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ABSTRACT

The motion of a classical charged pa;ticle in the‘field of a
magnetic monopole with a specially chosenvpotential 1s studied from a
symplectic—~geometric point of view. Throughout we emphasiée the global
structure of the space;of golutions and its symmetries. TIn particular,
a gystematic geometric algorithm is pfesented that consgtructs the first

integrals of the motion.
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INTRODUCTION

A magnetlc monopole 1is a 7 .netlc charge. That is to say, a
magnetic flfeld that 1s spherically symme’ ric and falls off as the
l1nverse of the square of the distance from the charge. Despite have
never been found in nature, magnetic monopoles form‘a céntral part of
the current understanding of theoretical phystcs{ rnnning rthe gamut -f
gaugﬁ theories to elementary particles to cosmology.' This popularity
ié due 1in" large measure to the insight gained Into current theories by
sophisticated but solvable examples. \For some flavour | curreal o'
the reader 1is referéed to Balaéhéndran et-al.(1980), Barut et.al.
(1971), Carrigan (1965), D'Hoker ;nd Vinet (1983—1984), Hitch;n (1182),

Jaffe and Taubes (1980), Miller (1976), Moriyasu (1981), Sanders

(1966), T'Hooft (1974), and Wu and Yang (1975-1976).

In this essay we add a specially chosen potential to this magnetic
field and study the motion of a classical charged éarticle In this
fleld (see Boulware et.al.(1976), Schonfeld (1980), and Zwanziger
(1968)). Tﬁis provides a one-parameter family of inequivalent

Hamiltonlan systems that'all “look somewhat like" the Kepler problem

v

(for brevity we now refer to this system as the monopole problem).

o

J.
In the prolegoménon we give some Introductory remarks on the
equations of motion” and then, following Abraham and Marsden, intraduce

the notion of a Hamiltonian system to give a global construction of the

monopole problem. The reader having little sympathy with bundle



constructions and momentum mappings, that 1is to say the current vogue
! ) .
{n mechanics, can proceed directly to chapter two. In defense of this

constructlon, which will seem incredibly abstract and:obfuscating, it

& | :
seems only right to polnt out that this ‘is the only apprvoach T know of

ot

that not only does ‘the construction globally, but presevves the

N
L N
phvsical interpretation of variables.” We prd@ﬁdg enough detafl to
2, TP ’

correct a statement of Marsden (198T)-on._ '_“ﬁ%&gduchon of charge In

i

this construction. :,;/;9_.

""\ \‘;\.v = -
\ - \“‘< N

"‘\\ ) =) .
In chapter one we develop 3 seometric algorithm based on complete

1{fts that finds conserved quantltles of the motion. 1In particular, we
find the (corrected cf. Schonfeld) generators of a symplectic S50(4)
action on negative energy orbits. A by-product of thils symplectlc

approach is the explanation of why the monopole problem is Repler—like.

m

In this chapter, sectlons two and three are essentially original

material.

Chapter two explolts techniques due to Souriau (1974) rto integrate
the equations of motion and determine the topology of energy surfaces.

The idea that these techniques could bhe extended to the monopole

problem is due to Hans Kunzle.

Finally, In the eschata we collect some useful definitions, flx

notation, and explain some notions from mechanics and geometry.



PROLEGOMENON
1. THE MODEL
>
A magnetic monopole has a magnetic field B , with . .
§-5§¥ rE€ R ,oro=drl .
r

Now consider the equation of motioh of a classical charged particle of

charge e 1{n the field of a magnetic monopole (with speclally chosen

potential and setting X = eg)

Yy

-\7(—5+ Xz). (1)

~

Note that when A = 0 we have the Kepler problem. Now in (1) we

define

.
-~

x > + >
J =@mr xr +Ar ,

"o
1
|-

Y

v e

and calculate that J =0 ..

Now

so the motion of the particle lies on a cone of pitch a with



¥

Then R=|[/|=r
>

(1a)

so we have transformed (1) 1into the Kepler problem!

At thils stage one might be tempted to conjecture that tﬁe'reason
this works 1s that {f we rewrote (1) 1{n Hamiltonian form, tﬁen there
~1s ‘a canonical transformation between (1) and the Kgsler problem.
A local construction of a Lagranglan can be done 1f we find a potential
y = Akdxk for the electromagnetic field tensor F = %-Fijdx{A dxj R

where >F = dA .

-~k
Now Fij eijk B and so
_ 1 & 1.3 k
b3 2 3 Eijk x"dx~ A dx in cartesian coordinates



5

= g gl p dO ~Adé in polar coordinatés,(see appendix).
¢

So, by inspection we may choose

A=gr:o;;-pd6[

v

and the Lagrangian has th form

1
L =

7 m v2 + eA o v + V(x)

and so the Hamiltonian is

H = Asv - L

= 5= (p-ea)ltvn _ (2)

where p 13 the canonical momentum and the equatiéns of motion are

Just Hamilton's equations. (see Crampin 1981, Havas 1957).

