann divergence (Wangl&u@mans, 2003; Tsuda
et al., 2004). Therefore, we want to consider convex relaxationthénon-convex constraint set
for conditional generative model clustering with jointly convex Bregmarmmjgnces first in this
chapter, and then generalize the approach to arbitrary Bregmanetioegin the next chapter.

Peng & Wei (2007) have shown that
M={M:M=M M>=Mtr(M)<d M;eA}.

First, note that sincd/? = M is the only source of non-convexity, its convex hull can be used to

construct a convex outer approximatid; (i.e. convex containing sets) of the sét:

Miy:=conv{M:M=M'=M?* N {MeA]:tr(M) < d}

={M:0=M =<1 tr(M)<d,M;. € A}, (3.12)

where byM = 0 we also encodd/ = M’. Note that)M < I is implied by0 < M andM;. € A,
(e.g.Mirsky, 1955, Theorem 7.5.4).

Although this setM; has been widely used, it is still not clear whether it is the tightest convex
relaxation of M; that is, whethetM; = convM = M? With some surprise, we show that this
conjecture is not true in Appendix 8.1; that is, in genefdl, — M # (). Despite the fact that1;
is a loose convex relaxation, its simplicity allows a simple and efficient optimizatioerefore, we
will continue to use it below, as in the earlier work of (Peng & Wei, 2007)nv@miently, M, can

be relaxed further by keeping only the spectral constraints
My:={M:0=<M=<Itr(M)<d,M1=1}. (3.13)

Therefore, based on the convex relaxation of constrainV$etf normalized equivalence rela-
tion matrix, we managed to derive a convex relaxation for conditional gémemodel clustering

with jointly convex Bregman divergences.
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Algorithm 4 Alternating Direction Method of Multipliers

1: Repeat until convergence

: My < argminy, L(M, Z;—1,N\i—1);
. Zy <—argming L(My, Z,Ay—1);

P AN+ %(Zt — My);

A WN

3.2 Optimization

Here, since there is no matrix-norm regularization, instead of exploitingpheifec optimization
strategy we discussed in the previous chapter, we will temporarily needpt adlightly different
optimization strategy. (Later chapters will revert to the same optimization stratgtiged orig-
inally.) AssumingDy is convex in its second argument, one can easily mininiize¢ X, M X)
over M € M; by using the alternating direction method of multipliers (ADMM) (Boyd et al.,
2010). In particular, we split the constraints into two groups: specthan-spectral, leading to

the following augmented Lagrangian:

L(M,Z,A)=Dp(X, MX)+8(Ms, € A)+8(Z € Mo)

1 2
—(AM—-2Z M-Z
(A M = 2)+ oo |M = 2.

whered(-) = 0 if - is true; co otherwise. The ADMM procedure then proceeds as follows: (i)
optimize objective under non-spectral constraints; (ii) project to satisfgpectral constraints; and
(i) update the multipliers; see Algorithm 4.

Note that since we constraib/;. € A, the objectiveDr(X, M X) remains well defined in
Step 1 of Algorithm 4. Furthermore, since the objective decomposes ise-each row ofi/ can
be optimized independently, which constitutes a key advantage of this scBeemnd, since Step
2 merely involves projection onto spectral constraifts, a closed form solution exists based on

eigen-decomposition, as established in the following lemma.

Lemma3. LetH = — 111’. Then

My ={HMH + 111" : M € M3}, (3.14)

whereMs ={M :0 <M < I,tr(M) <d—1}. (3.15)
Proof. Clearly the right-hand side of (3.14) is contained\ty,. Conversely, for any/, € Mo, we
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constructan\/ € MsasM = My — %11’. Note thatM,1 = 1 implies1/+/% is an eigenvector of

M, with eigenvaluel. ThereforeM = 0. The rest is easy to verify. Ol

By Lemma 3, the problem of projecting any matrlxto M- can be accomplished by solving

min ||Z — A|? = min |HSH — (A - %11/)”2.
ZEMso S€M3

LetB=A— %11’ andV = B— HBH. ThenHV H = 0, hence the probem reduces to solving
min |HSH—HBH-V ||*=min |HSH-HBH |*+||V|*
SEMs3 SeMs

Now it suffices to solveningey, |7 — HBH|? and show the optimall” satisfiesHTH = T.
Supposed BH has eigenvalues; and eigenvectorsg;. Then the optimal” must have eigenvalues

u; and eigenvectorg; such that

%1n2(ui—ai)2, s.t.u; € [0,1], Z“ <d-1. (3.16)
(2 (2
Sincel is an eigenvector off BH with eigenvalue 0, it is trivial that the correspondingin the

optimal solution is als®. Therefore, 7’1 = 0 and HTH = T. Finally the optimalZ is simply

given byT + 111’
3.2.1 Rounding

Once an optimal solution is obtained for the relaxed problem, a feasible sototidwe original
problem can be obtained by heuristic rounding. Many rounding schesmdsecapplied with similar
performance. Following the previous works (Guo & Schuurmans, 280d)Joulin & Bach, 2012),
we apply spectral clustering (Shi & Malik, 2000) g to obtain a rounded assignment matrix
Y™, i.e. using a k-means clustering on the eigenvectors associated with the k-leiggsvalues.
Then thisY™ is used to initialize an alternating hard EM procedure optimizing (3.8) to get i fine

assignment matrix’".
3.3 Experimental Evaluation

In this section, | evaluate the proposed convex relaxation for jointly coBvegman divergence. In
order to compare the proposed convex relaxation with the most relatedasihgrhard EM algo-
rithm, | use the common evaluation criteria: the objective value of (3.8) as séikeaclassification

accuracy.
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Dataset| ¢ n d H Dataset‘ t n d

Yale 165 1024 15| Diabetes| 768 8 2
ORL 400 1024 40| Heart | 270 13 2
E-mail | 1000 57 2 Breast [ 699 9 2
Balance| 625 4

Table 3.1: Properties of datasets used in experiment.

Data sets.| used seven labeled benchmark data sets for these experiments. éfvenarthe
UCI repository (Frank & Asuncion, 2010): Balance, Breast Cgrio&betes, Heart, and Spam E-
mail. The two others are multiclass face data sets: &d&id Yal&. | downsampled Spam-Email to
1000 points preserving the class ratio. The properties of these datassstsranarized in Table 3.1,
giving the values of, n, andd. | shifted all features to be nonnegative so that all transfer functions
can be applied. Finally the features were normalized to unit variance.

Transfer functions. Here, | tested two transfer functions: linear and sigmoid.

Parameter settings.The only parameter involved in the optimization algorithm fer ADMM.

With regard to efficiency and quality, it is set16—3. The parameter selection is mainly based on
time-efficiency. For more details on parameter tunning, see (Boyd et a0).201

Algorithms. The new proposed methodwkCondJC) first minimizesD g (X, M X) over M €
M;y. The optimalM is then rounded to a hard cluster assignment via spectral clustering (Shi
& Malik, 2000). The result is further used to initialize a local re-optimization gidhre original
objectiveDr (X, YT). Sincek-class spectral clustering involveg-aneans algorithm, with random
elements, this was repeated 10 times and the variance was reported.

| compared the new proposed algorithm wattCondJC (hard EM), which optimize® (X, YT)
by alternating, witht” reinitialized randomly up to the same time cost of our method with spectral
clustering rounding and reoptimization.

Results.In Table 3.2, the first and third rows of each block gives the optimal vdligg X, YT')
found byaltCondJC, and bycvxCondJC (both after SC rounding and re-optimization). The sec-
ond and fourth lines give the highest accuracy among all possible maschétgeen the clusters
and ground truth labels. Across all data sets and transfer functex@pndJC with SC rounding

and reoptimization finds a lower objective value and higher accuracyatft@andJC. In addition,

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2http://cve.yale.edu/projects/yalefaces/yalefaces.html
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although the objective achieved after rounding might be higher than thelt@indJC, the ac-
curacy is usually comparable. It is also worth noting that the accuracy>@@ondJC with SC
rounding is not necessarily improved by the reoptimization. Moreoveddta sets, ORL and Yale,
which are image data sets, the accuracy of sigmoidal transfer functionhiertilgan that of linear
transfer function while for the rest datasets, the accuracy of lineafeafunction would usually be
higher (except Spam E-mail data set). It justifies the importance of diffeieergences for cluster-
ing. Overall, the final clustering found mwyxCondJC is superior to randomized local optimization

over the evaluated data sets.

