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Abstract

Due to its wide application in various fields, clustering, as a fundamental unsupervised learning

problem, has been intensively investigated over the past few decades. Unfortunately, standard clus-

tering formulations are known to be computationally intractable. Although many convex relaxations

of clustering have been proposed to overcome the challenge of computational intractability, current

formulations of clustering remain largely restricted to spherical Gaussian ordiscriminative models

and are susceptible to imbalanced clusters. To address these shortcomings, we propose a new class

of convex relaxations that can be flexibly applied to more general forms ofBregman divergence

clustering. By basing these new formulations onnormalized equivalence relation matrix, we retain

additional control on relaxation quality, which allows improvement in clusteringquality. We fur-

thermore develop optimization methods that improve scalability by exploiting recentimplicit matrix

norm methods. We find that the new formulations are able to efficiently produce tighter clusterings

that improve the accuracy of state of the art methods.



Acknowledgements

First and foremost, I would like to give my sincere thanks to my two great supervisors Dale Schu-
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Chapter 1

Introduction

Discovering latent class structure in data,i.e. clustering, is a fundamental problem in many fields,

such as bioformatics, machine learning, and statistics. Given data, the task isto assign each obser-

vation a latent cluster label or distribution over cluster labels based on some notion of similarity.

Because of its important role in exploratory data analysis, clustering has a wide range of applica-

tions, including:

• Astronomy: A catalog of billions of sky objects represented by their radiation in frequency

bands can be clustered into similar objects,e.g., galaxies, nearby stars, quasars.

• Biology: DNA sequences can be clustered based on edit distance.

• Marketing: Customers can be clustered based on their profile as well as their purchase histo-

ries or products can be clustered based on the sets of customers.

• Banking: Credit card behavior (i.e.fraud vs normal use) is clustered based on cardholder’s

transaction history.

• WWW: Documents can be clustered based on similar words.

A common goal of clustering formulations is to promote intra-cluster similarity and inter-cluster

dissimilarity. However, there is no best clustering criteria. In practice, users have to supply various

forms of prior knowledge. In addition to specifying prior information on the number of clusters,

some applications require a strict partition while others require a probabilistic assignment. Also,

some applications might only require finding cluster representatives while others might require dis-

covering useful unknown properties from the data.
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Clustering has a long history, with diverse approaches proposed. Unfortunately, computational

tractability remains a fundamental challenge: standard clustering formulationsareNP-hard (Aloise

et al., 2009; Dasgupta, 2008; Arora & Kannan, 2005) and additional problem structure must be pos-

tulated before efficient solutions can be guaranteed. Meanwhile, standard clustering formulations

are also efficiently approximable (Kumar et al., 2004; Arthur & Vassilvitskii, 2007), and much work

has sought practical algorithms that improve solution quality, even in lieu of theoretical bounds. A

popular approach for approximation is through convex relaxation that can be solved in polynomial

time. Therefore, in this thesis, I investigate possible convex relaxations forcommon clustering

paradigms with corresponding efficient optimization algorithms.

1.1 Contributions

The main contributions of this thesis are:

1. For centroid-based Bregman divergence clustering, we develop a new family of convex relax-

ations that use anormalizedequivalence relation matrix to improve the quality of previous

convex relaxations. We also analyze the tightness of this new convex relaxation.

2. Based on the analysis ofnormalizedequivalence relations, we design an induced matrix norm

technique that can be applied across a broad range of convex relaxations, which results in effi-

cient optimization algorithms for the corresponding nonlinear semidefinite programs (SDPs).

3. Finally, by using a standard rounding procedure, we observe that the resulting clustering

algorithms provide superior or comparable empirical performance to current approaches on

various kinds of datasets. In particular, our formulation of discriminative clustering is at

least 10 times faster than existing approaches, while automatically alleviating the problem of

imbalanced cluster assignment.

1.2 Organization

In this thesis, I will first review related work on clustering in Chapter 2, thenpresent background on

the general loss models I consider (Bregman divergences) and the underlying optimization strategy

I will primarily use (generalized conditional gradient method). Then, I will present a new fam-

ily of convex relaxations with efficient algorithms for hard conditional clustering, discriminative

2



clustering, and hard joint clustering, respectively, in Chapters 3 to 6. Corresponding experimental

evaluations of the proposed convex relaxations will be presented in eachchapter. Finally, the con-

clusions and potential future work will be discussed in Chapter 6. The results of this thesis have

been published in (Cheng et al., 2013).
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Chapter 2

Background

In this chapter, I will provide the necessary background on clustering formulations, Bregman diver-

gences and the generalized conditional gradient method for optimization.

2.1 General Formulations of Clustering

Two of the most important paradigms for centroid-based clustering are based ongenerativeversus

discriminativemodeling, with generative clustering consisting of hard clustering with conditional

models, hard clustering with joint models, and soft clustering with joint models. In hard clustering,

one seeks a disjoint partition of data points such that each data point belongs to just one cluster. In

soft clustering, each observation is assigned a certain probability of being a member to each of the

clusters.

Traditionally, clustering has usedgenerative modelsto capture interesting latent structure in

data. LetX denote the observed variable andY denote a latent class variable. The simplest gen-

erative approach optimizes the conditional modelP (X|Y) only, with Y assigned the most likely

value; this is also known ashard conditionalclustering. WhenP (X|Y) is Gaussian, a popular

approach is to use the hardk-means clustering algorithm (MacQueen, 1967) where one alternates

between optimizingY and the conditional model. Banerjee et al. (2005) extended thek-means

formulation to general exponential family by modelingP (X|Y) with Bregman divergences.

Although hard conditional clustering provides a standard baseline, finding global solutions in

this case is intractable; efficient methods are only known when the number ofclusters or the di-

mensionality of the space is constrained (Hansen et al., 1998; Inaba et al.,1994). Consequently,

there has been significant work on developing approximations, particularly via convex relaxations
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that can be solved in polynomial time. For example, Zha et al. (2001) derived a convex quadratic

reformulation of conditional Gaussian clustering, and Peng & Wei (2007)obtained a tighter semi-

definite programming (SDP) relaxation. By analyzing the complete positivity (CP) properties of

the resulting constraint, Zass & Shashua (2005) propose an approximation for Gaussian clustering

based on CP factorization. These can be further extended to relaxationsof normalized graph-cut

clustering (Xing & Jordan, 2003; Ng et al., 2001). By augmenting thek-means with randomized

seeding technique, Arthur & Vassilvitskii (2007) obtained an algorithmΘ(log k)-competitive to the

optimal. Unfortunately, all of these relaxations are restricted to Gaussian models ofP (X|Y), and

the optimization algorithms depend heavily on the linearity of the SDP objective.

The conditional clustering approach can be extended to hardjoint clustering by explicitly includ-

ing the class prior, thus optimizing the joint likelihoodP (X,Y) with the most likelyY. Again,

efficient solution methods are not generally known, leaving local approaches as the only known

option currently.

To smooth these objectives, thesoft joint model optimizes the marginal likelihood,P (X) =
∑

Y P (Y)P (X|Y) (Neal & Hinton, 1998; Banerjee et al., 2005), which has traditionally beentack-

led by the expectation-maximization (EM) algorithm (Dempster et al., 1977). TheEM algorithm

remains susceptible to local optima however. Intensive research has been devoted to understanding

properties of the Gaussian mixture model in particular (Moitra & Valiant, 2010;Kalai et al., 2010;

Dasgupta & Schulman, 2007; Chaudhuri et al., 2009). Although runningtime can be reduced to

polynomial when the number of clusters or data dimensionality are constrained, it remains expo-

nential in these quantities jointly. A few convex relaxations for soft joint clustering models have

therefore been proposed. For example, Lashkari & Golland (2007) restrict cluster centers to data

points, while Nowozin & Bakir (2008) impose sparsity inducing regularizationover the class priors

(while still embedding an intractable subproblem). Recent spectral techniques can provably recover

an approximate estimate of Gaussian mixtures in polynomial time (Hsu & Kakade, 2013; Anandku-

mar et al., 2012). Unfortunately, this formulation remains restricted to spherical Gaussian models

of P (X|Y).

Finally, discriminative modelsprovide a distinct paradigm for clustering that can be more effec-

tive when the goal of learning is to predict labels from the observationX, e.g.as in semi-supervised

classification (Chapelle et al., 2006). In this approach, one maximizes the reverse conditional like-
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lihoodP (Y|X), with Y imputed by the most likely label. A straightforward optimization strategy

can alternate between optimizingY and the conditional modelP (Y|X), but this quickly leads to

local optima. Thus, here too, convex relaxation has been a popular approximation strategy, either

in the case of a large margin loss (Xu & Schuurmans, 2005) or logistic loss (Joulin & Bach, 2012;

Joulin et al., 2010; Bach & Harchaoui, 2007; Guo & Schuurmans, 2007). To date, such formula-

tions have been entirely based on SDP relaxations withunnormalizedequivalence matrices, whose

elements indicate whether two examples belong to the same cluster. Such an approach is prone to

discovering imbalanced clusters, since the model employs no natural mechanism that automatically

avoids assigning all examples to a single cluster.

A word about the notation: bold faced uppercase variables,e.g.X,Y, are used to represent ob-

served and latent variables respectively. Bold faced lowercase variables are used to denote vectors.

Matrix variables are represented by uppercase alphabets,e.g.X,Y . For consistency, afterwards, we

will use t to denote the number of data points,n to denote the dimension of each data point andd

for the number of latent clusters.

2.2 Bregman Divergences

All of the loss models and probability models considered in this thesis will be based on Bregman

divergences, which will therefore will play a key role in the clustering formulations I consider. A

Bregman divergence defines a notion of dissimilarity between two points based on a strictly convex

potential function. In particular, a Bregman divergence is defined as follows.

Definition 1. Let F : S 7→ R,S = dom(F ) ⊆ Rn, be a strictly convex function such thatF is

differentiable andf = ∇F . The Bregman divergencedF (x,y) is defined as

dF (x,y) := F (x)− F (y)− 〈x− y, f(y)〉 . (2.1)

The strict convexity ofF confers several important properties todF based on this definition.

First, letF ∗ : Rn 7→ R be the Fenchel conjugate ofF , i.e.

F ∗(y) = sup
x∈dom(F )

y⊤x− F (x). (2.2)

and letf∗ = ∇F ∗. Since the strict convexity ofF implies thatf is invertible, we have that

6



F (x) f(x) dF (x,y) Divergence

x2 x (x− y) Squared loss

log( x
1−x

) x log(x) + (1− x) log(1− x) x log(x
y
) + (1− x) log(1−x

1−y
) Logistic loss

− 1
x

− log(x) x
y
− log(x

y
)− 1 Itakura-Saito distance

1+ log(x) x⊤ log(x) x⊤ log(x
y
) KL-divergence

Table 2.1: Some Common Bregman Divergences

F ∗(y) = y⊤f−1(y)− F (f−1(y)). Based on this observation, one can conclude that

f∗(y) = ∇F ∗(y)

= f−1(y) + Jf−1(y)y − Jf−1(y)f(f−1(y))

= f−1(y),

(2.3)

whereJf−1 is the Jacobian off−1. Note that the Definition 1 is the difference between a strictly

convex functionF at x and its first order Taylor approximation at another pointy. Based on this

fact, several important properties follow.

1. Non-negativity. dF (x,y) ≥ 0. This fact follows because a convex function necessarily domi-

nates its first order Talyor approximation. Here equality is achieved if and only if x = y.

2. Convexity. dF is always convex in the first argument, but not necessarily convex in thesecond

argument.

3. Dual divergence.Given a strictly convex differentiable functionF , and its invertible gradient

functionf = ∇F and conjugate functionF ∗, one can establish the following relationship between

Bregman divergence and its dual divergence

dF (x,y) = F (x)− F (y)− 〈x− y, f(y)〉
=

〈

f(x), f−1(f(x))
〉

− F ∗(f(x))−
〈

f(y), f−1(f(y))
〉

+ F ∗(f(y))

−〈x− y, f(y)〉
= F ∗(f(y))− F ∗(f(x))− 〈f(y)− f(x),y〉
= dF ∗(f(y), f(x))).

(2.4)

Some examples of commonly used convex functions and their correspondingBregman divergence

are listed in Table 2.1. A more detailed discussion of other important propertiesof Bregman diver-

gences are given in (Banerjee et al., 2005).

Since later on we will work closely with matrix notation, we will first introduce the following
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notation:

DF (A,B) =
∑

i

dF (Ai:, Bi:) (2.5)

DF ∗(A, f(B)) =
∑

i

dF ∗(Ai:, f(Bi:)). (2.6)

That is, we will writeDF (A,B) to denote the sum of row-wise Bregman divergences. Also, with

some abuse of notation, we will letDF ∗(A, f(B)) denote the sum of row-wise dual Bregman di-

vergences. Throughout the thesis, wheneverf(·) or f−1(·) are applied to a matrix variable, we will

assume these functions are applied row-wise.

2.2.1 Exponential Family Distributions

To explicitly model Bregman divergence clustering, we need to provide the definition of exponen-

tial family distributions, then we show the relationship between regular Bregmandivergences and

regular exponential family models.

