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Abstract

Thermo field dynamics, which is a quantum field theory for finite temperature is
very useful for practical calculation because the Feynman diagram method is retained. We
discuss in detail the various aspects of equilibrium thermo field dynamics, showing how
the results of the usual quantum field theory can be rewritten in terms of the thermal doublet
notaticn. We then use the thermo field dynamics to recast the results of quantum
electrodynamics, discussing in particular the electron and photon self-energy and the vertex
diagram. At the end we discuss how these changes effect the radiative corrections to
Coulomb scattering, ard apply the results to the famous Lamb shift. This is a very
interesting calculation in light of the very accurate experimental measurements of the Lamb

shift.
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| Ihtrod ubtion

The early part of this century saw a revolution in physics, the likes of which had
never occurred before. Today this is known as the quantum revolution. It ended with the
formulation of quantum mechanics (QM) by 1925 [1]. This was followed by many
successful applications of the theory to physical phenomena. The final form of the theory,

as known today, was the work of Dirac.

Although the theory did have many successes, it also had weaknesses; it was not
Lorentz invariant. However, there were many new developments by 1935, the year of the
famous paper by Yukawa. These new developments in reiativistic quantum field
theory(QFT) were initiated by the Yukawa meson theory which opened the new high

energy physics with many particles.

The relationship between QFT and classical field theory is analogous to that
between QM and classical mechanics. The classical field quantities are replaced by
noncommutative objects referred to as the field operators* . During the reconciliation of

QM and special relativity, two major differences arose between QM and QFT [2] :

1) in QM, the position c-number X is replaced by the operator q, whereas QFT

preserves the position.

2) qrantum mechanics treats systems with a finite number of degrees of freedom

and QFT treats systems with an infinte number of degrees of freedom.

This second difference between the two theories is a very significant one. In QM, one

always gets the same answer to a physical problem, but this need not be the case in QFT.

* Particles that obey Bose-Einstein statistics satisfy commutation relations, whercas particles that obey
Fermi-Dirac statistics satisfy anti-commutation relations.



Unitary Equivalent and Inequivalent Representationys

When working on a problem in QM, one has several choices of representations in
which to solve the problem. For example, a problem might be solved with less effort in the
coordinate representation then in the harmonic oscillator representation. However, once the
problem has been solved, it has in essence been solved in any representation. This is
because in QM it is possible to change from one representation to another through a unitary
transformation. Thus the representations in QM are referred to as unitarily equivalent
reprecentations.  Hence the answer to a physical problem is always the same in QM ,

independent of the representation.

The situation is quite different in QFT. The representations in QFT are frequently
unitarily inequivalent® [3,4] in the sense that a vector in one representation cannot be a
superposition of basic vectors in another representation. Hence, it is not possible to change
from one represcntation to another through a unitary transformation. It is possible to get
different answers to the same physical problem just by solving it in different
representations. This apparent malady is a direct consequence of the fact that QFT treats
systems with infinitely many degrees of freedom. This infinity is not just 'very large' as

one miglit think, but is in fact genuine infinity.

To understand this, consider a system of fermions. The states of the system are
labelled by 1 =0,1,2,... . We consider fermions because the particle number in the i-th
state can only be 0 or 1. If the particle number is specified by n; then the state of a many
body system can be specified by a sequence of all n;. Thus for exainple, 10011... may
represent such a state. This is equivalent to the binary real number 0.10011... . Because

the set of such numbers is not countable, neither is the set of states being considered.

* The word unitary cquivalence in quantum mechanics is used in two different ways : one is the existence
of unitary mapping (or correspondence) between two representations and another is the equivalence through
the superposition of vectors. Here we are referring to the latter definition.



Using superposition of these state vectors, other sets of 'orthogonal state vectors may be
constructed. However, the normalizability of cach state vector is something that is essentiai
for the theory to be a physical theory. Ti:is requires the Hilbert space to be separable® and
the sef of the basic orthogonal vectors to be countable. This is the same as saying, that the
probability concept must be preserved. Thus, it is that a countable set is needed. This can
be chosen from the uncountable sets. However, the question then asked is how to choose
this set since there are many possibilities. These different sets correspond to the different

representations and so we arrive at unitary inequivalence.

Although, this may seem to be a problem at first, it is in fact quite advantageous
especially in condensed matter physics. Thus the different countable subsets correspond to
the many phases exhibited by many body systems; for example, normal conductivity and

superconductivity are described by different subsets.
The Dual Structure of QFT

During the development of QFT, it was essentially an analytical method for the
physics of elementary particles. However, it soon became clear that QFT also supplies a
language for the description of quantum many-body systems. This was chiefly due to the
development of the Fock representation. This representation classified the states of a
quantum system by a number series ; for example as explained earlier for a system of
fermions. In light of this, it is clear that just such a representation is required for the

description of a many-body system.

Quantum field theory was initially formulated in terms of the interacting Heisenberg

fields and observable free fields. The basic relations were expressed in terms of the

* A space h is said to be separable, if it contains a countable basis {§n) such that any vector & in i can be
approximated by a linear combination of &, (i.e. Zcn&n) to any accuracy. In other words, forevery &inh
and any € > 0 there exists a sequence {cy) such that [§ - Zncn&pl < € for arbitrary e.



Heisenberg fields, but the theoretical results were expressed in terms of the free fields. In
condensed matter physics for example, some of these free fields are the phonons,
magnons, plasmons etc. Hence it is realized that QFT has a dual structure and that to solve
a problem, one need only find a mapping between the Heisenberg fields and the incoming
fields. This mapping is referred to as the dynamical map. The dynamical map is a
generalization of what is called Haag expansion or the LSZ expansion [5] in zero
temperature QFT. In this casc the free fields are nothing else then the asymptotic fields;
still the word, dynamical map, is used even with non-zero temperature field theory. The
dynamical map often becomes very complicated. For example, even if the Lagrangian has
a symmetry, its phenomonological appearance may lose this symmetry because the

dynamical map leads to the spontaneous breakdown of symmetry.
Thermal Degrees of Freedom

It might be obvious to think that since every object has a finite size, then it should
have a finite number of degrees of freedom. However this is usually not true. For
example, it is well known that the hydrogen atom has infinitely many degrees of freedom
because the electron and proton interact with the electromagnetic field (i.e through the Lamb
shift). Furthermore, a finite sized system has a free boundary surface which contains
surface waves such as the surface phonon. Thus it quite possible for a finite system to
have infinitely many degrees of freedom. As already discussed, such a system has many
choices for the state vector space. These choices include solutions which describe the
coexistence of classical and quantum objects by creating classical objects through boson
condensation. This, although being advantageous, is also a weak point in QFT. This
weakness results in the lack of uniqueness in the solution for a given problem. So it
becomes obvious that additional degrees of freedom are required. These degrees of

freedom are the thermal degrees of freedom.



On the other hand a quantum field theory with thermal degrees of freedom is
expected to be self contained, because it is capable of describing many phases without
sacrificing uniqueness. Such a theory can derive classical phenomena from quantum origin
as well as describing transitions among different phases. Hence QFT must be revised to
include the effects of temperature. The first attempt at the formulation of a field theory at

finite temperature was by Matsubara.
Matsubara Formalism

In statistical mechanics, the important quantity is the average of a quantity, say A

for example. This is given by

(A= —1—Tr{Ae PN ) (1.5.1)
y/(5)
where
h =H-uN | (1.5.2a)
Z@) =T e™] (1.5.2b)
B= E;_T (1.5.2¢)

and | is the chemical potential. The quantity Z(B) is the grand canonical partition function.
In order to apply QFT to many body problems, an analogy must be developed between
QFT and statistical mechanics. This analogy was discovered by Matsubara in 1955 [6] .
He was able to formulate the calculation of the vacuum expectation value of the operator A
in terms of the theory of the interaction representation which was developed originally in
QFT. He then developed a remarkable method for computing the partition function in

which the Feynman diagram method could be applied.

Later it was found by Abrikosov et al.[7] and Umezawa et al. [8] that the
Matsubara theory can be formulated in terms of the Feynman diagram method with discrete

complex energies, the so called Matsubara frequencies. These appear both on internal and



external lines of Feynman diagrams. The internal energies must be summed. This
summation has several available prescriptions. The external energies define the Green's
function at a discrete set of points in the complex energy plane. This leads to a difficulty
because for answering dynamical questions, a knowledge of Green's functions with real
continuous energy (i.e. real time Green's functions) is required. Hence the Green's
functions in the Matsubara formalism must be analytically continued from the complex
plane onto the real axis. Although this is feasible, it is quite difficult in the case of several
external energies. Furthermore, the analytic continuation is not unique even in the case of a
single external energy. In addition, many properties of operator formalism such as the
dynamical map and Ward-Takahashi identities are difficult. Thus a finite temperature

theory with full use of quantum field theory with real time is desired.

In 1971, Umezawa, Mancini and Leplae [9] presented a method which
also allowed the use of the Feynman diagram technique. They used this method in the
construction of quantum field theoretical formulation for superconductivity with an
effective use of an operator canonical transformation which easily treats the Coulomb
potential effect. This method was put in a systematic form by Takahashi and Umezawa
[10] in 1974. Unlike the Matsubara formalism however, their method was the real time
finite temperature field theory. Takahashi and Umezawa nared it thermo field dynamics
(TFD). Even today, with the existence of several formulations for field theories at finite

temperature, TFD remains one of the most useful for practical calculations.

With the increasing popularity of TFD, and the very accurate measurements of the
Lamb shift, we are motivated to calculate the temperature corrections for the Lamb shift.

Below we give an introductory account of the Lamb shift.



Introduction to the Lamb Shift

In the Dirac theory, the energy levels of a hydrogen like atom (i.e. for an electron in
a pure Coulomb field) with nuclear charge —Ze depend on the principle quantum number n
and the total angular momentum j. The first few low-lying energy levels are listed in table
1-1.

Table 1-1 : Low-lying energy levels of
atomic hydrogen

n ! j Enj
1S1p 1 0 172 mV 1 - 222

2 | 2 0 12 m\/ m&z;zhi
P | 2 1 12 m\/ _1_+il§—_z3q3
2P 2 ) 3/2 o 4 - 722

2

From this table it is seen that the 2S; and 2Py, states are degenerate, being the two
eigenstates of opposite parity corresponding to the same n and j. Also the 2P3; state is
higher in energy then the 2Py, state; the difference being the fine-structure splitting due to

the spin orbit interaction.

When the above predictions were modified to take into account the hyperfine
splitting of each level due to coupling between the electron and proton spins, they were in
complete satisfactory agreement with experimental data prior to 1947. In 1947, Lamb and
Retherford reported a shift of the 28y, levels upward relative to the 2Py 2 levels.” [11]
This shift subsequently referred to as the "Lamb shift" breaks the degeneracy of levels with

the same n and j but different 1 and arises from the interaction of the electrons with the

* Lamb and Retherford measured the 2P3 - 281 transitions as a function of an applied magnetic ficld.



fluctuations of the quantized radiation field (radiative correction). This is illustrated in fig.

1.1

The experiment of Lamb and Retherford was the first decisive one to measure the
Lamb shift in the hydrogen spectrum. However prior to this experiment, spectroscopic
methods had indicated an anamoly in the hydrogen fine structure. This had been
interpreted by Pasternack [12] in terms of an upward displacement of the 2S;; level by
0.03 em~! (approximately 1000 MHz), due to a repulsive deviation from the Coulomb
potential. Also Uehling [13] had shown earlier that vacuum polarization had the effect of
displacing the nS levels for an electron moving in a hydrogen-like atom. The displacement
is

2

3
AE(nS) == R 1.6.1
(nS) 1573 ( )

where R is the Rydberg constant. For hydrogen and n=2, the frequency displacement is

Av =-27 MHz

This is of opposite sign and about 40 times smaller then the Lamb shift, so it is not the
major contributor to the Lamb shift. It is an important effect however and is discussed

below.
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Fig. 1.1 Low-lying energy levels of atomic hydrogen (not to scale)

Vacuum Polarization

We consider the influence of the vacuum on the definition of the charge and upon
the interaction between two charges, in terms of the Dirac hole theory. Thus a positive-
energy electron (positron) electrostatically repels the electrons in the negative energy sea,
thereby polarizing the vacuum in its vicinity. The charge density of the electron py(r) plus

the polarized vacuum pp(r) measured relative to the vacuum is illustrated in fig 1.2. The



10
test charge at a large distance is f d3r [po(r) + pp(r)] = e which is the physical charge. If a

test charge is probing at distances rg < R the apparent charge becomes more negative until
as rg—0 the charge becomes f d3r po(r) = ep which is referred to as the "bare" charge and

legl >lel, This is why we get a shift in the hydrogen atom spectrum from vacuum
polarization. In other words the s levels are lowered relative to those with angular

momentum 1 0, since the | =0 wave functions bring electrons close to the protons.

Po® Pp® Po+Pp

J

Fig. 1.2 Effect of vacuum polarization on the electrons charge density.

Po is the charge density of the "bare" electron and Pgthat of the induced
polarization "cloud" of virtual electron-positron pairs.

In addition to the vacuum polarization (self-energy of the photon), the radiative corrections

are also due to the self-energy of the electron, and this is discussed below.

Electron-Self Energy

Before the advent of quantum mechanics, the electron when considered classically

to be a particle of charge e mass m then its radius a was given by

a=-- (1.6.2)
mc?



This expression is obtained from the assumption that the electrostatic energy of an.electron
at rest (i.e. the electrostatic self-energy) accounts fully for its mass : e2/a =mc2 The
difficulty with this result is that if the radius is not zero then the stress of electromagnetic
field will tend to explode this charge distribution. On the other hand, if 8 = 0 then the self-

energy is infinite. This problem persisted in quantum mechanics where it was noted that

the self energy behaves as the limit e2/a for a—0, just as in the classical case.

The situation became worse in quantum field theory where there is in addition to the
electrostatic self-energy, the electromagnetic self-energy due to the intzraction of the
electron with the radiation field. The electromagnetic self-energy can only be calculated by
use of pertubration theory. For e:ample, for a free electron with momentum p and energy

E(p) = (p m2c2)1/2 the self energy W(p) is found to be [14]

- 2h202
W(p) S-h-c-th(p) J k dk (1.6..3)

This expression is quadratically divergent whereas the classical result is linearly divergent.
Oppenheimer [15] had done a similar calculation for an electron in a bound atomic state
and was led to conclude that self-energy effects cause infinite displacement of spectral

lines.

The situation was very critical at this time. So it was that Bethe presented a simple
calculation for the Lamb shift that was in remarkable agreement witk observation [16]. It
was here that the idea of renormalization first became concrete, although the term and the
formal procedures did not originate till much later. Bethe's calculation for the nS level shift
treated the electron non-relativistically and his argument went like this : the leading term in
the electron's self energy diverges linearly as e?/a. This is the same for a free electron as
for a bound electron with the same average kinetic energy. Subtracting this term (mass

renormalization) and identifying the remainder as the level displacement gives

11



AE(nS) = 432393-5- mczln%- (1.6.4)
mn

where E is the average excitation energy for the nS state. In the limit K—eo, this result is
still infinte. This is where Bethe showed great insight by saying that the subtraction
mentioned above "...would set an effective upper limit of mc? to the frequencies of light
which effectively contribute to the shift of the level of a bound electron.” Thus setting K =

mc2 gave 1040 MHz for the level shift "in excellerit agreement with the observed value".

In addition to Bethe's result, Welton [17] had given a very interesting qualitative
description of the Lamb shift. Welton treats the electron non-relativistically in its
interaction with the vacuum fluctuations of the electromagnetic field. The calculation is
based on the following reasoning : Since the dynamics of a normal mode of the
electromagnetic field is equivalent to that of a harmonic oscillator, each mode upon
quantization acquires a zero point energy of @/2. This gives the result that there are now
fluctuaiing electromagnetic fields even when no external fields are applied. Now the
average field strengths are zero but the mean square values of the field strengths are not.
These mean square values give a mean square value for the electron’s position coordinate
due to its coupling with the electromagnetic field. The amplitude of this "jiggling" is what
Welton estimated. It implies an additional interaction energy 1/6((8r)2)|\4!,,(0)l2 from the
smearing out of the Coulomb potential V(r) seen by the electron. This gives a shift, to

lowest order of

AE,(Lamb) =13E2a<(8r)2>|\p,,(0)|2 (1.6.5)

The expectation value {(3r)2) is approximated to be

((8r)?) =(Zﬁ 1n—1—) [Lf (1.6.6)

n Zao/'M

which then gives

12



AE, =

403 )
%Zﬁ-(mzla] (15 a2m)yo (1.6.7)

For a hydrogen atom withn=2,Z =1, 1=0, (1.6.7) gives a level shift of 1000 MHz

accounting for most of the measured shift of the 251 level in the hydrogen atom.
Plan of the Thesis

In the next few chapters, we first give a comprehensive review of equilibrium
thermo field dynamics. In chapter 2 we introduce the tilde-field, and discuss its physical
interpretation. Also we show how the density matrix formalism may be incorporated into
TFD. Chapter 3 discusses the fundamentals of TFD where we list the thermal conjugation
rules that relate the tilde-operators to the non tilde-operators. Also we introduce the
Bogoliubov transfornmation for the annihilation and creation operators of the thermal
vacuum. In chapter 4 we discuss the thermal state condition, which is fundamental to TFD
allowing for the construction of generalized annihilation operators. Chapter S shows how
the Heisenberg equation can be recast in the thermal doublet notation. Also the dynamical
map and the Kubo-Martin-Schwinger equation are discussed. In the next chapter, chapter
6, two-point Green's functions are discussed. A few common examples are given. The
following chapter discusses the spectral representation of the two-point function, and the
chapter after presents their analytic properties. The final chapter on the review of

equilibrium TFD discusses the Bethe-Salpeter equations.