3.4 Conclusion

In this chapter, | have considered the conditional generative hartechgs with jointly convex
Bregman divergences. In spite of its simplicity, this simple case actually piideght into the
formulation as well as a testbed to evaluate the quality of relaxation based oarthelized equiv-
alence relation matrix. A key result is the analysis on the tightness of coelexation through
normalized equivalence relation matrix. The resulting clustering formulatiowsléodistributed
optimization procedure based on ADMM. On the basis of the experimentiiatiom, it appears
that the proposed new convex relaxation method outperforms local optinmzadit in terms of
objective value and accuracy with the same time computational cost.
Unfortunately, Bregman divergences are not generally convex ingeeond argument, hence

a more general relaxation strategy is required for convex relaxationkstering with arbitrary

Bregman divergence.
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cvxCondJC | cvxCondJC
+SCrounding|  +SC+re-opt| altCondJC
Spam E-mail

lin_obj(x10?) 9.4+ 01 9.3t 00 9.3t 00
lin_acc(%) 71.5t11.6 76.3t13.6 75.1t12.6
sigm.obj(x 10%) 7.8+ 01 7.7+ 01 7.7+ 01
sigm.acc(%) 75.1+12.0 80.0+ 9.4 76.0+ 7.2

ORL
lin_obj(x10%) 3.3t 01 2.0+ 0.0 2.1+ 00
lin_acc(%) 57.0t 35 55.4+ 2.9 40.6+ 2.3
sigm.obj(x 10?) 3.8+ 01 3.5+ 01 3.7+ 01
sigm.acc(%) 57.8+ 36 58.2+ 4.1 48.2+ 3.0

Yale
lin_obj(x10%) 5.6+ 0.1 5.5+ 0.0 5.8+ 0.1
lin_acc(%) 46.8+ 1.7 47.0+ 2.1 44.5+ 4.2
sigm.obj(x 10?) 9.6+ 0.4 9.2+ 01 9.6+ 0.3
sigm.acc(%) 49.9+ 2.1 51.5+ 2.1 46.6+ 4.1

Balance
lin_obj(x10%) 7.2+ 00 7.1x 00 7.2+ 00
lin_acc(%) 57.1+ 6.9 57.3t 7.1 54.2+ 46
sigm.obj(x 10?) 5.0+ 0.3 3.9: 0.0 4.0+ 0.0
sigm.acc(%) 49.3t 5.1 50.5¢ 5.1 49.4+ 43
Breast Cancer
lin_obj(x10?) 1.8+ 02 1.6+ 0.0 1.7+ 00
lin_acc(%) 72.5¢12.7 84.7+ 88 78.7+10.4
sigm.obj(x 10%) 8.5+ 0.2 8.5+ 0.1 8.5+ 0.1
sigm.acc(%) 72.4+13.7 72.5+13.7 70.6+11.6
Diabetes

lin_obj(x 10?) 2.0+ 01 2.0+ 0.0 2.0+ 0.0
lin_acc(%) 57.1+ o5 58.5+ 0.0 58.5+ 0.1
sigm.obj(x 10%) 1.2+ 01 1.1+ 00 1.1+ 00
sigm.acc(%) 58.8+ 3.9 58.2+ 0.1 58.0+ 0.6

Heart
lin_obj(x10?) 1.3 00 1.3+ 0.0 1.3+ 0.0
lin_acc(%) 68.1+10.0 65.6+ 7.8 65.4+ 5.0
sigm.obj(x 10?) 7.5 0.2 7.2+ 02 7.2+ 02
sigm.acc(%) 63.4+ 5.9 64.9+ 6.6 64.4+ 7.8

Table 3.2: Experimental results for the conditional model with jointly conveegBran divergences.
Here “lin” and “sigm” refer to linear and sigmoid transfers respectivelysBesults irbold.
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Chapter 4

Conditional Generative Clustering
Case 2: Arbitrary Bregman Divergence

Since a Bregman divergence is not necessarily convex in its secogahant, we need to extend
the previous approach to consider the case of hard conditional clgsteitim arbitrary Bregman
divergences.

In this chapter, we start as before and formulate clustering as maximum ligéléstimation in
an exponential family model with a latent varialfec {1,...,d} (the class indicator). Here, the
observed variablX is in R™, from which aniid sampleX = (x, ..., x;)" has been collected.

As before, we continue to consider a conditional generative modeleswherclass priog € A,
has been fixed to some value in #hdimensional simplex beforehand. By assumingX'|Y’) is an
exponential family model defined by a Bregman divergebge we can then reduce the estimation

problem equivalently to
mig Dy- (YB, f(X)), (4.1)

whereDp« (A, B) = ), dp+(A;., B;.), dp+ is the dual divergence afr, Y denotes & x d assign-

ment matrix such thak;; € {0,1} andY'1 = 1.

4.1 Formulation

To cope with a general Bregman divergence, we need to adopt a sagilfidifferent strategy from
from the last chaper. The key idea we exploit here is to introduce a vedugarization that allows
a useful form of representer theorem to be applied. In particular,ugenant the negative log

likelihood of P(X|Y') in (4.1) with a regularizer on the basis weighted by the number of points

23



in the corresponding cluster. The resulting objective can be written as:

. o 2
min Dp- (Y B, (X)) + 5 [V Bllp- (4.2)

)

The advantage of the formulation in Chapter 3 is that it does not requiguéarezer, whereas
the advantage of this formulation is that it allows more general loss functions.

Note that hereB must be in the range of. Now, by the representer theorem, there exists a
matrix A € R*™ such that the optimaB can be written3 = (Y'Y)TY”’ A (f denotes the pseudoin-

verse). Making this substitution in (4.2) yields
. o /
Mo Dp«(YB, f(X)) + 5 tr(A'MA), (4.3)
whereM is thenormalized equivalence relation matriefined as before by
M=YY'V)Y' =Y diag(Y'1)TY". (4.4)

In this chapter, instead of relaxing to the constraint/sét in the previous chapter, we will work

with this formulation by further relaxing the domain bf to the weaker convex set
My:={M:0=<M=<Itr(M)<d,M1=1}. (4.5)

The main motivation here is to develop a more efficient algorithm, becauseigtiegyolynomial
time optimization algorithm inM is extremely slow in practice. By Lemma 3 in the last chaper,

we can further relax the domain infots
Mz :={M:0=<M=<1Itr(M)<d—1}, (4.6)

becausél, € M5 can be recovered fromls € Ms.

Due to the simplicity of the further relaxed constraint 3dt, we will first develop convex
relaxation strategy based on it and then extend.ivtg.

First we establish the main optimization formulation that we will use in this chaptde tKat
although (4.3) does not immediately exhibit joint convexitylihand A, a change of variable leads
to a convex formulation. DenotE = M A. Thenlm(7') C Im(M) whereIm(M) is the range of

M. Also, denotel.(Z) := Dp+(Z, f(X)) for clarity.
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Proposition 4. The problen{4.3)is equivalent to

(0%
i i L(T) + = tr(T'M'T 4.7
«
—min L(T) +— ' tr(T'MTT 4.8
i ( )+2M6M3:II;11(171})§IH1(M) x ) (4.8)

Proof. The proposition is easily established by observing that, any optiiiald) for (4.3) pro-
vides an optimal solution to (4.7) vie = M A. Conversely, given any optimél\/, T") for (4.7),
This proposition allows one to solve a convex problerfjrprovided thalm(7") C Im(M ) guar-

anteesl’ = M A for someA. O

4.2 Characterizing the regularizer in M3

Note that the optimization in (4.8) defines an implicit induced regularizér.obefine

QX(T) = min tr(T'M'T), (4.9)
MeMsz:Im(T)CIm(M)

which satisfie<2(7") > 0. The above proposition allows one to solve a convex problerfi,in
provided thaf)?(T') is convex and easy to compute. Thud, A) is optimal for (4.3).
In order to better understand the computational complexi (@), in the following section,

we will first try to characterize if2(7") computationally.
4.2.1 Efficient Computation ofQ)(7)

Let the singular values df bes; > ... > s;. SinceQ?*(T) = minpre s, tr(TT'MT), by von
Neumann’s trace inequality (Mirsky, 1975) the optimddlmust have eigenvectors equal to the left
singular vectors of . The minimal objective value is thén, s? /o;, whereo; are the eigenvalues

of M. It suffices to solve

t 2 t

f(s) = I{mr}l S—i, subject tas; € [0, 1], o; <d-—1 (4.10)
Oij 0j :
i=1 =1
t 82 t
= Tmi 2 1— . )
oinel[lg,lu r/r\lgéc 2.5, +A ( d + ; az> (4.11)
t 82
= max {)\(l—d) + min <i+/\ai) } . (4.12)
A>0 oi€[0.1] =\ i

Fixing A, the optimalo; is attained atr;(\) = S if A > s?,and 1if\ < s?. Note thato;()\)

decreases monotonically for > s%, hence we only need to findathat satisfiest:1 oi(A) =
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Algorithm 5 Computef(s) with givend.
1. fork=0,1,...,d—2 do
2 if 30,18 > (d—1—k)s,i1 then break
3: end for )
4: Return f(s) = 31y 87 + = (Dicpsr i)

d — 1, since the constraint, o; < d — 1 must be equality at the optimum. This only requires a
line search oven, which can be conducted efficiently as follows. Suppose the opthtials in
[s7,s71]- Theno;(A) = 1foralli < kando;(\) = s;/v/Aforalli > k, so one can easily get the
following condition from the optimality with respect tofor (4.12)
1 t

k+ ﬁi:;lsl —d—1. (4.13)
Hence in order to find & € {1...t} such thats;,, < A < si meeting (4.13), we just need to
searchk = 1,...,t and putv’A = s, andv\ = s, respectively back into (4.13) for a sign
changej.e.
Zt

’Lfk'-i-l 1 Sd—l
Sk

\F/\:Sk =k+

)

t
o S;
\f)\: Ska1 :>k+@2d_1_

Sk+1
Then the optimah can be computed as
1 t
Vas= d—l—ki_zk;ji'

Now note there must befasatisfying these two conditions. Since bath- é Z’;Zk“ s; and
k + ﬁ Z§:k+1 s; grow monotonically ink, the smallesk that satisfies the second condition
must also satisfy the first condition. Hence the optimal solutios;is= 1 for all ¢ < k, and
oi=(d—1—k)si/ >}, sifori>k.