There is a serious objection to this procedure, howe?er. ‘The
éonstruction‘of the Lagranglan and‘Hamiltonian are only. local, while
thé second order equation 15 globally well defipéd. In fact, one can
prove that there 1g no global Lagranglan for this second-order
equazion. To remedy this we ifatroduce the notlfon of a hamiltonian
system: (the basic geometrical ldeas are ;ell—cobefed in
Abf;ﬁam—Marsden, (1978) Souriau, (1970), Arnold (1978), 2

—

Maclane, (1970)).



(3]

A Hamiltonian system is the triple (P,w,h) where P 1s a manifold,

w Is a symplectic form on P , and h 1{s a functlon called the.

Hamiltonian. The equatioﬂ of motion is glven by 1 w = dh , where Xy,

Xh

is the symplecticfgradient of h. From this geometric viewpoint we can

formulate the monopole problem globally as

P:
w:!
h::
'I
*k
where = mx .

Py

! -

|
(

( B> \{0}) x R

12 1.3 k k

—_——— + .

> r3 Eijkx dx = adx dx A dpk (3)
2

S

Zm 2 r

On the other hand, the Kepler problem is

il
i

v
The first result

P

dxkA dp, ) (4)
Pk

2m r

that may seem initially surprising in view of

(la) 1s that . qer: is no canonical transformation between (3) and

the systems (- ar-

(4). 1In fact a careful examination of the proof c: this shows that

not equivalent by canonical transformation for

any two distiﬁét values of A

"



We thus have an I{nteresting example of a one-parameter family of
fnequivalent Hamfltontan systems that all "look somewhat like” the
Kepler problem. This is explained in 1.2 usfng the geometrical

/
reduction schome of Marsden and Welnsteln (This Is the precise way of
saylng the classical wnotfon of "freezing out the angular varfables™).
For more backgrouand and techntecal details one should consult

Abraham-Marsden (1978), Marsden-Welnsteln (1974), Glachertt (1981),

Iwai (1980); and Marmo et.al. (1979).

occurs in the

It is legitimate to ask why the term
2Zmr

potential in (1) . The reason i{s that this Is precisely the condition
we need to glve us a conserved Lenz-like vector, just as in the Kepler
problem. Furthermore, {t agaln generates an actfion of SO(4) on our

phase space by canonical transformations.

The rest of this sectlon Is devoted to explalning why the magnetic
monopole problem with potential (hereafter the monopole) can be written

globally as the Hamlltonlan system (3 .

This 1is bfobnhlg the most difficult section of the thesis, and,
- (

unless the reader wighes to see this, should probably proceed to the :
notes, keeplng ln midd that this construction ts to show why the

’

\vaddition of a magnetic flelds modifles the geometry of phase space
(that is, the symplectic structure) but does not change the -energy orv
our concept of momentum. The geometry is alt#red because now the

velocities do not Polsson commute.,



. . el
This construction Is based on Sternberg (1977), Weilnstein (1978)
« and Guillemin and Sternberg (1978). See also ‘farsden (1981). .Thc
‘relevant background on priacipal bundles and connectlons can he Fonnd
{n Choquet-Bruhat (1977), Xobavashi{-Nomizu (1963), Poor CIQSL),
§ternberg (1963), or Spivak (1974). For connectlons wlth nonopoles sae:
Cant (1981). Somewhat dlfferent approaches are {n Duval and Horvathy

(1982) and *ontgomery (1983).

The current model for electromagnetlsm {s a principal bundle M

over gpace or space~time Q wlith structure group G = U(1)=S0(2), wlith

2

the electromagnetic fleld tensor F occurlng as the curvature form of

~
‘

A connectlon on M. In this thesfs we are larerested [n
\ .
aon~-relatlvistic mechanics so we treat - 9 as space. That 1is ro say, 0

. 3
= R” \{0}. We also treat the connectfon on M as representing = -
vector potentlal for the magnetic field. We now want to bulld an
assoclated symplectic manlfold P, with a Hamlltonian, that is the

v
Hamiltonlan system for the monopole.

N - *
We choose local coordlnates on the cotangent bundle of M, T M, as

(q,a,z,z) (a filbre chart) where

q €Q
a € G
*
z € R3
* ,
r € g, where g 1Is the Lie algebra of Ge(g = R )

‘ *
The canonical forms on T M have the local expression

D
!

X
- +
?,dq zda

€
1]

qu/\dzk + daadg .



The right action of G on M 1lifts to a symplectic right actfion on
* )
T M with the momentum map (see appendix)

* * ‘
JMZ TM ~» g (q’arz)C) S
Q

To this right action we may assoclate the left action whose momentum

map 1s —JM. Now consider the Hamiltonlan G space (see Abrgham—

N
Marsden (1978) p. 276) S =T G with the éfft G action and canonical
symplectic structﬁre. The momentum map on- S 15

JG: S + R: (8,e) » (e) 1n a local fibre chart. Now the momentum map

*
J¥ on T MxS 1s just J = -J +J

M G We construct the reduced manifold

* -1 . )
P = (T MXS)O as P =17J (O)/(,‘0 where GO {s the isotropy group of

*
0: Gy = {a € G| Ad _,(0) = O} = G.
a
Thus we have an inclusion map 1:
*
i: P + T MxS
which hag the local form
(q,p) + (Q)O’p>—e)0)e)
v N '
Note that now {e} 1is a co—adjoint orbit of G 1in g , which we will
identify as the charge of the particle. The symplectic form mw+mc on
. A

* *
T MxS' pulls back via 1 to give the induced form 1 (mw+wc) = w, on
L

p which has the local form qu Adpk.