Definition 2. A probability density function or probability mass functionp(w|θ) for w ∈ Rm and

θ ∈ Θ ⊆ Rn is in the exponential family, if it is of the form

p(w|θ) =
1

Z(θ)
h(w) exp

(

θ⊤φ(w)
)

(2.7)

= h(w) exp
(

θ⊤φ(w)−A(θ)
)

, (2.8)

for some functionsφ andh, where

Z(θ) =

∫

h(w) exp
(

θ⊤φ(w)
)

(2.9)

A(θ) = logZ(θ). (2.10)

Hereθ are callednatural parameters, φ(w) ∈ Rn is called a vector ofsufficient statistics, Z(θ)

is called the partition function,A(θ) is called thelog-partition function , andh(w) is the scaling

function, often 1.

To simplify the subsequent statements, we follow (Banerjee et al., 2005) anddefine regular

exponential family distributions through their minimal sufficient statisticx ∈ Rn.

Definition 3. A regular exponential family is a multivariate parametric family of distributions where

each probability density has the form

p(x|θ) = exp(θ⊤x−A(θ))p0(x), ∀x ∈ Rn. (2.11)
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Distribution p(x;θ) dF (x, µ)

1-D Gaussian 1√
2πσ2

exp
(

− (x−θ)2

2σ2

)

1
2σ2 (x− µ)2

d-D Spherical Gaussian 1√
2πσ2

exp
(

−‖x−θ‖2
2σ2

)

1
2σ2 ‖x− µ‖2

1-d Binomial N !
(x)!(N−x)!q

x(1− q)N−x xlog(xµ) + (N − x) log
(

N−x
N−µ

)

d-D Multinomial N !
∏d

i=1
xi!

∏d
i=1 q

xi

i x⊤ log
(

x
µ

)

Table 2.2: Some popular exponential families and corresponding Bregman divergence.

The only difference between this definition and (2.8) is that we have embedded the feature

functionφ in the minimal sufficient statisticx. Exponential family distributions and Bregman di-

vergences are closely related. In fact, we have the following lemma from (Banerjee et al., 2005).

Lemma 1. (Banerjee et al., 2005) IfF ∗ is the log-partition function of a regular exponential family

with natural parameter spaceΘ∗ = int(dom(F ∗)), then

1. F ∗ is strictly convex onΘ∗, and its conjugate functionF is also strictly convex onΘ =

int(dom(F )).

2. BothF andF ∗ are differentiable onΘ andΘ∗ respectively. The gradient function∇F = f

is invertible and continuous, and∇F = f = f∗ = f−1.

With this lemma, one can then establish the following relationship between regular exponential

family distributions and Bregman divergences.

Theorem 2. (Banerjee et al., 2005) Let

p(x|θ) = exp
(

θ⊤x− F ∗(θ)
)

p0(x) (2.12)

be the probability density function of a regular exponential family distribution. LetF ∗ be the con-

jugate ofF . Thenp(x|θ) can be uniquely expressed as

p(x|θ) = exp
(

−dF (x, f−1(θ))ZF (x)
)

(2.13)

whereZF : dom(F ) 7→ R+ is a uniquely determined function.

More detailed discussion on bijections between regular exponential families and Bregman di-

vergences can be found in (Banerjee et al., 2005).
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This theorem shows that every regular exponential family correspondsto a unique and distinct

Bregman divergence and every choice of Bregman divergence leadsto a regular exponential family.

Note that the proof of this bijection is not the contribution of this thesis. Some popular exponential

family distributions and the corresponding Bregman divergences are given in Table 2.2.

2.3 Clustering Formulations based on Bregman divergences

Following (Banerjee et al., 2005), we formulate clustering as maximum likelihoodestimation in an

exponential family model with a latent variableY ∈ {1, . . . , d} (the class indicator). The observed

variableX is in Rn, from which aniid sampleX = (x1, . . . ,xt)
′ has been collected.

Generative models.In generative modeling we parameterize the joint distribution over(X,Y)

asY→X:

p(Y = j) = qj , (2.14)

p(X = x|Y = j) = exp (−dF (x,µj))Zj(x). (2.15)

HereΘ := {qj ,µj}dj=1 are the parameters, whereq ∈ ∆d, thed dimensional simplex. We assume

P (X|Y) is an exponential family model defined by the Bregman divergencedF . Examples of com-

monly used Bregman divergences include Euclidean (f(x) = x), and sigmoid (f(x) = log x
1−x ).

Given dataX ∈ Rt×n, the parametersΘ can be estimated via

argmax
Θ

max
Y

p(X,Y |Θ) (2.16)

or argmax
Θ

p(X|Θ) = max
Θ

∑

Y

p(X,Y |Θ), (2.17)

depending on whetherY is to be maximized (hard clustering) or summed out (soft clustering). Here

we are lettingY denote at × d assignment matrix such thatYij ∈ {0, 1} andY 1 = 1 (a vector

of all 1’s with proper dimension). If we additionally letΓ = (µ1, . . . ,µd) andB = (b1, . . . ,bd),

such thatbj = f(µj), then the conditional likelihood (2.15) can be rewritten over the entire data

set as

p(X|Y ) = exp (−DF (X,Y Γ))Z(X) (2.18)

= exp (−DF ∗(Y B, f(X)))Z(X), (2.19)
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where

DF (X,Y Γ) :=
t
∑

i=1

dF (Xi:, Yi:Γ) (2.20)

and

DF ∗(Y B, f(X)) :=
t
∑

i=1

dF ∗(Yi:B, f(Xi:)) (2.21)

are row-wise sums, such thatXi: stands for thei-th row ofX.

Discriminative models. As an alternative approach, discriminative clustering uses a graphical

modelX→Y, and focuses on modeling the dependence of the labelsY givenX:

p(Y |X;W,b) = exp(−DF ∗(Y, f(XW + 1b′)))Z(X), (2.22)

whereW ∈ Rn×d is the parameter to learn andb ∈ Rd is the offset for all clusters. A soft clustering

model cannot be applied in this case, since
∑

Y p(X,Y ) = p(X). Instead, hard optimization ofY

leads to

min
W,b,Y

DF (XW + 1b′, f−1(Y )). (2.23)

All of these problems involve a mix of discrete and continuous variables, which raises consid-

erable challenges. Our goal is to develop convex relaxations that can besolved efficiently while

leading (after rounding) to higher quality solutions than those obtained by naive local optimization.

2.4 Generalized Conditional Gradient Method

All of the relaxations of clustering that will be investigated in this thesis reduceto optimization

problems. To cope with these problems, I will develop scalable algorithms based on a simple

but powerful optimization template, the generalized conditional gradient method. For the sake of

completeness, I first provide some background on conditional gradientmethods.

2.4.1 Conditional Gradient Method

Consider the optimization problem,

min
x∈Q

f(x), (2.26)
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Algorithm 1 Conditional gradient method

1: Choosex0 ∈ Q arbitrarily, setk = 0;
2: Solve

yk ∈ argmin
y∈Q
〈y,∇f(xk)〉 ; (2.24)

3: Perform a line-search by solving

min
µk∈[0,1]

f ((1− µk)xk + µkyk) (2.25)

4: Assignxk+1 ⇐ (1− µk)xk + µkyk.

Algorithm 2 Generalized Conditional Gradient Method

1: Choosex0 ∈ H such thath(x0) <∞ and setk = 0;
2: Solve

yk ∈ argmin
x∈H
〈y,∇f(xk)〉+ h(y); (2.27)

3: Perform a line-search by solving

min
µk∈[0,1]

f ((1− µk)xk + µkyk) + h ((1− µk)xk + µkyk) ; (2.28)

4: Assignxk+1 ⇐ (1− µk)xk + µkyk.

whereQ is a convex and bounded feasible region, andf is convex and smooth. The conditional

gradient method is given in Algorithm 1. Note that, since findingyk is actually a linear minimization

problem, whenQ is a polyhedra, (2.24) reduces to a linear program. Moreover, each iteration is

well-defined becauseQ is bounded. Thus, each step of the algorithm involves a linear constrained

minimization followed by a one-dimensional convex optimization, both of which areconsidered to

be easy. However, the convergence rate is somehow slow (sublinear).It is also worth noting that the

conditional gradient method is generally ineffective to apply in nonsmooth orstochastic settings.

2.4.2 Generalized Conditional Gradient Method

Although nonsmooth problems cause difficulty for the conditional gradient approach, a reasonable

procedure can be achieved if the objective can be decomposed into a smooth and a nonsmooth part.

A generalized conditional gradient method (K. Bredies & Maass, 2009) has been developed for this

case.
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Consider the following problem:

min
x∈Q

f(x) + h(x) (2.29)

whereQ is convex and bounded such thatf is smooth and convex whileh is convex but not neces-

sarily smooth.

The generalized conditional gradient algorithm is shown in Algorithm 2. With thisalgorithm,

each step is now a smooth convex program, followed by a one dimensional nonsmooth convex

optimization. Often, the smooth functionh is a quadratic andQ is a polytope, making (2.27)

a quadratic program. This algorithm can also be slow to converge to a globalsolution, since it

has a sublinear rate (Zhang et al., 2012). A nice property of the generalized conditional gradient

framework, however, is that many machine learning problems can be formulated in the form: a

convex and differentiable loss function and a convex but not necessarily smooth regularization term.

2.4.3 Hybrid Approach: Local Search for Matrix-norm Regulari zation

The main optimization problems I consider in this thesis all involve optimization over matrix vari-

ables, where the regularization functionh consists of a matrix norm, and challenging constraints

such as positive semidefiniteness are also included. Therefore, the basic conditional gradient and

generalized conditional gradient method have to be extended and improvedto handle the matrix

variable case.

Consider the convex optimization problem using matrix notation

min
X∈Q

f(X) + h(X), (2.30)

whereX is an×m matrix,f(X) : Rn×m → R is a convex and smooth function,h(X) : Rn×m →

R is a convex but not necessarily smooth function, andQ is a convex feasible region. The clustering

problems discussed in this thesis nicely fit into the generalized conditional gradient framework. The

drawback of the generalized conditional gradient method is its sublinear rate. However, Zhang et al.

(2012) observed that a fix-rank local optimization can be interlaced with thegeneralized conditional

gradient procedure to significantly speed up the sparse learning model with matrix-norm regulariza-

tion and semidefinite constraints. Specifically, when the matrix norm regularizer induces a low rank

optimal matrixX, we can representX with a low-rank factorization (sayX = UV ⊤) at each step.
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Algorithm 3 Hybrid Generalized Conditional Gradient Method

1: One step conditional gradient on l.h.s. of (2.31);
2: Construct initialization for r.h.s. of (2.31);
3: Locally optimize over r.h.s. of (2.31);
4: Initialize l.h.s. of (2.31);

Then, the optimization problem can be reformulated as a hybrid algorithm that alternates between:

min
X

f(X) + h(X)⇔ min
U,V

f(UV ⊤) + h(UV ⊤) (2.31)

The hybrid generalized conditional gradient descent is outlined in Algorithm 3. For analysis and

other applications, we refer to (Zhang et al., 2012) and (Laue, 2012) for more details.

This optimization strategy will allow scalable training methods to be developed for each of the

convex relaxation schema developed later in this thesis.
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Chapter 3

Conditional Generative Clustering
Case 1: Jointly Convex Bregman
Divergence

In this chapter, we first consider the case ofhard conditional clusteringfor jointly convex Bregman

divergences, where the class priorq ∈ ∆d has been fixed to some value in thed dimensional simplex

beforehand.

Following the discussion in the background chapter, we formulate clusteringas maximum like-

lihood estimation in an exponential family model with a latent variableY ∈ {1, . . . , d} (the class

indicator). The observed variableX is in Rn, from which aniid sampleX = (x1, . . . ,xt)
′ has

been collected.

Recall that in generative modeling, we parameterize the joint distribution over(X,Y) asY→

X, where

p(Y = j) = qj , (3.1)

p(X = x|Y = j) = exp (−dF (x,µj))Zj(x). (3.2)

Becauseqj is fixed to some value, hereΘ := {µj}dj=1 are the parameters to be optimized. We

assumeP (X|Y) is an exponential family model defined by the Bregman divergenceDF .

Since we focus on conditional generative hard clustering, given dataX, the parametersΘ can

be estimated via

argmax
Θ

max
Y

p(X,Y |Θ). (3.3)

Here we are lettingY denote at×d assignment matrix such thatYij ∈ {0, 1} andY 1 = 1 (a vector
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of all 1’s with proper dimension). If we additionally letΓ = (µ1, . . . ,µd) andB = (b1, . . . ,bd),

such thatbj = f(µj), then the conditional likelihood (3.2) can be rewritten over the entire data set

as

p(X|Y ) = exp (−DF (X,Y Γ))Z(X) (3.4)

= exp (−DF ∗(Y B, f(X)))Z(X), (3.5)

where

DF (X,Y Γ) :=
t
∑

i=1

dF (Xi:, Yi:Γ) (3.6)

and

DF ∗(Y B, f(X)) :=
t
∑

i=1

dF ∗(Yi:B, f(Xi:)) (3.7)

are row-wise sums, such thatXi: stands for thei-th row ofX.