The remaining part of the thesis presents quantum electrodynamics in the context of
TFD. First we derive the electron and photon propagator, and separate them into a part
which is independent of temperature and a part which is dependent on temperature. In this
way the results of the usual QFT can be put into the form of the zero temperature part plus
the finite temperature corrections. Hence, we then present the results of the self-energy of

the electron and the photon, and also the vertex funiction. The next chapter discusses the
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electron propagator in the presence of the external field, especially its non-relativistic form
which is useful for the evaluation of the Lamb shift. The following chapter discusses the

radiative corrections to Coulomb scattering and a calculation of the finite temperature

correction to the Lamb shift.



Thermo Field Dynamics
The Thermal Average and the Tilde Field

It has been known among axiomatic field theorists that a self-consistent field theory
at finite temperature requires the doubling of the degrees of freedom. This was true also in
thermo field dynamics, which introduced a fictitious field denoted by a tilde, i.e. A for
example. In this way, every operator A has its associated tilde operator A and so the
number of degrees of freedom is doubled. In so doing, the statistical average of a quantity

A, was expressed by the vacuum expectation value of the operator A.

The starting point for thermo field dynamics was to define a temperature dependent
vacuum state [0(B)). This state relates the expectation value of a quantity F to the average in

the grand canonical ensemble.
(O(B)IFIO(B)) =-Z-?B—)2 (niFin)eFE (2.1.1)

In addition, we have the relations hin) = E; In), {nlm) = 8ym. This state which is called

the thermal vacuum cannot be constructed if the original Hilbert state is retained. This can

be seen by expanding the vacuum in terms of the state In) as

Ioas»=; In)fa(B) (2.1.2)
From this we immediately get
fn(B)fa(B) = ——ePE 5,y (2.1.3)
Z(B) .

This is not possible if the fy(B) are simply c-numbers. However, the expression is
reminiscent of an orthogonality condition in a Hilbert space in which the fp(f) are vectors.

Such a representation is realized when an additional fictitious dynamical system is

15



introduced. All quantities associated with this system are denoted by a tilde. The new

fictitious system is characterized by the Hamiltonian H and the vectors ) so that

HIR) = E,I) (2.1.4)
(nlm) = 8ym (2.1.5)

In addition, the following definition is made

 (mlFin) = (FE" 1) (2.1.6)

This definition proves to be very convenient in the development of TFD. Thus, we can
write

fo(B) = Iif) e PES2 Z71/2(R) 2.1.7)

so that the thermal vacuum is given by

0(B)) = Z"V2(B)Y, ePEs2in ) (2.1.8)

Thus the relation (2.1.1) is satisfied. Recently, it was found that the thermo field dynamics
can overcome some of the difficulties which ari<c in the density matrix formalism when a
thermal situation is changing in time. Here too, the tilde field plays a decisive role. This is

explained below.
The Density Matrix Method

In the language of the density matrix p, the basic relations of statistical mechanics

are given by
i% p=[H,p] (2.2.1)
_TripA]
B = o (2:2.2)
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The first equation is just the familiar Liouville equation and the second equation is the

thermal average. The trace is expressed by
Tr[A] = Y, (mlAlm) (2.2.3)
m

Now, it will be remembered from the earlier discussion that for systems with infinitely
many degrees of freedom, there are infinitely many possible choices for the basic set <mi.
This choice gave the freedom to express the different phases of a system by different
choices of the basic set. For example, {Im;)}, {Im3)} could represent two phases of a
system. When this system undergoes a transition from the first phase to the other, then we
should be starting with Im); and ending up with Im)2. This would imply that the basic set

should be dependent on time as denoted by Im);.

In this way, the trace (2.1.3) becomes time dependent as well and is written as
TrfA] = Y, (mlAim), (2.2.4)
m

This time-dependence introduces a complication. However, this can be overcome if
statistical mechanics is translated into QFT. We now show that this translation applied to
the Liouville equation again requires the doubling of the degrees of freedom. In making
this translation, two operations are distinguished. The first is operating on the left of the
density matrix p as Ap and the second is operating on the right side of p as pA. The latter
operation is considered the same as the left operation on p by the tilde conjugate of the
operator A as denoted by Ap (i.e. pA = Kp. In the density matrix formalism these doubled
operators were called the superoperators [18]. Thermo field dynamics treats
superoperators as ordinary operators. Hence the doubling of the degrees of freedom
emerges. With this distinction, H in the Liouville equation is replaced by fi=H-A"

[19].

* In a standard formulation of non-equilibrium statistical mechanics, H is denoted by L, the Liouvilian.

17



Thus if one considers the harmonic oscillator with annihilation and creation

operators a and at satisfying

la,allg=1 (2.2.5)
where ¢ = 1 for bosonic and -1 for fermionic oscillators respectively, then when the
degrees of freedom are doubled, new hidden oscillator variables appear, @ and ET, which

satisfy

&, %iT]G =1 (2.2.6)

The tilde operators commute with the non-tilde operators. The number operators are thus
given by

n=ah (2.2.7a)

n=aa (2.27b)

Now, to express the average of A by the vacuum expectation value, let M stand for a

complete set of hermitian mutually commuting observables and let us denote its tilde

conjugate by M. Their corresponding eigenvalues are denoted by m and , respectively.

It should be noted that the sets {m} and {m} consist of common elements. So now, if A

has only non-tilde operators then

(m,, MlAlmy, [') = (my|Almo)dmm’ (2.2.8)

From these expressions, we define

10y = p*Y Im, fii) (2.2.9a)
m
O'=Y (m,ip' ™ (2.2.9b)
m
Thus the average of A is given by
(OIAI0) = Tr p! ~®Ap® =Tr pA (2.2.10)

for any value of a.. Now, if we call (2.2.9a,b) the vacuum states then the thermal average

has been expressed by the vacuum expectation value. So with this doubling of the degrees

18



of freedom, both the thermal average and the Liouville equation in statistical mechanics are

formulated in terms of QFT.

The question to be asked at this point is : what is the physical significance of the
tilde field? As we will soon see, it can be shown that the creation of a physical particle is
equivalent to the annihilation of a tilde particle and vice versa. In this way we naturally
associate the tilde-particle with a hole. We cannot however, interpret the tilde-particle as a
physical anti-particle. For an isolated system, when a quantum of energy is annihilated, we

describe it as the action of the operator a.(k) on the system. Now, if the system is

19

immersed in a reservoir* , exchange of energy between the system and the reservoir can

occur. This temperature effect (exchange of energy) can still be described by the operator
a(k) because the effect is manifest only through the structure of the operator a(k) (i.e. a
Bogoliubov transformation as explained below). Now, since the presence of the reservoir
maintains a certain number of excited quanta, the system can absorb energy in two ways.
The first way is through the excitation. of additional quanta. In other words, positive
energy particles are created in the system. Now, since with each physical particle we
associate a hole, the energy of the system can also be raised by annihilating a hole,

associated with a particle in the reservoir, in the system. For this second way, we say that

an & quantum with negative energy —hiw(k) and negative momentum —tk is annihilated

in the system.

The operator for the two processes are denoted by af(k, ) and (it(k, B)

respectively (fig.2.1a,b).

* The reservoir in field theory has the same role as in ordinary thermodynamics. That is, the temperature of
the system is controlled without any changes to the reservoir itself. In QFT, the reservoir is subject to the
rules of QFT and we say that it has an infinte number of degrees of freedom.
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We thus expect a.(k) to be linear combination of a(k,B) and &f(k,B). Specifically, we

write

ack) = c(k, Bk, B) +d(k, PG (k, B) @2.2.11)
The c-numbers c(k, B) and d(k, B) can be chosen to be real since their phase factor can be
absorbed by the annihilation and creation operators. A quantum field theory developed
along these lines is equivalent to a thermal Gibbs ensemble. The above interpretation is
based upon the work of Kreuzer and Kuper [20] who showed that the system consisting

of tilde particles can be interpreted as a representative member of a Gibbs ensemble** .

** The Gibbs ensemble is defined as a large collection of independent replicas of the physical system under
study.
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Thus by choosing the energy of the tilde particles as negative simply expresses the
conservation of energy in the ensemble. As a matter of fact, as Landau and Lifshitz pointed
out in their book on statistical mechanics, the statistical mechanics is formulated mostly for
open systems. Then the above interpretation is sensible. However, this interpretation
needs an external reservoir so that the system is open. Recently, it has been emphasized
that the thermo field dynamics can deal with thermal problems in isolated systems. Thus
the interpretation of the tilde field requires a deeper consideration. This is being provided

by Umezawa in his most recent papers. However, this is out of scope of this review.

Having introduced the tilde-fields, and the thermal vacuum, we now discuss several
fundamental relations in TFD, such as the Bogoliubov transformations, the Heisenberg

equation, and also the tilde conjugation rules which relate the tilde and the non-tilde

particles.
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Fundamentals of TFD

The Hamiltonian and Momentum

We have already shown that o'k, B) and &T(k, B) create a quantum of positive

energy and momentum and negative energy and momentum respectively, of free observed
particles. Hence, the Hamiltonian and momentum for the whole system which includes the

reservoir are weakly equal to*
Ho=h f Sk ak, B) [o' &, Badk, B) - & (k, B)adk, B)] (3.1.1)
Pi=h f &k kilek, Bak, B) - & (k, BYok, B)] (3.1.2)
The Bogoliubov Transformation

When two or more operators satisfy the same commutation relations, they can be

related by a Bogoliubov transformation. Since the free particle operators,

(oK)}, {ak, B)), {6k, B)}, associated with free fields satisfy the same commutation

relations, (2.2.11) must be a Bogoliubov transformation. Thus we require

c2(k, B) - od*(k, P) = 1 (3.2.1)

where ¢ = 1 for bosons and —1 for fermions. Then we can define

a(k) = c(k, B)adk, B) + ad(k, B)a’(k, B) (3.2.2)
We can rewrite the above transformation in terms of a certain angle which is determined by

the ground state average of the particle number. Thus, we write

* An operator is said to be weakly equal to another operator when their expectation values are equal, such as
<al H Ib> = <al Hp Ib> + Wo<aib>. Note that this equality is conditioned by a particular choice of the
state vector space.
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(k) = coshBy cu(k,B) + sinh6y & (k,B) (3.2.31)
a(K) = cosh8y a(k,B) + sinh8y a'(k.p) (3.2.3b)

for bosons, whereas for fermions we have
a(k) = cosby o(k,p) + sinhBy & (k,B) (3.2.42)
a(k) = cosBy o.(k,B) — sinfy o (k.B) (3.2.4b)

The inverse transformations are

a(k,B) = a(k) cosh6y - & (k) sinhBy (3.2.50)
a(k,B) = a(k) cosh®, —a'(k) sinh8y (3.2.5b)
for bosons and ‘
a(k,B) = a(k) cosBy — & (k) sinby (3.2.63)
a(k,B) = au(k) cosBi+ o' (k) sinBy (3.2.6b)

for fermions.
Since, the combination

. » 3
o (ke By, B) — &' (K,BYo(k,B) (3.2.7)
is invariant under the Bogoliubov transformation, the Hamiltonian and momentum have the

form of a free Hamiltonian when expressed in terms of a(k) and Gi(k). Thus we can write
Ho=t f &k ak, B) [ef (oK) - &' ()] (3.2.8)

P.=t f &Sk ko (kyo(k) — & (k)a(k)] (3.2.9)

The operators o.(k, B) and G(k, B) are the annihilation operators at finite temperature which
act on the thermal vacuum 0(f)) thus
ak, BIOE) =0 (3.2.10a)
a(k, B)IO(B)) =0 (3.2.10b)
The operators a(k) , &(k) do not satisfy these relations and therefore cannot be called the

annihilation operators.



Determination of 6k

The angle O is determined by calculating the ground state average of the particle

number. Since ai(k) takes care of the excitations in the system, we can write the number

operator of the quanta in the system as

N(k) = alk) o) (3.3.1)

Hence from the Bogoliubov transformation, the average value of the number density is

@n)’
Vv

e 12
sinh“0;  for bosons (3.3.2)

n(k) = (O(BINCK)I0P) =

sin“G  for fermions

where* V = (2r)3 8B)(0) is the volume of the system. When we compare this with the

expressions for the number density in statistical mechanics, we find

sinh29k =—1 for bosons (3.3.3a)
ef®-1
sin’@g = —1—  for fermions (3.3.3b)
efos

where ® = w(k, B). These relations determine the temperature of the system in a thermal
equilibrium state implying that the vacuum expectation value of the number operator is
equal to the canonical ensemble average of the particle number. The same holds true for

any operator consisting of a and af.

We will use the following notation

fp(@) = —1— (3.3.42)
efo 1

fr() = —L (3.3.4b)
eP®+ 1

So that the Bogoliubov transformation is written as

* This is of course true only in the limit sense, when the argument of the delta function, k, approaches
zero.
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oK) = (1 + £,(@)1 2ok, B) + olfy@)]'7a k. B) (3.3.50)

k) =[1 + f,(@)] 26k, B) + olfy (@] o'k, ) (3.3.5b)
for bosons and

ak) = [1 - ()] Patk, B) + olfy(w)]'%a k, B) (3.3.6a)

&) = [1 - £ Zak, B) - off(@)]atk, B) (3.3.6b)

for fermions. We have the freedom in choosing ¢ = 1 or -1. Since a(k, B) annihilates the

thermal vacuum, the inverse transformations (3.2.5) and (3.2.6) give

’ tanhQy &T(k)IO(B)) for bosons
\tanek a*(k)IO(B)) for fermions

Notice that there is no sign factor ¢ in (3.3.7) because we used (3.2.5, 3.2.6). If we

a(k)IO(R)) = (3.3.7)

expressed for example tanh@y by (3.3.3a) then we would have a sign factor G as in
(3.3.6a,b). As, it was mentioned before, the a(k) quantum can be interpreted as a hole.
This is precisely what equation (3.3.7) tells us; the addition of the &(k) quantum to the
vacuum is equivalent to the elimination of the a(k) quantum. Equation (3.3.7) is called the

thermal state condition and will be discussed fully later.

The Tilde Operation

Now, we ask how the tilde and the non-tilde operators are related. To answer this

question, we begin with the free field(cf. eq. A6.1)*
ox) =Y j 3k [ur(k, X)) + viCk, OB (k) (3.4.1)
r

where the index r denotes the spin degree of freedom. Now, the tilde operators specify a
quantum with negative energy, -@(k), and negative momentum, —Kk. So we define the tilde

field to be

* The operator o*(k) for example annihilates a positively charged pion and B"(k) creates a negatively
charged pion.



~rt
Pw=Y f 33k [k, x)a k) + vk, x)p (K) (3.4.2)

r

which satisfies

A"@)8(x) =0 (3.4.3)
Now, uf(k, x) and vf(k, x) have arbitrary phase factors, so that we can define the

following operation

L d

Lo 4 L d .
e’ =¥’ = (co™) (3.4.4)
where c is just a c-number. This is true even when c is a derivative operator. Now from

the Bogoliubov transformations we find

ak) = opa(k) &k, B) = ora(k, B) (3.4.5)

f + 1 for bosonic operators
where O =

l - 1 for fermionic operators

These rules which are called the tilde conjugation rules are summarized as follows

(AA)~=AA, (3.4.6a)
(c,A, +C,A)~ =ClA +CIA, (3.4.6b)
A=p.A (3.4.6¢)

The last result is called the double tilde conjugation and in general is up to the user for its
definition. This is because it is a direct consequence of the thermal state condition which
depends on a certain phase factor. This phase factor has some freedom in its choice and
different choices lead to different double conjugation rules. This will be discussed fully,

later.
The Heisenberg Equation

For free fields ¢9, let Ho[@0] be its Hamiltonian, which is given by
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Holo"] = ﬁf &’k w(k) [o (k) + BT(R)B(k)l : (3.5.1)
where the spin index has been suppressed. Then, the tilde conjugation rules give
Ho=Ho@] =h f &k o) [a'G)e®) + B 1) (3.5.2)
Now, the free fields as given by (3.4.1) and (3.4.2) give the following results :
ih 2 00 = [9°0) , Hal | (3.53)
ih 2500 =100 , o) (3.5.4

These equations are self consistent because the tilde operation on (3.5.3) gives (3.5.4).
From equation (3.5.4) we interpret that the Hamiltonian of the tilde field is ~H. The

operators B(k) and f(k) are related to the physical operators B(k,B) and R(k,B) through the

Bogoliubov transformation which have the same form as (3.3.5a,b) and (3.3.6a,b).