The algorithm for evaluating(s) = Q2(T), wheres are the singular values @f, is given in
Algorithm 5. The ‘if’ condition in step 2 must be met whén= d — 2. The computational cost is
dominated by a full SVD off", and fortunately the proposed method needs to comp(ifg only
once at the optimdl’. Therefore{2 can be computed i®(t3) time.

Interestingly£2(T") has other favorable properties to exploit.
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Theorem 5. Q(T") defines a norm off’. Its dual norm is denoted &3..

We prove this theorem in Appendix 8.2. Moreover, we also characterigidisnorm, which
will be exploited later in the optimization strategy. Not surprisingly, the duaimocan also be

computed efficiently wittO(¢2d) time.
4.3 Extending the characterization of the regularizer fromMs; to M,

Now we replaceM in Proposition 4 byMs. In particular, we redo the characterization(i(fI")
when M3 is replaced byM5, and denote the new regularizer®d") > 0, such that
=2(T) = min tr(T'MTT). (4.14)
MEMo:Im(T)Clm(M)
If we can again show th&(7") is a norm such that botB and the dual nornE, are efficiently
computable, then the same optimization algorithm based(@r (given below in Section 4.4) can
also be applied usirng without change. The remainder of this section proceeds in parallel to Bectio

4.2.
4.3.1 Efficient computation of=(T")

First we apply Lemma 3 on page 18 us to convert the optimizationtininto that in M3, making
it easy to utilize the previous results.

Let
tr(T"M'T) = tr(QM™), (4.15)
whereQ = TT". To minimize it overM € M, by Lemma 3, it suffices to solve

1
min tr (Q(HMH + 11’)T> .
MeMz:Im(T)CIm(HMH+111) t

We first ignore the range constraint, and will show later that it will be automlgtisatisfied. Since

1/+/t is an eigen-vector off M H with eigen-value 0, we have

1 1
(HMH + E11’)T = (HMH)" + (511')T

= (HMH)" + %11’. (4.16)
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By definition of H:
1. 1.
Q=1QI = (H+¥11 )Q(H+¥11)
=HQH +1q'H + Hql' + s11/,

whereq := Q1/t ands := 1'q/t = 1'Q1/t%.

Next, we need to make use of the following lemma.
Lemma6. If AB = 0, thenATB = 0.

Proof. Let A = UXV' be the SVD of4. Then

AB=0 = UXV'B=0 = XV'B=0

=%V'B=0 = AIB=USV'B=0.
Similarly, if BA = 0thenBAT = 0.
Now, returning to (4.17), we note that since,
(HMH)(1q'H) =0

(HMH)(s11') =0
(Hql')(HMH) = 0,
by Lemma 6, we have
(HMH) (1H) =0
(HMH)'(s11') =0

(Hql')(HMH)' = 0.
Therefore combining (4.16) and (4.17) we obtain
tr { QUHMH + —11')
AWERY
— tr ((HQH)(HMH) ) +5101.
ClearlyHMH € M3 foranyM € Maj. So if we find

M* = argmin tr ((HQH)MT ) ,
MeMs
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(4.18)
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and show M* = HM*H, then M* must be the minimizer of (4.18) oveWl € Ms. (4.19) is
obviously in the same form &38?(T) = minyseq, tr(77'MT) and its optimal objective value is
Q2(HT). By the discussion on how to compu®dn Section 4.2, ifH Q H has eigenvectors; with

eigenvalue\; > 0, then

for somey; > 0. Sincel/+/t is an eigenvector off Q H with eigenvalue 0, s@’1 = 0. Therefore
M*1=0andHM*H = M*.

Finally we showlm(7') C Im(HM*H + +11’). By (4.20) andHM*H = M*, the nonzero
eigenvectorsof HM*H + 111’ areS := {1/v/t} U {¢;},. So it suffices to show tha spans
the left singular vectors df’, or equivalently the nonzero eigenvectorgaf This means for any
that is orthogonal td and¢;, Qu = 0. Since = 0, we only need to show’Qu = 0, which is

obvious because by (4.17),

uWQu=u(HQH)u+u'1lqd Hu+uHql'u + su’11'u

—04+0+0+0+0=0.

To conclude,

E%Ty:Q%HTy+%HT1P,

(4.21)

1
M*+ 11 = argmin te(T'MTT). (4.22)
t MeEMa:Im(T)CIm(M)

Based on the discussion of the computional effciency above, we willthaviellowing theorem

onZ(T).
Theorem 7. Z(T') defines a norm off’. Its dual norm is denoted &s..

Similar to the previous section, we will prove the theorem and charact el its dual norm

=, in Appendix 8.3.

Eigenvectors whose corresponding eigenvalue is not zero
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Algorithm 6 Conditional gradient for optimizing (4.8)
1: Initialize Ty = 0. s = 0.
2: for k=0,1,... do
3 SetSy € 00(VL(Ty)), i.e.find a minimizer ofming (VL(T}), S) + 502 (S) up to scaling.
4:  Line search:
(a,b) := argmin, >0 L(aTp+bSk)+ 5 (asp+b)*.
SetTy1 = aTy + bSk, sgr1 = as + b.
end for

4.4 Optimization

With these conclusions, we can optimize the primary objective (4.8) defingaga 25 using the
generalized conditional gradient method, accelerated by local sezacle,(2012; Zhang et al.,
2012) as outlined in Chapter 2; see Algorithm 6.

At each iteration, the algorithm employs a linear approximatioh.ofhe inner oracle searches
for a steepest descent direction by computing a subgradient of thaealumal,., because when the
maximum in (4.23) is achieved, every maximal valuef (4.23) is a subgradient with respect4o
of the conjugate functiorf*(z). To see why this is true, recall that generalized Legendre dual for

non-differentiable functions is given by
f*(z) = maxx'z — f(x), (4.23)

where f*(z) is the conjugate of the functiofi(x), and the variable: is the dual variable ok.

Therefore, we must have
df*(z) = % = argmaxx 'z — f(x). (4.24)

Algorithm 6 is guaranteed to find araccurate solution to (4.8) i0(1/¢) iterations; see e.g. (Zhang

etal., 2012). The optimal/ can then be recovered by evaluatiigt the optimall’.?
4.4.1 Accelerated Hybrid Approach for Low-Rank Factorization

Due to Proposition 4, the norm regularizer in (4.8) induces a low rank op@im8b if we explicitly
representl;, with a low-rank factorization (sa¥j, = P, Q) whereP, and@;, have a small number

of columns), therf), (and its gradient) can be efficiently evaluated because a full SVD can be

2This solution is valid since (4.7) minimizes ovaf and7. If the problem wereninr max,, instead, the optimal
M could not be generally recovered by maximizihgfor fixed optimalT .
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performed efficiently by making use of such a low-rank factorization.apgrvectorx, T, x can be
computed byP (Q}x).

For (4.8), we can writd’ = PQ’ whereP and(@ havek columns § is small). Then we can
optimize overP and( using anylocal solver and obtain anipcal solution. In practice, wheh is
large enough, there is a good chance that the solution is already vety goo

Recall that at each iteration in Algorithm 6, can be written a$"} , s;u;v}. So afterk
iterations,I" can be written agfil s;u; v, (the set ofu; are not necessarily orthogonal, and neither
arev;). If d andk are both small, this factorization will allow us to compute the full SVDIof

efficiently. Therefore, based on low-rank factorization, the gene@lkonditional gradient method

can be modified into Algorithm 7.
4.4.2 Extension toM,

By the discussion in Section 4.3, we can then extend the optimization procatwre fromMs; to

M as Algorithm 8.
4.4.3 Rounding

Once an optimal solutiod/* € M is obtained for the relaxed problem (4.3), a feasible solution
to the original problem (4.1) can be obtained by heuristic rounding. Mangding schemes can

be applied with similar performances. Following previous works (Guo & 8S8aohans, 2007) and
(Joulin & Bach, 2012), we apply spectral clustering (Shi & Malik, 2000)\/ to obtain a rounded
assignment matrix*, i.e. using a k-means clustering on the eigenvectors associated with the k-
largest eigenvalues. Then this is used to initialize an alternating hard EM procedure optimizing

(4.1) to get a finer assignment mathix

4.5 Experimental Evaluation

In this section, | evaluate the proposed convex relaxation for conditgperarative model with
arbitrary Bregman divergence with the same data sets and transfer ismasithe previous chapter.
In order to compare the proposed convex relaxation with the most relatedaiteyy hard EM

algorithm, | use the same evaluation criteria as before, the objective valdeldpfas well as the
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Algorithm 7 Accelerated Hybrid Optimization Procedure for Low-Rank Factorizatioifig
1: Initialize Ty = 0, Py = Qo = [J(Matlab empty matrix);o = 0
2. fork=1,2,...do
3:  Compute the gradientdf at7y,_1: G = VL (Tj_1, X).
4:  Generate weak hypothesis

Sy, = argmin tr(G'T) = — argmax tr(G'T). (4.25)
T:Q(T)<1 T:Q(T)<1

By (4.24) and the discussion in Section 452,can be written a§:§l;11 Siu; V.