3.1 Formulation

First note that by using (3.4), the estimator (3.3) can be reduced to

min
Y,Γ

DF (X,Y Γ). (3.8)

Here Banerjee et al. (2005) showed that for any fixed assignmentY the optimalΓ is given by

Γ = (Y ′Y )†Y ′X († denotes the pseudoinverse), for any Bregman divergenceDF . Plugging the

solution back into the formulation, the problem becomes

min
Y

DF (X,Y (Y ′Y )†Y ′X). (3.9)

Now let us introduce thenormalized equivalence relation matrix

M = Y (Y ′Y )†Y ′ = Y diag(Y ′1)†Y ′, (3.10)

and letM denote the set of possibilities. That is,M = {M : ∃Y ∈ {0, 1}t×d, Y 1 = 1,M =

Y (Y ′Y )†Y ′}. It then suffices to solve

min
M∈M

DF (X,MX). (3.11)
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This resulting problem is challenging for two reasons. First, the objective isnot necessarily convex

in M , sinceDF is only guaranteed to be convex in its first argument. Another challenge lies inthe

non-convexity of the constraint setM.

However, it is interesting that many widely used Bregman divergences arejointly convex in

both arguments;e.g.Mahalonobis distance, KL divergence, Bernoulli entropy, Bose-Einstein en-

tropy, Itakura-Saito distortion, and von Neumann divergence (Wang & Schuurmans, 2003; Tsuda

et al., 2004). Therefore, we want to consider convex relaxations forthe non-convex constraint set

for conditional generative model clustering with jointly convex Bregman divergences first in this

chapter, and then generalize the approach to arbitrary Bregman divergences in the next chapter.

Peng & Wei (2007) have shown that

M =
{

M : M = M ′,M2 = M, tr(M) ≤ d,Mi: ∈ ∆t

}

.

First, note that sinceM2 = M is the only source of non-convexity, its convex hull can be used to

construct a convex outer approximationM1 (i.e.convex containing sets) of the setM:

M1 :=conv
{

M :M=M ′=M2
}

∩
{

M ∈∆t
t : tr(M) ≤ d

}

= {M : 0 �M � I, tr(M) ≤ d,Mi: ∈ ∆t} , (3.12)

where byM � 0 we also encodeM = M ′. Note thatM � I is implied by0 � M andMi: ∈ ∆t

(e.g.Mirsky, 1955, Theorem 7.5.4).

Although this setM1 has been widely used, it is still not clear whether it is the tightest convex

relaxation ofM; that is, whetherM1 = convM =MC? With some surprise, we show that this

conjecture is not true in Appendix 8.1; that is, in general,M1−MC 6= ∅. Despite the fact thatM1

is a loose convex relaxation, its simplicity allows a simple and efficient optimization. Therefore, we

will continue to use it below, as in the earlier work of (Peng & Wei, 2007). Conveniently,M1 can

be relaxed further by keeping only the spectral constraints

M2 := {M : 0 �M � I, tr(M) ≤ d,M1 = 1} . (3.13)

Therefore, based on the convex relaxation of constraint setM of normalized equivalence rela-

tion matrix, we managed to derive a convex relaxation for conditional generative model clustering

with jointly convex Bregman divergences.
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Algorithm 4 Alternating Direction Method of Multipliers

1: Repeat until convergence
2: Mt ← argminM L(M,Zt−1,Λt−1);
3: Zt ← argminZ L(Mt, Z,Λt−1);
4: Λt←Λt−1 +

1
ρ(Zt −Mt);

3.2 Optimization

Here, since there is no matrix-norm regularization, instead of exploiting the specific optimization

strategy we discussed in the previous chapter, we will temporarily need to adopt a slightly different

optimization strategy. (Later chapters will revert to the same optimization strategyoutlined orig-

inally.) AssumingDF is convex in its second argument, one can easily minimizeDF (X,MX)

over M ∈ M1 by using the alternating direction method of multipliers (ADMM) (Boyd et al.,

2010). In particular, we split the constraints into two groups: spectral and non-spectral, leading to

the following augmented Lagrangian:

L(M,Z,Λ)=DF (X,MX)+δ(Mi: ∈ ∆t)+δ(Z ∈M2)

− 〈Λ,M − Z〉+ 1

2ρ
‖M − Z‖2F ,

whereδ(·) = 0 if · is true;∞ otherwise. The ADMM procedure then proceeds as follows: (i)

optimize objective under non-spectral constraints; (ii) project to satisfy the spectral constraints; and

(iii) update the multipliers; see Algorithm 4.

Note that since we constrainMi: ∈ ∆t, the objectiveDF (X,MX) remains well defined in

Step 1 of Algorithm 4. Furthermore, since the objective decomposes row-wise, each row ofM can

be optimized independently, which constitutes a key advantage of this scheme.Second, since Step

2 merely involves projection onto spectral constraintsM2, a closed form solution exists based on

eigen-decomposition, as established in the following lemma.

Lemma 3. LetH = I − 1
t11

′. Then

M2 =
{

HMH + 1
t11

′ : M ∈M3

}

, (3.14)

whereM3 = {M : 0 �M � I, tr(M) ≤ d− 1} . (3.15)

Proof. Clearly the right-hand side of (3.14) is contained inM2. Conversely, for anyM2 ∈M2, we
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construct anM ∈M3 asM = M2 − 1
t11

′. Note thatM21 = 1 implies1/
√
t is an eigenvector of

M2 with eigenvalue1. ThereforeM � 0. The rest is easy to verify.

By Lemma 3, the problem of projecting any matrixA toM2 can be accomplished by solving

min
Z∈M2

‖Z −A‖2 = min
S∈M3

∥

∥HSH − (A− 1
t11

′)
∥

∥

2
.

LetB = A− 1
t11

′ andV = B −HBH. ThenHVH = 0, hence the probem reduces to solving

min
S∈M3

‖HSH−HBH−V ‖2=min
S∈M3

‖HSH−HBH‖2+‖V ‖2.

Now it suffices to solveminT∈M3
‖T −HBH‖2 and show the optimalT satisfiesHTH = T .

SupposeHBH has eigenvaluesσi and eigenvectorsφi. Then the optimalT must have eigenvalues

µi and eigenvectorsφi such that

min
µi

∑

i

(µi−σi)2, s.t.µi ∈ [0, 1],
∑

i

µi ≤ d−1. (3.16)

Since1 is an eigenvector ofHBH with eigenvalue 0, it is trivial that the correspondingµi in the

optimal solution is also0. Therefore,T1 = 0 andHTH = T . Finally the optimalZ is simply

given byT + 1
t11

′.

3.2.1 Rounding

Once an optimal solution is obtained for the relaxed problem, a feasible solutionto the original

problem can be obtained by heuristic rounding. Many rounding schemes can be applied with similar

performance. Following the previous works (Guo & Schuurmans, 2007)and (Joulin & Bach, 2012),

we apply spectral clustering (Shi & Malik, 2000) onM to obtain a rounded assignment matrix

Y ∗, i.e. using a k-means clustering on the eigenvectors associated with the k-largest eigenvalues.

Then thisY ∗ is used to initialize an alternating hard EM procedure optimizing (3.8) to get a finer

assignment matrixY .

3.3 Experimental Evaluation

In this section, I evaluate the proposed convex relaxation for jointly convex Bregman divergence. In

order to compare the proposed convex relaxation with the most related alternating hard EM algo-

rithm, I use the common evaluation criteria: the objective value of (3.8) as well as the classification

accuracy.
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Dataset t n d Dataset t n d

Yale 165 1024 15 Diabetes 768 8 2

ORL 400 1024 40 Heart 270 13 2

E-mail 1000 57 2 Breast 699 9 2

Balance 625 4 2

Table 3.1: Properties of datasets used in experiment.

Data sets. I used seven labeled benchmark data sets for these experiments. Five are from the

UCI repository (Frank & Asuncion, 2010): Balance, Breast Cancer, Diabetes, Heart, and Spam E-

mail. The two others are multiclass face data sets: ORL1 and Yale2. I downsampled Spam-Email to

1000 points preserving the class ratio. The properties of these data sets are summarized in Table 3.1,

giving the values oft, n, andd. I shifted all features to be nonnegative so that all transfer functions

can be applied. Finally the features were normalized to unit variance.

Transfer functions. Here, I tested two transfer functions: linear and sigmoid.

Parameter settings.The only parameter involved in the optimization algorithm isρ for ADMM.

With regard to efficiency and quality, it is set to10−3. The parameter selection is mainly based on

time-efficiency. For more details on parameter tunning, see (Boyd et al., 2010).

Algorithms. The new proposed method (cvxCondJC) first minimizesDF (X,MX) overM ∈

M1. The optimalM is then rounded to a hard cluster assignment via spectral clustering (Shi

& Malik, 2000). The result is further used to initialize a local re-optimization using theoriginal

objectiveDF (X,Y Γ). Sincek-class spectral clustering involves ak-means algorithm, with random

elements, this was repeated 10 times and the variance was reported.

I compared the new proposed algorithm withaltCondJC (hard EM), which optimizesDF (X,Y Γ)

by alternating, withY reinitialized randomly up to the same time cost of our method with spectral

clustering rounding and reoptimization.

Results.In Table 3.2, the first and third rows of each block gives the optimal value of DF (X,Y Γ)

found byaltCondJC, and bycvxCondJC (both after SC rounding and re-optimization). The sec-

ond and fourth lines give the highest accuracy among all possible matchings between the clusters

and ground truth labels. Across all data sets and transfer functions,cvxCondJC with SC rounding

and reoptimization finds a lower objective value and higher accuracy thanaltCondJC. In addition,

1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2http://cvc.yale.edu/projects/yalefaces/yalefaces.html

20



although the objective achieved after rounding might be higher than that ofaltCondJC, the ac-

curacy is usually comparable. It is also worth noting that the accuracy ofcvxCondJC with SC

rounding is not necessarily improved by the reoptimization. Moreover, fordata sets, ORL and Yale,

which are image data sets, the accuracy of sigmoidal transfer function is higher than that of linear

transfer function while for the rest datasets, the accuracy of linear transfer function would usually be

higher (except Spam E-mail data set). It justifies the importance of different divergences for cluster-

ing. Overall, the final clustering found bycvxCondJC is superior to randomized local optimization

over the evaluated data sets.

3.4 Conclusion

In this chapter, I have considered the conditional generative hard clustering with jointly convex

Bregman divergences. In spite of its simplicity, this simple case actually provides insight into the

formulation as well as a testbed to evaluate the quality of relaxation based on thenormalized equiv-

alence relation matrix. A key result is the analysis on the tightness of convex relaxation through

normalized equivalence relation matrix. The resulting clustering formulation allows a distributed

optimization procedure based on ADMM. On the basis of the experimental evaluation, it appears

that the proposed new convex relaxation method outperforms local optimization both in terms of

objective value and accuracy with the same time computational cost.

Unfortunately, Bregman divergences are not generally convex in theirsecond argument, hence

a more general relaxation strategy is required for convex relaxations ofclustering with arbitrary

Bregman divergence.

21



cvxCondJC cvxCondJC
altCondJC+SC rounding +SC+re-opt

Spam E-mail

lin obj(×102) 9.4± 0.1 9.3± 0.0 9.3± 0.0

lin acc(%) 71.5±11.6 76.3±13.6 75.1±12.6

sigm obj(×103) 7.8± 0.1 7.7± 0.1 7.7± 0.1

sigm acc(%) 75.1±12.0 80.0± 9.4 76.0± 7.2

ORL

lin obj(×103) 3.3± 0.1 2.0± 0.0 2.1± 0.0

lin acc(%) 57.0± 3.5 55.4± 2.9 40.6± 2.3

sigm obj(×102) 3.8± 0.1 3.5± 0.1 3.7± 0.1

sigm acc(%) 57.8± 3.6 58.2± 4.1 48.2± 3.0

Yale

lin obj(×101) 5.6± 0.1 5.5± 0.0 5.8± 0.1

lin acc(%) 46.8± 1.7 47.0± 2.1 44.5± 4.2

sigm obj(×102) 9.6± 0.4 9.2± 0.1 9.6± 0.3

sigm acc(%) 49.9± 2.1 51.5± 2.1 46.6± 4.1

Balance

lin obj(×101) 7.2± 0.0 7.1± 0.0 7.2± 0.0

lin acc(%) 57.1± 6.9 57.3± 7.1 54.2± 4.6

sigm obj(×102) 5.0± 0.3 3.9± 0.0 4.0± 0.0

sigm acc(%) 49.3± 5.1 50.5± 5.1 49.4± 4.3

Breast Cancer

lin obj(×102) 1.8± 0.2 1.6± 0.0 1.7± 0.0

lin acc(%) 72.5±12.7 84.7± 8.8 78.7±10.4

sigm obj(×102) 8.5± 0.2 8.5± 0.1 8.5± 0.1

sigm acc(%) 72.4±13.7 72.5±13.7 70.6±11.6

Diabetes

lin obj(×102) 2.0± 0.1 2.0± 0.0 2.0± 0.0

lin acc(%) 57.1± 0.5 58.5± 0.0 58.5± 0.1

sigm obj(×103) 1.2± 0.1 1.1± 0.0 1.1± 0.0

sigm acc(%) 58.8± 3.9 58.2± 0.1 58.0± 0.6

Heart

lin obj(×102) 1.3± 0.0 1.3± 0.0 1.3± 0.0

lin acc(%) 68.1±10.0 65.6± 7.8 65.4± 5.0

sigm obj(×102) 7.5± 0.2 7.2± 0.2 7.2± 0.2

sigm acc(%) 63.4± 5.9 64.9± 6.6 64.4± 7.8

Table 3.2: Experimental results for the conditional model with jointly convex Bregman divergences.
Here “lin” and “sigm” refer to linear and sigmoid transfers respectively. Best results inbold.
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Chapter 4

Conditional Generative Clustering
Case 2: Arbitrary Bregman Divergence

Since a Bregman divergence is not necessarily convex in its second arugment, we need to extend

the previous approach to consider the case of hard conditional clustering with arbitrary Bregman

divergences.