For interacting Heisenberg fields let H[\y] be the Hamiltonian consisting of the

interacting Heisenberg field y. Then

H=H[{" (3.5.6)
with the total Hamiltonian given by fl=H-A. The Heisenberg equation for the v field is

L
ih g“" (v, H] (3.5.7)

from which we get with the help of the tilde conjugation rules :

L~ o~ o
ih= =~y H] (3.5.8)

Thus, fY is the total Hamiltonian (i.e. the sum of the usual Hamiltoi.ian and the tilde
Hamiltonian). However, the ground state energy is not given by (O(B)| fY 10(B)) but instead

by (O(B)! H I0(B)). Considering the Lagrangian, if &[y] is the Lagrangian for y then
B =-33*[\“y'] is the Lagrangian for  so that the total Lagrangian is B-1-5



The Thermal State Condition

The thermal state condition [21,22] which is also called the tilde-substitution law is
the most fundamental relation in TFD. This is because it determines the temperature
dependent ground state. From the thermal state condition, it can be shown that Wick's
theorem and the Feynman diagram method are available in TFD. Furthermore, the familiar
Kubo-Martin-Schwinger (KMS) relation [23] of statistical mechanics is readily derived in

TFD from the thermal state condition. We begin by deriving the tilde substitution law.

It will be remembered that the annihilation of the thermal vacuum

adk, B)IO(B)) =0 (4.1.1a)

gave the results
ak, BIO@)) = o e B2 1)10(B)) (4.1.2a)
o' (k, BIO(B)) = op e P2a(k)I0(B)) (4.1.2b)

respectively. Equations (4.1.2a,b) are the same as (3.3.7) and are called the thermal state
condition. From the thermal state conditions, comes a remarkable result : we can always
construct an annihilation operator for the thermal vacuum from any operators A and Z .
An operator which is constructed in such a way is called a generalized annihilation
operator. Thus, we can associate any operator with a generalized annihilation operator.
This is very convenient for practical calculations because a wide class of reduction formulas
can be derived. In addition, the retarded Green's function can be written in terms of the

causal Green's function which is very useful in the response theory.

For writing the thermal state conditions for these generalized annihilation operators,
it is required that A can be expanded into an irreducible set of annihilation and creation

operators ¢; and a?. For these operators the thermal state condition can be rewritten as
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(DI0(B)) = 6 (¢ - PHIOE)) @13
af (DI0(B)) = o’50;(t - PAIOR) (4.1.3b)

where lojl = Igj'l = 1. Since there is no product of tilde and non-tilde operators in the

Heisenberg equations then A can be expanded completely in terms of o; and a;' only while

:\ can be expanded in terms of o; and a; only. So we write

A= Z I dtye - «Qty tp U m Apn(ts tye e sty o Uy ot'y)
nm
X a{(t,} . -a{(t,,)ajl(t’l)- -0t (t'rn)

Z(t) = Z f dtpe - Aty Aty U Ap(ts tye ooty » Uy e ot )

nm

(4.1.4a)

o (4.1.4b)
X aix(tl)- . -aiu(t,,)ajl(t’l)- . '(Ijm(t'm)

Now the commutation relations [q; , a?]p, = [&i ,.&hm =1 and the thermal state
conditions (4.1.3) give
o', = piS; (4.1.5)
where

0 = +1 for bosonic o
1 -1  for fermionic oy

The tilde conjugation rules then give

o = pio; o (4.1.62)
of = podal (4.1.6b)

Using the thermal state condition, we then get

AMIOEP)) = 2 dty - -dt, dt'y - At Ap(t =15 tys ity U1y e o)
n,m

X GO ({0 (1) (1), (1)IO(B))
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' ~t
The right hand side of (4.1.7) is, except for the phase factor simply A (1~ PLI0EB)). The

phase factor itself is given by :

. . Fo(Fami= )72
Snm = (P30, + (P1,0)0;,5;, (1) (4.1.8)

where Fpn, is the number of fermion operators in
1 t

O - O O+ o0l

Under certain conditions, the phase factor can be factored out of the summation so that

(4.1.7) is just the thermal state condition for the operator A.



The Heisenberg Equation, the Dynamical Map
and the Kubo-Martin-Schwinger Equation

The Heisenberg Equation

Since we have two fields in TFD, the tilde and the non-tilde fields, we have a

Heisenberg equation for each field as given by

A@)y(x) = Fly] (.11
A @V =F'[§'] (5.1.2)
Both of these equations can be expressed by one equation when we introduce the thermal -
doublet for any operator F by
F a=l1
F*=1_t
F a=2 (5.1.3)

If F is a function of other operators, say AB...C so that

F=aAB...C
for some c-number a. Then F®is given by
F* =aP,(A“B*...C% (5.1.4)

where Pq is the ordering operator defined by

e o AlBL..cl a=1
Po(A"B"..CH=) ,
.. B%A? a=2 (5.1.5)

Then in terms of the doublet notation the Heisenberg equation is written as

AE@)Y*(x) = PoFly*(x)] (5.1.6)

When y(x) is expressed by a column vector then
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{woo a=1 -
V04l =2 (5.1.7)

where t denotes the transpose operation. When y(x) is transformed by a unitary

transformation,

Y(x) = Uy(x) (5.1.8)

then y%(x) is transformed in the same way

v (x)— Uy*(x) (5.1.9)

The Dynamical Map

0
Let®and & be the free physical fields which satisfy

A(@)° =0 (5.2.1)

32

A*@)p =0 (5.2.2)

Now we want to write the dynamical map of Heisenberg fields in terms of certain free

fields. Since the Heisenberg equations for some y and its tilde conjugate (5.1.1,5.1.2) are
_0

not coupled, we can choose the free fields ¢%and § insucha way that  contains only o°

- .0 )
while ¥ contains only @ . Then we can write the dynamical map of \ in the form

W(x) =§{Jdk1...dkndql...dqm F(%; ke Kns QpoeesGm)
x o (k,)...ot (kp)ouq,)...gpy) (5.2.3)

and the tilde operation gives
P(x) =§Jdk1...dkndql...dqm F (%5 KoK Qe erln)
' t o -
x & (k))...a (kyd(q,)...G(qy) (5.2.4)

Here the operators (k) and &(k) are not the physical annihilation operators but are related

to a(k,B) and &(k,B) through the Bogoliubov transformation.
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The Kubo-Martin-Schwinger Equation

In the statistical mechanics of many body particles, there is the celebrated Kubo-
Martin-Schwinger (KMS) relation. In that context, it is derived by employing the identity
based on the trace operation which is valid only when finite matrices are involved. Itisa
tribute to TFD that the KMS relation can be derived in TFD, since in QFT the operators are
not associated with finite matrices. In TFD, the thermal state condition is used to derive the

KMS relation.

We begin this derivation by considering the thermal state condition as given by
(4.1.13a,b) and two operators A(t) and B(t) which are products of Heisenberg fields at
timet. Also let np be the fermion number of A(t) and np that of B(t). Then the fermion
number* of Ais —na and -np for B. Now, since A=H-H is weakly equal to

ﬁo =H,- FIO in the calculation of matrix elements of A(t) and B(t), we can use the

following expression for the time development of A(t) :

A(t) = eiHot—1A (")eiHo(t - 1) (5.3.1)

Now we note the property mentioned earlier for the thermal vacuum :

H0(B)) = (H - HHio)y =0 (5.3.2)

With these considerations, we can write the expectation value of A(t)B(t) as

OBIAGBMIOE) = ()™~ ™ o@yRTe+ip2BMI0E)  (5.3.3)

v _0 _t
Since A contains only ® and B(t) contains only @0 then the exchange of A (t+if}/2) and
n.n
B(t) gives only the sign (~1) . Hence we get

* Consider the operator O =al(k)). .0.f(kn)oe(q) - -0.(q). The fermion number of O is defined by the
difference between the number of creation and annihilation operators in O (or any operator). The operator is
bosonic if the fermion number is even and fermionic if it is odd. For a tilde operator, the fermion number
is taken to be negative of the corresponding non-tilde operator. This is only to be consistent with the
properties of the tilde particle (i.e. negative energy and momentum). The operator remains bosonic or
fermionic regardless of the sign of the fermion number.



34

OEIA®BMOE) = 1) ™ ™ ™21y ™0@)BHA (¢ + iB/2I0B) (5.3.4)

Using (4.1.10a) gives us
(OBIA®B)IOB)
= (=)™ 72y D™™O@)BE)AC+IRIOB)  (5.3.5)
= (=1)™ ™ M OB)IBAC + iB)IO(B))

Since this vacuum expectation value vanishes for np # —np we get only

(na + 1)naf2

(OBIAMBE)IOP)) = (OB)BE)A(t +iB)IOR)) (5.3.6)
for no = ng. This is the analogue of the KMS relation at finite temperature and has been

referred to as the Kubo-Martin-Schwinger-Takahashi-Umezawa relation [24].



Two-Point Functions in TFD
In the usual quantum field theory, the causal two-point function is defined by

Ge(x - y) =(0Tp(x)0"(¥)I0) 6.1.1)
However, it is clear that this definition will have to be revised for TFD. Since in TFD there
are two types of fields, there are four possible products of fields that can be evaluated. In
this sense, the Green's functions in TFD should have a 2 x 2 matrix structure. This is most

easily realized when we use the thermal doublet notation :

1
(‘Pz("))=(j’f")) 6.12)
')/ \9(x) :
Using this notation, the causal two-point function in TFD is given by

G2(x - y) = (0B)ITe* )¢ (y)IO(B)) (6.1.3)

In the same way, we define the retarded and advanced two-point functions :

G (x - y) = 8(tx — ty OB (x) , P (y)1:0(8)) (6.1.4)
G (x — y) = -8t~y XOB)I[6"() . 9 (¥)1410(B)) (6.1.5)
where 6(x) is the step function and the upper sign is for fermion fields while the lower sign
is for boson fields. We now discuss examples of fermion and boson systems common in

the literature.
Examples of Two Point Functions in TFD
Fermion System,

Here we look at a simple case in which
A@) =i~ () (6.2.1)

The free fields for this case are given by
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Tpo(x) = (21\:)_3/2‘hm f d’k a(k) eik ¥+ i)t

We define the momentum representation of the two-point function from* t

it . .
S?B(x -y)= 1 ; f d4k exk- (x—-y) - iko(tx— ly)sgﬂ(k)
(2r)

When we calculate Sc(k), we keep in mind that expressions of the type

(O)la®)a®)0P)) etc;

(6.2.2a)

(6.2.2b)

(6.2.3)

are calculated from using the Bogoliubov transformation since o(k) etc; are not the

annihilation operators of the thermal vacuum. Then letting ¢ = —1 in (3.3.6a,b) and using

the notation
o(@ =[1-f @I ,  d) =[]
we easily find Sc(k) as
([ 2w )  -co)dw) RO \
ko—m+i8 ko—m—iB ko—m+i8 ko-m-is
Se(k) = ,
—c(@d(®) c(w)d®) d“(w) cX(w)
| Km0+ Tkro-i8 kro+id kro-i |

where 8 is a positive infinitesimal and we interpret the fractions as

— 1 e gim | deeio-orin=_T 5 @)
ko—w+id 3-+0 ), ko—

0
— 1 oy Gim | deito-o-dna T 4500 - o)
k()—(t)—is S+ ko—-®

* The causal two-point function for fermions is denoted by Sc.
 We have assumed that the system is homogeneous in space and time.

(6.2.4)

(6.2.5)
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where ¥ is the denotes the principal value. This two point function can be remarkably

simplified into the following form :

1

o+d O
5. = U(®) L |V
k-0 -id
= U@k o+i50 " Ul (6.2.6)
where U(w) is the unitary matrix :
cl@ d(w)
U(w) = (_ do) ¢ (m)) (6.2.7)
and
1 0
T= (O __1] | (6.2.8)
The retarded and advanced two point functions are calculated in the same way and
are found to be
a
s®aq) = EO—_%% . (6.2.9)
s = ;;_—8;:3_—15 (6.2.10)

Boson System

Now we consider a boson field system with A(d) as given in (6.2.1). The energy
«(k) in this case must be positive definite. The free fields are again given by (6.2.2a,b).
This time we use the Bogoliubov transformation (3.3.5a,b) with ¢ = +1. The two point

function is given by



2% (x - y) = OBITIE*) » * () 110(BY)
= (tx — t, OB (1)110(B))
+ 8(ty - tOM)io* ¥ )II0(B))

with the Fourier representation given by

A x-y) =_i_h—4 f i i a9 = it 7P
(2r)
After a little work, we get
[ 2@ @ @@ @b )

B k- 0+i8 km0-i8 kro+id k-o-id
) (@@  cy@dy@  dp() (@)

\ ko-©+id Tkro-id kro+id k-o-id

Just as in the previous example, the above result can be greatly simplified to :

A2P(K) = Uy (@nlk,- 0+ 51 UL
where
(@ dg(@)
Ul = {dB((o) cB(c))]
and

@ =[1+£@]" , dy(@) = [fy(1"
We note here that Up is not unitary but instead satisfies
UB(m) T UB(o)) =7
The retarded and advanced two point functions are defined by
op
Ar (x=y) = 0(t = ,XOB)[9™ (), ¢PIIO(B)

A% (x - y) = =8t - t,XOB)Ie*x) , o™ IO

and for this example are found to be

(6.3.1)

(6.3.2)

(6.3.3)

(6.3.4)

(6.3.5)

(6.3.6)

(6.3.7)

(6.3.8)
(6.3.9)
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6% = ko_‘m — (6.3.10)
aB - taB
805 (6.3.11)

The Klein-Gordon Field

We now consider a slightly more complicated case in which

3
A@) = -{5? + “’Z(V)] (6.4.1)

In this case p = 1 so that ¢0 must be a boson field. Also, since any complex field is a
linear combination of real fields we can without any loss of generality assume that @0 is a

real field (i.e. ¢Of = @0). The fields are then given by

o°x) = 2y R —di% (a(k) el X 4 of () ik -y (6.4.22)
| ew

P =n h —diﬁ{&(k) etk x=00 ¢ 5¥(ge) itk x-00) (6 4.21)
J (Rw)

Again we use the Bogoliubov transformation (3.35a,b) with 6 = 1. Then the two point

functions are calculated to be

AK) = Up(@) T [ - (0 -i80)° T Uy(@) (6.4.3)

ap
Py =—2—
(k0+15) -

(6.4.4)

B

B
Ay ) =—
(k- i8)° - &2

(6.4.5)
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Spectral Representation of Two-Point Functions

We will now derive the spectral representation for a two point function of operators
A(x) and B(y). The spectral representation is very useful for many general analyses and
also for the analyses of response functions in linear response theory. We begin by letting
nA be the fermion number of the A(x) and np that of B(y). We also use the thermal doublet

notation introduced earlier :

Al A] B [B
=| _t S| _¢t (7.1.1)
A%) A B?) \B

Now we write the causal two-point function as

G5 - ) = (0BT A%x)BP()I0(B))
= B(t, ~ t,XO(B)A®X)BP(y)IO(B))

+ pB(t, — tIOB)BP(y) A% X)IO(B))
(7.1.2)

where p = 1 for boson like A and B and ~1 for fermion like A,B. Now we insert into this

definition the following expression for the step function

8(t) = lim - | dw—l—eiwt (7.1.3)
5 - +02n w+ 10

and we also insert between the two operators A(x) and B(y) the complete set :

2 In, B ),nl
n,m

so that we get !: tollowing Fourier amplitude of (7.1.2) :

® of af _
Gw = | dw|2aBWK) _ ,Opalw,mk) (7.14)
ko-w+id ko+w-—1id

where
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Sam(wk) = (2m) 3, (OBIAO)ln, FXH.nBO)IO(B)

X 8(p = Pn+ Pm)S(W — Ey + Em) :
(7.1.5)

In this result, pp and Ej are the momentum and energy of the n-state while pm and Eyy are

the momentum and energy of the m-state.