5.  Check termination criteria
6: if tr(G'Sg) + arp_1 > —ethen
7: break
8: endif
9:  Partially corrective update
{n1,m3} == argmin L (mTy—1 + 125, X) + % (mrr—1+m)°. (4.26)
71,m22>0

10:  Locally solve
(6%
in L(PQ') + =Q*(PQ’ 4.27
min (PQ) + 50°(PQ) (4.27)
by initializing
P = (/1 Pe—1,\/n38101, ..., \/N584-1U4—1)
Q= (VM Qr—1, V1351V, .., \/N354—1Vd—1)

Denote the locally optimal solution &#%, Q).
11:  Setthe solution at iteratiokx T, = P;,Q).. Restorer;, by solving

rL = min = Q(T}). 4.28
F 75,81 >0,Q(8:) <1,> 7, m:Si=T, ; K ( 2 ( )

This is actually the gauge function of the unit ball®@fevaluated aff,. So trivially r, =
Q(T}) (which matches our intuition).

12: end for

13: ReturnTy,

classification accuracy.

Parameter settings. To closely approximate the original objective without creating numerical
difficulty, | choose the regularization parameteto be reasonably smalt € {1075,107°} and
report the experimental results for the choices that obtain highesteaycitowever, the results are
not sensitive to these values.

Algorithms. The new proposed methoduxCond) first optimize (4.3) ovei\l € M. Then
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Algorithm 8 Accelerated Hybrid Optimization Procedure for Low-Rank Factorizatioifin

1: Initialize Ty = 0, Py = Qo = [J(Matlab empty matrix);o = 0
2. fork=1,2,...do

3:  Compute the gradientdf at7y,_1: G = VL (Tj_1, X).

4:  Generate weak hypothesis

Sy, = argmin tr(G'T) = — argmax tr(G'T). (4.29)
T:E(T)<1 T:E(T)<1

By (4.24) and the discussion in Section 4.3, we have compact way to egpres

Sr = —(aHUS +b11'UL)V’
= —(aHU +bv11'U)2V’ (4.30)
= —UxV/, (4.31)
. . (T*)Q ~ 1 . (T*)Q o ¥ B
wherea = /1 —"+F~,a = Tame V1 7 b = qc7el the topd — 1 SVD of

G =UXV'andS = ¥/| diag()|. Thus,S = S0 o,i,v).

5:  Check termination criteria
6: if tr(G'Sy) + ary—1 > —ethen
7: break
8: endif
9:  Partially corrective update
* %k . «
{ni,m3} = argmin L (mTk—1 + 125k, X) + ) (mre—1 +m2)°. (4.32)
71,1220
10:  Locally solve
in L(PQ') + 2=2(PQ’ 4.33
min (PQ) + 5 E(PQ) (4.33)

by initializing
pP= (\/ nTPk—lv 77551111:---7 V U;Sd—lﬁd—l)
Q = (\/ UTQk—h 77;51"17 eV U;Sd—lVd—l)

Denote the locally optimal solution &#%, Q).
11:  Setthe solution at iteratiokx Tj, = P;,Q).. Restorer;, by solving

= i ;= 2(T). 4.34
Tk m,Sizmzo,E(g“?)lgl,zi — Zi:m (Ty) ( )

12: end for
13: ReturnTy,

similar to Section 3.3, the optima{ is rounded by spectral clustering (10 repeats). Here subsequent
re-optimization (based on local optimization) is performed on the objeflygY B, f(X)). The

competing algorithmaltCond, optimizes this objective by alternating with random initializations
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of Y up to the same time-cost oxCondwith SC rounding and reoptimization.

Results. In Table 4.1, the first and third rows of each block gives the optimal vafue o
Dp«(Y B, f(X)) found byaltCond, and bycvxCond (both after SC rounding and re-optimization).
The second and fourth rows give the highest accuracy among albfmasatchings between the
clusters and ground truth labels. Here it can be observed that for a#thaksta sets and trans-
fer functions,cvxCond with SC rounding and reoptimization yields lower optimal objective value
and higher accuracy thaitCond, except two outliers, Diabetes and Heart with sigmoidal transfer
function. Moreover, the objective values also exhibit lower standaritien thanaltCond, which
suggests that the value regularization scheme helps stabilize the reoptimizai®miso worth
noting that the accuracy avxCondJC with SC rounding is not necessarily improved by the re-
optimization. For data sets, ORL and Yale, which are image data sets, tha@cofisigmoidal
transfer function is higher than that of linear transfer function while ferrést datasets, the ac-
curacy of linear transfer function would usually be higher. It justifiesitmgortance of different
divergences for clustering. Note that the accuraaywafCond with rounding is already comparable
with that ofaltCond on most data sets.

Since the same transfer functions as Chapter 3 are used here, thacgicoticvxCondJC
with SC rounding and reoptimization is really close to thosew{Cond with SC rounding and
reoptimization. It indicates that the extra regularization we employ for corelaxation would not

decimate the performance.

4.6 Conclusion

In this chapter, we have developed a more general convex relaxatibegstifor conditional gener-
ative hard clustering with arbitrary Bregman divergence.
The key idea we apply is to introduce the normalized equivalence relation rbgtepplying

a value regularization. An important technique that will be widely exploitedhaétals, using an
induced matrix norm to promote low-rank, is developed to enable direct afiplicof generalized
conditional gradient method, accelerated by local search. Based axpleeimental evaluation,
the proposed new method performs better in terms of both objective valuacandacy than the
corresponding local alternate algorithm with the same time cost.

So far, the clustering probability models we have considered are soletijtiomal generative
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models based only o (X |Y). However, in practice, discriminative models with the reverse con-
ditional P(Y'|X) have been proved to be very accurate data-driven tools for learnengplut
variables and the latent labels. Therefore, we will consider extendingechniques to convex

relaxation for discriminative models in the following chapter.
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cvxCond cvxCond
+SC rounding| +SC rounding| altCond
& re-opt
Spam E-mail
lin_obj(x 102) 9.3t 01 9.3t 00 | 9.3+ 00
lin_acc(%) 75.0+ 9.0 79.8+102 | 73.9+133
sigm.obj(x 10?) 8.0+ 02 7.7+ 01 7.7+ 01
sigm.acc(%) 64.8t12.5 78. 7%+ 78 | 75.3t 55
ORL
lin_obj(x 103) 2.7+ 01 2.0£ 00 | 2.1+00
lin_acc(%) 62.6+ 3.0 59.4+ 24 | 40.1+ 23
sigm.obj(x 10?) 4.0+ 01 3.4+ 00 3.7+ 01
sigm.acc(%) 60.1+ 6.1 60.0+ 49 | 48.6+ 2.7
Yale
lin_obj(x 101) 6.1+ 0.2 5701 | 5.8:01
lin_acc(%) 43.3+ 32 45.2+ 32 | 44.4+ 40
sigmobj(x10%) | 10.3t 0.2 9.3+ 01 9.5+ 02
sigm.acc(%) 46.6+ 2.6 51.1+ 27 | 46.2 30
Balance
lin_obj(x 101) 8.0+ 0.4 7.1+ 0.0 7.1+ 0.0
lin_acc(%) 57.1+ 6.9 57.3t 71 | 55.5+ 51
sigm.obj(x 10?) 4.0+ 0.0 3.9t 00 | 4.0+ 01
sigm.acc(%) 54.1+ 83 53.0+ 60 | 50.9+ 5.2
Breast Cancer
lin_obj(x 10?) 1.7+ 01 1.6+ 00 | 1.7+ 00
lin_acc(%) 75.4+133 85.8+ 66 | 78.7+109
sigm.obj(x 10?) 8.8+ 0.2 8.5+ 0.1 8.6+ 0.2
sigm.acc(%) 66.8+ 8.4 72.3t125 | 70.3t11.0
Diabetes
lin_obj(x 10?) 2.0+ 00 2.0£ 00 | 2.0+ 00
lin_acc(%) 58.1t 0.6 58.3t 00 | 58.2 01
sigm.obj(x 103) 1.2+ 01 1.1+ 00 | 1.0+ 00
sigm.acc(%) 54.7+ 3.0 58.2+ 02 | 58.1+ 05
Heart
lin_obj(x 102) 1.3+ 0.0 1.3+ 0.0 1.3+ 0.0
lin_acc(%) 69.4+ 93 67.0+ 55 | 66.1+ 5.2
sigm.obj(x 10?) 7.2+ 01 7.1+ 01 7.3t 02
sigm.acc(%) 66.9+10.7 64.9+ 82 | 65.8+ 6.3

Table 4.1: Experimental results for the conditional model with arbitrary Beegdivergences. Best

results shown ifold.
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Chapter 5

Discriminative Clustering

Although generative models can often reveal useful latent structurata) thany problems such
as semi-supervised learning and multiple instance learning are more cetedgth accurate label
prediction. In such settings, discriminative mod¥ls— Y can often be more effective (Joulin &
Bach, 2012; Bach & Harchaoui, 2007; Xu & Schuurmans, 2005)rdftbee, in this chapter, we will
consider convex relaxation for this setting.