To get a map from P to T Q we pick a connection on M. 1In a

Tocal chart for TM we have (qk,a,ak,aa) while a local chart for

TQ . 1is (qk,ak). A connection 1s a way of specifying a horizontal

!

M which we define by the map vy: TqQ + T M

suhspace of T
hsp ( (q,)

q,a)



+
e T Y T A,
*

* *
whose dual vy : T M+ T takes
q’, (q,®) q

qu N qu .
k
da + Akdq
Putting all the cotangent spaces together we get a map
-~ % & *

Y : TM+TQ (q,a,z,8) + (q,y)

wh?re y-k =z +.Ak;.

: *
Given a Hamiltonian 1 on T Q we now pull it back to P to

* * *
get a Hamiltonian HY =h=1 Hy ). On TQ we set
1 2 .

H = 7w Y + V(q) and so h has the local form

) 1 2
h = Ea(p—eA) + V(q).

i A
Making the transformation p + p + ea we find that we can write the
system globally as
| ! 24y
h = m P (x)
1. : 1,3 k k :
[ =2 e 4
w o) r3 Eijkq dq” A dq dqv Adpk

. *
where (q,p) are carteslan coordlnates on ‘P =~ T Q.



2

(A)

(B)

NOTES:

It 1is also interestlng to see why the potential V was chosen the

wé} it was. The reason is primarily aesthetic. Tt turns out that

thls ls the condition we need so that we have an S0(%) symmetry

of the Hamiltonlan. Thls potential does not come from any Flald
- N,

theory that I am aware of, although a potent{al differtng by a

1
factor of two in the — term does come from the Newtonlan theory

e
of Xunzle (1972) as a non-relativistic limlt of thle Wewton-Cartan
equations in Taub-Nut space. Further discussion 1s fn Schonfeld

(1980).

. ’ 7
We now want to look at the cohomology class of.. w_ and note some
\5}- :/,v;;{:/\ »,
ek

interesting consequences and 1mplicétions. We set w = w + daq ,

-~ ~

so we clearly have that w and w are cohomologous.

~

Furthermore, w can be thought of as a form on Q ‘Lastead of P
. L2 :
=T Q. Now S , the unit sphere Iin three—space, is a

deformation retract of @ so we.may evaluate the cohomolozy class

A 2
of w on S . This induced form on S2 1s just the restrlctlon

~

of w since there are no terms involving dr 1in w. Thus the

>

cohomology class of w, call it [Q] , s >

(w] =X [ , sin ¢ d¢ d8
g2

= 41,



Y

12
This further implies that there Is no global formulation of the
monopole problem as a Lagranglan system. This 1s Iin some sense
the sjultimate justification for the 3seemingly abstract approach to
formulating the equations of motion. It is well-known in
geometric quantization that for a classical problem to be
quantiiable the cohomology claé‘ of the\symplectlc structure must
be‘an integral multiple of Planck's conséant. Tn other words

[% w] € Hz(P,Z).
Q

{

This only happens 1f the cﬁ;rge A satisfies
. »* :

’

Y
A=

which 1is exactly the quantization condition of Dirac (1931).



CHAPTER ONE

"

We now proceed to systematically ekploitjthe symmetry of the
monopole with-a symplectic methodology. In this way. we avolid the
rather ad hoc and 'coincidental' approaches of Boulware, Schonfeld, and

Zwanzliger, because the symmetry {s then seen as naturally reflecting

the intrinsic geometry of the system.

1. THE OBVIOUS. SYMMETRY GROUP.

An obvious symmetry is an infiniteminal symplectomorphism

generated by a vector field on P that
(0S1) 1is the complete 1ift of a vector field on Q,

(0S2) 1is tangent to an energy surface.

N

In the tangent formulation this condition reads as |

Lws= 0, 4 1)
" .

where ; is the complete 1lift of x .. In other words, 1if

k
x = £33,
A
~ k L, [k A
then x = £ ak + v Blf Bk. Now L w = 1 dw + di w = dv_w since w 1is
A X X X X

closed. '

13

~
g



Substituting, we get

L w-= a(jfk)

7

To satisfy the condition L w = 0 we must have that

X

coefficients vanish. We now need the follpwing

Lemma: The condition a(jfk) = 0 {implies| f

Proof: ©Suppose we have Df + DfT =0 for all u

that 1is
Df(u),v> + <Lu,dDf(v)> = 0.

By differentiating both sides,‘we get

A
]

DZE(u,w),v> + <u, D E(v,w)> = 0 forrmll

3y playing with these conditions, we derive that

<D2f(u,w),v> = —<u,D2f(v,w)>‘

. .= —<D2f(w,v),u>

and

ik k Soe a . b
dq”adv + Ba(f wkb v Bgfb)dq Adq

he individual

1s an 1isometry.