In this chapter, we start as before and formulate clustering as maximum likelihood estimation in

an exponential family model with a latent variableY ∈ {1, . . . , d} (the class indicator). Here, the

observed variableX is in Rn, from which aniid sampleX = (x1, . . . ,xt)
′ has been collected.

As before, we continue to consider a conditional generative model where the class priorq ∈ ∆d

has been fixed to some value in thed dimensional simplex beforehand. By assumingP (X|Y ) is an

exponential family model defined by a Bregman divergenceDF , we can then reduce the estimation

problem equivalently to

min
Y,B

DF ∗(Y B, f(X)), (4.1)

whereDF ∗(A,B) =
∑

i dF ∗(Ai:, Bi:), dF ∗ is the dual divergence ofdF , Y denotes at× d assign-

ment matrix such thatYij ∈ {0, 1} andY 1 = 1.

4.1 Formulation

To cope with a general Bregman divergence, we need to adopt a significantly different strategy from

from the last chaper. The key idea we exploit here is to introduce a value regularization that allows

a useful form of representer theorem to be applied. In particular, we augment the negative log

likelihood ofP (X|Y ) in (4.1) with a regularizer on the basisB, weighted by the number of points
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in the corresponding cluster. The resulting objective can be written as:

min
Y,B

DF ∗(Y B, f(X)) +
α

2
‖Y B‖2F . (4.2)

The advantage of the formulation in Chapter 3 is that it does not require a regularizer, whereas

the advantage of this formulation is that it allows more general loss functions.

Note that hereB must be in the range off . Now, by the representer theorem, there exists a

matrixA ∈ Rt×n such that the optimalB can be writtenB = (Y ′Y )†Y ′A († denotes the pseudoin-

verse). Making this substitution in (4.2) yields

min
M∈M,A

DF ∗(Y B, f(X)) +
α

2
tr(A′MA), (4.3)

whereM is thenormalized equivalence relation matrix, defined as before by

M = Y (Y ′Y )†Y ′ = Y diag(Y ′1)†Y ′. (4.4)

In this chapter, instead of relaxing to the constraint setM1 in the previous chapter, we will work

with this formulation by further relaxing the domain ofM to the weaker convex set

M2 := {M : 0 �M � I, tr(M) ≤ d,M1 = 1} . (4.5)

The main motivation here is to develop a more efficient algorithm, because the existing polynomial

time optimization algorithm inM1 is extremely slow in practice. By Lemma 3 in the last chaper,

we can further relax the domain intoM3

M3 := {M : 0 �M � I, tr (M) ≤ d− 1}, (4.6)

becauseM2 ∈M2 can be recovered fromM3 ∈M3.

Due to the simplicity of the further relaxed constraint setM3, we will first develop convex

relaxation strategy based on it and then extend it toM2.

First we establish the main optimization formulation that we will use in this chapter. Note that

although (4.3) does not immediately exhibit joint convexity inM andA, a change of variable leads

to a convex formulation. DenoteT = MA. ThenIm(T ) ⊆ Im(M) whereIm(M) is the range of

M . Also, denoteL(Z) := DF ∗(Z, f(X)) for clarity.
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Proposition 4. The problem(4.3) is equivalent to

min
M∈M3

min
T :Im(T )⊆Im(M)

L(T ) +
α

2
tr(T ′M †T ) (4.7)

=min
T

L(T ) +
α

2
min

M∈M3:Im(T )⊆Im(M)
tr(T ′M †T ) (4.8)

Proof. The proposition is easily established by observing that, any optimal(M,A) for (4.3) pro-

vides an optimal solution to (4.7) viaT = MA. Conversely, given any optimal(M,T ) for (4.7),

This proposition allows one to solve a convex problem inT , provided thatIm(T ) ⊆ Im(M) guar-

anteesT = MA for someA.

4.2 Characterizing the regularizer inM3

Note that the optimization in (4.8) defines an implicit induced regularizer onT . Define

Ω2(T ) := min
M∈M3:Im(T )⊆Im(M)

tr(T ′M †T ), (4.9)

which satisfiesΩ(T ) ≥ 0. The above proposition allows one to solve a convex problem inT ,

provided thatΩ2(T ) is convex and easy to compute. Thus(M,A) is optimal for (4.3).

In order to better understand the computational complexity ofΩ(T ), in the following section,

we will first try to characterize itΩ(T ) computationally.

4.2.1 Efficient Computation ofΩ(T )

Let the singular values ofT be s1 ≥ . . . ≥ st. SinceΩ2(T ) = minM∈M3
tr(TT ′M †), by von

Neumann’s trace inequality (Mirsky, 1975) the optimalM must have eigenvectors equal to the left

singular vectors ofT . The minimal objective value is then
∑

i s
2
i /σi, whereσi are the eigenvalues

of M . It suffices to solve

f(s) := min
{σi}

t
∑

i=1

s2i
σi

, subject toσi∈ [0, 1],
t
∑

i=1

σi ≤ d−1 (4.10)

= min
σi∈[0,1]

max
λ≥0

t
∑

i=1

s2i
σi

+ λ

(

1− d+
t
∑

i=1

σi

)

(4.11)

= max
λ≥0

{

λ(1−d) + min
σi∈[0,1]

t
∑

i=1

(

s2i
σi

+λσi

)

}

. (4.12)

Fixing λ, the optimalσi is attained atσi(λ) = si√
λ

if λ ≥ s2i , and 1 ifλ < s2i . Note thatσi(λ)

decreases monotonically forλ ≥ s2t , hence we only need to find aλ that satisfies
∑t

i=1 σi(λ) =
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Algorithm 5 Computef(s) with givend.

1: for k = 0, 1, . . . , d− 2 do
2: if

∑t
i=k+1 si ≥ (d− 1− k)sk+1 then break

3: end for
4: Return f(s) =

∑k
i=1 s

2
i +

1
d−1−k

(
∑t

i=k+1 si
)2

.

d − 1, since the constraint
∑

i σi ≤ d − 1 must be equality at the optimum. This only requires a

line search overλ, which can be conducted efficiently as follows. Suppose the optimalλ lies in

[s2k, s
2
k+1]. Thenσi(λ) = 1 for all i ≤ k andσi(λ) = si/

√
λ for all i > k, so one can easily get the

following condition from the optimality with respect toλ for (4.12)

k +
1√
λ

t
∑

i=k+1

si = d− 1. (4.13)

Hence in order to find ak ∈ {1 . . . t} such thats2k+1 ≤ λ ≤ s2k meeting (4.13), we just need to

searchk = 1, . . . , t and put
√
λ = sk and

√
λ = sk+1 respectively back into (4.13) for a sign

change,i.e.

√
λ = sk ⇒k+

∑t
i=k+1si

sk
≤d−1,

√
λ = sk+1 ⇒k+

∑t
i=k+1si

sk+1
≥d−1.

Then the optimalλ can be computed as

√
λ=

1

d−1−k

t
∑

i=k+1

si.

Now note there must be ak satisfying these two conditions. Since bothk + 1
sk

∑t
i=k+1 si and

k + 1
sk+1

∑t
i=k+1 si grow monotonically ink, the smallestk that satisfies the second condition

must also satisfy the first condition. Hence the optimal solution isσi = 1 for all i ≤ k, and

σi = (d− 1− k)si/
∑t

i=k+1 si for i > k.

The algorithm for evaluatingf(s) = Ω2(T ), wheres are the singular values ofT , is given in

Algorithm 5. The ‘if’ condition in step 2 must be met whenk = d − 2. The computational cost is

dominated by a full SVD ofT , and fortunately the proposed method needs to computeΩ(T ) only

once at the optimalT . Therefore,Ω can be computed inO(t3) time.

Interestingly,Ω(T ) has other favorable properties to exploit.
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Theorem 5. Ω(T ) defines a norm onT . Its dual norm is denoted asΩ∗.

We prove this theorem in Appendix 8.2. Moreover, we also characterize itsdual norm, which

will be exploited later in the optimization strategy. Not surprisingly, the dual norm can also be

computed efficiently withO(t2d) time.

4.3 Extending the characterization of the regularizer fromM3 toM2

Now we replaceM3 in Proposition 4 byM2. In particular, we redo the characterization ofΩ(T )

whenM3 is replaced byM2, and denote the new regularizer asΞ(T ) ≥ 0, such that

Ξ2(T ) = min
M∈M2:Im(T )⊆Im(M)

tr(T ′M †T ). (4.14)

If we can again show thatΞ(T ) is a norm such that bothΞ and the dual normΞ∗ are efficiently

computable, then the same optimization algorithm based onΩ(T ) (given below in Section 4.4) can

also be applied usingΞ without change. The remainder of this section proceeds in parallel to Section

4.2.

4.3.1 Efficient computation ofΞ(T )

First we apply Lemma 3 on page 18 us to convert the optimization inM2 into that inM3, making

it easy to utilize the previous results.

Let

tr(T ′M †T ) = tr(QM †), (4.15)

whereQ = TT ′. To minimize it overM ∈M2, by Lemma 3, it suffices to solve

min
M∈M3:Im(T )⊆Im(HMH+ 1

t
11′)

tr

(

Q(HMH +
1

t
11′)†

)

.

We first ignore the range constraint, and will show later that it will be automatically satisfied. Since

1/
√
t is an eigen-vector ofHMH with eigen-value 0, we have

(HMH +
1

t
11′)† = (HMH)† + (

1

t
11′)†

= (HMH)† +
1

t
11′. (4.16)
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By definition ofH:

Q = IQI = (H +
1

t
11′)Q(H +

1

t
11′)

= HQH + 1q′H +Hq1′ + s11′, (4.17)

whereq := Q1/t ands := 1′q/t = 1′Q1/t2.

Next, we need to make use of the following lemma.

Lemma 6. If AB = 0, thenA†B = 0.

Proof. LetA = UΣV ′ be the SVD ofA. Then

AB = 0 ⇒ UΣV ′B = 0 ⇒ ΣV ′B = 0

⇒ Σ†V ′B = 0 ⇒ A†B = UΣ†V ′B = 0.

Similarly, if BA = 0 thenBA† = 0.

Now, returning to (4.17), we note that since,

(HMH)(1q′H) = 0

(HMH)(s11′) = 0

(Hq1′)(HMH) = 0,

by Lemma 6, we have

(HMH)†(1q′H) = 0

(HMH)†(s11′) = 0

(Hq1′)(HMH)† = 0.

Therefore combining (4.16) and (4.17) we obtain

tr

(

Q(HMH +
1

t
11′)†

)

= tr
(

(HQH)(HMH)†
)

+
1

t
1′Q1. (4.18)

ClearlyHMH ∈M3 for anyM ∈M3. So if we find

M∗ = argmin
M∈M3

tr
(

(HQH)M †
)

, (4.19)
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and showM∗ = HM∗H, thenM∗ must be the minimizer of (4.18) overM ∈ M3. (4.19) is

obviously in the same form asΩ2(T ) = minM∈M3
tr(TT ′M †) and its optimal objective value is

Ω2(HT ). By the discussion on how to computeΩ in Section 4.2, ifHQH has eigenvectorsφi with

eigenvalueλi > 0, then

M∗ =
∑

i

µiφiφ
′
i (4.20)

for someµi > 0. Since1/
√
t is an eigenvector ofHQH with eigenvalue 0, soφ′

i1 = 0. Therefore

M∗1 = 0 andHM∗H = M∗.

Finally we showIm(T ) ⊆ Im(HM∗H + 1
t11

′). By (4.20) andHM∗H = M∗, the nonzero

eigenvectors1 of HM∗H + 1
t11

′ areS :=
{

1/
√
t
}

∪ {φi}i. So it suffices to show thatS spans

the left singular vectors ofT , or equivalently the nonzero eigenvectors ofQ. This means for anyu

that is orthogonal to1 andφi, Qu = 0. SinceQ � 0, we only need to showu′Qu = 0, which is

obvious because by (4.17),

u′Qu = u′(HQH)u+ u′1q′Hu+ u′Hq1′u+ su′11′u

= 0 + 0 + 0 + 0 + 0 = 0.

To conclude,

Ξ2(T ) = Ω2(HT ) +
1

t

∥

∥T ′1
∥

∥

2
, (4.21)

M∗ +
1

t
11′ = argmin

M∈M2:Im(T )⊆Im(M)
tr(T ′M †T ). (4.22)

Based on the discussion of the computional effciency above, we will havethe following theorem

onΞ(T ).

Theorem 7. Ξ(T ) defines a norm onT . Its dual norm is denoted asΞ∗.

Similar to the previous section, we will prove the theorem and characterizeΞ and its dual norm

Ξ∗ in Appendix 8.3.

1Eigenvectors whose corresponding eigenvalue is not zero
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Algorithm 6 Conditional gradient for optimizing (4.8)

1: Initialize T0 = 0. s0 = 0.
2: for k = 0, 1, . . . do
3: SetSk ∈ ∂Ω∗(∇L(Tk)), i.e.find a minimizer ofminS 〈∇L(Tk), S〉+ α

2Ω
2(S) up to scaling.