As before, we formulate clustering as maximum likelihood estimation in an exgahiamily
model with a latent variabl&y” € {1,...,d} (the class indicator). The observed varialllds in
R™, from which aniid sampleX = (xi, ...,x;)’ has been collected. Unlike generative model,
discriminative clustering uses a graphical moNel Y, and focuses on modeling the dependence

of the labelsY” given X:
p(Y[X; W, b) = exp(— D (Y, f(XW + 1b))) Z(X),

wherelV is the parameter to learn abde R? is the offset for all clusters. A soft clustering model
cannot be applied in this case, sineg, p(X,Y) = p(X). Instead, hard partition optimization of

Y leads to

in Dp(X 1. F~HY)). A
Join, F(XW +1b', f7(Y)) (5.1)

Unlike generative models, for discriminative clustering, we only considspexial case where
potential functionF'(x) = log ) . exp(z;), i.e. where the transfer functiofi = VF is sigmoidal
(Joulin & Bach, 2012). The reason for this is because sigmoidal tnafhgfietion satisfies the

multinomial conditional model for the class indicator.
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5.1 Formulation

Before attempting a convex relaxation for the discriminative model (5.1), it isitapt to recognize
that a plain optimization ovei¥, b, Y') using the sigmoidal transfer will lead to vacuous solutions,
where all examples are assigned to a single clysterdb; = co. A common solution is to add a
regularizer or” to enforce a more balanced cluster distribution. A natural choice of negedan
Y is the entropy of cluster sizeise. —h(Y'1) whereh(x) =), z;log z;. Note that this situation is
opposite to generative clustering, where one must upper hésince otherwise the joint likelihood
would be trivially maximized by assigning each data point to its own cluster.

In the following , we derive a convex relaxation for discriminative clusgbased on the for-

mulation
1
min — W4+1b’, f1 1). .
’g%/tDF(X +1b', f7(Y)) +h(Y'1) (5.2)

The key idea is to do so usingw@rmalized equivalence relation matiixthis setting.

By adding value regularizatiothVY’||2 to (5.2), one obtains

o1 ) oe—1 Y 1112 /
VI&%%ISDF(XWJrlb,f )+ |[WY'||"+h(Y'1). (5.3)

Then expanding the Bregman divergence according to its definition, weefarmulate the
above problem equivalently as
min SF(XW +1b) — ~ tr((XW + 1b)Y")
Wby t t
1 Y 112 /
— S FO) + S [+ h(v') (5.4)

_ : 1 * 1 / ’
_VII/IE%A:I/I\??A tF (A) + ; tr(A'(XW +1b'))

1 1
— S t((XW +1b)Y) —EF(Y)+% [WY’||*+h(Y'1). (5.5)

Here, based on Fenchel’s identity{x) = max,cqom 7+ X'z — F*(z) wheredom denotes the effec-
tive domain of a convex function, the second step follows from replagig§ W + 1b’) with its
Fenchel conjugate.

Then, by applying a change of variable = Y, and converting the constraints arto ;. € A
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(Guo & Schuurmans, 2007), one can get the following equivalenti@nmob

1 1
min max — —F*(QY) + ~tr(Y'Q(XW + 1b))
WhbY Q:Q.eA  { t

—%F(Y)—%tr((XW—irlb/)Y’)—lr%HWY’Hz—Fh(Y’l). (5.6)

Moreover, the outer minimization with respectiié andb can be achieved by setting
W=1X'(I-QY{'Y), and'1=1. (5.7)

Note that— 2 F*(QY) + h(Y'1) < —1 F*(£2) + ¢y Wherec, is some constant (Joulin & Bach, 2012,
Eq 3). Using (5.7) and the fact tha{(Y") is a constant, one can upper bound (5.6) by

: 1 1 )
—~F*(Q)—— || X' (1-Q)M]||". 5.8
J\glnel}\l/l Q:Qi:glﬁ}({zf1:1 t ( ) 27152 H ( ) H ( )

Importantly, this formulation is expressed completely in terms of the normalizeidadepce re-
lation matrix M, which constitutes a significant advantage over (Joulin & Bach, 2012; &u
Schuurmans, 2007). Rather than resort to the proximal gradient mettsmivieofor 2 given M
(Joulin & Bach, 2012), which is slow in practice, we can harness the pofcond order solvers
like L-BFGS by dualizing the problem back to the primal form, which leads toramomstrained

problem. This reformulation also sheds light on the nature of the relaxatign (5

5.2 Optimization

Fixing M € M, we add a Lagrange multiplier € R’ to enforceQ?’1 = 1. By introducing the

change of variabl@ = I — (), the optimization ovef) becomes equivalent to

pin_ o fF*(I \If)+ﬁHX vM | +f "U1. (5.9)

The tool we use for dualization is provided by the following lemma.

Lemma 8. (Borwein & Lewis, 2000, Theorem 3.3.5).et J and G be convex functions, and a
linear transform. Supposg dom J has nonempty intersection wifx € dom G* : G* is continu-

ous atx}. Then

m}in J(x) + G(Ax) = max —J(=Ay) - G*(y). (5.10)
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To apply Lemma 8 to (5.9), choose the linear transfotnio be & — %X’\IJM, G(¥) =
% tr(UMTU) andJ (V) = 1 F*(I — ¥) + 1+/¥1 over¥1l = 0 and¥ < I (elementwise). Then
the problem (5.9) becomes equivalent to

1
SUPCGXYM A7) - (AX Y M) + %tr(T’MT). (5.11)

M,r,rgrlielﬁ%mz t -

Note thatF'(x) = log > , exp(z;) can be interpreted as a soft max, hence the result is related to the
typical max-margin style model. The loss of each examsehe soft max ofX;. Y/ M + 7 (a row
vector) minusX;. Y'M.; + 7;. Herer; is an offset associated with each training exampleycfor
each cluster).

The most straightforward method for optimizing (5.11) is to treat it as a colowestion of M,
whose gradient and objective value can be evaluated by minimizing and . Since bothY
andr are unconstrained, this can be easily accomplished by quasi-Newton méiteod-BFGS.
Interestingly, thanks to the structure of the problem, we can optimize (5.&fh)meore efficiently by
applying the same change of variable as in Section 4.4. Letfing MY € R**" and constraining

MtoMz={M:0=M <1I,tr(M) <d— 1}, the problem (5.11) becomes

. Yn2 1
min Pk (V)+tZ;[F(1X1:V/+T/)—(1Xizvilz+7i)}~ (5.12)
Denote
1
L(V) =) [FOXV'+7) - (X Vi47)]. (5.13)

t <
The objective (5.12) again absorbs the spectral constraint& anto the norm{2, and can be
readily solved by generalized conditional gradient in Algorithm 9. Therssita toM € My =

{M:0=<M=<1tr(M)<d, M1=1}Iis alsoimmediate.
5.2.1 Rounding

Once the optimal solution is obtained for the relaxed problem, a feasible sotatitwe original
problem can be achieved by heuristic rounding. Many rounding scheandse applied with similar
performance. Following previous works (Guo & Schuurmans, 200d Y dwulin & Bach, 2012), we
apply spectral clustering (Shi & Malik, 2000) dd to obtain a rounded assignment mafrix, i.e.

using a k-means clustering on the eigenvectors associated with the k-kigges/alues.

SinceM? = M for M € M, (5.9) can also be recovered by settifigl¥) = % tr(U¥’). However, to reformulate
the problem into (5.12), which is the key to efficient optimization, it is cruiahcludeM T in G.
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Algorithm 9 Conditional gradient for optimizing (5.12)
1: Initialize Vp = 0. s = 0.
2: for k=0,1,... do
3 SetSy € 00(VL(V;)), i.e.find a minimizer ofming (VL(V;), S) + 502 (S) up to scaling.
4:  Line search:
(a,b) := argmin,q >0 L(aVip+bSk)+ 5 (asp+b)*.
SetVii1 = aVi + bSk, sgr1 = asi + b.
end for

5.3 Experimental Evaluation

In this section, | evaluate the proposed convex relaxation for discrimsativdel through nor-
malized equivalence relation matrix with the same data sets. In order to compapeoffosed
convex relaxation with two previous convex relaxations (Guo & Schuurn2) and (Joulin &
Bach, 2012) , | use the same evaluation criteria as before, the objeativeof (5.2) as well as the
classification accuracy.

Parameter settings. To closely approximate the original objective without creating numerical
difficulty, we choose the regularization parameteo be reasonably smajl € {10-¢,10~°} and
report the experimental results for the choices that obtain highestaagcukgain, the results are
not sensitive to these values.

Algorithms. The new proposed methodwkDisc) optimizes (5.11) oveM € M5 by solving
(5.12). 1 also test on the algorithms of Joulin & Bach (2012) and Guo & Gechans (2007), which
we refer to aslB and GS. The result of all the three methods are rounded by spectral clustering,
then used to initialize a local re-optimization over (5.2). Since the discriminativiehi®logistic,
we use the sigmoid transfer g only.