V,

S U, V,wW.



W

"
D7f(v,u),w>

'

-<D2f(u,w),v>.
Thus sz(u,v) = 0 for all u and v. Therefore, we conclude that

f = Aq + B ,

where A + AT = 0.

The other terms give no further [nformation. TInspection of the

condition LAE = 0 shows that B s zero. This means that f 1is an
element of so(3) , the Lie algebra of S0(3).

We conclude that the obvious -symmetry group of the monoﬁéle is

30(3), with its standard linear action.



2.\ THE MOMENTUM MAPPING

We now wish to construct the conserved quantities associated with
the obvious symmetry group. The technical tool by which this 1s done

{s called the momentum mapping. The reader not acqualnted with this

apparatus should consult the appéndix.

i o

First, let € € g = so(3). Next, solve the equation dJ(§) = 1_ w,
]
p

where £_ is the infinltesimal generator of action corresponding to

P

£E. '(' »
N/

..
S

To do this, we let El, 52, 53 be the usual basis for g. Then

£ m m
Clp 278 md 3¢ 7 Exg Py
so that
_ .2 m s £ m
w == q misdq + d[skm q pz].

(5 )p

We wish to express the first term as an exact differential. - Some

fiddling with indices yields
£ m s k -1
& nd wzsdq = Ad[q lql "],

t
since w = q , we may write.

AL
s 3 -

q

] Lo

Lst

2 k, -1 2 m .
J(Ek) = Aq fql + €. & Py . (2)

and
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P -1
J(&)*(q,p) = {lql q + qxp’£p>.
3 3% 3
Using the identification of s0(3) with ( R ,x) and R with R

by <, >, we get
- - -1 =
J(q,p)*& =<gqxp + Alql "q,5>, (3)
which is the desired form of the momentum map.

Since SO0(3) (s semi-simple, the co—adjoint cocycle associated to

-~

J vanishes and so J 1s Ad*-equivariant. Thus J 1is a homomorphism

v
from g to the Lie algebra of functions under the Poisson bracket.

o

The derivative of J 1is

DJ = Aﬂqn—l[v - HqH2<q,v>°q] + qxw + vxp ,

s (v,w)
(q,p) (
which tells ug that all values of J are regular.

Furthermore, 1if qxp # O , then the iso?&opy group Gu = S50(2) acts

freely on J—l(u),

In this case, the conditions for reduction to work are satisfied
and we may conclude that there 1is a two dimensional phase space Pu

with a unique sympiectic form mu . In other words,



-1
P =J " (u)/G has a unique w
M W U

To examlne the reduced system we work In polar coordinates, where

3

the gymplectic form is

w = X sin ¢ do,de + dr,\dpr + deAdp9 + d¢Adpb ) (%)
and the momentum integrals are
1 \
J = X cos B8 sln ¢ - cos O cot ¢ Pg ~ sin 6 p¢ R
2
J = X sin 6 sin ¢ - sin 8 cot ¢ Py + cos 9O p@ . (5)
3 ) ' v
J =

A cos ¢ + Py

We rveduce at u = (0,0,L) and note that the followlng relatlons
hold:

p¢ = cos © Jz - sin 6 J1 =0

p, = A sln ¢ tan ¢.;

8

These imply that



Py = L - X cos ¢

“

~ L - 22Ty,

After a 1llttle algebra we get

wu = dr/\dpr ,

as the Hamiltonian structure on the reduced phase space

*
P =TR .
u

!
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(6)

We note that the reduced systed is ldentical to the reduced Kepler

sysgtemn.

“
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3. THE HIDDEN SYMMETRY

A hidden symmetry 1is an infinitetimal symplectomorphism on P

that
(HS1) 1s not an obvious symmetry,
(HS2) 1s tangent to an enérgy surface.

Since thre set of all such vector fields forms gn infinite
dimensional Lfe algebra, we will restrict ourselves to a geometrically
meaningful finite dimensional subset which, in keeping with the
approach for obvious symmetries, is again generated by'complete lifes.

'To construct such vector fields take the complete I1ft to P of a
type (1,1) tensor on Q and contract it with the sécond order
equation. Add this vector_fieldAto the complete 1lift of a type (1,0)
tensor (a vector field) on Q &o get a candidate for a generator of a

hidden symmetry.

~L
That 1is, let f € Yl(Q) so that f has the local form

ke
flak

O |
property that f € Jl(TQ), and has the local form

£
f = ® dq . Then the complete lift of f, denoted fc, “has the

k L k.. 2 m
28' ®dv’ + v'3 fm82® dq . (7)

k 2"
= +
£ £,3, dg £ . .



The contraction then has the local form

£+ 69, (8)

~

where

1s the second order equation. We let T be a candidate to generate a

hidden symmetry. That 1is,
T=1 f +x, ' (9)

~

where x 1s the complete lift of a vector field ¥ on Q. We now

wish to solve the equations

(10)

[
[
"
‘O

where E 1s the energy.
With the usual methods of index gymnastics a straightforward, but long,

calculation shows that the first equation impfies that

= +
frz ™ dgnd Crg



(8%}

ro

where - fkﬂ = 6kmf2 y

d = d ' (11)

oy

and N d + d + d = 0.