4: Line search:
(a, b) := argmina≥0,b≥0 L(aTk+bSk)+

α
2 (ask+b)2.

5: SetTk+1 = aTk + bSk, sk+1 = ask + b.
6: end for

4.4 Optimization

With these conclusions, we can optimize the primary objective (4.8) defined onpage 25 using the

generalized conditional gradient method, accelerated by local search (Laue, 2012; Zhang et al.,

2012) as outlined in Chapter 2; see Algorithm 6.

At each iteration, the algorithm employs a linear approximation ofL. The inner oracle searches

for a steepest descent direction by computing a subgradient of the dualnormΩ∗, because when the

maximum in (4.23) is achieved, every maximal valuex̂ of (4.23) is a subgradient with respect toz

of the conjugate functionf∗(z). To see why this is true, recall that generalized Legendre dual for

non-differentiable functions is given by

f∗(z) = max
x

x⊤z− f(x), (4.23)

wheref∗(z) is the conjugate of the functionf(x), and the variablez is the dual variable ofx.

Therefore, we must have

∂f∗(z) = x̂ = argmax
x

x⊤z− f(x). (4.24)

Algorithm 6 is guaranteed to find anǫ accurate solution to (4.8) inO(1/ǫ) iterations; see e.g. (Zhang

et al., 2012). The optimalM can then be recovered by evaluatingΩ at the optimalT .2

4.4.1 Accelerated Hybrid Approach for Low-Rank Factorization

Due to Proposition 4, the norm regularizer in (4.8) induces a low rank optimalT . So if we explicitly

representTk with a low-rank factorization (sayTk = PkQ
′
k wherePk andQk have a small number

of columns), thenΩ∗ (and its gradient) can be efficiently evaluated because a full SVD onT can be

2This solution is valid since (4.7) minimizes overM andT . If the problem wereminT maxM instead, the optimal
M could not be generally recovered by maximizingM for fixed optimalT .
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performed efficiently by making use of such a low-rank factorization. Forany vectorx, Tkx can be

computed byPk(Q
′
kx).

For (4.8), we can writeT = PQ′ whereP andQ havek columns (k is small). Then we can

optimize overP andQ using anylocal solver and obtain anylocal solution. In practice, whenk is

large enough, there is a good chance that the solution is already very good.

Recall that at each iteration in Algorithm 6,Sk can be written as
∑d

i=1 siuiv
′
i. So afterk

iterations,T can be written as
∑dk

i=1 siuiv
′
i (the set ofui are not necessarily orthogonal, and neither

arevi). If d andk are both small, this factorization will allow us to compute the full SVD ofT

efficiently. Therefore, based on low-rank factorization, the generalized conditional gradient method

can be modified into Algorithm 7.

4.4.2 Extension toM2

By the discussion in Section 4.3, we can then extend the optimization procedureabove fromM3 to

M2 as Algorithm 8.

4.4.3 Rounding

Once an optimal solutionM∗ ∈ M2 is obtained for the relaxed problem (4.3), a feasible solution

to the original problem (4.1) can be obtained by heuristic rounding. Many rounding schemes can

be applied with similar performances. Following previous works (Guo & Schuurmans, 2007) and

(Joulin & Bach, 2012), we apply spectral clustering (Shi & Malik, 2000)onM to obtain a rounded

assignment matrixY ∗, i.e. using a k-means clustering on the eigenvectors associated with the k-

largest eigenvalues. Then thisY ∗ is used to initialize an alternating hard EM procedure optimizing

(4.1) to get a finer assignment matrixY .

4.5 Experimental Evaluation

In this section, I evaluate the proposed convex relaxation for conditionalgenerative model with

arbitrary Bregman divergence with the same data sets and transfer functions as the previous chapter.

In order to compare the proposed convex relaxation with the most related alternating hard EM

algorithm, I use the same evaluation criteria as before, the objective value of(4.1) as well as the
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Algorithm 7 Accelerated Hybrid Optimization Procedure for Low-Rank Factorization inM3

1: Initialize T0 = 0, P0 = Q0 = [](Matlab empty matrix),r0 = 0
2: for k = 1, 2, . . . do
3: Compute the gradient ofL atTk−1: G = ∇L (Tk−1, X).
4: Generate weak hypothesis

Sk = argmin
T :Ω(T )≤1

tr(G′T ) = − argmax
T :Ω(T )≤1

tr(G′T ). (4.25)

By (4.24) and the discussion in Section 4.2,Sk can be written as
∑d−1

i=1 siuiv
′
i.

5: Check termination criteria
6: if tr(G′Sk) + αrk−1 > −ǫ then
7: break
8: end if
9: Partially corrective update

{η∗1, η∗2} := argmin
η1,η2≥0

L (η1Tk−1 + η2Sk, X) +
α

2
(η1rk−1 + η2)

2 . (4.26)

10: Locally solve

min
P,Q

L(PQ′) +
α

2
Ω2(PQ′) (4.27)

by initializing

P = (
√

η∗1Pk−1,
√

η∗2s1u1, . . . ,
√

η∗2sd−1ud−1)

Q = (
√

η∗1Qk−1,
√

η∗2s1v1, . . . ,
√

η∗2sd−1vd−1)

Denote the locally optimal solution as(Pk, Qk).
11: Set the solution at iterationk: Tk = PkQ

′
k. Restorerk by solving

rk = min
ηi,Si:ηi≥0,Ω(Si)≤1,

∑

i ηiSi=Tk

∑

i

ηi = Ω(Tk). (4.28)

This is actually the gauge function of the unit ball ofΩ evaluated atTk. So trivially rk =
Ω(Tk) (which matches our intuition).

12: end for
13: ReturnTk

classification accuracy.

Parameter settings. To closely approximate the original objective without creating numerical

difficulty, I choose the regularization parameterα to be reasonably smallα ∈ {10−5, 10−9} and

report the experimental results for the choices that obtain highest accuracy. However, the results are

not sensitive to these values.

Algorithms. The new proposed method (cvxCond) first optimize (4.3) overM ∈ M2. Then
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Algorithm 8 Accelerated Hybrid Optimization Procedure for Low-Rank Factorization inM2

1: Initialize T0 = 0, P0 = Q0 = [](Matlab empty matrix),r0 = 0
2: for k = 1, 2, . . . do
3: Compute the gradient ofL atTk−1: G = ∇L (Tk−1, X).
4: Generate weak hypothesis

Sk = argmin
T :Ξ(T )≤1

tr(G′T ) = − argmax
T :Ξ(T )≤1

tr(G′T ). (4.29)

By (4.24) and the discussion in Section 4.3, we have compact way to represent

Sk = −(aHUS + b11′UΣ)V ′

= −(ãHU + b11′U)ΣV ′ (4.30)

= −ŨΣV ′, (4.31)

wherea =

√

1− (τ∗)2

t , ã = 1
‖ diag(Σ)‖

√

1− (τ∗)2

t , b = τ∗

t‖G′e‖ , the topd − 1 SVD of

G = UΣV ′ andS = Σ/‖ diag(Σ)‖. Thus,Sk =
∑d−1

i=1 σiũiv
′
i.

5: Check termination criteria
6: if tr(G′Sk) + αrk−1 > −ǫ then
7: break
8: end if
9: Partially corrective update

{η∗1, η∗2} := argmin
η1,η2≥0

L (η1Tk−1 + η2Sk, X) +
α

2
(η1rk−1 + η2)

2 . (4.32)

10: Locally solve

min
P,Q

L(PQ′) +
α

2
Ξ2(PQ′) (4.33)

by initializing

P = (
√

η∗1Pk−1,
√

η∗2s1ũ1, . . . ,
√

η∗2sd−1ũd−1)

Q = (
√

η∗1Qk−1,
√

η∗2s1v1, . . . ,
√

η∗2sd−1vd−1)

Denote the locally optimal solution as(Pk, Qk).
11: Set the solution at iterationk: Tk = PkQ

′
k. Restorerk by solving

rk = min
ηi,Si:ηi≥0,Ξ(Si)≤1,

∑

i ηiSi=Tk

∑

i

ηi = Ξ(Tk). (4.34)

12: end for
13: ReturnTk

similar to Section 3.3, the optimalM is rounded by spectral clustering (10 repeats). Here subsequent

re-optimization (based on local optimization) is performed on the objectiveDF ∗(Y B, f(X)). The

competing algorithm,altCond, optimizes this objective by alternating with random initializations
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of Y up to the same time-cost ofcvxCondwith SC rounding and reoptimization.

Results. In Table 4.1, the first and third rows of each block gives the optimal value of

DF ∗(Y B, f(X)) found byaltCond, and bycvxCond (both after SC rounding and re-optimization).

The second and fourth rows give the highest accuracy among all possible matchings between the

clusters and ground truth labels. Here it can be observed that for almostall data sets and trans-

fer functions,cvxCond with SC rounding and reoptimization yields lower optimal objective value

and higher accuracy thanaltCond, except two outliers, Diabetes and Heart with sigmoidal transfer

function. Moreover, the objective values also exhibit lower standard deviation thanaltCond, which

suggests that the value regularization scheme helps stabilize the reoptimization.It is also worth

noting that the accuracy ofcvxCondJC with SC rounding is not necessarily improved by the re-

optimization. For data sets, ORL and Yale, which are image data sets, the accuracy of sigmoidal

transfer function is higher than that of linear transfer function while for the rest datasets, the ac-

curacy of linear transfer function would usually be higher. It justifies theimportance of different

divergences for clustering. Note that the accuracy ofcvxCond with rounding is already comparable

with that ofaltCond on most data sets.

Since the same transfer functions as Chapter 3 are used here, the accuracy of cvxCondJC

with SC rounding and reoptimization is really close to those ofcvxCond with SC rounding and

reoptimization. It indicates that the extra regularization we employ for convexrelaxation would not

decimate the performance.

4.6 Conclusion

In this chapter, we have developed a more general convex relaxation strategy for conditional gener-

ative hard clustering with arbitrary Bregman divergence.

The key idea we apply is to introduce the normalized equivalence relation matrixby applying

a value regularization. An important technique that will be widely exploited afterwards, using an

induced matrix norm to promote low-rank, is developed to enable direct application of generalized

conditional gradient method, accelerated by local search. Based on theexperimental evaluation,

the proposed new method performs better in terms of both objective value andaccuracy than the

corresponding local alternate algorithm with the same time cost.

So far, the clustering probability models we have considered are solely conditional generative
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models based only onP (X|Y ). However, in practice, discriminative models with the reverse con-

ditional P (Y |X) have been proved to be very accurate data-driven tools for learning the input

variables and the latent labels. Therefore, we will consider extending our techniques to convex

relaxation for discriminative models in the following chapter.
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cvxCond cvxCond
altCond+SC rounding +SC rounding

& re-opt

Spam E-mail

lin obj(×102) 9.3± 0.1 9.3± 0.0 9.3± 0.0

lin acc(%) 75.0± 9.0 79.8±10.2 73.9±13.3

sigm obj(×103) 8.0± 0.2 7.7± 0.1 7.7± 0.1

sigm acc(%) 64.8±12.5 78.7± 7.8 75.3± 5.5

ORL

lin obj(×103) 2.7± 0.1 2.0± 0.0 2.1± 0.0

lin acc(%) 62.6± 3.0 59.4± 2.4 40.1± 2.3

sigm obj(×102) 4.0± 0.1 3.4± 0.0 3.7± 0.1

sigm acc(%) 60.1± 6.1 60.0± 4.9 48.6± 2.7

Yale

lin obj(×101) 6.1± 0.2 5.7± 0.1 5.8± 0.1

lin acc(%) 43.3± 3.2 45.2± 3.2 44.4± 4.0

sigm obj(×102) 10.3± 0.2 9.3± 0.1 9.5± 0.2

sigm acc(%) 46.6± 2.6 51.1± 2.7 46.2± 3.0

Balance

lin obj(×101) 8.0± 0.4 7.1± 0.0 7.1± 0.0

lin acc(%) 57.1± 6.9 57.3± 7.1 55.5± 5.1

sigm obj(×102) 4.0± 0.0 3.9± 0.0 4.0± 0.1

sigm acc(%) 54.1± 8.3 53.0± 6.0 50.9± 5.2

Breast Cancer

lin obj(×102) 1.7± 0.1 1.6± 0.0 1.7± 0.0

lin acc(%) 75.4±13.3 85.8± 6.6 78.7±10.9

sigm obj(×102) 8.8± 0.2 8.5± 0.1 8.6± 0.2

sigm acc(%) 66.8± 8.4 72.3±12.5 70.3±11.0

Diabetes

lin obj(×102) 2.0± 0.0 2.0± 0.0 2.0± 0.0

lin acc(%) 58.1± 0.6 58.3± 0.0 58.2± 0.1

sigm obj(×103) 1.2± 0.1 1.1± 0.0 1.0± 0.0

sigm acc(%) 54.7± 3.0 58.2± 0.2 58.1± 0.5

Heart

lin obj(×102) 1.3± 0.0 1.3± 0.0 1.3± 0.0

lin acc(%) 69.4± 9.3 67.0± 5.5 66.1± 5.2

sigm obj(×102) 7.2± 0.1 7.1± 0.1 7.3± 0.2

sigm acc(%) 66.9±10.7 64.9± 8.2 65.8± 6.3

Table 4.1: Experimental results for the conditional model with arbitrary Bregman divergences. Best
results shown inbold.
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Chapter 5

Discriminative Clustering

Although generative models can often reveal useful latent structure in data, many problems such

as semi-supervised learning and multiple instance learning are more concerned with accurate label

prediction. In such settings, discriminative modelsX → Y can often be more effective (Joulin &

Bach, 2012; Bach & Harchaoui, 2007; Xu & Schuurmans, 2005). Therefore, in this chapter, we will

consider convex relaxation for this setting.