Results. According to Table 5.1¢vxDisc with SC rounding only already achieves higher or
comparable accuracy to boffB and GS in most cases except Diabetes and Heart. Further im-
provements can be obtained by reoptimization for all data set but BalaocéBFt only performs
really well for Diabetes whil&sS performs the best for Breast Cancer. Regarding the runtime for
solving the respective convex relaxationgxDisc is at least 10 times faster than bdi andGS.

This confirms the computational advantage of our primal reformulation (5cbh)pared to other
implementations of convex relaxation. Therefore, in terms of accuracyuantiine, the proposed

cvxDisc is superior to the other two.
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cvxDisc JB GS
Spam E-mail

run time (x 104s) 0.005 0.651 2.148
obj w/ SC rounding £103) | 8.0t 02| 8.7t 00| 8.2t 02
obj w/ SC + re-opt £10?) 7.6£ 00| 7.9t02| 7.6£00
acc w/ SC rounding (%) 69.9t143 | 60.7+ 0.1 | 62.8+ 9.2
acc w/ SC + re-opt (%) 83.5+ 78| 61.3+t 92 | 81.4t 56
ORL
run time (x10%s) 0.080 0.695 6.372
objw/ SC rounding £102) | 4.1+ 01| 7.1+ 00| 3.6+ 00
obj w/ SC + re-opt £ 103) 35+ 00| 3.8:01| 3.6+00
acc w/ SC rounding (%) 59.4+ 27| 20.0+ 1.1 | 54.6¢ 2.1
acc w/ SC + re-opt (%) 59.5¢ 28 | 45.2+ 25| 54.6+ 2.4
Yale
run time (x103s) 0.050 0.648 6.745
obj w/ SC rounding £103) | 8.6+ 02 | 13.2+ 0.0 | 10.2+ 03
obj w/ SC + re-opt £ 103) 7.6:01| 83to01| 7.8:03
acc w/ SC rounding (%) | 44.3: 25| 16.2+ 06 | 33.8+ 36
acc w/ SC + re-opt (%) 46.1+ 29 | 34.1t 26 | 42.4+ 2.7
Balance
run time (x10%s) 0.004 0.155 0.078
objw/ SC rounding £102) | 5.1+ 00| 6.1+ 00| 4.9+ 01
obj w/ SC + re-opt £ 102) 3.9+ 00| 4500 4.1to02
acc w/ SC rounding (%) | 62.0+ 2.3 | 47.0+ 1.8 | 46.5+ 6.3
acc w/ SC + re-opt (%) 58.7t 0.0 | 62.3t 1.8 | 52.2+ 5.2
Breast Cancer

run time (x104s) 0.006 0.479 1.758
obj w/ SC rounding £102) | 8.5+ 00| 10.0: 00| 9.1+ 02
obj w/ SC + re-opt £10?) 8.4r 00| 8.7+03| 8.4ro01
acc w/ SC rounding (%) 79.8+15.7 | 60.4+ 36 | 72.3t10.3
acc w/ SC + re-opt (%) 80.7t125 | 60.0t 42 | 84.4+ 88
Diabetes
run time (x10%s) 0.012 1.722 2.731
objw/ SC rounding £103) | 1.2+ 01| 1.4+ 00| 1.3+ 01
obj w/ SC + re-opt £10?) 1.1+ 00| 1.1+xo00| 1.1+o00
acc w/ SC rounding (%) | 53.5+ 3.1 | 64.8+ 0.0 | 56.6+ 4.2
acc w/ SC + re-opt (%) 58.3t 0.2 | 58.6+ 0.0 | 58.3t 0.2
Heart
run time (x10%s) 0.001 0.212 6.848
obj w/ SC rounding £102) | 7.6+ 04| 8.6+ 00| 7.7+ 04
obj w/ SC + re-opt £10?) 7.3t 03| 7.9t00| 7.3:02
acc w/ SC rounding (%) | 61.7+ 58| 55.2+ 0.0 | 64.4+ 95
acc w/ SC + re-opt (%) 66.0+ 5.7 | 51.1+ 0.0 | 65.2+ 84

Table 5.1: Experimental results for the discriminative models.
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Compared with conditional generative clusteriogXCond andcvxCondJC) discussed in the
previous two chaptergyxDisc can indeed achieve higher accuracy for most data sets except Yale.
It actually confirms that discriminative models usually would be more efficientamiag more

accurate label prediction.

5.4 Conclusion

In this chapter, we have considered the case of discriminative clust@&@yngpplying a value reg-
ularization, we derived a convex relaxation for discriminative clusteriag tises the normalized
equivalence relation matrix. A significant advantage over previousesomlaxations of discrimi-
native clustering with unnormalized equivalence relation is that this new fation promotes more
balanced clusters and avoids vacuous results.

Moreover, for the optimization process, we can harness the powecohderder solvers in
the unconstrained primal form leading to more efficient algorithm. The ewrpetal evaluation
not only shows that the proposed method is significantly faster than ottemtrapproaches for
discriminative clustering, but it also enjoys comparable and even superimrmance both in terms

of objective value and accuracy.
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Chapter 6

Joint Generative Clustering

In all generative models considered so far, we have ignored the guigieg. This quantity is often
useful in practice for inference at the cluster level, and can often bedéavell by joint generative
models. Therefore, in this chapter, we will extend our convex relaxat@migques to this setting.

As before, we formulate clustering as maximum likelihood estimation in an exgahiamily
model with a latent variabl& € {1,...,d} (the class indicator). The observed variailes in
R™, from which aniid sampleX = (xi, ..., x;)’ has been collected.

We turn to generative modeling, and parameterize the joint distribution(3u€Y) asY — X:

p(Y =j) = g, (6.1)

(X =x[Y = j) = exp (=Dr(x, p;)) Zj(x). (6.2)

Here© := {q¢;, uj};l:l are the parameters, whatec A , thed dimensional simplex. Again, We
assumeP(X]Y) is an exponential family model defined by the Bregman divergénge Then,
given dataX, the conditional likelihood (6.2) can be rewritten as
p(X]Y) = exp (~Dp(X, YT)) Z(X) (6.3)
=exp (—Dp-(YB, f(X))) Z(X), (6.4)

whereY denote & x d assignment matrix such tha}; € {0,1} andY'1 = 1 (a vector of all 1's

with proper dimension),’ = (u1, ..., pnq) andB = (by,...,by), suchthab; = f(u;).
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6.1 Formulation

Different from conditional generative models, here we assume a multindimtabution over clus-

ter prior parameterized by € R¢:
p(Y = j) = exp(w; — g(w)) (6.5)
where
g(w) = logZeXp(:ri)- (6.6)
Then by (6.1) and (6.4), the negative log joint likelihood is:
—1'Yw + tg(w) + L(Y B) + const (6.7)
where
L(YB) = Dp-(Y B, f(X)). (6.8)

Same as before, we can add regularizersvoand B, as well as an entropic regularizefY'1) to

encourage cluster diversity, yielding:

: 1 / 5 2 /
Jnin tl Yw +g(w) + 5 [Yw|” + h(Y'1)

1
+SL(YB)+ % 1Y B> (6.9)

This formulation can be convexified in terms bf by using the same techniques as Chapter 4
and 5, respectively. In particular, consider the pfifY) as a discriminative mode&f — Y, where

Z can only take a constant scalar valu€erhen, the first line of (6.9) is equivalent to
1 / 1 Nt B 11|12 /
29(Z1w') =~ 1(ZIW'Y) + 5 [1w'Y’||" + h(Y'1). (6.10)

By treatingZ as theX in Chapter 5, it is easy to show that the first line of (6.9) can be upper

bounded by (ignoring the offsef):

. 5 / ]‘/ ]‘
21611]1%1}2tr(sMs) ths+g tMS . (6.11)
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Finally by applying the same technique that converted (4.2) to (4.3) in conalii@merative model,
one can reformulate (6.9) into:

B L 1
j{lj\l}}s 5 tr(s'Ms) — tl Ms + g(3Ms) (6.12)

+ %L(MA) + %tr(A’MA).

Therefore, by applying convex relaxation techniques developedopr®in this thesis, we are
able to derive a convex relaxation for joint generative model clusteriitily avbitrary Bregman
divergences through normalized equivalence relations. With explictraoover the number of
clusters, the proposed new method can take advantage of an effidiemizagion procedure based

on recent development of matrix learning.
6.2 Optimization
To optimize this formulation, leth = Ms € R andT = M A € R>™, Then withM € M3 =
{M:0=<M=<1Itr(M)<d-—1},(6.12) becomes
rlrllleng(%) - %llu—F%L(T) —R}Iéij\t}lggu’MTu—i—gtr(T'MTT).