Before we continue further, we note the following important result required for the

derivation of the spectral representation. Let In,fii) be a state vector constructed from the n-
T

times cyclic operation of af(p) (i.e. (af(B))nIO(B)) ) and m times cyclic operation of & ()

on I0(B)). Then the tilde operation gives

(n, Gy (), /1) = (. BPE)R’,A) 016
= (-1)™ " "™ @ myx)H,m’) o
where np, is the number of fermions in the Ifi) state. Using this and the thermal state

condition, we get the following useful relations :

O@YA O, &) = (1) 4™ D 2e-BEa— E2(0(B)I A D), ) (7.1.7a)

(n,FIA©)I0B)) = (1) "(F,mIA©)I0(B))
= 1)"™0@)A (©O)im,7)

_ (_l)nm(-l)FA(FA“ l)lze'B(Em‘ E“)IZ(O(B)IA(O)Im,ﬁ')
(7.1.7b)
(@A O)0R)) = (1) A 2B iy 1A 0)IO(B))
= (1) \=1)"(O(B)A©)m,7)
(7.1.7¢)
(.78 0)0B) = (1) T VBB~ B2y 1B (0)I0(B)) (7.1.8)
(O(B)IB(0)in, ) = 1) (=) B V2 B(Ea- B2 FIBO)OB))  (7.1.8b)
@B )ln, &) = (~1) *(=1)"(m,nIBO)IOB)) (7.1.8¢)

From these relations we get



(O(B)IA%(0)in, X,nIBP0)I0(B)) = (O(B)A(0)In, Fi)NH,nIBO)IO(B))

1 1) 4 D2 BB~ Euirz *?
x
(1) A D2 (B B2 ¢~P(Eam Ex)V2
(7.1.9)
(O(B)BP(O)Im,EXEmIA(O)IO(B)) = (O(B)IAO)In, BXHnIBO)IO(B)
~B(Ea— Em)/2 Fa(Fa+ 12 g gy af
¢ -1 g Pk
x
(-1 )FA(FA + I)IZC_B(E‘_ E2 .
(7.1.10)

- when Fp =~Fp. When Fp # -Fp, then G:EB =0. Thus in the rest of this discussion we

assume that FA = ~Fp,

With above results let us write (7.1.5) as

] ot
Aw) D™ Pewdow) )

Gﬁ'{g(w,p) = GAB(W,pP) (
Fa(Fa+ 112

-1) c(w)d(w) dw)
(7.1.11a)

af
d¥(w) )™ D2 wyacw) )

Fa(Fa-+ 1)/2

Gf\g(—w,—-p) = 0'AB(er) (
(-1) c(w)d(w) cA(w)

(7.1.11b)

with

3
55w, P = (1= p S 3(p = pu+ pm)S(W = En + En)

h (7.1.12)

x (O(B)IA(0)In,FiX,nIB(0)IO(B))

also
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Aw)=1+pfw)  di(w)=f(w) (7.1.13)

f(w) = eB"} (7.1.14)

-pP
When we compare (7.11a,b) with (6.2.6) and (6.3.4) we find the following results :

Gt = f dw OAB(W.k)

-

af
(7.1.15)

x (A D20 (w)[ko — w + i81] U (w)rFat 12y

for fermions while

o

Goa(k) = f dw GAR(W.Kk) (¢ V2 Up(w)tlko — w + i81] Ug(w)t™/2)

-0

of

(7.1.16)
for bosons. Equations (7.1.15) and (7.1.16) are the spectral representation of the causal

two point functions at finite temperature.

We can also derive the spectral representation of the retarded and advanced two

point functions. We write them as

GEa(x - ¥) = 0(tx - tXOBIIA%X) , BR(y)110(8)) (7.1.17)
Goan(x — ) = =8ty = t{OBIA™X) , BP(1)1I0(B)) (7.1.18)
where the upper sign is for fermion like A,B and the lower for boson like A,B. Then
employing the same method as for the causal two point functions, we find the following

spectral representation for the retarded and advanced two point functions :



G =8| qw SaB(%K) (7.1.19)
oo ko - w +1d

G =8 qw SaBwK). (7.1.20)
. kg-w-id

for fermion like operators and

62k = 1% f dw l-:’AB—;W;% | (7.1.21)
—co 0~

G5k = 1 f dw 1:‘—“-(;‘1’—% (7.1.22)
—y 0 - -

for boson like operators.

We can derive a sum rule for the spectral function GAg. For this we note that from

(7.1.18) that

OBIA% P )IO@) =— 3 f &p f dw el N=EY) 6 ap(w,p)
(2rw)
) A(w) 1) e wyd(w)
D" o) &w)
(7.1.23)
and
(OBIA%X) , BE)IOBIN, =, 120
- 3fd3k et Y)f dw GaB(W, I))(T“’Lp)/z))mB B
)

Then if B is the canonical conjugate of A i.e if
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[A%x) , BByl = he + D)5y _ vy (7.1.25)

then with the help of (7.1.24) we get the following sum rule

j dw Gap(w.p) = 1 (7.1.26)

-y

Single Particle States

When there are single particle states with energy w(k) participating in the

summation of (7.1.12) then oAg(w,K) has the following form

o’AB(w,k) = ZAB(k)S[w - (k)] +6AB(w,k) (7.2.1)
At finite temperature cAg(w,k) can assume non-vanishing values for both positive and

negative w because the sign of Ej, — Ep, is not arbitrary. Now from (7.1.7b,7.1.8b) we get

(O(B)IA0)In,mXT,nB(0)I0(B)) = e PEE=)((B)IB(0) I, m)¥m,HA0)IO(B)) (7.2.2)

so that

GBA(W’p) = 'PGBA(‘W’P) (72-3)

If the theory is invariant under spatial reflection then

G, g(W:P) = —pOp ,(=W,~p) (7.2.4)
Now when A is a boson like operator and B=A then the spectral representation of the

causal two-point function is

G2 w0 = f dw Saa(w.K)

« (MU (w)tlE — (w — 180) ] Upwye vy

(7.2.5)

where

6’AA(w,k) =2w O’AA(w,k) (7.2.6)



Similarly the spectral representation of the retarded and advanced two-point functions are

Goak) = 1

G20, ) =

Jo

-

-

dw Gaa(w, K) 1 - , (7.2.7)
(ko +i8)” — w?

dw S aa(w, k) 1 - (7.2.8)
(ko - i8) — w?
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Analytic Properties of the Causal Green's
Function

It was mentioned earlier that the 1-1 component of the causal Green's function
corresponds to the conventional Green function in zero temperature QFT. Thus for the

case of fermions this is given by

(

2 2
)= dwo(w,p)[ cw) ,_ dw) (8.1.1)
] Po-w+id po-w-id
M) = | aw o(w, p) —— (8.1.2)
Po— W +id
2(@) = | dw o(w, p)——l——_8 (8.1.3)
Po—-w-—1

For analyzing the analytic properties of these functions, we consider the following function

defined in the complex z plane

Sz, p) = | dw o(w, p) —L (8.1.4)
zZ-w

This function is singular along the real z-axis but is analytic in the upper and lower half
planes of z. Thus we say that the retarded and advanced Green's functions are the

boundary values of S(z,p). This is made clearer with the following dispersion relation

Re G(z, p) = - %f dw -2+ 110 Gz, p) (8.1.5)

Z—-Ww eBw -1
Here, ¥ denotes the principal value of the integral. Even though the causal Green's
function is not analytic on the real z-axis, it is regarded as an analytic function with cuts

along x4d. This can be seen by considering the following functions :
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Gi(po) =—i| dt e 80BNy (0)I0B)) (8.1.6)

S—

Gr(po) = i f dt e 0C-1(0BW(OYO)I0(B) (8.1.7)
Gii(po) = - f dt €™ (0B OV MIOE)) (8.1.8)
Gii(po) = i f dt ™ B(-1X0(B) Iy O w®IO(B) (8.1.9)

where the trivial dependence of the space variables has been omitted. The spectral

representation of these functions is given by

(

Gi(po) = | dw o(w) —L— (8.1.10)
po-w+ie ey

Gi(po) = | dw o(w) —L Cid (8.1.11)
po—-w—ie ¥y

Gii(po) = | dw o(w) —L———1 (8.1.12)
) Po— W +iE eV 4 -

Gii(po) = | dw o(w) —1 1 (8.1.13)
J po—W—ig PV 41

It is clear that G;’(po) and GE(pO) are analytic in the upper half of the complex pg plane

while G (p,) and G;(p,) are analytic in the lower half plane. Thus, in analogy to (8.1.4)

we introduce the functions

Gl(z)=jdw o(w) —1 _efv (8.1.14)
z-wefvy

Gp(2) = f dw o(w) —b——1 (8.1.15)
z-wePv i

Now although one might think that the analytic continuation of G(z) from the upper half
plane leads to G (z), this is in fact not the case. Since there is a cut along the real axis, we

. . . . + .
must transfer to a second Riemann sheet. Thus the analytic continuation of G; (2) into the
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lower half plane gives G;‘(z) instead of Gi’(z). The same consideration applies to the other

functions as illustrated in fig (8.1a,b)

Gy Gy Gy

+ _* !
Gy X G; Gy

G(2) = G{")"

+
GII
X

Gp(@ = Gy(2")’

Fig. 8.1

We now define the function

Gc(2,8) = G/(z +10) + Gy(z - id) (8.1.16)

which is clearly analytic on the real axis. However since it has two poles, the z-plane is
divided into three regions by three Riemann sheets as shown in fig.(8.2 a,b) the upper

sheet is called the physical sheet, so that G¢(z,0) is the analytic function with cuts along x +
id.

(1m) 1y @

Gi+Gy; G;+G;  G[+Gy

G; + Gy G; +Gj

G; +Gyy G; +Gj

ImZ

o GI+Gh=Gy
(1D b Gj +G3=Gc té » ReZ
am G +G=Go tf’

Fig. 8.2
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Then Ge(z,8) in the three regions is labelled Go(2,8), G(z,5), Go(2,5) respectively.

Hence the causal Green's function is obtained from Gg(z,S) in the limit 8—0. The

function in each of the three regions in this limit is given by

Giz) =P

J

Glz)=P J

GHz) =P

r dw S _ o) 8.1.17)
X—-Ww
r dw S _in e =1 e (8.1.18)
X—-w ef*+ 1
[ - CON
w ——=— -~ ino(x) (8.1.19)
X—-w

Thus we have obtained the analytic continuation of the causal Green's function onto the real

axis. Also the retarded and advanced Green's functions are given by G‘I;(z) and GIcn(z)
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Bethe-Salpeter Equations at Finite Temperature

The Bethe-Salpeter equations [25] in the usual QFT are useful for bound state
problems* , even though one usually has to resort to various approximational methods
because of the difficulty of solving these equations. We now derive the analog equations in

TFD. Consider then a set of Heisenberg fields y; satisfying the Heisenberg equation

A OV, = F[v] (9.1.1)

which we can write as

Ay =Fly] (9.1.2)
where y and F[y] are column vectors with components \, and F; respectively. Then from

the Heisenberg equation expressed in the doublet notation we get

AO)Y* = Py Fly“] (9.1.3)

From the two point function

G*x,y) = OB)IT [y*x) , vP(y)10(B))

= 0(t, — tyX OB P ()10(B)

7 8ty — tOBNP (Y I0B))
(9.1.4)

we calculate the operation of A(3) on G®B by using (3) to obtain
op B G B
A@)G™(xy) = FP(x,y) +ihd (x —y)d (9.1.5)

for fermions and

*In QFT, the bound states and resonances of a system are identified by the occurrence of poles in the
Green's functions. Since the Bethe-Salpeter equations are integral equations for the Green function, they can
be very useful for bound state problems.
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4
l(B)G“B(x,y) = {‘cF(x,y)}mB +ih 8( )(x - y)8OLB (9.1.6)
for bosons.
Here FoB(x,y) is some function. We can put these into the following integral form

G®x,y) = S®x - y) - -1:‘- f dz8%i- @y 0 (9.1.7)

for fermions and

G®P(x.y) = A% (x - y) - ?:' I 0z 8%(x - 2) B(zy) (9.1.8)

for bosons.

In deriving these results we note that when F in (2) vanishes then G becomes S or

A. Also the function FPB may contain multi-point functions

<OB)TIVEW W' @)...10(B)>

Integral equations for these multi-point functions can also be derived. These integral

equations are the Bethe-Salpeter equations.



The Feynman Propagators

In non-relativistic scattering problems, one looks for solutions which develop in
time from initial conditions imposed in the remote past. In other words, given a wave
packet which in the remnote past represents a particle approaching a potential, one asks what

the wave will look like in the remote future. The solution can be expressed generally as

yixt) =i f d3x G(x,t;x,t)w(x,t) >t (10.1.1)

The function G(x’,t"; x,t) is known as the Green's function or propagator. The propagator
can also be expressed as the solution of a certain differential equation. This idea can be

generalized to relativistic QFT, where the propagator also satisfies a differential equation.

For the theory of quantum electrodynamics, which is a theory for the interaction of
radiation (photon) and matter (electron) fields the propagators are given

by: '
“18uv

Ayv(k) = (10.1.2)
N 18
for the Klein-Gordon field (photon) and
Sy = KM _ (10.1.3)
k%~ m2+ i8

for the Dirac field (electron). So we begin by calculating the photon and electron

propagators in TFD.

33



The Photon Propagator

The Klein-Gordon field satisfies the equation

2
5’-2-+ mz(V)} 0’(x)=0 (10.2.1)
ot
where @2(k)eik™* = ?(V)eik** with w?(k) =k2. The free field satisfying (10.2.1) is

given by

0(x) = (21:)"/’11 —d*_[amwexplilk: x-ot))+ ot Kexp(-ik- x-w1))]

(Zm)l/z
(10.2.2)

so that

P00 = 0t | Sk [Gaexp|-ilk- x-ot) + & (expld: x-ot)

1

Qw) *
(10.2.3)

The expression (10.2.2) is obtained under the requirement that ¢0(x) is real (i.e.

0”1 = 9" (x)).
The two point function is then readily calculated using :

8% (x-y) = (OBIT ¢* )P ()IO(B))
= 8(t,— t, XOB)lp ()¢ T (y)IO(B)) (10.2.4)
+ 8(t,- t)XOB) o (10 (X)I0(B))

with the Fourier representation given by

A% (x-y) =i j d'k e 9P (10.2.5)
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Thus as discussed earlier, the result is :
. 2 e 2-1
-iA (k) = Ug(a)tlkg— (0 —id7) | Up(w)
where Up(w) is given by (6.3.5).
The electron propagator
The Dirac field satisfies
. 0
@9 - m)y (x)=0

where @ = ¥ d,. When we write

A(Q@) =id-m
we find that the divisor for the Dirac equation is

d@)=id+m

so that the Dirac equation is a type two equation because
82
A@)d@) = - | +€X(V)
ot
where
i

82(V) =m?-V"

Here and in the following, by £2(V) we mean

ik- x

E(V)e'F ¥ = g2 (k)e

(10.2.6)

(10.3.1)

(10.3.2)

(10.3.3)

(10.3.4)

(10.3.5)

(10.3.06)

o 2 2 . . C .
withe (k) =k + mz. Furthermore, from (A3.3) we casily verify that the hermitization

matrix is



n=y (10.3.7)
The free field for the Dirac equation is given by

V0 =Y f &k waoa e ® X% + vigp T aoe -] (10.3.8)

so that

Pw=3 f | o aF e ® * =% £ v b e <50 (103.9)

~r
Here g, =¢(k). The operators® a’(k), a (k) and br(k) , b (k) are related to the physical

annihiiation and creation operators through the Bogoliubov transformation :

a'(K) = c(ea'(k.B) + d(e)a "(k,B) (10.3.102)
(k) = c(e)a (k.B) ~ diea™(k.B) (10.3.10b)
b(K) = c(e b (k) — d(e)b (k,B) (10.3.11a)
(k) = c(e)b (k,B) + d(e)b" &, B) (10.3.11b)

where c(ex) and d(ek) are given by (6.2.4). The amplitudes uf(k) and v*(k) satisfy the

following sum rules :

3 0

@) S g, =YY k+m (10.3.12)
3 0

(2m) Yeé-yk-m (10.3.13)

Y S v tov.(k) =
h ™r

Equations (10.3.12, 13) are obtained from (A7.3 and A7.4). The two-point function is

calculated from

* The operator a“(k) annihilates electrons and b'(k) annihilates positrons.

56



5P (x - y) = OEIT VT ()10B))
= 8(t,- t, XOBIV OV (1)10(B)) (10.3.14)
~8(ty= L0V (Y (I0(B))

where Y(y) = v (y)Y’. The Fourier amplitude is given by

sP(x - y) =—h—4— gl e -0P (103.15)
(2m)

Thus for example, when we letz=x — y then
Seuv(k) =3 f d*z e ® 5L (x ~ y)

= f d*z ¢ & =B (LXOBIWLCWFIOB))- Ot XOBIWL (VX))
(10.3.16)

where | and v are spinor indices. Furthermore, when we use (10.3.8) we find

(OB X)W (IOEB))
= (O(B)Ift:, j d’p [ uf(p)a"(p)ei® ¥ ~ &) 4 vi(p)b T (p)e P X - ept.)]

X2, f &0 [ w(p e (p)e @Y =594 v3(p)b*T(p)e® ¥ ~ ) l0(B))
H
(10.3.17)

The vacuum expectation values are evaluated using the Bogoliubov transformation
(10.3.10a). For example

(OB a*(p)a*T(p") I0(B)) = (OB)| (c(ep)a’(p.B) + d(e)a"(p,P))

, e (10.3.18)
x (c(ep)a’(p’,p) + d(e)a™ (p",B))I0(B))

Since the tilde and non-tilde operators commute, and a'(p,8) annihilates the vacuum then

we get
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(O(B)] cley)c(e)a’(p.B)a™"(p',B) 10(B))
= (O] (e, ) - P8 -2t (p',B)a’(p.B) 10(B))
= 8(p - p) cle)elEy)

(10.3.19)

where we used the commutation relation between a'(p) and a*'(p’). Evaluating the other

expectation values in the same way we get immediately

(OB WL(x)W(Y)IOB)) = ; f &’k [ c2(ep)ul(p)TV(p)e!® 2~ &t

+ e ViPITip)e P 7 = o]
(10.3.20)

When we use the sum rules (10.3.12,13) we find for the Fourier amplitude of (10.3.20) :

ci(p- Z- &l)
Hv

0
2m) 2e

0
+ dZ(ep)(Y £- ‘Y' p - m) e—i(p' Z- Epf;)
By
(10.3.21)

The d3z integration gives

. O - o .
f dt, e 6(t,) I &k [a(p—k)cz(ap)(le——z—‘iiﬂ) ¢ ek
& K (10.3.22)

0 .
+3(p + k)dz(ep)(w) elspL{|
2e v

Integrating over d3k gives
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0 3 . 0 -— .
i, 0 (X_S__L‘Sii‘l) 2lere-ie 4 (v_e_w_':_"z) Plepet
2 n - BV

0 0
=1 d {(V_E_T_Y__"_*L".) cHeeitke™ B 4 (Y_iil.k_'_“l) e eille+ e
0 L WV 2 14
_ [YOS -y k+m cXed | PYe+y k-m dien ]
2e ko— € + i3 2e ko- € +i8
(10.3.23)

Evaluating the second term in (10.3.17) leads to

[ T
Pe-ykim e, dE

iS; (k) =
[ kg— € +i8 ko— €+ id ]
2
Jerrk-m de |, cle
2 | kot E+ 18  kg—E—i0]

(10.3.24)

The other components of (10.3.15) are evaluated in the same way and they can all be put in

the following simple form :

0 -
Sob (k) = (Yi_lzel‘i‘ﬂ) [U©)(ko - e +i67) U ®)ap
] w (10.3.25)
+ (L_“J_E:E) [U(-e)(ko+ £ +i8D) U (-€)lqg
2 uv

where € = gx.