As before, we formulate clustering as maximum likelihood estimation in an exponential family

model with a latent variableY ∈ {1, . . . , d} (the class indicator). The observed variableX is in

Rn, from which aniid sampleX = (x1, . . . ,xt)
′ has been collected. Unlike generative model,

discriminative clustering uses a graphical modelX→Y, and focuses on modeling the dependence

of the labelsY givenX:

p(Y |X;W,b) = exp(−DF ∗(Y, f(XW + 1b′)))Z(X),

whereW is the parameter to learn andb ∈ Rd is the offset for all clusters. A soft clustering model

cannot be applied in this case, since
∑

Y p(X,Y ) = p(X). Instead, hard partition optimization of

Y leads to

min
W,b,Y

DF (XW + 1b′, f−1(Y )). (5.1)

Unlike generative models, for discriminative clustering, we only consider aspecial case where

potential functionF (x) = log
∑

i exp(xi), i.e. where the transfer functionf = ∇F is sigmoidal

(Joulin & Bach, 2012). The reason for this is because sigmoidal transfer function satisfies the

multinomial conditional model for the class indicator.
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5.1 Formulation

Before attempting a convex relaxation for the discriminative model (5.1), it is important to recognize

that a plain optimization over(W, b, Y ) using the sigmoidal transfer will lead to vacuous solutions,

where all examples are assigned to a single clusterj andbj = ∞. A common solution is to add a

regularizer onY to enforce a more balanced cluster distribution. A natural choice of regularizer on

Y is the entropy of cluster sizes,i.e.−h(Y ′1) whereh(x)=
∑

i xilog xi. Note that this situation is

opposite to generative clustering, where one must upper boundd, since otherwise the joint likelihood

would be trivially maximized by assigning each data point to its own cluster.

In the following , we derive a convex relaxation for discriminative clustering based on the for-

mulation

min
W,b,Y

1

t
DF (XW+1b′, f−1(Y )) +h(Y ′1). (5.2)

The key idea is to do so using anormalized equivalence relation matrixin this setting.

By adding value regularization‖WY ′‖2 to (5.2), one obtains

min
W,b,Y

1

t
DF (XW+1b′, f−1(Y )) +

γ

2

∥

∥WY ′∥
∥

2
+h(Y ′1). (5.3)

Then expanding the Bregman divergence according to its definition, we can reformulate the

above problem equivalently as

min
W,b,Y

1

t
F (XW + 1b′)− 1

t
tr((XW + 1b′)Y ′)

− 1

t
F (Y ) +

γ

2

∥

∥WY ′∥
∥

2
+ h(Y ′1) (5.4)

= min
W,b,Y

max
Λ:Λi:∈∆

−1

t
F ∗(Λ) +

1

t
tr(Λ′(XW + 1b′))

− 1

t
tr((XW + 1b′)Y ′)− 1

t
F (Y )+

γ

2

∥

∥WY ′∥
∥

2
+h(Y ′1). (5.5)

Here, based on Fenchel’s identityF (x) = maxz∈domF ∗ x′z−F ∗(z) wheredom denotes the effec-

tive domain of a convex function, the second step follows from replacingF (XW + 1b′) with its

Fenchel conjugate.

Then, by applying a change of variable,Λ = ΩY , and converting the constraints onΛ toΩi:∈∆
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(Guo & Schuurmans, 2007), one can get the following equivalent problem

min
W,b,Y

max
Ω:Ωi:∈∆

− 1

t
F ∗(ΩY ) +

1

t
tr(Y ′Ω′(XW + 1b′))

− 1

t
F (Y )− 1

t
tr((XW+1b′)Y ′)+

γ

2

∥

∥WY ′∥
∥

2
+h(Y ′1). (5.6)

Moreover, the outer minimization with respect toW andb can be achieved by setting

W = 1
tX

′(I − Ω)Y (Y ′Y )†, andΩ′1 = 1. (5.7)

Note that−1
tF

∗(ΩY )+h(Y ′1) ≤ −1
tF

∗(Ω)+c0 wherec0 is some constant (Joulin & Bach, 2012,

Eq 3). Using (5.7) and the fact thatF (Y ) is a constant, one can upper bound (5.6) by

min
M∈M

max
Ω:Ωi:∈∆,Ω′1=1

−1

t
F ∗(Ω)− 1

2γt2
∥

∥X ′(I−Ω)M
∥

∥

2
. (5.8)

Importantly, this formulation is expressed completely in terms of the normalized equivalence re-

lation matrixM , which constitutes a significant advantage over (Joulin & Bach, 2012; Guo &

Schuurmans, 2007). Rather than resort to the proximal gradient method tosolve forΩ givenM

(Joulin & Bach, 2012), which is slow in practice, we can harness the power of second order solvers

like L-BFGS by dualizing the problem back to the primal form, which leads to an unconstrained

problem. This reformulation also sheds light on the nature of the relaxation (5.8).

5.2 Optimization

Fixing M ∈ M, we add a Lagrange multiplierτ ∈ Rt to enforceΩ′1 = 1. By introducing the

change of variableΨ = I − Ω, the optimization overΩ becomes equivalent to

min
Ψ≤I:Ψ1=0

1

t
F ∗(I −Ψ)+

1

2γt2
∥

∥X ′ΨM
∥

∥

2
+
1

t
τ ′Ψ1. (5.9)

The tool we use for dualization is provided by the following lemma.

Lemma 8. (Borwein & Lewis, 2000, Theorem 3.3.5)Let J andG be convex functions, andA a

linear transform. SupposeA dom J has nonempty intersection with{x ∈ domG∗ : G∗ is continu-

ous atx}. Then

min
x

J(x) +G(Ax) = max
y
−J∗(−A′y)−G∗(y). (5.10)
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To apply Lemma 8 to (5.9), choose the linear transformA to beΨ 7→ 1
tX

′ΨM , G(Ψ) =

1
2γ tr(ΨM †Ψ′),1 andJ(Ψ) = 1

tF
∗(I−Ψ)+ 1

t τ
′Ψ1 overΨ1 = 0 andΨ ≤ I (elementwise). Then

the problem (5.9) becomes equivalent to

min
M,τ ,Υ∈Rt×n

1

t

∑

i

[F (1tXi:Υ
′M+τ ′)− (1tXi:Υ

′M:i+τi)] +
γ

2
tr(Υ′MΥ). (5.11)

Note thatF (x) = log
∑

i exp(xi) can be interpreted as a soft max, hence the result is related to the

typical max-margin style model. The loss of each examplei is the soft max ofXi:Υ
′M + τ ′ (a row

vector) minusXi:Υ
′M:i + τi. Hereτi is an offset associated with each training example (cf.bj for

each cluster).

The most straightforward method for optimizing (5.11) is to treat it as a convexfunction ofM ,

whose gradient and objective value can be evaluated by minimizing outΥ andτ . Since bothΥ

andτ are unconstrained, this can be easily accomplished by quasi-Newton methods like L-BFGS.

Interestingly, thanks to the structure of the problem, we can optimize (5.11) even more efficiently by

applying the same change of variable as in Section 4.4. LettingV = MΥ ∈ Rt×n and constraining

M toM3 = {M : 0 �M � I, tr(M) ≤ d− 1}, the problem (5.11) becomes

min
V,τ

γ

2
Ω2(V )+

1

t

∑

i

[F (1tXi:V
′+τ ′)−(1tXi:V

′
i:+τi)]. (5.12)

Denote

L(V ) =
1

t

∑

i

[F (1tXi:V
′+τ ′)−(1tXi:V

′
i:+τi)]. (5.13)

The objective (5.12) again absorbs the spectral constraints onM into the normΩ, and can be

readily solved by generalized conditional gradient in Algorithm 9. The extension toM ∈ M2 =

{M : 0 �M � I, tr(M) ≤ d,M1 = 1} is also immediate.

5.2.1 Rounding

Once the optimal solution is obtained for the relaxed problem, a feasible solutionto the original

problem can be achieved by heuristic rounding. Many rounding schemescan be applied with similar

performance. Following previous works (Guo & Schuurmans, 2007) and (Joulin & Bach, 2012), we

apply spectral clustering (Shi & Malik, 2000) onM to obtain a rounded assignment matrixY ∗, i.e.

using a k-means clustering on the eigenvectors associated with the k-largest eigenvalues.
1SinceM2 = M for M ∈ M, (5.9) can also be recovered by settingG(Ψ) = 1

2γ
tr(ΨΨ′). However, to reformulate

the problem into (5.12), which is the key to efficient optimization, it is crucialto includeM† in G.
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Algorithm 9 Conditional gradient for optimizing (5.12)

1: Initialize V0 = 0. s0 = 0.
2: for k = 0, 1, . . . do
3: SetSk ∈ ∂Ω∗(∇L(Vk)), i.e.find a minimizer ofminS 〈∇L(Vk), S〉+ α

2Ω
2(S) up to scaling.

4: Line search:
(a, b) := argmina≥0,b≥0 L(aVk+bSk)+

α
2 (ask+b)2.

5: SetVk+1 = aVk + bSk, sk+1 = ask + b.
6: end for

5.3 Experimental Evaluation

In this section, I evaluate the proposed convex relaxation for discriminative model through nor-

malized equivalence relation matrix with the same data sets. In order to compare the proposed

convex relaxation with two previous convex relaxations (Guo & Schuurmans, 2007) and (Joulin &

Bach, 2012) , I use the same evaluation criteria as before, the objective value of (5.2) as well as the

classification accuracy.

Parameter settings. To closely approximate the original objective without creating numerical

difficulty, we choose the regularization parameterγ to be reasonably smallγ ∈ {10−6, 10−9} and

report the experimental results for the choices that obtain highest accuracy. Again, the results are

not sensitive to these values.

Algorithms. The new proposed method (cvxDisc) optimizes (5.11) overM ∈M2 by solving

(5.12). I also test on the algorithms of Joulin & Bach (2012) and Guo & Schuurmans (2007), which

we refer to asJB andGS. The result of all the three methods are rounded by spectral clustering,

then used to initialize a local re-optimization over (5.2). Since the discriminative model is logistic,

we use the sigmoid transfer inDF only.

Results. According to Table 5.1,cvxDisc with SC rounding only already achieves higher or

comparable accuracy to bothJB andGS in most cases except Diabetes and Heart. Further im-

provements can be obtained by reoptimization for all data set but Balance. For JB, it only performs

really well for Diabetes whileGS performs the best for Breast Cancer. Regarding the runtime for

solving the respective convex relaxations,cvxDisc is at least 10 times faster than bothJB andGS.

This confirms the computational advantage of our primal reformulation (5.11), compared to other

implementations of convex relaxation. Therefore, in terms of accuracy andruntime, the proposed

cvxDisc is superior to the other two.
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cvxDisc JB GS

Spam E-mail

run time (×104s) 0.005 0.651 2.148

obj w/ SC rounding (×103) 8.0± 0.2 8.7± 0.0 8.2± 0.2

obj w/ SC + re-opt (×103) 7.6± 0.0 7.9± 0.2 7.6± 0.0

acc w/ SC rounding (%) 69.9±14.3 60.7± 0.1 62.8± 9.2

acc w/ SC + re-opt (%) 83.5± 7.8 61.3± 9.2 81.4± 5.6

ORL

run time (×104s) 0.080 0.695 6.372

obj w/ SC rounding (×102) 4.1± 0.1 7.1± 0.0 3.6± 0.0

obj w/ SC + re-opt (×103) 3.5± 0.0 3.8± 0.1 3.6± 0.0

acc w/ SC rounding (%) 59.4± 2.7 20.0± 1.1 54.6± 2.1

acc w/ SC + re-opt (%) 59.5± 2.8 45.2± 2.5 54.6± 2.4

Yale

run time (×103s) 0.050 0.648 6.745

obj w/ SC rounding (×103) 8.6± 0.2 13.2± 0.0 10.2± 0.3

obj w/ SC + re-opt (×103) 7.6± 0.1 8.3± 0.1 7.8± 0.3

acc w/ SC rounding (%) 44.3± 2.5 16.2± 0.6 33.8± 3.6

acc w/ SC + re-opt (%) 46.1± 2.9 34.1± 2.6 42.4± 2.7

Balance

run time (×104s) 0.004 0.155 0.078

obj w/ SC rounding (×102) 5.1± 0.0 6.1± 0.0 4.9± 0.1

obj w/ SC + re-opt (×102) 3.9± 0.0 4.5± 0.0 4.1± 0.2

acc w/ SC rounding (%) 62.0± 2.3 47.0± 1.8 46.5± 6.3

acc w/ SC + re-opt (%) 58.7± 0.0 62.3± 1.8 52.2± 5.2

Breast Cancer

run time (×104s) 0.006 0.479 1.758

obj w/ SC rounding (×102) 8.5± 0.0 10.0± 0.0 9.1± 0.2

obj w/ SC + re-opt (×102) 8.4± 0.0 8.7± 0.3 8.4± 0.1

acc w/ SC rounding (%) 79.8±15.7 60.4± 3.6 72.3±10.3

acc w/ SC + re-opt (%) 80.7±12.5 60.0± 4.2 84.4± 8.8

Diabetes

run time (×104s) 0.012 1.722 2.731

obj w/ SC rounding (×103) 1.2± 0.1 1.4± 0.0 1.3± 0.1

obj w/ SC + re-opt (×103) 1.1± 0.0 1.1± 0.0 1.1± 0.0

acc w/ SC rounding (%) 53.5± 3.1 64.8± 0.0 56.6± 4.2

acc w/ SC + re-opt (%) 58.3± 0.2 58.6± 0.0 58.3± 0.2

Heart

run time (×104s) 0.001 0.212 6.848

obj w/ SC rounding (×102) 7.6± 0.4 8.6± 0.0 7.7± 0.4

obj w/ SC + re-opt (×103) 7.3± 0.3 7.9± 0.0 7.3± 0.2

acc w/ SC rounding (%) 61.7± 5.8 55.2± 0.0 64.4± 9.5

acc w/ SC + re-opt (%) 66.0± 5.7 51.1± 0.0 65.2± 8.4

Table 5.1: Experimental results for the discriminative models.
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Compared with conditional generative clustering (cvxCond andcvxCondJC) discussed in the

previous two chapters,cvxDisc can indeed achieve higher accuracy for most data sets except Yale.