Letting x = ngk we find also that

;

-~

e =0,

9, g, + 9
D@ e

(12)
- 3

LT g a (5 VT + g )ED]) = 0,
. L :

where agaln we have lowered indices with §&.

<

For the Kepler problem we know that we can solve these equations
(11) ‘and (12) with 3 different solutions
)5

T e 8 5(x%2)m
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where j acts like a tensor index. Using these as our starting point
we find (after much manipulation) that we can agaln solve these for the

monopole problem with the values
©

dyem ™ Cundig ™ S5l aym)?

e =0, a3

=2
T

2.

B 3 ® jkiq

If we let ¥

be the vector field formed with these values of d, s
Rj jk&m
ejkk “and gjk , and find Rj which 1s defined by the relation
\ .
< dr 3 —/IX w o,
.RJ
we calculate that
j_ 3 km_mk k ‘
R me xm” J - q, (14)
and on the cotangent bundle that
& i
i j_ %k om_mk k |
R € mka r 4 (15)

.

From these it 1is straightforward to show that the Poisson brackets



satisfy

v | RN = R :

(16)
(R® RY} = (—2mh)sk£me )

Before discusging these equatlons we first introduce some nntatlon for
constant energy surfaces:
v

"
]

Eé = (x € T*QIH(X) = e}, o

We also define the open submanifolds of P:

e 0

AV C

On ZE we define .

~

e

-1/2_k :
/ R lz o .

b

K8 1= (e2mH)

Now on Xe we have the Poisson brackets:



k2 kf _—m
{JCJE} € er_‘J ,
k 2 ki _m
= 7
(UK} =e " Koy (17)
[~
k 2 k2 _m
; {Ke’Ke} = —ge J .
So we see that under the Poilsson bracket the functions L: and KE

generate the Lie algebras so(3,1) and so(4) on 2e for é =+ and
g = ~ ;espectively.

For the sequel we are only interested In the case 2_ , SO we

. yd .- .
abuse notation and remember that from now on -J°  nmeans J: and K-
means KJ.
E ..

It 13 not difficult to show that the symplectic gradients of the

Jks and st span an energy surface. This means that for any e <90,

S0(4) has a symplectic actlon on P , which 1Is transi{tive on Ze . In

the next chapter we will try to realize thils action. .

.
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Notes:

(4)

(3)

26

The aobvious symmetry of the monopole was Etrsg‘discovered by
Poincaré (1896) while expléining some seemingiy.paradoxical
observatlons relating to experiments done on a Crooke's tube.
In this paper Poincaré proved thét, {n the absence of a
potential, an etéctrically charged partlicle has Llts motlon
confined to the surface of a cone, where the aonopnle 1is
gsituated at the vertex., Furthermore, he showed that the
particle motlon ls a geodeslc, where the metrlc (s the
Euclidean métrtc fnduced by the Lmbeddling of the cone in

R .

o

Thls sort of result was Investigated by Boulware et al
(1976), who openéd these cones out into A plane to discover
that the motion on the cone corresponded to m;tion in an
Lnverse square law potential in the corresponding plane} We
cail such a map an umbrella.map, since the opeaing of the

cone 1s similar to the way an umbrella is openeﬁ (we shall

“have more to say on this map later).

(©)

The hidden symmetry was first discovered by ZwanZigér (1968)
who Introduced the extra term {n the potential so tﬁat the

Aamiltonian would look simpler {n polar coordinates. .
' +

[
~



(D)

(E)

(F)

’

Schonfeld (1980) combined the extra potential term of
Zwanziger and the umbrella map of Boulware to display the -
hidden symmetry. This works because the -wnopole problem 1is

transformed inta the Kepler problem.

The preceeding results, while very pretty, must be viewed as

incomplete since none of the preceediﬁg authors discuss the
»

symplectic structure. Further, the umbrella map must be

viewed as suspect from the viewpolat of symplectic geometry,

gince thg umbrella map is not sympled¢tic. In other &ords,

when confronted with a non—canonical transformation we say

our Hamiltonian creed: "What Ls canonlcal is important and

what 1is important 1is canonical”.

The _ohomology class of 'w shows us that there can be no
symplectic map between the Kepler problem and. the monopole

problem. However; the reduction process shows us that iE is

possiﬁle for two Inequivalent Hamiltonian systems to he acted
on by the same group, wifh the sanme éctton, reduced at |
regular values aﬁd have the resulting redﬁged'systems
equivalent. Abraham and Marsden (L978)'says that it 1is also
possible to reduce exact'symplectic.manifolds and get “
non—exact sympléctic‘forms on the reducéd spaces. Thus it
would seem that there are no cohomqlégyvtheorems for momentum

mappings.
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(1)
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Considering both (E) and (F), we would conclude that the
geonaetric understanding of the umbrella map Is on the level

.

r
of the reducad systems, and not on the phase space level.