In writing down the second term of (10.3.25) we used c(e) = d(-€) and d(g) = c(~
g). For the calculation of the Lamb shift, it will be interesting if we can separate the zero
temperature result from the finite temperature result. In other words, we wish to write the
Lamb shift as the zero temperature result plus the finite temperature corrections. This is
achieved by separating the propagators (10.2.6, 10.3.25) into temperature independent

and temperature dependent parts as :
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A(k) = Ay(k) + Agy(k)
S(k) = S(oy(k) + S(py(k)

(10.3.26)

where S(q) , A() are temperature independent and S¢g) , Ap) are temperature dependent.

This separation is shown in appendix C. The results are :

2. -1
Ay(k) = tikg - (@ - 87) ] (10.3.27a)
e Bko/2
Ao = 2l @) ( 1 e ) (10.3.27b)
eBl“O'__ 1 eBko/Z 1
for the photon propagator and
'YOE-'Y'k'i"m ~1 y°e+y-k-rn -1
Soyk) = ——————(ko— €+ i5t)  +————— (ko+ € — 107)
(10.3.282)
- Kk+m __ K+m
2 22
k(z)— (8 - 181) k“-m*“+ idt
0 Blkol/
: -y k+
Sepy(k) = —2E— ye-yk+mp 1 e Bl g
ePkd 4 1 2 Bikol/
e -1 (10.3.28b)
7°e+y- k-m| -1 Bw/z
LA i ¢ "Bxo+e)
2e Blkol/
e 2 1

for the Dirac propagator.



The Electron Self-Energy, Vacuum Polarization
and the Vertex

When evaluating the Lamb shift, it is found that the shift can be separated into two
parts : one which corresponds to the continuum as obtained from the radiative corrections
to Coulomb scattering and the second which corresponds to discrete energy as obtained
from the bound states of the atom. The radiative corrections require that we renormalize the
electron and photon self energy and also a third order diagram called the vertex, as the
contribution to the Lamb shift from the continuum comes from these diagrams. Before we
proceed with this, let us discuss how the Feynman diagrams are modified in the thermal

situation.
Feynman Rules
The interaction Lagrangian for electrons and photons in zero temperature QFT is
B(x) = —eYXY WAL X) (11.1.1)
In TFD, this is replaced by
By(x) = ~eW P Y0AL) + YV T AyX) (11.1.2)

However it is simpler to write this in the thermal doublet notation :

B0 = -3, YOV 0AL(x) (11.1.3)

With this, we can easily construct Feynman rules based on this Lagrangian in the same way

as zero temperature field theory. In other words, every field in the zero temperature field
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theory is now replaced by the thermal doublet so that the Gell-Mann-Low formula®*

becomes

8(TG) (X1} - -G (xnexp (i I d*x B100 g

OPITG' (x1): - & (xn)O(B)) = ~
p(Texp{i j d*x Bix))g

(11.1.4)

where the left hand side is in the Heisenberg picture and the expectation value on the right
hand side is in the interaction picture. The vertices are still the same as in the zero
temperature field theory, however the propagators (at least the two point functions) can be
expressed as 2 x 2 matrices. In general, one must resort to (11.1.4) to obtain the correct
expression for a diagram. The Feynman rules are established for any field theory in this
way. Table 11-1 summarizes the Feynman rules that we use here. The photon is denoted
by wavy lines and the electron by a solid line. Notice that as in zero temperature field
theory, there is a spinor index associated with every corner. However in the case of TFD,
there is also a thermal index associated with every corner. This has the effect of replacing
the propagators (10.1.1,2) by the thermal propagators (10.1.6, 10.25). Furthermore, we

notice that the vertices are the same as in the zero temperature field theory.

** H. Matsumoto, I. Ojima and H. Umezawa, Ann. Phys. 152, (1984) 348.
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Table 11-1 : Feynman rules for spinor electrodynamics in TFD*

1. External Lines

k
. : o off
Incoming fermion T - % Sy&)
Outgoing fermion o -li B S“B(—k)
H v i
Incident photon a l B of
p A v Ay
2. Vertices
1!
-ie(\(,i)”@n)“g (T incoming momenta)
\Y c
3. Propagators (internal lines)
. o k B 4
Fermion > k5%
R v 4 Hv
2m)
1
Photon %/WVV\N\% 4 %)
H en’

* We will use the convention of letting {,v,o stand for spinor indices and o, [3,Yfor
thermal indices



The Electron Self-Energy

The electron self energy with two external lines is illustrated in fig. (11.1).

TN
SN

-
k k-1 k

Fig. 11.1 The electron self energy to second (lowest) order

This diagram can be inserted into an external or an internal line of any diagram (fig. 11.2).
When this is inserted into the latter, it has the effect of replacing the electron propagation

function by SB(k) by another function. For example, to second order :

s*% k) = %3 (x) + S“B(k)ZBY(k)SYS(k) (11.2.1)
A A
-~ o~
Vst d

! /

'K K
A A
@ (b)

Fig. 11.2 Examples of second order self-energy parts
inserted into (a) external and (b) internal electron lines
of a Compton diagram.

The self energy ZBY(k) (to lowest order) is obtained by using table 11-1:



. 2
1) = -ie_ I d'17,5%w -y a™ (11.2.2)
(2m)

Since Sg and Ag have an exponential damping factor, terms containing them in (11.2.2) do
not diverge for high momenta. Thus the divergence arises in the zero temperature part of

(11.2.2). we rewrite (11.2.2) as :

ad ad ad
Z ()=o) + Zp)p) (11.2.3)
where
ap tad af
Zoyp) = :'ETI 'l szgﬁ(k - 1)‘Y\’Ao ® (11.2.4)
(2m)
and

aB a2 af B op af

Z@®) == f &1 {1820k — DY Ay D + KSip(k — DY Ay WS ayk = DY Ay(D ]
029

(11.2.5)

The renormalization is performed from the same prescription as in zero temperature field

theory. First we extract the mass counterterm (fig. 11.3) from

£t =m)+ dm=0 (11.2.6)

X

Fig. 11.3 The mass counterterm is indicated
by a cross in the electron line.

The zero temperature parts of the self energy are the same as the usual results and can be
found in any standard text on QFT. So we will quote the pertinent results and explain any

extensions to TFD. The zero temperature part £ is expanded as :

Z(0)(k) = dmygy + (K — m)Z) + (k- m)z}:f(o)(k) (11.2.7)
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The divergent part is contained in the constants 8myg and Zg, These are given by :

sm(o)=-@-m(in+2) (11.2.8)
o 2 4
z(o)=-ﬂ-(D-4 d,gi+ll) (11.2.9)
4n 2
- 4 2
k) = 52 { 1 (1-2 3"1np)+1¢—“—;ﬁm———l——2-p+i+—-"-+—9—1np
™ 2(1 - p) 1-p 2p(1-p) l1-p \
....2, dx _1_-x
(11.2.10)
The constant D is a divergent integral given by :
4
D=_L ______2dk - (11.2.11)
in?] &+ m?)

In the above expre;sions, we have omitted the thermal index because they are simply
multiplied by the unit matrix. We will use this convention of omitting the thermal indices
whenever the result is diagonal and multiplied by the unit matrix. The zero temperature part
of £ is real. On the other hand, Zg(k) will have real and imaginary parts, which we show
separately because the real parts are diagonal, and the imaginary parts can be put into a

compact form on their own. This separation is done by using

1 =B 3 ind(x-xo) (11.2.12)
x—-xotid x-Xo

The result of this somewhat lengthy calculation is :
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2 2 2
-] 20 | Zere) KBrE-o))

¥ (k-H-2 L1
2e ﬂ[k%—- (e+ co)2 k(z,— (- m)2

ReZqyk) =& | —dL {**Y"‘zm[ L1 ]

-

_ o d31 k+ ¥ [-2m 1 _ 1
nt | efe+1 20 2 2 2 2]
ki-e+0) ki—(e—w)

yGeen-m g
2 “L%— €+a) k%—-'(e—m)z}

(11.2.13)

Im E?;g(k) = %j dxj dziel-[{voe - (k=1 -2m} o'(x:e,0)

—

= (Pe+7 (k=1)+2m) ¢ (K5-60)] [U)W (€)]lap
(11.2.14)

where £ = e(k — 1) = (K - 1) + m?

Now we immediately find

0
Re Smgyd = &-| ¢ (| Y12 Tro=¥ I+ m L
2 20(ePe- 1) 2eePe+ 1) |[2k-1-2e0 2k 1+ 2ew

b1
|ytmm -ylemil g \
20EfEr 1) 2eEo-1) |2k 1-20 2 1+ 280 |
(11.2.15)

) 3

—ee

- (¥ + ko - ¥ 1+ m)o'(xi-£,0)] [UK)TU (W)]og
(11.2.16)



The form of the imaginary part of the self-energy is suggested from the product rule of a
fermion and boson two point function (B1.7). To determine the part of the self energy that

vanishes when ¥ = m we subtract the mass counterterm from the self energy so that by

writing
Z(pyk) = dmgy(k) + (k - m)Zpy(k) + (k- m)zzf(a)(k) + gk (11.2.17)
we find
Re Zg)(k) =& &l 1 ‘ 1 1311
n \ kG- (e + ) efo-1 efer 1/ 20
+ 1 ( 1 .1
K3—-(e- m)z ePo_ 1 efeyy
-2m(y- 1~m)| dz 1 2‘51 —Bl _2_16+_1_)
(- mY)z+ 2k 1-2e] © —1 €+l 2%
~2my 1-m)| dz 1 ( 1 1 (_L_L)
20
(- mDz + 2k 14 2e0] ©0-1 €1 2)|
(11.2.18)

’ 1
dz 1

Re Zqy(k) =~ % 1y 1-m) -
\ (K>~ m®)z + 2k- 1 —2e0]

T
]
|t 1 (_1_+_1_
1 o1 ey /120 2
-(y1-m)| dz 1 ( 11 (51___1_)\
(0P md)z + 2k 1+ 2] -1 P /0 2¢)

(11.2.19)
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3 o .
Re Z'gpk) =& | 41 Yk __yRk+m ( - L)
2] 26 |2k 1-2%0 3 e+ m)2 o1 Py

_ yoko _y-k+m(1+1]

(11.2.20)

Im Z(g ) =‘,’;j dwf ‘f-:lo’(w;e,m) + (e, @UMTU)lap  (11.2:21)

-

In establishing (11.2.18-20) we used

1 1l--| g n(a - B) (11.2.22)
“ ) @™

and
2 2 2
k-m‘=2mk-m)+ (k-m) (11.2.23)
“Thus if we have the term
¥ 10— m?) = (- ad)y i
then
2oy 1K - m)+ 7. (= m)” = 2m(k = myy- 1+ (k= m) ¥ |
In other words, we can just as well write

Zpyk) = dmg)(k) + Zipy(kyk - m) + Zgp)(k)(k - m)2 + Zpyk) (11 .2.24)
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We will use either (11.2.24)) or (11.2.17) whichever one is convenient. The term Zk) is

called the wave function renormalization and Zy is the finite part of the self energy.

The Vacuum Polarization

The vacuum polarization diagram or equivalently the photon self-energy is
illustrated in fig (11.4). This diagram can be inserted into either internal or external photon

lines (fig. 11.5). When inserted into the former, the propagation function

Ayvk) = gyak) is replaced by

A’ k) = guAk) + AT, (KA K) (11.3.1)

k

k-1
Fig. 11.4 Photon self-energy to second order.

f:f

~ @) (b)

Fig. 11.5 Examples of photon-self energy parts inserted into (a) external
and (b) internal photon lines.



From table 11-1 we find :

MTop () =i Tr{ j d'19,5%a - ows™w (113.2)
(2n)

The zero temperature part of (11.3.2) is denoted by n:soand gives the usual zero

temperature result multiplied by the unit matrix :

vy = guvlT(o) 'Y (11.3.3)

where
o)k = kX(=C + K*TTg(k2)) (11.3.4)
-C= ;@ (D+ 5-) (113.5)

KT = -G-[&—l ( )1/1+l 1n“+""“] (11.3.6)
3 Vi+% -1

with p =k/m?,

The temperature dependent part is given by

2, .2 '
Re Tyy(py(k) = =& gL zifem Sy

8’ \8 (@ - 0% mi% § ePek+ 1
L1 2 [

g )
D2+ m)%+ 8 ePei+ 1

12+ m

(11.3.7)

71



£

11 22 o g
Im Myyp)y(k) = Im Myyepy(k) = —= ¢ ’ E,L; ° 2 B o '
81 \ - ((1-k)2+m2)2+8 eelk + 1

+1__ 8 w2 g, 1 1
R B S 3 ePel+ 1
(11.3.8)

" 22 ’ BELK/2 Bey/2
Im nu.v(B)(k) =Im Hu.v(B)(k) = % d“l - 18 o v ePEl-k eBEL

where

O = Tr (1l = K+ mYR[@ e ¥ 1+ m)3(lo- €) - (e 7 1+ m)3(lo- €)1},
&y = Tr (Yl (&= 7 (1= ) + m)8(lo~ ko= €1-)
= (e ¥ (1-k) = m)3(lo~ kot eI wll+ m)),
0w = Tt (Y[ i ¥ (1= %) + m)8(lo- ko~ €1-10)
- (e ¥ (1-1) = m)3(lo- ko+ €1-01W
x [(er- v 1+ m8(lo-€) — (e ¥ 1+ m3(lo- €)1},
v = T (YYo= ¥ (1= k) + m)8(lo— ko— €1-%)
+ Vet ¥ (1-Kk) = m)3(lo- kot &0l

x (Ve v 1+ m)d(o- ) + (er- ¥ 1+ m)3(lo- &)1}
(11.3.10)

where g = ell), gk = el - k)

Notice that we have left the lg integrations so as to keep the expressions simple. For the
same reason we leave the traces. They can be quickly evaluated though using the standard

trace theorems.
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The Vertex

Contrary to the electron and photon self-energy function, which are two-point
functions, the vertex diagram is a three point function as illustrated in fig. (11.6). This
diagram can be inserted into every comer of any diagram as shown in fig. (11.7). Doing

so has the effect of replacing the y;, of the vertex by

Tu=Yu+ Aukk) (11.4.1)

e
§
5
)
Sy
- "
S bt
R)
?
r
.a‘J s

Fig. 11.7 Examples of second order vertex parts inserted intoa
Compton diagram.

where



a

. 2 a
A k) =:£_ij &1 - Dy Sk - 17'A ) (11.4.2)
()

For the zero temperature part of (11.4.2), there are only two components, Al A222

because the zero temperature part of the propagators are diagonal. The results are :

Aok, = Loy, + Ak k) (11.4.3)
where
1
Lo=% D~4f de U (11.4.4)
4r 0 X 2
1 x K 1
2 2.2
Au_f()(k,k’) = - dx dy __u'.+ -Yu dz da—-—mx
2n), ) a? 0 m?x? + (2%~ m*x?)z
2 2.2
— 2my,(1 - x — x%/2) & WX
a2m2x2
(11.4.5)
and

Kk, %,y) = (1 = x)(K'— m)yu(k = m) + %,C — (K- mM,
= My(k - m) = kym(1 + x)(x = 2y) + mx(1 - X)iouk" ,

C=KX1-x+y)1-y) = (1 -k+mA)(1-x+y)+ &+ mdA -y,
My = yum(1 —xz)—Ku(l -x)(1 =x+y) + ky(l +x=-2y)(1-x+y),
M’y =yum(1 - x2) -Kp(1-x)(1 - y) —ku(l =x+ 2y)(1-vy),

Ouy = —;— [Vl -

(11.4.6)

The finite temperature part of the vertex function is denoted by Apg. This can be

separated into a similar way as the zero temperature part. Specifically, we can write

Ak = Ly(k k) + Aype(lc k) (11.4.7)
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Furthermore L, can be written as

Lu(kk?) = LK)y + L'uk.k) . (11.4.8)

However for simplicity we will not separate Ly, as in (11.4.8). The expressions for the
various components for the vertex function are given over the next few pages. The sum

over the spinor index v is performed through :