DenoteS := [y/Bu,/aT]. Thenlm(T) C Im(M) andu C Im(M) are equivalent tdm(S) C

Im(M). So
atr(T'MIT) 4 Btr(u’ Miu) (6.13)
= tr((aTT' + fuu’)MT) (6.14)
= tr(SS'MT) = tr(S'M'S). (6.15)

By the same argument as in Proposition 4, the above problem can be rkftathas

minT([y/Fu, VaT)) + 39%(/Fu, vaT)) (6.16)
. 1
=min['(8) + 5522(5), (6.17)
where
r(s) = (VB vaT) = ¢ (2) - %1'u + %L(T). (6.18)

which can be solved by the methods developed previously and the algorithunlireed in Algo-

rithm 10. The extension tdy := {M : 0 < M =< I, tr(M) < d, M1 = 1} is straightforward.
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Algorithm 10 Conditional gradient for optimizing (6.16)
1: Initialize Sy = 0. go = 0.
2: for k=0,1,... do
3 SetGy € 9Q.(VL(Sk)), i.e.find a minimizer ofming (VL(Sk), G) + $9%*(G) up to scal-
ing.
4:  Line search:
(a,b) := argmin, s >0 L(aSp+bGr)+ 5 (agr+b)2.
SetSy 11 = aSk + bGk, gry1 = agy + b.
6: end for

a

6.2.1 Rounding

Once an optimal solution is obtained for the relaxed problem, a feasible sotuotidwe original
problem can be obtained by heuristic rounding. Many rounding schesmndsecapplied with similar
performance. Following previous works (Guo & Schuurmans, 200dYdwulin & Bach, 2012), we
apply spectral clustering (Shi & Malik, 2000) a¥ to obtain a rounded assignment matkix,
i.eusing a k-means clustering on the eigenvectors associated with the k-leiggs/alues. Then
thisY ™ is used to initialize an alternating procedure optimizing (6.7) to get a finer assigrmatrix

Y.

6.3 Experimental Evaluation

| evaluate the proposed convex relaxation for joint generative modaelghnormalizedequivalence

relations with the same datasets and transfer functions as conditionahtismenodels. Besides
the common criteria classification accuracy, we also define the soft agdaraompare different
methods.

Parameters settings. In order to closely approximate the original objective without creating
numerical difficulty, | choose the regularization parametesind 8 to be reasonably smatl €
{1075,107%}, B € {107,107} and report the experimental results with highest accuracy. As
before, the results are not sensitive to these values.

Algorithms. The proposed new methockxJoint, optimizes (6.12) oveid € M, by solving
(6.16). As before, | round the optima&d by spectral clustering to get the assignment matrjxand
use it to initialize local reoptimization of the joint likelihood (6.7).

| compare the results to those of three soft generative models. The staodaEM (Banerjee
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et al., 2005, Algorithm 3) is randomly reinitialized 20 times. The other two algoritared.G
(Lashkari & Golland, 2007), andB! (Nowozin & Bakir, 2008). Since they do not directly control
the number of clusters, | tune their parameters so that the resulting nuniiestef isd, or a little
higher thand which could be truncated based on the cluster prior.

Results. Since joint models also learn a cluster prior, accuracy can take two forheshdrd
accuracy is computed byrgmax,, p(y|x;) = argmax, p(y)p(x;|y) in the case of soft EM,G, and
NB. Our model outputs a hard accuracy by locally reoptimizing the joint likelihoodalFmethods,
we define the soft accuracy based on the posterior distributiar; Ey .,y x)[AccuracyY, =(Y*))],
whereY ™ is the ground truth label andis a matching between the cluster and label.

As shown in Table 6.1, for linear transfer functimvxJoint with rounding and reoptimization
achieves superior performance to the competing algorithms, both in termsl@fridsoft accuracy,
except Balance data set. For sigmoidal transfer functi@a]oint with rounding and reoptimization
achieves better performance for most data sets except Yale and Baléheaeason foL.G to
achieve better performance on Balance for two transfer functionslimphpexemplar center might
be more efficient for this data set. Moreover, the local reoptimization doesatessarily help
achieve improvement in both accuracy and soft accuracy.

Compared with conditional models discussed in previous chagietdoint with rounding and
reoptmization achieves higher accuracy for ORL, Yale, and Diabetesh&woest of the data sets,

the performance of joint model is really close to that of conditional models.

6.4 Conclusion

In this chapter, we consider the joint generative model which takes th&clougor g into con-

sideration. By assuming a multinomial distribution over cluster prior and appthimgame value
and entropic regularizer, we extend our convex relaxation techniquestsetiing. Compared with
closely related joint clustering approaches, our model achieves emupelior or comparable

performance in term of hard and soft accuracy.

http://www.nowozin.net/sebastian/infex. Since their approach relies heavilye Gaussian model, | put NA in the
corresponding cells in Table 6.1.
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linear sigmoid
acc(%) ‘ soft acc(%)| acc(%) ‘ soft acc(%)
Spam E-mail
cvxJointl | 55.7+1.9 | 55.9+1.4 62.6:9.0 | 67.7£11.0
cvxJoint2 | 60.5t0.0 | 60.5+0.0 81.5+16.4 | 79.2r15.1
softEM | 60.5t0.0 | 54.5t26 58.2+7.4 | 52.9+20

LG 60.0 0.1 40.6 1.8
NB 60.5 514 NA NA
ORL

cvxJointl | 61.0+1.3 | 52.6+15 63.0:2.3 | 58.6+1.8
cvxJoint2 | 55.9+1.4 | 52.8t1.2 58. 727 | 58.H42.7
softEM | 39.6t2.1 | 37.0t2.0 44.9:31 | 44.7+3.1

LG 40.0 1.9 36.0 0.5
NB 12.0 5.3 NA NA
Yale

cvxJointl | 47.9t38 | 45.9+:3.1 61.9t83 | 55.9+1.4
cvxJoint2 | 45.8t3.4 | 45.1+3.1 60.5+t0.0 | 60.5t0.0
SoftEM | 39.6t2.1 | 37.0t2.0 60.5+00 | 60.5+0.0

LG 35.2 4.8 66.9 0.1
NB 20.6 10.4 NA NA
Balance

cvxJointl | 50.5t2.3 | 36.3t0.7 51.6+2.7 | 39.5¢1.2
cvxJoint2 | 46.1+0.0 | 46.1t0.0 46.1+00 | 46.1:+00
SOftEM | 46.1+00 | 38.1t28 46.1+00 | 39.6+0.0
LG 57.4 0.2 59.0 0.2
NB 54.2 54.7 NA NA
Breast Cancer
cvxJointl | 71.0t11.9 | 56.9+4.7 70.9£13.0 | 63.9+8.1
cvxJoint2 | 65.5t0.0 | 65.5+0.0 65.5+0.0 | 65.5+0.0
SoftEM | 65.5t0.0 | 57.7+45 65.5+0.0 | 55.5+5.4

LG 61.8 0.1 65.5 0.1
NB 69.8 50.3 NA NA
Diabetes

cvxJointl | 56.0t26 | 53.6t25 57.5t55 | 57.6t5.6
cvxJoint2 | 65.1t0.0 | 65.1+0.0 62.0:33 | 62.6+2.6
SOftEM | 65.1+0.00 | 57.6+4.6 65.1+0.0 | 57.4+5.2

LG 56.8 0.1 58.5 0.1
NB 65.1 60.2 NA NA
Heart

cvxJointl | 63.0t6.4 | 53.3t18 63.0t7.4 | 61.0t6.2
cvxJoint2 | 55.6t0.0 | 55.5+0.0 64.0t75 | 61.3:71
SoftEM | 55.6t00 | 51.7+1.6 55.6t00 | 52.70.0
LG 57.4 0.4 55.2 0.4
NB 55.6 53.0 NA NA

Table 6.1: Experimental results for the joint generative model. E\exdointl is cvxJoint followed
by SC rounding, whereasrxJoint2 uses additional re-optimization. Best resultbatd.
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Chapter 7

Conclusion

The main contribution of this thesis is new convex relaxations for clusteringregghlar Bregman
divergences modelling all the probability distributions under regular expkied families. One of
the key results is a tighter convex relaxation of hard generative modelsrégmnian divergence
clustering that also accounts for cluster size throngimalizedequivalence relations. In addition,
we design efficient new algorithms that optimize the resultioglinear SDPs based on recent de-
velopments in matrix learning techniques. By applying standard rounding dstive observe that
the proposed new convex relaxations for clustering deliver a lowercdumtra-cluster divergences
and more faithful alignment with class labels in practice. Finally, applying oumdlation to dis-
criminative models immediately leads twrmalizedequivalence relations, which automatically
alleviate the problem of imbalanced cluster assignment faced by curtexatiens. Additionally,
the formulation allows much more efficient optimization.