The congtruction of the hidden syametry generators can be
: ~1
axtended to f € Jn(Q) for arbitrary positlve n as

follows:

~

Let T =1 1 ....1 EC where £~ 1is again the cémplete
XL X XL

=)
1ift of f . That is, £€ ¢ YQ(TQ) . Now T has the local

.coordinate form for f symmetric in the covarlant part:

kl kn m kl Kn‘Z m
T=v ..v fk K 8m+(v eV v alfk % +
1 n 1 n
k k k
av L.y Tlg B0 e T
*Tfao0m

To see that such counstructions are needed in méchanics,

conslder the n—-dimensional Toda lattice, where a hildden

" symmetry exists és a polynomial of degree n foy every n .

The outstandling problem remains, however. That is, to glve
an algorithmic understandtné of when one can extend such

procedures to generate finite dlmensional Lie groups of



(J)

()

symmetries that include the obvious symmetry group. The
situation 1s not all black howgver, for we see that 1if such a
group is”generated byvvector fields that are the symplectic
gradients of functions polynomial in the vks , then éuch a
construction 1s possible. Such an approach is also promising
if one wishes to construét dynamical groups (see ﬁarle

(1976)).

The reasén for working on the tangent bundle instead of the
cotangent bundle 1is esse;tially simplicity. As an example,
compare the discussions of pélynomial observables in
Woodhouse (1980) and Kostant (1974). The essentlals are not
the complete story, for one has the freedom to construct

1ifts using elther the canonlcal or the charged symplectic’

structure, and it 1s not a priori clear how this can be

gorted out.

The approach I have taken towards symmetries 1s due to the

general philosophy that when one is working with geometric

_structures, one should only use constructions that depend on

.
the given geometry. Concretely, the geometry given in the

system has tﬁo_facets: the symplectic‘sﬁructure of phase
space and the metric structure of the individual cotangent
spaces. I do not invoke the accldental Euclidean structure '
of phase space. I have endeavoured to provide a reasonable

comprehensi?e account of the recent work in symmetries 1in
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mechanics in general and applications t? the Keﬁler problem
in particular. The reader 1s invited to persue the
bibliography and note the different approaches taken. Lie
transformé, Jacobi fieldsnér Lagrangian dynamlics (and
others!) are represented. For Instance, one can see Andrie
and Simms (1972), Kunzle (1969), Levy-Leblond (1970),

Mariwalls (1975), Rogers (1973) and Wolf (1977).

il



CHAPTER TWO

1. REALIZATION

This seems a sultable point to review our journey so,far, and
preview what {s yet to come. In the Tmpoleyouevwov we constructed the
phase space, symplectic structure, and the Hamiltonian so thatlwe knew
precilsely what‘mechanical system we were studying. Then, we set out to
systematically find the symmetries of the system, both obvious and
hidden. Now, we try to realize the symmet;§. By this we mean that we
try to find coordinates so that the symmetry now appeérs as more or
less sélf-evident. Along the way, we also see how the symmetry gives a
very elegant way to Integrate the equatioﬁs of motion.

\ -

Due to the algebraic and compltational methods used {n this

section, we first Eransform*tg dimensionless variabiés to~avoid

excesgsive bulk in calculatlion and formulae.

For k,A 5 0 put

*+ km » >
r==gq r = lrl
A

v =23 v

v K P v vl
2

o= R
AB dt

We then have the relations

>
v=

Sl
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i
>
[
U
lai
X
<
+
r‘l'r—‘
2l 4

¥
u
~
Ex
I
%
L.
|
il
"

-3 k, 2 m k
r Eklmr dr d? + drk dv .

D

j oA
A ghort calculation gives.

> > 2 2
r v

Fie AP - @l

(a)

> 1
vek ;-(r v)‘
> >
j.k = ]
- > x 2 |
kek = 2h(j -1) +'1 .

The dimensionless form of the equations of motion is

Hye

>
= v
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AR

o

= -5 (D
T

Imitating Souriau (1974), we now define a new parameter s (the

»

Levi~Civita time) by

'

> >
g = r*v -~ 2h7t

so that

ds 1 d d
at =5 in other words 15 T ac "

With the use of the previbus formulae, we derive

N

' ar CoL (1)
+ >

" = prev ) ‘ (2)

»> >

r' = rv (3)

> > > > 1 > 1 +» : ' .

LU . - +__ -

r (rev)v "o T = i (4)
> > > 1 1.+ i++ h

= (rev)v + (*é'-“ ;-)r + ;rxv (5)
r .
where ' denotes d/ds. |

Using (1), (2), and (4) we see

oo, - (6)
while differentiating (2) gives -

T = 1+ 2hTt | | @
Differentiating (6) and using (7) ylelds

>

.



Now we call

Faal +
1}
TN
"y ~
~—
-
il

because now

" = 2ht”

N
r"" = 2hr"
which, when translated into

differential system

SYo= AZ,
where
0 1 0
0 0 1
A=Y o..0 o
0 0 2h

(8)

E'' 'Y, The motivation s

(93

(9)
becomes the linear matrix

(£,7) form,

(10)

O - OO

The fundamental solution to the initial value problem (10) with

E(SO) = I4 is
(s=s.)A
Z(s) = e 0

Y

so we have reduced the integration of the equations of motion to

exponentiating the matrix

A.