=1 + myyu(k = 1+ m)y’ = =20k = Pyyu(k = 1) + 4m(Ky— L) = 2m’y,
(11.4.9)

where K, =k, + k') and L, =1+ I'y. With this, the results of this lengthy calculation are :
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111 222
Re Ayp (kk') =Re Ay (kK) =

= m? - 2K - D(k*~ m? - 2k 1) - 5

2,2
2n efe- 1 [ - m? = 2K - )% 8 I[P~ m? - 2k *+ 8]

+ O
2] e

2

G OEKD) Kmm- W 1-8 [ e o
Bep 1 R 2. 12 2 2 2 2

8n P+l PomPo2k D8 (- ) +8 (ot ) +8

L0 gl ou(e.k’.D) 1 5013 - w?)
2w | & el g Aoogw s €1

’ "2
oo | g4 SuEkD K- m?-2k-1-8 -0 __ lgroe
EQ 4 2 2
8x P+ 1 (k%- m?- 2k )%+ 8" | 10— m)2+ 8 (prw) +5
L as] df TuEkD . 515 - o)

f

8n ,J €@ P+ 1)(ePe+ 1) (o= o))2+ 82 (ot m)2+ 52

+ o di]_ Gu(e,e,,l) 8(1%) - 0)2)
2] e P 1)ePer 1) ePo-1

(11.4.10)

112 22 4 2 2
Re Abs (k) = Re Acp (kk) ==& | 41 e%2 &2 & (1503~ 0?)
4m | eg’ ePey 1 PO~ |
1

2 2
& - m?- 2K - D%+ 8

X

4 Pe2 /2
s | Q12 08 L (oo o)

2 | e efey 1 efo 1 oPE4 g
(11.4.11)
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121 212 4 B2 2 ,
Re Aup (k.k) =Re Ayp (kk)=--4-3 d—L-"E-——QPi— o' (€)8(15- o)
dn | e’ &Py y ePo- )

x ]
2
(k*- m2= 2k- )%+ &

4 7 2
+@ | C1PE P L oy(e)503- o)
ee’ ef€y 1 PO- 1 Pt 1

(11.4.12)

2 2 & pe
Re Ayg (k) = Re Ang (k) = &5 AU PR P e

8n | wee’ Py 1 Pot 1

y L1
Qo= 0)+5 (o ©) +8

4 ‘12 2
+% d—l,' 35’5 2 L 0'3;1(5,8')5(1%)- w?)
ee’ P4 1 ePes 1 eP- 1

(11.4.13)

The imaginary parts are given by :
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222
Im Ap (k) = ~Im Agg (kK =

2 2 R a2 Ay, 2 _ 4.
ey d41 5(1; o?) Ny — K°~2m 2k2 1+12 -2 1 :
2 J e 1 (K" — m? = 2k - 1%+ § J[(K*- m? - 2k )™+ &']

-5
871:2 J

4 Su(EK"D) 1 - __ lto
£W 2 2 2 2 2
1 g %8 (- @) 8 (ot ) +5

, 2 ,
o | ghouekl)  k -m?-2¢-1 8B-w®

2w | B oefrn g hoogw. s @l

_(14_1- of u(&',k,l) 1 lo— ® ___lto
e . 2 2 2 2 2
gt | €@ Pl 2 2 gk 2§ (- w) + 8 o+ @) +8

_a [ g1 kD K- m?- 2k 1~ 5 83— ad)

2 J € Ml gl mio 2k DA
o ( & SueEsD -0 lpre
3 | 0 @ 1@ D) |1 @)+ 8 o+ @) +5

efo- 1
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112 221 4 2 2
m AL (K) = —Im Ary (k) = & | 4122 & o ey5E- o)

4r | e’ ePey 1 P

2
K -m?-2% -1

X .
2 - 2
(K = m?- 2k - %+ &
(11.4.15)
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121 22, 4 P2 2
1m A2 (k) = —Im AL k) = =S | L2 P o (en50d- o)
n | € efryiePo-t

k?- m2- 2k: 1

(= mi- 2k D2+
(11.4.16)

122 211 4 ’
Im Ayg (kk) =-Im Ayp (k) = —&- Y P P o (€' E)

8 | wee’ ePe'y 1 efes 1

lo— @ lo+ @

+
lo- ) +5 (o+@)+8
(11.4.17)

In the above expressions, we use the following function :

Nk, k1) = =20k = Dyu(k = D + 4m(Ky - Ly) - 2m?y, ,

(e, 1) = Ny(e, K’ D3(ko~ lo- €) + Nu(-€,k".D3(ko= I+ €) ,

Nu(E,K ) = =2(K = Dyu(’e — v k +¥- D + 4m(K+ eg, - kigyd - I = ligH) - 2m’y

o (k"D = Ny (€7,k" . D8(kp — lo— €) + Njy (-€" K" DKo~ lo+ €)

Ny @K = 208 = K+ ¥ Dyl = D+ dm(et g,” = Kigd = = L) = 2m?y,

ou(e,e’,l) = [Nu(e,e’.D8(k’o— lo— &) + Nu(e,~€’,)o(k'o— lo+ €)]18(ko— lo— €) ‘
+ [Nu(-€,&")8(Ko- lo— g") + Ny(-¢,~€",D8(k’o~ lo+ £)]8(ko- lo+ €)

Ny(Ee]) = =2(1°e -7 K +¥ (e -1 K+ 7 1)+ 4m((E + £)g’- Kigd - 2lig,)
- 2m2'Yu .
(11.4.18)

wheree =gk = 1), &’ =k’ —1)

When we separate the vertex function as (11.4.8), the function Ly, is uniquely

defined by the relation

Aﬂ(k,k')=0 K=k=m (11.4.18)

The separation is more evident when we rewrite (11.4.9) as
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20 - Ik = D + 4m(Ky— Ly) = 2mPy,
= ~2(K'~ m)y, (k- m) + 2my, (K~ m) + 2m(k— m)y, + 4m’y,

+ 2, (k- m) + 2(K'= m)yJ — 2oy}’ — 2mby, - 2yt
(11.4.19)

With this the functions in (11.4.18) are modified, so that we write for the function Ly, :

111 222 515 - ) de K12 - 8
Re Ly (k) =Re Lyg" (k)= -2 d'l 2 — -
2n -1 a5 14 8 )

2
N dL ou(€) ~2k"-1-9 -0 lgto
21 W 2 2 2 2
87 1 4P+ 8 (- )+8 (ot @) +8

Lol d1o® o 30-0)

2t | &gt g PO-1
, 2
. g4 OuE) -2k 1-8 -0 lto
2 0 - 2 2 2 2 2
8n Pl 4220 8 |-+ 8 o+ ) + 8

[0 | sB-od)

+&3
2n | € gz g -1
ey & ou(e,e”) 1 _ 1
87 ,J eg'@ e+ 1)efer 1)| (gp- o)+ 8 (ot 0))2+ 5

Lo d1_ OuEE) 5(15 - &)
2| eg @P+ 1P+ 1) ePo-1
(11.4.20)
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4 £/2 2 2
Re Lii(kk) =Re Lig (kk)=-0 | 41 222 8 5 @50F o)

ar | e’ efey g gfo- )

4 Per2 B2
w1l o | dlef? of L 01(e£)8(15- o)
Al 5 2 | e ePeyePo-1 eyl

(11.4.21)

Re L2 (e ) = Re L2370k = — - | €122 P2 o ensf- o)

an | e€ Py 1 ePe-

4 ‘12
SU N1 I v O L WS P T Sy
2 2 ee’ eBE.q.. 1 eBm— 1 ch-i- 1

(11.4.22)

2
Re L2k k) = Re L2§ (k) = Re Ayg (KK (11.423)

The imaginary parts are given by :
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2 2 ,
e e" -1 4k 1P+ 8 1[4k 8]
- dil_ ou(€) 1 o lgt®
€Q 25 2 2 2 5
o | g @ -2 1805~ w?)
2n | € ePeyy 4k’212+ 82 eBo_ |
-Q3 .dil. () 1 -0 lgro
2 | €oeff 2 2 2 2
sn’ | €O 4P 5 G- 0) + 8 Qor o) + 5
o ( g4 OuE) -2k 1 &3 - w?)
PAis J e eBE’ +1 4k212+ 82 e[}m_ 1
+ % r-_df_l_ ou(E) [ @l
o J 0 4 P D) | (lo- 0 +8 (ot m)2+ 5
(11.4.24)

4 2 o2
I L2k = -t L33! (i) = - & | 1822 222 5 @508~ o)

4 | e’ ePey 1 ebo- 1

-2k'-1
X

2 2
K1+ 8
(11.4.25)

4 ’ 2
m L2 (k) = ~Im L2320 k) = -2 | €12 e o 50 o)

2n | € Py Pt

-2k 1
X

2
K15+ 8
(11.4.26)

122 211 122,
ImL,g (k) == Im Ly (k) = Im Ayg (k') (11.4.27)
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In the function L, we defined the following functions :

N, = (4m*+ )y~ 4ml, ,
Ny(®) = 2m(e — ko) ¥+ 4m™ + 2,Y (€ — ko)
- 2myJ + 2my- Ly, — 4Mighu - 20y by
ou(€) = Nu(e)d(ko—lo— &) + N u(-€)8(ko— lot+ ) ,
o'u(€) = N'u(€)d(K'o— lo— ") + N'u(-eN8(k’o~ lo+ €) »
() = 2myy (€ - Koy 4mPy, + 26— Ko w!
- 2mly, + 2my,y- 1 - 4lghy = 2wy 10
Ou(e,£) = [Nu(&,€)3(K'o- lo— &) + Nyu(e,~€")3(K o~ lo+ €)18(ko lo—€)
+ [N(~£,€)8(K'o- lo— €) + Ny(~€,-€)8(K'o— lo+ €)]8(ko~ lo+ €)
NuE&e) = —2mya € - Ko wy (€ — ko) + 2y € - Ko W
+ 2m(e - koy Yt 4mPy— 2mry We — koyy'- 2(8" - KoY ey |
+ dmljgh— 27 lyuy- 1 .
(11.4.28)



Electron Propagator in External Field
In the presence of an exiemal field Ay (x), the Dirac equation is modified to read
(D - my(x) =0 (12.1.1)

where D= @ + ieA is the covariant derivative. In this case, the electron propagator is not
spatially invariant (i.e. it is not a function of the difference x - y). We can express the
electron propagator in the presence of an external field in terms of a complete se't of
solutions of (12.1.1). denoting by u the "positive energy" solutions and by v the "negative
energy" solutions, they are of the form:

u,(x) = ua(x)e'ﬂ;'t E,>0) (12.1.2a)
vy (x) = vy(X)e"E* (B, > 0) (12.1.2b)

It must be stressed that solutions of the type (12.1.2) which are periodic in time exist only

for static external fields. We therefore assume that Ay = Ay ().
The solution to (12.1.1) can now be expressed as

yx) = 3 [ uae B v(obre™] (12.1.3)

Here the operators ar and by are not the annihilation operators but are related to them

through the Bogoliubov transformation :

a_ = c(Ea/(B) + d(E,)a (B) (12.1.42)

2. = c(Ea(B) - d(Epal (B) (12.1.4b)
~t

Er = C(E,)Er(B) - d(E)b,(B) (12.1.5a)

by = c(E.)be(B) + dEnb; (B) (12.1.5b)

Defining the two-point function by
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s“"(x-y) = (OBITY W $IOEB)) (12.1.6)

from which we quickly find :

%) = 3 [0 B0 (UEYIO(t- ty3U (B gge ™5™ ¥

. + _ (12.1.7) .
+ 2 MOV UCEYO(- U (=B )qpe ™G W]
where
0(t,-t) O
Oty-t,) = (12.1.8)
0 G(ty- t,) '
The Fourier transform of (12.1.7) is defined by :
s®xy) = -1 f d*pd’p’ %P (p.prye P X+ P (12.1.9)

@rn)

When calculating the Lamb. shift, (12.1.7) will be of interest to us in the non-
relativistic case and for the one particle theory (i.e. elecirons only or positrons only). For
the non-relativistic case, we want to relate the spinors ug(x) or vi(x) to the scalar
Schrodinger function @(x)* . This reduction of the spinors to a scalar function is
accomplished by separating the spinors into large and small components. Considering u(x)

(v(x) follows by analogy), we write :

u = upt U (12.1.10)

where
u1=-;-(1-'yo)u (12.1.11a)
us=—;—(1+70)u (12.1.11b)

* Here we also disregard the interaction between orbital and spin angular momentum.



We can now break the equation

Hu =Eu
satisfied by (12.1.2a) into a pair of equations for uj and ug. Thus we write

H=iyV + ey’A+m°

86

12.1.12
=K+V+ m‘Yo ( )
where
K=iyy(V + ied) + V+m (12.1.13)
v=ey’A, (12.1.14)
so that we get
Ku,=E -V -m)y (12.1.15a)
Ky=(E-V+mu, (12.1.15b)

From this it is evident that in the non-relativistic limit we can neglect the smail components.
Thus we can replace u by uj and in addition we can omit the factors y0 since YOuy = uj.
Since 1/2(1 - Y0) is a projection operator of rank two, we can reduce the 4 component

spinors to two components. In other words, we can write

u(x) = @(x)y (12.1.16)

where % is a spin function normalized so that XX = 1. Furthermore, we also have the

relationship :

2
Y Axe=1 (12.1.17)

r=1
We can now express (12.1.7) as :

SNR(Y) = Y, Ga()On(¥)e B WUEN O t)UTED  (12.1.18)



The Fourier transform of (12.1.18) is given by

SNR(P.P) = _l..4. d*xd*x’ e X~ XY g x)en(x)e B D UE)O( - 1)U (ER)
() "

- i1. didt’ /B~ BV on(p)en(p)e Bt U EDNTO( - 1)U (ER)
T n

(12.1.19)
where
¢n(p) = ——1—35 j d*x @n(x)eP" ¥ (12.1.20)
(2n)
Now we introduce
T=1f2—‘-,r,=t—t' | (12.1.21)
SNr(P.P) = EL f dT j 8y, @u(p)en(p))e’P T+ &2 — ipd(T= H2je-iEal
n —0 —a0 n »
x UE)TOQU" (En)
= j dZ8(po = o)y, Ga(Pen(p))e'®+ PIY2—EL(E YU (En)
n
S SR 0
. * pPo— En + 16
= i8(po - o’ "U(E t
i3(p0 = Po) 2, 9n(PIPn(PIU(En)e ; ) U'En
po— Epn—id
1 - 0
. », %, , po~En+ i
= i8(po - pUGPDY., eu(@enpiz| 07! 1 Ut o)
n 0 ————
po— En—id

(12.1.22)
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We rewrite this as
. S+(po—E 0
SNR(P:P) = 278(p0 - POV T, en(men(e| +F0 ™ B ) U'tpo)
n \ 0 - 3.(po—En
(12.1.23)
where
8+(po = En) = - ——+ 1 §(pg - Eq) (12.1.240)
§-(po = En) = = - —F— + L §(po - En) (12.1.24b)
2n po— En

Separating the propagator into a temperature dependent and independent part gives :

. |8+(po—En) 0
SNR)(P:P) = 218(po — P'0) Y, %(p)cpn(pﬁ( e )

0 8-—(?0 -En)
(12.1.25a)
’ 8 - E » , dez
SNr@)(P.p") = =2rd(po ~ p o)—(go——“)z Gn(P)On(p )( Le )
efoy 1 ehrv2 g
(12.1.25b)

In addition to the above results we have the following : the free field equation in thermal

doublet notation is given by :
af a
A @y )=0 (12.1.26)

where A(9) = (P - m) multiplied by the unit matrix. When we operate with A(d) from the

left on (12.1.9), we get

A* @) x") =—1_; f d*pd*p’ (p - med)SP(p,p")e P ** P ¥ (12,1.27)
@2m)



This we rewrite as

A% @5 xx) = —1—; f d*qd*pd®p’ [(B - m)S(p - q) - Y(p - @)]
(2r)
X sag(q’p')e—ip- x+ip’ - x’

(12.1.28)
where
Vup) =~ —Q?E AuPSepY (12.1.29)
(2m)
Ay(x) = ——Iﬁ f Ay(p)e P X d’p (12.1.30)

(2x)

The expression in square brackets in the integrand of (12.1.28) is taken to be the matrix

element of an integral operator in momentum space
(6-md(p-q) - Y(p-q =(pp- V- mlg)

We make a similar interpretation for S(p,p”) so that in operator notation

S(p.p") = O¢piSIpHT (12.1.31)
and
§=-0p-m-0o (12.1.32)

When an external field is present we modify the Feynman diagrams by drawing the

electron lines as two solid lines as shown in fig. 12.1.
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& ~

Fig. 12.1 Electron-clectron scattering in an external field.

The S-matrix is also modified in the presence of an external field. It can be developed
iteratively as in the absence of an external field. When the external field is present the

interaction Hamiltonian is given by
Hine = H + He (12.1.33)

where H; is the interaction of the electron with the photon and Hg is the interaction of the
electron with the external field. In this way the nth order term of the S-matrix is a
polynomial of order n in the external field and we write this as :

s® = i s (12.1.34)

v=0

where S("W) contains all the terms of vth power in the external field A. Thus for example,
S(n0) describes the system in the absence of an external field and S(1) contains the external
field to first power only. The radiative corrections of certain processes (i.e. Coulomb
scattering) are described by S(31) terms. The terms S("V) can be illustrated
diagrammatically by introducing a X at every corner where the external field acts. This is

illustrated in fig. 12.2.