It actually confirms that discriminative models usually would be more efficient in learning more

accurate label prediction.

5.4 Conclusion

In this chapter, we have considered the case of discriminative clustering.By applying a value reg-

ularization, we derived a convex relaxation for discriminative clustering that uses the normalized

equivalence relation matrix. A significant advantage over previous convex relaxations of discrimi-

native clustering with unnormalized equivalence relation is that this new formulation promotes more

balanced clusters and avoids vacuous results.

Moreover, for the optimization process, we can harness the power of second order solvers in

the unconstrained primal form leading to more efficient algorithm. The experimental evaluation

not only shows that the proposed method is significantly faster than other recent approaches for

discriminative clustering, but it also enjoys comparable and even superiorperformance both in terms

of objective value and accuracy.
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Chapter 6

Joint Generative Clustering

In all generative models considered so far, we have ignored the clusterpriorq. This quantity is often

useful in practice for inference at the cluster level, and can often be learned well by joint generative

models. Therefore, in this chapter, we will extend our convex relaxation techniques to this setting.

As before, we formulate clustering as maximum likelihood estimation in an exponential family

model with a latent variableY ∈ {1, . . . , d} (the class indicator). The observed variableX is in

Rn, from which aniid sampleX = (x1, . . . ,xt)
′ has been collected.

We turn to generative modeling, and parameterize the joint distribution over(X,Y) asY→X:

p(Y = j) = qj , (6.1)

p(X = x|Y = j) = exp (−DF (x,µj))Zj(x). (6.2)

HereΘ := {qj ,µj}dj=1 are the parameters, whereq ∈ ∆d, thed dimensional simplex. Again, We

assumeP (X|Y) is an exponential family model defined by the Bregman divergenceDF . Then,

given dataX, the conditional likelihood (6.2) can be rewritten as

p(X|Y ) = exp (−DF (X,Y Γ))Z(X) (6.3)

= exp (−DF ∗(Y B, f(X)))Z(X), (6.4)

whereY denote at × d assignment matrix such thatYij ∈ {0, 1} andY 1 = 1 (a vector of all 1’s

with proper dimension),Γ = (µ1, . . . ,µd) andB = (b1, . . . ,bd), such thatbj = f(µj).
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6.1 Formulation

Different from conditional generative models, here we assume a multinomialdistribution over clus-

ter prior parameterized byw ∈ Rd:

p(Y = j) = exp(wj − g(w)) (6.5)

where

g(w) = log
∑

i

exp(xi). (6.6)

Then by (6.1) and (6.4), the negative log joint likelihood is:

−1′Yw + tg(w) + L(Y B) + const, (6.7)

where

L(Y B) = DF ∗(Y B, f(X)). (6.8)

Same as before, we can add regularizers onw andB, as well as an entropic regularizerh(Y ′1) to

encourage cluster diversity, yielding:

min
w,B,Y

− 1

t
1′Yw + g(w) +

β

2
‖Yw‖2 + h(Y ′1)

+
1

t
L(Y B) +

α

2
‖Y B‖2F . (6.9)

This formulation can be convexified in terms ofM by using the same techniques as Chapter 4

and 5, respectively. In particular, consider the priorp(Y ) as a discriminative modelZ → Y , where

Z can only take a constant scalar value1. Then, the first line of (6.9) is equivalent to

1

t
g(Z1w′)− 1

t
tr(Z1w′Y ′) +

β

2

∥

∥1w′Y ′∥
∥

2
+ h(Y ′1). (6.10)

By treatingZ as theX in Chapter 5, it is easy to show that the first line of (6.9) can be upper

bounded by (ignoring the offsetτ ):

min
s∈Rt

β

2
tr(s′Ms)− 1

t
1′Ms+ g

(

1

t
Ms

)

. (6.11)
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Finally by applying the same technique that converted (4.2) to (4.3) in conditional generative model,

one can reformulate (6.9) into:

min
A,M,s

β

2
tr(s′Ms)− 1

t
1′Ms+ g(1tMs) (6.12)

+
1

t
L(MA) +

α

2
tr(A′MA).

Therefore, by applying convex relaxation techniques developed previous in this thesis, we are

able to derive a convex relaxation for joint generative model clustering with arbitrary Bregman

divergences through normalized equivalence relations. With explicit control over the number of

clusters, the proposed new method can take advantage of an efficient optimization procedure based

on recent development of matrix learning.

6.2 Optimization

To optimize this formulation, letu = Ms ∈ Rt andT = MA ∈ Rt×n. Then withM ∈ M3 =

{M : 0 �M � I, tr(M) ≤ d− 1}, (6.12) becomes

min
u,T

g
(u

t

)

− 1

t
1′u+

1

t
L(T )+min

M∈M3

β

2
u′M †u+

α

2
tr(T ′M †T ).

DenoteS := [
√
βu,
√
αT ]. ThenIm(T ) ⊆ Im(M) andu ⊆ Im(M) are equivalent toIm(S) ⊆

Im(M). So

α tr(T ′M †T ) + β tr(u′M †u) (6.13)

= tr((αTT ′ + βuu′)M †) (6.14)

= tr(SS′M †) = tr(S′M †S). (6.15)

By the same argument as in Proposition 4, the above problem can be reformulated as

min
u,T

Γ([
√

βu,
√
αT ]) +

1

2
Ω2([

√

βu,
√
αT ]) (6.16)

=min
S

Γ(S) +
1

2
Ω2(S), (6.17)

where

Γ(S) = Γ([
√

βu,
√
αT ]) = g

(u

t

)

− 1

t
1′u+

1

t
L(T ). (6.18)

which can be solved by the methods developed previously and the algorithm isoutlined in Algo-

rithm 10. The extension toM2 := {M : 0 �M � I, tr(M) ≤ d,M1 = 1} is straightforward.
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Algorithm 10 Conditional gradient for optimizing (6.16)

1: Initialize S0 = 0. g0 = 0.
2: for k = 0, 1, . . . do
3: SetGk ∈ ∂Ω∗(∇L(Sk)), i.e. find a minimizer ofminG 〈∇L(Sk), G〉+ α

2Ω
2(G) up to scal-

ing.
4: Line search:

(a, b) := argmina≥0,b≥0 L(aSk+bGk)+
α
2 (agk+b)2.

5: SetSk+1 = aSk + bGk, gk+1 = agk + b.
6: end for

6.2.1 Rounding

Once an optimal solution is obtained for the relaxed problem, a feasible solutionto the original

problem can be obtained by heuristic rounding. Many rounding schemes can be applied with similar

performance. Following previous works (Guo & Schuurmans, 2007) and (Joulin & Bach, 2012), we

apply spectral clustering (Shi & Malik, 2000) onM to obtain a rounded assignment matrixY ∗,

i.e.using a k-means clustering on the eigenvectors associated with the k-largest eigenvalues. Then

thisY ∗ is used to initialize an alternating procedure optimizing (6.7) to get a finer assignment matrix

Y .

6.3 Experimental Evaluation

I evaluate the proposed convex relaxation for joint generative model throughnormalizedequivalence

relations with the same datasets and transfer functions as conditional generative models. Besides

the common criteria classification accuracy, we also define the soft accuracy to compare different

methods.

Parameters settings. In order to closely approximate the original objective without creating

numerical difficulty, I choose the regularization parameterα andβ to be reasonably smallα ∈

{10−5, 10−9}, β ∈ {10−5, 10−9} and report the experimental results with highest accuracy. As

before, the results are not sensitive to these values.

Algorithms. The proposed new method,cvxJoint, optimizes (6.12) overM ∈M2 by solving

(6.16). As before, I round the optimalM by spectral clustering to get the assignment matrixY , and

use it to initialize local reoptimization of the joint likelihood (6.7).

I compare the results to those of three soft generative models. The standard soft EM (Banerjee
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et al., 2005, Algorithm 3) is randomly reinitialized 20 times. The other two algorithmsare LG

(Lashkari & Golland, 2007), andNB1 (Nowozin & Bakir, 2008). Since they do not directly control

the number of clusters, I tune their parameters so that the resulting number ofcluster isd, or a little

higher thand which could be truncated based on the cluster prior.

Results. Since joint models also learn a cluster prior, accuracy can take two forms. The hard

accuracy is computed byargmaxy p(y|xi) = argmaxy p(y)p(xi|y) in the case of soft EM,LG, and

NB. Our model outputs a hard accuracy by locally reoptimizing the joint likelihood. For all methods,

we define the soft accuracy based on the posterior distribution:maxπ EY∼p(Y |X)[Accuracy(Y, π(Y ∗))],

whereY ∗ is the ground truth label andπ is a matching between the cluster and label.

As shown in Table 6.1, for linear transfer function,cvxJoint with rounding and reoptimization

achieves superior performance to the competing algorithms, both in terms of hard andsoft accuracy,

except Balance data set. For sigmoidal transfer function,cvxJoint with rounding and reoptimization

achieves better performance for most data sets except Yale and Balance. The reason forLG to

achieve better performance on Balance for two transfer functions is probably exemplar center might

be more efficient for this data set. Moreover, the local reoptimization does not necessarily help

achieve improvement in both accuracy and soft accuracy.

Compared with conditional models discussed in previous chapters,cvxJoint with rounding and

reoptmization achieves higher accuracy for ORL, Yale, and Diabetes. For the rest of the data sets,

the performance of joint model is really close to that of conditional models.

6.4 Conclusion

In this chapter, we consider the joint generative model which takes the cluster prior q into con-

sideration. By assuming a multinomial distribution over cluster prior and applyingthe same value

and entropic regularizer, we extend our convex relaxation technique to this setting. Compared with

closely related joint clustering approaches, our model achieves empiricalsuperior or comparable

performance in term of hard and soft accuracy.

1http://www.nowozin.net/sebastian/infex. Since their approach relies heavilyon the Gaussian model, I put NA in the
corresponding cells in Table 6.1.
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linear sigmoid

acc(%) soft acc(%) acc(%) soft acc(%)

Spam E-mail

cvxJoint1 55.7±1.9 55.9±1.4 62.6±9.0 67.7±11.0

cvxJoint2 60.5±0.0 60.5±0.0 81.5±16.4 79.2±15.1

softEM 60.5±0.0 54.5±2.6 58.2±7.4 52.9±2.0

LG 60.0 0.1 40.6 1.8

NB 60.5 51.4 NA NA

ORL

cvxJoint1 61.0±1.3 52.6±1.5 63.0±2.3 58.6±1.8

cvxJoint2 55.9±1.4 52.8±1.2 58.7±2.7 58.7±2.7

softEM 39.6±2.1 37.0±2.0 44.9±3.1 44.7±3.1

LG 40.0 1.9 36.0 0.5

NB 12.0 5.3 NA NA

Yale

cvxJoint1 47.9±3.8 45.9±3.1 61.9±8.3 55.9±1.4

cvxJoint2 45.8±3.4 45.1±3.1 60.5±0.0 60.5±0.0

softEM 39.6±2.1 37.0±2.0 60.5±0.0 60.5±0.0

LG 35.2 4.8 66.9 0.1

NB 20.6 10.4 NA NA

Balance

cvxJoint1 50.5±2.3 36.3±0.7 51.6±2.7 39.5±1.2

cvxJoint2 46.1±0.0 46.1±0.0 46.1±0.0 46.1±0.0

softEM 46.1±0.0 38.1±2.8 46.1±0.0 39.6±0.0

LG 57.4 0.2 59.0 0.2

NB 54.2 54.7 NA NA

Breast Cancer

cvxJoint1 71.0±11.9 56.9±4.7 70.9±13.0 63.9±8.1

cvxJoint2 65.5±0.0 65.5±0.0 65.5±0.0 65.5±0.0

softEM 65.5±0.0 57.7±4.5 65.5±0.0 55.5±5.4

LG 61.8 0.1 65.5 0.1

NB 69.8 50.3 NA NA

Diabetes

cvxJoint1 56.0±2.6 53.6±2.5 57.5±5.5 57.6±5.6

cvxJoint2 65.1±0.0 65.1±0.0 62.0±3.3 62.6±2.6

softEM 65.1±0.00 57.6±4.6 65.1±0.0 57.4±5.2

LG 56.8 0.1 58.5 0.1

NB 65.1 60.2 NA NA

Heart

cvxJoint1 63.0±6.4 53.3±1.8 63.0±7.4 61.0±6.2

cvxJoint2 55.6±0.0 55.5±0.0 64.0±7.5 61.3±7.1

softEM 55.6±0.0 51.7±1.6 55.6±0.0 52.7±0.0

LG 57.4 0.4 55.2 0.4

NB 55.6 53.0 NA NA

Table 6.1: Experimental results for the joint generative model. HerecvxJoint1 iscvxJoint followed
by SC rounding, whereascvxJoint2 uses additional re-optimization. Best results inbold.
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Chapter 7

Conclusion

The main contribution of this thesis is new convex relaxations for clustering withregular Bregman

divergences modelling all the probability distributions under regular exponential families. One of

the key results is a tighter convex relaxation of hard generative models for Bregman divergence

clustering that also accounts for cluster size throughnormalizedequivalence relations. In addition,

we design efficient new algorithms that optimize the resultingnonlinearSDPs based on recent de-

velopments in matrix learning techniques. By applying standard rounding methods, we observe that

the proposed new convex relaxations for clustering deliver a lower sumof intra-cluster divergences

and more faithful alignment with class labels in practice. Finally, applying our formulation to dis-

criminative models immediately leads tonormalizedequivalence relations, which automatically

alleviate the problem of imbalanced cluster assignment faced by current relaxations. Additionally,

the formulation allows much more efficient optimization.