Using the formulas (1) through (10) we can easily calculate the

relations
, 2 ot =1+ 2
3 ;'112 _ Zh._rvvvza =‘_;'2'm1 )
> >
rer''' = 2ht"T"'""' =0

§

r

For - %'S_h <0 we define 5;.U¢ = -2h, where

i
ls positive.



Now define X and Y by

pr” _ T
X = <+" > Y= (1 +,,>
r - r

n
" We see that X and Y satisfy
Xy =1 = wz
s =1 - wz
XeY =

so for 0 < ¢ <1 an energy surface ZW has the topology of SBKSZ.

2 _
For ¢ =1 1t is easy to see = S7 ., Summing this discussion up
=1

formally, we get the

THEOREM: (TOPOLOGY OF AN ENERGY SURFACE)
3
{s xS 0<yp<1

S po=1

If we write .

we can invert- the mapping

> > > > 0 0
(r,v) - (&1, & ¥ ,¥)
to get
r = 212 [(uz—Yo)i + XO? - ¢§x§]
vou
JRL I
1-Y

We also calculate



36

Fe L % -0 s % $x?]
U .
k = "35 (9% - O + ¥,
u t
2
where uz =1-9 .
With these variables we can easily describe Z_'= U Z < If we put
ocp<t Y
X Y .
A={vy . B=[ 0
0 v
3 ]

then we have the relations

1Al = 1
1Bl =1
AB = 0.

EY
Since j can be described in terms of X and Y, we then may conclude

the

THEOREM: (TOPOLOGY OF § )

z_ = Sisz

where S is the open upper hemisphere of s”

+
These theorems propose the two natural questions:
a) What 1s the symplectic structure on Z_ ?
b) How does SO(4) act on Y 2 /
to which we now tuzn.
When examining theisymplectic form, one rapildly discovers that the
variables X aﬁd Y are quite simply the wrong coorqinates to use. An

alternative 1s to examine the Poisson structure on some related

manifold.
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We define E and F by

=1y
]

JY
Then these satisfy the relations

[0 S
£2 %), 0.,

£, eh) =

i
m
<]

AR

U
o

(11)
7,y = &P T,
For notafional convenlence we also set
> >
E = JEil and F = IFI.
Some calculation then show§
> 1 > > > > :
r = X—[aE + bF + cExF] (12)
> 1 > > > > ’
v = E’[‘XFE + ExF - EEXF]
where
2 -1
A = (¢ (L+Y)F(EF-G))
2 2.0
a = (F (§(1+y-x)+x"))
' 2, 2 2
b = [(EF-G)(x +¥ +¢) = x G - EFE(1+y—x)]
c = xF(E-(1+y—x))

B = (1-8)(EF-G)/v ' ¢

E=Y
Y = 1/(E+F). \ ' " -
We also have the constraints

F=1+E



x2 + 52 = 2(EF—G)/(E+F)2.

We introduce a new variable o by
x = YY2(EF-G) cos o©

£ = —y/2(EF-G) sin ¢

so we work in a seven dimensional space and derive that

(EX o} = coszo[(i-d - %5 e + yf)ES
+ (E-d + gg e - \pf)Fk
S _E > > k
, t (5 d - g e)ExF) T,
F, 0} = ~{, 03,
where d = %;'+ -55 ((5550 - (Zzglo)
N ~ . ZX y
o (5 _ Y
€ 2xy ZX)
1 £ 1
f = (55— - 1+ —)) .
- \2(1-6) 2X2 1-¢ ,
y = (E+F)(E+F- v2(EF-G) sin o).

From all this we sge tha; S0(4Y) acts as two independent coples
of S0(3) on £ and F in the standardﬂway, but in a highly convoluted
way In o. However, at last it is possible to 'sée why' SOé&) 12‘1n

Mot
the magnetic problem, although the global topology can no longer be

seen clearly.

4
Some concluding reharks are now in order. The presence of the

magnetic field makes all calculations involving the symplectic form (or
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dually, the Poilsson structure) absolutely non-trivial. This 1s because -

the Poisson structure 1s
k 2
{r,r"} =0

(G4 = st

k 2 -3 k2 s
{v,v'} =-r "¢ r

One would hope that it would be possible to find a variable v such

that the Polsson brackets {Ek,v}, {Fk,v} -had a very pleasing

8

appearance. However, there is no a priori reason why such a variable

.

should exist.
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(A)

(B)

(c)

(D)

40)

Notes:
¥
The parameter s was first lntroduced by Levi-Civita (1906) to
compactify the two—dimensional Kepler prohlem. The most
systematic exploitatlion of s occurs In the work of Sourlau. ft

13 still completely amazing to me that it works so well tn'thé

. monopole problen.

In the regularized Kepler problem all negatlve energy manlfolds

‘ 3 2 L
have the topology of S xS : The appear&ncetof rest points 1ig
S
completely unique to the'monopole. ‘ /(‘

-

> >
For the variables (E,F,v) one can find 'nice' Poisson structureés.