Fig. 12.2 The external field acting ata
cormer.
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Radiative Corrections to Coulomb Scattering and
the Lamb Shift

Radiative Corrections to Coulomb scattering

When considering the elastic scattering of electrons by atoms, the electron cloud
surrounding the electron is neglected. Hence the atom is considered as an infinitely heavy
positive charge of magnitude Ze. The problem is then reduced to the motion of an electron
in a Coulomb field. Coulomb scattering is defined then as the scattering of an electron to
all orders in the Coulomb field, but to zero order in the radiation field. The radiative
corrections to Coulomb scattering, considers the effect of the presence of virtual (or real)
photons emitted and reabsorbed by the scattered electron. The Coulomb scattering diagram
to second order is illustrated in fig. 13.1. The radiative corrections to Coulomb scattering

are illustrated in fig. (13.2).

p

Fig. 13.1 Coulomb scattering.
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Fig. 13.2 Radiative corrections to Coulomb scattering.

When evaluating the S-matrix elements of diagrams, the Feynman rules are
modified slightly. These modifications are evident when one uses the reduction formulas
for S-matrix elements. Considering the case of fermions, the reduction formula extended
to TFD s :

(outh -3, (@ >+ bEu(@)ble (ko). 410 (' ) Jin)
= disc. + (—iZ‘“z)“(iZ'”z)"'f d*xy - d%y) - exp[-iZ(k x+k - X' =g y-q - Y-
x T%(q1)(ify,— m) - P (k7 )i~ mOBIT - Y™ (y1 ) - WXy WP (x1)-- WP (7 ) - -10B))

« «
X (=i @ x= muP(ky)- (=i 8 y,— mIv (g1 ) -
(13.1.1)
In this expression, disc. means all those diagrams that have no external lines. The constant
Z is the wave function renormalization constant. Also the operators dout , bou are the
annihilation operators in the plain wave expansion of the wave function of the outgoing
particles while dj, , bjp are those for the incoming particles. The vacuum expectation value

gives the thermal propagators as discussed earlier. However, since

(i3 - m)S*B(x,x’) = ~5*P5(x — x*) (13.1.2a)

s“ﬁ(x,x')(~15 -m)= —SGBS(X -x) (13.1.2b)
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then when we integrate out the delta functions, the whole procedure has the effect of
replacing the propagators of the external lines by the wave functiors of the incoming or
outgoing particle. Also, there is an integration over the coordinate at each corner or over

the internal momenta in momentum space. Now we note that :

- - ~ft _e _ .
u=u du =u = 1‘l=uﬁ=u
p=uand?=3"=u"M =y =y

Thus, we will ignore the thermal indices of the wave functions of the external lines. Ina
similar fashion we find that for external photon lines the propagator is replaced by the

photon polarization vector, denoted by e, in the evaluation of S-matrix elements.

With this in mind, the radiative corrections to Coulomb scattering give the

following matrix element :

GD Byd 1
('™ Ip) ===—0=-u(p") ), Q. (p.p)A (Qu(p) (13.1.3)
Y2n VEE 32;'5 g

where

’ 8 ’ ’ B 8 ’ B A\ 8
BBy =2 ISP + 1S @ET (p) + Ay (0. — A (@Y o)

(13.1.4)
Instead of (13.1.3) we prefer to write :
oM™ = —m_ 5P p.pA  @u(p) (13.1.5)
Vor VEE
We separate this into a tempcrature independent and dependent part :
M= (oM i+ (o i) (13.1.6)

The temperature independent part is given by :



222

V'z':? VEE 31t 8
x W(p" YA (@u(p) - ;?—U(p’)YpA (q)du(p)}
m

The above result is evaluated in the case of small momentum transfers :

¢ = ¢? << m?

Also, A in (13.1.7) is the photon mass and is ii:troduced as a cutoff.

The temperature dependent part of (13.1.6) is expressed in terms of :

Qﬁfg)(p p)= [E(o)(p )S(B)(p )+ z}’;)(p')s‘”(p’)]vu

+ IS @) Zp) + s(,,)<p>z(o)<p)]
5
+ LﬁZm(P P+ Auf(B)(P P)

- A<0>(Q)Yvnvu(m@ - A(m(Q)YVHvu(q)

In other words :

(P MEVIpyy” =€ I g5@)QPY (p.p)AKQu(p)

T2z VEE

The Lamb Shift

¥

(13.1.7)

(13.1.8)

(13.1.9)

The experiments of Lamb and Retherford were the first decisive experiments to

measure the energy level separation between the 225/ — 22P} 7 states of hydrogen and

deuterium. It was a great achievement of theoretical physics that the results of quantum

electrodynamics (QED) agreed remarkably well with the experimental results. This shift in

the 2282 and 22Py; states is due to the radiative corrections which are neglected in the

Dirac theory, and is referred to as the Lamb shift. The very accurate experimental
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measurements are motivation for extending the results of QED to the case of finite

temperature. This is what we do next.
The lowest order radiative corrections AE to a level E in a hydrogen iike atom is
given by :

AE = -1 (EMIE) (13.2.1)
2rmi

The diagrams for this correction in the presence of an external field are illustrated in fig.

13.3:

. \ J }
N

(a) (b)

Fig. 13.3 The lowest order radiative corrections to the
motion of an electron in an external field. Diagram (a)
is the flyctuation diagram and (b) the polarization diagram.

The fluctuation diagram is due to the virtual emission and reabsorption of photons while the
polarization diagram is due to the polarization of the vacuum in the presence of an external

field. We consider the fluctuation diagram first.
The S-matrix element for the fluctuation diagram is :

AE(;B = —‘%—f Ty S*P(p ~ k - V)Y‘qu"“(k) d% (13.2.2)
(2n)

where



5% (p - k - V) = [Upo)(p ~ k= ¥ = m)~ U (oo™ (13.2.3)

Here the subscript zero refers to the energy level Eg whose corrections are being sought.
The operator V is defined in terms of the external field as :

Vi=-—E—| A(p- pOu(p)dp (13.2.4)

. (23)3/2 I

In the expression (13.2.2) there is contained the self energy of the free electron. This will
have to be subtracted 5o that we get the observable level shift. In other words, the level
shift is the difference between the self energy of the bound and free electron. As was
mentioned previously, there is no closed form for the propagator in the external field. We
must use approximations for further progress. First we use the following identity :

B-k-Y-ml=@p-k-myl+@-k-mi¥p-Kk-m)!

F@-k-m WG~ k=Y -my V- k—mt P2

Now, since U(g) is a unitary matrix, we can expand (13.2.3) as

U(po)(p = k= ¥ —m)" ' UT(pg) = Ulpo)(p ~ ¥ - m)™' U'(pg)
+ U(po)(B - ¥ — m) ' UT(pa) YU(po)(p - ¥ ~ m)" U (po)

+ U(po)(B ~ k = m)" ' U (po) YU (po) (B — k — ¥ ~ m) ™' UT(po) YU (po)(p — k — m)" U (po)
(13.2.6)

With this identity, the matrix element can be expressed in terms of diagrams as shown in

fig (13.4).
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o d

@) (al’) (al) (a2)

Fig. 13.4 Decomposition of the fluctuation diagram.

In this diagram, the external double lines indicate Coulomb wave functions and the internal
donble lines indicate Coulomb propagation functions. Diagrams (al) are called the one
potential part and (a2) the many potential part. Although the separation in fig. 13.4 is
exact, we must make approximations for further progress. The first diagram (al’) will be

relevant in the cancellation of infinite terms.

The second diagram (al™) gives a factor & from the emission and reabsorption of
the virtual photon; a factor aZ from the single action of the Coulomb field in the
intermediate state.; and a factor a=3 where a is the atomic radius which is of the order of
magnitude of the nc:rmalization of the Coulomb wave function. For hydrogen like atoms :

3
Iq;ﬁ'R(O)Iz -1 - (Zom)

na,  mn

where n is the principal quantum number. Thus the diagram (al") gives an energy
correction of order of magnitude a(0Z)%w. times the corresponding integral. Now we
know that the vertex part contains an infrared divergence and since it is of a logarithmic
type, the expectation value of the vertex will give a logarithm. This divergence is expected

to be compensated from terms arising by diagram (a2). However the functional form of the
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logarithmic factor will not disappear. In the zero temperature theory this factor is of the
order of v2 where v is the electron's velocity. In our case v is of the order of oZ. Thus

diagram (a1") should contain terms of order a(aZ)4naZ and a(aZ)4.

Diagram (al) is to be evaluated relativistically and (a2) non-relativistically. We
consider first the contribution of the one potential part AE;. It consists of the fluctuation

and the polarization diagrams :
AEI = AEFI + AEp]'»

The diagrams for AEg; are (al') and (al") and the free electron self energy must be
subtracted frc n them. We do this by expanding the external lines of («1') in the Born

approximation. Thus assuming the electron to be at rest, we approximate the Coulomb

function by
u=ur+ (p —m)'IY/u a3z2z7

Then the diagram (al') is separaied as illustrated in fig. 13.5.

™ \
\ )
= ; + + s + O[cs(ocZ)2 (ame]
’ i d

Fig. 13.5 Approximate decompisation of diagram (al’).

The first diagram is simply the free electron self energy which we subtract. Thus
we are left only with the other two diagrams in fig. 13.5. These are seen to be the same as

the radiative corrections to Coulomb scattering. The only difference is that diagrams 13.5
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have Coulomb wave functions for the external lines while diagrams (13.2) have plain

waves for the external lines. The results obtained in section (13.1) are valid for free initial

and final states irrespective of the momentum, which includes momenta of order aZm that

occur in bound states. So we can take thé results (13.1.7) and (13.1.9) and evaluate it for

. Coulomb wave function. This corresponds to an expansion of the Coulomb wave

functions in terms of plain waves so that the error is of the order of the binding energy

(0.Z)2m which is negligible. Making the same arguments for the polarization diagram we

separate AEj as :

AE; = AEyo) + AEy(p)

The temperature independent part is given by :

(pMEVp) = (pMEIp) =
@ )3/2

31c 8 5
f (uo(p')—A(q)UO(pr-uo(P )A(q)—uo(p) d3p'd3 }

It can be written in coordinate space as

2
AE; = —“{m m_3._ 1—)<0(B)IZ—VI0(B))
gl A 8 S m?

— 0 OBy LVIO(B)
4n

The temperature dependent part is given by :

(13.2.8) -

(13.2.9)

1 5 " A ’
(P IMCVIpy ) = f wo(IQ T o)A Qo) e (13.2.10)
3n

(2m)

Now we discuss the many potential part AE3. This is given by :
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AEY = _9372 To# | Ue)—2 '2* * > '&Uf(e)VU(E)(yS - k=¥ -m)Uute)
(2m) pol- (p-k=m™ior (13.2.11)

xWUE—E=Xr® i) duoa™od

(p - k)%- m?+idt uf
Here the sum is an average over the initial spin states and a sum over the final spin states.
We simplify AE by taking into account all permissible approximations to order

a(aZ)¥naZ and a(aZ)?. Also we assume a small photon mass A so that

Ag(k) = — % —

k2- A%+ ist
With this in mind, we note that the photon's momentum k will contribute mainly when it
is of the same order of magnitude as the photon energy ®, that is O((@Z)2m). Thus we can
neglect k in the numerator of the free propagator because it is of order (Z)2 compared
with m. Also, the electron's momentum is of order € Zm and its energy m — O((aZ)2m).
Then since p2+m? vanishes in the denominator of the free particle propagator and k2 is of

order (¢Z)4m2, we can write
(p-k?-m2=-2p k=-2mae

This approximation for the denominator is permissible only for the zero temperature part of
the free propagator. For the temperature dependent part we do not iguiore the photons'
momentum, because otherwise we get d(w) type terms which will give a divergent result.

Thus in this approximation we can write

p+m
-2mo + idt (13.2.12)

3 _ Bm/2
Se)p) = Zni@+ m) 8[(m — w)% - t—:]( Le )
CBm +1 eBmlz 1

S =



10

Furthermore, since we are to evaluate AE in the non-relativistic limit we can use
the nbn—relativistic Coulomb propagation function (12.1.25). This means that we can
replace it by the sum over the large components of the electron's functions Wil and ignore
the positron states which involve transitions of order (Z)2m/2m smaller. Thus we write

(12.1.26,27) as

S0P = k , P’ — k) = 218(Eg - E., un(p — K)Tn(p’ - k)
n

8.(En-Eo+ W) 0
X
0 S-(Eqp-Ep+ )
(13.2.133)
’ ’ — SE -Ep+®
Ser@(P -k B~ k) = = 218(Eo - BN, un(p = W)ma(p’ — by Eo*+ ©)
n ePBoy |
BFa2
x( 1 cB )
ems“/2 -1
(13.2.13b)

Here we have introduced the total energy of the state ug, m - Eg and that of up, m - Ep - @.

Furthermore since k is of order o.Z compared with p, we ignore it in the argument of up,.

The zero temperature part of AEj is then given by

O+ (En— Eg+ 0
AE(;(%) = JZ_Z Tod ___?i_r_n___yz ( +(En— Egt 0) TR
212 pol. 2me+idt 0 0 8_(Eq— Eot+ @)

4
Ny _151_"‘__} . f.J_d_L}
2o+t | 252 5 op

(13.2.14)

For the sum over polarizations we use the result that the emission probability of a

longitudinal meson of momentum k, mass A is

o

K2 + A2
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times the emission probability of a transverse photon. With this we write

-E 0
AED, - _g__L_EI kfdm[( 8:(Ex— Eo+ ) )_L_
21% 12m?® L 0 8-(En- Eo+ @) | (0® - i87) Jup
x (24 A 16P) ( T ) KOG + m)Vinyi2
2 2 2 .
(-k +@" =LA +id7) /up
(13.2.15)
The expectation value is simplified to
KOry(p + m)YIn)l = 2(Eq — En)Olpin)
Then after a simple integration over angles, we get
AE}h = 40 % f lkl2dlk] f ( 8+(En= Eot ©) 0 )-—1
3Irm2 " Jo oo 0 8_(En— Eo+ 0) | (0® - i87) ap
x 2 +A /%) (Eo - En)zl(Olpln)lz( T ) do
2 4 .2,
(13.2.16)

For the w-integration of the 1-1 component of (13.2.16) we close the contour by a large
half circle in the negative imaginary part of the w-plane. For the 2-2 component it is closed
in the positive imaginary part. Then since the energy level is given by the diagonal sum,

we find

. 2 2
AEyqy =~ S‘BH%Z (Eo - E0ipiny? | X d':" (1 + l_)

2
0 20 00

X [84(Eo — En + t0) + 8_(Eo — Eq — o))

(13.2.17)
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where @ = Vk2+AZ. The Lamb shift is given by the real part of (13.2.17), the

imaginary part gives the line width. Thus, performing the remaining integration in

(13.2.17) gives the real part (in the limit A » 0)

AEaq) = -S-—G-z (En — Eg){Olpin)i (m—la+ 6) (13.2.18)

When we use the well known result

S KniplOY*(Eq — Eo) =%(OIV2VIO) (13.2.19)

we can rewrite (13.2.19) as

2
AEjq) = gG-(ln A3 <o‘ o> (13.2.20)

ko ¢ 2

where

k(e ly S KniPInol)(Bn ~ Eq) In(En ~ Eol/Ry)

Z’Ry Y KulpingO)2(En — Eo)

In

(13.2.21)

The energy ko is an average excitation energy. The quantum numbers ng and | are

associated with Eg.