For future work, it will be interesting to extend these approaches to generative soft clustering.

Also, the analysis of approximation gap for these convex relaxations wouldbe of great interest.

Since clustering has wide application in real-world problems, it would be also worth further inves-

tigation into scaling up the optimization to large applications.
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Chapter 8

Appendix

8.1 Tightness of Relaxation ofM1

We show here thatM1 is not the convex hull ofM. Our proof is by constructing a new convex

relaxation ofconvM that is apropersubset ofM1:

MS := {M : 0 �M � I, γS(M) ≤ d,Mi: ∈ ∆t} ,

whereS=
{

1
‖u‖2uu

′ : u ∈ {0, 1}t
}

, andγS is the gauge function ofS: γS(M) := infλ≥0,M∈λ·conv(S) λ.

ClearlyMS is convex andM⊆MS . Similarly,M1 can be rewritten as

M1 = {M : 0 �M � I, γB(M) ≤ d,Mi: ∈ ∆t} ,

whereB = {vv′ : ‖v‖ ≤ 1}. It is easy to see thatγS(M) ≤ d is strictly more restrictive than

γB(M) ≤ d becauseS ( B. Therefore it is conceivable thatMS ( M1, and the rest of this

appendix section will be devoted to constructing an element inM1\MS . In essence,M1 and

MS employ doubly positive relaxation and completely positive factorization respectively, and their

gap has been well studied (Berman & Xu, 2004). Note it is still open as to whetherMS is the

convex hull ofM. In terms of optimization, it is much more convenient to use the relaxationM1

because theγS(M) term inMS is hard to evaluate. In particular the separation oracle is NP-hard:

maxZ∈S 〈Z,X〉 for a givenX.

To construct an element inM1\MS , we exploit the difference between doubly positive matrices

and completely positive matrices. LetDn denote the set oft × t doubly positive matrices,i.e. real

symmetric matrices that are positive semi-definite and elementwise nonnegative.Let Ct denote the

set oft× t completely positive matrices,i.e. real matrices that can be written asAA′, whereA is a

t× k elementwise nonnegative matrix (k ∈ N). It is well known thatCt ( Dt whent ≥ 5.
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ClearlyM1 is the intersection ofDt with

F := {M : M � I, tr(M) ≤ d,M1 = 1} .

SinceMS ⊆ Ct, to findM ∈ M1\MS it suffices to findM ∈ M1 such thatM /∈ Ct. Berman

& Xu (2004) gave a sufficient and necessary condition for a matrix to be inD5\C5, under mild

assumptions on the structure of the matrix. So we only need to further restrictthis condition toF .

Let t = 5. Consider a matrixM of the form

M =







Y α β

α′ 1 0

β′ 0 1






.

Denote the Schur complement asC = Y −αα′ − ββ′.

Theorem 9. (Berman & Xu, 2004, Theorem 4.2)SupposeY ∈ D3, M ∈ D5, andrank(M) = 3.

ThenM ∈ D5\C5 if and only if

• There are exactly two negative components above the diagonal inC, and

• λ4 + λ5 < 1, where

λ4 = min
1≤i<j≤3

{

αiαj

−Cij

∣

∣

∣

∣

Cij < 0

}

,

λ5 = min
1≤i<j≤3

{

βiβj
−Cij

∣

∣

∣

∣

Cij < 0

}

.

Sinced is a parameter, it can be set in our favor and so we ignore it for now. Alsowe can scale

F by

Fρ := {M : M � (ρ+ 1)I,M1 = (ρ+ 1)1} ,

whereρ > 0 is a constant. So it suffices to findM ∈ D5 ∩ Fρ such thatM /∈ C5, i.e. M ∈

(D5\C5) ∩ Fρ. Now let us apply Theorem 9.

1. Sincerank(M) = rank(C) + 2 = 3 (property of Schur complement), we can assume

C = γγ ′. So

Y = αα′ + ββ′ + γγ ′. (8.1)
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2. SinceM1 = (ρ+ 1)1, we haveα′1 = β′1 = ρ, and

Y 1+α+ β = (ρ+ 1)1

⇔ (αα′ + ββ′ + γγ ′)1+α+ β = (ρ+ 1)1

⇔ γγ ′1+ (ρ+ 1)(α+ β) = (ρ+ 1)1. (8.2)

Left multiply it by 1′, we obtain

(γ ′1)2 + 2(ρ+ 1)ρ = 3(ρ+ 1). (8.3)

So we first randomly generateα andβ that are elementwise nonnegative andα′1 = β′1 = ρ.

Thenγ can be determined by using (8.2) and (8.3) (up to negation).

By (8.3), we must setρ < 1.5.

3. Check ifC = γγ ′ has exactly two negative components above its diagonal. If not, then

regenerateα andβ.

4. Check ifλ4 + λ5 < 1 andY from (8.1) is elementwise nonnegative (Y � 0 is guaranteed by

construction). If not, then regenerateα andβ.

5. Check if the maximum eigenvalue ofM is ρ+ 1. If not, regenerateα andβ.

6. ScaleM down by multiplying it with1/(ρ+ 1). Set

d = (tr(Y ) + 2)/(1 + ρ)

= (‖α‖2 + ‖β‖2 + ‖γ‖2 + 2)/(1 + ρ).

In our experiments, we setρ = 1.25 and found an example matrix immediately.

8.2 CharacterizingΩ(T )

8.2.1 Ω is a norm

Note thatΩ(T ) depends only on the singular values ofT . So it suffices to show thatκ(s) :=
√

f(s)

is a symmetric gauge (Horn & Johnson, 1985, Theorem 3.5.18), wheref(s) is defined in (4.10).

Clearlyκ(s) is permutation invariant,κ(as) = |a|κ(s) for all a ∈R, andκ(s) = 0 iff s= 0. So it

suffices to prove the triangle inequality forκ(s). For anys1 ands2, let t1 = κ(s1) andt2 = κ(s2).

Thenκ( s1t1 ) = κ( s2t2 ) =1, and
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s1 + s2

t1 + t2
=

t1
t1 + t2

s1

t1
+

t2
t1 + t2

s2

t2
. (8.4)

Notef(s) is convex because
∑

i s
2
i /σi is jointly convex in(s,σ), andf(s) just minimizes outσ.

So the sub-level set at level 1 forf (andκ) is convex. Therefore by (8.4),κ((s1+s2)/(t1+t2)) ≤ 1,

and soκ(s1 + s2) ≤ t1 + t2 = κ(s1) + κ(s2). The claim follows.

8.2.2 The dual norm ofΩ

Given a matrixR, the dual norm ofΩ is defined by

Ω∗(R)= max
T :Ω(T )≤1

tr(R′T ). (8.5)

Let the SVD ofR beR = U diag{r1, . . . , rt}V ′, wherer1 ≥ . . . ≥ rt. SinceΩ is defined via the

singular values ofT , again by von Neumann’s trace inequality the maximum is attained when the

left and right singular values ofT areU andV , respectively. Then

Ω∗(R)= max
s:f(s)≤1

r′s, (8.6)

which by (4.10) is equivalent to

maxs,σ r′s,

subject toσi ∈ [0, 1],
∑t

i=1σi ≤ d−1, ∑t
i=1

s2i
σi
≤ 1.

(8.7)

Using the Cauchy-Schwarz inequality, we have

r′s =
t
∑

i=1

si√
σi
· ri
√
σi ≤

(

t
∑

i=1

s2i
σi

)1/2( t
∑

i=1

r2i σi

)1/2

≤
(

t
∑

i=1

r2i σi

)1/2

≤
∥

∥(r1, r2, . . . , rd−1)
′∥
∥ , (8.8)

where the last two inequalities use the constraints in (8.7). The equalities can all be attained by

settingsi = ri/ ‖(r1, r2, . . . , rd−1)
′‖ andσi = 1 for i ≤ d − 1, andsi = 0 andσi = 0 for i ≥ d.

ClearlyU diag(s)V ′ is a subgradient ofΩ∗ atR. Evaluating the dual norm is inexpensive, since it

requires only the topd− 1 singular values ofR.

On the basis of the above discussion, we will then extend our strategy toM2 in the following

section.
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8.3 CharacterizingΞ(T )

8.3.1 Ξ(T ) is a norm

Based on (4.21), it is quite easy to see thatΞ(T ) is a norm. Trivially,Ξ(aT ) = |a|Ξ(T ) for all

a ∈ R. To makeΞ(T ) = 0, we needΩ(HT ) = 0 and‖T ′1‖ = 0. SinceΩ is a norm, so we need

HT = 0 andT ′1 = 0. ThereforeT = IT = (H + 1
t11

′)T = 0. Finally, since bothΩ(HT ) and

1√
t
‖T ′1‖ are semi-norms inT , it is easy to verify thatΞ(T ) also satisfies the triangle inequality.

8.3.2 The dual norm ofΞ(T )

GivenG, the dual norm ofΞ(·) onG is

Ξ∗(G) = max
T :Ξ(T )≤1

tr(G′T )

= max
T :Ω2(HT )+ 1

t
‖T ′1‖2≤1

tr(G′T )

= max
T :Ω2(HT )+ 1

t
‖T ′1‖2≤1

tr((HG+
1

t
11′G)′(HT +

1

t
11′T ))

= max
T :Ω2(HT )+ 1

t
‖T ′1‖2≤1

tr((HG)′(HT )) +
1

t
(G′1)′(T ′1).

We can optimizeHT andT ′1 independentlybecause

Proposition 10. {(HT, T ′1) : T}={(S,v) : S′1 = 0}.

Proof. ⊆ is obvious because(HT )′1 = 0. For⊇, just defineT = S + 1
t1v

′. ThenHT = HS =

HS + 1
t11

′S = S andT ′1 = S′1+ 1
tv1

′1 = v.

By Proposition 10, the problem becomes

max
S,v:S′1=0,Ω2(S)+ 1

t
‖v‖2≤1

tr((HG)′S) +
1

t
(G′1)′v.

Denote‖v‖ = τ , then(G′1)′v ≤ τ ‖G′1‖ with equality attained atv = τG′1/ ‖G′1‖. So the

problem can be further reformulated as

max
τ∈[0,

√
t]

max
S:S′1=0,Ω2(S)≤1− τ2

t

tr((HG)′S) +
τ

t

∥

∥G′1
∥

∥ .

In the inner optimization overS, if we ignore theS′1 = 0 constraint, then by the discussion on how

to computeΩ∗ in Section 4.2, the left and right singular vectors of the optimalS are the same as
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those ofHG. Since(HG)′1 = 0, soS′1 = 0 is automatically satisfied. Then the problem becomes

Ξ∗(G) = max
τ∈[0,

√
t]







τ

t

∥

∥G′1
∥

∥+ max
S:Ω∗(S)≤

√

1−τ2

t

tr((HG)′S)







= max
τ∈[0,

√
t]

τ

t

∥

∥G′1
∥

∥+Ω(HG)

√

1− τ2

t

= max
τ∈[0,

√
t]

1√
t

∥

∥G′1
∥

∥

τ√
t
+Ω(HG)

√

1− τ2

t

=

(

1

t

∥

∥G′1
∥

∥

2
+Ω2(HG)

) 1

2
(

τ2

t
+ 1− τ2

t

)
1

2

(8.9)

=

√

1

t
‖G′1‖2 +Ω2(HG),

where (8.9) uses Cauchy-Schwartz and the optimalτ is attained at

τ∗ =
‖G′1‖

√
t

√

‖G′1‖2 + tΩ2(HG)
(<
√
t).

The optimalT is

T ∗ =

√

1− (τ∗)2

t
argmax
S:Ω∗(S)≤1

tr((HG)′S) +
τ∗

t ‖G′1‖11
′G.

Again, this procedure only requires the topd− 1 singular values ofHG.
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