¥

> v
However, the presence of E*F terms prevents us from actually
realizing any of these structures concretely as the monopole

R )
problem.

One of the disappointing features of the monopole is the lack of a
global symplectic potential; The 'disappointiﬁg' feature of thls
Ls that 1t prevents us from defining action-angle variables In aay
open set of configuration space. Weilnstein has shown how to
construct such variables for non—abellan groups (e.g. SO0(3)), but
it seems an open problem of how to generalize the co&struction to

non—exact forms. Two resolutlons seem possible. The first Is to
. i ;
;

work on a U(l) bundle over phase space where a globél action

exists. Thils seens somewhat unappetizing. The second ls to
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somehow undgrstand the momentum map more fully. For example, 1f

' - )
one pulls hack the Kirillov—Kostant—Souriau'éymplectic form on the
co—adjoint orbit of SO(3) via the momentum map for the Kepler
problem and subtracts it from the canonlcal symplectlc form, one

finds that the resulting presympleétic form Ls everywhere

orthogonal to the angular momentum.



ESCHATA - ¥

A.l Notation and Defintions. w

In this appendix we fix the notatlonal conventions used 1in this

thesis.

1. Polar Coordinates: The transformation from rectangular to polar

3
coordinates 1s defined on an open subset ‘of R~ by the map

1 2 3
T : (r,8,¢) > (9,9 ,9 ) sgiven by

1
q =r cos O sin ¢
{
2
q =71 sin 6 sin ¢
3
q =1r cos ¢

"

.

Orthonormat (with respect to the standard inner product) bases for the

tangentvand cotangent spaces are glven by

v
Coordinate bases in the polar syshem are given by

3 ] ]
(-a?’va_e—)ﬁ)

(dr, de, d¢) .

42



However, these are not orthonormal. Orthonormal, non-coordinate

are given by

(0%, 0%, 6% ) .

These are related to the coordinate frame by the relatiouns

P
T

o8]
>
]

@
1

dr

@
1

r sin ¢ dB

In the body of the thesls we make use of the relations

1 2 3 2
dg - Adq Adq = r sin ¢ drA dp A dO

quA dq2 = r3 sin ¢ do A dO .

43
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3
2. TInvariant Scalars: The usual actlon of S0(3) on R~ induces an

action on R3 which leaves the functlons

1/2
e = (a"q )"
v = (vk k)1/2
a =q vk

invariant. This notation is needed in the calculations on local

equivalence.

3. Summation Convention: The summation convention of Einstein 1is used

congistently unless followed by the sign for no sum: ,Ef

s

4, Differentiation ConventionS;,ﬁQur notatlion for differentiation s

defined by the relations’

af
9, f = — ,
k aqk N
3,f = i%;
k v
ke - 2 |
Pk -

Similar notation 1s used for vector filelds:



5. Background References® For background matertal on dlfferential

geoaetry see the,books by Abraham-Marsden—-Ratiu, Xobayashi-Nomizu,
Poor, and Spivak. Material on characterlstlc classes can be found In
Bott—Tu, Mllnor-Stasheff, and Valsman. For mechanles one should
consult Abpaham—Marsden, Arnold and Sourlau. However, the best single
reference in the gplirit of this thesls Is the book by Woodhouse on

geometvlc quantlzation.

6. Notions from Differential Geometry

We consistently follow the notatlon of Abraham-Marsden (1978).
For a manlfold Q we let TQ denote its tangent hundle and let T*Q
dennte Lts cotaangent bundle. _7:(Q> denotes the tensors of type l
(m,n) on Q . For any teunsor T E.f:(Q) we may define a tensor
TCE 5':(TQ% called the complete.lift of T . We give local coordinate
descriptions (which are easlly checked to bhe anarianﬁ) for types
(1,0) and (1,1) 1in the bod, of the thesis. For the deflnltive

treatise on this branch of differentlal geometry see Yano and Ishihara

(1973).

If G 1s a Lie grouﬁhacting on a manlfold Q and the Lle algebra

of G 1is g , then the fnflanitesimal generator of ‘actlon on Q (a

fl

. Good

Q

references for Lie groups are Abraham-Marsden (1978), Cohn (1957),

vector field) corresponding to § € g 1Is denoted by §

Chevalley (1946), and Helgason (1978).
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7. The Momentum Mapping.

Let (P,w) be a connected symplectic manifold and & : GxP + P g

symplectic action of the Lie group G on P . By this we mean that

Yok *

for each -a € G , ¢aw = w . Let § have Lie algebra g and dual g

*
We then call the map J : P » g a momentum mapping for the action ¢

if for each § ¢ g

dE(E) = 1E w
P
where 3(5) : P+ R 1is definea by 3(5)(x) = J(x)*§ . The important
thing to remember 1s that this is siﬁply the generalization of the
geometric Ldeas hehind translational and rotational favariance giving
us linear and angular momentum. For more details see.Abraham—Marsden
(1978), Soufiau (1970), Woodhouse (1980), Cushman (1974) and

Atiyah—-Bott (1984).

Y

N

vl
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