For future work, it will be interesting to extend these approaches to givesoft clustering.
Also, the analysis of approximation gap for these convex relaxations wirilof great interest.
Since clustering has wide application in real-world problems, it would be atsthviurther inves-

tigation into scaling up the optimization to large applications.
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Chapter 8

Appendix

8.1 Tightness of Relaxation ofM;

We show here that; is not the convex hull of\. Our proof is by constructing a new convex

relaxation ofconv.M that is apropersubset ofM;:

Ms = {M:OijI,’)/S(M) <d,M;. GAt},

whereS:{ Luu’ :u € {0, 1}t}, andys is the gauge function @: s (M) := infy>g are-conv(s) A-

[[all

Clearly Mg is convex and\ C M. Similarly, M7 can be rewritten as
My = {M 0= M < I,’}/B(M) <d,M; € At},

whereB = {vv’:||v|| < 1}. Itis easy to see thais(M) < d is strictly more restrictive than
vs(M) < d becauseS C B. Therefore it is conceivable thatts C M, and the rest of this
appendix section will be devoted to constructing an elementip\ Ms. In essenceM; and
M s employ doubly positive relaxation and completely positive factorization ptispdy, and their
gap has been well studied (Berman & Xu, 2004). Note it is still open as taheha1s is the
convex hull of M. In terms of optimization, it is much more convenient to use the relaxatign
because thes (M) term in M is hard to evaluate. In particular the separation oracle is NP-hard:
maxzes (Z, X) for a givenX.

To construct an element il ; \ M s, we exploit the difference between doubly positive matrices
and completely positive matrices. LB, denote the set of x ¢t doubly positive matrices,e. real
symmetric matrices that are positive semi-definite and elementwise nonnegativk.denote the

set oft x t completely positive matricegge. real matrices that can be written 4sl’, whereA is a

t x k elementwise nonnegative matrik € N). It is well known thatC; C D; whent > 5.
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Clearly M, is the intersection oD; with
F:={M:M=<Itr(M)<d M1=1}.

SinceMs C Cy, to find M € M;\ Mg it suffices to findM € M; such thatM ¢ C,. Berman
& Xu (2004) gave a sufficient and necessary condition for a matrix to #siCs, under mild
assumptions on the structure of the matrix. So we only need to further réisisicondition toF'.

Lett = 5. Consider a matri¥/ of the form

Y a B
M=o 1 0
A 0 1

Denote the Schur complement@s=Y — aa’ — 83'.

Theorem 9. (Berman & Xu, 2004, Theorem 4.2B5uppos&” € D3, M € D5, andrank(M) = 3.
ThenM € D;\Cs if and only if

e There are exactly two negative components above the diagongland

e )\ + A5 < 1, where

_ : X |

M= 1<Iz‘n<1?<3{ —Cyj Ci < 0} ’
. BiB;

A = 1<IZ1'1<1§1<3{ —C,, Ci; <05,

Sinced is a parameter, it can be set in our favor and so we ignore it for now. wéscan scale

F by
Fp={M:M=(p+1)I,M1=(p+1)1},

wherep > 0 is a constant. So it suffices to find € Ds N F, such thatM ¢ Cs, i.e. M €

(Ds\Cs) N F,. Now let us apply Theorem 9.

1. Sincerank(M) = rank(C) + 2 = 3 (property of Schur complement), we can assume

C=~%"5So

Y =ad + 868 +~4. (8.1)
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2. SinceM1 = (p+ 1)1, we havea'’1 = 3’1 = p, and

Yi+ta+B=(p+1)1
& (ad +B88 +9Y )1 +a+B=(p+1)1

S Y1+ (p+1)(a+0)=(p+1)1. (8.2)
Left multiply it by 1/, we obtain
(Y1)?+2(p+ 1)p=3(p+ 1). (8.3)

So we first randomly generate and3 that are elementwise nonnegative add = 3’1 = p.
Then~ can be determined by using (8.2) and (8.3) (up to negation).

By (8.3), we must set < 1.5.

3. Check ifC = 4+’ has exactly two negative components above its diagonal. If not, then
regeneratex andg.

4. Check ifA4 + A5 < 1 andY from (8.1) is elementwise nonnegativié ¢& 0 is guaranteed by
construction). If not, then regeneraieand3.

5. Check if the maximum eigenvalue &f is p + 1. If not, regeneratex and3.

6. ScaleM down by multiplying it with1/(p + 1). Set

d=(tr(Y) +2)/(1+ p)

= (led® + 18I1* + I71I* +2)/(1 + p).

In our experiments, we spt= 1.25 and found an example matrix immediately.

8.2 CharacterizingQ(T)

8.2.1 Qisanorm

Note that2(7") depends only on the singular valueslofSo it suffices to show that(s) := / f(s)
is a symmetric gauge (Horn & Johnson, 1985, Theorem 3.5.18), wiejas defined in (4.10).
Clearly x(s) is permutation invariants(as) = |a| k(s) for all a € R, andx(s) =0 iff s=0. So it
suffices to prove the triangle inequality fe(s). For anys; andse, lett; = k(s1) andts = k(s2).
Thenk(3) = k(32) =1,and

1
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sit+s2  t1 s1 to  Sg

= SLE %, 8.4
th+t2  t1+taty  t1+1ats ®84)

Note f(s) is convex becaus®_; s?/o; is jointly convex in(s, o), and f(s) just minimizes ouwr.
So the sub-level set at level 1 féi(andx) is convex. Therefore by (8.4%((s1+s2)/(t1+t2)) < 1,

and sox(s; +s2) < t1 + t2 = k(s1) + k(s2). The claim follows.
8.2.2 The dual norm of(2

Given a matrixR, the dual norm of? is defined by

Q.(R) = tr(R'T). 8.5
(R) e r(R'T) (8.5)

Let the SVD ofR be R = U diag{ry,...,r:}V’, wherer; > ... > ry. Sincef is defined via the
singular values of", again by von Neumann’s trace inequality the maximum is attained when the

left and right singular values @f areU andV/, respectively. Then

Q. (R)= max r’s, 8.6
(R)=_ max (8.6)
which by (4.10) is equivalent to
/
maxg o I'S, 8.7)

2
subject tor; € [0,1], Yoi_j03 < d—1, >j_ 2 < 1.

Using the Cauchy-Schwarz inequality, we have

b tog2 /2 7 1/2
/ i i 2
rs = - Ty ;< — rIo;

3 v (3E) ()

i=1 i=1

t 1/2
< <ZT7,20-1> < H(Tl,TQ,...,T’dfl)/
=1

where the last two inequalities use the constraints in (8.7). The equalitiedl d@natained by

: (8.8)

settings; = r;/ ||(r1,72,...,74—1)'|| ando; = 1 fori < d — 1, ands; = 0 ando; = 0 for i > d.
ClearlyU diag(s)V" is a subgradient of),. at R. Evaluating the dual norm is inexpensive, since it
requires only the tog — 1 singular values oRz.

On the basis of the above discussion, we will then extend our strateff»tn the following

section.
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8.3 Characterizing=(T)

8.3.1 =(T)isanorm

Based on (4.21), it is quite easy to see tB&T") is a norm. Trivially,=(aT) = |a| Z(T) for all
a € R. To make=(T) = 0, we need2(HT) = 0 and||7"1|| = 0. Sincef is a norm, so we need
HT = 0 and7’1 = 0. Thereforel' = IT = (H + +11’)T = 0. Finally, since bottf2(#ZT") and

% |T"1|| are semi-norms iff’, it is easy to verify thaE(T") also satisfies the triangle inequality.

8.3.2 The dual norm of=(T")

Givend, the dual norm oE(-) onG' is

o) — !
=(G) T:IEI%%(Q tr(G'T)

= max tr(G'T)
T:Q2(HT)+1||T'1]*<1

1 1
= max tr((HG + -11'G)/(HT + ~11'T))
T:Q2(HT)+3||T'1)?<1 t t

_ max ((HGY (HT)) + 2(G'1) (T'1).
T:Q2(HT)+ 1|11 <1 t

We can optimized T and7”1 independentlypecause
Proposition 10. {(HT,T7'1) : T}={(S,v) : 5’1 = 0}.

Proof. C is obvious becausgdT)'1 = 0. For 2, just definel’ = S + %1v’. ThenHT = HS =
HS+ 111'S = SandT'1 = §'1 + }vl'l = v. O

By Proposition 10, the problem becomes

max tr((HG)'S) + }(Gll)’v.
S,v:8'1=0,02(S)+ 1 ||v]|><1 13

Denote|v|| = 7, then(G'1)'v < 7||G'1|| with equality attained at = 7G’1/||G'1||. So the

problem can be further reformulated as

max max tr((HG)'S) + z |G'1]].
T€[0,vE] 5:5'1=0,02(5)<1- = t

In the inner optimization oves$, if we ignore theS’1 = 0 constraint, then by the discussion on how

to computef2, in Section 4.2, the left and right singular vectors of the optis\@re the same as
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those of HG. Since(HG)'1 = 0,505’1 = 0 is automatically satisfied. Then the problem becomes

T€[0.v1] 5:0.(8)<y/1-72

2
= max < [|G'1]|+ QHG)H1-
refoi t ¢

2

- — a1 — QHGF

ma, G 7+ oG 15

L o 2\ 3
_ (1 HG’1H2+QQ(HG)>2 <2+1—T)2 (8.9)

1
=\ Hiee s a2,

Z«(G) = max {!G'IH + max ((HG)'S)}

where (8.9) uses Cauchy-Schwartz and the optimalattained at

V0G| +12(HG)

The optimalT” is

. (7%)2 , 7"
T°=14/1-— argmax tr((HG)'S) + 11'G.
e wlHOYS) + Frem]

Again, this procedure only requires the t@p- 1 singular values of{ G.
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