Similarly we can calculate the temperature dependent parts of (13.2.11), although

we cannot always solve the d3k or the w-integrations. Also we do not separate the real and

imaginary parts. We discuss the results below
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By —
Ez(in)""g_z d’k To¢

p+m 5 8(E,Eot m)( ] BEs2
Zn pol. 2mo+idt n eBE"+ 1

) uptinY
ePE2 1

« __15_+n3_} foo—
-2mo + idt ap k2__ 12*' St ”

(13.2.22)

The o integration is the same, so that when we add the 1-1 and the 2-2 components, we get

AE@p)) =~ -8& Z (En— Eo)zl(nIpIO)IZB—L—

Boy

= 2 2
k d""(1+ KZ)S(ER-EOM\O)

3
0 20)0 25&)
(13.2.23)
Similarly, other temperature dependent terms are :
4 2 o KAdkI[: 2%
Az = 4% ¥ (E, — Eg) KnlplO)! i L e
3m® n o 20 200/~ 1
X [8(En = Eo + wp) — 8(Eq — Eq — tp)]
(13.2.24)

Since, Eq - Eg is slowly varying, we can approximate it by E; - Eg. Then evaluating the
sum, we get

2 2
i K2dIkl
AEyp = 4 - (0ILV, p1IO) 3 (1+ A ) B%L
3m , 200 . )

X [6(E; — Eg + @) — 8(E; — Eg — )]

(13.2.25)

Applying the same arguments that lead to (13.2.25) give for for the next temperature

dependent term :
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bl

wn? Sl (m-8)(m-e) - wg) B ~ EO\ 2m-g)
2 2
203(2, }2m(4m2 - mg) Ei-Ep+2m 8m?
(13.2.26)

In addition we get the following terms :

Y e 2
AEzp4) =-&nq<.91_[‘_"_!’_]@j [ kzdlkl( 1 +-L)
0 —oo \

3m efmy 20)2

1 [5—(E1—Eo+m)_8+(El‘EO+m)

2
] 8[(po - ©) - £°18(c0” — w3) d
P _ 1L o+id ®-id

(13.2.27)

fia 2 2 T kMK g
AEy@gsy =+ Z (En - Eo)*(nlplO)! -—1—— - -
M+ 1o Je a(@® -wf) o’ +8

(1+-2~—)8(E —~ Eg+ @)8[(po — ) — ] £ ™2 -1 4
Eo
20) er?+1
(13.2.28)

oD

[{-] 2
AExge) = +—LZ(En Eo)"'l<nlplo>lzB f f kzdlkl(u-L)_Zm__
m_ 1

- 2w2 w® + 82
2
X 8(E, — Eo + 0)8[(Eg — ) — 218(0? - %) 5 ™2~ 1 44,
Blml -1 PB4 |
(13.2.29)
AE = dia Z (En - E())2|<n|PIO)l2 k2dlk! 1+ ;‘2 1
2(B7) 3m2 BEo 1 3 2| Bew |

X [8(En — Eo + ) + 6(En — Eg — 020)]
(13.2.30)
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AEpps) =~ —q‘ Z ™~ 1 (&, - Eg®Knipi)? | d%k (1 + -L)

oePmy g 207

« 2B Bt D) i ) - )
)
(13.2.31)
2
AEgqg) = - 3}3% Y (En - E9)*(nipiO)” d* ( 1+ _A._)
efm+ 1 2
()}
% S(En -Eo+ (D) {8[(!!1— m)z _ 82]}28[0.)2 _ m%]
efo—1
(13.2.32)
AEzgi0) == 5% E (En — Eo)2(nipl0)? | d k(l + -L)
20)
% S(En - EO + (D) {8[(!‘[1 _ 0))2 _ ]} 2 4eB(m+ Eo)2 _ ZCBm
-2t 8 @PBo+ 1)(1 + ePmy?
(13.2.33)

So, the temperature dependent correction to AE3 is given by the sum of the real part of
equations (13.2.23-13.2.33). The zero temperature terms (13.2.9) and (13.2.21) can be

combined to give the usual zero temperature result :

+19R

2ko(n 0 " 30 =0

AE(y = &Zisﬁ
n’ 3n

Z Ry 3 Cy
MEgy =82 | n ZRY_, Ry (120
O™ 3 3nl koD g 2141

(13.2.34)

where

(13.2.35)



Summary

We have presented a review of equilibrium thermo field dynamics. Today, it is
just one of several approaches to a field theory at finite temperature {26]. Ojima has shown
that TFD is equivalent to several of these approaches [27]. Of all these approaches, TFD is
perhaps the most useful for practical calculations because the Feynman diagram method can
still be used. Furthermore, the renormalization method, the renormalization group asnd the
Ward-Takahashi identities are similar to the usual quantum field theory. TFD can be
considered as a straightforward extension of the usual QFT to finite tempcrature, and only a
few modifications of the operator formalism from that at zero temperature are required. An
advantage that TFD has over the conventional field theory is that generalized annihiliation

operators can be defined. This enables us to use the generalized Feynman diagram method. -

In thermo field dynamics, a new {ield, the tilde field, is introduced that doubles the
number of degrees of freedom, and can control the temperature of the system. With this
doubling, the results of zero temperature QFT can be recast in terms of the thermal doublet
notation. The need for the doubling of the degrees of freedom can be intuitively urderstood
as follows : when a system has non-zero temperature, it contains some number of thcrmally
excited quanta. This introduces the dynamical freedom to annihilate (or create the holes of)

these thermally excited quanta in addition to the freedom of the usual excitation proeess.

In contrast to other therinal field theories, TFD can treat thermal phenomena in a
closed system. Since it can do so for any such system, it is suitable for the analysis of the
thermal development of the universe and also to analyze the thermal behavior of high

energy reactions such as the quark-gluon plasma in QCD.
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We have used TFD to calculate the temperature corrections to the famous Lamb
shift. The Lamb shift will always be remembered as one of the great achievements of the
twentieth century. With it began a new age in physics, that of quantum field theory and
renormalization. Recently, with the many finite temperature field theories, it has become
possible to extend the calculation of the Lamb shift to finite temperature. In particular,
because TFD is a straightforward extension of conventional QFT, it is the most useful for

extending the Lamb shift calculation. This is achieved in this thesis.

The temperature corrections to the Lamb shift are given by the sum of the real 111
and the 222 components of (13.2.9). This is due to the radiative corrections to Coulomb
scattering. In addition the this sum, we must add the real parts of (13.2.23-13.2.33).
These terms are due to the motion of the electron in the Coulomb field. The calculation
does give the correct zero temperature terms. However, that is only a slight assurance for
the calculation being correct. For complete confidence in the calculation, we must check to
see that it agrees with experiment. Since it is-difficult with these expressions, to estimate
the magnitude of the temperature effect, we must carry out a numerical calculation of all the
equations mentioned above. Also, a high and low temperature limit of these results would
be very interesting. Only then can we be sure that the results are in agreement with
experimental measurements. This remaining test of the calculation will be achieved in a

different work.

In addition to the Lamb shift, there is another important quantity in quantum
electrodynamics; the magnetic moment of the electron. This is related to the Lamb shift
problem and must be taken into account. This has been achieved by several people
(28,29,30,31,32]. However, any one result among theirs does not agree with axiy other.

We will pursue this problem in another work.
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Appendix A
Free Fields for Physical Partiéles

The Free Field Equation

We require that the free physical field be a linear superposition of the annihilation

and creation operators o.(k; X, t) and af(k; x, t) with coefficients that depend neither on x

nor on t. The time and space development of these operators is given by

a(k; x, t) = a(k)expli{k- x — 0@)t}] (AL1)
alk; x, ©) = af®expl-i{k- x - ak)t}] (AL2)

A further requirement of the construction of the free physical field is that there exist a
projection mechanism which can project out each annihilation or creation operator. This
guarantees that the dynarmnical map can be expressed in terms of products of free physical

fields.

The free physical field satisfies a homogeneous differential equation of the the form
A@)¢°(x) =0 (A13)

Free fields can be classified in two ways. When
M@ =id &) (AL4)

then (A.3) is refers to as an equation of type 1. On the other hand, it is an equation of type

2 when
2

A@) = g_z' + 0X(V) (ALS)
t
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The Divisor

The free field equation suggests that there should exist a differential operator d(d)

such that for a type 1 equation

d(@)A(0) = ig;— e(V) (A2.1)
and
__|8% . 2
d@AE) == | = +0 (V) (A2.2)

ot

for equations of type 2. If we denote by AGg(x) the Green's function for either of equations

(A2.1) and (A2.2) then we can show that

X(B)d(a)AG(x) = 8(x)8(t) (A2.3)
so that d(d)Ag(x) is the Green's function for the free field equation (A1.3). The operator
d(9) is called the divisor.
The Hermitization Matrix

When we make the following definition

A(p)expli(p- x - pot)] = A(d)expli(p- X - pot)] (A3.1)
then the eigenvalue equation A(p)u = 0 for some vector u has the eigenvalues po = e(p).

Since the eigenvalues are real, A(p)u = 0 should be equivalent to an eigenvalue equation of

a certain hermitian matrix with the same eigenvalues. Thus we are lead to the existence of a

non-singular matrix 1} which makes nA(p) hermitian. This is expressed as

A et =nAm) - (A3.2)

or as

AT’ =mr@) (A3.3)
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From the equations (A2.1) and (A2.2) we get the result that d(p)n-! is also hermitian. The

matrix 1 is called the hermitization matrix. We now introduce the following notation

7' =¢"Tom (A3.4)

so that the hermitian conjugate of the free field equation becomes

P A(-3)=0 (A3.5)
The Lagrangian for the Free Field

The Lagrangian for the free field is given by
32, =jd“x FOAE)9°(X) (Ad.1)
The Inner Product

To find the expression for the inner product of wave functions, we assume that

A(9) is a polynomial of degree less then or equal to 2 in d/ot. In this case, we write A(d) as

@ =2 @)+ (W +2? (V)% (AS.1)
From this definition, we define an operator I" by
F=2"v) - ix‘z’(vg—; (A5.2)
where
3.9 9
i (AS.3)

Then when {(x) and g(x) satisfy the free field equation, their inner product is given by

f &x Foolgx) (A5.4)



The Structure of the Free Field

For a type 2 equation, the free field has the structure as given by

ex) =, f d>k [ k)" K)exp({k- x — wk)t}))

+ V(0B (exp(-i (k- X - (-Wt))]

whereas for a type 1 equation, it has the structure
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(A6.1)

Px=Y f 6% (BLE(OIUR)O"(K) + B[-e(—K) V(KB (<Io))eik- X = ieCk)t

(A6.2)

Here, 6(x) is the step function. The amplitudes uf(k) and vf(k) satisfy the

orthonormalization conditions

TRk, 0)Tusk) = 1) 8sh
FRTT=k, o(-k)Ju*k) = -(21) " pdish

where

Ik, B) = 2 k) - 260 P )
Sum Rules

The plane waves

u'(k, x) = u'(k)exp[-i{k- x — @(k)t}]
vi(k, x) = vi(k)exp[-i{k: x — w(-k)t}]

satisfy the following sum rules

3 I &k u'(k, )Tk, x) = ihd@A x - x)

r

Y I &’k Vi(k, )7k, x) = -iphd@A (x ~x")

T

where for equations of type 2

(A6.3)
(A6.4)

(A6.5)

(A7.1)
(A7.2)

(A7.3)

(A7.4)



NOE i(zn:)'3 &k exp{i[k- x — @k)t]}
20(zk)

with

A (=x) = -A (x)
zS(:)a2 A%x) =~ L ()51
t 2

2
(—a-z-+ mz(V))

at

For equations of type 1, it can be shown that (A7.3) is satisfied if

Ax) = —i(2n)—3{ a3k eitk x- an)

with

SmA" (x) = -i8(x)8(D)
(i 53?- oWM|A'x) =0

Commutation Relations and Statistics
From the structure of the free fields, we can readily show that

[07(x) , o)) = ihdu@IA (x — y) + pp’A (x = y)]

where p =+1(-1) for fermion (boson) fields and
0 for type-1 equation with +e(k)
p’={+1 for type-2 boson equations
-1 for type-1 fermion equations
When we introduce the causality requirement for operators Fj by writing

[F(n,Fynl=0 forxzy

we find that it is satisfied when and only when
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(A7.5)

(A7.6)
(A7.7)

(A7.8)

(A7.9)

(A7.10)
(A7.11)

(A8.1)

(A8.2)

(A8.3)
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0 -0
(95 (x) , Pe(¥)]1d(tx —ty) =0 forx=y (A8.4)

For type-1 equations, the causality requirement is automatically satisfied. For type-2

equations, on the other hand, we obtain from (A7.5)

A(x-y)+A (x-y)=0 te=ty (A8.53)

Ax-y)-A (x-y)=——i— Lk ik x-9) =ty (A8.5b)
_ ( 21:)3 (k)

so that the causality requirement gives us

pp’=1 (A8.6)

Now when we introduce the following function

Ax-y)=A"(x-y)+ A (x-y) (A8.7)
Then we can write

[0°(x) , P (W] = Thd@)AX - ) (A8.8)
for type-2 equatidns, and

[0°x) , p ) =ihd@A x - y) (A8.9)

for type-1 equations.

From these considerations we obtain

+1 for boson fields
p= {—1 for fermion fields (A8.10)

which gives the result that the causality requirement uniquely determines the statistics of the

particles described by field equations of type-2.



Appendix B

Product Rules of Two Point Functions

In many situations, one encounters diagrams (for example the self energy to second
order in which there is a product of two point functions. For convenience we list here the

results of such products.

When we encounter a product of boson two point functions of the form as given by

(6.3.4) then we write the product as follows :

-1
Q'LQ[UB(K-U-) T(lo ko 4 i&} Un(xy)
27‘ 2 -aﬁ
ko AR ]
x [UB(K-) t (lo -k ok - xar)) Us(k.)
2 -Ba

= if dx o(x; k, K.) [Up{x) T {ko—-x + i&}-IUB(K)]aB

(B1.1)

where

ol Kk, , ) =8(K-x, *K) [ f5(x,) - fg(2x)] (B1.2)

This formula and others of its kind are derived component by component.
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Similarly the product of fermion two point functions is given by

-1 T
%8 | 2ol uek,) (mﬁl- X, + i&r) utae)
2nl 2 dap

~1 ]
x| U(x) (10 ko 4 i&) vt
L 2 -Ba

=i I dk o(x; x4, &) [Up(x) T {ko ~x + i&}—lUB(K)]aB

(B1.3)
where e =1"%and

o(k; X, , k) = =8(x - x, + k) [ fi(x,) - fe ()] (B1.4)

The product of a fermion two point function and a boson two point function gives a
fermion two point function. Thus when the fermion two point function is given by (6.2.6)

and the boson two point function by (6.3.4) then

f gzl.Q.[U(lq) {k() ~log-x; + i&t}—lUf(Kl)]aB
T

2|1 ]
X UB(Kz)T{lo 7 (k2 —i07) } Up(X2)}ap

=i j dk o(x; 1, x2) [U(K) {ko—-x+ iSt}_lUT(K)]aB

—C0

(BL.5)

where

o(K;K,,K,) = -d(k — K, 7 K)fp(2x,) + 1 - f(x))] (B1.6)
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On the other hand, when the boson two point function is that of a scalar particle as given by

(6.4.3) then we get
f %%[U(tcl) (ko= 10— K1 + ia:}’lu'f(xl)]ag
ol e
X UB(Kz)T{lo- (k2 - i67) ) Ug(X2)ap

=i f dx o(x; k1, ¥2) [UX) {ko—-x+ iSr}_lUf(K)]ab

-

(B1.7)

with

O, %y) = =i (806 K= 1) £y () + 1= 06}

-o(x — K+ xz){fB(-Kz) +1-f(x)} (B1.8)



Appendix C
Thermal Separation of Propagators
Consider the photon propagator (10.2.6) :
(k) = Up(@ytld - (0 - 591 Ug() (C.1.1)

To separate this into a temperature independent and dependent part we first write out the

matrix explicitly :
ch@ i@  ca(@ds(@) _ ca(w)dp(e)
RN LEICE i8) ko-(0+i8) ko—(@=i8) ko-(@+id)
cp(@)dp(@) _ cp(@da(@)  di@  ch(w)
ko ~ (m-—iS)2 ko - (o)+i8)2 ko - (- i8)2 ko - (w+ i8)2
(Cl1.2)

Now when we use :
cB(w) = 1 + f(w) , d3(w) = fp(w)
with

fa() =—1—

efo—1

Then
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12§
—_t 0

| ko= (@~i8)’
=iAc(k) = -1
ko— (@ +i8)°
1 - 1 gz fen
|k -i8) ko-(0+i8) ko—(0~i8)° ko—(@+i8)
. 0~ (W-1 (!
ePo_ 1 eho2 B2 1 _ 1
- co\2 can2 con 2
ko~ (@-i8) ko-(W+i8) ko—(w~i8) ko~ (w+1id)
(C1.3)
Now since
—_—l =11 ] (C1.4)
ko~ (@3 i8)2 2wlkyg~-0id ky+oz 16J
and
L =P indke- ) (C1.5)
kO ~0tid ko - @ )
Then we quickly get

iS22 )
—iA(K) = Tk~ (0~ i6)T + 2mid (ko "’)( 1 °Bm) (CL.6)
eBCO_I eBa)/Z 1

The above result is the same as (10.3.27a,b). The separation of the electron propagator is

performed in exactly the same way, only we use (6.2.4) and (6.2.7).



Appendix D
Notation

The metric that we use is given by

-gi=goo=1 (D1.2)
gV=guw=0 pL=zv (DL3)

The coordinate and momenta are defined by

xu = (, X) . (D1.4)
ky = (@, k) (D1.5)

so that the dot product of two four vectors is given by

ke x =kMx, =kx* = ot - k- x (D1.6)
where kex is the usual three dimensional dot product. We also use the slash notation as

defined by

We define the derivative operator by
d _ 9
Oy = (3; , Vz) =3 (D1.8)
0 d
o[l _vy.l=_9_
0 (at , V,) 3% (D1.9)

Furthermore, when we write (V) etc, it is to be understood as

wk)ek X = (V)elk ¥ (D1.10)
The Dirac gamma matrices are given by

Yo=( I 0) Yi=(0°i) (DL.11)

0 -I o 0
where, I is the 2 X 2 identity matrix and the o are the 2 x 2 Pauli matrices given by
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ol=(° 1) 02=(?-1) c3=(1 0) (DL.12)
01 i0 0-1
The Dirac gamma matrices satisfy the following relationships
Y+ YUyt = 2w (D1.13)
Pr=ry T =y T = (D1.14)
PPetl =l ©L13)

As for indices, we use the normal convention of reserving the Greek indices for 0,1,2,3

and Latin indices for 1,2,3.



